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Abstract— As wind energy is becoming a significant util-
ity source, minimizing the operation and maintenance (O&M)
expenses has raised a crucial issue to make wind energy competi-
tive to fossil fuels. Wind turbines (WTs) are subject to unexpected
failures due to operational and environmental conditions, aging,
and so on. An accurate estimation of time to failures assures
reliable power production and lower maintenance costs. In recent
years, a notable amount of research has been undertaken to
propose prognosis techniques that can be employed to forecast
the remaining useful life (RUL) of wind farm assets. This article
provides a recent literature review on modeling developments
for the RUL prediction of critical WT components, including
physics-based, artificial intelligence (AI)-based, stochastic-based,
and hybrid prognostics. In particular, the pros and cons of the
prognosis models are investigated to assist researchers in selecting
proper models for certain applications of WT RUL forecast. Our
comprehensive review has revealed that hybrid methods are now
the leading and most accurate tools for WT failure predictions
over individual hybrid components. Strong candidates for future
research include the consideration of variable operating envi-
ronments, component interaction, physics-based prognostics, and
the Bayesian application in the development of WT prognosis
methods.

Index Terms— Bearings, blade, gearbox, generator, prognosis,
wind turbines (WTs).

NOMENCLATURE

AE Absolute error.
AI Artificial intelligence.
ANFIS Adaptive neurofuzzy inference systems.
ANN Artificial neural network.
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AOI Anomaly operation index.
ARA Average relative accuracy.
ARF Aggregate reliability function.
ARMA Autoregressive moving average.
ARIMA Autoregressive integrated moving average.
BA Bat algorithm.
BFO Bacterial foraging optimization.
BP Backpropagation.
CF Crest Factor.
CM Condition monitoring.
CMS CM system.
CNN Convolutional neural network.
CUMSUM Cumulative sum.
CV Confidence value.
DBN Deep belief network.
DL Deep learning.
DNN Deep neural network.
DOSs Different operating states.
DPM Damage progression model.
EKF Extended Kalman filter.
ELM Extreme learning machine.
EM Expectation–maximization.
EMD Empirical mode decomposition.
ENN Elman neural network.
ESN Echo state network.
FDP Fault diagnosis and prognosis.
FEA Finite element analysis.
FESA Finite element stress analysis.
FL Fuzzy logic.
FNN Feedforward neural network.
FOA Fruit fly optimization algorithm.
GA Genetic algorithm.
GP Gaussian pyramid.
GPR Gaussian process regression.
GWEC Global wind energy council.
HGRUN Hierarchical gated recurrent unit network.
HHHM Hierarchical hidden Markov model.
HHT Hilbert–Huang transform.
HI Health indicator.
HMM Hidden Markov model.
HSMM Hidden semi-Markov model.
HSSB High-speed shaft bearing.
KF Kalman filter.
LBP Local binary pattern.
LFGRU Local feature-based gated recurrent unit.
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LR Logistic regression.
LSSVM Least-squares support vector machine.
LSSVR Least-squares support vector regression.
MaxAE Maximum of AE.
MAE Mean AE.
MD Mahalanobis distance.
ML Machine learning.
MLE Maximum likelihood estimation.
MLP Multilayer perceptron.
MLR Multiple linear regression.
mse Mean square error.
NARX Nonlinear autoregressive exogenous.
NAP Nuisance attribute projection.
NFN Neo-fuzzy neuron.
NLRR Nonlinear rank regression.
NN Neural network.
O&M Operation and maintenance.
PCA Principal component analysis.
pdf Probability density function.
PF Particle filter.
PHM Prognostics and health management.
PM Performance monitoring.
PNN Pseudonearest neighbor.
PSO Particle swarm optimization.
RLS Recursive least-square.
RMLP Recurrent MLP.
rms Root mean square.
RNN Recurrent NN.
RMSE Root mse.
RQ Rational quadratic.
RT Regression trees.
RUL Remaining useful life.
SA Sparse autoencoder.
SCADA Supervisory control and data acquisition.
SE Squared exponential.
SKF Switching KF.
SK Spectral kurtosis.
SHMM Semihidden Markov model.
SIE Signal intensity estimator.
SIOS Structural information of the spectrum.
SIOSI SIOS-based indicator.
SOM Self-organizing map.
SVM Support vector machine.
SVR Support vector regression.
SW Stator winding.
TDNN Time delay NN.
TFR Time–frequency representation.
TSP Time to start prediction.
VFF Variable forgetting factor.
VM Vector machine.
WAFTR Weibull accelerated failure time regression.
WD Weibull distribution.
WPD Wavelet packet decomposition.
WNN Wavelet NN.
WT Wind turbine.

I. INTRODUCTION

W IND energy is playing an increasingly pivotal role
in global energy systems. According to the GWEC’s

report [1], the global installed wind power capacity reached
651 GW in 2019. It is excepted that over 355 GW of new
capacity will be added between 2020 and 2024. The wind is
also assuming a nascent and growing role in the expanding
ancillary services market associated with evolving grids.

A. WT Reliability

WTs are complex machines, assembled combinations of
numerous technologies, functioning in challenging environ-
mental and operating conditions including unpredictable loads
due to gust wind, humidity, dustiness, corrosion, fatigue,
wear, a wide range of temperatures, and air pressures. These
severe environmental and operating conditions may result
in increasing component defects and machine malfunctions.
As an integrated system, some of the components are more
critical than others. Thus, it is essential to identify components
with the highest failure rate and downtime.

There have been some fundamental studies in recent decades
on the reliability of wind farm components, as will be reviewed
in the following. Based on 350-WT operation over five years
throughout Europe, Carroll et al. [2] revealed that the highest
failure rates are related to generators, gearboxes, and blades.
Shafiee and Dinmohammadi [3] showed that, for onshore
machines, the most frequent failures are related to the towers,
gearboxes, and rotor blades, respectively; whereas, in offshore
settings, the gearboxes, rotor blades, generators, and towers
have the highest failure rates. Hahn et al. [4] indicated
that generators, gearboxes, and rotor blades have the most
downtime according to 1467 WT (below 1 MW) data in the
period from 1989 until the end of 2004. Tavner et al. [5]
demonstrated that blades, generators, and gearboxes exhibit the
highest downtime per failure based on a survey on 15 000 WT
years. In [6], a data set from 72 operating WTs of Finland
revealed that the gearboxes, hydraulic systems, brakes, and
generators had the most maximum downtime over a period
from 1996 to 2008. Reviews of these reliability summary
studies showed that the gearbox and generator failure rates
are distinctly high. The downtime for these failures is among
the highest of all WT components.

Numerous studies have been accomplished to obtain the
distribution of failures by subassemblies in WTs [7]–[9].
They illustrated that bearings are by far the most liable
subassemblies that are subject to failure, leading to increased
WT downtime and maintenance costs. Therefore, it is essential
to take the WT PHM into consideration for the WT prognostics
task. The WT PHM is thoroughly investigated in the following.

B. WT PHM

The unexpected failure of WT components and subcom-
ponents can cause substantial economic losses, so it may
be prudent to employ WT PHM, which seeks to diminish
the costly inspections and time-based maintenance through
accurate monitoring, early fault detection, and impending
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failures forecast, i.e., RUL estimation. This can provide wind
farm owners with enhanced productivity, reduced unnecessary
planned maintenance, extended operating intervals between
maintenance, decreased downtime, reduced number, and sever-
ity of failures, especially unanticipated ones [10].

For this purpose, an appropriate monitoring system is
essential to perform. Typical practices for WT health state
assessment are PM and CM. PM employs the SCADA system
to correlate multiple sets of variables, such as wind speed
and power to train models for normal operating states, and
utilize these models to detect abnormal behaviors and outliers.
CM comprises inspecting WT components to identify changes
in operation that can be indicative of a progressing fault
by analysis of particular aspects and measurements of the
operation. CMSs are capable of capturing high-frequency
dynamics usually not achievable through the SCADA system.
CM relies on analyses of particular aspects and measurements
of the operation, e.g., vibration analysis. Table I summarizes
the strengths and weaknesses of PM and CMSs [11]–[15].

Noncontact monitoring, an example of CMSs, contributes
toward WT PHM using various techniques, such as ultrasound
and vibration analyses. Noncontact monitoring can lead to
more efficient measurement and, consequently, more accurate
WT RUL prediction compared with the contact monitoring
since contact measurement can change the vibration charac-
teristics of the object to be measured. Furthermore, noncontact
monitoring requires a short time for measurement preparation
and an easy operation to change the measurement locations
and directions and prevents any interference with the operation
of the WT [16]–[22].

After data are provided at regular time intervals by sensors
and measurement systems, signal processing is performed
through signal transformations and features extraction, reduc-
tion, selection, and so on. The next step of WT PHM is
to determine the component state-of-health by detecting and
localizing a fault based on preset operational limits. Con-
sequently, the diagnostics module defines if the component
condition has degraded. In the prognostic module, the future
condition and the time to failure of the faulty components
are predicted. As shown in Fig. 1, RUL prediction made
at t0 utilizes a mathematical model of the failure fit to the
online data. It is desirable to apply a robust technique to
project an RULoptimal for the lifetime of a component based
on a predefined failure criterion. Besides, uncertainties asso-
ciated with prognostic techniques, such as the deterioration
process and the unknown future operation condition, must
be considered in the RUL prediction. Thus, the confidence
interval estimation is an essential component of this module,
i.e., upper confidence bound (RULmax) and lower confidence
bound (RULmin) estimation. Prognosis techniques consist of
two main categories of physics-based and data-driven models
[23]–[26].

1) Physics-Based Models: Deal with the RUL prediction of
critical components by employing mathematical or phys-
ical models of the degradation process, utilizing system-
specific mechanistic knowledge, CM data, and damage
evaluation formulas.

Fig. 1. Component health degradation curve.

Fig. 2. WT PHM architecture.

2) Data-Driven Models: Aim at transforming the data pro-
vided by CM into relevant models of the degradation’s
behavior rather than a physical understanding of the
failure processes.

Finally, a proper maintenance approach can be sched-
uled based on the anticipated RUL. Different types of WT
maintenance are corrective, preventive, and condition-based
maintenance (CBM) [27], [28]:

1) Corrective maintenance is conducted after a failure
occurs to restore the component to a condition to be
able to perform its required purpose.

2) Preventive maintenance is carried out preventively on a
scheduled time interval without any prior knowledge of
the time to failures.

3) CBM is performed before an occurrence of a failure
based on the condition of the component. As shown
in Fig. 2, the essential factors of practical CBM are
data acquisition, data processing, and decision-making,
i.e., the recommendation of maintenance processes
through diagnostics and prognostics [29].
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TABLE I

PM VERSUS CM

C. Contributions

Although there have been seminal efforts that provide
state-of-the-art reviews on WT CM, fault diagnostics, and
maintenance scheduling [28]–[40], as well as a few reviews on
individual WT component prognostic [41]–[43], the authors
are not aware of any comprehensive reviews on WT prog-
nostics. This article presents a prognostic literature review of
the most critical components, including gearboxes, generators,
blades, and the most critical subcomponent, i.e., bearings. The
main contributions of this work are summarized as follows.

1) This article corresponds to the first comprehensive sur-
vey on WT prognostics that gathers, analyses, and
separately classifies common failures for various parts
of WTs. In each component, failures can be initiated by
a combination of priory factors. These factors are further
analyzed to determine the roots of any failures.

2) A review of the most recent literature on WT prognostics
in component and subcomponent levels is presented.
The main approaches to WT prognostics associated with
their pros and cons are provided. An effort to deepen
the insight into weaknesses of the existing techniques
is made, and possible future research directions for
research are also discussed.

The work is organized as follows. Section II describes
various failures in WT components. Section III illustrates the
prognosis definition and provides a thorough review of the
WT assemblies’ prognosis. In Section IV, a specific problem
on prognostics of critical WT components is illustrated to
give a brief idea of the practical applications related to the
WT prognostic field. Section V concludes this article with an
emphasis on future research challenges.

II. CRITICAL WT COMPONENTS FAILURES

WTs have assembled integrations of several components,
subjected to various failure modes due to harsh environmental
and operating conditions. Fig. 3 displays the main components
of WTs and some corresponding bearings. In this research
work, we review the failure modes of gearboxes, generators,
blades, and bearings.

A. Gearbox Failures

Bearing damage, gear damage, leaking oil, broken shaft,
and insufficient oil cooling are the typical defects observed

Fig. 3. Main components of WTs and some corresponding bearings.

Fig. 4. Gearbox planetary tooth failure [47].

in WT gearboxes. The WT gearboxes’ failures are due to a
combination of several factors, such as crack initiation and
propagation, surface fatigue, surface wear, structural fatigue,
and loss of lubrication [44]. It is worth noting that bearing
failures are detected as the majority of the gearbox failures
due to white structure flaking, scuffing, and micropitting [45],
[46]. Fig. 4 exhibits tooth crack, detected on a WT gearbox
planetary in a wind farm located in Southwestern Ontario
in 2013 [47].

B. Generator Failures

Common WT generator failures are as follows:

1) Fluting (a Typical Bearing Fault in Electric Drivetrain)
[48]: It is caused by the prolonged passage of relatively
small electric current, usually due to current leakage.

2) SW Insulation Breakdown [49]: It is caused by mechan-
ical stress, contamination, electrical, and thermal stress.
Fig. 5 shows a visual inspection of a WT generator
SW insulation fault, occurred in a wind farm located
in Southwestern Ontario in 2015 [50].

3) Rotor Electrical Asymmetry [51]: It is caused by the ris-
ing resistance or open circuit of the brush-gear circuits.
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Fig. 5. Generator SW insulation fault [50].

Fig. 6. Blade erosion (a) and crack (b) [56].

These failures may lead to prolonged torque pulsation,
unbalances in the air-gap flux and phase currents, reduced
average torque, excessive heating in the winding, increased
losses, and diminished inefficiency [52].

C. Blade Failures

WT blades regularly function in severe environmental con-
ditions, including air salinity, wind gusts, water inclusions, air
pollution, atmospheric oxidation, icing, and sand particle ero-
sion [53]. These conditions can excite several damage types,
including adhesive joint failure between skins along leading
and/or trailing edges, adhesive debonding, fiber and laminate
failure, delamination, blade deformation, and growth of cracks
in the gel-coat [54]. Besides, there can be catastrophic blade-
tower collisions that lead to the collapse of the whole turbine
[55]. Fig. 6 displays blade erosion and crack, investigated,
analyzed, and detected by Rezamand et al. [56].

