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In this work, we focus on viewing the order of derivation and/or integration in the di�erential
equations of parametric adaptation as a parameter itself that can be also adjusted. This
entails the use of fractional-order derivatives/integrals in adaptive schemes and the tuning of
the derivation/integration order. It is shown that the estimation performance is objectively
enhanced with a carefully designed tuning of the derivation parameter. Speci�cally, we
establish that the fractionalization of the gradient method brings transient and robustness
improvements to the estimation process. Moreover, when this estimation is used as a part
of a controller or observer scheme for a given process, these advantages are inherited to the
control or observer aim.

En este trabajo, nos enfocamos en ver el orden de derivación y/o integración en las ecua-
ciones diferenciales de adaptación paramétrica como un parámetro en sí mismo que también
se puede ajustar. Esto implica el uso de derivadas/integrales de orden fraccionario en es-
quemas adaptativos y el ajuste del orden de derivación/integración. Se muestra que el rendi-
miento de la estimación se mejora objetivamente con un ajuste cuidadosamente diseñado
del parámetro de derivación. En concreto, establecemos que la fraccionalización del método
de gradiente aporta mejoras transitorias y de robustez al proceso de estimación. Además,
cuando esta estimación se utiliza como parte de un esquema de controlador o observador
para un proceso dado, estas ventajas se heredan al objetivo del control o del observador.
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Chapter 1

Introduction

1.1 Context

Adaptive schemes are dynamical systems with elements being adjusted to satisfy some criteria
for the overall system in which they are embedded. In automation engineering, they are
mainly employed to deal with systems where uncertainties, which always occur in models
of real processes, cannot be ignored for security (air-plane navigation), precision (robotic
manipulations) or stabilizing concerns (nonlinear models) (e.g., see the examples in [AKO07]
or in [NA05, Chapter 11]). Correspondingly, the main adaptation criteria are lowering the
energy consumption, smoothing the transient behaviour, lowering the stabilization time,
and/or robustifying the response.

Some other elements in adaptive schemes remain unchanged despite their e�ects on the
overall performance. It is heuristically known the connection between the adaptation gain
�usually assumed a constant parameter� and the rate of the convergence. However, there are
elements that also can provide bene�ts when carefully chosen, even though they do not seem
modi�able at �rst sight. For instance, in the problem of asymptotically tracking a reference,
the reference signal can be arbitrarily chosen in the transient stage; in the state observer,
the dimension of the model can be enlarged or decreased to cope with unmodelled dynamics
or transient improvements; in the case of the parameters tuning, the di�erential equation
describing the tuning can be chosen of fractional type.

An intelligent adaptive scheme should choose the best way of adapting its elements in
view of performance, which amounts to adapting those other elements too. In fact, the
current trend in adaptive theory has shifted the emphasis from the Lyapunov stabilization
to the performance features (e.g, transient response, robustness, settling time, relaxing of
assumptions). For instance, to enlarge the class of uncertain systems that can be controlled,
instead of the asymptotic tracking, bounds for the transient and the permanent error together
with practical ways to reduce them are established in [TV18]. Weaker notions of stability (e.g.
λ−stability [MD91]) show that the Lyapunov stability is not a cornerstone when dealing with
robustness or solvability problems. On the other hand, Lyapunov stability does not cover
the transient performance, which is one of the main practical concern. Antecedents of this
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approach in the discrete-time case can be found in [BK05] where adaptive optimization of the
least-means-square algorithm is studied and in [Bay92] where the optimization is performed
o�-line.

In this work, we focus on viewing the order of derivation in the di�erential equations of the
adaptation as a parameter to be adjusted, which implies the introduction of fractional-order
derivatives or integrals in adaptive schemes. These operators play here a similar role of the
complex numbers in linear system theory: they help us to solve engineering problems, but
the question of their physical interpretation is not relevant. For our purpose, it is enough
that they can be computationally implementable. The main motivation for their introduction
comes from the fact that fractional di�erential equations allow including non-local e�ects,
which enriches the complexity of the adaptation scheme and their capability to cope with
uncertainties. In addition, being the convolution of the derivative, the fractional derivative
has an averaging e�ect which removes short-term oscillations from the measured data.

The formal introduction of the fractional calculus in adaptive problems appeared in
[VIPC02] where a simulation study was performed for the control of a �rst-order plant.
Experimental validation of this control strategy for a coaxial rotor has been performed in
[KAAY16]. However, little theoretical progress has been made. On the one hand, authors
have focused on adaptive problems involving fractional-order systems with the same deriva-
tion order for the adjustment of parameters, which is not the subject of this work. On the
other hand, the convergence for fractional adaptations has remained an open problem since
no similar statement as the Barbalat's Lemma, which plays a key role in the integer-order
case, has been found for the fractional case and only weak statements are known [Gall15a].
Essentially, it is due to the convolutional character of the fractional integral, which yields
a losing of excitation. Even the stability property becomes problematic because there are
no general methods for systems composed of integer and fractional subsystems (see for in-
stance an integral approach in our work [AGD19]), in which we are interested. In addition,
quantitative or even qualitative formal statements of the hereditary or averaging properties
of fractional derivatives described above are not available.

1.2 Contributions

The major results of this thesis are as follows:

(1) We establish adaptive schemes de�ned with non-integer operators that solve classic en-
gineering problems. We address the problems of designing estimators, controllers, and
observers for uncertain real processes that can be modelled using classic physical laws.
Since these laws are formulated with integer operators, the resulting models are non-
linear di�erential equations of integer order. We solve these problems by introducing
fractional operators and proving stability properties under similar assumptions than
classic solutions de�ned with integer operators. As a result, we are showing that frac-
tional operators are admissible for classic problems and providing tools to analyse the
overall behaviour of systems composed of subsystems with di�erent derivation orders.

(2) We prove that the proposed fractional schemes have objective advantages as compared
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with classical integer-order solutions. This means that the obtained advantages cannot
be overcome by varying other parameters in the adaptive scheme. Speci�cally, we
show in a precise mathematical sense that the transient performance is improved and
the robustness is enlarged by using non-integer schemes. We also establish objective
disadvantages of fractional schemes related to the convergence and the ways to �x them
without losing the advantages.

(3) We develop adaptive schemes in which the derivation order is tuned like any other ad-
aptive parameters in view of taking advantage of both fractional and integer-order fea-
tures while preserving the stability. It is shown that the resulting scheme achieves better
performance than �xed-order schemes in transient and robustness aspects. Moreover,
the design of the scheme is �exible in the sense that other performance criteria can
be incorporated too. This corresponds to the striving for building intelligent adaptive
schemes in which the minimum of a priori knowledge of the system is needed to get
optimal performance.

1.2.1 Hypothesis & Objectives

The above contributions entail the following hypothesis and objective.

Hypothesis: Fractional systems have properties that enhance the performance of adapt-
ive schemes when applied to solve classic automatic problems formulated in integer calculus.

Objective: Design general enough adaptive schemes with fractional operators such that
when applied to solve such automatic problems exhibit objective advantages.

1.2.2 Summary

These contributions are organized as follows. In Chapter 2, we review some features of
fractional calculus. In Chapter 3, the estimation designs using fractional operators are es-
tablished. These designs are applied to adaptive control and observer problems in Chapter
4. Chapter 5 explores quantitatively the qualitative advantages already established. A dis-
cussion of the results is provided in Chapter 6. An Appendix with the proofs of the main
results wraps up this work.

Caveat: some mathematical contributions developed by the author to analyse fractional-
order systems will be only referenced in this work to focus on engineering applications.

1.3 Notation & Preliminaries

In this section, we pile up several notation and de�nitions that will be used throughout the
paper. The reader can skip this section and return to it when needed.
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1.3.1 Algebra

R, C denote the set of real and complex numbers, respectively. For x ∈ Rn, x> or x′ denotes
the transpose of x. For a symmetric matrix P ∈ Rn×n, λP and λ̄p denote its lower and upper
eigenvalue, respectively. For a symmetric matrix A ∈ Rn×n, A > 0 or A ≥ 0 means that
λA > 0 or λA ≥ 0, respectively.

‖ · ‖ is the Euclidean norm on Rn. d(A,B) denotes the Euclidean distance between the
sets A,B. For A ∈ Rn×n, ‖x‖A := x′Ax,∀x ∈ Rn is a metric when A > 0.

1.3.2 Fractional Calculus

For a measurable function x : [a, b] → R with
∫ b
a
|x(s)|ds < ∞, its Riemann-Liouville frac-

tional integral of order α > 0 is de�ned by

Iα0+x(t) =

∫ t

0

kα(t− s)x(s)ds, t ∈ [a, b], (1.1)

where kα(t) := 1
Γ(α)

tα−1 with Γ(α) :=
∫∞

0
τα−1 exp(−τ)dτ is the gamma function [Die10].

There is no unique way to de�ne a fractional derivative; each de�nition having defects and
virtues. The most suited for our purpose is the Caputo derivative, which is de�ned by

CDα
0+x(t) =

∫ t

0

k1−α(t− τ)ẋ(τ)dτ (1.2)

when 0 < α ≤ 1 and x ∈ AC([a, b],R), the space of absolutely continuous functions (see
[Die10] for the de�nition with α > 1). Often, we omit the indexes 0+, C. Less often, we also
write x(α) := Dαx(t).

The Mittag�Le�er function Eα : C→ C is de�ned by

Eα(z) :=
∞∑
k=0

zk

Γ(1 + αk)
.

For any α ∈ (0, 1], the restriction Eα : R→ R>0 is strictly monotonically increasing. Notice
that E1(z) = exp(z) and that Eα(A) can be de�ned similarly as exp(A) for any A ∈ Rn×n.
The function Eα(Atα)x0 is the solution to

Dα
0+x(t) = Ax(t)

x(0) = x0.

Most of the properties of fractional-order linear systems stem from the properties of the Mit-
tag�Le�er function [Die10] and have a parallel with the properties of integer-order systems.

Fractionalize a system is to allow that its derivation order takes real values. So, if we have
the system

ẋi = fi(x, t), i = 1, . . . , n,
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then its fractionalization is given by

Dαixi = fi(x, t), i = 1, . . . , n.

1.3.3 Function Sets

For a function f : [0,∞) → Rn, its Lp(0, T )−norm with p ∈ {1, 2, . . .} ∪ ∞ is de�ned by
‖f‖pT :=

∫ T
0
‖f(t)‖pdt. Lp is the space of functions with �nite Lp−norm for T =∞. Similarly,

‖f‖pβ,T :=
(
Iβ‖f‖p

)
(T ) and Lp,β is the space of functions f such that lim supT→∞ ‖f‖

p
β,T <∞

for any T > 0.

O(g) is the set of functions f such that ‖f‖ ≤ C‖g‖ for some constant number C.

The function f : R≥0 → Rn holds the PE condition if there exist ε, T > 0 such that for
any t0 > 0 ∫ t0+T

t0

ff ′dτ ≥ εIn. (1.3)

If f holds the PE condition, then f is called persistently exciting function.

For a function x : [0,∞)→ R, its RMS (root mean square) value is de�ned by xRMS(t)2 :=
1
t

∫ t
0
x(s)2ds.

1.3.4 Stability

Let M ⊂ Rn and consider a set of trajectories denoted by x(·;x0) : [0,∞) × Rn → Rn with
x(0;x0) = x0.

M is an stable set at t = 0 if for any ε > 0 there exists δ such that d (x0,M) < δ implies
d (x (t;x0) ,M) < ε for all t > 0. M is attractive if there exists δ0 such that d (x0,M) < δ0

implies limt→∞ d (x (t;x0) ,M) = 0. M is asymptotically stable if it is attractive and stable.
Sometimes, we speak of stability when meaning to asymptotic stability.
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Chapter 2

Fractional Systems

The aim of this section is to establish some properties of fractional operators that can have
applicability in engineering problems. It is clear that the fractionalization of a given control
or observer system provides an additional degree of freedom to the designer. We will show
in what sense this degree can become relevant.

2.1 Memory

It is a common feature of fractional derivatives the use of nonlocal past values of a function
in the computation of the derivative at any given point (e.g., see expression (1.2)). This
yields the well-known non-local, long-memory, or hereditary e�ects in a system de�ned by a
fractional derivative. It is less highlighted, however, that the fractional integral has a shorter
memory than the integer integral, providing a similar e�ect than the forgetting factor or
fading memory in system theory.

2.1.1 Forgetting factor

Forgetting factor, as a concept, is the attenuation of the past data to give relevance to the
current data. It is used in robust and adaptive control designs to counteract noisy and time-
varying e�ects (e.g., see [SL91, Chapter 8]). It is also used to de�ne a performance index
with fading memory. A way to exploit the forgetting factor intrinsic to the de�nition of the
fractional integral for α < 1 (see expression (1.1)) is to fractionalize the integrals appearing
in classic designs.

For instance, consider a system of output y with an integral control u (of arbitrary dimen-
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sion determined by η) given by

η̇ = f(η, y),

u = h(η, y) = h(

∫
f(η, y)dτ, y).

Then, its fractionalization is given by

Dαη = f(x, y),

u = h(η, y) = h(Iαf(η, y), y).

Thus, when the measurement of y is noisy, the fractional control has the advantage of atten-
uating past data due to the forgetting factor e�ect. A particular instance is the PID control
whose fractionalization, the PIαD control, was studied in [GAD20b]. In that paper, we prove
the stability, robustness, and convergence properties when controlling nonlinear systems and
apply the control on a boost converter. Another example, relying on a backstepping scheme,
was obtained in [GD18b] to control feedback linearizable systems by changing u̇ = f(η, y) by
Dαu = f(η, y). In both cases, the robustness was enhanced in comparison to the integer-order
case when noise is present.

The forgetting factor entails a loosing of information or dissipative property for a frac-
tional system. The paradigmatic example is the fractional capacitor, which can be discharged
even though no charge is connected to it [Gall20e, Proposition 1]. It can be proved that if a
system is dissipative with respect to a convex di�erentiable energy function, then its fraction-
alization is also dissipative (see [GD18c, Proposition 1.iii]). Recalling that the dissipativeness
is additive for feedback or neutral connections, one can easily generalize the passivity-based
control strategy by including fractional elements. This is what ensures the stability for the
PIλD controllers [GAD20b].

