Performance of TiO$_2$ nanoparticles synthesized by microwave and solvothermal methods as photoanode in dye-sensitized solar cells (DSSC)

Venkatraman Madurai Ramakrishnan a,b, Selvakumar Pitchaiya a,b, N. Muthukumarasamy a, Kristin Kvarme c, G. Rajesh d, S. Agilan a, Arivalagan Pugazhendhi e,*, Dhayalan Velauthapillai b

a Department of Physics, Coimbatore Institute of Technology, Coimbatore - 641 014, Tamil Nadu, India
b Department of Engineering and Sciences, Western Norway University of Applied Sciences, Bergen, Norway
c Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
d Department of Physics, University of Chile, Santiago, Chile
e Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam

HIGHLIGHTS
- Comparison of the TiO$_2$ nanoparticles prepared by microwave and solvothermal methods.
- For the effective comparison, similar precursors were utilized in the synthesis.
- Structural, optical and morphological characteristics of the TiO$_2$ prepared by two methods.
- TiO$_2$ nanoparticles by microwave-assisted technique exhibited 7.44% efficiency.

ARTICLE INFO
Article history:
Received 4 March 2020
Received in revised form 12 June 2020
Accepted 2 July 2020
Available online 1 August 2020

Keywords:
TiO$_2$ nanoparticles
Solvothermal
Microwave
Photoanodes
Dye-sensitized solar cells

ABSTRACT
In this work, a direct comparison of the properties of the TiO$_2$ nanoparticles prepared by microwave and solvothermal methods were carried out and its performance as photoanode in dye-sensitized solar cells (DSSC) was analyzed. Though previously some works exist on the preparation of TiO$_2$ nanoparticles by solvothermal or microwave methods, they could not be compared directly as the experiment conditions such as choice of solvent, precursors and reaction temperatures were not virtually same. Herein, TiO$_2$ nanoparticles were synthesized by microwave and solvothermal methods using the same initial precursors and properties of the prepared nanoparticles were compared. From the X-ray diffraction pattern and Raman analysis, the prepared nanoparticles in both the cases were found to be of anatase phase. Optical properties and its carrier lifetime were studied using UV–Vis absorption, photoluminescence (PL) analysis and PL lifetime studies, respectively. Further, its morphology analyzed using scanning electron microscope (SEM) and transmission electron microscope (TEM) images, and SAED (selected area electron diffraction) patterns reveals the polycrystalline nature of the prepared nanoparticles. The surface area and the pore size distribution were studied using BET (Brunauer–Emmett–Teller) and BJH (Barrett–Joyner–Halenda) analysis, which revealed its mesoporous nature and uniform pore distribution. The chemical states of the prepared nanoparticles were further characterized using X-ray photoelectron spectroscopy. The DSSC was fabricated using the...
Introduction

Light-induced electricity generation is one of the hot topics of research today. Among the current different solar cell technologies, third generation solar cell technologies such as dye-sensitized and perovskite solar cells exhibit promising candidature as a cost-effective alternative to conventional p–n junction solar cells [1–7]. Dye-sensitized solar cells (DSSC) work under the concept of photoelectrochemical process, where, conducting glass substrates coated with wide bandgap mesoporous nanocrystalline material sensitized using a monolayer of the dye is used as photoanode. The organic solvent containing iodide/triiodide redox couple system is used as an electrolyte, effective triiodide reduction catalyst such as platinum or carbon-based materials are preferred for the counter electrode [8–10].