D. Bearing Failures

WT bearings can be subject to defects induced by corro-
sive, high-speed, and high-temperature operating conditions.
The performance degradation of a bearing is a continuous
irreversible process. Once the bearing is placed in its housing,
there are certain expectations of long-term healthy service life.
Eventually, minor early faults can arise that grow gradually
at the initiation. Then, a major bearing failure in WTs can
cause catastrophic downtime due to time-consuming reactive
maintenance practices. Such lost production directly affects the
wind farm bottom line [57]. Bearing defects can be categorized
into two groups, including distributed and single-point defects.
The distributed defect is characterized by degradation over
large areas of the surface, which becomes rough, irregu-
lar, or deformed. A typical example is the overall surface
roughness caused by contamination or lack of lubricant. This
type of fault is difficult to identify by distinct frequencies.
On the contrary, a single-point defect is localized and can
be defined by specific frequencies that typically appear in
the machine vibration. A typical example of a localized
defect is a pit or spall. According to which component of

Fig. 7. Rolling bearing subcomponents.

Fig. 8. Rolling element surface wear [60].

the bearing affected, as shown in Fig. 7, the single point
defects can be categorized into the inner raceway, outer
raceway, rolling element, and cage defects [58], [59]. Fig. 8
indicates severe rolling element surface wear of a WT main-
shaft bearing, caused by outer raceway failure, investigated by
Rezamand et al. [60].

III. REVIEW OF WT PROGNOSIS

The main goal of prognosis is to evaluate how long a faulty
component can work under reliable operating conditions, still
achieving desired performance metrics [61]–[63]. Data-driven
methods that transform historical data into relevant models of
the degradation’s behavior are widely used in WT prognosis
due to the existence of historical wind farm data. However,
a complete set of failure data based on all operating conditions
is required to develop accurate data-driven prognosis methods
[64].

WT prognosis methods are categorized into physics-based,
AI-based, stochastic-based, and hybrid prognostic techniques,
and a comprehensive review of the most recent literature on
critical WT components and subcomponents is discussed for
each group in the following.

A. Physics-Based Prognostic Methods

Physics-based prognostic methods attempt to construct
mathematical models to describe failure modes physics, such
as spall progression and crack growth. To do so, first, system
and subsystem configurations, material specification, and after-
treatment processes are defined. Then, potential failure modes
and their causes in terms of the failure physics are identified
at the individual component level, associated with operat-
ing and environmental conditions under which the failure is
prone to occur. [65], [66]. Robust physics-based techniques
comprise Paris’ law crack growth modeling [67], Paris’ law
crack growth modeling with FEA [68], the Forman law crack
growth modeling [69], fatigue spall initiation and progression
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model [70], contact analysis for bearing prognostics [71], and
stiffness-based damage rule model [72].

Gray and Watson [73], first, identified different failure
modes, their causes, and the damaging operating conditions
of WT gearboxes. Afterward, they proposed a prognostic
approach based on a mathematical model, as shown in Algo-
rithm 1, for WT gearbox damage calculation for a specific
failure mode, bearing high cycle fatigue due to edge load-
ing. The experimental study on six WTs experiencing severe
gearbox failure among 160 WTs, recorded as heavy debris in
lubricating oil, revealed the efficacy of the proposed method.
Breteler et al. [74] proposed a generic physics-based diag-
nostics and prognostics for WT gearbox for a specific failure
mode, helical gear tooth fault due to bending fatigue during
misalignment. This study employs an FEA model to estimate
bending stress based on the gear geometry and an averaged
misalignment value, obtained through laser measurements of
three-year WT operation. Next, the gear tooth damage is
projected by employing the Palmgren–Miner rule [see (5)] and
degradation trend analysis. Although the proposed method was
not able to detect misalignment continuously, its robustness
was shown, predicting a 20-year lead time to gear fault due
to bending stresses.

Zhu et al. [75], [76] derived physical models, including
viscosity and dielectric constant, both as functions of tem-
perature and particle contamination to determine the mathe-
matical relationship between lubrication oil deterioration and
particle contamination level. Then, a PF was implemented
for lubrication oil RUL prediction. The experimental lab
results confirmed the capability of the kinematic viscometer
and dielectric sensor in lubricant deterioration monitoring
and RUL prediction. The studies provided discussions on the
potential application of the given approach for WT gearbox
health indication and RUL prediction. Grujicic et al. [77]
employed FEA for fatigue life prediction of WT gearbox
with a specific failure mode, helical-gear, tooth-bending, high-
cycle fatigue under varying operating conditions. For this aim,
two regimes of fatigue crack initiation (treated as a strain-
controlled short cycle process) and growth (treated as a stress-
controlled process) were discussed and modeled. The results
indicated that gear misalignment, under a constant transferred-
torque condition, can seriously reduce the service life of the
gearbox helical gear.

Florian and Sorensen [78] constructed a generic crack
propagation model based on Paris’ law approach for RUL
prediction of a WT blade, subjected to variable loading over
20 years. Several series of 10-min simulations were conducted
to establish the load cycle distribution as a function of the
environment. It employed an aeroelastic simulator, covering
all operational wind bins of the turbine. Finally, the crack
growth in the bond line was determined based on the load
cycles applied to the blade and the crack length, appropriating
a log-normal distribution. The experimental results on a 5-MW
turbine with a rated wind speed of 11.4 m/s were leveraged
for optimized maintenance scheduling.

Bechhoefer and Schlanbusch [79], first, applied bearing
envelope analysis to generate condition indicators, related to
bearing pass frequencies, and then, the condition indicators

Algorithm 1 Damage Model for Bearing High Cycle
Fatigue Due to Edge Loading [73]

1) Approximating the reaction of the contact forces at the
gear teeth (Freac) by assuming that mechanical and
electrical efficiencies are constant:

Freac = k1
P

w
(1)

where k1 is force scaling constant, P denotes generator
electrical power, and w is shaft rotational speed.
2) Estimating the effective bearing load (F):

F = Freac

1− δ (2)

where δ represents relative structure deformation.
3) Substituting δ = Freac

k2
in Eq. 2:

F = Freac

1− Freac
k2

(3)

where k2 is the stiffness constant.
4) Estimating the expected reduction in the bearing life
based on Lundberg-Palmgren rule:

N1/α = C

F
(4)

where N represents the number of shaft revolutions
before the failure, C is the specific dynamic load
capacity, and α equals 3 for ball bearings and 10

3 for
roller bearings.
5) Estimating the rate at which bearing damage
accumulates before the failure based on Palmgren-Miner
rule:

D =
K�

i=1

ni

Ni
(5)

where D represents high cycle fatigue damage, ni is the
number of cycles at load i , and K equals the number of
load magnitudes in the total spectrum of loads to which
the component is subjected. Note that D ≈ 1 when
failure is likely to occur.

were mapped to HIs. Finally, a simplification of Paris’ law
and KFs was employed to forecast the WT bearing RUL.
HIs have been applied as inputs to compute bearing RUL.
The results showed the efficacy of the proposed method.
A mathematical model, (6), was employed by Butler et al. [80]
to describe the progression of a WT main bearing degradation
using SCADA data, including hydraulic brake temperature,
blade pitch position, main shaft rotational speed, and hydraulic
brake pressure. This study applied a particle filtering technique
to address mathematical model and future load uncertainties
to the enhance WT main bearing RUL projection. Results
revealed strong evidence of failure with a 30-day lead time

x j = x j−1 + α1

exp
�−α2

t j

�
t2

j

+ α3exp(α4t j )+w j (6)
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where x j is the degradation state at time t j , the αk values
denote model parameters, tuned to fit the model to explain
particular behavior, and w j is a zero-mean Gaussian noise.
Teng et al. [81] proposed a physics-based approach based
on an improved Unscented PF to expect WT bearings RUL.
To implement this improvement, first, the particles in the PF
were replaced by the mean of the particles in the unscented
Kalman transform. Then, past known measurements were
utilized to determine the likelihood function of the current step.
Afterward, a modified resampling scheme using uniform distri-
bution was developed to overcome the particle degeneracy. For
RUL estimation, the degradation evolution of rolling bearings
was described as an exponential model ((7)). Experimental
results on three life-cycle bearings from WT high-speed shaft
indicated the effectiveness of the proposed method�

x j = exp(b j · j) · x j−1

z j = x j + σz
(7)

where x j describes the bearing state at the ( j)th step, b j

denotes the model coefficient, and z j is the measurement,
which can be the HI of rolling bearing. σz is the standard
deviation of measurement noise. Table II summarizes the
merits and limitations of physics-based prognostics.

This section provides strong evidence indicating that
physics-based prognosis techniques are capable of providing
accurate predictions with fewer data in comparison with data-
driven techniques if the physics of models remain consistent
across the component. However, physics-based models are
defect-specific and complex to develop.

B. AI-Based Prognostic Methods

AI-based prognostic methods, such as ANNs, DL, and
ANFIS, have been widely investigated in WTs.

ANNs estimate the RUL of a component using an input–
output representative pattern, known as a black-box model,
derived from observational data. ANNs provide a flexible tool
for learning and recognizing system failures due to their ability
to learn and generalize nonlinear relationships between input
data and output data [82]. Networks consist of nodes connected
in a layered format. A typical NN is comprised of a single
input layer, one or more hidden layers, and an output layer,
each including one or more nodes. Connections between the
nodes in adjacent layers are weighted. An activation function
is associated with each node that determines how information
is transferred to the following nodes. Estimated values of each
node’s function are then used as inputs to any subsequent
nodes [83], [84].

ANNs are capable of handling noisy and incomplete data.
Once they are trained, they can help with prediction and
generalization at a high rate [85], [86]. ANNs are practical and
efficient at modeling complex nonlinear systems. However,
they require a significant amount of data for training data
that should be representative of the real data range and its
variability [61]. ML is the procedure of constructing a model
that learns from data to discover an underlying set of patterns
to recognize relationships in data. Two main categories of ML
consist of supervised learning methods that project an output

variable based on labeled inputs and unsupervised learning
techniques that draw inferences from data based on unlabeled
inputs. In supervised learning, an algorithm is applied to learn
the mapping function from the input variable to the output
variable. Classification and regression are described under the
same category of supervised ML [15].

1) Classification is the process of determining a mapping
function to separate the input variables into multiple
categorical classes, i.e., discrete values. For this aim,
there are several steps to be taken, including data
preprocessing, classes equalization, feature extraction,
feature selection, classification model fitting, and cross-
validation.

2) Regression aims at the approximation of a mapping
function from the input variables to numerical or contin-
uous output variables. The correlation between features
and outputs is obtained by fitting regression models
when the system is in a healthy state. Whenever a new
block of data becomes available, it is compared with the
predicted healthy state, and if a deviation is observed
for multiple consecutive time intervals, then a detection
alarm is raised.

Note that if the features are fed into the trained model with
labels at future times, the solution is extended from diagnostics
to prognostics. DL, which is a class of ML based on ANNs
with representation learning, utilizes multiple layers to extract
higher-level features from data. DL structures include DNNs,
DBNs, RNNs, and CNNs [87]–[89]. The ANFIS method,
a combination of FL and NNs, constructs a hybrid intelligent
system and benefits from the potentials of both techniques,
including the simplicity and strength of NNs and the reasoning
of fuzzy systems. ANFIS forms a series of fuzzy if-then rules
with relevant membership functions to provide the specified
input–output pairs. The result contributes to a robust frame-
work for addressing practical classification problems [90]–
[92]. Table II summarizes the advantages and disadvantages
of aforementioned prognosis techniques.

1) AI-Based Prognostic Methods for WT Critical Com-
ponents: Hussain and Gabbar [93] compared a Nonlinear
Autoregressive model with Exogenous inputs (NARX) to
ANFIS for prognostics of WT gearbox health conditions.
For this aim, sun-spot activity data of the RWC Belgium
World Data Center for years 1749–2012 and vibration data of
the National Renewable Energy Laboratory from a planetary
gearbox inside a WT were practiced. Test results indicated that
NARX outperforms ANFIS in anticipation of the WT gearbox
prognostics. Chen et al. [94] introduced a priori knowledge
(APK)-based ANFIS approach to predict WT pitch faults RUL
based on the SCADA data. The automated APK-ANFIS was
able to accurately determine the WT pitch RUL within a
prognostic horizon of up 21 days with an optimal threshold
and a window size of 0.3 and 6, respectively. In another study,
Matthews et al. [95] indicated that ANFIS outperforms other
AI techniques, such as K-means clustering, fuzzy inference
system (FIS), ANN, and SOM in WT pitch RUL forecast.

Pan et al. [96] proposed an ELM optimized by an FOA
for WT gearbox RUL forecast. FOA-ELM predicted model
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TABLE II

SUMMARY OF CRITICAL WT COMPONENTS PROGNOSTIC METHODS

was trained on extracted HIs from vibration signals. Then,
the trained FOA-ELM predicted model was validated using an
accelerated life test. Experimental results indicated that FOA-
ELM is less time-consuming with higher accuracy compared
with PSO-ELM, BA-ELM, GA-ELM, and BFO-ELM.

2) AI-Based Prognostic Methods for WT Bearings: Artifi-
cial intelligent methods are widely applied for CM of rotating
machinery [97]. Malhi et al. [98] preprocessed vibration
signals from a defect-seeded rolling bearing using a continuous
wavelet transform. The preprocessed data were employed as
candidate inputs to an RNN and, then, were clustered for
effective representation into similar stages of bearing defect
propagation. Analysis indicated that the proposed method is
more accurate than the traditional incremental training tech-
nique in predicting bearing defect progressions. An approach
to predict the RUL of bearings in WT gearbox was proposed

by Teng et al. [99]. They took an ANN to train data-driven
models and predict short-term tendencies of feature series.
By combining the predicted and training features, a polynomial
curve reflecting the long-term degradation process of bearings
was fit. By determining the intersection between the fit curve
and the predefined threshold, the RUL was deduced. The
results showed that the combination of the time and frequency
features leads to more accurate prognostic results than those
available from the individual features.

