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Simple Summary: Research on gallbladder cancer (GBC) has been largely neglected and molecular
GBC data is underrepresented in public databases. Cancer cell lines constitute a valuable tool to
examine the mechanisms of malignant transformation and identify potential therapeutic targets.
Here we use RNA sequencing to characterize 23 commercial hepatobiliary cancer cell lines, including
ten GBC cell lines, and provide detailed mutation and gene expression data to the research community.
We illustrate the practical utility of the released information by (1) assessing the presence of specific
mutations in the investigated cancer cell lines, (2) comparing global gene expression patterns in
cell lines and primary biliary tumours and (3) examining the expression levels of specific genes.
The released data and showcase applications will ease the design of in vitro cell culture assays for
future studies.

Abstract: Cancer cell lines allow the identification of clinically relevant alterations and the prediction
of drug response. However, sequencing data for hepatobiliary cancer cell lines in general, and
particularly gallbladder cancer (GBC), are sparse. Here, we apply RNA sequencing to characterize
10 GBC, eight hepatocellular carcinoma, and five cholangiocarcinoma (CCA) cell lines. RNA
extraction, quality control, library preparation, sequencing, and pre-processing of sequencing data
were implemented using state-of-the-art techniques. Public data from the MSK-IMPACT database
and a large cohort of Japanese biliary tract cancer patients were used to illustrate the usage of the
released data. The total number of exonic mutations varied from 7207 for the cell line NOZ to 9760
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for HuCCT1. Researchers planning experiments that require TP53 mutations could use the cell lines
NOZ, OCUG-1, SNU308, or YoMi. Mz-Cha-1 showed mutations in ATM, SNU308 presented SMAD4
mutations, and the only investigated cell line that showed ARID1A mutations was GB-d1. SNU478
was the cell line with the global gene expression pattern most similar to GBC, intrahepatic CCA,
and extrahepatic CCA. EGFR, KMT2D, and KMT2C generally presented a higher expression in the
investigated cell lines than in Japanese primary GBC tumors. We provide the scientific community
with detailed mutation and gene expression data, together with three showcase applications, with the
aim of facilitating the design of future in vitro cell culture assays for research on hepatobiliary cancer.

Keywords: hepatobiliary cancer; gallbladder cancer; exome mutations; transcriptomics

1. Introduction

Cancer cell lines constitute a valuable tool to examine the mechanisms involved in malignant
transformation and to inspect and predict drug response [1]. Immense efforts were recently undertaken
to achieve molecular characterization of hundreds of cancer cell lines derived from a large variety
of tissues [2,3]. Mutation, DNA methylation, copy number alteration, and gene expression data are
publicly available in databases such as the Catalog of Somatic Mutations in Cancer (COSMIC) and the
Cancer Cell Line Encyclopedia (CCLE), with the latter combining molecular profiles of 1457 cell lines
with drug response data, allowing the identification of clinically relevant oncogenic alterations [2,3].

Cancer types that are common in low- and middle-income countries but relatively rare in
industrialized regions, such as gallbladder cancer (GBC), are underrepresented in the existing databases.
For example, the largest in vitro drug-screening database, which contains drug response data for more
than 700 compounds tested on 1691 well-characterized cell lines derived from 41 different tissues,
includes data for only three GBC cell lines [4]. The limited availability of public omics data hampers
efficient design of in vitro models and the development of novel therapeutic approaches.

Hepatobiliary cancer comprises hepatocellular carcinoma (HCC; International Classification
of Diseases, 10th Revision Code (ICD-10) C22.0), intrahepatic cholangiocarcinoma (iCCA; ICD-10
C22.1), extrahepatic cholangiocarcinoma (eCCA; ICD-10 C24.0), and GBC (ICD-10 C23). Worldwide,
hepatobiliary cancer represents the second leading cause of cancer-related death (ICD-10 C22:
781,631 deaths, ICD-10 C23–24: 165,087 deaths), with strong regional variation in incidence and
mortality around the globe [5,6]. The aggressiveness of hepatobiliary tumors and the lack of clinically
useful biomarkers for risk prediction, early detection, and targeted therapies lead to alarmingly low
five-year survival rates of 5% for GBC and 10% for CCA [7,8]. While some advances were made in
the field of CCA research showing promising results for several non-invasive biomarkers such as
circulating tumor cells, extracellular vesicles, microRNAs (miRNAs), and metabolites, GBC remains an
orphan disease [9,10].

In the work described here, we applied next-generation RNA sequencing to comprehensively
characterize 23 commercially available hepatobiliary cancer cell lines (GBC n = 10, HCC n = 8,
CCA n = 5), aiming at providing detailed mutation and gene expression data to the research
community. Furthermore, we also illustrate the usefulness of the released information in three
typical experiment-planning applications: (1) assessment of the presence of specific mutations in the
investigated hepatobiliary cancer cell lines; (2) comparison of the global gene expression patterns in
the sequenced cell lines and in primary biliary tumors; (3) examination of the expression levels of
particular genes in the cell lines. We anticipate that the released data and showcase applications will
facilitate the design of in vitro cell culture assays for future studies and provide a valuable resource to
the community.
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2. Results

2.1. General Sequencing Statistics

We found the coverage patterns typical for RNA sequencing experiments and gene body coverage
consistent with minimum RNA degradation (Figure S1a,b). The number of raw reads in the investigated
cell lines varied from 29.3 million (SNU478) to 75.6 million (HuCCT1; Table S1). The percentage of
mapped reads ranged from 93% (HepG2) to 96% (YoMi). After filtering by read depth, allelic depth,
mapping quality and Fisher strand, the total number of exonic mutations (single-nucleotide variants
(SNVs) and insertion/deletions (indels)) varied from 7200 (NOZ) to 9751 (HuCCT1) (Table S3a,b).
Most of the annotated mutations were located in the 3′ untranslated region (UTR) and exonic regions
(Figure S1c). Approximately 40% of the identified exonic variants might impact gene function
(Figure S1d).

