Reactivity descriptors for Cu bis-phenanthroline catalysts for the hydrogen peroxide reduction reaction

Following previous studies where the metal-centered redox potentials of MN4 complexes are proposed as a reactivity descriptor for different electrochemical reactions, in the present work we expand this idea to a series of substituted Cu(I)-phenanthrolines adsorbed on glassy carbon electrodes as catalysts for the hydrogen peroxide reduction reaction (HPRR) in aqueous media. As the foot of the wave for HPRR on Cu-based modified electrodes is closely related to the Cu(II)/Cu(I) formal potential, we have found a linear correlation between the catalytic activity expressed as (log i)(E) and the E{sub Cu(II)/Cu(I)}degrees' redox potential of the complexes with a slope (dE{sub Cu(II)/Cu(I)}degrees/dlogi)(E) close to +0.120 V dec(^-1), showing that the catalytic activity increases with the shift of E{sub Cu(II)/Cu(I)}degrees' to more positive potentials as a result of the electron-withdrawing nature of the substituents on the ligands. Moreover, the theoretical differences in the calculated chemical potentials (Delta mu) of the reactive species follow a similar trend with the E{sub Cu(II)/Cu(I)}degrees' where a positive shift of this parameter is related with a higher Delta mu and in consequence, with high catalytic activity. Furthermore, this strategy can be used for the smart design of biosensors as it was shown by the electroanalytical results. (C) 2020 Elsevier Ltd. All rights reserved.

Palabras clave: Hydrogen peroxide reduction reaction; Reactivity descriptors; Copper catalysts; Hydrogen peroxide sensor

KeyWords Plus: OXYGEN REDUCTION; ELECTROCATALYTIC REDUCTION; ELECTROCHEMICAL REDUCTION; COPPER; COMPLEXES; CARBON; O-2; MECHANISM; 2,9-DIMETHYL-1,10-PHENANTHROLINE; ELECTRODES

Información del autor

Dirección para petición de copias: Pontificia Universidad Catolica de Chile Pontificia Univ Catolica Chile, Lab Mat & Energia, Fac Quim & Farm, Santiago, Chile.
Dirección correspondiente: Venegas, R; Recio, FJ (autor correspondiente)

Pontificia Univ Catolica Chile, Lab Mat & Energia, Fac Quim & Farm, Santiago, Chile.

Direcciones:

1. Pontificia Univ Catolica Chile, Lab Mat & Energia, Fac Quim & Farm, Santiago, Chile
2. Pontificia Univ Catolica Chile, Ctr Nanotecnol & Mat Avanzados, CIEN UC, Santiago, Chile
3. Univ Chile, Fac Ciencias Quim & Farmaceut, Ctr Invest Proc Redox CiPRex, Santiago, Chile
4. Univ Santiago Chile, Fac Quim & Biol, Dept Quim Mat, Santiago, Chile
5. Pontificia Univ Catolica Chile, Fac Quim & Farm, Dept Quim Fis, Santiago, Chile

Direcciones de correo electrónico: rivenegas@uc.cl; javier.recio@uc.cl

Financiación

<table>
<thead>
<tr>
<th>Entidad financiadora</th>
<th>Número de concesión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) COMICYT FONDECYT</td>
<td>1161117 1181072 1181037 3170330 3180509 3170443 ACT192175</td>
</tr>
</tbody>
</table>

Ver texto de financiación

Editorial

PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Información de la revista

- Impact Factor: Journal Citation Reports

Categorías / Clasificación

Áreas de investigación: Electrochemistry
Categorías de Web of Science: Electrochemistry

Información del documento

Idioma: English
Número de acceso: WOS:000582852200032
ISSN: 0013-4686
eISSN: 1873-3859