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MODELO ESTOCÁSTICO DE PLANIFICACIÓN FORESTAL :
CONSECUENCIAS DEL CAMBIO CLIMÁTICO EN LA RED DE CAMINOS

El cambio climático tiene diversos impactos medioambientales, tales como el aumento de
la temperatura terrestre, incendios y huracanes. En este trabajo, se estudian los cambios
en la precipitación anual y el aumento de tormentas durante el siglo 21 en la localidad de
Washington Sate, y cómo estos cambios se traducen en nuevos costos de reconstrucción de
caminos. Así mismo, introducimos el primer modelo estocástico de adaptación óptima para
la mantención de caminos y el acceso incierto a la materia prima, acompañado de un original
conjunto de parámetros capaces to capturar el aumento en los costos de reconstructión,
consecuencia de un aumento en la erosión terrestre y la destrucción de caminos provocado
por tormentas de lluvia. Este modelo, llamado ARDM (Accelerated Road Decay Model), es
aplicado en el área del rio Sol Duc, una zona forestal de 150 km2 compuesta por una red
vial de 63.5 km., ubicada en la zona norte del OESF (Olympic Experimental State Forest),
Washington State. Mostramos además cómo este modelo aumenta el valor presente neto de
esta zona al ser capaz de adaptarse a las precipitaciones a lo largo del siglo, evidenciando así
los potenciales beneficios de incorporar esta nueva formulación en futuros modelos forestales
de cosecha y reparación de caminos.
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Climate change has serious environmental impacts, such as rising of global temperatures, fires
and hurricanes. In this work, we study the changes in annual precipitations and more frequent
storm events throughout the 21st century in Washington State, and how they translate into
new road reconstruction costs. We introduce the first stochastic formulation for optimal
adaptation of forest roads maintenance and uncertain road access to timber resources, with
a novel set of parameters that capture higher road reconstruction costs due to accelerated
decay and even road failures caused by more intense storms. This model, called the ARDM
(Accelerated Road Decay Model), is applied to the Sol Duc River drainage area, a 150 km2

forest land base with a 63.5 km. road network infrastructure located in the northern part
of the OESF (Olympic Experimental State Forest), Washington State. We show how this
model increases the location’s NPV by adapting its strategy to precipitation patterns along
the planning horizon, thus showing the potential benefits of incorporating this formulation
in future harvesting and road reconstruction schedules.
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Chapter 1

Introduction

Forest planning has a rich research and development history of integrating timber harvest
scheduling with forest road management. Efforts to integrate environmental impacts such as
climate change are less common due to their inherent stochastic and uncertain nature and the
computational complexity they present to mathematical programming. Climate change often
results in more intense and more frequent precipitation events that can damage forest roads
thereby compromising access to timber resources. Nonetheless, integrated forest harvest
scheduling models allow forest managers to jointly optimize the spatiotemporal allocation of
silvicultural actions, such as harvests, as well as road construction and maintenance decisions
across the landscape and over time to mitigate these negative effects.

In the past decades, forest harvest scheduling problems were typically formulated as de-
terministic optimization models. Deterministic models are not ideal when the values of some
key parameters, such as forest growth and yield are uncertain due to climate change. Climate
change is expected to lead to a more vigorous hydrological cycle (Nearing et al., 2004), both
in terms of global air temperatures and precipitation patterns coupled with increased risk of
fire, windstorms and landslides. Changes in the intensity, duration, and frequency of precip-
itation will negatively affect forest roads - already the biggest financial and environmental
liability in timber management. Damaged roads can increase sediment delivery (Bowker et
al., 2010; Bettinger et al., 1998; Riedel & Vose, 2003) to streams and thus compromise fish
habitat. Reduced access can also make wildfire detection and control more difficult to im-
plement. With climate change, roads will be vulnerable to higher annual precipitation and
more intense storms, leading to higher runoff and soil erosion rates. More frequent and severe
storms may also cause major changes in hydrology and channel morphology, making current
culverts1 unable to accommodate future channel conditions, which will in turn create barriers
to fish movement (Wilhere et al., 2017).

Neglecting these changes can lead to sub-optimal harvest schedules and reduce timely
access to harvest units. In the absence of preemptive measures, maintenance costs would
rise due to higher road surface erosion rates and more pressure on bridges and culverts.
Nonetheless, financial losses can be mitigated by adapting the maintenance and reconstruc-

1Culvert: A tunnel carrying a stream or open drain under a road or railway.
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tion schedule of forest road networks to projected increases in the frequency and intensity
of extreme but uncertain weather events (Chinowsky and Arndt (2012)). This can be done
in several ways. By anticipating road damages and reduced access to timber as a result,
managers could opt to accelerate harvesting in vulnerable areas before these assets are lost.
They could also choose to upgrade roads, culverts and bridges to higher standards sooner,
thereby preempting structural failures due to increased storm intensities. Lastly, they could
also time harvests strategically so that only a small subset of vulnerable road segments would
have to be used for hauling.

Stochastic programming models have been proposed in the past for forest planning in the
face of volatile timber prices, demand uncertainty (Veliz et al., 2015) and climate change.
Prior work on climate change uncertainty mostly focused on changes to growth and yield
(Quinteros et al., 2011). Little has been done in the way of addressing the effects of storms
on road access, transportation and costs. This is a problem because forest roads are very
expensive and at the same time are likely to constrain the spatiotemporal viability of harvest
plans (Ross et al., 2018). Our proposed model is the first formulation for optimal adaptation
of forest roads maintenance and uncertain road access to timber resources due to climate
change. We created a stochastic formulation of the integrated harvesting problem with a
novel set of parameters that capture higher road reconstruction costs due to accelerated
decay and even road failures caused by more intense storms. In addition, our model can be
applied beyond forestry. For example, transportation problems in mining, trucking, railroads
and logistics in general present similar risk profiles as damages to and losses of structures in
these industries also occur in a probabilistic manner.

