
pathogens

Review

Role of Epstein-Barr Virus and Human
Papillomavirus Coinfection in Cervical Cancer:
Epidemiology, Mechanisms and Perspectives

Rancés Blanco 1, Diego Carrillo-Beltrán 1, Julio C. Osorio 2, Gloria M Calaf 3,4 and
Francisco Aguayo 5,6,*

1 Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Faculty of Medicine, Universidad de Chile,
Santiago 8380000, Chile; rancesblanco1976@gmail.com (R.B.); diegocb17@hotmail.com (D.C.-B.)

2 Population Registry of Cali, Department of Pathology, Universidad del Valle, Cali 760042, Colombia;
cejulio704@gmail.com

3 Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; gmc24@cumc.columbia.edu
4 Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
5 Universidad de Tarapacá, Arica 1000000, Chile
6 Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile,

Santiago 8330024, Chile
* Correspondence: faguayogr@gmail.com

Received: 17 July 2020; Accepted: 18 August 2020; Published: 21 August 2020
����������
�������

Abstract: High-risk human papillomavirus (HR-HPV) is etiologically associated with the development
and progression of cervical cancer, although other factors are involved. Epstein-Barr virus (EBV)
detection in premalignant and malignant tissues from uterine cervix has been widely reported;
however, its contribution to cervical cancer development is still unclear. Here, a comprehensive
analysis regarding EBV presence and its potential role in cervical cancer, the frequency of EBV/HR-HPV
coinfection in uterine cervix and EBV infection in tissue-infiltrating lymphocytes were revised.
Overall, reports suggest a potential link of EBV to the development of cervical carcinomas in two
possible pathways: (1) Infecting epithelial cells, thus synergizing with HR-HPV (direct pathway),
and/or (2) infecting tissue-infiltrating lymphocytes that could generate local immunosuppression
(indirect pathway). In situ hybridization (ISH) and/or immunohistochemical methods are mandatory
for discriminating the cell type infected by EBV. However, further studies are needed for a better
understanding of the EBV/HR-HPV coinfection role in cervical carcinogenesis.

Keywords: Epstein-Barr virus; human papillomavirus; coinfection; cervical cancer; tissue-infiltrating
lymphocytes

1. Introduction

Cervical cancer constitutes the fourth most frequently diagnosed malignant tumor in women
and the first cause of cancer-related death in females. In 2018, 570,000 new cases and 311,000 deaths
were estimated worldwide [1]. This is the leading diagnosed malignancy in 28 countries and the
most frequent cause of cancer deaths in 42 countries, mainly in low- and middle-income countries [2].
More than 95% of cervical tumors arise from epithelial cells and include squamous cell carcinoma
(SCC), adenocarcinoma and adenosquamous carcinoma.

The most important risk factor for cervical cancer development is infection with human
papillomavirus (HPV) [3], with 99.7% of cervical carcinomas worldwide caused by high risk (HR)-HPV
types, such as HPV16 or HPV18 [4,5]. While vaccines exist that protect against oncogenic HPV infection,
global disparities still remain due to high costs [6,7]. However, HR-HPV infection is insufficient
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for cervical cancer development since low-grade squamous intraepithelial lesions (LSIL) usually
regress to normal cells in cervical cytology or atypical squamous cells of undetermined significance
(ASCUS). Only 3.6% of LSILs progress to high-grade squamous intraepithelial lesion (HSIL) [8], with a
report of 50% regression in LSILs associated with HPV16 or HPV18 [9]. Accordingly, other host or
environmental factors are necessary for cervical lesion progression, such as tobacco smoking (TS),
oral contraceptive pills or immunosuppression, in particular infection with human immunodeficiency
virus (HIV). Numerous studies have reported the simultaneous presence of Epstein-Barr virus (EBV)
and HR-HPV in cervical carcinomas [10–14], although a potential role of EBV/HR-HPV coinfection in its
development has not been established. Here, we review the current literature regarding EBV presence
in SILs and cervical cancer together with its potential contribution to HR-HPV-mediated cervical
carcinogenesis and tumor progression. In addition, we propose an HR-HPV/EBV co-carcinogenesis
model, in which HR-HPV/EBV oncoproteins play a key role in both oncogenesis and immune evasion.