As the vital processes such as light harvesting and charge transfer happen at the photoanode in DSSC [1], it has been extensively studied to improve the efficiency of the solar cells. Wide bandgap semiconductors are generally used as photoanode material, as they are more stable under illumination [8]. On the other hand, in order to avoid possible photo-corrosion, narrow band gap materials are not used. Increase in the concentration of dye, enhancing the dye loading across the cross section and introduction of light scattering layers over the active layer for improved light harvesting are the different strategies available to enhance the energy conversion efficiency of the DSSCs [11,12]. However, the former is not preferred as thick dye layer attenuates insulating nature by mutual interaction among the excited molecules [13], and it gets de-activated. So, to attain high dye loading capacity without increasing the concentration, high surface area mesoporous wide bandgap semiconductor materials are preferred [3]. The widely known semiconductor materials which are active in visible region such as GaAs, CdS, Si and InP have been tried as photoanode, but due to the problem of photo corrosion with the above-mentioned materials the long-term stability of the solar cells could not be achieved. Some of the other commonly studied wide bandgap photoanode materials are ZnO, TiO2, SnO2, Nb2O5, Zn2SnO4. Though ZnO has higher electron mobility and has identical band position as TiO2, due to its instability in acidic dye it is not the preferred choice for commercialisation. SnO2 have also been used as photoanodes in DSSC, though it has higher mobility due to its rapid recombination and poor open circuit voltage, surface treatments were required for SnO2 to be used as photoanode in DSSC. Other materials such as Nb2O5, Zn2SnO4, Fe2O3 have also been used as photoanodes in DSSC [14–18]. Among the different materials, TiO2 is generally the material of choice due to its superior properties such as the position of the conduction band (as the TiO2 conduction band lies lower to the LUMO (lowest unoccupied molecular orbital) level of the most of the commonly used organic dyes, providing feasibility for faster electron transfer), low toxicity, high chemical stability, high refractive index (which is essential for the light to diffuse into the whole mesoporous network) and high dielectric constant (which reduces the fast recombination of the electrons at the TiO2/dye interface site through electrostatic shielding) [19–21].

Among the commonly studied phases of TiO2 such as anatase, rutile and brookite, all of these have been used as photoanode in DSSC. As the anatase phase has the properties such as indirect bandgap, which does not favor direct transition of electrons from conduction to the valence band and this provides an order of magnitude higher lifetime for photogenerated electrons compared to rutile and brookite. Also, recombination of photogenerated carriers in anatase is slightly less as it is reported to have smaller photocarrier effective mass which could assist their fast migration [8,22,23].

Most commonly used methods for the synthesis of TiO2 nanoparticles are sol-gel, Hydrothermal, Solvothermal, Microwave-assisted synthesis, green synthesis and template assisted methods [24–28]. Of the above-said techniques, hydrothermal/solvothermal technique is preferred by many of the researchers to prepare mesoporous metal oxides as it requires considerably lower reaction temperature as it can attain higher solubility and reactivity in the reaction medium at high pressures inside the autoclave. Additionally, it also has better control of morphology (narrow size distribution) of the prepared material [29–31]. On the other hand, microwave-assisted synthesis possesses advantages such as quick reaction time, efficient heating method, which uses the molecular vibrations of the dipole moment to produce rapid energy in the form of heat [32–34]. The choice of solvent is vital in microwave-assisted technique, and the polar solvents with high dielectric constant provide high reaction rates, while non-polar solvents with low dielectric constant give rise to slower reaction rates [35].

The objective of the present work is that though many works are available on the preparation of TiO2 by solvothermal or microwave methods, the experiment conditions such as reaction time and temperature, choice of solvent and precursor are not virtually same. In this work, using the same initial precursors TiO2 nanoparticles have been synthesized by solvothermal, and microwave methods and a direct comparison of the properties of synthesized TiO2 and its performance as DSSC photoanode have been studied.
Experimental procedure

Preparation of precursor for the reaction

In this typical procedure, titanium tetraisopropoxide and anhydrous ethanol were used as the precursor and solvent, respectively. Initially, 0.1 M of TTIP was added to 30 mL of ethanol and was stirred for 1 h to obtain a clear solution. To the solution mentioned above 20 mL ethanol/deionized water mixture of 1:1 ratio was added, and instantaneously milky white solution was formed confirming the rapid hydrolysis of titanium precursors towards the formation of TiO₂. The obtained colloidal solution was further treated by solvothermal and microwave methods.

Solvothermal method growth of TiO₂ nanoparticles (NPs)

The solvothermal method was used to prepare TiO₂ nanoparticles (NPs). The white colored solution obtained was then transferred into a reagent bottle, and it was tightly sealed and subjected to solvothermal growth at 90 °C for 6 h. The final product was centrifuged, and it was further washed a few times with de-ionized water to remove the residual carbon from the solvent traces and was dried overnight at 120 °C. They were further annealed at 450 °C for 1 h.