To illustrate our model, we built 27 road cost scenarios to represent accelerated decay and
storm probabilities using 12 regional climate models. The regional climate models were used
to project hourly precipitation rates from 2010 until 2100 across a 150 km2 forested land-
base in the Pacific Northwest United States. We assumed that road reconstruction costs will
increase with accelerated decay due to higher annual precipitation and increasing probabilities
of extreme storm events. To show the benefits of incorporating climate projection data in
harvest schedules, we constructed a stochastic model and compared it to 4 naïve models
used as benchmarks to represent standard industry practices. One of these models does not
consider climate change at all, and the 3 other that do do so but in a deterministic fashion.
We show the financial benefits of our model’s ability to adapt road reconstruction decisions
to future climate scenarios, and also analyze the differences in the harvest and reconstruction
schedules between the stochastic and naïve approaches.
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Chapter 2

Background

The goal of forest management is to achieve strategic objectives such as sustainable timber
supply over large land areas and long planning horizons subject to a variety of environmental,
economic and logistical constraints. The strategic directions that guide forest management
over the long term are generated by strategic harvest scheduling models.

Forest planners can adjust harvest schedules to changing circumstances by periodically re-
assessing current conditions against strategic directions, then re-allocating limited capital to
the right place at the right time. They are responsible for selecting appropriate, site-specific
forest practices, to accomplish desired economic performance, forest health, watershed, and
wildlife habitat objectives, including a diversity of tree species and age classes.

Forest planning models have evolved over the decades to generate more efficient harvest
schedules at lower costs. With increasing computing power, analysts have incorporated an
increasing amount of complexity in these mathematical models. Prior to the 1970s however,
road construction decisions were made only after the harvest schedules were finalized. This
lead to inefficiencies in the form of temporal misalignments between harvest timings and road
(re)construction schedules (Johnson & Scheurman, 1977). Weintraub and Navon (1976) were
one of the earliest authors to develop a mixed-integer programming model (MIP) to integrate
these two sets of critical forest management decisions in a single formulation. This was
followed by Kirby et al. (1980) “Integrated Resource Planning Model”, which illustrated the
benefits of this integration. In 2003, Andalaft et al. developed a mixed-integer LP model to
solve complex instances of the integrated harvesting problem, and successfully implemented
it in a real Chilean forestry firm. By strengthening the model formulation using efficient
trigger constraints and lifting techniques coupled with a Lagrangean relaxation method, the
authors were able to create a model that gave good solutions in a reasonable computing time
(something that commercial codes were unable to do during that time).

Another breakthrough occurred when Ross et al. (2018) found a way to model road main-
tenance costs as an endogenous function of harvest scheduling decisions. The authors applied
their model, the “Endogenous Fixed Charge Model” (EFCM), to the the Upper Clearwater
River Landscape (UCRL) on the Olympic Peninsula of the Pacific Northwest United Sates.
This case study forest comprised 621 operable Forest Management Units (FMUs) and over
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6,000 road segments. The EFCM was able to improve the valuation of the UCRL by 0.5
- 1 million USD and reduce the length of the active road network by 14.5%. A win-win
achievement.

Apart from deterministic harvest models, stochastic formulations have also been developed
in order to account for uncertain parameters that materialize over long planning horizons
(Quinteros et al., 2011; Veliz et al., 2015; Sanei Bajgiran et al., 2017; Alonso-Ayuso et al.,
2018)) . For example, Alonso-Ayuso et al. constructed an MIP multi-period stochastic
harvest and road building model that accounts for uncertain timber prices and demand over
time. They were able to show the benefits of using a stochastic model for a risk averse
decision maker in the forest industry, and demonstrated that these models shift profitable
activities to earlier planning periods at a relatively small loss of profit at the end of the
planning horizon.

On the other hand, with climate models predicting major changes in precipitation and air
temperature patterns, several analysts have started to incorporate uncertain climate impacts
on long-term timber supply. In 2007, Garcia-Gonzalo created a model to incorporate the
effects of increasing temperatures, precipitation, and atmospheric CO2 on forest level carbon
stocks in Finland and timber production management. The author observed between 3.4%
and +9.2% increase in valuation, 30% to 50% of which was attributable to the optimization
model while the rest of the gains came from increased production due to climate change. Later
in 2009, Latta et al. (2009) developed a simultaneous autoregressive (SAR) model to estimate
the impacts of climate change on potential productivity of Pacific Northwest (PNW) forests
in the United States. They found considerable variation in potential productivity change
across both time and space within the region. They were also able to pair climate data with
emission concentration pathways provided by the IPCC to identify regions more susceptible
to climatic change under different future scenarios.

Another approach at incorporating climate change in timber supply analysis was done
by Diaz et al. (2015). By using a Forest Vegetation Simulator (Climate-FVS), their model
predicted negative impacts attributed to climate change, such as declining growth and yield
projections, large-scale shifts in forest composition and increases in tree mortality and fire
hazards. The author showed that a disregard for climate change impacts on future growth-
and-yield and its potential severity is likely to produce unrealistic models and inadequate
harvesting schedules for the future.

Apart from future timber supply analysis, researchers have studied how road infrastructure
is going to be affected by climate change. Regional climate models predict increasingly severe
and frequent natural disturbances such as floods and landslides. This suggests that forest
infrastructures are going to be at greater risks of decay and loss. While there are many
examples of climate impact assessments for road infrastructure in western Washington and
Oregon (Halofsky et al. (2011); Raymond et al. (2014), among others), the methodologies
have generally focused on the mapping and ranking of hazards to roads such as inundation
and flooding, stream bank erosion, and increased slope failures.