Xie and Zhang [100] developed a prognosis scheme employ-
ing an ESN and RMLP, based on the vibration signal of
rotating machinery. Both ESN and RMLP are functional forms
of an RNN. The experimental tests on faulty bearings demon-
strated that these prognostic methods enhance the bearing
performance forecast within a relatively short time interval and
even with limited data availability. Guo et al. [101] examined

Authorized licensed use limited to: Universidad de chile. Downloaded on December 08,2020 at 20:27:00 UTC from IEEE Xplore.  Restrictions apply. 



9314 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 69, NO. 12, DECEMBER 2020

six related-similarity features and eight time–frequency fea-
tures to create an original feature set that exhibited rich
degradation signatures of bearings. Correlation metrics were
then employed to choose the most appropriate fault features.
Finally, the selected features were combined into RNN-based
HI (RNN-HI) for the RUL prediction of bearings. The perfor-
mance of the RNN-HI was validated through two experimental
bearing data sets. The results indicated the ability of RNN-
HI to obtain better performance than a self-organization map-
based method.

A study of the WNN classifier bearing fault diagnosis was
presented by Karim and Abderrazak [102]. In this work,
the statistical features of vibration signals, such as standard
deviation, kurtosis, and wavelet energy, were employed as
input to an ANN classifier. The results showed that these
parameters could be applied as an operational status indicator
to distinguish between a safe operational mode and a defective
one. Kramti et al. [103] developed an ENN architecture for
RUL prediction of an HSSB utilizing real data provided
by the Green Power Monitoring Systems in the USA. For
this aim, prognosability and monotonicity characteristics were
employed to select the best features as inputs to ENN. The
proposed method indicated precise forecast ability even with
noisy signals and severe environmental conditions. A two-
stage approach using DNN was proposed in Xia et al. [104]
to estimate the RUL of bearings. A denoising autoencoder-
based DNN was employed to classify the acquired signals into
different degradation states. Then, regression models based on
shallow NNs were constructed for each health state. The pro-
posed approach obtained satisfactory prediction performance
on a real bearing degradation data set with different working
conditions.

Li et al. [105] proposed an intelligent RUL prediction
method based on DL. Multiscale feature extraction was exe-
cuted using the CNN method. It was shown that related
network structures without multiscale feature extraction, such
as single scale-low and single scale-high, are less able to
capture the degrading behavior, especially in the late stage
near to failure. Despite the promising prognostic experimental
results achieved by the proposed method on an accelerated
aging platform PRONOSTIA of rolling bearings, it was noted
that adequate labeled data were demanded to initialize and
train the proposed DNN. Deutsch and He [89] developed a
DL-based method through the combination of a DBN and an
FNN algorithm for RUL forecasting of rotating equipment.
The proposed DBN FNN algorithm benefits from the feature
learning ability of the DBN and the prediction power of the
FNN. The test result indicated the promising RUL predic-
tion performance of the DL-based DBN FNN. An HI-based
HGRUN was proposed by Li et al. [106] for rolling bearing
health prognosis. The HGRUN was formed by stacking various
hidden layers. The open experimental bearing data were prac-
ticed to validate the capacity of the proposed approach. The
results proved that HGRUN outperforms the other techniques,
including BP NN, SVM, and basic DBN.

A machine condition prognosis approach based on ANFIS
was proposed by Chen et al. [107] to model a fault propagation
trend. The high-order particle filtering was then employed to

carry out the prediction. The results of experimental data from
a faulty bearing demonstrated a higher prediction accuracy
compared with RNNs. Cheng et al. [108] introduced a case-
based data-driven prognostic framework using the ANFIS.
First, large historical data were processed to build an ANFIS
model-case library. Then, the prognosis of a new machinery
system was implemented by applying the suitable ANFIS
model extracted from the model-case library. In simulation
tests, it was shown that the prognostic framework has better
accuracy compared with the traditional data-driven systems.
Soualhi et al. [109] proposed a time-series forecasting model,
NFN, to predict the degradation of bearings. The NFN is an
intelligent tool that contributes to modeling complex systems
by the simplicity of its structure. The rms extracted from
vibration signals was employed as an input of the NFN in
order to determine the growth of the bearing’s degradation in
time. A comparative study between the NFN and ANFIS was
conducted to evaluate their prediction capabilities.

This section confirms the AI’s robustness in the prognostic
modeling of WTs. However, a large amount of data over a
wide range of operating conditions is required to train the
prognostic model to achieve reasonable prediction accuracy,
which, often, in practice, is limited, especially for com-
plex systems. Moreover, the review on AI-based techniques
indicates the highest accuracy in RUL prediction of WT
components compared with conventional prognosis methods,
including NARX, HGRUN, FOA-ELM, ANFIS, NFN, ESN,
and RNN. The details are shown in Table III.

C. Stochastic-Based Prognostic Techniques

In this section, stochastic prognostic techniques are intro-
duced, and various studies on the stochastic prognosis of
critical WT components and bearings are reviewed.

ARFs employ a pdf to determine the times to failure
of a population of machine component/failure modes [61].
The Bayesian networks are a type of probabilistic open-
chain graphical model for estimating probabilities [110]. The
Bayesian network is comprised of nodes that correspond
to random variables that can take on distinct states. These
are connected by directional arcs representing conditional
dependencies between nodes [111]. The Bayesian network
can be utilized to assess the likelihood of different scenarios
being the root cause of an event or, in the case of time-series
modeling, determine probabilities associated with a particular
future event. The most common Bayesian techniques used in
engineering prognostics consist of the Markov models, KFs,
and PFs.

The Markov models aim at estimating probabilities of future
failure by determining probabilities associated with each state
and probabilities associated with transitioning from one state
to another. A primary characteristic of all Markov models
is that future states are only dependent on the immediately
prior state. For Markov prognostic purposes, the following
assumptions are considered [61].

1) Transition probabilities are independent of time (i.e.,
a constant failure rate).
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2) The waiting time in a distinct state has an exponential
trend.

3) The sum of all transition probabilities for leaving one
state and entering different states must be equal to one.

On the other hand, the semi-Markov models assume that the
time spent in a particular state can be attributed to any distrib-
ution. This implies that the sum of probabilities for each state
transitioning into other different states can be less than one.
Thus, they are more advantageous for predicting RUL than
traditional Markov chains. Despite Markov and semi-Markov
models’ explicit flexibility in modeling a number of various
system designs and failure scenarios, the primary drawback is
the underlying assumption of a constant failure rate, which
is quite idealistic [112], [113]. This can be addressed by
employing the hidden and semihidden Markov variants.

HMM and SHMM are an extension of Markov chains
in which not all states are directly observable. Thus, corre-
sponding transition probabilities are not directly assignable.
An HMM is characterized by the number of model states,
the number of distinct observation symbols per state, a state
transition probability distribution, an observation symbol prob-
ability distribution, and an initial state distribution [61]. The

stochastic model is trained with failure data to overcome the
lack of transition information to and from hidden states. The
main benefit of HMM is its capability in the modeling of both
spatial and temporal phenomena, so the time-series data can
be analyzed without a physical understanding of the failure,
so long as enough data are available for training. A weakness
of all forms of the Markov model is that it is computationally
expensive, even for the simplest models with few states. The
number of calculations to evaluate how well the model fits the
observation data set is proportional to the number of states
squared [114].

KFs are recursive processing methods applied to determine
the unknown state of a dynamic system from a set of noisy
measurements based on mean squared error minimization. The
KF accomplishes this goal through linear projections. These
are based on the assumption that process noise and measure-
ment noise are Gaussian, white, independent of each other,
and additive [61]. PFs are alternatives to KF for determining
the posterior distribution. These are not restricted by linear-
ity or Gaussian noise assumptions. They are especially helpful
with conditions where the posterior distribution is multivariate
and nonstandard. While KFs determine the posterior PDF
by extrapolating from the previous state, PFs use sequential
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importance sampling (SIS) to predict the entire next state in
every iteration of the filter [61]. Table II summarizes the
advantages and disadvantages of aforementioned prognosis
techniques.

1) Stochastic-Based Prognostic Techniques for WT Critical
Components: Rezamand et al. [115] employed the Weibull
life data analysis to predict the reliability of a population
of generators and ALTA life data analysis to indicate how
electrical loads may affect turbine generator reliability based
on truncated wind farm data records. The naive prediction
interval procedure was also applied to provide an approxi-
mate interval for the remaining life of individual generators.
The experimental results indicated that NLRR outperforms
MLE in parameter estimation of generators’ failure distrib-
ution models. This study provided efficient insight into the
reliability of WT generators. Fan et al. [116] introduced a
framework based on PF for the WT gearbox RUL forecast. The
framework determined the posterior probability distribution,
i.e., the evolution of the system model and the state vector. The
experimental result on a 1.5-MW WT using gearbox vibration
data confirmed the efficacy of the PF method in the RUL
prediction of gearboxes.

2) Stochastic-Based Prognostic Techniques for WT Bear-
ings: Hong and Zhou [117] proposed a robust Bayesian ML
method called GPR for bearing degradation evaluation. From
the test results, it was shown that the GPR model applica-
tion in bearing prognosis could achieve higher performance
compared with the WNN. Since covariance function is the
key factor GPR properties controls, three covariance functions,
including SE, RQ, and composite, were also compared in this
study. It was illustrated that the composite covariance function
outperformed SE and RQ covariance functions.

Kundu et al. [118] proposed a WAFTR model for the RUL
projection of WT bearing under the effect of the multiple
operating conditions. The study confirmed the efficacy of
the WAFTR model when including operating condition data.
A fault diagnosis using an HMM method was developed
for rolling bearings in Zhang and Kang [119]. Afterward,
the prognosis was further implemented based on an HHMM.
Their research work indicated that the accuracy of the method
depended on the sample size of historical data. In [120],
a multisensor HSMM was proposed, which is an extension
of classical HSMMs. Experimental results revealed that the
prognostic method was promising to achieve more reliable
performance than classical HSMMs.

Singleton et al. [121] applied an EKF for anticipating
the RUL of bearings. For this purpose, an affine function
that best approximates the fault degradation is utilized to
learn the parameters of the EKF. Then, the learned EKF
is examined to forecast the RUL of bearing faults under
different operating conditions. Bearing vibration data from
the “PRONOSTIA platform,” an experimental platform for
bearings accelerated degradation tests, were applied to the pro-
posed algorithm. It showed the convergence of the algorithm
in different conditions. Lim and Mba [122] introduced SKF
for the FDP of a gearbox bearing. For this purpose, it was
presumed that the degradation trend would grow through time,
and the various deterioration processes were modeled using

a KF each. The SKF would then practice various models.
Then, the most probable one would be selected from the
CM data through the employment of the Bayesian estimation
for the RUL forecast. The experimental results showed that
the developed approach was a promising tool to improve
maintenance decision-making.

Mohammad et al. [123] presented a statistical method to
predict WT bearing states by using the Bayesian inference
of WT bearing temperature residuals and Gaussian processes.
Evaluated on a limited set of time series, it was confirmed
that the approach was capable of bearing failure prediction
one month in advance. A stochastic modeling method, based
on interacting multiple model techniques and PF for RUL
prediction of bearing, was proposed by Wang and Gao [124].
For this aim, a set of PF modules run in parallel with
generating several models for different fault modes. Due to the
close representation of each model to system behavior under
every fault mode, the process noise for each model was highly
reduced, and thus, the prediction accuracy was improved.
Experiments were carried out on a customized bearing test rig
to illustrate the effectiveness of the proposed method compared
with traditional PF. Chen et al. [125] presented a generic PF-
based framework with application in bearing spalling FDP.
The results suggested that the system was capable of meeting
performance requirements.

Information provided in this section confirms the stochastic-
based prognostic potentials in the RUL prediction of WT
components due to their capability in modeling the uncertainty
inherent in the prediction horizon. The review on stochastic-
based techniques confirms the highest accuracy in RUL pre-
diction of WT bearings compared with conventional progno-
sis methods, including GPR, HHMM, Multisensor HSMM,
EKF, SKF, PF, and Generic PF. The details are presented
in Table IV.

D. Hybrid Prognostic Techniques

Hybrid prognosis methods are constructed using a combi-
nation of various prognostic approaches [126].

1) Hybrid Prognostic Techniques for WT Critical Com-
ponents: Djeziri et al. [127] presented a hybrid method
for investigation of prognosis and RUL prediction of WTs
subjected to multiple faults. First, the geolocation principal
was employed to project the WTs RUL. Then, the Euclidean
distances between the normal operation and faulty operation
clusters were calculated, and finally, the RUL is forecast as
the ratio of the Euclidean position and the moving speed of
the degradation. The experimental results on a 750-kW WT
showed the effectiveness of the proposed method in the RUL
prediction of critical WT components. Zhao et al. [128] intro-
duced a new health index, AOI, to estimate WT performance
deterioration and predict WT generator RUL. In this regard,
Zhao et al. [128] employed a density-based spatial clustering
of applications with noise to recognize abnormal data and
normal data from unlabeled historical SCADA data, an SVM
to categorize anomaly AOI and normal AOI in runtime, and
an ARIMA to analyze real-time AOIs for WT generator RUL
forecast. The experimental results illustrated that the presented
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scheme could provide the time to failure of WT generators for
maintenance scheduling.

Cheng et al. [129] proposed a combination of ANFIS
and PF to anticipate RUL of WT gearboxes utilizing current
signals. The proposed approach employed an ANFIS to learn
the state transition function of the extracted fault feature
and a PF to predict the gearbox RUL based on the trained
state transition function. Results illustrated that the ANFIS
outperforms the RNN in learning the state transition function
of the fault feature in the PF algorithm. Ding et al. [130]
expected WT gearbox fatigue crack propagation and remaining
life by explicitly examining varying external load. The pro-
posed approach integrated the physical gear model utilizing
FESA in modeling and accessible health state data. Finally,
RUL prediction was enhanced by updating the distribution
of the uncertain material parameter modeled in the crack
degradation process via the Bayesian inference. The case
studies demonstrated the efficacy of the introduced varying
load approach and its benefits compared with the constant load
approximation method.

