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The existence of non—vanishing Bohm potentials, in the Madelung-Bohm version of the
Schrédinger equation, allows for the construction of particular solutions for states of quantum par-
ticles interacting with non—trivial external potentials whose propagation is equivalent to the one for

classical free particles.
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I. INTRODUCTION

In 1979, Berry and Balazs [1] showed that a quantum
free wavepacket can show unexpected accelerating char-
acteristics. In this work we address the opposite ques-
tion. That is, if an interacting particle, that satisfies the
Schrédinger equation with a potential V', can still behave
as if it were a free particle. In this work we establish the
conditions which make this behavior possible and present
numerous examples.

We prove that such possibility indeed exists in the
framework of non-relativistic quantum mechanics and its
related to the existence of the so—called Bohm potential.
In other words, there are quantum solutions, for families
of external potentials V', in which the particle behaves
with the same propagation as a free classical particle.
This is only possible for a non—vanishing Bohm potential,
which in turn implies that amplitude of the wavefunction
is not constant. We focus in one-dimensional systems,
although our results can be generalized to higher dimen-
sions ﬁ@], or to relativistic regime [5] following the ideas
presented here.

By free classical particle, we understand any particle of
mass m satisfying the free Hamilton—Jacobi (HJ) equa-
tion

1 N2
2m(S) +S5 = 0. (1)
for an action S = S(z,t), where ' = 9,, and "= ;. This
action may be considered as the phase of a solution to
the Schrodinger equation. Therefore, we are looking for
wavefunctions with a phase satisfying Eq. (), and with
an amplitude that allow us to solve Schrédinger equation
for a given potential V.

Let us consider the wavefunction ¢ = ¢(x,t) of a one—
dimensional Schrédinger equation (and its complex con-
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jugate) for a real potential V (z,t)

hz " .

The wavefunction may be written in terms of a polar
decomposition as ¢ = Aexp (i.S/h), where the amplitude
A(x,t) and the phase S(z,t) are real functions. Thereby,
the Schrédinger equations become as , B]

1 N2 -
%(S) +Ve+V+S =0, (3)
1 /
— (A*Y A%) = 0. 4
L) s (a1 = o o
where the Bohm potential is given by
h2 A

The first equation @) is the quantum Hamilton—Jacobi
(QHJ) equation for the (external) potential V. The quan-
tum modification consists in the addition of the Bohm po-
tential to the classical HJ equation. The second equation
(@ is the continuity (probability conservation) equation.

In order to answer if a quantum interacting particle
can behave as a free classical particle, we need to en-
force the condition that Bohm potential cancels out any
contribution of the external potential

Ve+V =0. (6)

allowing the phase, from Eq. (8], to fulfill the HJ equation
(@. Above condition implies that the external potential
determines completely the dynamics of the amplitude A,
through the Bohm potential. This also must be consis-
tent with the continuity equation ().

The continuity equation (@) is identically solved by
defining the arbitrary potential function f = f(x,t), such
that A2 = f/, and A2S" = —mf. For a one dimensional
system, once the free particle action S is found by solving
HJ equation (), f = f(x,t) can be determined by the
relation

'S +mf=0. (7)
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This equation states that f depends on z and t through
one variable only. On the other hand, the amplitude of
the wavefunction is found to be (with f/ > 0)

A=/ (8)

The exact form of the amplitude A (or function f) is
found by solving Eq. (). In this way, a quantum particle
in the presence of a potential V' propagates as a free
particle, provided Eq. (@) is solvable.

II. SEPARABLE ACTION FOR FREE
CLASSICAL PARTICLE

Let us study the simplest case for a classical free par-
ticle, in which the spatial and temporal dependence are
separated. The phase (action) is given by

k2
t)y=kx — —t.
S(a,t) = ko — o )
This action is a solution of () for any constant k. Eq. (7))
allows us to find that f depends on = and ¢ through
one variable z only. In this case, we obtain that it has
the form f(z,t) = f(z) = f(x — kt/m), and thus, by
Eq @), we obtain that the amplitude depends on the

same variable z
df
Az, t) = A =4/ = 1
(2,6) = A () =/ L. (10)

where z is defined as

k
=xr— —t. 11
p=a - (11)
A quantum particle interacting with an external potential
V(z,t) = V(z), behaves as a free particle with phase (),
if the amplitude fulfills Eq. (@), in the form
h?  d?A(z)
Viz)= ————F—. 12
(2) 2mA (z) dz? (12)
For this case, all considered external potentials V' must
depend exactly on z variable, and therefore, they are not
static. Several cases are described below.
Constant force. Consider a constant force FF = —V’,
with potential V' (z) = —Fz. Thus, Eq. (IZ) produces an
amplitude given in terms of Airy functions

Az, 1) = Ai (— (2’;”‘21?)1/3 z) . (13)

This Airy wavepacket propagates as a free classical par-
ticle under a constant force.

Mowing potential trap. An attractive potential with
the form V(z) = —v4(2) is used to manipulate particles
[@, ] Here v is a constant, and ¢ is the Dirac delta
function. The amplitude solution of Eq. (I2)) becomes

Az, t) = mhzﬁzsgn(z) -3, (14)

for an arbitrary constant 3, and where sgn is the sign
function.

Coulomb potential for a moving charge. Let us as-
sume a potential with the form V(z) = a/z, for a mov-
ing charge with constant non-relativistic velocity (« is
a constant). This corresponds to the non-relativistic ex-
pression for the Liénard-Wiechert four-potential ] In
this case, Eq. (I2)) gives an amplitude in terms of Bessel
functions Ky

A(z,t) = (15)

V2mao z K 2V2ma z
h ! h '
Solutions in terms of Bessel functions I are also possible.
Thus, this Coulomb potential produces Bessel wavepack-
ets that allows the particles propagate freely.