Microwave-assisted preparation of TiO₂ nanoparticles

Milestone ETHOS1 Advanced Microwave Digestion System (Milestone, 2.5 GHz, sensor ATC-400) was used for the microwave assisted solvothermal synthesis of TiO₂ nanoparticles. The prepared precursor solution was transferred to a Teflon lined microwave digestion vessel which was sealed before the reaction. During the reaction, the microwave was ramped to obtain a temperature of 200 °C in first 15 min, and it was maintained at the same temperature for the next 30 min, before cooling to room temperature. The temperature was controlled using a temperature sensor in the first reaction vessel, and all the other reaction vessels had external temperature control using an IR sensor. Precipitates were collected by centrifugation after the reaction, and they were further dried overnight at 120 °C in a conventional oven, and it was used for further characterization and construction of DSSC.

Characterization techniques

The structural characteristics was analyzed using X-ray diffractometer (PANalytical XPERT-PRO) operating with Cu Kα radiation in a θ–2θ geometry and the Raman spectra was recorded using a micro Raman spectrometer (EZRAMAN, Model: SB15-162) using 532 nm laser source. The optical absorption spectra were recorded using UV–Visible spectrophotometer (Jasco V-670). The photoluminescence (PL) and its lifetime measurements (TRPL) was carried out using Horiba, Fluorolog. The surface morphology was analyzed using field-emission scanning electron microscope (FE-SEM, ZEISS, SIGMA, UK). High resolution transmission electron microscope (HRTEM) images of the prepared samples have been recorded using a JEOL, JEM 2100 electron microscope. X-ray photoelectron Spectroscopy (XPS) studies were carried out using ESCA2000 (VG microtech: UK). Brunauer–Emmett–Teller (BET) analysis was performed using ASAP 2020 micromeritics. The solar cell power conversion efficiency measurements for the fabricated cells was carried out using Keithley 2420 source meter under illumination of 1 Sun with an OREL Solar Simulator composed of 1000 W Xenon arc lamp with AM 1.5 and G filters. Active cell area was 0.25 cm². EIS measurements were carried out using CHI600 electrochemical analyzer under open circuit condition.

DSSC fabrication

As the first step, TiO₂ paste was prepared by the following method. Prepared nanoparticles were well ground, and it was mixed along with diluted acetic acid followed by addition of deionized water and was ground in a mortar until the paste attains homogeneity. Further 5% ethyl cellulose in ethanolic solution was added to the paste, and it was ground well. Finally, terpinol was added and it was further stirred until the paste attains homogeneity and in-order to remove ethanol from the mixture it was kept in a water bath at 90 °C for 10 min. The final prepared paste was coated over 40 mM TiCl₄ treated FTO (Fluorine doped Tin Oxide) by doctor blade method using the template spacers (an active surface area of 0.25 cm² and the total thickness of about 11 µm was optimized). The prepared photoanodes were further annealed at 450 °C for 30 min in a programmable muffle furnace at the rate of 10 °C/min. As the final step of photoanode preparation, when the prepared electrodes were around 80 °C (to avoid moisture at the surface), it was taken out of the furnace, and it is soaked in ethanolic 0.3 mM N719 dye (Soloronix) solution at room temperature for 12 h to remove the excess un-anchored dye molecules present on the surface, the sensitized electrodes were washed carefully with anhydrous ethanol and were dried. For the construction of DSSC, Pt sputtered FTO (Dyesol) was used as a counter electrode, Iodine redox (Iodolyte HI-30, Solaronix) was used as the electrolyte. The electrodes were sealed using a sealant, and the electrolyte was injected through the pre-drilled hole in the counter electrode, and the hole was then sealed using additional sealant.

Result and discussion

The XRD patterns of the TiO₂ samples synthesized by solvothermal synthesis (SS) and microwave assisted solvothermal synthesis (MWST) techniques are shown in Fig. 1. The diffraction patterns of TiO₂ nanoparticles prepared by both methods exhibit good crystalline peaks, and they correspond to the anatase phase of TiO₂. The diffraction peaks corresponding to the planes match well with the peaks corresponding to the anatase phase of TiO₂ (JCPDS Card No: 21-1272, shown as vertical lines in Fig. 1). From the graph, it could be inferred that with sharp peaks, the crystalline nature of the microwave prepared particles was found to be slightly more compared to that of TiO₂ nanoparticles prepared by solvothermal method. A small hump at 2θ, 30° (marked using ‘#’ symbol in Fig. 1) corresponding to the brookite phase was
observed for the TiO$_2$ samples prepared by solvothermal method, and this small shoulder peak has been observed by other researchers as well [36]. It could be further noticed that TiO$_2$ nanoparticles prepared by both the methods have the tetragonal crystal structure with predominant broad diffraction peaks located at the Bragg diffraction angles (2θ) of 25.36, 37.79, 48.14, 53.89, 55.12, 62.63, 68.84, 70.51 and 75.11 which are indexed to (101), (004), (200), (105), (211), (204), (116), (220) and (215) lattice planes respectively [37].