2) Hybrid Prognostic Techniques for WT Bearings: Reza-
mand et al. [60] proposed an integrated prognosis method
based on signal processing and an adaptive Bayesian algo-
rithm to predict the RUL of WT bearings, as indicated in
Algorithm 2. Here, to improve the accuracy of RUL esti-
mation, OWA operator, which combined the RULs obtained
from various features, was employed. Two experimental case
studies confirmed that the proposed real-time fusion prognosis
approach achieved higher ARA in RUL prediction compared
with the Choquet integral fusion approach and the Bayesian
algorithm obtained from single-feature driven methods.

In [131], a combination of VM, LR, and ARMA/generalized
autoregressive conditional heteroscedastic (GARCH) models
was proposed to assess bearing failure degradation, as shown
in Fig. 9. The results confirmed the ability of the proposed
method for bearing failure degradation assessment.

Sun et al. [132] proposed an SVM-based model for bearing
prognosis. In this model, PCA was employed for feature
extraction from a vibration signal, and the SVM parameters

Fig. 9. Combination of VM, LR and ARMA GARCH for bearings RUL
estimation [131].

were optimized using PSO. The expected result based on
bearing run-to-failure experimental data confirmed that the
proposed model was more accurate L10 life formula, shown
in (14). Note that L10 is basic rating life, n denotes shaft
speed, C is basic dynamic load rating, P is equivalent dynamic
bearing load, and p expresses exponent of the life equation

L10 = 106

60n

�
C

P

�p

. (14)

Dong and Luo [133] developed an approach to determine
bearing degradation based on a combination of PCA and an
optimized LSSVM method, as shown in Fig. 10. First, PCA
was employed to decrease the dimension of the extracted
features. Then, the LSSVM model was formed and trained
based on the extracted features for bearing degradation trend
estimation. The PNN and the PSO were applied for the input
number of the model estimation and the LSSVM parameter
selection, respectively. The experimental results confirmed
the effectiveness of the methodology. A hybrid approach for
prognostics based on the LSSVR, and the HMM was proposed
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Algorithm 2 Bayesian-Based RUL Prediction [60]

1) A healthy data set is set: x (1), x (2), . . . , x (w−1)

2) A sliding window data as a training set with the
degradation trend is selected: x (w), x (w+1), . . . , x (z)

3) A failure criterion, FC is set using the mean (μ),
the standard deviation (σ ) of healthy data set, and the
coefficient of complete failure criteria (λq )

FC = μ+ λσ (8)

4) An optimal affine function of discrete-time t on the
training set, presented in step 2), is identified over a
sliding window with a length of z −w:

yt = m̂t + n̂ + et (9)

Where et is a Gaussian white noise error with zero mean
and variance σ 2, and m̂ and n̂ are the optimal affine
function estimated parameters.
5) The probability of failure p(Ft0+k) is estimated at
time t0 + k:

p(Ft0+k) = p(Ft0+k |Ht0:t0+k−1)p(Ht0:t0+k−1) (10)

where p(Ht0:t0+k−1) is the probability of staying healthy
until t0 + k − 1:

p(Ft0+k |Ht0:t0+k−1) = Q(
FC − yt0+k

σ
√

k + 1
) (11)

Probability p(Ft0+k |Ht0:t0+k−1) is known as likelihood
function, and can be estimated by using the standard
probability Gaussian distribution function (Q):

p(Ht0:t0+k−1) = [1− p(Ft0+1|Ht0)]
× · · · × [1− p(Ft0+k−1|Ht0:t0+k−2)]

(12)

6) RUL is calculated using the time of a complete failure
described as the component deficiency to accomplish its
tasks (tFailure) and the time at which prediction is made
(t0):

RU L = tFailure − t0 (13)

Note that based on the Gaussian distribution theory,
the failure probability sequences, p(Ft0+k) of the
prediction horizon k exhibit monotonic growth. The
tFailure of the system is determined at a time k where
the probability of failure is at its peak.

by Liu et al. [134]. Features extracted from vibration signals
were utilized for training HMMs. The LSSVR algorithm
was employed to predict feature trends. The predicted fea-
tures’ probabilities for each HMM were estimated using for-
ward or backward algorithms. Then, these probabilities helped
with determining future health states and anticipating the
RUL. Test results illustrated that the LSSVR/HMM approach
predicted faults before their occurrence.

Hong et al. [135] proposed a combination of WPD, EMD,
and SOM NN techniques, as shown in Fig. 11 for assessing

Fig. 10. Combination of PCA and LSSVM for bearings RUL estimation
[133].

Fig. 11. Combination of WPD, EMD and SOM NN techniques for bearings
RUL estimation [135].

the state of the bearing’s degradation and estimating the RUL.
An HI named CV was derived from the SOM network. The
results indicated that the CV could effectively identify the
degradation stage and help to estimate the RUL accurately.
Later, the CV change rate was used to classify degradation
stages into normal, slight degradation, severe degradation, and
failure stages. Then, the corresponding prognosis models are
chosen to determine the health trend and RUL. The proposed
hybrid approach enhanced accuracy when entering the severely
degraded stage compared with the traditional single method,
such as WNN [136].

Soualhi et al. [137] presented a prognostic methodology
that combines HMM, the multistep time-series prediction,
and the ANFIS for providing the imminence of the next
degradation state and estimating the remaining time before the
next degradation state. The experimental results showed the
proposed methodology potential for the detection, diagnosis,
and prognosis in roller bearings. A combination of simplified
fuzzy adaptive resonance theory map (SFAM) NN and WD
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Algorithm 3 SVR-Based RUL Using HHT HI [139]
1) Setting HI up to time j using HHT, and a time series
of observation extracted from this indicator:
X j = (x j , x j−q, x j−2q, x j−3q, . . . , x j−(n−1)q)
Note that q denotes the interval of the measure and
(n − 1) is the length of the series.
2) Determining the health indicator, x j+p at time j + p,
where p is the horizon of prediction.

x̂ j+p = f (x j , x j−q, x j−2q, x j−3q, . . . , x j−(n−1)q)

= f (X j ) (15)

Note that f (X j ) denotes the prediction model of the
time series X j .
3) Choosing the prediction model f (X j ) based on SVR

f (Xt ) = � = wT .�(Xt )+ b (16)

where

w =
n−1�
i=1

(α+i − α−i )�(xi ) (17)

b = �s − ε −
�
m∈s

(α+m − α−m )�(xm) ·�(xs) (18)

where s is the set of indices of the support vectors, �s

presents the class that represents the degradation state of
the bearing, � : x → �(x) denotes a nonlinear function
that projects the observation x into a higher dimensional
space, ε is a margin of tolerance, set to tolerate the
deviation of the regression from the real values, and
variables α+i and α−i are obtained by applying a
quadratic programming solver on Lagrange multipliers
presented in [139].
4) Estimating the RUL as the smallest of RULs deduced
by several x j+p

RUL
estimated

← min (RUL1,RUL2,RUL3, . . .) (19)

was developed by Ali et al. [138] for bearing prognosis. Exper-
imental results showed that the capability of the proposed
method to estimate the RUL of rolling element bearings based
on vibration signals.

Soualhi et al. [139] proposed a hybrid approach that com-
bined the HHT to extract feature indexes from raw vibration
signals, an SVM to detect the degradation states, and the
SVR to estimate the RUL of ball bearings. The experimental
results confirmed that the use of the HHT, SVM, and SVR
is a suitable strategy to enhance the detection, diagnosis, and
prognosis of bearing degradation. Their proposed prognostic
approach is shown in Algorithm 3. Wang et al. [140] proposed
a two-stage strategy prognosis including, first, estimation of
degradation by determining the deviation of extracted features
from a known healthy state and, then, estimating the RUL of
the bearing using an enhanced KF and an EM algorithm. The
results confirmed that their proposed approach could provide

Fig. 12. Combination of HMM and NAP bearing performance descending
evaluation [145].

higher estimation accuracy and narrower PDFs in comparison
with Gebraeel’s model [141] and Si’s model [142].

Zhao et al. [143] presented a feature extraction system for
vibration-based bearing prognosis using TFR and supervised
dimensionality reduction. A combination of TFR, GP, and
LBP was used to evaluate lifetime information represented
by highly dimensional features. The RULs are determined by
employing simple MLRs. The experimental results demon-
strated that the proposed method outperforms techniques
employing traditional statistical features and PCA. In [144],
a health index was proposed to detect bearing health states.
A nonlinear form was developed to track the bearings’ degra-
dation process, and an EKF was employed for the RUL
prediction. Test results showed that the advance warning of
bearing failure could be obtained, and ongoing maintenance
can be scheduled by identifying the anomaly successfully.

Jiang et al. [145] proposed an evaluation approach for bear-
ing performance degradation using a combination of HMM
and NAP, as shown in Fig. 12. It was illustrated that the
NAP could remove the impact of nuisance attributes, and
the new feature space calculated by the NAP was barely
affected by other interference occurring during operation. The
experimental results showed that their approach improved the
accuracy of the bearing performance assessment system.

A prognostic method based on vibration signals, includ-
ing health monitoring methodology for WT HSSBs, was
introduced by Saidi et al. [146] using an SK data-driven
approach. Based on the historical run-to-failure vibration data
analysis and SK indices, SVR was employed to implement
RUL prediction. Although it was shown that SK- derived
features could provide an early warning for bearing defects

Authorized licensed use limited to: Universidad de chile. Downloaded on December 08,2020 at 20:27:00 UTC from IEEE Xplore.  Restrictions apply. 



9320 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 69, NO. 12, DECEMBER 2020

and helped with the evaluation of bearing degradation, the pre-
dictions initially overestimated the RUL. Aye and Heyns
[147] proposed an optimal GPR, an integration of mean and
covariance functions, for capturing the bearing degradation
trend. The GPR also captured the irregularities within the
data and, subsequently, improved the RUL estimation for slow
speed bearings. The experimental outcomes indicated that their
model demonstrated improvement over simpler GPR models.

Lu et al. [148] proposed a prognostic algorithm applying a
combination of the VFF-RLS, an ARMA model. To demon-
strate the capability of the proposed methodology, the accuracy
of the prediction of the proposed model is examined utilizing
bearing experimental data compared with an ARIMA model
without adaptation. Results confirmed accurate predictions
of the hybrid prognostic method over the ARIMA model.
Elforjani et al. [149] proposed SIE as a new indicator to detect
individual types of early fault in real-world WT bearings.
This study indicated the ability of the proposed indicator to
accurately estimate the RUL for WT bearings in a combination
of RT and multilayer ANN models. The experimental results
demonstrated that SIE has an advantage over the other fault
indicators, such as CF and Kurtosis, if sufficient data are
provided.

Ahmad et al. [150] presented a hybrid method that
employed regression-based adaptive predictive techniques to
learn the degradation trend to project the RUL of a bearing.
The approach applied a gradient-based method to determine
the TSP accurately using linear regression analysis, which con-
tributes to relatively more accurate RUL predictions. A deep
feature optimization fusion method was proposed by Zhao and
Wang [151] to extract centrifugal pump bearing degradation
features from large amounts of vibration data. It benefited from
the capability of DNN in extracting highly abstracted features
that correlate well with bearing degradation. The detailed
experiments on real data sets showed that the developed
method has an advantage over other methods and creates
degradation trajectories with potential predictive capabilities,
therefore enhancing the accuracy of RUL prediction.

Wang et al. [152] predicted WT bearing RUL by employing
a combination of physical knowledge and statistical model
in the Bayesian framework. For this aim, first, an empirical
model for the spalling evolution based on Paris’ formula,
as shown in (20), was developed. Then, PF was developed as
a recursive numerical approach based on the sequential Monte
Carlo sampling technique to estimate the posterior pdf of the
state, as indicated in (21). The experimental results confirmed
that the proposed method was capable of inferring the hidden
defect state of the bearing from noisy measurement based on
the Bayesian inference and quantifying the uncertainty of the
RUL prognosis in a probabilistic manner

xt+1 =
�
x (1−m)

t + c(1− m)
	 1

1−m + ut (20)⎧⎪⎪⎨
⎪⎪⎩

Prediction: p(xt+1|zt ) =
M�

j=1

w
j
t p

�
xt+1

��x j
t
�

Update: w j
t+1 = w j

t p
�
zt+1

��x j
t+1

� (21)

where xt+1 represents the spalling area at time index t+1, ut

denotes the noise in the state evolving process, and the model
parameters c and m are initialized as unknown variables.
p(xt+1|zt ) represents the probability distribution at time t+1,
i is the index of a particle, M is the total number of particles,
and w j

t+1 denotes the weight of particle i at time t + 1.
Elforjani and Shanbr [153] employed the combination of

SVM regression, multilayer ANNs models, and GPR to esti-
mate the RUL of slow speed bearings by correlating features
with the corresponding natural wear throughout a series of
laboratory experiments. It was concluded that the NNs model
with a BP learning algorithm outperformed the other models
in predicting the RUL for slow speed bearings. This was
true when the appropriate network structure was chosen, and
enough data were provided. Qiu et al. [154] presented a
prognostic procedure by combining an HI and PF to determine
the bearing RUL. The process included applying the SIOS
algorithm to build the HI called SIOSI for bearing deteriora-
tion monitoring. Then, they assessed the initial degradation
point through an index calculated with a self-zero space
observer and predicted the bearing RUL using the SIOSI and
a PF-based algorithm that was aided by a degradation model.
Experimental results have shown that the bearing RUL could
be acceptably anticipated by the proposed method, and its
performance was superior to conventional prognostic methods.

Rezamand et al. [155] developed a hybrid approach for RUL
prediction of WT bearings under varying operating conditions.
For this aim, first, SCADA measurements are categorized into
two states of normal and aggressive using kernel fuzzy C-
means. Then, HMM and Viterbi were utilized to determine
the most likely switching between the states. Next, a DPM
is determined for each state based on extracted features from
vibration signals. Finally, different paths for future transitions
in the HMM were generated to define the most likely state in
which WT will operate in the future. For each path, the RUL
was forecast via adaptive Bayesian algorithm on defined DPMs
conditional to the projected state. RUL estimates of generated
paths were averaged to achieve an accurate RUL. Experimental
results on two bearings with outer and inner raceways failure
indicated the efficacy of the proposed approach.