Finally, a measure of the forgetting e�ect is that the set of functions with bounded frac-
tional integral strictly increases as the order of integration decreases. This is relevant because,
roughly speaking, additive external disturbances with bounded square integral does not alter
the stability of the system.

2.1.2 Remembering property

A concrete manifestation of the long-memory is that the initial condition can be recovered
in the following sense. Consider the scalar equation

Dα
0+x(t) = −a(t)x(t),

where a is a non-negative continuous function and α ∈ (0, 1). In [GD16a], it was proved that
if Iα0+a(t) → 0, then x(t) → x(0) as t → ∞. In particular, if a(t) is compactly supported,
then limt→∞ x = x(0) for any α < 1. However, when α = 1 and since a is non-negative, x is
non-decreasing and does not return to x(0).

Seeing a(t) as a multiplicative perturbation for the system, this property tell us that local
perturbations (i.e. compactly supported) 'a�ect' more when α = 1 than one with 0 < α < 1
since the system does not recover its initial con�guration when a vanishes.
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2.2 Stability

It was soon recognized that the set of matrices A that render stable the origin of the system

Dαx = Ax, 0 < α ≤ 1, (2.1)

is strictly enlarged (in the inclusion sense) as α decreases (see a formal exposition in [CDT16]).
Therefore, the following conjectures have motivated much research on this �eld:

(a1) The fractionalization of any stable system is stable,

(a2) The fractionalization of some unstable systems is stable,

(b1) The fractionalization of a stabilizing controller (or observer) yields a closed-loop stable
system.

(b2) The fractionalization of some unstable controller (or observer) yields a closed-loop stable
system.

Most of the literature is concerned with proving instances of (a1). Conjecture (b), which
involves the stability problem of a multi-order system (the fractional controller/observer
system and the integer-order system to be controlled/observed) and that contains the topic
of this work, has been poorly developed besides contributions of the author [GD18d, GAD20a,
GAD20b]. Conjecture (b2) entails the searching of novel controller/observer designs.

Conjecture (a) is of curse true for linear systems like (2.1). Using a linearization argument
(see e.g. [CDT16, GD17b]), (a1) and (a2) hold locally for a large class of nonlinear systems.
More generally, it was proved in [GD19a] that whenever the stability of a (time-varying) sys-
tem is exponential then its fractionalization is asymptotically stable. Unfortunately, state-
ment (a1) and hence statement (b1) are not true in general; for the time-varying version of
(2.1), i.e. A = A(t), a counterexample for the asymptotic stability was shown in [Gall15a].
This is related to an incomplete version of the LaSalle and Lyapunov Theorems as compared
to the statement for the integer-order case [GD16b]. A candidate to hold conjecture (b2) is
the fractionalization of a PID controller in [FC14], even if the stability of the corresponding
PID was not treated.

2.3 Growth and Decayment

In general, there exists a combination of an extremely fast start with a subsequent sub-
exponential (i.e. slower than exponential) decay for systems with derivation order α < 1
(including the case with conformable fractional derivative). The sub-exponential growth/de-
cay can be related to the long-memory component of the derivative that acts like an 'inertial'
e�ect and yields a similar behaviour than delayed systems, which are known to have slower
responses. This long-memory e�ect only appears as time grows so that in the transient time
dominates the fact that, as seen from de�nition (1.2), the derivative of the solution must
be singular so that the integral at zero does not vanish. These two e�ects should yield an
enhanced transient response, in the sense of small overshoot, for the fractionalization of an
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integer-order controller/observer. Moreover, according to the heuristic trade-o� between con-
vergence's speed and noise-sensitivity, the latter e�ect should also yield enhanced robustness.

We will detail these e�ects for the scalar equation

x(α) = f(x, t), (2.2)

where f is a C1 function.

2.3.1 Transient

For α < 1, it has been proved in [GAD19b] that the solutions of (2.2) hold | d
dt
x(t)| = O(tα−1)

as t → 0+, whenever f(x(0), 0) 6= 0. On the other hand, the sign of d
dt
x(t) is the same that

the sign of f(x, t) for a small enough interval [0, ε), as can be seen from De�nition 1.2. Let
x(0) > 0. Then, using the mean value theorem and the continuity (di�erentiability) of the
solution, we have that for a small enough interval [0, ε), xα(t) < x1(t) for any t ∈ [0, ε)
whenever f(x(0), 0) < 0, where xα, x1 denote the solution of (2.2) for derivation order α, 1,
respectively. Similarly, xα(t) > x1(t) whenever f(x(0), 0) > 0. The same arguments can be
repeated for x(0) < 0. Therefore, the fractional solutions are faster (i.e. faster decay or faster
grows, respectively) than the integer one in a small enough transient period.

2.3.2 Order of growth/decay

It has been proved in [GD19a] that the solutions of (2.2) can decay at most in sub-exponential
order to zero for system with derivation order 0 < α < 1. On the other hand, when |f(x, t)| ≤
λ|x| and assuming that x grows (so that w.l.o.g. x ≥ 0), we have

x(α) ≤ λx.

A comparison argument shows that x(t) ≤ Eα(λtα). This proves that for such systems there
is no �nite time escape.

2.3.3 Rate of decay

Although the order of convergence is sub-exponential in fractional-order systems, we still
have some control on its speed in the following sense. Consider for simplicity the Mittag-
Le�er decayment ‖x(t)‖ ≤ Eα(−λtα) for any t > 0, where λ > 0. Since the function
t→ Eα(−λtα) is monotonically decreasing [Die10], it follows that the function λ→ Eα(−λtα)
is also monotonically decreasing. Therefore, for any ε > 0 and any �xed time t0, there exist
a large enough λ such that ‖x(t)‖ < ε for any t > t0, providing a way to manage the speed
performance via the parameter λ.
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2.4 Modelling

Due to the long-memory property and sub-exponential (power-law) behaviour, fractional-
order systems have become a relatively popular alternative to get accurate models for di�erent
kinds of phenomena (see [P08, Chapter 10] and references therein). Among other features,
fractional calculus has provided �nite-dimensional models of linear systems with irrational
transfer functions (hence, of in�nite dimension) depending on non-integers exponents of the
Laplace variable s (as in the heat equation [VMLO15]), because sq is Dq in the time domain.
For the same reason, it has enlarged the class of possible control designs based on frequency
analysis for linear systems (see e.g. [Ous91], [LC12]). In a great extent, the fact that fractional
linear systems yield input-output relationships of power-law type in the frequency domain has
explained the interest for fractional derivative as many biological or social processes exhibit
non-exponential behaviour.

From the physics point of view, these models should be considered phenomenological and
of reduced-order kind. For, on the one hand, they may have further properties which might
not be observed in the real processes; e.g., the conservation of mass or energy is violated in
some fractional transport equations, the discharge of a fractional capacitor depends on how
it was charged, the singularity that occurs at the initial time of the fractional derivative.
On the other hand, the reduced-order nature can be deduced from the following asymptotic
result [Ous91]

sα = lim
N→∞

N∏
n=1

1 + s/ωn
1 + s/νn

,

where ωn, νn depend on α. Thus, a �nite-dimensional fractional-order system is equivalent to
an in�nite-dimensional integer-order one (for null initial condition). Since the discrete version
of the above expression entails in�nite delays, there would be also an order-reduction when
modelling in�nite-dimensional delayed phenomena. It must be noted that actual processes
are in�nite-dimensional.

The above expression is also notable in providing a way to approximate (and to simulate)
fractional systems, and hence, to estimate the computational complexity in using fractional
instead of integer operators with respect to the degree of approximation required.

Thus, from an engineering point of view, the fractionalization of a �nite-dimensional model
of a real process could help to match the observed data when this process is, in fact, in�nite-
dimensional. For instance, consider the problem of controlling a process. A fairly standard
technique is to perform a �nite-dimensional linearization around an operation point and to
employ classic control designs for linear systems. This solution works at the same extent
that the linear �nite-dimensional model approximates the real process. Therefore, the use
of a fractional model should yield better performance when dealing with large-dimensional
processes. This idea has been explored theoretical and numerically by the author in two
di�ering settings: in an observer model [DGAC18b] and in a predictive model [GMM20d].
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2.5 Robustness

Due to practical considerations, any proposed controller or observer must be robust because
any model used in its design is only an approximation of the real underlying process. We
will revise some arguments showing that the fractionalization of a controller or observer can
enhance its robustness.

a) It is a well-known problem that the computation of the derivative of a measured signal
is inexact, introduces delays and/or ampli�es the noise. In fact, this is the reason why state
observers are needed and why the control design becomes a complex problem. However,
some controllers perform derivation on variables of the system, being the PID scheme the
most popular example. Since the fractional derivative is the integral of the integer derivative
and integrals attenuate the e�ects of disturbances, a smoothing or averaging e�ect is to be
expected in the fractionalization of the derivative of a given signal. The fractionalization
of the PID control, the so-called PIλDµ, is one of the earliest applications of fractional
operators in control problems [P08] and has been studied to control linear systems relying
on frequency domain techniques. Another example occurs in boundary control of partial
di�erential equations where the integer derivative is replaced by a fractional one [MM95].

b) Due to the long-memory e�ect in the actualization of the variables for a system de�ned
with fractional derivatives, a sudden increment of an external disturbance has an attenuated
e�ect in comparison with integer-order ones where the e�ect is directly transferred to the
next instant due to the fundamental theorem of the calculus. Dually, expressing the equation
of the system in its integral form, this attenuation can be explained by the forgetting factor.

c) Since the solutions of fractionalized systems become slower as time goes, under-reaction
can be expected to external disturbances. Put in other words, this means a larger attenuation
of disturbances.
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Chapter 3

Fractional Adaptation

Adaptive schemes are designed to achieve control or estimation aims by adjusting some of
their parameters or their structure. Mainly, the parameter adjustment consists of assigning
values to the parameter derivatives according to the following criteria: the cancellation of
cross-terms in Lyapunov functions [KK95], the domination of the overall dynamic [WC02], or
the optimization of a performance index guided by the gradient descent or the Least-Square
technique [SB94]. However, these schemes present general speaking a poor performance re-
garding robust and transient aspects. In the cancellation and optimization cases, it seems
obvious that any perturbation blurs their designing principle. The domination case admits
more robust designs, but, for the same reason, conservatism in the transient performance
should be expected. Since adaptive schemes are justi�ed in its capability to deal with un-
certain settings, the design of high-performance robust schemes becomes one of the main
focus for adaptive researchers. This section is devoted to studying the transient and robust
e�ects of the assignation of values to the fractional rather than the integer derivative of the
parameters.

3.1 Regression Model

To establish a general framework with the abstraction of any speci�c problematic, consider
the regression model

y = m′θ, (3.1)

where y : [0,∞)→ R and m : [0,∞)→ Rn are measurable functions and θ ∈ Rn is a vector
of unknown constant parameters. To the best of our knowledge, it can be shown that for all
previously studied adaptive problems with linearly parametrized uncertainty one can de�ne
a regression equation of the type (3.1) (see Section 6.1).

Let θ̂ = θ̂(t) be an estimation of θ at time t and de�ne

ŷ := m′θ̂, (3.2)

e := ŷ − y = m′(θ̂ − θ) =: m′θ̃. (3.3)
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In this setting, the adaptive goal is to minimize |e| by adapting θ̂, and the estimation goal
is to achieve limt→∞ θ̂(t) = θ.

3.2 Fractionalized Gradient Descent

One of the most e�ective methods to solve optimization problems is the gradient descent.
Basically, for the minimization of a performance index J , it suggests the dynamic

˙̂
θ(t) = −λ∇θ̂J(t), (3.4)

where ∇θ̂ is the gradient with respect to θ̂, and λ is a designer-chosen nonnegative function
that we will assume scalar for simplicity.

Intuitively, (3.4) yields the fastest convergence of θ̂ to the optimal argument θ∗ for the
optimal value J∗ because θ̂ follows the steepest descent of J . However, the gradient-descent
has rather poor robust and transient properties. As a matter of fact, modi�cations to gradient
designs, such as projection, switching, dead zone, σ, e1 or θ-modi�cation, must be considered
in real applications where adaptive schemes with a bad transient response or with poor
robustness are utterly impractical [OT89, p.661]. Although J could include speci�c terms
to improve the performance in these aspects, the convergence study of the resulting scheme
becomes more di�cult as witnessed in the fact researchers in this �eld have preferred the
above modi�cations.

Based on the arguments in Section 2.3 and 2.5, we can expect transient and robustness
improvements with a fractionalized gradient estimation. On the other hand, as a modi�cation
of the gradient-descent, we should also expect that the optimization will be impoverished in
other aspects such as the speed or even the convergence itself.

We start by writing (3.4) as

θ̂(t) = −λH(s)[∇θJ ](t),

where s denotes the Laplace domain variable or the di�erential operator d/dt. Thus, H(s) =
1/s leads to (3.4), H(s) = 1/(s + σ) to the gradient descent with leakage, which is used
to enhance robustness as it entails a �ltering of the measured signals [OT89, Section 2.4.4],
H(s) = kp + kis

−1 leads to a proportional-integral (PI) gradient descent, and H(s) = 1/sα

to the fractionalized gradient (e.g. [VIPC02]). Although combinations among them can
also be studied, our aim is to understand what the simplest fractionalization brings to the
estimation problem. The key seems to be the expression for sα in Section 2.4, which yields a
connection with the leakage gradient. In fact, the leakage also introduces memory e�ects in
the adaptation [HC89, p.409].