2.2. Presence of Specific Mutations in the Investigated Cell Lines

Our first showcase application considered the choice of an appropriate cell line for an in vitro
experiment based on the presence or absence of particular mutations. To illustrate the utility of the
released data, we exemplarily analyzed the genes most frequently mutated in primary GBC tumors
according to the MSK-IMPACT database and the study by Li et al. [11–14]. Among the 18 primary
GBC tumors in MSK-IMPACT, at least 10% showed one or more mutations in TP53, ATM, SMAD4,
ARID1A, ARID1B, CTNNB1, KEAP1, NF1, NOTCH3, and PTPRD. The exact mutation percentages
are shown in the head of Table 1. G-415 presented no mutation in any of the selected genes (Table 1).
Researchers planning in vitro experiments that require TP53 mutations for a GBC study could use
NOZ, OCUG-1, SNU308, or YoMi. ATM showed mutations in Mz-Cha-1, SMAD4 presented mutations
in SNU308, and the only investigated cell line that featured ARID1A mutations was GB-d1. SNU308
showed one or more mutations in TP53, SMAD4, and KEAP1.

With the exception of TP53 and NF1, the mutation percentages in GBC cell lines and in primary
MSK-IMPACT GBC tumors differed appreciably. TP53 mutations were observed in 40% of the GBC
cell lines and 44% of the primary GBC tumors, while NF1 mutations were found in 10% of the GBC cell
lines and 11% of the primary GBC tumors. ARID1B, CTNNB, NOTCH3, and PTPRD were mutated
in primary MSK-IMPACT GBC tumors, but showed no mutation in the investigated GBC cell lines.
KEAP1 and NF1 showed mutations in some of the investigated HCC cell lines, while ARID1B and NF1
showed one or more mutations in the investigated CCA cell lines.

In the 32 GBC tumors analyzed by Li et al., TP53, ZNF521, KMT2C, ERBB2, and ERBB3 showed
the highest mutation rates (Table S2) [11]. With the only exception of one synonymous mutation in
KMT2C in the GBC cell line Mz-Cha-1, the above-mentioned mutations in TP53, ZNF521, KMT2C,
ERBB2, and ERBB3 were not mutated in any of the investigated GBC cell lines (Table S2).

Additional information on the complete list of identified mutations including amino-acid changes,
together with SIFT (Sorting Intolerant from Tolerant) and PolyPhen-2 pathogenicity predictions,
is displayed in Table S3c. For example, after exclusion of single-nucleotide polymorphisms, all four
identified TP53 mutations were found in GBC cell lines (blue triangles and blue circle in Figure 2a).
They included two stop-gain mutations, one frameshift deletion, and one non-frameshift deletion
(Figure 2b and Table S3c). KEAP1 presented mutations in GBC and HCC cell lines (blue circle and
orange circle, respectively, in Figure 2a and MutationMapper in Figure 2b), and TGBC1 and TGBC2
shared the nonsynonymous variant that translated into the amino acid change p.E219Q (damaging
according to SIFT and probably damaging according to PolyPhen-2; Table S3c).

2.3. Global Gene Expression Patterns of the Investigated Cell Lines

Researchers could also be interested in cell lines with global gene expression profiles similar to
those of a given collection of primary tumors. To illustrate the use of the released data, we considered
the sets of primary Japanese GBC (n = 19), eCCA (n = 40), and iCCA (n = 121) with RNA sequencing
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data investigated by Nakamura et al. [15]. Figure 1 shows the results from a joint principal component
analysis (PCA) of gene expression data from the investigated cell lines and the Japanese tumors.
Figure 1a depicts the bagplots (bivariate version of the traditional, univariate boxplots) for iCCA.
The outermost area contains 100% of the tumor samples, while the second outermost area contains 90%
of the tumor samples; more internal areas include 70%, 60%, and 50% of the samples (corresponding to
the univariate quantiles). According to this plot, the cell lines with the global gene expression patterns
most similar to iCCA were SNU478, NOZ, and HepG2. Figure 1b shows the PCA and corresponding
bagplots for eCCA. Here, SNU478 was the cell line with a global gene expression pattern most similar
to Japanese eCCA. Figure 1c shows the corresponding results for GBC tumors. The lower number of
samples for this type of tumor resulted in just two areas with 100% and 60% of the samples. The cell
lines NOZ, SNU478, and HHT4 showed the global gene expression pattern most similar to primary
Japanese GBC tumors (closest to the center of the innermost area), followed by HepG2 (Figure 1c).

1 
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Figure 1. Cont.
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Figure 2. Principal component analysis (PCA) plots based on the combined gene expression data for the investigated cell lines and Japanese iCCA, eCCA, and GBC 
tumors. (a) PCA and bagplots with 100%, 90%, 70%, and 50% of the iCCA samples; (b) PCA and bagplots with 100%, 90%, 70%, and 50% of the eCCA samples; (c) 
PCA and bagplots with 100% and 60% of the GBC samples.

Figure 1. Principal component analysis (PCA) plots based on the combined gene expression data for
the investigated cell lines and Japanese iCCA, eCCA, and GBC tumors. (a) PCA and bagplots with
100%, 90%, 70%, and 50% of the iCCA samples; (b) PCA and bagplots with 100%, 90%, 70%, and 50% of
the eCCA samples; (c) PCA and bagplots with 100% and 60% of the GBC samples.