2. EBV Replication and Role in Cancer

EBV, also known as human herpesvirus 4 (HHV-4) is a gammaherpervirus that infects more
than 90% of the human population worldwide [15]. It is characterized by a double-stranded DNA
genome of 172 kb in length, surrounded by an envelope carrying various surface glycoproteins,
with tegument proteins filling the space between the membrane and the inner icosahedral capsid [16].
EBV is related to some B cell-derived malignancies such as Burkitt’s lymphoma (BL) and Hodgkin’s
disease (HD). Importantly, EBV is associated with some epithelial tumors, including undifferentiated
nasopharyngeal carcinomas (NPCs) and a subset of gastric carcinomas (GCs) [15]. Once EBV virions
achieve primary infection of B-cells, the virus establishes two phases of infection known as latent and
lytic. In latency, the viral genome persists in the nucleus as an episome [17] with a small subset of
~90 coding regions expressed as: The EB-nuclear antigens (EBNAs) 1, 2, 3A, 3B, 3C and LP; the latent
membrane proteins (LMPs) 1, 2A and 2B; the EB-encoded small RNAs (EBERs) 1 and 2 and ~50
different mature miRNAs [18,19]. These miRNAs cluster in two regions located on opposite sides of
the EBV genome named the BamHI fragment H rightward open reading frame 1 (BHRF1) and BamHI
A rightward transcripts (BART) regions. In particular, latency 0 occurs in non-dividing memory B-cells
characterized by EBV genome persistence without viral protein expression with few non-coding RNAs
(EBERs and BARTs) [20]. Latency I occurs in Burkitt lymphoma and GC, with only EBNA1, EBERs and
BARTs being expressed. During latency IIa, EBNA1, the three LMPs, the two EBERs and BARTs are
expressed, and in latency IIb, EBNA2 is also detected but LMPs are most restricted [21,22]. Latency II
is mostly found in T/NK cells and classical HLs as well as in NPCs [23,24]. Latency III is characterized
by expression of latent viral proteome including all EBNAs, all LMPs and EBERs, BHFR1s and BARTs,
and witnessed in some lymphoproliferative disorders (reviewed in: [19,25]). Finally, the activation of
the EBV lytic cycle produces viral progeny allowing the virus to spread from cell to cell and transmitting
to new hosts [26]. Figure 1 shows the EBV genome organization with locations of latent genes.

The mechanisms of EBV-mediated B-cell cancers are well known (reviewed in [27]), although they
are less understood in epithelial cells. In NPC cells, EBNA1 has a key role in EBV persistency,
decreasing p53 accumulation in response to DNA damage [28], whilst inducing epithelial mesenchymal
transition (EMT), deregulating some related genes [29] and enhancing angiogenesis in vitro [30].
LMP1, another latent protein, impairs the nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-κB) [31], activator protein 1 (AP-1) [32] and the Janus kinase/signal transducers and
activators of transcription (JAK/STAT) [33] signaling pathways, leading to cell cycle disruption.
Additionally, EBV-related epithelial tumors express BamHI-A rightward frame 1 (BARF1) [34],
encoding a 220 amino acid lytic protein, secreted by EBV-infected epithelial cells as a soluble
hexameric molecule (sBARF1) [35]. This viral protein hijacks human colony-stimulating factor 1
(hCSF-1), interfering with monocyte maturation [36] and impairing host immune responses against
viral infections. It has been reported that BARF1 upregulates the expression of RelA and cyclin D1
and is able to reduce the cell cycle inhibitor p21WAF1 [37,38], promoting cell proliferation. Moreover,
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BARF1 activates the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2)/c-Jun pathway [39]
inhibiting apoptosis whilst increasing Bcl-2 and reducing both caspases and Bax [40]. Additionally,
it inhibits interferon-alpha (IFN-α) production and release by mononuclear cells [41], impairing host
immune responses. Interestingly, telomerase activation is observed in HPV-positive cervical cancer
cells (HeLa) transfected with the BARF1 gene [42]. As BARF1 is expressed in EBV-associated NPC and
GCs and not in lymphomas, BARF1 is considered an exclusive epithelial oncoprotein [42,43].
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3. HPV in Cervical Cancer

HPV is a non-enveloped and exclusively intraepithelial virus, which comprises an 8 kb
double-stranded circular DNA containing eight protein-coding genes divided into three major regions:
Early, late and a noncoding region, known as the long control region (LCR). Early gene encoding
non-structural proteins (E1 to E7) are involved in viral replication, transcription and transformation,
while late transcribed genes encode for structural L1 and L2 proteins (reviewed in [44]). More than
210 HPV types have been identified by L1 sequencing, classified in HR-HPV (e.g., 16, 18 and 31)
and low-risk (LR)-HPV types (e.g., 6, 7 and 11) according to the oncogenic potential [45,46]. Figure 1
shows the HPV genome organization.