Choosing the index J = e2, we must thus consider

Dα
0+ θ̂(t) = −λ(t) e(t)m(t), (3.5)

where θ̂(0) ∈ Rn and θ̂(0) 6= θ as otherwise the solution is trivial. Recalling the de�nition of
the fractional derivative, notice that (3.5) does not specify the rate of the parameter change
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(θ̇) but the way in that the past rates are to be weighted (quanti�ed by α) at the current
time. In this sense, we say that (3.5) is a a nonlocal estimation. Conditions for existence,
uniqueness, and continuity can be deduced from [GAD19b]. For our purpose, it is enough
requiring continuity or locally integrability on m,λ. The choice α = 1 and λ(t) = tα−1λ′(t)
yields the conformable version of the gradient descent. That is, this case can be written as
Tα0+ θ̂(t) = −λ′(t)e(t)m(t), where Tα0+ is the conformable derivative � a kind of local fractional
derivative introduced in [Abd15].

Formally, the problem is to determine the role of the parameter α in the minimization
of e2. The following result, whose proof is given in Section 6.2.1, establishes its role in the
transient and robust performance.

Theorem 1 For the estimator (3.5), the following statements hold:

i. θ̂ ∈ L∞ and ‖θ̃(t)‖ ≤ ‖θ̃(0)‖ for all t > 0.

ii. If λ > 0, then e2 ∈ L1,α and limt→∞ eRMS = 0

iii. Suppose that m is a bounded and uniformly continuous function. Then, e → 0 as
t→∞ and λ→∞.

iv. There exists a bounded uniformly continuous signal m such that e→ 0 as t→∞ when
α = 1, but e does not converge to zero when α < 1 for bounded λ.

v. If m ∈ PE is bounded, then θ̂ → θ and e→ 0 in sub-exponential order for α < 1 and
in exponential order for α = 1 as t→∞.

vi. There exists a transient period where ‖θ̃(t)‖ is lesser when using α < 1 than when using
α = 1, even if one allows λ to be arbitrarily large but bounded.

vii. For any additive perturbation ν in the measurement of y with ν ∈ L2,α, θ̂ remains
bounded. Moreover, the space of non-destabilizing perturbations is enlarged as α de-
creases.

Remark 1 The following comments must be underlined.

• Item (i) provides a bound for the transient behaviour, which is suited to apply multiple-
models for further improvement of the transient, i.e. to employ several estimators of
the form (3.5) with di�erent initial conditions.

• Item (ii) means that arbitrary prescribed performance in the error magnitude can be
achieved by increasing λ.

• Items (iv) and (v) represent objective disadvantages in the choice α < 1 and are a
consequence of the modi�cation to the gradient descent. Item (iv) and the convergence
slower than exponential are true even for more general adaptive laws of type Dαθ̂ =
f(e, θ̂,m). For the former, this occurs essentially because of the failure of conjecture
(a2) in Section 2.2, see more details[Gall15b]; for the latter, see Section 2.3.

• A milder condition than (v) for the convergence of e is by requiring the PE condition
on some rather than the full components of m (see Section 6.2.2).

• Items (vi) and (vii) provide expressions for the transient and robustness enhancement
due to the fractionalization and represent objective advantages in comparison to the
case α = 1 in the sense that they cannot be overcome by choosing bounded λ. Item (vi)
can be intuitively explained from the fact that the singularity ‖θ̇(t)‖ ∼ tα−1 as t→ 0+
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yields an e�ective adaptive gain larger than any �nite one, and hence, the fractional
estimator converges initially faster than any other with α = 1. Item (vii) can be
explained by the forgetting e�ect of the fractional integral, which entails an attenuation
of old data, together with the fact that θ̂ is the fractional integral of λ(t) e(t)m(t). In
fact, in the limit case α = 0, in which the forgetting is instantaneous since I0x = x, θ̂
remains bounded for any bounded perturbation when m is bounded since

θ̂(t) = −mm′(t)(θ̂(t)− θ) + ν(t)ω(t)

= (I +mm′(t))−1[mm′θ + ν(t)m(t)].

3.3 Adaptation with Memory

It must be recalled that convergence is a prerequisite in many adaptive applications (e.g. in
synchronization for secure communications). The shortcoming of fractional adaptation in this
regard (see Theorem 1(iii)) can be critical as the obtained way to ensure the error convergence
is given by a strong condition on m (see Theorem 1(iv)). We devote this subsection to relax
this requirement retaining the already obtained transient and robustness features.

The trick to weakening the PE condition is storing excitation with a memory element given
by an integral. To preserve the advantages of the fractionalization established in Theorem
1, the adaptation is obtained by adding such a memory term to the gradient. Being the
automatic adjustment to changes in the environment, the adaptation is bene�ted from short-
memory designs. Therefore, to enhance the performance of the adaptation, the memory
element must be used with a forgetting factor, which will be accomplished by letting the
integral to be fractional. This yields the fractionalization of the integral adaptation (e.g., see
[PKD18] and the pioneering work [Kre77]).

Speci�cally, θ̂ is determined by the following equations (we have replaced m by u).

Dα
0+ θ̂ = −Γ

(
γ1eu+ γ2κ(Ψθ̂ −Υ)

)
, (3.6a)

Ψ(t) :=

∫ ta(t)

0

k(ta(t), s)u(s)u′(s)ds, (3.6b)

Υ(t) :=

∫ ta(t)

0

k(ta(t), s)u(s)y(s)ds = Ψ(t)θ, (3.6c)

where γ1,2 are normalizing functions, which we choose as γ1 := 1
1+‖u‖2 and γ2 := 1

1+Ψ̄
, with

Ψ̄(t) =
∫ ta(t)

0
k(ta(t), s)‖u(s)‖ds +

∫ ta(t)

0
k(ta(t), s)‖u(s)‖2ds. The numbers 0 < α ≤ 1 and

κ > 0, the matrix Γ ∈ Rn×n,Γ > 0, the non-decreasing nonnegative function ta = ta(t) and
the locally integrable function k are designer-chosen.

The rationale of the adjustment (3.6) comes from the following facts. Let

J(θ̂(t)) := e2(t) +

∫ ta

0

k(t, s)
(
m′(s)θ̂(t)− y(s)

)2
ds
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be a performance index measuring the current output error and the weighted past error
when it is used the current estimated θ̂(t). Since m′(s)θ̂(t) − y(s) = m′θ̃, the second term
provides a measure of the parametric error. As the right-hand side of (3.6a) is proportional to
−∇θ̂(t)J(θ̂(t)), θ̂(t) follows the steepest descent to minimize e2 and (a measure of) θ̃′θ̃ when
α = 1.

The choice of k aims to cope with noisy measurements and parametric variations by acting
like a forgetting factor in the sense that it attenuates the past data in the convolution. Choos-
ing kβ(t, s) = (t − s)−β+1, we obtain Υ = Iβuy and Ψ = Iβuu′, which can be implemented
with the following fractional di�erential equations

Dβ
0+Υ(t) = m(t)y(t), Υ(0) = 0,

Dβ
0+Ψ(t) = m(t)m′(t), Ψ(0) = 0, (3.7)

for any β > 0. The implementation through �lters for the case k(τ, s) = exp(−q(t − s)) for
any q > 0 was studied in [Kre77]. Both exp(−q(t − s)) and (t − s)−β+1 allow introducing
forgetting factors in the estimation with the di�erence that the latter has a longer memory
and does not need a �ltering step when β < 1 representing an objective computational
advantage.

The choice of ta aims to keep the excitation. In this paper, we consider the choice

ta(t) = max{arg max
τ∈[0,t]

γ2(τ) λmin

( ∫ τ

0

k(τ, s)u(s)u′(s)ds
)
.} (3.8)

To ensure convergence, we will make an excitation assumption similar to that in [PKD18],
which requires the following de�nition.

De�nition 1 The function u : [0,∞)→ Rn has �nite excitation (FE) if there exist ε, γ > 0
such that ∫ ε

0

u(s)u′(s)ds ≥ γIn (3.9)

It is clear that FE is strictly weaker than PE since the latter requires the uniform ful�lment
of (3.9) on the real line. Roughly speaking, the memory element moves the FE to each interval
so that a kind of e�ective PE is obtained. The following result formalizes this idea (see the
proof in Section 6.3.1).

Theorem 2 Consider the adaptive law (3.6). Then, the following statements hold:

i. θ̂, Iα0+
(
γ1e2

)
∈ L∞, and ‖θ̃(t)‖Γ−1 ≤ ‖θ̃(0)‖Γ−1 for all t ≥ 0.

ii. (Transient) If 0 < α1 < α2 ≤ 1, then there exists ε > 0 such that ‖θ̃α1(t)‖Γ−1 <
‖θ̃α2(t)‖Γ−1 , ∀t ∈ [0, ε], where θ̃γ := θ̂γ − θ and θ̂γ is the solution of (3.6) with α = γ.

iii. (Intrinsic robustness) For any additive perturbation v ∈ L2,α in the measurement of y,
θ̂ remains bounded. Moreover, the space of non-destabilizing perturbations is enlarged
as α decreases.
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iv. (Convergence) Suppose that u has �nite excitation for ε, γ, and ta is given by (3.8).
Then, θ̃(t) → 0 as t → ∞ at Mittag-Le�er order of a rate of convergence regulated
through κ, α and Γ.

v. (Robustness due to excitation) Suppose that u has �nite excitation for ε, γ, and ta is
given by (3.8), If instead of (3.1) the model is given by

y = u′θ + ν, (3.10)

then θ̂ and e remains bounded when ν is bounded, and they converge to zero when ν
converges to zero.

Remark 2 Some important points are highlighted below.

a. Since α, β play a role to optimize the estimation performance, it is convenient to let
them taking free values in each coordinate. Section 6.3.2 is devoted to this problem.
Notice that the stability analysis for the case when α is a vector cannot be reduced to
a scalar equation through Lyapunov functions, and therefore, (3.6) is a candidate to
satisfy conjecture (b2) in Section 2.2.

b. The occurrence of signals as in Theorem 1(iii) that avoid the convergence of the error
is precluded since the adaptive law (3.6) is not algebraic in e,m (see the third item in
Remark 1).

3.4 Finite-Time Adaptation

For the same reason that the convergence is required in some adaptive designs, the order
and speed of the convergence can become a decisive criterion to evaluate their performances.
For instance, an error function of power-law order of convergence as the obtained in The-
orem 2 can have unbounded L2-norm, which would mean unbounded energy in practical
applications. The slower than exponential convergence introduced by the already studied
fractional adaptive laws can be overcome if the estimator ensures �nite-time convergence.
To counteract the speed limitations established in Section 2.3, a discontinuous or switching
procedure must be considered. This section is devoted to design a �nite-time estimator using
a discontinuous mechanism.

We will use the DREM procedure [OAPAB19] that reduces the estimation problem to a
scalar one. Consider arbitrary linear operators Hi : L∞ → L∞, for i = 1, . . . , n. Applying
them to (3.1), we get yHi

= m′Hi
θ, where (·)Hi

:= Hi(·) is component-wise applied. Let Ye :
[0,∞) → Rn be the vector function with components yH1 , . . . , yHq and M : [0,∞) → Rn×n

the matrix function of rows m′H1
, . . . ,m′Hn . Then, Ye = Mθ and the following holds

Y := adj(M)Ye = adj(M)Mθ,

= det(M)Inθ,

= det(M)θ =: ∆θ,

where the identity adj(A)A = det(A)In for any square matrix A ∈ Rn×n was used. Thus,
the estimation problem is equivalent to the following set of scalar regression equations

Yi = ∆θi, i = 1, . . . , n. (3.11)
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To take advantage of previously established features in Theorem 1, we consider the frac-
tionalization of a gradient-like estimator for (3.11), i.e.

Dαi

0+ θ̂i(t) = λi(t)∆(t)
(
Yi(t)−∆(t)θ̂i(t)

)
, (3.12)

where αi > 0 and λi ≥ 0 are designer-chosen variables. Since they are n independent scalar
equations, we can drop the index i.

Theorem 3 For some designer-chosen parameter 0 < µ < 1, suppose that there exists δ > 0
such that (

Iα0+λ∆2
)
(t = δ) ≥ µ

1− µ
. (3.13)

Let w be the solution to Dα
0+w = −λ∆2w satisfying w(0) = 1. De�ne the estimator θ̂FT as

θ̂ on [0, tf ] where tf is such that w(tf ) = 1− µ, and

θ̂FT (t) =
1

1− w(t)

(
θ̂(t)− w(t)θ̂(0)

)
, (3.14)

for t > tf . Then, the following statements hold:

i. θ̂FT is a well-de�ned piecewise continuous function.

ii. (Transient) If 0 < α1 < α2 ≤ 1, then there exists ε > 0 such that |θ̃α1(t)| < |θ̃α2(t)|,
∀t ∈ [0, ε], where θ̃γ := θγ − θ and θγ is the solution of (3.12) with α = γ.

iii. (Adaptation gain) If 0 ≤ λ1 ≤ λ2, then |θ̃1| ≥ |θ̃2| where θ̃i := θi − θ and θi is the
solution of (3.12) with λ = λi.

iv. (Finite-Time Convergence) There exists tf < δ <∞ such that θ̂FT (t) = θ and e(t) = 0
for any t ≥ tf .

The proof of Theorem 3 and that of the following properties are in Section 6.4. In the
next two propositions, dealing with su�ciency for condition (3.13), notice the independence
of the derivation order.

Proposition 1 Let m be a continuous function. A necessary and su�cient condition to
have a �nite-time estimator of the type (3.14) is that ∆ not be the zero function. If the
components of m are linearly independent functions on an arbitrarily small interval, then ∆
is a non-zero function.

The fact that λ appears in the convergence condition (3.13) on an equal footing than ∆
can be exploited to arbitrary reduce the convergence time tf . More precisely,

Proposition 2 Suppose that ∆ is continuous and not the zero function. Then, tf can be
arbitrarily reduced by increasing λ.

Consider that model (3.1) is a�ected by an unknown additive disturbance ν, i.e.

y = m′θ + ν. (3.15)
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Due to the linearity of the �lters, the DREM procedure for (3.15) yields

Y = ∆θ + ∆V, (3.16)

where V is the vector of components νHi
:= Hi(ν) for i = 1, . . . , q. Thus, the estimation

problem is again essentially scalar.