Analysts argue that while climate change poses costly impacts on road networks in terms of
maintenance, repairs and lost connectivity, many of these impacts can be mitigated or even
avoided by appropriate adaptation measures. Chinowsky and Arndt (2012), for example,
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developed an analytical framework known as the Infrastructure Planning Support System
(IPSS) to automate the computational burden of a climate based scenario analysis. This
tool uses an engineering and materials based stressor-response functions to determine the
impact of climate on maintenance, repair and road construction to provide a longer-term
approach to the management and planning of road infrastructure.

Although much work has been done on analyzing how climate change will affect forest
harvest scheduling, in the present thesis we introduce the first stochastic integrated harvest
and road (re)construction scheduling model that incorporates the effects of climate change
on access to timber resources. We build on the EFCM and construct a pro-active adaptation
strategy that incorporates stochastic road reconstruction parameters due to accelerated road
erosion rates as a consequence of increasing annual precipitation, and also due to rare but
devastating storm events fueled by climate change. Our proactive adaptation strategy in-
volves changes in the spatiotemporal allocation of road maintenance activities as well as road
upgrades in an attempt to increase system resilience to various climate stressors. As it was
previously pointed out, our model can be applied beyond forestry in many other industries
facing potential adverse effect to their transportation network.

We start with a formal mathematical description of the EFCM, as well as its underlying
assumptions, before introducing the new stochastic elements that concern road access.
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Chapter 3

The Endogenous Fixed Charge Model

The Endogenous Fixed Charge Model, or EFCM, is a mixed integer program (MIP) devel-
oped by Ross et al. (2018), whose objective function maximizes net present value (NPV):
discounted timber revenues minus discounted costs, such as harvesting, road maintenance and
reconstruction costs. The term endogenous comes from the fact that reconstruction costs not
only depend on external factors such as weather but also on prior road reconstruction and
maintenance actions whose timing is to be optimized by the model itself.

The EFCM is built on the Johnson and Scheurman (1977) Model II formulation with
the use of added variables and constraints that represent road maintenance decisions and
associated costs. Model II itself is a linear program (LP) that optimizes how much of each
FMU (forest management unit) should be harvested in a given planning period to maximize
NPV. The model is subject to a variety of constraints such as sustainability requirements,
even harvest volume flows, ending horizon conditions and other ecological considerations.
Formally, it can be described as follows:

Model II Formulation

Given the following model parameters and set notation,

M = the set of all FMUs,
P = the oldest age class in the initial inventory,
Z = minimum rotation age in decades,

Am = the area of FMU m in hectares,
am,t = percent of FMU m that is in age class t in period 1,

vm,t1,t2 = volume/ha in FMU m for harvests of age class t2-t1,
ρm,t1,t2 = revenue/ha in FMU m for harvests of age class t2-t1,
Aget,l = age of an FMU regenerated in t, in period l. e.g. Age2,9=7,
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and decision variables,

Wm,t1,t2 = % of FMU m regenerated in t1 and harvested in t2,
Nm,t = % of FMU m regenerated in t that will never be harvested,

Model II can be stated as:

max

|T |∑
l=1

l−Z∑
k=−P

∑
m

Amρm,k,lWm,k,l, (3.1a)

s.t. Nm,k +

|T |∑
l=1

Wm,k,l = am,k, ∀m ∈M,k = −P, ..., 0, (3.1b)

Nm,k +

|T |∑
l=k+Z

Wm,k,l =
k−Z∑
t=−P

Wm,t,k, ∀m ∈M,k = 1, ..., |T |, (3.1c)

∑
m

l−Z∑
k=−P

vm,k,lWm,k,l = Hl, ∀l = 1, ..., |T |, (3.1d)

1.25Ht ≥ Ht+1 ∀t = 1, ..., |T | − 1, (3.1e)
0.75Ht ≤ Ht+1 ∀t = 1, ..., |T | − 1, (3.1f)∑

m

|T |∑
t=−P

Aget,|T |Nm,tAm ≥
∑
m

−1∑
t=−P

Aget,1am,tAm (3.1g)

Objective function (3.1a) maximizes NPV across all FMUs and planning periods. Logical
constraints (3.1b) state that the sum of acres in FMU m that are in age class k in period 1
must be equal to the sum of acres that are assigned to be cut in a future planning period, plus
those that are assigned not to be cut from FMU m during the complete planning horizon.
Constraint set (3.1c) represents the flow of harvests considering the minimum rotation age
Z. These constraints state that starting from period k ≥ 1, the total area harvested and
regenerated in FMU m in period k will either not be harvested again for the rest of the
planning horizon, or will be harvested in some periods in the future (Z periods after period k).
Equality (3.1d) is an accounting constraint that calculates the sum of all harvest volumes for
each period. Inequalities (3.1e) and (3.1f) are even flow constraints that limit the difference
in harvest volumes between consecutive planning periods to be no more than 25%. Finally,
constraint (3.1g) is a minimum average ending constraint. It requires that the area-weighted
average age of all FMUs at the end of the planning horizon is greater than at the start.