We also considered small RNA sequencing data, which were available for nine out of the
10 characterized GBC cell lines, to assess the robustness of the results shown in panel C of Figure 1.
The median correlation between gene expression measurements using RNA and small RNA sequencing
for the nine GBC cell lines was rho = 0.76. The correlation was lowest for SNU308 (rho = 0.69) and
highest for GB-d1 (rho = 0.79, please see Figure S2), suggesting a good consistency between RNA and
small RNA expression measurements. The PCA plots based on RNA and small RNA sequencing data
confirmed that, among the nine investigated GBC cell lines, NOZ consistently showed the global gene
expression pattern most similar to primary Japanese GBC tumors (closest to the center of the innermost
area in Figure S3a,b). This application demonstrates the usefulness of gene expression profile analyses
to select cell lines most similar to specific set of samples.
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Figure 1. Circos plot of exonic mutations in the investigated hepatobiliary cancer cell lines (panel A) and their visualization using MutationMapper (panel B). (a) 
The tracks in the Circos plot show (1) the names of the genes with a mutation frequency of at least 10% in primary GBC tumors from MSK-IMPACT, (2) the genomic 

Figure 2. Circos plot of exonic mutations in the investigated hepatobiliary cancer cell lines (panel A) and their visualization using MutationMapper (panel B).
(a) The tracks in the Circos plot show (1) the names of the genes with a mutation frequency of at least 10% in primary GBC tumors from MSK-IMPACT, (2) the genomic
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structure (exons for all potential isoforms from Ensembl are included), (3) the detected exonic mutations with at least 20× coverage, with GBC, HCC, and CCA cell
lines depicted in blue (mutations = triangles), red (mutations = circles), and green (mutations = squares), respectively, and (4) sequencing coverage, where darker
colors indicate increasing sequencing depth, with GBC in blue, HCC in red, and CCA in green. (b) Identified mutations in genes with a mutation frequency of at least
10% in primary GBC tumors according to MSK-IMPACT are depicted using MutationMapper (green: missense mutations, black: truncating mutations, red: in-frame
mutations, violet: fusion mutations, pink: any other mutation type).

Table 1. Mutations in hepatobiliary cancer cell lines detected by RNA sequencing. GBC—gallbladder cancer; HCC—hepatocellular carcinoma; CCA—cholangiocarcinoma.

Cell Line
Gene

Proportion of Primary GBC Tumours in MSK-IMPACT with One or More Mutations

Type Name
TP53 ATM SMAD4 ARID1A ARID1B CTNNB1 KEAP1 NF1 NOTCH3 PTPRD
44% 33% 28% 22% 11% 11% 11% 11% 11% 11%

A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D

GBC

G-415
GB-d1 x

Mz-Cha-1 x
NOZ x

OCUG-1 x
OZ

SNU308 x x x x x x
TGBC1 x x x x x x
TGBC2 x
YoMi x x

HCC

Hep3B x x
HepG2 x x
HHT4
HLE x x x x
HLF x

HuH1 x x x x x x x
HuH6 x x x x x x
HuH7 x x x x x x x x

CCA

EGI-1 x x x
HuCCT1 x x x
KMCH x
SNU478 x x
TFK-1 x

Cells with colored background indicate data availability for the respective cell line in the specific database/project. Columns A: data from the present study (green); B: data from the Cancer
Cell Line Encyclopedia (CCLE) (yellow); C: data from the Catalog of Somatic Mutations in Cancer (COSMIC) Cell Lines Project (blue); D: data provided by Klijn et al., 2014 (red) [2,16,17].
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2.4. Expression Levels of Specific Genes in the Investigated Cell Lines

In our third and last showcase application, we examine the expression of particular genes in the
investigated gallbladder cancer cell lines. We exemplarily consider 12 genes previously reported to
be altered in at least 10% of primary GBC tumors from Japanese patients (TP53, TERT, ARID2, EGFR,
CCND1, CCND3, ERBB2, KMT2D, KMT2C, TET1, TET2, TET3) [15]. We quantified gene expression
levels for both cell lines and GBC tumors as transcripts per million (TPMs); the median, and the fifth
and 95th TPM percentiles, in Japanese GBC samples are shown in the head of Table 2 and Table S4.
TPM gene expression values for the investigated cell lines are depicted in red (higher expression than
primary GBC), green (lower expression than primary GBC), and black (expression similar to primary
GBC). Gene expression values shown in the upper part of the table rely on RNA sequencing. The lower
part of the table shows values generated using small RNA sequencing. The consistency between the
categories assigned to the gene expression of the cell lines (higher than, similar to, or lower than in
primary Japanese GBC tumors) based on RNA vs. small RNA sequencing is shown in the last row
(median concordance rate 61%, 100% concordance for EGFR, KMT2D, and KMT2C).

Researchers planning in vitro experiments that require TP53 overexpression could use OCUG-1
and should not use TGBC1 or TGBC2. Researchers planning in vitro experiments that require TERT
expression levels consistent with the average expression observed in Japanese primary GBC tumors
could use Mz-Cha-1. Most genes and particularly EGFR, KMT2D, and KMT2C presented a higher
expression in the investigated cell lines than in the GBC tumors; ERBB3 was somewhat of an exception.
TPM expression values from RNA sequencing for all genes and all investigated cell lines are provided
in Table S5.

3. Discussion

Cancer cell lines are valuable tools for researchers to investigate and identify mechanisms of
cancer development and treatment success. In recent years, the (epi)genetic features of hundreds
of cell lines were characterized, and the data were made publicly available, generating resources
that greatly facilitate tumor modeling and drug screening. However, the existing resources focus
mainly on common cancer types and do not support research into cancers such as GBC, considered an
orphan disease.

The present study provides mutation and transcriptome data for hepatobiliary cancer cell lines,
with a special focus on GBC. We illustrate the scientific potential of the generated data with three
showcase applications: (1) assessment of the presence of specific mutations in the investigated
hepatobiliary cancer cell lines, (2) comparison of global gene expression patterns in the sequenced cell
lines and in primary biliary tract cancers, and (3) examination of the expression levels of particular
genes in the cell lines.