Since ν is assumed unknown, the estimator is required to be robust meaning that it is not
destabilized when ν is bounded and preserves the already established features when ν ≡ 0.
To satisfy this, we must modify the estimator (3.14) because, in the fractional case, w is not
monotonous and can decrease to 1 when ∆ goes to zero (see the proof of Theorem 3(i)), so
the denominator of (3.14), which is not compensated with the numerator term as in the case
ν ≡ 0, can become arbitrarily small.

The proposed modi�cation will be guided by the heuristic �do not �t to bad data� [OT89,
p.662] avoiding adjusting to the noise when the excitation is not strong enough, which in
our case means ∆ near to zero. Speci�cally, we actualize the estimator to (3.14) only when
condition (3.13) is satis�ed and hold the previous value otherwise after the �rst time that
this condition was achieved. Formally,

θ̂RFT (t) :=


θ̂(t) if t < δ,

θ̂FT (t) if t :
(
Iα0+λ∆2

)
(t) ≥ µ

1−µ ,

θ̂RFT (t−) otherwise,

(3.17)

where θ̂FT (t) is given by the algebraic expression (3.14), δ is de�ned as in Theorem 3, and
θ̂RFT (t−) means the left-hand limit of θ̂RFT evaluated at t. Were θ̂ obtained from (3.12),
we should state a persistent excitation (PE) condition to ensure robustness [SB94]; however,
PE conditions are qualitatively di�erent to the �nite-time condition (3.13) whose aim is pre-
cisely to relax them (see the Introduction). Instead, we will use the fractionalized projective
gradient as it is the slightest robust modi�cation to the fractionalized gradient (3.12). In the
scalar case, it is given by

Dα
0+ θ̂(t) = P[a,b][λ(t)∆(t)

(
Y (t)−∆(t)θ̂(t)

)
], (3.18)

where 0 < α ≤ 1, and P[a,b][x] = x when θ̂ ∈ (a, b), P[a,b][·] = ε when θ̂ = a, and P[a,b][·] = −ε
when θ̂ = b for ε > 0 a designer chosen parameter (see [Tao03] for the case α = 1; there are
also continuous versions). This operator is aimed to trap θ̂ in the interval [a, b] provided that
θ is known to lie in its interior.

Proposition 3 Consider 0 < α ≤ 1. Then

a) For any additive perturbation v ∈ L2,α in the measurement of y, θ̂FT remains bounded.
Moreover, the space of non-destabilizing perturbations is enlarged as the derivation order
decreases.

b) Suppose that there are known numbers a, b such that θ ∈ (a, b) and choose θ̂(0) ∈ (a, b).
Then, the estimator (3.17) for the model (3.15) is robust in the sense that for any disturbance
ν, θ̂ remains bounded, and if ν ≡ 0 and (3.13) holds, then the estimator converges in �nite
time to θ.
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c) The alertness, i.e. the capability to track parametric variations, is improved as α
decreases.

It follows that the use of λ entails the trade-o� 'convergence against robustness'. In some
cases, it could not be problematic since the speed of convergence can be arbitrarily lowered
down after the transient by decreasing λ. For the general case, the trade-o� can be relaxed
recalling the freedom to choose the derivation order α, its role to improve the transient
performance (Theorem 3(ii)) and its role to enhance the robustness.

3.5 Switched Adaptation

As we said, the trick to avoid the slow convergence speed of fractional systems is by in-
troducing a discontinuous or switching procedure. In the �nite-time estimator, we used the
discontinuity; here, we will explore a switching mechanism that is able to keep the continuity.
Moreover, we will show that the proposed design can address the problem of estimating an
optimal derivation order whatsoever the optimality criteria are.

The key feature of the precedent adaptive laws is that their stability analysis can be
carried out using Lyapunov functions that are independent of the derivation order. This
implies, in the Switching Theory language, that they are common Lyapunov functions for
arbitrary switching in the derivation order.

General speaking, we study a switching system with the following form

aτ(t)D
α$(t)x(t) = fσ(t) (x, t) , x(t0) ∈ Rn (3.19)

where x : [0,∞)→ Rn; the functions σ : [0,∞)→ If , $ : [0,∞)→ Iα and τ : [0,∞)→ Ia are
right-continuous and piecewise constant taking values on the index sets If , Iα, Ia, respectively,
at each switching instant ti belonging to the set E := {ti}i∈N ⊂ [0,∞). The sets If , Iα, Ia
index the sets Qf ⊂ {f |f : Rn × [0,∞) → Rn}, Qα ⊂ (0, 1], and Qa ⊂ [0,∞), respectively.
Qf is called the set of driving �elds. An impulsive behaviour will be speci�ed by an impulsive
rule function δ : [0,∞)→ Qδ ⊂ Rn sharing the same properties than σ,$, τ . The switching
nature of (3.19) implies that the sequence {ti}i∈N and the functions σ,$, τ, δ are unknown
and can depend on the initial condition and/or on the trajectory.

However, switched fractional systems presents several problems of ill-de�nition �both the-
oretical and computationally� due to the nonlocality of the initial condition. Fortunately, the
following instance of them can be made well-de�ned, and it will be enough for our purpose.

De�nition 2 System (3.19) is in the resetting mode if for each realization of {ti}i∈N, the
initial times of the derivative are given by ti i.e. aτ(ti) = ti and there exists an arbitrarily
small number T0 such that ti+1 − ti > T0 > 0 for any ti ∈ E. In particular, the solution
to (3.19) can be expressed in terms of a sequence of solutions to non-switching fractional
systems given by

x(t) = ξi(t), ∀t ∈ [ti, ti+1), ti ∈ E,
tiD

α$(ti)ξi(t) = fσ(ti)(ξi, t), with ξi(ti) = x(t−i ) + δ(ti) ∈ Rn,
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where x(t−i ) is the left-hand limit of x(t) at ti. Each ξi−system will be called a subsystem of
(3.19).

In De�nition 2, we can distinguish the following two cases:

De�nition 3 System (3.19) in the resetting mode is impulsive if δ is not the zero function,
and is non-impulsive otherwise.

System (3.19) in the resetting mode with Caputo derivative is mathematically well-de�ned
because the existence, uniqueness, and continuity (among switching times in the impulsive
case) of its solutions are assured with the existence, uniqueness, and continuity of solutions
for each non-switching system associated according to De�nition 2, which in turn can be
ensured with a Lipschitz continuity requirement in the �rst argument and continuity in the
second argument on each fi∈S (see e.g. [Die10]). Moreover, system (3.19) is computationally
well-de�ned using standard software as shown in Section 6.5.1.

With this de�nition, we are able to design a variable order estimator for (3.1). From
precedent theorems, we know that the transient is improved with a derivation order α < 1,
while the speed and convergence conditions are improved with α = 1. Therefore, enhanced
performance is achieved by taking initially a lower-than-one derivation order and, after some
small enough time, force the derivation order to be 1 (see the simulations in the papers made
by this author in [AG19] and [AG20] for the adaptive control of a linear system).

To take advantage of the robustness properties of lower than one derivation orders, notice
that the perceptible way in which the noise or parasitic signals a�ect the behaviour is by
preventing the error function to the decay to zero. Thus, we can force a progressive decreasing
of the derivation order, say 0.1 each time, on the sequence {tk}k∈N de�ned by

tk+1 = inft≥tk+T0{|e(t)| ≥ c(t− tk, α(tk))},

where T0 > 0 prevents Zeno phenomenon and can be chosen so small as needed, t0 = 0 is not
included in the sequence, c(·, α) is a function that converges to zero for α = 1, and c(t, ·) is a
decreasing function. For instance, one can choose c(t, 1) = A exp(−µt) and c(t, α) = B1/α.
The following features are thus obtained.

i. Suppose that after a transient period, which can be included in [0, T0], the derivation
order was �xed at α = 1. If there is no disturbance and the convergence conditions
are satis�ed, the choice of c(·, α) ensures that the error will converge to zero and no
switching will occur.

ii. If there is a signi�cant disturbance, then the error will not converge to zero and switch-
ing will occur. Due to the choice of c(t, ·), the derivation order decreases as |e| increases,
which is desirable since, due to Theorem 1(vii), the estimator becomes more robust as
the derivation order decreases. If |e| becomes eventually bounded, the switching se-
quence {tk}k∈N is �nite.

iii. If the disturbance disappears when (say) α = α(tk), then no more switching will occur.
If the convergence condition for α = α(tk) holds, then the rate of convergence will be
determined by this order. Due to this, one should increase again the derivation order
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to eventually get α = 1. For instance, consider the rising sequence {t′k}k∈N

t′k+1 = tc + T1 where tc > tk & |e(t)| ≤ c′(t− tc, α(tk)),∀t ∈ [tc, tc + T1],

where c′(t − t′k, α(tk)) decays polynomially at order α(tk) and T1 > 0 prevents Zeno
phenomena. Due to the choice of c, t′k+1 6= tk+1, and thus the rising and the lowering
sequences are well-de�ned.

The following result is proven in Appendix 6.5.2.

Theorem 4 Consider the estimator with non-impulsive switching in the resetting mode

D
α(t)

a(t)+ θ̂ (t) = −F (e,m) (t) , (3.20)

where F is given by (3.6) or (3.14), and α(·) is de�ned by the lowering and rising order
sequences {tk}k∈N and {t′k}k∈N. Suppose that m satis�es the excitation condition of Theorem
2 or Theorem 3, respectively. Then (3.20) ensures boundedness of θ̂, which has the same
convergence properties of α = 1, and the same transient and robustness properties of any
α < 1.

Remark 3 Notice that the resulting scheme (3.20) provides a midway to avoid long-memory
e�ects, which seem to some degree unsuited for adaptation, without losing completely the
non-locality e�ect that should yield an averaging e�ect useful to attenuate noise and without
losing the transient e�ect.

3.6 Optimal Second-Level Adaptation

In section 3.5, we have seen a knowledge-guided way to �nd a (sub-)optimal time-varying
derivation order for the estimator equation. The procedure relies on the obtained properties
for the derivation order; however, there could be additional properties that have not been
established. Moreover, the adaptation gain was not optimized despite its role as described
e.g., in Theorem 3(iii) and Proposition 3. In the following, we will propose a way to �x these
issues in order to �nd an optimal estimator.

From the proposed adaptive designs, we draw two conclusions: (a) the adaptive gain λ
and the di�erentiation order α a�ect the performance in such a way that the choice α < 1
or λ 6= 1 can be optimal, and (b) the use of time-varying λ and α do not a�ect the stability.
It follows that a second-level adaptation to enhance the performance is possible without
destabilizing the adaptive process. As a second-level adaptation, the adjustment of λ, α
should be concerned with the optimization of a performance index J . Unlike the estimation
in the �rst-level, there is no a priori λ0, α0 for which λ, α should converge.

Suppose that we have the explicit dependence J = J(λ(t), α(t)) for J ≥ 0 a di�erentiable
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function. If we want to minimize J , then we set

α̇(t) = −P[a,b]{
∂J

∂α(t)
},

λ̇(t) = −P[0,∞){
∂J

∂λ(t)
}, (3.21)

where P[a,b] is the projective operator retaining the variable in the set [a, b]. This operator is
the identity in the interior of the domain D := [a, b]× [0,∞) and only acts on the boundary
(see [Tao03]). Independently of the convexity or even the existence of extreme points of J ,
we have the following result (see Appendix 6.6).

Proposition 4 J is nonincreasing along (3.21), strictly decreasing when ∂J
∂α
6= 0 or ∂J

∂λ
6= 0

in the interior of D, and λ, α remain on D.

However, due to the fact that λ, α appear in the di�erential equation of θ̂, such an explicit
dependence is in general not manifest after the integration. For instance, according to (3.5),
we would have

θ̂(t) = −
∫ t

0

kα(s)(t− s)λ(s)e(s)m(s)ds,

where we have dropped the initial condition as it is a constant. Hence, θ̂(t) and e = m′(θ̂−θ)
do not depend explicitly on λ(t), α(t). This can be �xed by considering them piecewise
constants functions with their values actualized at the end of small enough intervals. Indeed,
in the interior of such intervals, we can always write

θ̂(t) = −
∫ t

0

kα(t)(t− s)λ(t)e(s)m(s)ds,

where α(t), λ(t) are constant. Consider J = e2, then

∂J

∂α(t)
= −e(t)m′(t)

∫ t

0

∂

∂α(t)

(
kα(t)(t− s)e(s)

)
λ(t)m(s)ds,

∂J

∂λ(t)
= −e(t)m′(t)

∫ t

0

∂

∂λ(t)

(
λ(t)e(s)

)
kα(t)(t− s)m(s)ds,

To analyse these laws, we will ignore the explicit dependence of e(s) on values at t > s. We
obtain

∂J

∂α(t)
= −e(t)m′(t)

∫ t

0

Kα(t)(t− s)e(s)λ(t)m(s)ds,

∂J

∂λ(t)
= −e(t)m′(t)

∫ t

0

kα(t)(t− s)e(s)m(s)ds,

where Kα(t) := ∂
∂α
kα(t) = − Γ′(α)

Γ2(α)
tα−1 − 1

Γ(α)
log(t)tα−1. We see that Kα �ips its sign from

+ to − as t grows. Therefore, α is forced to decrease and then to increase, meanwhile λ is
forced only to increase, where we use sign(e(t)m(t)) = sign(e(s)m(s)) component-wise for s
near of t and provided that they are not zero. This con�rms that the transient is improved
by starting with a lower derivation order, that the gradient ensures faster convergence and
that there exists a relation of λ with the convergence's speed. Also, this might reveal a role of
α < 1 in reducing the overshoot since the latter occurs when e changes its signs, a property
which is otherwise hard to obtain formally.
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Chapter 4

Applications

In this section, we present some cases exploiting particular features of fractionalization, and
applications of the designs in Section 3 in control and observer problems for nonlinear sys-
tems with parametric uncertainty. Notice that we have already shown an application in the
parameter estimation for regression models; in fact, in the applications of this section, the
problem is �nding a suited regression equation in each case. We consider nonlinear problems
as they include the linear case.