Using Model II as its foundation, the EFCM introduces binary variables to represent road
reconstructions decisions, along with corresponding coefficients that show the associated costs
of those decisions. The EFCM assumes that road segments must be upgraded to local or
regional standards before they can be used for hauling. This means that if road segment i
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will be used in period t, then a full road reconstruction has to be done on that segment at
the beginning of period t for it to meet the standard conditions for hauling. The EFCM also
assumes road segments degrade over time based on a user-defined schedule, which means
that road reconstruction costs increase with the number of years that have elapsed without
repair. This is the reason for the use of the word endogenous in EFCM. Fixed maintenance
costs increase with time in disuse, which in turn is a function of the harvest schedule itself. In
particular, if the number of years that have gone by since a road segment’s last reconstruction
exceeds a threshold, then a full repair is necessary, at full reconstruction cost. In contrast,
repairing the road earlier than the threshold allows reconstruction at less than the full cost.
The exact function for road decay can be adjusted as needed to approximate any decay
pattern. For example, if we assume that a road segment i degrades in tmax years, and t
years have already gone by since the last reconstruction, then its Reconstruction Cost is the
following1:

Reconstruction Cost = Full Cost ∗min(1,
t

tmax
).

EFCM Formulation

Given the following set notation,

M = the set of all FMUs,
I = the set of all road segments,
J = the set of cost tiers. For our work, |J | = 2,
T = the set of 10 year planning periods, indexed by t = 1, 2, ..., |T |,
V = the set of all vertices in the road network,
E = the set of edges (roads), defined by starting and ending vertices (p, q),

qout = the set of vertices that can be reached from vertex q (outflow),
qin = the set of vertices that lead to vertex q (inflow),
Uq = the set of FMUs that use vertex q as an entry point to the network,
Vτ = the set of vertices that are considered exit points for the network, and
τ = the “imaginary” sink vertex to which all vertices in Vτ are connected.

and parameters:

ρm,t = net discounted timber revenue associated with harvesting FMU m in period t,
φj = fraction of full reconstruction cost for segment last reconstructed j periods earlier,
αi = the total reconstruction cost of road segment i, and
N = an Arbitrary large number, greater than the maximum possible flow.

1Non-linear decay functions can also be incorporated in the EFCM formulation
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and variables:

xm,t = 1 if FMU m is harvested in period t, 0 otherwise,

sji,t = 1 if road segment i is to be reconstructed in period t at cost φjαi, 0 otherwise, and
F(p,q),t = the flow between vertices p and q in period t.

the EFCM can be stated as:

max
∑
m,t

ρm,txm,t −
∑
i,j,t

φjαis
j
i,t1.0510(1−t) (3.2a)

s.t.
∑
j

sji,t ≤ 1 ∀i ∈ I, t ∈ T, (3.2b)

J∑
k=1

ski,t−j ≥ sji,t ∀i ∈ I, t ∈ T, j ∈ J, (3.2c)∑
p∈qin

F(p,q) +
∑
m∈Uq

xm,t =
∑
k∈qout

F(q,k),t ∀q ∈ V, t ∈ T, (3.2d)

∑
p∈Vτ

F(i,τ),t =
∑
m

xm,t ∀t ∈ T, (3.2e)

N
∑
k

sk(p,q),t ≥ F(p,q),t∈T ∀(p, q 6= τ), t ∈ T, (3.2f)

xm,t ∈ {0, 1} ∀m ∈M, t ∈ T, (3.2g)

sji,t ∈ {0, 1} ∀i ∈ I, t ∈ T, j ∈ J (3.2h)

Objective function (3.2a) maximizes NPV: discounted harvest revenues minus the dis-
counted road reconstruction costs. We assume that harvests and road reconstructions occur
at the start of each period and applied a discount factor accordingly (this is a common
practice in harvesting models). Constraint (3.2b) ensures that road segments can only be
reconstructed at one cost tier. This is done by allowing the activation of only one of the fol-
lowing variables at any given planning period: s1

i,t, s
2
i,t, ..., s

|J |
i,t . If none of these variables are

activated in period t, it means than there was no reconstruction done and therefore hauling
is not allowed through segment i (it does not meet the local standards). Constraint (3.2c)
represents the tiered structure of endogenous road reconstruction costs. It says that road
segment i can only be reconstructed at cost tier j in period t, if ski,t−j = 1 for one value of
k. In other words, the segment was reconstructed at any particular cost exactly j planning
periods ago.

An important aspect of the EFCM is that it finds optimal hauling routes dynamically to
support harvest actions. To achieve this, the road network is modeled as a directed graph,
where edges represent road segments that carry flow and vertices represent intersections that
connect the segments. Constraint (3.2d) ensures preservation of flow through the network.
It makes sure that everything that flows into vertex q, including flows that originate in q
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as a source, must be equal to the total amount of flow leaving vertex q. Using “imaginary”
vertex τ as a sink, constraint (3.2e) ensures that the total flow that is produced across all
the FMUs exits the system. To connect the flow constraint with the road reconstruction
variables, inequality (3.2f) ensures that no flow is allowed to go through edge (p,q) in period
t if the corresponding road segment is not reconstructed in that period. Parameter N allows
even the maximum flow to pass through this edge if it is available for hauling.

In order to connect the EFCM’s binary road reconstruction variables to Model II’s con-
tinuous harvest decisions, the following pair of trigger constraints are added:

t−Z∑
k=−M

Wm,k,t ≥ Hminxm,t, ∀m, t, (3.3)

t−Z∑
k=−M

Wm,k,t ≤ Hmaxxm,t, ∀m, t. (3.4)

Constraint (3.3) allows the binary harvest indicators xm,t of the EFCM to switch on when
a threshold percent (Hmin) of a FMU’s area is scheduled for harvest per Model II in period t.
If no harvest is scheduled to occur in an FMU in period t, constraint (3.3) forces the harvest
indicator to be zero. Working together with constraint (3.3), constraint (3.4) forces xm,t to
be equal to 1 if the area to be cut from the FMU is greater than 0, with a maximum allowable
value of Hmax. Finally, the objective function of the joint model will be the same as in Model
II (1a) minus the road reconstruction costs from (3.2a) in the EFCM. The integrated model
is listed in Appendix A.)