As part of our first application, we considered genes that are commonly mutated in primary GBC
tumors and compared their mutation frequencies with those in the investigated hepatobiliary cancer
cell lines. We noticed that, with the exception of NF1 and TP53, the mutation frequencies differed
appreciably between GBC cell lines and primary GBC tumors. This also applies to three recently
characterized GBC cell lines of Chilean origin, in which none of the genes most frequently altered
in MSK-IMPACT and the study by Li et al. (heads of Table 1 and Table S2) showed mutations [18].
We also compared the mutations identified in the present study with the existing data for the selected
genes in the CCLE, the COSMIC Cell Lines Project and the study by Klijn et al. [2,16,17]. The CCLE
provides mutation information for only two GBC, seven HCC, and three CCA cell lines, while COSMIC
and the study by Klijn et al. included even fewer cell lines. Perfect matches between our data and the
CCLE datasets were observed for mutations in KEAP1 and SMAD4 (Table 1). We also observed some
discrepancies between our generated data and the datasets from CCLE, COSMIC, and the study by
Klijn et al. In particular, TP53 mutations were more frequently observed in the CCLE compared to our
data. The discrepancies between public databases in mutation detection is a well-known phenomenon
which may point to inadequate sequencing of GC-rich areas of the exome, variation in SNP filtering,
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or acquisition/loss of mutations [19]. Specifically, the inconsistency of TP53 mutations found in
presumably the same cell line is a known issue in cell line research, often caused by cross-contamination
or misidentification [20]. To rule out both sources of errors, the cell lines used in our study were
carefully tested for identity and contamination. Another reason for the different mutations observed
in our data compared to CCLE, COSMIC, and the study by Klijn et al. could be the use of different
sequencing techniques. As we applied RNA sequencing, our data are restricted to mutations located
on transcripts that are expressed in the investigated cell lines. Cross-references between different data
sources are crucial for a reliable examination of mutation spectra in cancer cell lines.

The global gene expression profile of GBC tumors was well reflected by NOZ, which is indeed
classified as a GBC cell line [21]. NOZ and SNU478 also presented global gene expression profiles that
were similar to iCCA and eCCA, respectively. Other cell lines that showed similar gene expression
profiles with iCCA and eCCA tumors were HuCCT1, an iCCA cell line, HepG2, which was originally
misclassified as HCC, but is derived from hepatoblastoma, and HHT4, which is an hTERT-immortalized
cell line derived from primary hepatocytes [21–23]. TGBC1, a cell line that is derived from gallbladder
cancer, showed a global gene expression pattern more similar to iCCA and eCCA than to GBC [21].
The global gene expression of the three Chilean cell lines showed different patterns compared to the
commercial cell lines (Figure S3c).

These analyses show that the origin of the tissue from which cell lines are derived does
not necessarily reflect the tumor feature of interest. Accessible information on the mutation and
transcriptome characteristics of the investigated cell lines is crucial for the design of in vitro experiments.
The resources provided as part of this study will facilitate future research on hepatobiliary cancer, and
particularly on GBC.

Based on the expression of distinct genes, cell lines can be selected for the analyses of specific
pathways. Most of the selected genes were overexpressed in GBC cell lines compared with tumors.
However, for most genes, there was at least one GBC cell line with similar expression levels to GBC
tumors. The exceptions were EGFR, KMT2D, and KMT2C, which were always expressed more highly
in GBC cell lines than in GBC tumors. The gene expression of the selected genes in the cell lines of
Chilean origin was higher compared to the primary tumor samples with few exceptions (Table S6) [18].
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Table 2. Expression of particular genes in the investigated gallbladder cancer cell lines using RNA sequencing and small RNA sequencing. TPM—transcripts
per million.

Gene-Specific Median TPM Expression Value

Gene Name TP53 TERT ARID2 EGFR CCND1 CCND3 ERBB3 KMT2D KMT2C TET1 TET2 TET3
Median TPM 4.95 0.04 0.67 1.45 45.04 1.73 33.08 6.16 0.68 0.04 0.42 0.42

5th percentile–95th percentile 2.34–7.55 −0.1–0.17 0.44–0.89 0.71–2.19 6.02–84.06 0.79–2.66 30.23–34.71 3.49–8.82 0.42–0.94 −0.04–0.11 0.17–0.9 0.37–0.9

RNA
Sequencing

GB-d1 14.09 1.59 1.78 16.76 184.35 2.88 39.69 34.67 1.27 0.05 1.22 1.43
Mz-Cha-1 29.98 0.14 1.37 13.55 100.15 5.06 57.79 41.35 3.43 0.04 0.59 2.19

NOZ 3.90 0.30 0.59 7.32 151.95 3.15 1.98 21.87 1.49 0.06 0.26 1.03
OCUG-1 25.41 2.01 0.64 21.78 30.05 2.91 31.73 10.56 3.85 0.10 0.57 0.56

OZ 39.80 0.36 1.84 19.97 149.99 2.85 198.17 69.93 3.18 0.06 1.12 4.59
SNU308 41.07 0.16 - 21.38 201.48 1.67 35.15 56.81 2.62 0.11 1.93 2.51
TGBC1 1.62 3.67 0.79 4.19 81.09 2.26 31 20.34 2.22 0.26 0.53 1.19
TGBC2 1.50 9.54 0.51 6.35 106.40 7.28 3.16 19.03 1.53 0.11 0.80 1.58
YoMi 4.71 0.30 3.20 24.72 256.11 6.54 284.89 66.87 5.01 - 2.20 8.11

small RNA
Sequencing

GB-d1 2.07 0.45 5.25 49.02 83.05 2.53 9.65 37.48 3.35 0.58 2.13 10.45
Mz-Cha-1 2.58 0.14 5.06 37.27 39.53 2.33 15.43 39.12 10.45 1.07 1.39 9.86

NOZ 0.79 - 3.82 28.94 94.33 3.19 0.34 26.37 5.09 1.27 0.71 8.12
OCUG-1 8.61 2.66 3.64 122.31 27.62 11.73 18.83 37.79 24.93 5.39 3.74 3.67