Rai and Upadhyay [156] introduced a data-driven prognosis
approach based on an NARX NN model that utilized a
wavelet-filter technique for bearing RUL estimation. In time-
domain modeling, an NARX is a nonlinear autoregressive
model that has exogenous inputs. This implies that the model
links the current value of a time series to past values of the
same series and current and past values of the driving (exoge-
nous) series [157]. The proposed approach was comprised of
several steps, as shown in Fig. 13.

1) In order to boost the impulsive aspects of bearing signals
and enhance the quality of fault feature extraction,
the vibration signals provided by an experimental test
rig were preprocessed with the proposed wavelet filter.

2) To address the highly nonmonotonic behavior of the
extracted features due to the bearing degradation, an HI
based on MD criterion [158], [159] and CUMSUM chart
[160] was introduced.
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TABLE V

SUMMARY OF THE LITERATURE REVIEW ON HYBRID PROGNOSTIC METHODS
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Fig. 13. Flowchart for prognosis approach based on a NARX NN model in
association with a wavelet-filter technique for bearing RUL estimation [156].

3) The NARX NN was developed as a TDNN model, which
was trained by the introduced HI and bearing age as
inputs and bearing life percentage as output for bearing
RUL estimation.

The results confirmed that the proposed method could accu-
rately predict the RUL of bearings and outperformed the
application of the SOM-based indicator. Hu et al. [161]
presented a real-time performance degradation model based
on temperature characteristic parameters for prognosis of WT
bearings. Here, a combination of the Wiener process for estab-
lishing the performance degradation model, the MLE method
for obtaining the parameters of the developed model, and an
inverse Gaussian distribution approach for RUL prediction was
employed to achieve this. The comparison of the predicted
RUL and actual RUL revealed that the hybrid prediction
method was correct and effective.

Hemmer et al. [162] suggested a framework based on
three fault classifiers of CNN, SVM, and SA-based SVM
utilizing transfer learning. The effectiveness of the proposed
technique was examined employing vibration and acoustic
emission signal data sets from roller bearings with artificial
damage. The survey showed the ability of the combination
of a trained CNN and SVM for extracting features and
classification, respectively, in detecting faults in roller bearings
based on robustness, easy implementation, and computational
weight. However, the combination of a trained CNN and
SA for extracting features and then decreasing dimensions
of extracted features increased the computational weight and
complexity, as well as reducing the accuracy.

This section reveals how a combination of various WT
prognosis techniques can lead to higher accuracy compared
with individually employed prognosis methods. For instance,
ANFIS, a combination of FL and NNs, which benefits from
the simplicity and strength of NNs and the reasoning of fuzzy
systems, outperforms NNs in WT bearing RUL projection. The
details are shown in Table V.

IV. PROBLEM OF PROGNOSTICS IN CRITICAL WT
COMPONENTS

To provide a brief idea of the practical applications related
to the WT prognostic field, the authors propose a hybrid
approach based on the idea of [155] using both SCADA and
CM measurements for critical WT components prognostics in
the following steps.

1) First, SCADA data are utilized to determine the role
of operating and environmental conditions in which a
WT operates. To do so, a combination of a clustering
method, HMM, and Viterbi can be utilized to categorize
“n” DOSs (e.g., normal, mild, and aggressive for n = 3)
and determine the most likely switching between the
categorized states.
Algorithm 4 indicates the proposed HMM and Viterbi
approach [163], [164].

2) Then, different prognostic techniques, such as physics-
and regression-based methods, can be employed to iden-
tify a DPM for each state (“n” DPMs for “n” DOSs)
utilizing CM measurements (e.g., vibration signals for
bearings or temperature measurements for generators).
The Kalman-based or particle-filtering-based algorithms
need to switch between different DPMs as necessary
when estimating the current damage condition in the
system component.

3) Finally, for long-term prediction horizons, different
paths for future transitions in the HMM can be generated
to define the most likely state in which WT will operate
in the future. For each path, the RUL can be forecast
via prognostic techniques, such as an adaptive Bayesian
Algorithm, as shown in 2, on “n” defined DPMs con-
ditional to the projected state. Finally, RUL estimates
of generated paths are averaged to achieve an accurate
RUL.

V. CONCLUSION AND RESEARCH DIRECTIONS

This study provided a review of recent modeling develop-
ments for critical WT prognostics. Moreover, basic definitions
and elemental reliability concepts were discussed. The pros
and cons of each prognosis method were also highlighted. Our
review has revealed the following key findings.

1) WT hybrid prognosis techniques are now the leading
tools for critical WT components failure prediction
because of their higher accuracy over individual prog-
nosis methods.

2) WT physics-based prognostics provide the most accurate
predictions with fewer data compared with data-driven
techniques if the physics of models remain consistent
across the component. However, physics-based models
are defect-specific and complex to develop.

3) WT AI-based prognostics are capable of modeling com-
plex and nonlinear systems. However, a large amount
of data over a wide range of operating conditions is
required to train the prognostic model to achieve rea-
sonable prediction accuracy, which, often, in practice,
is limited, especially for complex systems.
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Algorithm 4 HMM and Viterbi
1) Let qt ∈ [s1, s2, . . . , sn] as the value of the hidden
state at time t
where n is the number of hidden states,
ot ∈ [v1, v2, . . . , vm ] is set as the observed state based on
measured sensor values, and m expresses the possible
number of the observed values corresponding to each
state
2) Probability distribution over states initialization:

π = (π1, π2, . . . , πn) (22)

3) Setting a transition probability matrix, A = (ai j ):

ai j = P(qt = si |qt−1 = s j ), 1 ≤ i, j ≤ n (23)

This indicates the probability that the state is s j at time
t − 1, conditional to, the state si at time t .
4) Setting a confusion matrix, B = (b jk):

b jk = P(ot = vk |qt = s j ), 1 ≤ j ≤ n, 1 ≤ k ≤ m

(24)

This indicates the probability that the hidden state is s j

with vk as the observed state.
5) Finding the most likely sequence of hidden states
Q = [q1, q2, . . . , qt ] using the system parameter
λ = (π, A, B) and the observation sequence
O = [o1, o2, . . . , ot ] as follows:
– Initialization:

δ1(i) = πi bio1ψ1(i) = 0, 1 ≤ i ≤ n (25)

– Recursion:

δt+1( j) = max
1≤i≤n

[δt(i)ai j ]b jot+1

ψt+1( j) = arg max
1≤i≤n

[δt (i)ai j ]b jot+1

1 ≤ t ≤ T, 1 ≤ j ≤ n (26)

– Computing States Sequences (with retrospect):

P(Q, O|λ) = max
1≤i≤n

δT (i), Qt−1 = ψt (Qt ), T ≥ t ≥ 1

(27)

4) WT stochastic-based prognostics are robust in the RUL
prediction of WT components due to their capability
in modeling the uncertainty inherent in the prediction
horizon of WT components.

5) AI-based techniques reach a higher RUL prediction
accuracy than conventional prognosis methods, includ-
ing NARX, HGRUN, FOA-ELM, ANFIS, NFN, ESN,
and RNN.

6) Stochastic-based prognosis techniques are more accurate
than conventional RUL estimation methods, including
GPR, HHMM, Multisensor HSMM, EKF, SKF, PF, and
Generic PF.

Beyond this, there are a number of challenges that merit
further study. We summarize them as follows and also include

the authors’ recommendations to address these challenges and
a specific problem on the practical applications related to
prognostics of critical WT components.

A. Challenges

1) Considering Operating Conditions in Monitoring Meth-
ods: Prognostic studies have largely been executed over
constant environmental (operating) conditions, and the
prognostic techniques are developed using monitoring
methods, such as vibration analysis [96], [98], [99],
[105], [139], [143], [146], [150]. However, it is vital
to consider varying operating conditions, which can
include environmental variables, such as wind speed
and ambient temperature. It should be recognized that
damage progression can be a function of the stress
and loading applied to components that subsequently
affect the RUL estimation, i.e., classification of operating
conditions based on the severity of an environmental
condition. To consider varying operating conditions,
the authors recommend categorizing DOSs in which a
WT component undergoes. For this aim, SCADA data
can be clustered using a robust clustering technique.
Then, a probabilistic-based technique can be utilized
to determine transitions between the categorized states
and predict the most likely state in which WT will
function. Recently, the authors attempted to consider this
by introducing a hybrid prognostic approach for RUL
prediction of WT bearings under varying operating con-
ditions [155] based on SCADA and CM measurements.

2) Investigating Component Interactions for the Prognosis
Task: Almost all studies reviewed were for individual
bearings [98]–[100], [131]–[133]. However, component
interactions should also be considered in the degra-
dation process (for instance, the interaction between
bearings and gears in a gearbox). More signal process-
ing procedures could also be applied to the machine
degradation process to differentiate bearing fault signals
from other component signals. The authors recommend
focusing future research efforts on the implementation
of the Bayesian processors, such as sequential Monte
Carlo methods, and novel model architectures for uncer-
tainty characterization and probabilistic characterization
of stress (either structural, mechanical, thermal, and
electrical) propagation between different components,
such as the stress-based model architecture constructed
in [165].

3) Applying Hybrid Methods for the Prognosis Task:
Hybrid methods use a combination of various prognosis
techniques, which can lead to higher accuracy compared
with individually employed prognosis methods [127]–
[133]. Hence, it is beneficial to construct more hybrid
methods to continue to achieve improved accuracies.

4) Application of Bayesian Methods: The Bayesian
approaches intrinsically consider probability theory,
which may be more appropriate for RUL prediction
due to the probabilistic characteristics of the RUL task
[60], [117], [122], [123], [130], [152], [155]. Therefore,
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additional emphasis should be applied to the Bayesian
style of analysis.

5) Physics-Based Methods Merits to WT Prognostics:
There have been a few studies on the application of
physics-based methods for the WT prognosis task [73]–
[81]. However, the approach is robust in prognostics
because of resulting in higher accuracy if the physics
of models remain consistent across the component and
requiring fewer data compared with data-driven meth-
ods. Hence, it is beneficial to apply additional emphasis
on developing a mathematical model for each WT
component failure mode.

ACKNOWLEDGMENT

This work was a part of the YR21 Investment Decision
Support Program.

REFERENCES

[1] J. Lee and F. Zhao, “Global wind report 2019,” Global Wind Energy
Council, Brussels, Belgium, Tech. Rep. 3, 2020.

[2] J. Carroll, A. McDonald, and D. Mcmillan, “Failure rate, repair time
and unscheduled O&M cost analysis of offshore wind turbines,” Wind
Energy, vol. 19, no. 6, pp. 1107–1119, Jun. 2016.

[3] M. Shafiee and F. Dinmohammadi, “An FMEA-based risk assessment
approach for wind turbine systems: A comparative study of onshore
and offshore,” Energies, vol. 7, no. 2, pp. 619–642, Feb. 2014.

[4] B. Hahn, M. Durstewitz, and K. Rohrig, “Reliability of wind turbine–
experiences of 15 years with 1500 WTs,” Institut für Solare Energiev-
ersorgungstechnik (ISET), Hesse, Germany, Tech. Rep., 2005.

[5] P. J. Tavner, D. M. Greenwood, M. W. G. Whittle, R. Gindele,
S. Faulstich, and B. Hahn, “Study of weather and location effects on
wind turbine failure rates,” Wind Energy, vol. 16, no. 2, pp. 175–187,
Mar. 2013.

[6] A. Stenberg and H. Holttinen, “Analysing failure statistics of wind
turbines in Finland,” in Proc. Eur. Wind Energy Conf., Apr. 2010,
pp. 20–23.

[7] B. S. Nivedh, “Major failures in the wind turbine components and the
importance of periodic inspections,” Wind Services, UL India PVT
LTD., Bengaluru, India, Tech. Rep., 2014.

[8] H. D. M. de Azevedo, A. M. Araújo, and N. Bouchonneau,
“A review of wind turbine bearing condition monitoring: State of the
art and challenges,” Renew. Sustain. Energy Rev., vol. 56, pp. 368–379,
Apr. 2016.

[9] N. Chen, R. Yu, Y. Chen, and H. Xie, “Hierarchical method for wind
turbine prognosis using SCADA data,” IET Renew. Power Gener.,
vol. 11, no. 4, pp. 403–410, Mar. 2017.

[10] N. M. Vichare and M. G. Pecht, “Prognostics and health management
of electronics,” IEEE Trans. Compon. Packag. Technol., vol. 29, no. 1,
pp. 222–229, Mar. 2006.

[11] H. Alian, S. Konforty, U. Ben-Simon, R. Klein, M. Tur, and
J. Bortman, “Bearing fault detection and fault size estimation using
fiber-optic sensors,” Mech. Syst. Signal Process., vol. 120, pp. 392–407,
Apr. 2019.

[12] S. Sheng and W. Yang, “Wind turbine drivetrain condition monitoring-
an overview (presentation),” Nat. Renew. Energy Lab., Golden, CO,
USA, Tech. Rep. NREL/PR-5000-58774, 2013.

[13] W. Yang, P. J. Tavner, C. J. Crabtree, Y. Feng, and Y. Qiu, “Wind
turbine condition monitoring: Technical and commercial challenges,”
Wind Energy, vol. 17, no. 5, pp. 673–693, May 2014.

[14] S. Sheng, “Prognostics and health management of wind turbines—
Current status and future opportunities,” in Probabilistic Prognostics
and Health Management of Energy Systems. Cham, Switzerland:
Springer, 2017, pp. 33–47.

[15] A. Stetco et al., “Machine learning methods for wind turbine con-
dition monitoring: A review,” Renew. Energy, vol. 133, pp. 620–635,
Apr. 2019.

[16] C. Warren, C. Niezrecki, and P. Avitabile, “Optical non-contacting
vibration measurement of rotating turbine blades II,” in Structural
Dynamics and Renewable Energy, vol. 1. Cham, Switzerland: Springer,
2011, pp. 39–44.

[17] J. Baqersad, P. Poozesh, C. Niezrecki, and P. Avitabile, “A noncon-
tacting approach for full-field strain monitoring of rotating structures,”
J. Vib. Acoust., vol. 138, no. 3, Jun. 2016.