10



Chapter 4

ARDM: Accelerated Road Decay Model

In this work, we present a novel climate adaptation model for forest road networks that face
accelerated decay due to climate change. This model, which we will call the Accelerated Road
Decay Model, or ARDM, is an extension of EFCM. Our proposed spatio-temporal model is the
first to optimize climate adaptation in integrated natural resource and support infrastructure
management. Two effects of climate change were analyzed: accelerated road decay due to
higher precipitation, and road failure due to extreme rainfall events.

4.1 The Effect of Higher Precipitation on Road Decay

In the EFCM, decay functions of any form, linear or otherwise, can be incorporated by
changing the values of vector φ. When the EFCM was applied to the Upper ClearWater
planning area, the road segments were assumed to degrade linearly over a fixed 30-year period
regardless of their location within the watershed or any other external factor (temperature,
precipitation, etc.). This meant that a road not used for timber haul for 30 years or more
required full reconstruction, whereas a road that was last reconstructed 20 years ago needed
a reconstruction that cost one third less, and one reconstructed within the past 10–20 years
cost two thirds less. This meant that the total number of cost tiers J was set to 3, φ3 = 1,
φ2 = 2

3
and φ1 = 1

3
(φj = j

3
). In the present model, roads are no longer assumed to degrade

linearly, but instead, their decay is going to be a function of future climate conditions. If
future erosion rates are projected to be different from what they are today due to climate
change, the generalized cost function that we propose can easily be adjusted to accommodate
accelerated or decelerated decay schedules. This assumes that soil erosion 1 (Fig. 4.1a) and
surface runoff 2 (Fig. 4.1b) are the primary drivers behind forest road decay, which in turn
are directly correlated with annual precipitation rates due to rainfall erosivity 3.

1Erosion: Action of surface processes, such as water flow or wind, that removes soil, rock, or dissolved
material from one location and then transports it to another location.

2Surface runoff: Flow of water that occurs when excess storm-water, melt-water, or other sources flow
over the surface. This can occur when the soil is fully saturated and rain arrives more quickly than soil can
absorb it.

3Rainfall erosivity: The ability of rain to cause soil loss as a result of the kinetic energy in raindrops
striking the soil.
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Using different combinations of soil types, slope gradients, and locations across the United
States, Pruski and Nearing (2002) conducted a study to asses the relative influence of changes
in annual precipitation on runoff and erosion. They showed that for every 1% increase in
annual precipitation, we can expect a 2% and 1.7% increase in annual runoff and erosion,
respectively. For this work, future erosion rates for every climate scenario were calculated
using this idea. If future projections predicted an x% higher precipitation for the next 2
decades, then the extra erosion was set to y% = 2*x% higher (runoff and erosion were
modeled as on single effect generalized as “erosion”, and the consequent value for every 1%
increase in annual precipitation was set to an equivalent 2% higher annual erosion rate).

(a) (b)

Figure 4.1: Surface Erosion (a) and Surface Runoff (b)

When the EFCM was applied in the Upper ClearWater landscape on the other hand,
the Washington State Department of Natural Resources (DNR) assumed that roads degrade
linearly in a fixed 30 year period. Apart from the accelerated decay effect due to higher
precipitations, in our study we assume that roads depreciate over 20 years. This assump-
tion reduces the number of variables (2 cost tier reconstruction decisions instead of 3) and
complexity of the problem, which we found was necessary to get the computational results
needed for the stochastic program (this will be explained with more detail in the Results
Section).

The fixed time decay idea is partially based on the assumption that there is not going
to be a significant climate change in the next decades. But, if precipitation intensity does
increase in the future, roads will get in worse conditions earlier in the decade. Land owners,
who are responsible of building road segments able to withstand future climate conditions,
will have to build stronger and more expensive road structures capable of holding for the full
20 years.

The next example shows how accelerated decay due to higher precipitations was incorpo-
rated in the ARDM’s cost structure: Let’s suppose that in a free-climate change scenario,
road segment i’s lifecycle is 20 years, and has a full reconstruction cost of Ci (this cost is pro-
portional to the length of the road segment). This means that the DM can reconstruct road
segment i at cost Ci and be sure it will last 20 years before needing a new full reconstruction.
Now, in a climate change scenario, with more frequent and intense annual precipitations, the
speed at which road i’s degrades will increase and its lifespan will be reduced. If the extra
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erosion in the next 20 years is y% higher, then the new lifecycle of road segment i can be
calculated as New Life Cycle i= 20

1+ y
100

, where we are assuming that an extra erosion of y%

translates into an y% faster decay. For example, if y=15, then the new lifecycle of road
segment i is 17.4 years.

Now, it is required by law that when reconstructed, roads have to be upgraded to standard-
/local conditions. In the context of our work, standard conditions mean that road segments
will be able to hold for 20 years before exceeding the time threshold in disuse at which roads
require full reconstruction before being used again for hauling. However, in the presence of
climate change and more extreme weather scenarios, roads will have shorter lifespans (less
than 20 years) if they are built with the usual infrastructure. On the other hand, a forester
could anticipate faster erosion and build a stronger architecture at a higher cost, compensat-
ing the extra erosion with a tougher infrastructure. Continuing with the previous example,
where the extra erosion over road segment i is 15% and consequently has an expected lifespan
of 17.4 years (instead of 20), the forester could apply a preemptive measure by anticipating
tougher weather, and decide to pay Ĉi = Ci · 20

17.4
= 1.15 ∗Ci for road segment’s i reconstruc-

tion, instead of Ci, and guarantee a lifespan of 20 years instead of 17.4 (assuming that the
forester made a good prediction and the extra erosion in the next 20 years was indeed 15%).