HR-HPV infection is etiologically associated with cervical carcinomas, anogenital and a subset of
head and neck squamous cell carcinomas (HNSCCs). Integration of HR-HPV genomes into the host is
an important hit, although not a requisite for epithelial carcinogenesis [47,48]. This is common in HSIL
and cervical SCC compared with normal or LSIL tissues [49]. Moreover, HR-HPV (e.g., 16 and 18)
integration in HSIL is frequently accompanied by chromosomal abnormalities [50], with E2 region
loss during integration, leading to constitutive E6 and E7 protein expression [51]. E6 is a ~150 amino
acid protein comprising two zinc finger binding domains connected by a 36 amino acid long-linker,
and the carboxy terminal domain containing a PDZ-binding motif interacting with cell proteins [52].
E6 promotes loss of p53 via E6-associated protein (E6-AP)-mediated ubiquitination and proteasome
degradation, inhibits apoptosis [53] and activates Mitogen-activated protein kinase (MAPK) and the
mechanistic target of rapamycin complex 1 (mTORC1) pathways [54,55]. Additionally, E6 targets the
pro-apoptotic proteins Bak for degradation [56] and others such as the Fas-associated protein with death
domain (FADD) and caspase-8, disrupting the apoptotic program [57]. Likewise, E7 is a 100 amino
acid protein comprising three conserved regions denoted CR1, CR2 and CR3, with CR3 containing two
CXXC motifs separated by 29 or 30 residues. Moreover, the E7 carboxyl terminal domain contains
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a zinc-binding motif mediating interaction with cellular proteins [58]. E7 targets retinoblastoma
protein (pRb) for ubiquitination, leading to E2F transcription factor release, allowing cell entry to
S-phase [59]. Both E6 and E7 interact with c-Myc inducing human telomerase reverse transcriptase
(hTERT) promoter activation and hTERT expression, enabling cell evasion of senescence [60,61]. E6 and
E7 also upregulate expression of EMT markers such as N-cadherin, Fibronectin and Vimentin, increasing
cell migration and invasiveness [62]. Moreover, E6 and E7 inhibit interferon (IFN) antiviral activity and
decrease tumor necrosis factor alpha (TNF-α) and (interleukin-1 beta) IL-1β secretion by macrophages,
enabling immune evasion [63].

HR-HPV infection is insufficient for cervical carcinogenesis and involvement of other cofactors
is essential. While factors involved in HR-HPV integration into the host genome are unclear [64],
a prerequisite is DNA damage [65], TS being a very important factor for cervical cancer development [66]
by activating the HPV16 p97 promoter and leading to E6 and E7 overexpression [67]. Moreover,
HPV16 E6 and E7 collaborate with TS, increasing the tumor properties of epithelial cells [68,69],
although other potential cofactors such as chronic inflammation and bacterial or viral coinfection are
also suspected.

4. Frequency of HPV and EBV Coinfection in Uterine Cervix

To discriminate the linage of EBV infected cells (epithelial and/or lymphocytes), in situ
hybridization (ISH) and immunohistochemistry (IHC) are important detection methods. Thus, EBV was
detected in less than 16.7% of normal and non-tumor cervix samples [70–72]. In contrast, some studies
show increased EBV frequency in cervical cancer ranging from 27.8% to 100% [70,71,73]. EBV infection
appears in 62.5% and 27.8% of cervical carcinomas using BamHI O/K fragments, or BamHI W region
ISH [70,71], respectively, whereas the EBV infection rate is 50.0% and 85.7% of cervical cancer by using
EBER1 and BamHI W ISH, respectively [72]. Subsequently, 100% and 87.5% recorded positive in
cervical cancer using the BamHI W region and EBNA2 ISH, respectively, confirming EBNA2 expression
by immunofluorescence at 68.7% [73]. Additionally, EBNA2 and LMP1 expression (EBV latent-cycle
proteins) is observed in 88.9% and 66.7% of cervical cancer [72], together with EBNA1 and LMP1 also
detected by IHC [13].