TiO$_2$ has a tetragonal structure, and it belongs to the space group D$_{4h}^{15}$ (I4/amd). According to the factor group analysis, the 15 optical modes have the irreducible representation $\Gamma_{opt} = 1A_{1g} + 1A_{2u} + 2B_{1g} + 1B_{2u} + 3E_g + 2E_u$. Among which, A_{1g}, B_{1g}, E_g are Raman active modes, A_{2u} and E_u are infrared active modes, B_{2u} is inactive in both [38]. Nanocrystalline anatase TiO$_2$ material consists of six active vibrational Raman modes, expressed as $[A_{1g} + 2B_{1g} + 3E_g]$, where A_{1g}, B_{1g} are nondegenerate modes and E_g is a doubly degenerate mode [39,40]. The Raman spectra of the prepared TiO$_2$ is shown in Fig. 2. The first high intensity peak observed at 144 and 147 cm$^{-1}$ for ST and MWST samples, correspond to the E_g mode, which is attributed to the stretching modes of Ti–O bond. B_{1g} mode at 398 and 397 cm$^{-1}$ accordingly for the TiO$_2$ prepared by ST and MWST methods represents bending modes of O–Ti–O bond, the peaks at 520 and 516 cm$^{-1}$ for ST and MWST samples represents the overlapping of A_{1g} and B_{1g} modes and these modes are generally assigned to symmetric and antisymmetric bending modes of O–Ti–O bond. Peaks at 642 and 640 cm$^{-1}$ for ST and MWST samples correspond to the E_g mode [41]. Here the corresponding peaks of MWST samples were slightly blue shifted and the broadening of peaks were observed when compared to that of ST method prepared sample. By the law of conservation, with the reduction in the grain size, the phonon momentum distribution increases and this leads to the asymmetric broadening, which is expected to be the cause behind the shift in Raman lines [38]. Further, it is observed from the spectrum that the prepared material is free from any secondary peaks corresponding to the other polymorphs of the TiO$_2$.

UV–Vis absorption spectra are shown in Fig. 3. UV–Vis absorption range of the TiO$_2$ nanoparticles prepared by both the methods is found to be in shorter wavelength region, and this kind of behavior is associated with wide bandgap semiconductors [42]. Fig. 3 Shows the UV–Vis absorption spectra of the TiO$_2$ synthesized by ST and MWST methods. The absorption edge was evident from Fig. 3, and the value was found to be 399 nm and 391 nm for the TiO$_2$ nanoparticles.
prepared by ST and MWST methods, respectively. From the absorbance band edge, the band gap of TiO₂ nanoparticles prepared by ST and MWST methods were calculated using the formula \(E_g = 1239.8/\lambda \). Here \(E_g \) represents the band gap (eV) and \(\lambda (\text{nm}) \) represents absorption edge wavelength [43]. The band gap values are calculated and found to be 3.11 and 3.17 eV for the samples prepared by ST and MWST methods respectively. The bandgap was found to be slightly lower for the TiO₂ prepared by solvothermal method, which could be due to the presence of oxygen vacancies [44].

Photoluminescence emission spectra of the TiO₂ nanoparticles prepared by ST and MWST methods (Fig. 4a) was recorded using the excitation wavelength of 280 nm. From the spectra, strong UV emission which is characteristic of wide bandgap semiconducting oxide materials was observed for both the samples. Another emission was observed at 460 nm, which corresponds to the oxygen vacancies [45]. The time spent by the excited atom or molecule in the excited state before emitting a photon and returning to the ground state is generally known as Fluorescence lifetime (FLT), and this can be related to lower recombination. The average PL lifetime \(\tau \) of the TiO₂ prepared by different methods were calculated by the formula [47,48].

\[
\tau = \frac{A_1\tau_1^2 + A_2\tau_2^2 + A_3\tau_3^2}{A_1\tau_1 + A_2\tau_2 + A_3\tau_3}
\]

(2)

The symbols here represent the same as discussed in the above equation. The average PL lifetime was calculated to be 11.34 and 13.56 ns respectively for solvothermal, and microwave (ST and MWST) synthesized TiO₂ respectively.