In conclusion, if a particular road segment i is expected to experience an extra erosion of
y% over the next 20 years, then the new standard full reconstruction cost is:

Ĉi = Ci · (1 +
y

100
) (4.1)

By paying Ĉi, and if the y% extra erosion for the next 20 years holds, then the DM can be
certain that the new stronger infrastructure will compensate the extra erosion and ensure a
lifespan of 20 years before requiring a new full reconstruction.

However, because future climate intensity is unknown and its consequences only reveal
themselves with time, we cannot talk about one true deterministic Ĉi that ensures an exact
20 year lifespan for road link i : this value depends on an unknown extra erosion parameter
y. The problem is that the DM can underestimate the y value and build a frail road infras-
tructure that is not able to withstand the next 20 years of higher future erosion rates. If this
is the case, and for some particular period the DM does not observe the intensity he/she was
expecting and prepared for, he/she acknowledges it and the state charges an extra mainte-
nance fee as a tax for the higher maintenance costs needed to sustain the road link during the
standard 20 years. On the other hand, if the DM overestimates the effects of future climate
change and builds an unnecessary robust infrastructure, the state will refund the forester
with the extra money invested. This is done by assessing the DM’s schedule and adjusting
the OF downward in scenarios where the reconstruction was done with a lower quality than
what was needed. In the second case, where the road was constructed at a unnecessary high
standard, the state adjust the DM’s OF upward, giving him/her an extra fee for the extra
expenses.
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4.2 The Effect of Extreme Storm Events on Road Failure

In addition to changes in annual precipitation, climate models forecast major increases in
storm intensities and frequency across Washington State over the 21st century (Salathé Jr
et al., 2014; Warner et al., 2015). These changes have major consequences on tree growth
and yield, but they also on road segments and their reconstruction cost structure. Higher
precipitation rates can cause landslides, higher soil erosion and runoff rates (Pruski & Nearing,
2002), increase soil particles spilling to rivers and create more extreme river flow patterns
(Elsner et al., 2010).

In the Pacific Northwest, two factors interact to cause increases in flood magnitudes: de-
creasing precipitation stored as snow and intensifying heavy rain events (Pruski & Nearing,
2002). The predicted changes in stream flow across the PNW will cause alterations in chan-
nel morphology because they adapt their geometry to accommodate changes in discharge
(Leopold & Maddock, 1953). This may have serious environmental consequences, one of
them being the malfunctioning of culverts, as it is explained in (Fig. 4.2):

Figure 4.2: Causal relationships between culvert alteration and climate change. Climate change is
projected to increase the proportion of precipitation that falls as rain rather than as snow. As a
result, winter peak flows in most of Washington are expected to increase in volume. Increased peak
flows are known to alter channel morphology. Wider channels require wider culverts, which if not
replaced, can affect fish passage through the culvert and also nearby fish habitats (Wilhere et al.,
2017).

Properly built culverts at river road crossings allow the correct passage of water and
fish. They are designed to maintain the continuity of channel structure and composition
by conveying water, sediment, and wood in the same way as the surrounding stream reach
(Gillespie et al., 2014), and so fish are able to migrate through an artificial channel that
closely simulates the key channel characteristics:
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Figure 4.3: Culvert: A tunnel carrying a stream or open drain under a road or railway. They are
designed to preserve the channel structure allowing water and fish passage.

One of the most important parameters of culvert design is bank-full width (a channel’s
width at its bank full elevation (Fig. 4.4)), and this is expected to increase in many parts
of Washington State due to climate change (Wilhere et al., 2017). If this changes are not
internalized in culvert management by repairing or replacing them, then fish passage will be
seriously compromised because of sediment barriers and dangerous flow velocities through
culverts. This is a critical issue in Washington State because several salmonid species are
listed as threatened with extinction under the federal endangered Species act, which may
get worse if the blockades at culverts issue is not properly addressed. This is also a legal
problem because in 2013 a federal court ruling determined that the United States government
had to grant Native American tribes the right of a protected fish habitat (United States vs.
Washington (2013)).

Figure 4.4: Bank-full Width: The width of a channel before it overflows its bank.

It is not an easy task to predict the bank-full width increase (and consequently, the need
for culvert reconstruction) as a function of changes in precipitation patterns. For this study,
the approach was to segment the need for culvert reconstruction with the occurrence of heavy
rain storms. We assumed that culverts must be reconstructed at full cost (before being used
again) if a historical 100 year 24-hour event occurred in their area. An n-year event is
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something that is expected to occur every n years, which is equivalent as saying that has
a yearly probability of occurrence of 1

n
. A 100 year 24-hour rainfall is an event where the

total precipitation that falls in a given year, in a 24-hour period, exceeds the current 99th

percentile of 24-hour precipitations. This is equivalent as saying that the maximum 24-hour
precipitation in a given year is bigger than the 99th percentile. In this paper, we assume that
road segments with culverts will fail in a future decade t if during that decade, the max.
24 hour precipitation exceeds the historical 99th percentile value (referred from now on as
Vhist-99), where we are assuming that this failure comes from the fact the culvert infrastructure
is not able to hold events of this magnitude.