4.1 Case 1: Modelling

Engineering models stemming from classical physical laws, which are no other things than
expressions of causal (local) relationships, are formulated in integer derivatives. However,
parameters appearing in these models seem to obey other laws as they must be measured or
estimated in practice. In this sense, there is room to introduce models for the parameters
based on fractional derivatives. For it is common to attribute a slower dynamic (e.g., by
using a di�erent time-scale) to the parameters' evolution that could be better described by
polynomial rather than exponential convergence.

Consider the regression model (3.1) with an evolution of its parameters described by

Dα0θ(t) = f1(m, y, t)θ(t) + f2(m, y, t), (4.1)

where f1, f2 are known functions and α0 ∈ (0, 1) is also known (thus, the unknown is θ(0)).
Due to the nonlocality and unlike the case α0 = 1, it is not enough to known θ(t0) to predict
future values when t0 6= 0.

Since θ is completely unknown, we cannot estimate θ using an observer design when f1

does not ensure asymptotic stability. Moreover, if we want to track a variable having a given
order of decreased/increased, then we cannot employ an estimator with a faster or slower
order because such a di�erence hampers the parametric error convergence. Due to the speed
hierarchy explained in Section 2.5, we are compelled to use α0 in the following modi�ed
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observer

Dα0 θ̂ = f1(m, t)θ̂ + f2(m, t)− P−1F (e,m), (4.2)

where F is any of the designs of Section 3 and P ∈ Rn×n is speci�ed in the following result
(see the proof in 6.7.1).

Proposition 5 Suppose that the parameters are ruled by (4.1). If there exists P > 0 such
that Pf1 + f ′1P ≤ 0, then the same statements of Theorem 1, 2 or 3 hold when using the
estimator (4.2).

Remark 4 The hypothesis of Proposition 5 is just a stability condition on f1. Obviously, if
f1 ensures asymptotic stability, then we obtain limt→∞(θ̂(t)− θ(t) = 0.

4.2 Case 2: Long-memory

The remembering property of fractional systems, described in Section 2.1.2 and that estab-
lished that the solution returns to the initial condition when its fractional derivative is made
zero, can be used to simplify the projective gradient method since it will be not necessary
computing the normal to the trapping surface, which avoids getting stuck on the boundary.

We will employ the designs of Section 3 with the choice of the adaptation gain as follows

λ(t) := λ(t, θ̂(t)) := 1Ω(θ̂(t))λ′(t), (4.3)

where 1Ω(θ̂) is the indicator function which is zero whenever θ̂ /∈ Ω ⊂ Rn and λ′ > 0 is an
arbitrary scalar function. Without loss of generality, we assume that Ω is a closed hypercube.
The following result is proved in Section 6.7.2.

Proposition 6 Suppose that θ̂(0) ∈ Ω ⊂ Rn. Then, the use of (4.3) in the designs of Section
3 ensures θ̂(t) ∈ Ω when α ∈ (0, 1] and θ̂ ∈ int(Ω) a.e. when α ∈ (0, 1) for any t > 0 and any
kind of disturbance altering those adaptive schemes. Moreover, the properties in Section 3
are kept.

4.3 Application 1: Control Problem

Consider the class of nonlinear systems that can be written in the following form

ẋi = xi+1, 1 ≤ i ≤ n− 1,

ẋn = β0(x)u+ θ′ϕ(x, t) + ν,

y = x1, (4.4)

where x = (x1, . . . , xn)′ is measurable, θ ∈ Rp is an unknown vector, and ϕ, β0 are known
continuously di�erentiable functions of suited dimensions with β0(x) 6= 0 for any x ∈ Rn
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(i.e. (4.4) is controllable). ν is a time-varying disturbance that together with ϕ(x, t)′θ can
describe a general nonlinear function according to the universal approximation property (e.g.,
see [Cot90]). For linear systems, (4.4) is just their canonical controllable form. (4.4) is the
state representation of input-output systems of the type

y(n) + f(y, ẏ, . . . , y(n−1)) + g(y, ẏ, . . . , y(n−1))u = 0,

where the unknown function f is approximated by ϕ′θ + ν. Although g could be approxim-
ated similarly, this would lead to a more complicated solution (e.g., by using projection) to
preclude the loss of controllability (no invertibility of g or its approximation in every instant).
Besides linear systems (e.g., basic electric circuits) or commonly used linearization of nonlin-
ear systems (aircraft longitudinal dynamics [SL03]), an important class of systems included
in the above representation are mechanical systems in which the input-output relation is
obtained by the Euler-Lagrange equations (e.g., see the robotic system in [Tao03, p.477]).

The control problem is to design an input function u such that the output y tracks a given
reference ym, i.e., such that the tracking error y− ym goes to zero asymptotically, and all the
closed-loop signals remain bounded for arbitrary initial conditions. The reference signal ym
is generated by the following known reference model

ẋm,i = xm,i+1, 1 ≤ i ≤ n− 1

ẋm,n = −m′xm + kmr,

ym = xm,1,

where m ∈ Rn is such that sn + mn−1s
n−1 + . . . + m1s + m0 is Hurwitz, km > 0 and r is a

bounded piecewise continuous function. By choosing r = 0 and assuming observability, this
problem includes the regularization target (i.e. x→ 0 as t→∞).

We solve this problem by using an estimation-based approach separating the estimation
from the control design. For the latter, we employ a robust controller ensuring boundedness
when the estimation of θ is bounded. It can be done using the design in [KK95, Eqns. (3.1)
& (3.9)], which takes the following form for system (4.4)

zi = xi − xm,i − vi−1,

v0 = 0,

vi = −zi−1 − cizi − θ̂′wi +
i−1∑
k=1

(
∂vi−1

∂xk
xk+1 +

∂vi−1

∂y
(k−1)
r

y(k)
r )− sizi

si = κi|wi|+ gi|
∂vi−1

∂θ̂
|2, κi, gi > 0

wj = 0, j = 1, . . . , n− 1,

wn = ϕ,

u =
1

β0(x)
[vn −m0xm,1 − . . .−mn−1xm,n + kmr],

for i = 1, . . . , n. This controller yields the equation [KK95, Eqn. (3.2)] (notice that in our
case D = 0),

ż = A(z, θ̂, t)z +Wθ̃, (4.5)
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where W = [0 . . . 0 wn], and A ensures input-to-state stability (ISS) with respect to the
input θ̂ [KK95, Lemma 3.2] due to the damping terms si. For the estimator, the following
regression equation can be obtained from (4.4) (via the swapping technique [KK95, Section
V.B] or Section 6.1),

ε = Ω′θ̃ + ε̃+ ν̄, (4.6)

where ε is a measurable signal, ν̄ is a bounded function vanishing when ν ≡ 0, and the
functions Ω ∈ Rp×n and ε̃ ∈ Rn satisfy Ω̇′ = ĀΩ′+ φ′ and ˙̃ε = Āε̃, respectively, for Ā ∈ Rn×n

an asymptotically stable designer-chosen matrix and φ a matrix with zero entries but the last
column which is ϕ. Since ε̃ converges exponentially to zero, we can pick the last component
of ε to obtain a regression equation and the following result (see the proof in Section 6.7.3).

Proposition 7 Suppose that the last column of Ω has FE. Then, the control and the iden-
ti�cation goals are achieved asymptotically using the estimator (3.6), i.e. y converges to ym
and θ̂ converges to θ as t → ∞, and all the closed-loop signals remain bounded for arbit-
rary initial conditions. In addition, the robust and transient properties of the estimator are
inherited in the closed-loop performance.

The hypothesis of Proposition 7 is unsatisfactory in the sense that it depends on closed-
loop signals. However, in contrast to hypotheses involving a persistent excitation condition,
this hypothesis can be satis�ed with the help of an external excitation without compromising
the control aim. Roughly speaking, we can use the reference r0 = r + re where re is a 'rich
enough' signal guaranteeing the ful�lment of the hypothesis and vanishes once that it is
achieved (say) at t = T . Since r0 = r for any t > T , y still converges to ym. The following
result formalizes this idea (see the proof in Section 6.7.4) and, when particularized to the
linear case, the condition is weaker than the one obtained with the fractionalized gradient
(see [GD18a]).

Proposition 8 The hypothesis of Proposition 7 is veri�able a priori using external excita-
tion. In particular, in the linear case, it is enough for re to have p di�erent frequencies.

4.4 Application 2: Observer Problem

In the control example above, we made the assumption of full knowledge of the state. It
is common, however, that only a function of the state is available and that its derivatives
cannot be computed without introducing noise. This motivates the problem of estimating
the state (i.e. the derivatives of the output) for systems with parametric uncertainty.

Consider the nonlinear system

ẋ = f(x) +
(
g0(x) +

m∑
i=1

gi(x)θi

)
u+

m∑
i=1

qi(x)θi + ν,

y = h(x), (4.7)
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where x : [0,∞) → Rn is not measurable, ν is a disturbance, and y, u : [0,∞) → R are
measurable. Let θ ∈ Rm be the vector of the unknown parameters θi. Notice that system
(4.7) is more general than (4.4) because no controllability issue is involved a priori.

Suppose that f, g0, gi, qi : Rn → Rn and h : Rn → Rp are known smooth functions
satisfying the geometric (i.e. coordinate-free) conditions in [MT93, Th. 2.1, p.19] for 1 ≤ i ≤
m. These conditions trivially holds in the linear case when the system is observable. Then,
there exist a global di�eomrphic transformation ξ = T (x), which is independent of θ, and a
function M such that (4.7) is input-to-output equivalent to (see e.g. [MST01])

ż = Az + Ψ0(y, u) + dβ′(y, u)θ + Φ(y, u)w,

y = Cz, (4.8)

where z = ξ+Mθ, β′ = C(AM+Ψ), Ψ0,Ψ,Φ are known functions of suited dimensions, A,C
are in canonical observable form with zeros in the last row of A, d is known, the triple (A, d, C)
is strictly positive real, w is the disturbance term coming from ν, and M : [0,∞)→ Rn×p is
the solution to

Ṁ = (In − dC)AM + (In − dC)Ψ,

M(0) = [0, N ′0]′, N0 ∈ Rn−1×p.

Since (4.8) can be seen as a linear system with nonlinear inputs, the following Luenberger
observer is a natural choice for the state estimator:

˙̂z = Aẑ + Ψ0(y, u) + dβ′(y, u)θ̂ −K(ŷ − y),

ŷ = Cẑ, (4.9)

where K is such that Ao := A−KC is Hurwitz, and θ̂ is an estimation of θ.

To obtain a regression equation, notice that (4.8) can be written in Laplace domain as
y = W1(s)

(
β′(y, u)θ

)
+ W2(s)

(
Ψ0(y, u) + Φ(y, u)w

)
, where W1 = C(sI − A)−1d and W2 =

C(sI − A)−1 are known �lters. By de�ning y := y −W2(s)
(
Ψ0(y, u)

)
, ν̄ := Φ(y, u)w and

m := W1(s)
(
β(y, u)′

)
, we obtain

y := m′θ + ν̄. (4.10)

Due to the motivation coming from the control problem, we use the �nite-time estimator
(3.14) for the regression equation (4.10) because it ensures a fast convergence to the true
state as a consequence of the �nite-time of parametric convergence. Thus, we obtain the
following result (see Section 6.7.5 for the proof).

Proposition 9 Suppose that m satis�es the condition of Theorem 3. Then, the function
x̂ := T−1(ẑ−Mθ̂) robustly estimate x, meaning that x̂(t)−x(t)→ 0 as t→∞ at exponential
order when ν ≡ 0, and x̂− x remains bounded or converges to zero when ν is bounded or ν
converges to zero, respectively, for y, u bounded. In addition, θ̂ robustly estimate θ and the
performance properties of Theorem 3 are inherited by the observer.
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Notice that the hypothesis of Proposition 9 depends ultimately on the signals u, y. Thus,
using Proposition 1 and the arguments of the proof of Proposition 8, the a priori veri�cation
of the hypothesis amounts to know the spectral relation between y, u. In the linear case,
where the frequencies in the input are transferred to the output, this hypothesis can be
easily recast in terms of the spectral content of u. Although non-a-priori hypotheses are also
acceptable in adaptive literature (cf. [MST01, Proposition 1]), we remark that the condition
of Theorem 3 can be veri�ed online in �nite-time since one could add frequencies through u
until the condition is satis�ed, which cannot be done with persistent excitation conditions.

Turning back to the control problem of system (4.4), it follows that the condition ϕ =
ϕ(u, y) ensures the existence of the observer (4.8). Moreover, the resulting observer has the
same feedback form that (4.4), which implies that the a priori veri�ability of Proposition 9
follows from Proposition 8 when using the same control structure (with the external reference)
with x replaced by x̂. From Proposition, 9 we have that x̂(t) → x(t) as t → ∞ and, due to
the smoothness of the functions vi and β > 0, u(x̂)→ u(x) as t→∞. Due to the robustness
property of the controller established in Proposition 7, we obtain y → ym as t→∞ and all
the closed-loop signals remain bounded.
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Chapter 5

Simulation Study

The aim of this section is to present qualitative and quantitatively the role of the free para-
meters in the adaptive scheme, coming from the fractional operators, in a concrete application
of the theoretical results already obtained. To this aim, we consider the tracking problem for
the system

ẋ1 = x2,

ẋ2 = u+ θx2
1,

y = x1,

where θ is unknown and the reference to track is yr ≡ 1. Despite its simplicity, this system
exhibits �nite-escape time when a gradient-like estimation together with a certainty equi-
valent control is used due to the non-Lipschitz term (see e.g. [SM92, Example 1]). This is
handled with the damping term si providing the robust part of the controller Section 4.3.

We will simulate the fractional operators using a commonly accepted algorithm that relies
on the approximating expression in 2.4. The simulations will con�rm our theoretical res-
ults, but they are just approximations whose precision degree we will not discuss. If every
simulation is an approximation, then those of fractional operators are approximations of
approximations. This is one of the reasons to provide theoretical arguments for the advant-
ages/disadvantages that have been observed in simulations in the revised literature.