When LSIL and HSIL are compared, EBV positive samples increase. EBV infection was found in 0%,
8.0% and 8.0% of cervical intraepithelial neoplasms (CIN) I, II and III, respectively [71], while another
study revealed EBV presence in 33.3% and 70.0% of CIN I-II and CIN III patients, respectively [74].
In addition, EBV infection was detected in 20.0% and 41.7% of CIN II and CIN III, respectively,
using EBER1 ISH, although such increase was not evidenced when ISH of the BamHI W region was
analyzed [72]. These data suggest a potential contribution of EBV as a cofactor to the development
of cervical carcinomas. Nevertheless, other studies did not detect EBV infection in premalignant or
malignant epithelial cells [14,75–79], opposite results possibly related to differences in the tissue type,
lesion extension or sensitivity of analytical assays. Accordingly, less than one copy of the EBV genome
in cervical cancer samples was reported with a decreased number of EBV-positive cells observed by
ISH and IHC, suggesting that only a few malignant epithelial cells are infected with this virus [72].

EBV/HR-HPV coinfection in SILs and cervical carcinomas ranges from 12.7% to 81.8% [10,11],
whereas EBV was frequently associated with HPV16 and HPV18 [80] and increased the risk of HPV16
integration into the host genome [11,12]. Moreover, HPV+/EBV+ cervical cancer displays increased
RB1 and E-cadherin (CDH1) gene promoter methylation compared with HPV+/EBV− tumors [81].
However, a study conducted by Lattario et al. failed to find a relation between EBV and HPV coinfection
and the methylation of death-associated protein kinase (DAPK) gene promoter in HSIL [82]. In HIV
and HR-HPV infected patients, the additional infection with EBV significantly increased the risk of
SIL compared to uninfected women [83,84]. Furthermore, there was no association of EBV DNA with
a decreased count of CD4+ T lymphocytes with high HIV viral load [84,85], suggesting that EBV
infection in cervical epithelium is independent of HIV status. In this respect, there was no difference
when the frequency of EBV positivity in HIV-negative and HIV-positive patients was compared [86].
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Remarkably, a common limitation for most of the aforementioned studies is the use of PCR for EBV
detection [10,12,81,82,85], masking the biological significance of EBV/HR-HPV coinfection in epithelial
cells. Contamination of collected cervical tumors with EBV-positive infiltrating lymphocytes may
contribute to the EBV DNA detection reported in these tissues. In fact, 44.4% (8/18) of EBV infected
cervical SCCs by PCR was found and only 27.8% (5/18) when ISH was used [71]. Notably, 21.7% (13/60)
of EBV infected cervical SCCs by PCR was reported, but ISH only revealed positive signal in infiltrating
lymphocytes [76]. Similar results were obtained by Seo et al. [79], although one report conducted
by Abudoukadeer et al. demonstrated a high coincidence degree between PCR and IHC for LMP1
(k = 0.799) in their series of patients [87].

To the best of our knowledge, reports demonstrating unequivocal EBV/HR-HPV coinfection in
cervical epithelial cells are scarce. For instance, an increased EBV/HR-HPV coinfection in HSIL and
cervical SCC when compared with normal tissues and LSIL was detected [13]. Moreover, EBV/HR-HPV
coinfection in 34.1% (15/44) of cervical SCC was found [88]. In this study, we demonstrated the
relation of LMP1 (EBV) and E6 (HR-HPV) with poorly differentiated and invasive cervical SCCs
as well as with the overexpression of the inhibitor of DNA binding 1 (Id-1) protein [88], which is
associated with tumor formation and progression in different human malignancies, including cervical
cancer [89,90]. In a similar way, there was no EBV/HR-HPV coinfection in normal and non-tumor
tissues (0/12) while the simultaneous presence of these viruses was evidenced in 30.8% (4/13) and
69.2% (9/13) of cervical carcinomas when EBV was detected by ISH for EBER1 and BamHI W,
respectively. EBV/HR-HPV coinfection was also found in 18.2% (2/11) (EBER1) and 27.3% (3/11)
(BamHI W) of CIN II-III [72]. Furthermore, EBV/HR-HPV coinfection in 31.8% (7/22) of CIN I-II and
CIN III was demonstrated, which was statistically significant when compared with non-premalignant
tissues [74]. Similarly, LMP1 and HPV L1 proteins were detected in 30.0% (3/10) and 66.7% (4/6) of
CIN I and CIN II, respectively, in HIV-positive patients [91]. Taken together, these results suggest that
EBV/HPV coinfection is associated with epithelial cocarcinogenesis as well as with the development
and progression of cervical cancer. Studies reporting EBV presence or EBV/HPV coinfections in cervical
cancer are shown in Table 1.
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Table 1. Epstein-Barr virus (EBV) and human papillomavirus (HPV) coinfection detected in squamous intraepithelial lesions (SILs) and cervical carcinomas.