In the previous section we described the new road cost structure imposed by extra erosion.
Instead of having a linear decay as a function of time, road segments are assumed to degrade
with time but also with an extra rate proportional to the annual precipitation. In addition to
this effect, the ARDM assumes that road segments with culverts can suffer from failure due to
extreme events that have the potential to exceed the capacity of culverts to relieve upstream
flow. The next example shows how road failure due to extreme events were incorporated
in the ARDM’s cost structure: Let’s take a road segment i that has culvert(s) and was just
reconstructed to standard/local conditions. This road segment will have a lifespan of 20 years
until needing a new full reconstruction. Now, let’s imagine that in the first decade since its
reconstruction, a 100 year 24-hour storm affects the area where this road segment is located.
Instead of having a lifespan of 20 years, this lifespan is reduced to 10 years since the road
segment is assumed to be completely destroyed (in the sense that i’s culverts are not able to
hold an event of this magnitude and therefore the road segment needs a full reconstruction
before being used again for hauling).4

Now, the climate projections built for this study only provide the probability of extreme
event occurrence in every decade, not the actual occurrence. Continuing with the previous
example, we can’t be sure about the actual failure of road segment i in a particular decade,
and consequently, we don’t know if this road needs a new reconstruction after 10 or 20 years.
Nevertheless, we can calculate the expected lifecycle of road segment i with the following
formula:

Expected Lifecyclei = 10p + 20(1− p) (4.2)

where p is the probability of storm occurrence during the first decade after its last recon-
struction.

Using the same argument as in the previous section, because the law requires that roads are
reconstructed to standard/local conditions (meaning that roads last 20 years before needing
a new full reconstruction), the new standard full cost of reconstruction, which considers the
probability of 100 year 24-hour events and higher erosion rates, for any road segment i is:

Final_Ci = Ĉi ·
20

10pi + 20(1− pi)
(4.3)

4For modelling purposes, we assume that climate effects are only seen at the end of the decade. This means
that although the storm event could have destroyed the culvert in the first 5 years since its reconstruction,
the road can be considered to be functional during the complete decade, this is why a road failure in the first
decade still translates into a 10 year lifespan.
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where Ĉi is the previously calculated full reconstruction cost that only considers faster
decay due to higher erosion rates. Notice that if the road segment has no culverts, then
pi=0, which means that Final_Ci = Ĉi.

4.3 ARDM Cost Structure Summary

In this new model, roads are assumed to degrade in 20 years, but not in a linear way. Their
decay is a linear function of time but it is accelerated by higher erosion rates and storm
events. In order to avoid accelerated decay, a decision maker can preemptively build more
robust and expensive structures that are able to withstand the future 20 year precipitations
and storms. If the DM doesn’t do so, the state will eventually charge him/her for the extra
maintenance costs if the climate behaves in a more aggressive way than expected (and the
state will pay if it happens the other way around) by adjusting the OF.

The full reconstruction cost of a road segment i in period t, that expects a future extra
precipitation of xi,t,t+1 % in the next 2 decades, and has a probability of storm occurrence of
pi,t, is:

Final_Ci,t = Ci · (1 +
2xi,t,t+1

100
) · 20

10pi,t + 20(1− pi,t)
(4.4)

Following the same structure as the EFCM, this model has 2 cost tiers: road segments
that were reconstructed 10 years ago can be reconstructed at half the full cost (half of
Final_Ci,t), while road segments that have not been reconstructed in 20 years or more need
a reconstruction at full cost before being used again for hauling.
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Chapter 5

Data

In this chapter we describe the data used to build the new road reconstruction cost scenarios.
These scenarios were build using Climate Data from the Climate Model Inter-comparison
Project and Forest and Road Data provided by the Washington State Department of
Natural Resources (DNR). The climate data, consisting of hourly precipitation rates from
2010 until 2100, was used to build erosion and storm event predictions for the century, which
were projected over the forest and road network data to build the new reconstruction costs
scenarios.

5.1 Climate Data

Future precipitation can be predicted by climate models, which give projections of future
atmospheric conditions and their uncertain behaviour. Even though many models are used
for this purpose, General Circulation Models (GCMs) are the most consistent at incorporating
the increasing greenhouse gas concentrations in their regional climate estimates (IPCC, 2018).
GCMs are highly sophisticated mathematical models that use a set of physics equations in
order to run computer simulations for weather forecasting and understanding climate change.
12 GCMs, obtained from the international Climate Model Inter-comparison Project, phase
5 (CMIP5; Taylor et al. (2012)) were used for this study (Table 5.1):
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Model Center

ACCESS1-0 Commonwealth Scientific and Industrial Research Organiza-
tion (CSIRO) Australia/Bureau of Meteorology, Australia.

ACCESS1-3 Commonwealth Scientific and Industrial Research Organiza-
tion (CSIRO) Australia/Bureau of Meteorology, Australia.

bcc-csm1-1 Beijing Climate Center (BCC),ChinaMeteorological Admin-
istration.

CanESM2 Canadian Centre for Climate Modeling and Analysis.
CCSM4 National Centre of Atmospheric Research (NCAR), USA.

CSIRO-Mk3-6-0
Commonwealth Scientific and Industrial Research Organiza-
tion (CSIRO)/Queensland Climate Change Centre of Excel-
lence, Autralia.

FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy
of Sciences.

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory, USA.
GISS-E2-H NASA Goddard Institute for Space Studies, USA.

MIROC5
Atmosphere and Ocean Research Institute (The University
of Tokyo), National Institute for Enviormental Studies, and
Japan Agency for Marine-Earth Science and Technology.

MRI-CGCM3 Meteorological Research Institue, Japan.
NorEXM1-M Norwegian Climate Center, Norway.

Table 5.1: Global Climate Models used for this project.