5.1 State feedback adaptive control

We start by assuming that x = (x1, x2)′ is available. It turns out that the hypothesis of
Proposition 7 in the scalar case is veri�ed if x1 is not the zero function, which is ensured
because the reference is not the zero function. Therefore, we can solve the problem using
Proposition 7. Recall that the estimator with memory (3.6) has introduced two degrees of
freedom whose e�ect on the performance is the subject of the simulations below.
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5.1.1 Role of β

As β decreases, kβ(t, s) = (t − s)−β+1 becomes larger when (t − s) → 0+ and smaller when
(t − s) → ∞. This means that kβ acts as a forgetting factor in the convolution integrals of
(3.6) and β can be seen as a memory parameter quantifying the amount of past data to be
considered. In particular, β = 1 indicates that all past is considered uniformly and β = 0
that the relevance is assigned to more recent data; in other words, the forgetting is faster as
β decreases.

Recalling the heuristic �forgetting fast improves robustness� [HC89], β should be a relev-
ant parameter to enhance the robustness. More precisely, the choice of β has importance
when older data should be ignored. The latter occurs in two practical situations: when the
parameters are time-varying and when the measurements contain noise. To test the �rst
case, we simulate a change in θ from 2 → −1 at t = 3. Figure 5.1 depicts how the lowering
of β improves the alertness of the estimator to track this parametric variation. To test the
second case, we introduce an additive white noise ν in the dynamic equation of x2. Table 5.1
shows that the lowering of the forgetting number β improves the robustness as measured in
the L2(0, T )−norm of (y − yr, x2). In both cases, we have considered a �xed value α = 1.
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Figure 5.1: β−dependence of the estimator when θ changes at t = 3 from 2 to −1

β \ NP 0.001 0.01 0.1
1 4.279 4.506 6.162

0.5 3.966 4.26 5.828
0.1 3.647 3.951 5.461

Table 5.1: The dependence of the L2(0, T )−norm of (y − yr, x2) regarding the parameter β
for white noise disturbances of noise power NP. Simulation time was T = 20.

5.1.2 Role of α

Now, we set β = 0.1 and study the role of α. We will illustrate that the claim of Theorem
2 on the transient behaviour of the estimator holds also for the transient performance of the
controlled output as stated in Proposition 7. Figure 5.2 shows the transient improvement
(i.e. θ̂ becomes closer to θ) in the estimation process as α decreases. Figures 5.3 and 5.4
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depict the transient improvement and the overshoot reduction as α decreases in the closed-
loop performance. Notice that Figures 5.3 and 5.4 also show that the solution with a greater
α becomes closer to the tracking aim than the solutions with lower α as time goes. This
corresponds to the fact that the convergence speed's order increases as α increases, which
stems from the relation Eα(−λtα) ∼ t−α, the proof of Theorem 2, and the fact that the
convergence is exponential for α = 1.
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Figure 5.2: α−dependence of the estimator at the transient period.
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Figure 5.3: Transient behaviour of x1 depending on the choice of α.

The fact that a slower convergence is obtained when using a smaller α can be exploited
to enhance the robustness, for it must be recalled the heuristic �slow adaptation generally
improves robustness� [Ous91, HC89]. In addition, since the robustness is enlarged according
to Theorem 2 in the sense that some signals making to diverge the scheme when α is large
ensure boundedness when α is small, it should be expected attenuation of the disturbances as
α decreases. Indeed, Table 5.2 con�rms that a smaller than one value of α yields the smallest
value of the L2(0, T )−norm of (y− yr, x2) when noise is introduced in the dynamic equation
of x2. However, the noise attenuation is counteracted in the computation of the L2−norm
with the slower convergence; that is why the best value of α obtained from Table 5.2 is not
the smallest one. This compensation is also shown when the noise becomes more relevant
than the convergence (last column in Table 5.2) because α = 0.1 yields a lesser norm value
than α = 1 despite the exponential convergence.
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Figure 5.4: Transient behaviour of x2 depending on the choice of α.

α \ NP 0.001 0.01 0.1
1 3.649 3.953 5.461

0.5 3.571 3.851 5.297
0.1 3.746 3.99 5.347

Table 5.2: The dependence of the L2(0, T )−norm of (y − yr, x2) regarding the parameter α
under white noise disturbances of noise power NP. Simulation time was T = 20.

5.2 Output feedback adaptive control

We now assume that x is not available and design the controller with an estimation x̂ of x
obtained only from input-output measurements. Due to the scalar nature of the uncertainty,
we can use Proposition 9 because its hypothesis is veri�ed if x1 is not the zero function.
Using the same controller than above with x̂ instead of x, this hypothesis holds because the
reference is not the zero function.

α ‖x̃‖2
2

1 2.926
0.5 2.925
0.1 2.923

Table 5.3: The dependence of the L2(0, T )−norm of x̃ = (x̂1 − x1, x̂2 − x2) regarding the
parameter α . Simulation time was T = 2.

Figure 5.5 depicts the �nite-time estimation of the parameter as a function of the deriva-
tion order α using (3.14). It is veri�ed the statement of Theorem 3 on the transient period
since the performance is improved as α decreases. Notice that the switched time occurs at
a common instant tf = 0.3; if we had use a common µ in the notation of Theorem 3, then
the convergence time would be decreased as α decreased. We took this choice because of
the easiness of computation. Figure 5.6 and 5.7 show the convergence of the state estima-
tion error. Due to the short time of convergence to the unknown parameter, the transient
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dependence on the derivation order of the estimators is better appreciated in Table 5.3 by
using the L2(0, T )−norm of the estimation error x̃ for T = 2. This con�rms the performance
heritability claimed in Proposition 9.
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Figure 5.5: α−dependence of the estimator at the transient period.
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Figure 5.6: Convergence of the state estimation error x̃ for α = 0.1.

Figure 5.8 shows the controlled output when the controllers associated with each adaptive
observers obtained for di�erent values of α are applied. Since the transient performance of
the state and parameter estimation is improved as α decreases, the transient in the controlled
output is also improved as shown in the decreasing of the overshoot in Figure 5.9 and in the
�rst row of Table 5.4 in which the L2(0, T )−norm of e := (x1 − 1, x2) was computed for
T = 2.

α \ NP 0 0.001 0.01 0.1
1 7.744 16.3 16.45 17.1

0.5 7.72 16.25 16.31 17.04
0.1 7.689 16.19 16.26 16.96

Table 5.4: The dependence of the L2(0, T )−norm of e := (x1−1, x2) regarding the parameter
α under white noise disturbances of noise power NP. Simulation time was T = 2 for the �rst
column and T = 10 for the rest.

So far, transient improvements have been veri�ed. We now study the robust behaviour of
the closed-loop when white noise is introduced in the equation of x2. Since the robustness
properties are inherited from that of the �nite-time estimator, we will look only on the
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Figure 5.7: Convergence of the state estimation error x̃ for α = 0.1.
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Figure 5.8: Controlled output as a function of α.

aggregated e�ect on the closed-loop system. Table 5.4 shows that the noise attenuation in
the L2(0, T )−norm of e is increased as the derivation order of the estimator is decreased. In
contrast to Table 5.2, the noise attenuation as α decreases is not (signi�cantly) counteracted
by the speed of convergence of the estimation since we are using the �nite-time estimator.
As a consequence, the lowest α achieves the best attenuation.

Moreover, since the controller is of feedback type, this noise attenuation should yield an
attenuation in the L2(0, T )−norm of the control, which is e�ectively observed in Table 5.4.
We see a larger noise attenuation than the observed in Table 5.4 or even in Table 5.3 when α
is decreased. This could be explained as the control mainly acts at the transient time when
the fractional order plays a crucial role (see the �rst column of Table 5.3 and how the gap
is kept after noise addition). This e�ect is relevant in practice as the L2(0, T )−norm is a
measure of the energy consumption. Therefore, we have obtained as an indirect consequence
the minimization of the control energy by lowering the derivation order. This, together with
the minimization of the L2(0, T )−norm of e2, entails a kind of LQ control optimized in the
derivation order of the observer.
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Figure 5.9: Zoom-in to the transient behaviour of the output as a function of α.

α \ NP 0 0.001 0.01 0.1
1 1.762 5.207 6.345 16.63

0.5 1.675 5.122 6.214 16.53
0.1 1.544 5.009 6.107 16.41

Table 5.5: The dependence of the L2(0, T )−norm of u regarding the parameter α under white
noise disturbances of noise power NP. Simulation time was T = 2 for the �rst column and
T = 10 for the rest.
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Chapter 6

Proofs

6.1 Regression equations

The problem is to associate a regression form, built from measurable signals, to a given
dynamic equations. The �rst case represents a general nonlinear system with a linear-in-
parameter term. That is, consider

ẋ(t) = f(x, u, t) + φ(x, u, t)′θ,

where x : R≥0 → Rn, the control function u and φ : R≥0 → Rn×m are measurable signals. By
integration, we have for any t ≥ t0

x(t)− x(t0) =

∫ t

t0

fdτ + (

∫ t

t0

φdτ)′θ.

De�ne y(t) := x(t)− x(t0)−
∫ t
t0
fdτ and m(t) :=

∫ t
t0
φdτ . Then,

y(t) = m(t)′θ.

The second case represents a error equation of the type

ė = Ae +W1θ̃ +W2
˙̂
θ, (6.1)

where e : R≥0 → Rn, W1,2 : R≥0 → Rn×m are measurable signals and A = A(e, θ̂, t) is a

designer-chosen matrix such that (6.1) is input-to-state stable (ISS), with (θ̃,
˙̂
θ) seen as the

input. This model appears in adaptive backstepping designs. Common dynamic errors model
such as

e(m) + a1e(m−1) + . . .+ ame = θ̃′w

where e : R≥0 → R, can be written as (6.1), with W2 ≡ 0 and A a constant stable matrix,
by rede�ning the error function as a vector of components e(i).
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The regression formulation via swapping is obtained by de�ning χ̇0 = Aχ0 +W1θ̂ −W2
˙̂
θ,

χ̇ = Aχ + W1, y := e + χ0 and ε = e + χ0 − χθ. Then y = ε + χ′θ and ε̇ = Aε. Choosing
χ0(0) = −z(0) and χ(0) = 0, we arrive to

y = χθ

6.2 Proofs for the fractionalized gradient

6.2.1 Proof of Theorem 1

Proof. The following holds

Dα
0+ θ̃ = −λmm′θ̃

θ̃′Dα
0+ θ̃ = −λe2

Dα
0+ θ̃
′θ̃ ≤ −2λe2 ≤ 0

=⇒ θ̃′θ̃(t) ≤ θ̃′θ̃(0), ∀t > 0

=⇒ Iα0+e2(t) ≤ 1

λ(t)
θ̃′θ̃(0), ∀t > 0,

where the �rst inequality is due to [TT18]. The �rst implication above, obtained by fractional
integration, yields statement (i) and tell us that the transient behaviour is uniformly bounded
by θ̃′θ̃(0). The second implication, obtained also by integration and the fact that θ̃′θ̃ ≥ 0,
and the result in [GD17a] yield statement (ii). It follows that Iα0+e2 can be arbitrarily reduced
by enlarging λ. Since Iα0+e2(t) → 0 implies e → 0 under uniform continuity [Gall15a], the
asymptotic behaviour can be completely controlled through λ (the conditions on m and the
boundedness ensure that e is uniformly continuous). This proves item (iii).

Item (iv) can be found in [Gall15a]. Item (v) follows from the second example in [GD19a].
The �rst part of item (vii) follows from [GD18a, Theorem 1]. For the second part, consider
the particular case m = −e and n = 1. Then, e = ν/(1 + θ̃) and

Dαθ̃ = e2 =
ν2

(1 + θ̃)2
.

Picking ν = ν0(1 + θ̃), we conclude that θ̂ remains bounded when ν0 ∈ L2,α and θ̂ → ∞ as
t → ∞ when ν0 ∈ L2,β \ L2,α for any β < α. The claim follows by noting that L2,α ( L2,β

[GD18a, Remark 1], and hence, L2,β \ L2,α is not empty. (For well de�nition, we can take
any particular θ̂(0) such that θ̃(0) > −1 since Dαθ̃ > 0 ensures θ̃(t) > −1).

Finally, we prove (vi). Let V = θ̃′θ̃. Without loss of generality, we assume Dα
0+ θ̃(0) 6= 0;

otherwise, one can rede�ne the initial time. Then, | d
dt
V (t)| = O(tα−1) as t → 0+ (see e.g.,

[GAD19b]), Moreover, the sign of d
dt
V (t) must be nonpositive for at least a small enough

interval [0, ε) as it can be seen from the fact that DαV = I1−αV̇ ≤ 0. Using that V (0) > 0,
the di�erentiability of θ̂ for t > 0 [GAD19b] and the mean value theorem (MVT), we can �nd a
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small enough number ε < ε such that Vα(t) < Vβ(t) for any t ∈ [0, ε), where Vα and Vβ denote
the function V evaluated on the solutions of (3.5) for derivation order α, β, respectively, and
�xed initial conditions. This is because the MVT ensures that Vγ(t)−Vγ(0+) = Vγ(t)−V0 =
V̇γ(ξ)t for ξ ∈ (0, t), any γ ∈ (0, 1]; this and the fact that V̇γ(ξ) grows as γ decreases for ξ
near of 0+ yield the claim. Moreover, when m does not depend on θ (e.g. in identi�cation
problems), it follows that eα(t) < e1(t) for a su�cient small interval [0, ε].

6.2.2 Proof for the Remark 1

Suppose there exist T, ε(t) > ε0, r < n and an orthonormal matrix P such that m satis�es∫ t+T

t

mm′dτ = P

[
ε(t)Ir 0

0 0

]
P ′, ∀t > 0.

Then, we obtain e = θ̃′m = θ̃′PP ′m =: ψ̃′m̄. Also,
∫ t+T
t

m̄m̄′dτ =

[
εIr 0
0 0

]
. With obvious

de�nitions, we have that m̄1 ∈ PE(r), m̄2 = 0 and e = ψ̃′1m1. The application of Theorem
1(v) for e = ψ̃′1m1 yields the convergence.