OZ 7.29 0.31 9.89 53.12 132.32 5.01 25.38 54.95 8.71 0.71 2.25 47.57
SNU308 2.10 0.23 0.20 17.52 51.47 1.21 2.61 23.03 2.87 - 0.81 5.73
TGBC1 1.06 2.99 3.94 26.63 75.96 4.78 12.90 57.30 12.75 9.97 1.62 14.45
TGBC2 0.70 6.54 2.86 16.29 60.75 6.23 0.58 34.57 3.86 0.53 0.53 10.22
YoMi 1.03 0.43 10.73 30.21 150.31 13.48 68.40 52.66 15.80 0.86 2.93 30.39

% concordance 33 78 44 100 44 67 22 100 100 11 56 89

The color of the numbers compares the gene expression in primary Japanese GBC tumors and GBC cell lines using RNA or small RNA sequencing. Red: increased expression, green:
decreased expression, black: Similar expression; the yellow background indicates concordance between RNA and small RNA sequencing comparisons.
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4. Materials and Methods

4.1. Characterized Hepatobiliary Cancer Cell Lines, Contamination Testing, and RNA Extraction
and Sequencing

We investigated 10 GBC cell lines (G-415 (also known as TKG0642), GB-d1, Mz-Cha-1, NOZ,
OCUG-1, OZ, SNU308, TGBC1 (also known as TGBC1TKB), TGBC2 (also known as TGBC2TKB),
YoMi), eight HCC cell lines (Hep3B, HepG2, HHT4, HLE, HLF, HuH1, HuH6, HuH7), and five CCA
cell lines (EGI-1, HuCCT1, KMCH, SNU478, TFK-1) (Table S7) [21,22,24]. All cell lines were regularly
tested to be negative for mycoplasma contamination using MycoAlert (Lonza, Basel, Switzerland) and
authenticated by short tandem repeat analysis.

G-415, SNU308, HepG2, HuCCT1, SNU478, and TFK-1 cells were cultured in RPMI-1640 medium;
GB-d1, Mz-Cha-1, OCUG-1, TGBC1, TGBC2, YoMi, HLE, HLF, HuH1, HuH6, HuH7, EGI-1, and KMCH
were cultured in DMEM medium; Hep3B was cultured in MEM medium; OZ and NOZ cells were
cultured in William’s E medium. All media were supplemented with 10% fetal bovine serum (Thermo
Fisher Scientific, Offenbach, Germany) and 1% penicillin–streptomycin (100 IU/mL and 100 g/mL).
EGI-1 was additionally supplemented with l-glutamine and non-essential amino acids. All media and
supplements were obtained from Sigma-Aldrich (Taufkirchen, Germany). The immortalized hepatocyte
cell line HHT4 was provided by Curtis C. Harris and cultured as previously described [24,25]. Cell lines
were cultivated at 37 ◦C in a humidified 5% CO2 atmosphere.

Total RNA was extracted from cells with NucleoSpin RNA Kit (Macherey-Nagel, Düren, Germany)
according to the manufacturer’s protocol. RNA integrity was determined using the Agilent RNA Nano
6000 chips on the Agilent Bioanalyzer 2100 system (Agilent Technologies, Palo Alto, CA, USA). In total,
1.5 µg of RNA was used to prepare RNA sequencing libraries. The libraries were generated using
the NEBNext Ultra II Directional RNA Preparation Kit (New England Biolabs, Ipswich, MA, USA)
in conjunction with the NEBNext Poly A Selection Module, and the NEBNext Multiplex Oligo’s for
Illumina. Libraries were quantified on the Qubit (Thermo Fisher, Offenbach, Germany) with the High
Sensitivity DNA Assay and quality-checked with the DNA 1000 Chip on the Agilent Bioanalyzer. Using
these values, samples were equimolar pooled and sequenced on the Illumina HiSeq 2500 (Illumina,
San Diego, CA, USA) in 125-bp paired-end mode.

4.2. Quality Control, Pre-Processing, and Statistical Analysis of RNA Sequencing Data

FastQC version 0.11.2 [26] was used to assess the quality of raw reads, which were subsequently
filtered using PRINSEQ [27] version 0.20.3 with the following quality parameters: -min_qual_mean 20,
-ns_max_p 10, -trim_qual_right 3, -min_len 30. Variant calling was performed following the GATK
guideline for RNA sequencing data, which includes two-pass alignment with STAR (2.5.2b) [28],
removal of PCR duplicates with Picard tools (2.1.0) [29], and variant calling with GATK [30] 3.5.
The GRCh38.90 version of the human genome was used as reference. The mapping quality and
coverage distribution were assessed with Qualimap (2.2.1) [31]. The threshold values for mutation
detection were set at read depth >20, allelic depth >10, mapping quality >40, and Fisher’s strand
<60. Variants were annotated with Annovar, and only exonic variants were used for downstream
analyses [32]. A Circos plot was used to depict the gene location of the identified mutations and
the sequencing coverage [33]. Gene expression values were quantified as TPMs using the output
from featureCounts of the Subread package version 1.6.4 [34]. The R language and environment for
statistical computing was used for principal components analysis (PCA) of gene expression data and
the representation of the two first principal components with superimposed “bagplots”, which were
obtained using the package “depth” [35].

RNA sequencing data of all investigated cell lines are deposited [36].
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4.3. External Data Used for the Exemplary Applications

To illustrate the utility of the released mutation data, we considered the list of genes most
frequently mutated in primary GBC tumors according to the MSK-IMPACT database and the study
by Li et al. [11,12]. We included only primary gallbladder tumors from the MSK-IMPACT Clinical
Sequencing Cohort (MSKCC, Nat Med 2017) (n = 19) and excluded the second sample from one patient,
who contributed with two samples, resulting in n = 18 MSK-IMPACT samples in total. The study
by Li et al. comprised n = 32 samples. We also compared the global gene expression profiles of
the investigated cell lines with the expression patterns of the collection of primary Japanese GBC,
eCCA, and iCCA provided by Nakamura et al. [15,37]. Finally, we examined the expression of genes
previously reported to be altered in at least 10% of primary GBC tumors from Japanese patients
(Figure 5 in the article by Nakamura et al. [15]) in the investigated cell lines.