[18] F. X. Ochieng, C. M. Hancock, G. W. Roberts, and J. Le Kernec,
“A review of ground-based radar as a noncontact sensor for structural
health monitoring of in-field wind turbines blades,” Wind Energy,
vol. 21, no. 12, pp. 1435–1449, Dec. 2018.

[19] R. Wu, D. Zhang, Q. Yu, Y. Jiang, and D. Arola, “Health monitoring
of wind turbine blades in operation using three-dimensional digital
image correlation,” Mech. Syst. Signal Process., vol. 130, pp. 470–483,
Sep. 2019.

[20] W. Luo, J. Li, X. Ma, and W. Wei, “A novel static deformation mea-
surement and visualization method for wind turbine blades using home-
made LiDAR and processing program,” Opt. Lasers Eng., vol. 134,
Nov. 2020, Art. no. 106206.

[21] A. Khadka, B. Fick, A. Afshar, M. Tavakoli, and J. Baqersad, “Non-
contact vibration monitoring of rotating wind turbines using a semi-
autonomous UAV,” Mech. Syst. Signal Process., vol. 138, Apr. 2020,
Art. no. 106446.

[22] Y. Du, S. Zhou, X. Jing, Y. Peng, H. Wu, and N. Kwok, “Damage
detection techniques for wind turbine blades: A review,” Mech. Syst.
Signal Process., vol. 141, Jul. 2020, Art. no. 106445.

[23] A. Heng, S. Zhang, A. C. C. Tan, and J. Mathew, “Rotating machinery
prognostics: State of the art, challenges and opportunities,” Mech. Syst.
Signal Process., vol. 23, no. 3, pp. 724–739, Apr. 2009.

[24] M. Jouin, R. Gouriveau, D. Hissel, M.-C. Péra, and N. Zerhouni,
“Prognostics and health management of PEMFC–state of the art and
remaining challenges,” Int. J. Hydrogen Energy, vol. 38, no. 35,
pp. 15307–15317, 2013.

[25] P. Tchakoua, R. Wamkeue, M. Ouhrouche, F. Slaoui-Hasnaoui,
T. Tameghe, and G. Ekemb, “Wind turbine condition monitoring: State-
of-the-art review, new trends, and future challenges,” Energies, vol. 7,
no. 4, pp. 2595–2630, Apr. 2014.

[26] F. P. G. Márquez, A. M. Tobias, J. M. P. Pérez, and M. Papaelias,
“Condition monitoring of wind turbines: Techniques and methods,”
Renew. Energy, vol. 46, pp. 169–178, Oct. 2012.

[27] G. D. N. P. Leite, A. M. Araújo, and P. A. C. Rosas, “Prognostic
techniques applied to maintenance of wind turbines: A concise and
specific review,” Renew. Sustain. Energy Rev., vol. 81, pp. 1917–1925,
Jan. 2018.

[28] Y. Merizalde, L. Hernández-Callejo, O. Duque-Perez, and
V. Alonso-Gómez, “Maintenance models applied to wind turbines. A
comprehensive overview,” Energies, vol. 12, no. 2, p. 225, Jan. 2019.

[29] E. Byon and Y. Ding, “Season-dependent condition-based maintenance
for a wind turbine using a partially observed Markov decision process,”
IEEE Trans. Power Syst., vol. 25, no. 4, pp. 1823–1834, Nov. 2010.

[30] Y. Amirat, M. E. H. Benbouzid, B. Bensaker, and R. Wamkeue,
“Condition monitoring and Ault diagnosis in wind energy conversion
systems: A review,” in Proc. IEEE Int. Electr. Mach. Drives Conf.,
vol. 2, May 2007, pp. 1434–1439.

[31] Z. Daneshi-Far, G. A. Capolino, and H. Henao, “Review of failures
and condition monitoring in wind turbine generators,” in Proc. 19th
Int. Conf. Electr. Mach. (ICEM), Sep. 2010, pp. 1–6.

[32] H. Badihi, Y. Zhang, and H. Hong, “A review on application of moni-
toring, diagnosis, and fault-tolerant control to wind turbines,” in Proc.
Conf. Control Fault-Tolerant Syst. (SysTol), Oct. 2013, pp. 365–370.

[33] M. J. Kabir, A. M. T. Oo, and M. Rabbani, “A brief review on offshore
wind turbine fault detection and recent development in condition
monitoring based maintenance system,” in Proc. Australas. Universities
Power Eng. Conf. (AUPEC), Sep. 2015, pp. 1–7.

[34] W. Qiao and D. Lu, “A survey on wind turbine condition monitoring
and fault diagnosis—Part I: Components and subsystems,” IEEE Trans.
Ind. Electron., vol. 62, no. 10, pp. 6536–6545, Oct. 2015.

[35] W. Qiao and D. Lu, “A survey on wind turbine condition monitoring
and fault diagnosis—Part II: Signals and signal processing methods,”
IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6546–6557, Oct. 2015.

[36] J. Tautz-Weinert and S. J. Watson, “Using SCADA data for wind
turbine condition monitoring—A review,” IET Renew. Power Gener.,
vol. 11, no. 4, pp. 382–394, 2016.

[37] W. Caesarendra and T. Tjahjowidodo, “A review of feature extraction
methods in vibration-based condition monitoring and its application
for degradation trend estimation of low-speed slew bearing,” Machines,
vol. 5, no. 4, p. 21, Sep. 2017.

[38] C. Li, J. V. de Oliveira, M. Cerrada, D. Cabrera, R. V. Sanchez, and
G. Zurita, “A systematic review of fuzzy formalisms for bearing fault
diagnosis,” IEEE Trans. Fuzzy Syst., vol. 27, no. 7, pp. 1362–1382,
Jul. 2019.

Authorized licensed use limited to: Universidad de chile. Downloaded on December 08,2020 at 20:27:00 UTC from IEEE Xplore.  Restrictions apply. 



REZAMAND et al.: CRITICAL WT COMPONENTS PROGNOSTICS: A COMPREHENSIVE REVIEW 9325

[39] H. Seyr and M. Muskulus, “Decision support models for operations
and maintenance for offshore wind farms: A review,” Appl. Sci., vol. 9,
no. 2, p. 278, Jan. 2019.

[40] S. Zhang, S. Zhang, B. Wang, and T. G. Habetler, “Deep learning
algorithms for bearing fault diagnosticsx—a comprehensive review,”
IEEE Access, vol. 8, pp. 29857–29881, 2020.

[41] N. Jammu and P. Kankar, “A review on prognosis of rolling element
bearings,” Int. J. Eng. Sci. Technol., vol. 3, no. 10, pp. 7497–7503,
2011.

[42] J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, and D. Siegel, “Prog-
nostics and health management design for rotary machinery systems—
Reviews, methodology and applications,” Mech. Syst. Signal Process.,
vol. 42, nos. 1–2, pp. 314–334, Jan. 2014.

[43] S. Baltazar, C. Li, H. Daniel, and J. Valente de Oliveira, “A review on
neurocomputing based wind turbines fault diagnosis and prognosis,”
in Proc. Prognostics Syst. Health Manage. Conf. (PHM-Chongqing),
Oct. 2018, pp. 437–443.

[44] B. Lu, Y. Li, X. Wu, and Z. Yang, “A review of recent advances in
wind turbine condition monitoring and fault diagnosis,” in Proc. IEEE
Power Electron. Mach. Wind Appl., Jun. 2009, pp. 1–7.

[45] X. Y. Zhong, L. C. Zeng, C. H. Zhao, J. Zhang, and S. Q. Wan,
“Research of condition monitoring and fault diagnosis techniques for
wind turbine gearbox,” Appl. Mech. Mater., vol. 197, pp. 206–210,
Sep. 2012, doi: 10.4028/www.scientific.net/amm.197.206.

[46] Y. Feng, Y. Qiu, C. J. Crabtree, H. Long, and P. J. Tavner, “Monitoring
wind turbine gearboxes,” Wind Energy, vol. 16, no. 5, pp. 728–740,
Jul. 2013.

[47] I. Zuccolin, “KEC T78 gearbox planetary failure report,” Kruger
Energy Inc., Montréal, QC, Canada, Tech. Rep. 12, 2013.

[48] J. Cibulka, M. K. Ebbesen, G. Hovland, K. G. Robbersmyr, and
M. R. Hansen, “A review on approaches for condition based main-
tenance in applications with induction machines located offshore,”
Model., Identificat. Control, vol. 33, no. 2, pp. 69–86, 2012, doi:
10.4173/mic.2012.2.4.

[49] G. Stone and J. Kapler, “Stator winding monitoring,” IEEE Ind. Appl.
Mag., vol. 4, no. 5, pp. 15–20, 1998.

[50] A. Parr, “MSD quality system documentation, MSD initial repair report
042214,” Kruger Energy Inc., Montréal, QC, Canada, Tech. Rep. 5,
2015.

[51] M. Zaggout, L. Ran, P. Tavner, and C. Crabtree, “Detection of
rotor electrical asymmetry in wind turbine doubly-fed induction gen-
erators,” IET Renew. Power Gener., vol. 8, no. 8, pp. 878–886,
Nov. 2014.

[52] L. M. Popa, B. B. Jensen, E. Ritchie, and I. Boldea, “Condition
monitoring of wind generators,” in Proc. 38th IAS Annu. Meeting Conf.
Rec. Ind. Appl. Conf., vol. 3, 2003, pp. 1839–1846.

[53] L. Cheng, J. Lin, Y.-Z. Sun, C. Singh, W.-Z. Gao, and X.-M. Qin,
“A model for assessing the power variation of a wind farm considering
the outages of wind turbines,” IEEE Trans. Sustain. Energy, vol. 3,
no. 3, pp. 432–444, Jul. 2012.

[54] M. Sundaresan, M. Schulz, and A. Ghoshal, “Structural health moni-
toring static test of a wind turbine blade,” Nat. Renew. Energy Lab.,
Golden, CO, USA, Tech. Rep. NREL/SR-500-28719, 2002.

[55] C. C. Ciang, J.-R. Lee, and H.-J. Bang, “Structural health monitoring
for a wind turbine system: A review of damage detection methods,”
Meas. Sci. Technol., vol. 19, no. 12, Dec. 2008, Art. no. 122001.

[56] M. Rezamand, M. Kordestani, R. Carriveau, D. S.-K. Ting, and M. Saif,
“A new hybrid fault detection method for wind turbine blades using
recursive PCA and wavelet-based PDF,” IEEE Sensors J., vol. 20, no. 4,
pp. 2023–2033, Feb. 2020.

[57] S. Sankar, M. Nataraj, and P. V. Raja, “Failure analysis of bearing in
wind turbine generator gearbox,” J. Inf. Syst. Commun., vol. 3, no. 1,
p. 302, 2012.

[58] M. Blodt, P. Granjon, B. Raison, and G. Rostaing, “Models for
bearing damage detection in induction motors using stator current
monitoring,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1813–1822,
Apr. 2008.

[59] J. R. Stack, T. G. Habetler, and R. G. Harley, “Fault classification
and fault signature production for rolling element bearings in electric
machines,” IEEE Trans. Ind. Appl., vol. 40, no. 3, pp. 735–739,
May 2004.

[60] M. Rezamand, M. Kordestani, R. Carriveau, D. S.-K. Ting, and
M. Saif, “An integrated feature-based failure prognosis method for wind
turbine bearings,” IEEE/ASME Trans. Mechatronics, vol. 25, no. 3,
pp. 1468–1478, Jun. 2020.

[61] J. Z. Sikorska, M. Hodkiewicz, and L. Ma, “Prognostic modelling
options for remaining useful life estimation by industry,” Mech. Syst.
Signal Process., vol. 25, no. 5, pp. 1803–1836, Jul. 2011.

[62] M. Kordestani, M. F. Samadi, M. Saif, and K. Khorasani, “A new fault
diagnosis of multifunctional spoiler system using integrated artificial
neural network and discrete wavelet transform methods,” IEEE Sensors
J., vol. 18, no. 12, pp. 4990–5001, Jun. 2018.

[63] M. Kordestani, A. Zanj, M. E. Orchard, and M. Saif, “A modular
fault diagnosis and prognosis method for hydro-control valve system
based on redundancy in multisensor data information,” IEEE Trans.
Rel., vol. 68, no. 1, pp. 330–341, Mar. 2019.

[64] M. Kordestani, M. Saif, M. E. Orchard, R. Razavi-Far, and
K. Khorasani, “Failure prognosis and applications—A survey of
recent literature,” IEEE Trans. Rel., early access, Sep. 17, 2019, doi:
10.1109/TR.2019.2930195.

[65] A. Fatemi and L. Yang, “Cumulative fatigue damage and life prediction
theories: A survey of the state of the art for homogeneous materials,”
Int. J. Fatigue, vol. 20, no. 1, pp. 9–34, Jan. 1998.

[66] C. A. A. Magniez, “Combining information flow and physics-of-failure
in mechatronic products,” Technische Univ. Eindhoven, Eindhoven, The
Netherlands, Tech. Rep. 978-90-386-0925-6, 2007.

[67] Y. Li, T. R. Kurfess, and S. Y. Liang, “Stochastic prognostics for
rolling element bearings,” Mech. Syst. Signal Process., vol. 14, no. 5,
pp. 747–762, Sep. 2000.

[68] C. J. Li and H. Lee, “Gear fatigue crack prognosis using embedded
model, gear dynamic model and fracture mechanics,” Mech. Syst.
Signal Process., vol. 19, no. 4, pp. 836–846, Jul. 2005.

[69] C. H. Oppenheimer and K. A. Loparo, “Physically based diagnosis and
prognosis of cracked rotor shafts,” Proc. SPIE, vol. 4733, pp. 122–132,
Jun. 2002.

[70] R. F. Orsagh, J. Sheldon, and C. J. Klenke, “Prognostics/diagnostics
for gas turbine engine bearings,” in Proc. ASME Turbo Expo, Collo-
cated Int. Joint Power Gener. Conf., American Society of Mechanical
Engineers Digital Collection, 2003, pp. 159–167.

[71] S. Marble and B. P. Morton, “Predicting the remaining life of propul-
sion system bearings,” in Proc. IEEE Aerosp. Conf., Mar. 2006, p. 8.