Ref.
EBV HPV EBV/HPV Coinfection

Methods Results Methods Results

[70] ISH of BamHI O/K
Normal cervix = 0/15 (0%)

- - -CIN I = 1/1 (100%)
Cervical cancer = 5/8 (62.5%)

[71] ISH of BamHI W

Normal cervix = 0/25 (0%)

- - -
CIN I = 0/25 (0%)

CIN II = 2/25 (8.0%)
CIN III = 2/25 (8.0%)
SCC = 5/18 (27.8%)

[72]

ISH of EBER1 Normal cervix = 0/5 (0%)

PCR for E6/E7

Normal cervix = 0/5 (0%) Normal cervix = 0/5 (0%)
CIN II = 1/5 (20.0%) CIN II = 1/3 (33.3%) CIN II = 0/3 (0%)

CIN III = 5/12 (41.7%) CIN III = 6/8 (75.0%) CIN III = 2/8 (25.0%)
Cervical cancer = 7/14 (50.0%) Cervical cancer = 10/13 (76.9%) Cervical cancer = 4/13 (30.8%)

ISH of BamHI W Normal cervix = 0/5 (%) Normal cervix = 0/5 (0%)
CIN II = 4/5 (80.0%) CIN II = 0/3 (0%)

CIN III = 8/12 (66.7%) CIN III = 3/8 (37.5%)
Cervical cancer = 12/14 (85.7%) Cervical cancer = 9/13 (69.2%)

IFI for EBNA2 Normal cervix = 0/3 (0%) Normal cervix = 0/3 (0%)
CIN III = 6/8 (75.0%) CIN III = 3/6 (50.0%)

Cervical cancer = 8/9 (88.9%) Cervical cancer = 5/8 (62.5%)
IFI for LMP1 Normal cervix = 0/3 (0%) Normal cervix = 0/3 (0%)

CIN III = 4/8 (50.0%) CIN III = 2/6 (33.3%)
Cervical cancer = 6/9 (66.7%) Cervical cancer = 4/8 (50.0%)

[73]

ISH of BamHI W Normal cervix = 0/2 (0%)

- - -

CIN I = 2/2 (100%)
CIN II-III = 2/2 (100%)

Cervical cancer = 10/10 (100%)
ISH of EBNA2 Normal cervix = 0/3 (0%)

CIN I = 2/2 (100%)
CIN II-III = 2/3 (66.7%)

Cervical cancer = 14/16 (87.5%)
IFI for EBNA2 Normal cervix = 0/3 (0%)

CIN I = 0/2 (0%)
CIN II-III = 1/3 (33.3%)

Cervical cancer = 11/16 (68.7%)
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Table 1. Cont.

Ref.
EBV HPV EBV/HPV Coinfection

Methods Results Methods Results

[74] ISH of EBERs
CIN I-II = 4/12 (33.3%)

PCR-ELISA for MY09/MY11
CIN-negative = 2/26 (7.7%) CIN I-II = 3/12 (25.0%)

CIN III = 7/10 (70.0%) CIN I-II = 5/12 (41.7%) CIN III = 4/10 (40.0%)
CIN III = 7/10 (70.0%)

[91] IHC for LMP1
CIN I = 1/10 (10.0%)

IHC for HPV
CIN I = 3/10 (30.0%) CIN I = 3/10 (30.0%)

CIN III = 3/3 (100%) CIN II = 2/6 (33.3%) CIN II = 4/6 (66.7%)

[13]

IHC for EBNA1 SCC = 8/23 (34.8%)

PCR/Hybrid Capture 2 (HC2)

Normal cervix = 2/14 (14.3%)

-IHC for LMP1 SCC = 6/23 (26.1%) CIN I = 12/16 (75.0%)
CIN II-III = 20/21 (95.2%)

SCC = 51/58 (87.9%)

[88] IHC for LMP1 SCC = 15/44 (34.1%) PCR for E6/E7 SCC = 42/44 (95.5%) SCC = 15/44 (34.1%)
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5. EBV Infection in Tumor-Infiltrating Lymphocytes from Cervical Carcinomas

EBV infection in tumor-infiltrating lymphocytes was also reported in cervical SCCs [71,72,88],
while no EBV-infected lymphocytes were observed in normal cervical samples [71,72] or uterine
fibroids [79]. While EBV infection was detected in lymphocytes from non-tumor cervical tissues
(3 chronic cervicitis, 2 cervical polypus and 2 hyperkeratosis) using ISH for EBER1 (57.1%) and BamHI
W (71.4%), there was no HPV infection evidenced in these samples [72]. Notably, there was an absence
of EBV infection in neoplastic cells, while this virus was only detected in infiltrating lymphocytes from
both SILs and cervical SCC using ISH for EBER [76].