6.3 Proofs for the estimator with memory

6.3.1 Proof of Theorem 2

(i). De�ne un = γ1u,Ψn = γ2Ψ, and Υn = γ2Υ. Using (3.6), we have

Dα
0+ θ̂ = −Γ

(
eun + κ(Ψnθ̂ −Ψnθ)

)
,

Dα
0+ θ̃ = Dα

0+ θ̂ = −Γ
(
unu

′θ̃ − κΨnθ̃
)
,

where we use that θ is constant so that Dαθ = 0 when using Caputo derivative. Then

θ̃′Γ−1Dα
0+ θ̃ = −θ̃′[unu′θ̃ + κΨnθ̃],

≤ −γ1e2 − κλmin(Ψn)θ̃′θ̃,

where we have used that Ψn ≥ 0 since uu′ ≥ 0. Since y, u were assumed continuous, we
obtain Dαθ̃′Γ−1θ̃ ≤ 2θ̃′Γ−1Dαθ̃. Calling V (t) = θ̃′(t)Γ−1θ̃(t), we get

Dα
0+V ≤ −2γ1e2 − 2κλmin(Ψn)

λmax(Γ−1)
V. (6.2)

In particular, Dα
0+V ≤ −2γ1e2. By applying Iα0+ in both sides, we get V + 2Iαγ1e2 ≤ V (0).

Then Iαγ1e2 < ∞ and V (t) ≤ V (0) for any t > 0. Since V (t) = ‖θ̃(t)‖2
Γ−1 , we obtain

‖θ̃(t)‖Γ−1 ≤ ‖θ̃(0)‖Γ−1 and, in particular, θ̂ ∈ L∞.

(ii) Similar to the proof of Theorem 1(vi).
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(iii) The �rst part follows from [GD18a, Theorem 1]. For the second part, consider the
particular case u = −e, κ = 0 and n = 1. Then, e = v/(1 + θ̃) and the rest is similar to the
proof of Theorem 1(vii)

(iv) Since u has �nite excitation, there exist ε, γ > 0 s.t.
∫ ε

0
u(s)u′(s)ds ≥ γIn. Using that

kβ(t, ·) is increasing and u(s)u′(s) ≥ 0, we have for kmin := k(ε, 0)∫ ε

0

kβ(ε, s)u(s)u′(s)ds ≥ kmin

∫ ε

0

u(s)u′(s)ds ≥ kminγIn =: γ0In. (6.3)

Then, the following inequality holds,

Ψn(ε) ≥ 1

1 +maxτ∈[0,ε]Ψ̄(τ)

∫ ε

0

k(ta, t)uu
′ds,

≥ 1

1 +maxτ∈[0,ε]Ψ̄(τ)
γ0In,

=: γ̄In,

Using the de�nition of ta, it follows that Ψn(t) ≥ γ̄In for any t ≥ ε. Replacing in (6.2), we
have

Dα
0+V (t) ≤ − 2κγ̄

λmax(Γ−1)
V + f0(t),

=: −cV + f0(t),

where c = 2κγ̄
λmax(Γ−1)

> 0 and f0(t) = −2γ1e2(t) + 2κγ̄
λmax(Γ−1)

V (t)− 2κλmin(Ψn)
λmax(Γ−1)

V (t) for t < ε and
f(t) = 0 for t ≥ ε. Using that V ≥ 0 and a comparison argument, to know the asymptotic
behaviour is enough studying the solution to Dα

0+V (t) = −cV + f0(t), which is given by
[Die10]

V (t) = V (0)Eα(−ctα) +

∫ t

0

(t− τ)α−1Eα,α(−c(t− τ)α)f0(t)dτ.

Since f0 converges to zero and tα−1Eα,α(−ctα) ∈ L1 [BP00], their convolution converges to
zero and one can prove that V converges to zero. As we are also interested in its convergence
order, we further develop to get

V (t) = V (0)Eα(−ctα) +

∫ t

0

(t− τ)α−1Eα,α(−c(t− τ)α)f0(t)dτ,

≤ V (0)Eα(−ctα) + C

∫ t

t−ε
τα−1Eα,α(−cτα)dτ,

where C = maxt∈[0,ts] |f0(t)| and a change of the integration variable in the convolution was
made. Using [CDT17, Lemma 2](ii), we obtain for t large enough

V (t) ≤ V (0)Eα(−ctα) + Cm(α, c)

∫ t

t−ts
τ−(1+α)dτ,

≤ V (0)Eα(−ctα) + Cm(α, c)(t− ts)−(1+α)ts,
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where m(α, c) is independent of time. Thus, the convergence order of V , corresponding to
the slower term, is Eα(−ctα) ∼ t−α [CDT17, Lemma 2](i). It is clear that if u is bounded,
then e = θ̃′u → 0 at the same rate. Since Eα(−ctα) is monotonically decreasing [P08], the
increasing of c through Γ, κ, yields a faster decays.

(v) When an additive disturbance ν appears in the measurement of y, the following modi-
�cation to the previous developments is veri�ed

DαV ≤ −cV + |f0| − 2θ̃′unν + 2‖θ̃‖‖ν‖∞
≤ −cλmin(Γ−1)‖θ̃‖2 + 2‖θ̃‖(‖un‖‖ν‖+ ‖ν‖∞) + |f0|.

where the term ‖ν‖∞ = supt≥0 |ν(t)| appears thanks to the normalizing term γ2 as ‖γ2

∫
kuν‖ ≤

‖ν‖∞γ2

∫
k‖u‖ ≤ ‖ν‖∞. We now prove that θ̃ is bounded. Using that for any x, y ∈ R and

any ε > 0 it holds that 2xy ≤ εx2 + ε−1y2, we have

DαV ≤ −cλmin(Γ−1)‖θ̃‖2 + ε‖θ̃‖2 + ε−1(‖un‖‖ν‖+ ‖ν‖∞)2 + |f0|.

Since un, ν, f0 are bounded, there exists a constant number C such that

DαV ≤ −λmax(Γ−1)(cλmin(Γ−1)− ε)V + C.

Taking ε < cλmin(Γ−1), it follows that tα−1Eα,α(−(c− ε)tα) ∈ L1. Using this, a comparison
argument and the solution as above, we conclude that V, θ̃ are bounded since the convolution
of tα−1Eα,α(−(c−ε)tα) is now with a constant. Moreover, if ν converges to zero, then we can
sharp the bound C with a decaying to zero function C(t), and hence, the convolution term
will converges to zero yielding the convergence of θ̃ to zero.

6.3.2 Multi-order

First, notice that from (3.1) we have for any i = 1, . . . , n and t > 0

y(t)ui(t) = ui(t)u
′(t)θ,∫ t

0

ki(t, τ)y(τ)ui(τ)dτ =

∫ t

0

ki(t, τ)ui(τ)u′(τ)θdτ.

Rede�ning Υ(t) as the vector function of components
∫ t

0
ki(t, τ)yui(τ)dτ and Ψ(t) as the

matrix function of rows
∫ t

0
ki(t, τ)ui(τ)u′(τ)dτ for i = 1, . . . , n, the same relation Υ(t) = Ψ(t)θ

is obtained. When particularizing to the fractional kernel, it follows that the implementation
(3.7) has the same form with now β a vector and Dβx meaning the vector of components
Dβixi. Hence, the generalization of Theorem 2 is straightforward.

Now consider the case α ∈ Rn with components in (0, 1]. For illustration's sake, we
consider n = 2. The �rst step of the proof of Theorem 2 can be repeated to obtain

Dαθ̃ = −uu′θ̃ − κΨθ̃, (6.4)
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where Γ = In for simplicity. By assuming that u has FE, we can write Ψ(t) = Ψ0 + f(t)
where Ψ0 is a diagonal matrix with positive entries γi, which are proportional to κ, and f a
matrix that vanishes after some �nite time T when choosing ta(t) = ε for any t > 0. Then[

Dα1 θ̃1

Dα2 θ̃2

]
= −

[
u2

1 + γ1 u1u2

u1u2 u2
2 + γ2

] [
θ̃1

θ̃2

]
− κf(t)

[
θ̃1

θ̃2

]
.

Let V1 = 1
2
θ̃2

1, V2 = 1
2
θ̃2

2 and F (t) := ‖f(t)‖‖(θ̃1(t), θ̃2(t))|2. Using normalization if neces-
sary, there exists a constant C > 0 such that |u1u2θ̃1θ̃2| ≤ C(V1 + V2), and hence,[

Dα1V1

Dα2V2

]
�
[
−u2

1 − γ1 + C C
C −u2

2 − γ2 + C

] [
V1

V2

]
+ F (t) =: Λ

[
V1

V2

]
+ F (t),

where � means the relation ≤ component-wise. Clearly, Λ is Metzler (i.e. nonegative o�-
diagonal entries), and using κ large enough (which yields γi large enough), it is also Hurwitz.
Since F (t) vanishes for t > T , it follows from [GAD20a, Theorem 2] that V1, V2 converge to
zero, and hence, θ̃ converges to zero as t → ∞. The same arguments can be carried out for
the n > 2 case.

6.4 Proofs for the Finite-Time Estimator

Proof of Theorem 3

i. According to the continuity assumption on m and λ, the solution to (3.12) exists, is
unique and continuous (see e.g. [GAD19b]). For the same reason, w exists and is continuous.
Moreover, it is given by w(t) = 1−(Iαλ∆2)(t), as Iα0+D

α
0+w(t) = w(t)−w(0) (see e.g. [Die10]).

Therefore, θ̂FT is piecewise continuous. Since condition (3.13) holds, it follows that λ∆2 is
not the zero function; hence, w(t) < 1 for any t > δ because λ ≥ 0 and even if λ∆2 = 0 after
t > δ, the solution would be strictly increasing (because and the fractional integral would be
strictly decreasing for t > δ) but does not attain 1 in �nite time because if w(t1) = 1 then w
cannot be strictly increasing. Therefore, θ̂FT (t) ∈ R for any t ≥ 0.

ii. Using equations (3.11), (3.12) and the fact that Dα
0+θ = 0, we have

Dα
0+ θ̃

F = −γ∆2θ̃. (6.5)

That is, w and θ̃ share the same equation. In particular, due to the linearity of the operator
Dα
t+0
, we have θ̃(t) = w(t)θ̃(0), i.e.

θ =
1

1− w(t)

(
θ̂(t)− w(t)θ̂(0)

)
. (6.6)

Suppose that w(t) > 1− µ for any t > 0. Then

w(δ) = 1−
(
Iα0+λ∆2w

)
(δ)

< 1− (1− µ)
(
Iα0+λ∆2

)
(δ)

≤ 1− µ,
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where in the last inequality we use (3.13) and in the previous one the fact that all the
integrands are nonnegative. This contradicts the assumption that w(t) > 1−µ for any t > 0.
Therefore, there exists tf < δ such that w(tf ) = 1− µ where we use that the integrands are
continuous (bounded in [0, δ], in particular), and hence its convolution is continuous. This
means that θ̂FT is equal to the right-hand of (3.14) for any t > tf . Comparing (3.14) with
(6.6), we conclude that θ̂FT (t) = θ for any t > tf .

iii. Since θ̃F satis�es Dα
0+ θ̃

F = −λ∆2θ̃ ≤ 0, it follows that θ̃ does not change its sign (see
e.g. [Die10, Chapter 7]). Hence, λ1∆2θ̃i ≤ λ2∆2θ̃ when θ̃(0) ≥ 0. A comparison argument
(see e.g. [Die10, Chapter 6]) and reversing the inequalities when θ̃(0) ≤ 0, yield the result.

iv. Consider the transient period, i.e. t ∈ [0, tf ], where w(t) > 1−µ and hence θ̂FT (t) = θ̂.
The fact Dα

t+0
w(t) ≤ 0 implies, by applying Iα0+ in both sides, that w ≤ 1. Since θ̃(t) =

w(t)θ̃(0), it follows that |θ̂(t)− θ| ≤ |θ̂(0)− θ| and hence, |θ̂FT (t)− θ| ≤ |θ̂FT (0)− θ| for all
t ≥ 0. The rest is similar to the proof of Theorem 1(vi).

Proof of Proposition 1

(Su�ciency) Notice that by sending µ → 0+ �recall that µ is a designer chosen parameter�
condition (3.13) can be restated as

(
Iα0+λ∆2

)
(t = δ) > 0. When u is continuous, this is

equivalent to require that ∆ is not the zero function provided that λ is chosen not to be the
zero function. (Necessity) If ∆ ≡ 0, then Y ≡ 0 according to (3.11) and no information of θ
can be extracted.

Let I = (a, b) be the interval where the components of m are linearly independent and t0 a
point in the interior of I. Since the �lters Hi are arbitrarily-chosen operators, we can choose
the shift operators Hi(x)(t) = x(t− δi) for some δi > 0 such that t0− δi ∈ I. It is easy to see
that these shift operators are linear, map continuous functions to continuous functions, and
that the matrix M is given by

M(t) =

m1(t1) · · · mq(t1)
...

. . .
...

m1(tq) · · · mq(tq)

 ,

where ti = t− δi for i = 1, . . . , q. According to the choice of δi, we have t1, . . . , tq ∈ I whenM
is computed at t = t0. Since the components of m are linearly independent in I, there exists
a choice of δi for i = 1, . . . , q such that M(t0) is invertible. To see this, note that the span of
the range of the function g : t ∈ (a, t0) → (m1(t), . . . ,mq(t)) is Rq because its orthogonal is
{0} as the functions mi are linearly independents in (a, t0). Hence, there exists t1, . . . , tq such
that g(ti) are linearly independents vectors for i = 1, . . . , q, which entails the existence of δi

for i = 1, . . . , q. Therefore, ∆(t0) 6= 0 and the claim follows from the continuity assumption.

43



Proof of Proposition 2

Since ∆ is continuous and not the zero function, it satis�es (3.13) for some µ whenever λ is
not chosen zero. Note then that the increasing of λ reduces the time δ when µ is �xed in
expression (3.13) due to the continuous assumption on ∆. Since tf < δ, the claim follows.