[72] J. Qiu, B. B. Seth, S. Y. Liang, and C. Zhang, “Damage mechanics
approach for bearing lifetime prognostics,” Mech. Syst. Signal Process.,
vol. 16, no. 5, pp. 817–829, Sep. 2002.

[73] C. S. Gray and S. J. Watson, “Physics of failure approach to wind
turbine condition based maintenance,” Wind Energy, vol. 13, no. 5,
pp. 395–405, Aug. 2009.

[74] D. Breteler, C. Kaidis, T. Tinga, and R. Loendersloot, “Physics based
methodology for wind turbine failure detection, diagnostics & prog-
nostics,” in Proc. EWEA Annu. Event, 2015, pp. 1–9.

[75] J. Zhu, J. Yoon, D. He, B. Qiu, and E. Bechhoefer, “Online condition
monitoring and remaining useful life prediction of particle contami-
nated lubrication oil,” in Proc. IEEE Conf. Prognostics Health Manage.
(PHM), Jun. 2013, pp. 1–14.

[76] J. Zhu, J. M. Yoon, D. He, and E. Bechhoefer, “Online particle-
contaminated lubrication oil condition monitoring and remaining useful
life prediction for wind turbines,” Wind Energy, vol. 18, no. 6,
pp. 1131–1149, Jun. 2015.

[77] M. Grujicic, R. Galgalikar, S. Ramaswami, J. Snipes, V. Chenna,
and R. Yavari, “Finite-element analysis of horizontal-axis wind-turbine
gearbox failure via tooth-bending fatigue,” Int. J. Mater. Mech. Eng.,
vol. 3, no. 1, pp. 6–15, 2014.

[78] M. Florian and J. Sørensen, “Wind turbine blade life-time assessment
model for preventive planning of operation and maintenance,” J. Mar.
Sci. Eng., vol. 3, no. 3, pp. 1027–1040, Sep. 2015.

[79] E. Bechhoefer and R. Schlanbusch, “Generalized prognostics algo-
rithm using Kalman smoother,” IFAC-PapersOnLine, vol. 48, no. 21,
pp. 97–104, 2015.

[80] S. Butler, F. O’Connor, D. Farren, and J. V. Ringwood, “A feasibility
study into prognostics for the main bearing of a wind turbine,” in Proc.
IEEE Int. Conf. Control Appl., Oct. 2012, pp. 1092–1097.

[81] W. Teng, C. Han, Y. Hu, X. Cheng, L. Song, and Y. Liu, “A robust
model-based approach for bearing remaining useful life prognosis in
wind turbines,” IEEE Access, vol. 8, pp. 47133–47143, 2020.

[82] Y. Lei, Intelligent Fault Diagnosis and Remaining Useful Life Pre-
diction of Rotating Machinery. Oxford, U.K.: Butterworth-Heinemann,
2016.

[83] M. Morshedizadeh, M. Kordestani, R. Carriveau, D. S.-K. Ting, and
M. Saif, “Improved power curve monitoring of wind turbines,” Wind
Eng., vol. 41, no. 4, pp. 260–271, Aug. 2017.

Authorized licensed use limited to: Universidad de chile. Downloaded on December 08,2020 at 20:27:00 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.4028/www.scientific.net/amm.197.206
http://dx.doi.org/10.4173/mic.2012.2.4
http://dx.doi.org/10.1109/TR.2019.2930195


9326 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 69, NO. 12, DECEMBER 2020

[84] M. Morshedizadeh, M. Kordestani, R. Carriveau, D. S.-K. Ting, and
M. Saif, “Power production prediction of wind turbines using a fusion
of MLP and ANFIS networks,” IET Renew. Power Gener., vol. 12,
no. 9, pp. 1025–1033, Jul. 2018.

[85] A. Zameer, J. Arshad, A. Khan, and M. A. Z. Raja, “Intelligent and
robust prediction of short term wind power using genetic program-
ming based ensemble of neural networks,” Energy Convers. Manage.,
vol. 134, pp. 361–372, Feb. 2017.

[86] M. Carolin Mabel and E. Fernandez, “Analysis of wind power genera-
tion and prediction using ANN: A case study,” Renew. Energy, vol. 33,
no. 5, pp. 986–992, May 2008.

[87] J. S. Lal Senanayaka, H. Van Khang, and K. G. Robbersmyr, “Autoen-
coders and recurrent neural networks based algorithm for prognosis
of bearing life,” in Proc. 21st Int. Conf. Electr. Mach. Syst. (ICEMS),
Oct. 2018, pp. 537–542.

[88] Q. Cui, Z. Li, J. Yang, and B. Liang, “Rolling bearing fault prognosis
using recurrent neural network,” in Proc. 29th Chin. Control Decis.
Conf. (CCDC), May 2017, pp. 1196–1201.

[89] J. Deutsch and D. He, “Using deep learning-based approach to predict
remaining useful life of rotating components,” IEEE Trans. Syst., Man,
Cybern. Syst., vol. 48, no. 1, pp. 11–20, Jan. 2018.

[90] M. Morshedizadeh, M. Kordestani, R. Carriveau, D. S.-K. Ting, and
M. Saif, “Application of imputation techniques and adaptive neuro-
fuzzy inference system to predict wind turbine power production,”
Energy, vol. 138, pp. 394–404, Nov. 2017.

[91] M. Mostafaei, H. Javadikia, and L. Naderloo, “Modeling the effects
of ultrasound power and reactor dimension on the biodiesel pro-
duction yield: Comparison of prediction abilities between response
surface methodology (RSM) and adaptive neuro-fuzzy inference system
(ANFIS),” Energy, vol. 115, pp. 626–636, Nov. 2016.

[92] D. Zurita, J. A. Carino, M. Delgado, and J. A. Ortega, “Distributed
neuro-fuzzy feature forecasting approach for condition monitoring,”
in Proc. IEEE Emerg. Technol. Factory Autom. (ETFA), Sep. 2014,
pp. 1–8.

[93] S. Hussain and H. A. Gabbar, “Vibration analysis and time series
prediction for wind turbine gearbox prognostics,” Int. J. Prognostics
Health Manage., vol. 4, pp. 69–79, May 2013.

[94] B. Chen, P. C. Matthews, and P. J. Tavner, “Wind turbine pitch faults
prognosis using a-priori knowledge-based ANFIS,” Expert Syst. Appl.,
vol. 40, no. 17, pp. 6863–6876, Dec. 2013.

[95] B. Chen, P. C. Matthews, and P. J. Tavner, “Automated on-line fault
prognosis for wind turbine pitch systems using supervisory control and
data acquisition,” IET Renew. Power Gener., vol. 9, no. 5, pp. 503–513,
Jul. 2015.

[96] Y. Pan, R. Hong, J. Chen, J. Singh, and X. Jia, “Performance degrada-
tion assessment of a wind turbine gearbox based on multi-sensor data
fusion,” Mechanism Mach. Theory, vol. 137, pp. 509–526, Jul. 2019.

[97] R. Liu, B. Yang, E. Zio, and X. Chen, “Artificial intelligence for
fault diagnosis of rotating machinery: A review,” Mech. Syst. Signal
Process., vol. 108, pp. 33–47, Aug. 2018.

[98] A. Malhi, R. Yan, and R. X. Gao, “Prognosis of defect propagation
based on recurrent neural networks,” IEEE Trans. Instrum. Meas.,
vol. 60, no. 3, pp. 703–711, Mar. 2011.

[99] W. Teng, X. Zhang, Y. Liu, A. Kusiak, and Z. Ma, “Prognosis of the
remaining useful life of bearings in a wind turbine gearbox,” Energies,
vol. 10, no. 1, p. 32, Dec. 2016.

[100] Y. Xie and T. Zhang, “The application of echo state network and recur-
rent multilayer perceptron in rotating machinery fault prognosis,” in
Proc. IEEE Chin. Guid., Navigat. Control Conf. (CGNCC), Aug. 2016,
pp. 2286–2291.

[101] L. Guo, N. Li, F. Jia, Y. Lei, and J. Lin, “A recurrent neural network
based health indicator for remaining useful life prediction of bearings,”
Neurocomputing, vol. 240, pp. 98–109, May 2017.

[102] B. Karim and L. Abderrazak, “A statistical parameters and artificial
neural networks application for rolling element bearing fault diagnosis
using wavelet transform preprocessing,” in Proc. ICEE-B, Oct. 2017,
pp. 1–6.

[103] S. E. Kramti, J. Ben Ali, L. Saidi, M. Sayadi, and E. Bechhoefer,
“Direct wind turbine drivetrain prognosis approach using elman neural
network,” in Proc. 5th Int. Conf. Control, Decis. Inf. Technol. (CoDIT),
Apr. 2018, pp. 859–864.

[104] M. Xia, T. Li, T. Shu, J. Wan, C. W. de Silva, and Z. Wang,
“A two-stage approach for the remaining useful life prediction of
bearings using deep neural networks,” IEEE Trans. Ind. Informat.,
vol. 15, no. 6, pp. 3703–3711, Jun. 2019.

[105] X. Li, W. Zhang, and Q. Ding, “Deep learning-based remaining useful
life estimation of bearings using multi-scale feature extraction,” Rel.
Eng. Syst. Saf., vol. 182, pp. 208–218, Feb. 2019.

[106] X. Li, H. Jiang, X. Xiong, and H. Shao, “Rolling bearing health progno-
sis using a modified health index based hierarchical gated recurrent unit
network,” Mechanism Mach. Theory, vol. 133, pp. 229–249, Mar. 2019.

[107] C. Chen, B. Zhang, G. Vachtsevanos, and M. Orchard, “Machine condi-
tion prediction based on adaptive Neuro–Fuzzy and high-order particle
filtering,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4353–4364,
Sep. 2011.

[108] F. Cheng, L. Qu, and W. Qiao, “A case-based data-driven prediction
framework for machine fault prognostics,” in Proc. IEEE Energy
Convers. Congr. Expo. (ECCE), Sep. 2015, pp. 3957–3963.

[109] A. Soualhi, G. Clerc, H. Razik, and F. Rivas, “Long-term prediction
of bearing condition by the neo-fuzzy neuron,” in Proc. 9th IEEE
Int. Symp. Diag. Electr. Mach., Power Electron. Drives (SDEMPED),
Aug. 2013, pp. 586–591.

[110] M. Kordestani, M. F. Samadi, M. Saif, and K. Khorasani, “A new
fault prognosis of MFS system using integrated extended Kalman
filter and Bayesian method,” IEEE Trans. Ind. Informat., early access,
Mar. 12, 2018.

[111] S. Dey and J. A. Stori, “A Bayesian network approach to root cause
diagnosis of process variations,” Int. J. Mach. Tools Manuf., vol. 45,
no. 1, pp. 75–91, Jan. 2005.

[112] M. Rausand and A. Høyland, System Reliability Theory: Models,
Statistical Methods, and Applications, vol. 396. Hoboken, NJ, USA:
Wiley, 2004.

[113] P. O’Connor and A. Kleyner, Practical Reliability Engineering.
Hoboken, NJ, USA: Wiley, 2012.

[114] Q. Miao and V. Makis, “Condition monitoring and classification of
rotating machinery using wavelets and hidden Markov models,” Mech.
Syst. Signal Process., vol. 21, no. 2, pp. 840–855, Feb. 2007.

[115] M. Rezamand, R. Carriveau, D. S.-K. Ting, M. Davison, and J. J. Davis,
“Aggregate reliability analysis of wind turbine generators,” IET Renew.
Power Gener., vol. 13, no. 11, pp. 1902–1910, Aug. 2019.

[116] X. Fan, X. Yang, X. Li, and J. Wang, “A particle-filtering approach
for remaining useful life estimation of wind turbine gearbox,” in Proc.
Int. Conf. Chem., Mater. Food Eng. Paris, France: Atlantis Press, 2015,
pp. 198–200.

[117] S. Hong and Z. Zhou, “Application of Gaussian process regression for
bearing degradation assessment,” in Proc. 6th Int. Conf. New Trends
Inf. Sci., Service Sci. Data Mining (ISSDM), 2012, pp. 644–648.

[118] P. Kundu, A. K. Darpe, and M. S. Kulkarni, “Weibull accelerated
failure time regression model for remaining useful life prediction of
bearing working under multiple operating conditions,” Mech. Syst.
Signal Process., vol. 134, Dec. 2019, Art. no. 106302.

[119] X.-H. Zhang and J.-S. Kang, “Hidden Markov models in bearing
fault diagnosis and prognosis,” in Proc. 2nd Int. Conf. Comput. Intell.
Natural Comput., Sep. 2010, p. 364.

[120] Z. Chen, Y. Yang, Z. Hu, and Q. Zeng, “Fault prognosis of complex
mechanical systems based on multi-sensor mixtured hidden semi-
Markov models,” Proc. Inst. Mech. Eng., C, J. Mech. Eng. Sci.,
vol. 227, no. 8, pp. 1853–1863, Aug. 2013.

[121] R. K. Singleton, E. G. Strangas, and S. Aviyente, “Extended Kalman
filtering for remaining-useful-life estimation of bearings,” IEEE Trans.
Ind. Electron., vol. 62, no. 3, pp. 1781–1790, Mar. 2015.

[122] C. K. R. Lim and D. Mba, “Switching Kalman filter for failure
prognostic,” Mech. Syst. Signal Process., vols. 52–53, pp. 426–435,
Feb. 2015.

[123] J. Herp, M. H. Ramezani, M. Bach-Andersen, N. L. Pedersen, and
E. S. Nadimi, “Bayesian state prediction of wind turbine bearing
failure,” Renew. Energy, vol. 116, pp. 164–172, Feb. 2018.

[124] J. Wang and R. X. Gao, “Multiple model particle filtering for bearing
life prognosis,” in Proc. IEEE Conf. Prognostics Health Manage.
(PHM), Jun. 2013, pp. 1–6.

[125] C. Chen, D. Brown, C. Sconyers, G. Vachtsevanos, B. Zhang, and
M. E. Orchard, “A .NET framework for an integrated fault diagno-
sis and failure prognosis architecture,” in Proc. IEEE Autotestcon,
Sep. 2010, pp. 1–6.