4.4. Validation of Gene Expression Results

We also analyzed small RNA sequencing data, which were available for nine out of the
10 characterized GBC cell lines, to examine the robustness of results described in our second and third
showcase applications. Small RNA sequencing was performed using NEBNext® Small RNA Library
Prep Set for Illumina (Cat. No E7300, New England Biolabs, Ipswich, MA, USA) with a cut size on the
pippin prep (Cat. No CSD3010, Sage Science, Beverly, MA, USA) covering RNA molecules from 17 to
47 nucleotides, which enables capture of messenger RNA (mRNA) fragments as shown previously [38].
Libraries were sequenced on the HiSeq2500 (Illumina, San Diego, CA, USA) to reach an average depth
of 18 million total reads per sample. Total reads were trimmed for adapters using AdapterRemoval
v2.1.7 and mapped to the human genome (hg38) using Bowtie2 v2.2.9. HTSeq was used to count the
reads mapped to mRNA exons in GENCODE v26 using an established bioinformatics workflow [38],
and read counts were transformed to transcripts per million (TPM). The robustness of gene expression
findings was assessed by (1) the correlation between gene expression values generated using RNA
and small RNA sequencing, (2) the similarity/disparity of PCA plots based on RNA vs. small RNA
sequencing data for the GBC cell lines, and (3) the consistency between the categories assigned to
the nine GBC cell lines (higher than, similar to, or lower than expression in primary GBC tumors) for
12 genes previously reported to be frequently altered in tumors from Japanese patients (TP53, TERT,
ARID2, EGFR, CCND1, CCND3, ERBB2, KMT2D, KMT2C, TET1, TET2, TET3) based on RNA vs. small
RNA sequencing data for the GBC cell lines.

5. Conclusions

Based on the data generated in this study, researchers will be able to select cell lines that best
reflect their experimental requirements from a selection of GBC, CCA, and HCC cell lines, all of which
are available from commercial distributors. The RNA sequencing data described here will facilitate
further studies into GBC, an orphan disease not only in research but also in public databases.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/9/2510/s1:
Figure S1. RNAseq coverage and mutation distribution of the investigated hepatobiliary cancer cell lines; Figure S2.
Correlation between RNA and small RNA sequencing gene expression; Figure S3. PCA plots based on the
combined gene expression data for the investigated cell lines and Japanese GBC tumors; Table S1. Sequencing
data statistics and predicted mutations per sample; Table S2. Mutations in hepatobiliary cancer cell lines detected
by RNA sequencing - Genes selected based on Li et al.; Table S3. Number of exonic mutations per gene in 23 cell
lines; Table S4. Expression of particular genes in the investigated hepatobiliary cancer cell lines; Table S5. TPM
(transcript per million) expression values in 23 cell lines; Table S6. Expression of particular genes in Chilean
gallbladder cancer cell lines using RNA-Sequencing; Table S7. Overview of cell lines.

Author Contributions: Conceptualization, J.L.B. and S.R.; methodology, D.S., D.I., S.R., and J.L.B.; software,
M.D.L., S.A., I.N., and R.G.S.; formal analysis, M.D.L. and S.A.; investigation, D.S., S.R., and J.L.B.; resources,
B.G., J.C.R., K.M., S.R., S.U.U. and T.B.R.; data curation, M.D.L., S.A., R.G.S. and S.U.U.; writing—original draft
preparation, D.S. and J.L.B.; writing—review and editing, all authors; visualization, M.D.L., S.A., and J.L.B.;
supervision, S.R. and J.L.B.; project administration, D.S. and J.L.B.; funding acquisition, D.S., M.D.L., S.R., and
J.L.B. All authors read and agreed to the published version of the manuscript.

http://www.mdpi.com/2072-6694/12/9/2510/s1


Cancers 2020, 12, 2510 13 of 14

Funding: This research was funded by the European Union’s Horizon 2020 research and innovation program
under grant agreement No 825741, by the German Federal Ministry of Education and Research (BMBF, 01DN15021),
by the Wilhelm Sander-Stiftung (2015.111.1), by the Olympia Morata Program (F.206830), and by the Swedish
Foundation for Strategic Research (RIF14–0081). The funders had no role in the design or conduct of the study;
the collection, management, analysis, or interpretation of the data; the preparation, review, or approval of the
manuscript; or the decision to submit the manuscript for publication.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Klinghammer, K.; Walther, W.; Hoffmann, J. Choosing wisely—Preclinical test models in the era of precision
medicine. Cancer Treat. Rev. 2017, 55, 36–45. [CrossRef] [PubMed]

2. Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehar, J.;
Kryukov, G.V.; Sonkin, D.; et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer
drug sensitivity. Nature 2012, 483, 603–607. [CrossRef] [PubMed]

3. Iorio, F.; Knijnenburg, T.A.; Vis, D.J.; Bignell, G.R.; Menden, M.P.; Schubert, M.; Aben, N.; Gonçalves, E.;
Barthorpe, S.; Lightfoot, H.; et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 2016, 166,
740–754. [CrossRef] [PubMed]

4. Smirnov, P.; Kofia, V.; Maru, A.; Freeman, M.; Ho, C.; El-Hachem, N.; Adam, G.-A.; Ba-Alawi, W.; Safikhani, Z.;
Haibe-Kains, B. PharmacoDB: An integrative database for mining in vitro anticancer drug screening studies.
Nucleic Acids Res. 2017, 46, D994–D1002. [CrossRef] [PubMed]