Electromagnetic wave. A particle interacting with
an electromagnetic wave (with wavenumber x and fre-
quency kk/m) experience a potential of the form V(z) =
vcos(kz) (with constant ). In this case, Eq. (I2)) be-
comes a Mathieu equation

d’A  2my

dz? h?

cos(kz) A=0. (16)

Explicit solutions are written in terms of the recurrence
relations , ] In this form, Mathieu beam wavepack-
ets support quantum solutions that propagate in a free
classical fashion.

Harmonic oscillator. For a shifted harmonic oscillator
V(z) = mw?22/2 [13], with frequency w, Eq. [[2) has a
solution Parabolic cylinder functions [12]

2mw
( 5 z) . (17)

Pdéschl-Teller potential. Consider the moving poten-
tial V(z) = —ysech®z, with constant v. The amplitude
solution of (I2) is written in terms of a Legendre poly-
nomial P and a Legendre function of the second kind @
as

A(z,t) =D

(S

A(x,t) = a1 P, (tanh 2) + a2Q,, (tanh 2) (18)

with arbitrary a; and ag, and n = (y/1 + 8m~y/h%2—1)/2.

III. NON-SEPARABLE ACTION FOR FREE
CLASSICAL PARTICLE

Another very well-known solution for the classical HJ
@) for classical free particles is

mx2

2t

S(x,t) = (19)

This action is a non—separable function of space and time.



In this case, Eq. (@) allow us to find that any func-
tion with the functionality f(z,t) = f(x/t) solves the
continuity equation. Therefore, amplitude is given by

1
Vi

where A = \/df /dy, and where we have introduced the
variable

A(.%‘,t) = A(y) ) (20)

x
=—. 21
y=3 (21)

In this case, any external potential with the form

1
allow us to re-write Eq. (@) as
R dPA(y)

V)= —————22 23
) = 5k ot (23)

Potentials with the exact space and time dependence
of form (22]), have been shown to produce exact Feynman
propagators M] Below we study some of them in our
context.

Time decreasing force. For a force decreasing in time
with the form F(t) = Fy/t3, a potential V(y) = —Foy
can be used. In this case, Eq. (23]) produces Airy solu-
tions, and amplitude 20) is

1. omEy\ '/
A(:z:,t):%Al (- (7()) y> (24)

Thus, for such forces, the quantum system is solved ex-
actly, and the particle propagates as it were free.
Harmonic oscillator. For a time—decreasing frequency
in the form w = wo/t? [14] (with constant wp), then a
harmonic oscillator with potential V(y) = mwiy?/2 can

be solved exactly. Using Eq. (23], amplitudes are given
in terms of Parabolic Cylinder functions [12]

A, t) = %D_% ( 2”;“%) . (25)

Coulomb-like potentials. Consider a potential with the
form V(x,t) = Z(t)/x. When Z decrease in time as
Z(t) = Zo/t [14], then V = Zy/y, and there exist solu-
tions using our approach. The amplitude of the wave-
function is again given in terms of Bessel functions K3

oy = VIR g, (AT

(26)

IV. DISCUSSION

With the above several examples and calculations we
have shown that is possible for interacting quantum par-
ticles to propagate as a free classical particle for a wide
range of known potentials. This is only achieved because
the Bohm potential of the wavefunction cancels out the
external potential. By doing this, the external potential
completely determines the amplitude of the wavepackets,
as it can be seen in Egs. (I2) and (23]

It is remarkable that this fact occurs for the large fam-
ily of potentials treated here. We think that these kind of
solutions have remained largely unexplored and they can
bring new insights in the propagation of quantum parti-
cles, as the quantum characteristics remain confined to
the amplitude, while the phase is associated to the action
of a free classical particle.

Any solution fulfilling condition () can now be inter-
preted as a wavepacket that modified its own probability
density in order to propagate as if it were free. The impli-
cations of this behavior are not difficult to be envisaged
as very interesting.

[1] M. V. Berry and N. L. Balazs, Am. J. Phys. 47, 264

(1979).

[2] S. A. Hojman and F. A. Asenjo, Phys. Scr. 95 085001
(2020).

[3] S-A. Hojman and F.A. Asenjo, Phys. Lett. A 384, 126263
(2020).

[4] A. J. Makowski and S. Konkel,Phys. Rev. A 58, 4975
(1998).

[5] J. R. Fanchi, Found. Phys. 30, 1161 (2000).

[6] P. R. Holland, The Quantum Theory of Motion: an ac-
count of the de Broglie-Bohm causal interpretation of
quantum mechanics, (Cambridge University Press, 1993).

[7] R. E. Wyatt, Quantum Dynamics with Trajectories: in-
troduction to quantum hydrodynamics (Springer, 2005).

[8] E. Granot and A. Marchewka, EPL 86, 20007 (2009).
[9] M. R. A. Shegelski,T. Poole and C. Thompson, Eur. J.
Phys. 34, 569 (2013).

[10] K. Lechner, Classical Electrodynamics:A Modern Per-
spective (Springer, 2018).

[11] L. Ruby, Am. J. Phys. 64, 39 (1996).

[12] M. Abramowitz and 1. A. Stegun, Handbook of Mathe-
matical Functions with Formulas, Graphs, and Mathe-
matical Tables, (National Bureau of Standars, Applied
Mathematics Series, Tenth Printing, 1972).

[13] I. H. Duru, J. Phys. A: Math. Gen. 22, 4827 (1989).

[14] V. V. Dodonov, V. I. Man’ko and D. E. Nikonov, Phys.
Lett. A 162, 359 (1992).