[126] L. Liao and F. Kottig, “Review of hybrid prognostics approaches
for remaining useful life prediction of engineered systems, and an
application to battery life prediction,” IEEE Trans. Rel., vol. 63, no. 1,
pp. 191–207, Mar. 2014.

[127] M. A. Djeziri, S. Benmoussa, and R. Sanchez, “Hybrid method for
remaining useful life prediction in wind turbine systems,” Renew.
Energy, vol. 116, pp. 173–187, Feb. 2018.

Authorized licensed use limited to: Universidad de chile. Downloaded on December 08,2020 at 20:27:00 UTC from IEEE Xplore.  Restrictions apply. 



REZAMAND et al.: CRITICAL WT COMPONENTS PROGNOSTICS: A COMPREHENSIVE REVIEW 9327

[128] Y. Zhao, D. Li, A. Dong, J. Lin, D. Kang, and L. Shang, “Fault
prognosis of wind turbine generator using SCADA data,” in Proc. North
Amer. Power Symp. (NAPS), Sep. 2016, pp. 1–6.

[129] F. Cheng, L. Qu, and W. Qiao, “Fault prognosis and remaining useful
life prediction of wind turbine gearboxes using current signal analysis,”
IEEE Trans. Sustain. Energy, vol. 9, no. 1, pp. 157–167, Jan. 2018.

[130] F. Ding, Z. Tian, F. Zhao, and H. Xu, “An integrated approach for
wind turbine gearbox fatigue life prediction considering instantaneously
varying load conditions,” Renew. Energy, vol. 129, pp. 260–270,
Dec. 2018.

[131] W. Caesarendra, A. Widodo, P. H. Thom, B.-S. Yang, and
J. D. Setiawan, “Combined probability approach and indirect data-
driven method for bearing degradation prognostics,” IEEE Trans. Rel.,
vol. 60, no. 1, pp. 14–20, Mar. 2011.

[132] C. Sun, Z. Zhang, and Z. He, “Research on bearing life prediction
based on support vector machine and its application,” J. Phys., Conf.
Ser., vol. 305, Jul. 2011, Art. no. 012028.

[133] S. Dong and T. Luo, “Bearing degradation process prediction based on
the PCA and optimized LS-SVM model,” Measurement, vol. 46, no. 9,
pp. 3143–3152, Nov. 2013.

[134] Z. Liu, Q. Li, X. Liu, and C. Mu, “A hybrid LSSVR/HMM-based prog-
nostic approach,” Sensors, vol. 13, no. 5, pp. 5542–5560, Apr. 2013.

[135] S. Hong, Z. Zhou, E. Zio, and K. Hong, “Condition assessment for
the performance degradation of bearing based on a combinatorial fea-
ture extraction method,” Digit. Signal Process., vol. 27, pp. 159–166,
Apr. 2014.

[136] S. Hong, Z. Zhou, E. Zio, and W. Wang, “An adaptive method for
health trend prediction of rotating bearings,” Digit. Signal Process.,
vol. 35, pp. 117–123, Dec. 2014.

[137] A. Soualhi, H. Razik, G. Clerc, and D. D. Doan, “Prognosis of
bearing failures using hidden Markov models and the adaptive neuro-
fuzzy inference system,” IEEE Trans. Ind. Electron., vol. 61, no. 6,
pp. 2864–2874, Jun. 2014.

[138] J. Ben Ali, B. Chebel-Morello, L. Saidi, S. Malinowski, and F. Fnaiech,
“Accurate bearing remaining useful life prediction based on weibull
distribution and artificial neural network,” Mech. Syst. Signal Process.,
vols. 56–57, pp. 150–172, May 2015.

[139] A. Soualhi, K. Medjaher, and N. Zerhouni, “Bearing health monitor-
ing based on Hilbert–Huang transform, support vector machine, and
regression,” IEEE Trans. Instrum. Meas., vol. 64, no. 1, pp. 52–62,
Jan. 2015.

[140] Y. Wang, Y. Peng, Y. Zi, X. Jin, and K.-L. Tsui, “A two-stage data-
driven-based prognostic approach for bearing degradation problem,”
IEEE Trans. Ind. Informat., vol. 12, no. 3, pp. 924–932, Jun. 2016.

[141] N. Z. Gebraeel, M. A. Lawley, R. Li, and J. K. Ryan, “Residual-
life distributions from component degradation signals: A Bayesian
approach,” IIE Trans., vol. 37, no. 6, pp. 543–557, Jun. 2005.

[142] X.-S. Si, W. Wang, C.-H. Hu, M.-Y. Chen, and D.-H. Zhou, “A Wiener-
process-based degradation model with a recursive filter algorithm for
remaining useful life estimation,” Mech. Syst. Signal Process., vol. 35,
nos. 1–2, pp. 219–237, Feb. 2013.

[143] M. Zhao, B. Tang, and Q. Tan, “Bearing remaining useful life esti-
mation based on time–frequency representation and supervised dimen-
sionality reduction,” Measurement, vol. 86, pp. 41–55, May 2016.

[144] X. Jin, Y. Sun, Z. Que, Y. Wang, and T. W. S. Chow, “Anomaly
detection and fault prognosis for bearings,” IEEE Trans. Instrum.
Meas., vol. 65, no. 9, pp. 2046–2054, Sep. 2016.

[145] H. Jiang, J. Chen, and G. Dong, “Hidden Markov model and
nuisance attribute projection based bearing performance degradation
assessment,” Mech. Syst. Signal Process., vols. 72–73, pp. 184–205,
May 2016.

[146] L. Saidi, J. Ben Ali, E. Bechhoefer, and M. Benbouzid, “Wind turbine
high-speed shaft bearings health prognosis through a spectral kurtosis-
derived indices and SVR,” Appl. Acoust., vol. 120, pp. 1–8, May 2017.

[147] S. A. Aye and P. S. Heyns, “An integrated Gaussian process regression
for prediction of remaining useful life of slow speed bearings based on
acoustic emission,” Mech. Syst. Signal Process., vol. 84, pp. 485–498,
Feb. 2017.

[148] Y. Lu, Q. Li, Z. Pan, and S. Y. Liang, “Prognosis of bearing degradation
using gradient variable forgetting factor RLS combined with time series
model,” IEEE Access, vol. 6, pp. 10986–10995, 2018.

[149] M. Elforjani, S. Shanbr, and E. Bechhoefer, “Detection of faulty high
speed wind turbine bearing using signal intensity estimator technique,”
Wind Energy, vol. 21, no. 1, pp. 53–69, Jan. 2018.

[150] W. Ahmad, S. A. Khan, and J.-M. Kim, “A hybrid prognostics tech-
nique for rolling element bearings using adaptive predictive models,”
IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1577–1584, Feb. 2018.

[151] L. Zhao and X. Wang, “A deep feature optimization fusion method
for extracting bearing degradation features,” IEEE Access, vol. 6,
pp. 19640–19653, 2018.

[152] J. Wang, Y. Liang, Y. Zheng, R. X. Gao, and F. Zhang, “An integrated
fault diagnosis and prognosis approach for predictive maintenance of
wind turbine bearing with limited samples,” Renew. Energy, vol. 145,
pp. 642–650, Jan. 2020.

[153] M. Elforjani and S. Shanbr, “Prognosis of bearing acoustic emission
signals using supervised machine learning,” IEEE Trans. Ind. Electron.,
vol. 65, no. 7, pp. 5864–5871, Jul. 2018.

[154] M. Qiu, W. Li, F. Jiang, and Z. Zhu, “Remaining useful life estimation
for rolling bearing with SIOS-based indicator and particle filtering,”
IEEE Access, vol. 6, pp. 24521–24532, 2018.

[155] M. Rezamand, M. Kordestani, M. E. Orchard, R. Carriveau,
D. S.-K. Ting, and M. Saif, “Improved remaining useful life estimation
of wind turbine drivetrain bearings under varying operating conditions
(VOC),” IEEE Trans. Ind. Informat., early access, May 7, 2020, doi:
10.1109/TII.2020.2993074.

[156] A. Rai and S. H. Upadhyay, “The use of MD-CUMSUM and NARX
neural network for anticipating the remaining useful life of bearings,”
Measurement, vol. 111, pp. 397–410, Dec. 2017.

[157] S. A. Billings, Nonlinear System Identification: NARMAX Methods in
the Time, Frequency, and Spatio-Temporal Domains. Hoboken, NJ,
USA: Wiley, 2013.

[158] R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart,
“The Mahalanobis distance,” Chemometrics Intell. Lab. Syst., vol. 50,
no. 1, pp. 1–18, 2000.

[159] J. Lin and Q. Chen, “Fault diagnosis of rolling bearings based on
multifractal detrended fluctuation analysis and Mahalanobis distance
criterion,” Mech. Syst. Signal Process., vol. 38, no. 2, pp. 515–533,
Jul. 2013.

[160] D. M. Hawkins and D. H. Olwell, Cumulative Sum Charts and Charting
for Quality Improvement. Cham, Switzerland: Springer, 2012.

[161] Y. Hu et al., “A prediction method for the real-time remaining useful
life of wind turbine bearings based on the Wiener process,” Renew.
Energy, vol. 127, pp. 452–460, Nov. 2018.

[162] M. Hemmer, H. Van Khang, K. Robbersmyr, T. Waag, and T. Meyer,
“Fault classification of axial and radial roller bearings using transfer
learning through a pretrained convolutional neural network,” Designs,
vol. 2, no. 4, p. 56, Dec. 2018.

[163] A. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. 13, no. 2,
pp. 260–269, Apr. 1967.

[164] D. A. Pola et al., “Particle-filtering-based discharge time prognosis for
lithium-ion batteries with a statistical characterization of use profiles,”
IEEE Trans. Rel., vol. 64, no. 2, pp. 710–720, Jun. 2015.

[165] F. Tamssaouet, K. T. P. Nguyen, K. Medjaher, and M. E. Orchard,
“Degradation modeling and uncertainty quantification for system-
level prognostics,” IEEE Syst. J., early access, Apr. 20, 2020, doi:
10.1109/JSYST.2020.2983376.

Milad Rezamand received the bachelor’s degree in
mechanical engineering from the Shahid Bahonar
University of Kerman, Kerman, Iran, in 2008,
the master’s degree in aerospace engineering from
the K. N. Toosi University of Technology, Tehran,
Iran, in 2012, and the Ph.D. degree in mechanical
engineering from the University of Windsor, Wind-
sor, ON, Canada, in 2019.

He is currently a Post-Doctoral Fellow with
the University of Windsor. His research interests
include fault diagnostics, prognosis, and predicting

the remaining useful life. His ongoing research includes estimating the
remaining useful life of wind turbine components.

Authorized licensed use limited to: Universidad de chile. Downloaded on December 08,2020 at 20:27:00 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TII.2020.2993074
http://dx.doi.org/10.1109/JSYST.2020.2983376


9328 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 69, NO. 12, DECEMBER 2020

Mojtaba Kordestani (Senior Member, IEEE)
received the bachelor’s degree in electronic engineer-
ing from the Malek Ashtar University of Technology,
Shahin Shahr, Iran, in 2002, the master’s degree in
control engineering from Islamic Azad University,
Tehran, Iran, in 2008, and the Ph.D. degree in elec-
trical engineering from the University of Windsor,
Windsor, ON, Canada, in 2018.

He is currently a Post-Doctoral Fellow with the
University of Windsor. His research interests are in
control, estimation, fault diagnostics, and failure

prognosis. He has published about 40 refereed journal articles and conference
papers in these areas.

Rupp Carriveau (Member, IEEE) received the
bachelor’s degree in civil structural engineering from
the University of Windsor, Windsor, ON, Canada, in
1994, and the M.A.Sc. and Ph.D. degrees in fluids
engineering from Western University, London, ON,
in 2000 and 2004, respectively.

He is also the Director of the Turbulence and
Energy Laboratory and the Centre for Energy and
Water Advancement, University of Windsor.

Dr. Carriveau is also a member of The American
Society of Mechanical Engineers (ASME). He also

serves on the Editorial Boards of Wind Engineering, Advances in Energy
Research, and the International Journal of Sustainable Energy. He is also the
President of the Underwater Energy Storage Society.

David S.-K. Ting received the B.A.Sc. degree
from the University of Manitoba, Winnipeg, MB,
Canada, in 1989, and the M.A.Sc. and Ph.D. degrees
in turbulent combustion from the University of
Alberta, Edmonton, AB, Canada, in 1992 and 1995,
respectively.

He explored fluid–structure interactions at McGill
University, Montreal, QC, Canada, prior to joining
the University of Windsor, Windsor, ON, Canada,
as a Faculty Member with the Department of
Mechanical, Automotive and Materials Engineering.

He is also the Founder of the Turbulence & Energy Laboratory, University
of Windsor. He has cosupervised over 75 graduate students, coauthored more
than 140 journal articles, authored four textbooks, and coedited eight books.

Dr. Ting is also a member of ASME.

Marcos E. Orchard (Member, IEEE) received the
M.S. and Ph.D. degrees in electrical and computer
engineering from the Georgia Institute of Tech-
nology, Atlanta, GA, USA, in 2005 and 2007,
respectively.

He is currently a Professor with the Department
of Electrical Engineering, Universidad de Chile,
Santiago, Chile, where he is also an Associate
Researcher with the Advanced Center for Electri-
cal and Electronic Engineering (UTFSM). He has
authored or coauthored more than 100 articles. His

current research interests include failure prognosis, electromobility, mining
industry, and finance.

Dr. Orchard is also a fellow of the Prognostic and Health Management
Society (PHMS).

Mehrdad Saif (Senior Member, IEEE) received
B.S., M.S., and D.Eng. degrees in electrical engi-
neering from Cleveland State University, Cleveland,
OH, USA, in 1982, 1984, and 1987, respectively.

He has been the Dean of the Faculty of Engineer-
ing, University of Windsor, Windsor, ON, Canada,
since July 2011. His research interests are in sys-
tems and control; estimation, and observer theory;
model-based fault diagnostics; condition monitoring,
diagnostics, and prognostic; and application of these
areas to automotive, power, autonomous systems,

and other complex engineering systems. He has published over 350 refereed
journal articles and conference papers and an edited book in these areas.

Authorized licensed use limited to: Universidad de chile. Downloaded on December 08,2020 at 20:27:00 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