Proof of Proposition 3

a) It follows from the use of the gradient estimator, Theorem 1(vi) and the algebraic relation
to obtain θ̂FT .

b) We �rst prove by contradiction that θ̂(t) ∈ [a, b] for any t > 0. Since θ̂(0) ∈ (a, b)
and P[a,b] is the identity when θ̂ ∈ (a, b), if there exists t1 such that θ̂(t1) < a, then there
must exist t′ < t1 such that θ̂(t′) = a and θ̂(t) > a for any t < t′. From expression (1.2)

and the fact that 0 < α ≤ 1, the assumption ˙̂
θ(t′) < 0, needed to prove the existence of t1,

is contradictory because, on the one hand, Dα
0+ θ̂(t

′) = ε from the de�nition of P[a,b] and, on

the other, there must exist a small enough ε > 0 such that ˙̂
θ(t) ≤ 0 for t ∈ (t′ − ε, t′) from

the fact that θ̂(t) > a for any t < t′, which would yield Dα
0+ θ̂(t

′) < 0 if ˙̂
θ(t′) < 0. Then, the

case θ̂(t1) < a for t1 > 0 cannot occur. A similar reasoning shows that the case θ̂(t1) > b for
t1 > 0 cannot occur either. Therefore, θ̂(t) ∈ [a, b] for any t > 0 i.e. θ̂ is bounded.

Recall that w is bounded according to the proof of Theorem 3. Then, θ̂RFT is bounded
since it is obtained from algebraic operations of bounded functions and (3.14) is used only
when w < 1− µ so that its denominator is bounded away from zero.

Let ν ≡ 0. Since P[a,b] is the identity when θ̂ ∈ (a, b) and θ̂(0) ∈ (a, b), we can use
Theorem 3(ii) to show that |θ̂ − θ| cannot increase i.e. θ̂ remains in (a, b). Therefore, the
same arguments for the fractionalized gradient (3.12) show that θ̂RFT exhibits �nite-time
convergence when (3.13) is satis�ed. Moreover, all the above propositions hold for (3.17).

c) The direct relation between the fast decaying of w and the impoverishing to track
parametric variations of DREM based estimators has been stressed before in [OAPAB19].
We have that w is nonincreasing when α = 1; but, when α < 1, w can increase and even
when decreasing, the convergence is strictly slower than exponential as α decreases. The
case for α = 1 follows from the facts that ẇ = −λ∆2w ≤ 0, w(0) = 1 and that w does not
change sign. The fact that Dαw = −λ∆2w ≤ 0 does not imply monotony was established in
[GD16b, Proposition 3]. In particular, if Dα

t+0
w(t) = 0 for t > tf then w begins to increase

and converges to 1. The claim on the convergence slower than exponential can be found in
[GD19a].
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6.5 Proofs for the Switched Adaptation

6.5.1 Implementability

We want to simulate
t0D

αx = f(t, x) (6.7)

for x(t0) = x0. To do this, we use Ninteger toolbox for Matlab, which allows to using the
NID block to simulate the system

0D
αx = f(t, x) (6.8)

for x(0) = x0. We claim that (6.7) can be simulated with

0I
αf(t, x) (6.9)

with f(t, x) = 0 for t < t0 and adding x(t0) = x0 for t > t0. Indeed, in that case (6.9)
becomes ∫ t

t0

(t− τ)α−1f(τ, x)dτ (6.10)

and hence,

x(t) = x(t0) + 0I
αf(t, x) (6.11)

= x(t0) +

∫ t

t0

(t− τ)α−1f(τ, x)dτ (6.12)

which is the solution to (6.7).

6.5.2 Proof of Theorem 4

The fact that m satis�es the excitation condition in Theorem 2 allows us to choose c as the
exponential and c′ as the Mittag-Le�er functions with speci�c rates of decay since, according
to Theorem 2, e converges at those orders, respectively, under no disturbances. The same
goes for the case when it satis�es Theorem 3 and one uses (3.14). The boundedness of θ̂
follows from noting that V = θ̃′θ̃ is a common Lyapunov function for any derivation order
in (0, 1] and using [GAD20c, Corollary 1] (moreover, θ̃ = 0 is stable). The rest of the proof
follows from the construction of the rising and lowering sequences.

6.6 Proof of Proposition 4

In the interior of D, we have

J̇ =
∂J

∂α

′
α̇ +

∂J

∂λ

′
λ̇,

= −∂J
∂α

′∂J

∂α
− ∂J

∂λ

′∂J

∂λ
≤ 0.
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The e�ect of the projection on the boundary is such that J̇ ≤ 0 since, in the worst case where
J decreases outside the domain and increases inside, the parameters can be forced to stay on
the boundary, by adding a conditional whereby J̇ = 0. Finally, by construction, λ, α remain
bounded.

6.7 Proofs of Section 4

6.7.1 Proof of Proposition 5

Proof. We made the proof for the fractionalized gradient. Notice that

Dαθ̃ = f1(m, t)θ̃ + P−1λem.

De�ning V = θ̃′P θ̃, we get

DαV ≤ θ̃′(Pf1(m, t) + f ′1P )θ̃λe2,

≤ −λe2.

The rest is similar to the proof of Theorem 1.

6.7.2 Proof of Proposition 6

Proof. Since Ω is a hypercube, θ̂ /∈ Ω ⊂ Rn occurs when some component (say) θ̂i0 of θ̂
crosses the boundary of the hypercube. Without loss of generality, we assume θ̂i0(T ) = θ+

where θ− ≤ θ̂i0 ≤ θ+ is the hypercube condition for i0. Suppose that θ̂ ∈ Ωc for t > T . We
have

θ̂i0(t) = θ̂i0(0) +
(
Iα0+D

αθ̂i0

)
(t)

= θ̂i0(0) +

∫ t

0

kα(t− τ)Dαθ̂i0(τ)dτ

= θ̂i0(0) +

∫ T

0

kα(t− τ)Dαθ̂i0(τ)dτ,

where the last inequality is due to the null value of the indicator function in Ωc. Since
θ̂i0(0) < θ+ by assumption, we have that Dαθ̂i0(t) > 0 for any t ∈ [T − ε, T ) with ε > 0 small
enough due to the continuity for t ≤ T . However, these values are underweight by the kernel
function as t grows since d

dt
kα(t−τ) = − α−1

Γ(α)
(t−τ)α−2. This means that θ̂i0(t) < θ̂i0(T ) < θ+,

which contradicts the assumption θ̂ ∈ Ωc for t > T .

Using that ‖θ̃‖ ≤ ‖θ̃(0)‖ and θ, θ̂ ∈ Ω, it follows that θ̂ remains in Ω when no disturbance
occurs.
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6.7.3 Proof of Proposition 7

Proof. Since the last column of Ω has FE, the last component of ε in (4.6) has the regression
form that allows to estimate θ with θ̂ satisfying (3.6). By Theorem 2, the identi�cation aim
is achieved i.e. θ̂ → θ as t→∞. In particular, θ̂ is bounded. Using the ISS property [KK95,
Lemma 3.2], z is also bounded. This implies that vi, x,W are also bounded for i = 1, . . . , n.
Using the ISS property and the fact that θ̃ converges to zero, we conclude that z converges
to zero. In particular, z1 = y − ym converges to zero.

When ν 6= 0, bounded additive terms appears in (4.5) and (4.6). Using the ISS property
and Theorem 2, we conclude the boundedness of z, x, y when ν is bounded, and the conver-
gence y → ym when ν converges to zero. The last claim follows from the additive form in
which θ̃ appears in (4.5).

6.7.4 Proof of Proposition 8

Proof. Let ω be the last column of Ω. We show �rst that if the components of ω are
linearly independent continuous functions in some interval I, then ω has FE. Due to the
ISS property and the boundedness of the estimator, we can restrict the veri�cation of the
positive de�niteness condition (3.9) to an arbitrarily large compact space C ⊂ Rp. Since the
components of ω are linearly independent functions, c′ω is not the zero function on I for
any c ∈ C − {0}. Using the continuity, there exists a small enough number γ(c) such that∫
I
(c′ω)2dt ≥ γ(c)c′c > 0. From the compactness of C, there exists a constant γ > 0 such

that
∫
I
(c′ω)2dt ≥ γc′c > 0 for any c ∈ C−{0}. Then,

∫
I
ωω′dt ≥ γIp on any compact subset,

which is enough to establish Theorem 2. Since ω is a linear �ltering of ϕ, the independence
of ω follows from that of ϕ (we can always take null initial condition for the �lter, so that
ω = h ∗ ϕ).

Thus, we must analyse the linear independence of ϕ on some interval. If ϕ contains p
di�erent frequencies, i.e. c′ϕ(t) can be written as

∑p
i=1 di(c)sin(wit+ φi) for any c, then this

independence is veri�ed. Since ϕ is a function of x, a veri�able condition on ϕ is that if x
contains r di�erent frequencies then ϕ contains p di�erent frequencies. For instance, in the
linear case, φ(x)′ = (x1, . . . , xn), it is enough to take r = n. In general, nonlinearities enlarge
the number of frequencies so that r < p (e.g. ϕ = x3).

Now, we show the a priori veri�ability. Notice that r appears additively in the equation
of xn, and the other components of x are integrals of xn. Therefore, the introduction of an
external signal re with r di�erent frequencies makes x a vector with r di�erent frequencies.

6.7.5 Proof of Proposition 9

Proof. Let e = ẑ − z. Then

ė = Aoe + dβ′(y, u)θ̃ + Φ(y, u)w.
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Suppose that ν ≡ 0 (i.e. w ≡ 0). According to Theorem 3, θ̃(t) = 0 for any t > tf . Since
β is continuous, dβ′(y(t), u(t))θ̃(t) = 0 for any t > tf . Since Ao is Hurwitz, e → 0 as
t → ∞ at exponential order. Therefore, ξ̂ := ẑ −Mθ̂ → z −Mθ = ξ = T (x). Noting that
T is a di�eomorphism and applying T−1, we have x̂(t) → x(t) as t → ∞. When ν 6= 0,
we use Proposition 3(ii), the boundedness of y, u, the smoothness of β,Φ and the BIBO
stability stemming from the Hurwitz property, to conclude the boundedness or convergence
of x̂− x.
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Chapter 7

Conclusions

In this work, we have provided a�rmative answers to the following nested questions: Can
fractional operators be used to analytically solve classic engineering problems in which the
uncertainties in the model cannot be ignored? Are there objective advantages when solving
such a problem with fractional operators? Are there automatic methods, which do not depend
on additional prior knowledge, to choose which fractional operators are suited for a speci�c
problem ?. In answering these questions, we have taken several choices that will now discuss.

a) The objective advantages were obtained by resorting to the singularity of the ker-
nel function in the de�ning expression of the fractional derivative (yielding the transient
improvement) and to the forgetting factor e�ect of the fractional integration (yielding the
robustness improvement). In particular cases, the long memory property of fractional sys-
tems could provide further advantages: in periodic settings such as the tracking or rejecting
of periodic exogenous signals; in the repetitive task problems treated in Adaptive Learning;
in Network Theory to enhance the complexity by the introduction of long-memory elements,
which could improve the approximations of functional relations or reduce the order of linear
parametrizations that have poorer performance than nonlinear ones as the order grows.

b) The objective disadvantages (slow speed of convergence, the loosing of the gradient
method entailing convergence hindering) demanded alternative designs to cope with them.
These designs were based on well-established modi�cations of the gradient. Although an
absolutely new method could present the same problems (the slow speed of convergence and
the convergence issues seem to be unavoidable, as argued in this document), other advantages
may appear that remain unnoticed.

c) The estimation proposed in this work is part of an adaptive control strategy. Hence,
there are speci�c features that one looks for in the estimator, which preclude the use of
statistic-like estimators: On-line (adaptive) estimation by which current information is act-
ively used in the place of a priori information which is unreliable or inaccurate when con-
trolling physical systems. Stability, robustness and transient behaviour rather than statistical
properties become paramount in control speci�cations and the estimator, being part of the
control system, requires them.
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d) There are alternative ways to answer those questions. On the one hand, many adaptive
schemes include a �ltering step (e.g. see [CH08]) whose �lters could be chosen of a fractional
type without a�ecting the stability. Also, the desired performance could be de�ned as the
output of a fractional system or the performance index could be written using fractional
integrals. These solutions (explored by the author in the MRAC context [GD18a]) should be
not considered suited because they do not address the adaptation problem, which consists of
tuning the parameters, and could be applied in non-adaptive settings. On the other hand,
the local fractional derivative can be used instead of the Caputo since the resulting adaptive
scheme shares the main features: noise rejection, transient improvement, and sub-exponential
convergence. We have excluded this result because such a scheme must be implemented
with a standard gradient adaptation with a time-varying adaptive gain having a polynomial
singularity at t = 0, which makes this scheme of scarce interest from a practical viewpoint.

e) We focus on engineering problems formulated in integer-order derivatives to avoid issues
of modelling when using fractional derivatives and to stress the applicability of the proposed
methods. As a matter of fact, our results can be easily extended to include fractional systems,
which yields a more general adaptive framework (see the linear case in our works [GD18a,
DGAC18b]). However, a realistic fractional application requires additional but standard
steps since the empirically soundest models occur in di�usion processes where fractional
(stochastic) partial equations, both in spacial and time, are employed (e.g., see [DPT20]).

f) Uncertainties can be alternatively handled with robust designs relying on worst-case
analysis. In general, robust schemes should show conservative performance in comparison to
adaptive ones when dealing with structured uncertainty and/or performance, while adaptive
schemes should show more conservative responses to unstructured uncertainty. Schemes
combining robust structure and adaptive �ne-tuning were used in the control application of
this work, but the fractionalization was only used in the adaptive part. A fractionalized
structure for the observer was proposed in our work [DGAC18b] which exploits the �ltering
property of the fractional operator; a fractionalized reference model in [GD18a] exploits the
enlargement of dynamics references.

g) We have relied on the gradient descent to propose the fractionalized adaptive scheme.
An alternative optimization technique is Least Square whose main feature is the homogeniz-
ation of the rate of convergence with respect to each component. Preliminary results, which
involve the development of stability tools to deal with time-varying Lyapunov functions, show
that no decisive additional advantage is obtained with its fractionalization. Moreover, the
homogenization is already achieved with the DREM scheme in Theorem 3.
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