Interestingly, an increased number of EBV-positive infiltrating lymphocytes in CIN III (15.7%)
and cervical SCC (15.0%) compared with CIN I/II (6.8%) was reported. Furthermore, the presence
of EBV DNA detected by PCR was positively related with the degree of lymphocyte infiltration [76].
In the same way, an increased prevalence of EBV infection in infiltrating lymphocytes from patients
with HSIL and cervical SCC was found when compared with no squamous intraepithelial lesion and
LSIL [14]. These findings suggest that progression from LSIL to HSIL and cervical SCC is accompanied
by an increased number of EBV-infected surrounding lymphocytes. However, an absence of EBER
positive lymphocytes infiltrating the cervical stroma in CIN III and cervical SCC samples has also been
reported [79].

EBV modulates the host immune response by diverse mechanisms [36,92], in part through the lytic
cycle protein BCRF1 (viral IL-10), inhibiting production of some molecules by CD4+ T lymphocytes
such as IFN-γ, IL-2 and IL-6 [93]. Remarkably, EBV shedding increases along with cervical SCC
progression. Moreover, EBV-specific killer T cell activity decreases in advanced stages of cervical cancer
compared with earlier stages, demonstrating an impaired T cell immunity [94]. In addition, HR-HPV E6
and E7 inhibit IFN antiviral activity and decrease secretion of TNF-α and IL-1β by macrophages [63].
Accordingly, immunosupression generated by EBV infection could contribute to immune evasion of
HPV-infected epithelial cells, although further studies are required (Figure 2).
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6. Mechanisms of HPV/EBV-Mediated Cervical Carcinogenesis