5. Kabbach, G.; Assi, H.A.; Bolotin, G.; Schuster, M.; Lee, H.J.; Tadros, M. Hepatobiliary Tumors: Update on
Diagnosis and Management. J. Clin. Transl. Hepatol. 2015, 3, 169–181. [CrossRef]

6. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018:
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer
J. Clin. 2018, 68, 394–424. [CrossRef]

7. Shaffer, E.; Hundal, R. Gallbladder cancer: Epidemiology and outcome. Clin. Epidemiol. 2014, 6, 99–109.
[CrossRef]

8. Rizvi, S.; Gores, G.J. Pathogenesis, Diagnosis, and Management of Cholangiocarcinoma. Gastroenterology
2013, 145, 1215–1229. [CrossRef]

9. Macias, R.I.R.; Kornek, M.; Rodrigues, P.M.; Paiva, N.; Castro, R.E.; Urban, S.; Pereira, S.P.; Cadamuro, M.;
Rupp, C.; Loosen, S.H.; et al. Diagnostic and prognostic biomarkers in cholangiocarcinoma. Liver Int. 2019,
39, 108–122. [CrossRef]

10. Lapitz, A.; Arbelaiz, A.; O’Rourke, C.J.; Lavín, J.L.; La La Casta, A.; Ibarra, C.; Jimeno, J.P.; Santos-Laso, A.;
Izquierdo-Sanchez, L.; Krawczyk, M.; et al. Patients with Cholangiocarcinoma Present Specific RNA Profiles
in Serum and Urine Extracellular Vesicles Mirroring the Tumor Expression: Novel Liquid Biopsy Biomarkers
for Disease Diagnosis. Cells 2020, 9, 721. [CrossRef]

11. Li, M.; Zhang, Z.; Li, X.; Ye, J.; Wu, X.; Tan, Z.; Liu, C.; Shen, B.; Wang, X.-A.; Wu, W.; et al. Whole-exome
and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway.
Nat. Genet. 2014, 46, 872–876. [CrossRef] [PubMed]

12. Zehir, A.; Benayed, R.; Shah, R.; Syed, A.; Middha, S.; Kim, H.R.; Srinivasan, P.; Gao, J.; Chakravarty, D.;
Devlin, S.M.; et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing
of 10,000 patients. Nat. Med. 2017, 23, 703–713. [CrossRef] [PubMed]

13. Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Skanderup, A.J.; Byrne, C.J.;
Heuer, M.L.; Larsson, E.; et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring
Multidimensional Cancer Genomics Data: Figure 1. Cancer Discov. 2012, 2, 401–404. [CrossRef] [PubMed]

14. Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Skanderup, A.J.; Sinha, R.;
Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal.
Sci. Signal. 2013, 6, pl1. [CrossRef]

15. Nakamura, H.; Arai, Y.; Totoki, Y.; Shirota, T.; ElZawahry, A.; Kato, M.; Hama, N.; Hosoda, F.; Urushidate, T.;
Ohashi, S.; et al. Genomic spectra of biliary tract cancer. Nat. Genet. 2015, 47, 1003–1010. [CrossRef]

16. Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.;
Dawson, E.; et al. COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019, 47,
D941–D947. [CrossRef]

http://dx.doi.org/10.1016/j.ctrv.2017.02.009
http://www.ncbi.nlm.nih.gov/pubmed/28314175
http://dx.doi.org/10.1038/nature11003
http://www.ncbi.nlm.nih.gov/pubmed/22460905
http://dx.doi.org/10.1016/j.cell.2016.06.017
http://www.ncbi.nlm.nih.gov/pubmed/27397505
http://dx.doi.org/10.1093/nar/gkx911
http://www.ncbi.nlm.nih.gov/pubmed/30053271
http://dx.doi.org/10.14218/JCTH.2015.00012
http://dx.doi.org/10.3322/caac.21492
http://dx.doi.org/10.2147/CLEP.S37357
http://dx.doi.org/10.1053/j.gastro.2013.10.013
http://dx.doi.org/10.1111/liv.14090
http://dx.doi.org/10.3390/cells9030721
http://dx.doi.org/10.1038/ng.3030
http://www.ncbi.nlm.nih.gov/pubmed/24997986
http://dx.doi.org/10.1038/nm.4333
http://www.ncbi.nlm.nih.gov/pubmed/28481359
http://dx.doi.org/10.1158/2159-8290.CD-12-0095
http://www.ncbi.nlm.nih.gov/pubmed/22588877
http://dx.doi.org/10.1126/scisignal.2004088
http://dx.doi.org/10.1038/ng.3375
http://dx.doi.org/10.1093/nar/gky1015


Cancers 2020, 12, 2510 14 of 14

17. Klijn, C.; Settleman, J.; Seshagiri, S.; Zhang, Z. Abstract A1-19: A comprehensive transcriptional portrait of
human cancer cell lines. Cancer Genom. Epigenom. 2015, 75. [CrossRef]

18. García, P.; Bizama, C.; Rosa, L.; Espinoza, J.A.; Weber, H.; Cerda-Infante, J.; Sánchez, M.; Montecinos, V.P.;
Lorenzo-Bermejo, J.; Boekstegers, F.; et al. Functional and genomic characterization of three novel cell lines
derived from a metastatic gallbladder cancer tumor. Boil. Res. 2020, 53, 1–17. [CrossRef]

19. Hudson, A.M.; Yates, T.; Li, Y.; Trotter, E.W.; Fawdar, S.; Chapman, P.; Lorigan, P.; Biankin, A.V.; Miller, C.J.;
Brognard, J. Discrepancies in cancer genomic sequencing highlight opportunities for driver mutation
discovery. Cancer Res. 2014, 74, 6390–6396. [CrossRef]