FE-SEM and HRTEM images of the TiO₂ samples prepared by two different methods are shown in Fig. 5. FE-SEM images of the TiO₂ prepared by solvothermal method (ST) (Fig. 5 (a)) shows the presence of near-spherical shape particles, and the samples prepared by microwave-assisted method (MWST) (Fig. 5 (b)) exhibits aggregates like structure, which on further examination by TEM analysis, showed that it might be the result of agglomerated nanoparticles. The lower magnification TEM micrographs of TiO₂ prepared by solvothermal method (ST) (Fig. 5 (c,e)) shows near uniform spherical shaped particles, and from the higher magnification image lattice fringes were observed. In the case of microwave method (MWST), it was found to show agglomerated nanoparticles (Fig. 5 (d,f)) which may be due to the rapid reaction which occurs in the microwave method. The distance of separation \(d \) between two successive lattice fringes is obtained from the high magnification TEM images and the value was calculated to be 0.352 (Fig. 5 (g)) and 0.354 nm (Fig. 5 (i)) respectively for the samples synthesized by solvothermal and microwave methods. The obtained d-spacing value corresponds to the (101) plane of TiO₂ anatase phase [42]. The polycrystalline nature of the prepared samples was inferred from the selected area electron diffraction (SAED) pattern, which shows distinct ring patterns (Fig. 5 (h) and 5 (j)). Using the SAED pattern, the d-spacing values are calculated and the calculated d-spacing values corresponding to the \(hkl \) planes of (101), (004), (200), (211) and (204), which agrees with the XRD results [49]. The

The distinct emission decay components provide a hint about various exciton recombination paths. From the calculated values tabulated in Table 1, we could infer that the fast decay component relative intensity of the TiO₂ prepared by microwave is less compared to solvothermal prepared one, and this could be related to lower recombination. The average PL lifetime \(\tau \) of the TiO₂ prepared by different methods were calculated by the formula [47,48].

\[
R(t) = A_1e^{-t/\tau_1} + A_2e^{-t/\tau_2} + A_3e^{-t/\tau_3}
\]

(1)

Here, \(\tau_1 \) and \(\tau_2 \) represents the fast decay components, and \(A_1 \) and \(A_2 \) are their relative amplitudes of fast decay. \(\tau_3 \) represents slow decay component of the lifetime and \(A_3 \) is the relative amplitude of slow decay [47]. Free exciton states contribute to the fast decay, and the bound ones contribute to the slow decay components, respectively. The derived relative components contribution from the fast and slow decay components are given in Table 1.

![Image](https://example.com/image.png)

Fig. 4 – (a) Photoluminescence spectra and (b) transient decay curves of TiO₂ nanoparticles prepared by solvothermal and microwave assisted solvothermal methods.
The best-fit parameters of PL decay curves of TiO₂ nanoparticles prepared by solvothermal and microwave assisted solvothermal techniques.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\tau_1) (ns)</th>
<th>(\tau_2) (ns)</th>
<th>(\tau_3) (ns)</th>
<th>(A_1) (%)</th>
<th>(A_2) (%)</th>
<th>(A_3) (%)</th>
<th>Average lifetime (\tau_{av}) (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solvothermal</td>
<td>0.1270</td>
<td>1.5931</td>
<td>16.8415</td>
<td>81.43</td>
<td>11.92</td>
<td>6.65</td>
<td>11.34</td>
</tr>
<tr>
<td>Microwave</td>
<td>0.1439</td>
<td>2.1232</td>
<td>14.5994</td>
<td>60.93</td>
<td>26.22</td>
<td>12.85</td>
<td>13.56</td>
</tr>
</tbody>
</table>