Experimental approaches evaluating molecular mechanisms involved in EBV/HR-HPV coinfection
are limited. However, EBV LMP1 in combination with HPV16 E6 viral proteins in transformed mouse
embryonic fibroblasts (MEFs) reduces components of DNA damage response (DDR) such as p53,
pRb and p27, whilst increasing checkpoint kinase 1 (CHK1), NF-κB signaling, v-akt murine thymoma
viral oncogene (Akt) and MAPK signaling [95,96]. In addition, LMP1 induces down-regulation of
E-cadherin expression [97] and also regulates TWIST [98] and SNAIL [99] transcription factors and
others related with cell motility. Moreover, LMP1 and E6 co-expression induces cell proliferation,
resistance to apoptosis, anchorage-independent growth and tumor-formation ability in nude mice
compared with single expression of EBNA1 or E6 [95]. In EBV-infected NPC cells, EBNA1 plays
a role in EMT through inhibition of both microRNA (miR)-200a and -200b expression, while it
up-regulates the expression of ZEB1 and ZEB2, their target genes [29]. Interestingly, double expression
of LMP1 and HR-HPV E6 relates with a more aggressive form of malignant tumor such as breast
adenocarcinoma [100] and cervical SCC [88]. Thereby, in the case of EBV-associated GCs, EBNA1 may
induce constitutive and also IFNγ-inducible programmed death-ligand 1 (PD-L1) expression in
EBV-infected epithelial-cells [101]. In HPV+ HeLa and SiHa cervical cells, transfection with a small
interfering RNA (siRNA) for Myc knock down was able to reduce the hTERT promoter activity [102].
HPV16 E6 activates hTERT gene transcription through induction of c-Myc, which is overexpressed
in cervical carcinomas [103,104]. Moreover, hTERT activation in BARF1-transfected PATAS monkey
kidney cells was accompanied by up-regulation of c-Myc, while in HeLa cells BARF1 induces activation
of telomerase binding directly to initiator elements in the hTERT promoter region [42]. Alternatively,
both HPV18 E6 and E7 oncoproteins are necessary to increase EBV genome maintenance in normal oral
keratinocytes (NOKs) and to induce the reactivation of the EBV lytic program in suprabasal layers of
oral epithelial from an in vitro organotypic raft culture model [105]. However, a significant reduction
in EBV immediate early (BZLF1, BRLF1) and early (BALF5, BMRF1) gene expression with increased
expression of EBER1 was evidenced in HPV+/EBV+ human foreskin keratinocytes (HFK) compared
to that in HPV−/EBV+ rafts [106]. In cervical cells, increased levels of EBER1 may contribute to the
transition from inflammation to oncogenesis of HPV-associated cervical cancer by modulating innate
immune responses [107]. In addition, LMP1 reduces the presence of HPV16 with no expression change
in the EBNA1 and EBNA2 latent genes, suggesting that EBV latency is favored over lytic replication
in HPV16+ cells. However, LMP1 is mostly expressed in B-cell lymphomas, lymphoproliferative
disorders and NPC [25], but less in cervical and GCs [72,108]. In uterine cervix, latency III EBV
infection is increased in CIN and cervical SCC compared with non-malignant samples [72], conferring a
long-term persistence of EBV infection in malignant cells. Furthermore, reduced EBV replication
mediated by HPV16 E7 is related to retarded expression of some markers related with early epithelial
cell differentiation [106]. Similarly, cervical SCC EBV/HR-HPV coinfection is associated with decreased
cell differentiation [88], closely related with a more aggressive tumor. Additionally, NOKs and FaDu
hypopharyngeal carcinoma cells coinfected with EBV and HR-HPV show increased invasiveness in the
lysophosphatidic acid (LPA) presence (glycerophospholipid able to stimulate cell migration) compared
to EBV−/HR-HPV- and EBV+/HR-HPV- cells [109], resembling the effects of coinfection in cervical
SCC [88]. According to our knowledge, the levels of BARF1 in cervical cancer have been examined in
only one study, which reported 27% detection in tumors from Algerian women [13]. As previously
stated, this protein has been suggested as an epithelial EBV oncogene, which is expressed in a cell
differentiation-dependent manner [110]. Due to this lytic protein being expressed in a majority of
EBV+ NPC and GC cells, the possibility that this protein is involved in EBV+ cervical carcinomas,
working in both oncogenic process and immune evasion is plausible. Considering that EBV infection
in normal epithelial cells is exclusively lytic [111,112], an interesting point is the establishment of
EBV latency in epithelial cervical cells. In this respect, it has been suggested that previous DNA
damage in cells is a requisite [113]. Thus, we can propose a scenario in which previous HPV infected
and subsequently DNA-damaged cells (e.g., by HPV E7) are particularly susceptible to EBV latency
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establishment. Moreover, we can speculate on the possibility that HPV is involved in the activation of
the EBV abortive lytic cycle, promoting expression of some lytic genes, such as Zebra or Rta, which has
been reported to be important in EBV-mediated carcinogenesis. A hypothetical model in which HPV
infection favors EBV latency establishment in epithelial cervical cancer cells is shown in Figure 3.
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BARF1 (abortive lytic expression); 3. BARF1 (and other viral oncogenes) promotes oncogenic changes
and immune evasion, cooperating with HR-HPV. Created by BioRender.com.

7. Conclusions and Remarks

EBV/HR-HPV coinfection was recently related with an increased risk of cervical cancer [114].
However, this analysis failed to discriminate the cell linage infected by EBV in cervical tissues
(epithelial and/or lymphocytes). Overall, studies suggest a potential cooperation of EBV with cervical
cancer development by two different mechanisms: (1) Infecting epithelial cells, possibly synergizing
with HR-HPV (direct mechanism) and (2) infecting tissue-infiltrating lymphocytes and generating local
immunosuppression (indirect mechanism). Further studies are needed for a better understanding of
the role of EBV and HPV coinfection in the carcinogenesis of cervical epithelium, in which ISH and/or
IHC are mandatory to determining the cell linage infected by EBV. Moreover, the potential role of
circulating EBV DNA load in cervical cancer needs to be evaluated. Finally, in vitro and in vivo assays
using cervical cell lines coexpressing EBV and HPV oncoproteins should be conducted to confirm
whether coinfection with these viruses synergizes to the development of cervical cancer. More studies
are warranted to evaluate some EBV lytic genes such as BARF1 in cervical carcinomas and the potential
role of EBV abortive lytic infection in HPV-mediated cervical carcinogenesis.
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