20. Leroy, B.; Girard, L.; Hollestelle, A.; Minna, J.D.; Gazdar, A.F.; Soussi, T. Analysis of TP53 Mutation Status in
Human Cancer Cell Lines: A Reassessment. Hum. Mutat. 2014, 35, 756–765. [CrossRef]

21. Bairoch, A. The Cellosaurus, a Cell-Line Knowledge Resource. J. Biomol. Tech. JBT 2018, 29, 25. [CrossRef]
[PubMed]

22. Budhu, A.; Chen, Y.; Kim, J.W.; Forgues, M.; Valerie, K.; Harris, C.C.; Wang, X. Induction of a unique
gene expression profile in primary human hepatocytes by hepatitis C virus core, NS3 and NS5A proteins.
Carcinogenesis 2007, 28, 1552–1560. [CrossRef] [PubMed]

23. López-Terrada, D.; Cheung, S.W.; Finegold, M.J.; Knowles, B.B. Hep G2 is a hepatoblastoma-derived cell line.
Hum. Pathol. 2009, 40, 1512–1515. [CrossRef] [PubMed]

24. Jiang, W.; Wang, X.W.; Unger, T.; Forgues, M.; Kim, J.W.; Hussain, S.; Bowman, E.; Spillare, E.A.; Lipsky, M.M.;
Meck, J.M.; et al. Cooperation of tumor-derived HBx mutants and p53-249ser mutant in regulating cell
proliferation, anchorage-independent growth and aneuploidy in a telomerase-immortalized normal human
hepatocyte-derived cell line. Int. J. Cancer 2009, 127, 1011–1020. [CrossRef]

25. Ploeger, C.; Waldburger, N.; Fraas, A.; Goeppert, B.; Pusch, S.; Breuhahn, K.; Wang, X.; Schirmacher, P.;
Roessler, S. Chromosome 8p tumor suppressor genes SH2D4A and SORBS3 cooperate to inhibit interleukin-6
signaling in hepatocellular carcinoma. Hepatology 2016, 64, 828–842. [CrossRef]

26. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 3 September 2020).
27. Schmieder, R.; Edwards, R.A. Quality control and preprocessing of metagenomic datasets. Bioinformatics

2011, 27, 863–864. [CrossRef]
28. Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R.

STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2012, 29, 15–21. [CrossRef]
29. Available online: http://broadinstitute.github.io/picard/ (accessed on 3 September 2020).
30. McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.;

Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing
next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [CrossRef]

31. Okonechnikov, K.; Conesa, A.; García-Alcalde, F. Qualimap 2: Advanced multi-sample quality control for
high-throughput sequencing data. Bioinformatics 2015, 32, 292–294. [CrossRef]

32. Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput
sequencing data. Nucleic Acids Res. 2010, 38, e164. [CrossRef]

33. Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.M.; Marra, M.A. Circos:
An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [CrossRef] [PubMed]

34. Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence
reads to genomic features. Bioinformatics 2013, 30, 923–930. [CrossRef] [PubMed]

35. Available online: https://cran.r-project.org/web/packages/depth/index.html (accessed on 3 September 2020).
36. Available online: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/SCGJHQ

(accessed on 3 September 2020).
37. Available online: https://www.ebi.ac.uk/ega/studies/EGAS00001000950 (accessed on 3 September 2020).
38. Umu, S.U.; Langseth, H.; Bucher-Johannessen, C.; Fromm, B.; Keller, A.; Meese, E.; Lauritzen, M.; Leithaug, M.;

Lyle, R.; Rounge, T.B. A comprehensive profile of circulating RNAs in human serum. RNA Biol. 2018, 15,
242–250. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1158/1538-7445.transcagen-a1-19
http://dx.doi.org/10.1186/s40659-020-00282-7
http://dx.doi.org/10.1158/0008-5472.CAN-14-1020
http://dx.doi.org/10.1002/humu.22556
http://dx.doi.org/10.7171/jbt.18-2902-002
http://www.ncbi.nlm.nih.gov/pubmed/29805321
http://dx.doi.org/10.1093/carcin/bgm075
http://www.ncbi.nlm.nih.gov/pubmed/17404395
http://dx.doi.org/10.1016/j.humpath.2009.07.003
http://www.ncbi.nlm.nih.gov/pubmed/19751877
http://dx.doi.org/10.1002/ijc.25118
http://dx.doi.org/10.1002/hep.28684
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://dx.doi.org/10.1093/bioinformatics/btr026
http://dx.doi.org/10.1093/bioinformatics/bts635
http://broadinstitute.github.io/picard/
http://dx.doi.org/10.1101/gr.107524.110
http://dx.doi.org/10.1093/bioinformatics/btv566
http://dx.doi.org/10.1093/nar/gkq603
http://dx.doi.org/10.1101/gr.092759.109
http://www.ncbi.nlm.nih.gov/pubmed/19541911
http://dx.doi.org/10.1093/bioinformatics/btt656
http://www.ncbi.nlm.nih.gov/pubmed/24227677
https://cran.r-project.org/web/packages/depth/index.html
https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/SCGJHQ
https://www.ebi.ac.uk/ega/studies/EGAS00001000950
http://dx.doi.org/10.1080/15476286.2017.1403003
http://www.ncbi.nlm.nih.gov/pubmed/29219730
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	General Sequencing Statistics 
	Presence of Specific Mutations in the Investigated Cell Lines 
	Global Gene Expression Patterns of the Investigated Cell Lines 
	Expression Levels of Specific Genes in the Investigated Cell Lines 

	Discussion 
	Materials and Methods 
	Characterized Hepatobiliary Cancer Cell Lines, Contamination Testing, and RNA Extraction and Sequencing 
	Quality Control, Pre-Processing, and Statistical Analysis of RNA Sequencing Data 
	External Data Used for the Exemplary Applications 
	Validation of Gene Expression Results 

	Conclusions 
	References