In dye-sensitized solar cells the amount of dye adsorbed over the surface of the semiconductor is important, the surface is one of the essential parts, as this plays an essential role in determining the efficiency of the solar cells. In Brunauer–Emmett–Teller (BET) analysis, \(\text{N}_2 \) adsorption and desorption isotherm gives information about the surface area of the material and Barrett–Joyner–Halenda (BJH) analysis gives information about the pore size distribution. From Fig. 7a it can be observed that in the case of both solvothermal (ST) and microwave (MWST) methods the BET loop exhibits type IV according to IUPAC classification and it falls under H₂ type hysteresis loop indicating the existence of cylindrical shaped mesopores [50,51] and further the mesoporous characteristics of the prepared TiO₂ nanomaterials can be confirmed from the presence of relatively higher-pressure range hysteresis loop \((\text{P/P}_0 > 0.5)\) [52]. The specific surface
area of TiO$_2$ prepared by solvothermal and microwave methods was found to be 113.9 m2/g and 116.1 m2/g. From the Barrett–Joyner–Halenda (BJH) analysis, pore size distribution (Fig. 7b) exhibits a sharp peak, signifying the presence of comparatively uniform pore size. The average pore diameter and pore volume was found to be 7.8 nm and 0.296 cc/g for the TiO$_2$ prepared by solvothermal (ST) method and 9.3 nm and 0.373 cc/g for the microwave (MWST) prepared TiO$_2$ respectively.

X-ray photoelectron spectroscopy (XPS) analysis was carried out to further examine the chemical states of the prepared material at the surface and sub-surface level (up to 3 nm). In the survey spectra shown in Fig. 8a, the photoelectron signals corresponding to Ti, O and C elements were observed. The occurrence of C1s peak in the samples prepared by both methods (ST and MWST) is owed to the exposure of the samples to the atmosphere and could also be due to the traces of the solvent present [53]. From the core-level spectrum of Ti 2p (Fig. 8b), the binding energy values (BE) for the Ti 2p$_{1/2}$ and Ti 2p$_{3/2}$ were observed at 464.3 and 458.6 eV for the ST sample, and it was observed for the MWST sample at 464.4 eV. The two peaks in both the samples correspond to the Ti$^{4+}$ of TiO$_2$ [54]. The peaks for Ti$^{3+}$ were not observed. The O1s spectra of the ST and MWST samples are shown in Fig. 8c and d respectively. It is deconvoluted using a Gaussian fit. Two peaks at 529.82 and 531.15 eV corresponding to Ti–O surface species and adsorbed hydroxyl groups were observed for the ST sample (Fig. 8c). For the sample prepared by microwave method (Fig. 8d), the three peaks present at 529.1, 530.67 and 531.33 eV correspond to that of lattice oxygen, Ti–O–Ti surface species and surface hydroxyl groups respectively [53].

The fabricated solar cells charge transport properties were analyzed by Impedance spectroscopy; the measurements were recorded under dark with 0.6 V as applied bias. From the Nyquist plot (Fig. 5a), the semicircle observed in the mid-frequency region could be ascribed to the charge transfer resistance of the TiO$_2$/dye/electrolyte interface [55]. They were further fitted using the equivalent circuit and the model circuit is presented as inset, its series resistance (R_s) and charge transfer resistance (R_{ct}) and a CPE element (used instead of a capacitor to compensate for non-homogeneity in the system) connected in parallel are given in Table 2. From Table 2 it can be inferred that under the dark condition no electrons can be injected from the sensitizer into TiO$_2$ site, electrons here have to move through the interconnected TiO$_2$ network before their reaction with the electrolyte and the charge-transfer resistance (R_{ct}) here at the TiO$_2$/sensitizer/electrolyte interface infers the recombination resistance. The values were found to be 190.4, 224.4, 299.2 Ω for P25, ST and MWST samples respectively. The higher value for the MWST sample infers that it is better in retarding the recombination.

Further, from the Bode plots (Fig. 9b) the peak in the high-frequency region is connected to the R_{ct} of the fabricated solar cells, where higher frequency and smaller phase value peaks often indicate lower R_{ct}. The MWST sample showed less phase value compared to ST sample. The electron lifetimes (τ_e) are determined from the Bode phase plots using the following equation [52];

$$\tau_e = 1/2\pi f_{\text{max}}$$ \hspace{1cm} (3)

where f_{max} is the maximum peak frequency in the middle frequency range. The electron lifetime was calculated to be 1.2 ms (ms) and 0.98 ms (ms) for the MWST and ST samples respectively. The amount of dye adsorbed by the TiO$_2$ anodes was calculated by dye desorption measurements. It was carried out by immersing the dye adsorbed photoanode into a fixed volume of 0.1 M NaOH, during this process the dye gets desorbed. UV–VIS absorption measurements were carried out for the desorbed dye and by using the Beer Lambert’s law the concentration of dye adsorbed was calculated. And the calculated values were tabulated in Table 2. Fig. 10 shows the current density-voltage (J–V) curves of the device fabricated using TiO$_2$ prepared using the two methods described above and for comparison, solar cells were also fabricated using the commercial TiO$_2$ (P25) and their performances were compared. The TiO$_2$ device prepared by solvothermal (ST) method exhibited power conversion efficiency (η) of 5.98%, (open-circuit voltage (V_{oc}) = 0.713 V, short-circuit current density (J_{sc}) = 12.72 mA, fill factor (FF) = 66%), the device constructed using TiO$_2$ prepared by microwave (MWST) method exhibited power conversion efficiency (η) of
7.44% (open-circuit voltage \(V_{oc} \) = 0.732 V, short-circuit current density \(J_{sc} \) = 14.52 mA, fill factor (FF) = 70%) and the device fabricated using the commercial TiO2 (P25) exhibited power conversion efficiency (\(\eta \)) of 4.12% (open-circuit voltage \(V_{oc} \) = 0.698 V, short-circuit current density \(J_{sc} \) = 9.68 mA, fill factor (FF) = 61%) respectively. The improvement in the power conversion efficiency of the microwave prepared samples (MWST) could be ascribed to the parameters such as enhanced surface area for the MWST samples compared to the TiO2 prepared by solvothermal method (ST). Further, its uniform pore distribution could pave the way for better electrolyte diffusion into the TiO2 network. Interconnected particles and porous nature were observed from the TEM image of the MWST sample, this interconnectivity between the particles reduces the grain boundaries which are essential for a faster electron transport and to decrease recombination losses [56]. From the impedance analysis results it could further be inferred that the recombination resistance was found to be higher for the MWST sample compared to ST and P25 samples [57]. The slight decrease in \(V_{oc} \) for the P25 samples could be

![Fig. 8](image1) ![Fig. 9](image2)
due to the presence of rutile phase in the P25 (TiO2) powder, which causes the shift in the band and the decrease in short-circuit current may be due to its lower dye adsorption owing to its lower surface area [58]. The efficiency of the TiO2 prepared by solvothermal method was found to be slightly less compared to microwave assisted technique, which could also be due to the presence of excessive oxygen vacancies.

Conclusions

Here in this work, TiO2 nanoparticles were prepared by microwave and solvothermal methods and its comparative study have been carried out. From the X-ray diffraction pattern and Raman spectra it is observed that the prepared TiO2 is of anatase phase. The optical properties of the prepared materials were analyzed by using UV absorption and photoluminescence spectra and the results show strong absorption in shorter wavelength region in the UV spectra and a strong UV emission is observed from the PL spectra respectively. The TEM images of the TiO2 nanoparticles prepared by solvothermal method shows the presence of near spherical shape particles and aggregate type morphology was observed for the TiO2 nanoparticles prepared by microwave method. The Brunauer—Emmett—Teller (BET) analysis of the TiO2 prepared by both the methods reveal that the materials are of mesoporous nature and from the Barrett—Joyner—Halenda (BJH) pore size distribution curve it is observed to be unimodal type of distribution. The chemical states of the prepared materials were studied using XPS analysis. Dye-sensitized solar cells were constructed with the structure FTO/TiO2-Dye/redox electrolyte/Pt-FTO and their electrochemical performance were studied by EIS in the dark, its efficiency was analyzed under standard one sun intensity using a solar simulator. The DSSCs constructed using microwave prepared nanoparticles as active layer exhibited a maximum power conversion efficiency of 7.44%.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

Author VMR would like to thank Prof. P. Ravirajan, University of Jaffna, Sri Lanka for his insightful suggestions to the manuscript. Authors gratefully acknowledge the financial support provided by the Indo-Norwegian Collaborative Project INCP and UTFORSK Program.

References