These models were selected by the Climate Impacts Group (University of Washington)
from a pool of candidates using 40 performance metrics aimed at identifying models that best
capture the dynamics governing large-scale precipitation in the PNW. The selection criteria
identified the GCMs that minimize the difference between predicted and observed historical
values for these key performance metrics. Some of these metrics were:

• SLP spacecorr: Seasonal average sea level pressure, averaged over each domain. Dif-
ference between simulated and observed.
• tas_bias: Average surface temperature, 1960-1999. Difference between simulated and

observed.
• PRW95 spacebias: Winter (December-February) 95th percentile of daily precipitable

water, averaged over the Nearshore Pacific Northwest domain. Difference between
simulated and observed.

Next, Fig. 5.1 shows all metrics evaluated by the CMIP5 for every GCM1, ranging from
0 to 1, where 0 (blue) represents perfect prediction and 1 (red) means highest bias:

1ACCESS1-3 is missing in Figure 5.1 as it was developed after CMIP5.
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Figure 5.1: Relative error of each metric (y-axis) (normalized to range from 0 to 1) for each GCM
(x-axis). Models are ordered left to right in ascending mean relative error.

As it was mentioned earlier, GCMs are designed to interact with future changes in green-
house gas concentrations. Because gas emissions depend on so many factors such as economic
growth, political regulations and social factors, it is very difficult to predict their behavior,
and so the quality of climate model predictions gets compromised. One approach that climate
scientists have used to solve this issue has been considering only a small number of possible
greenhouse gas scenarios, which can be achieved by different combinations of political and
technological actions. By doing so, there is no need to predict future emissions with high
precision, it is sufficient to just predict a specific greenhouse gas scenario and couple it with
a GCM.

In 2014, The Intergovernmental Panel for Climate Change (IPCC) identified four scenar-
ios to cover the range of plausible gas emission trajectories that could be observed in the
future. These scenarios, called Representative Concentration Pathways (RCPs) and devel-
oped by Van Vuuren et al. (2011), differ by their continuous change in CO2 emissions and
concentration, as it can be seen in Table 5.2:
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Table 5.2: Four Representative Concentration Pathways. This table shows the target concentration
in 2100 and the percent change in annual emissions, relative to 2010, for both 2050 and 2100. These
concentration values consider every greenhouse gas, but it is expressed in “CO2-equivalent” to show
an equivalent warming potential (IPCC (2014)).

The data for this study was provided by Guillaume Mauger from the CMIP5 and Cliff
Mass from UW Atmospheric Sciences, and consists of precipitation projections from a total
of 12 GCMs coupled with the 8.5 RCP concentration pathway, also referred to as the business
as usual scenario since its growth in emissions is similar to past decades. Although we were
forced to use this RCP because it was the only data available when we started the project,
assuming the worst case climate scenario is often a useful and accepted practice in the
forest industry. It also addresses one of the questions of this study, which is to understand
the potential damage of ignoring climate change in harvesting and road (re) construction
planning.

The actual data came from Regional Climate Models (RCMs) instead of GCMs, which are
more precise estimates that can describe local changes in rain storms and climate in general.
GCMs serve as boundary conditions to build the RCMs, and they are necessary because
local climate patterns can be influenced by conditions in other parts of the globe, ones which
can only be captures by high resolution models such as GCMs. The reason why RCMs were
used instead of GCMs is that although the latter are good at providing large scale climate
predictions and representing key aspects of atmospheric rivers (e.g., Flato et al. (2014)), their
low resolution sometimes fails to capture how local differences in orography2 in the Pacific
Northwest alter the precipitation patterns and intensity.

An example of this phenomenon is the interaction between atmospheric rivers and the
mountains of the coast of the PNW, which would be difficult to capture without the precision
of RCMs. An atmospheric river is a narrow current of warm, moist air from the tropics and
subtropics that extends northward into the midlatitudes (Fig. 5.2), and it is the new unusual
direction in which its approaching the PNW’s coasts one of the most plausible reasons that
explain the observed increase in heavy storms (Mass, 2020).

2Orography: the branch of physical geography dealing with the formation and features of mountains.
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Figure 5.2: Atmospheric River Simulation approaching the PNW coast from the west (Mass, 2020)

But, why is this unusual direction causing an increase in precipitation storms? One of the
reasons is that this westerly wind moves rapidly up the mountains, cooling and releasing large
amounts of water vapor in the atmospheric river which later on condenses and is transformed
into liquid water. Atmospheric rivers in the past came from south to north with not much
upslope flow since the air was running parallel to the terrain, avoiding this increased water
vapor phenomenon.

(a) Horizontal ARs (b) Vertical ARs

Figure 5.3: West-East (a) vs. South-North (b) Atmospheric Rivers. Compared to (b), (a) produces
heavier rains due to a faster elevation of water vapor over the mountains.

Mass and Mauger’s 12 projection simulations were performed using the Weather Research
and Forecasting (WRF3; Skamarock et al. (2005)) community mesoscale model for each
RCM, using the 12 previously mentioned GCMs as boundary conditions for each one. These
projections gave hourly precipitation outputs on a curvilinear 12-km grid for the Pacific
Northwest, from the years 1970 until 2100. We used their hourly precipitation outputs to

3https://www.mmm.ucar.edu/weather-research-and-forecasting-model
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build projections of future soil erosion and storm probability over the forest road network.
These projections were used to build 27 scenarios of future road reconstruction costs, which
were a function of extra soil erosion (caused by annual extra precipitation) and increasing
storm probability (caused by large 24 hour rains). These new road reconstruction costs, which
have an endogenous structure (they depend on the time since the last reconstruction) and also
vary upon external factors (total precipitation and storms) are one of our main contributions
to science, together with the ARDM stochastic model we built to solve the harvest schedule
problem taking these scenarios into consideration. The workflow and methods used to build
these precipitation projections and road reconstruction costs scenarios are described in detail
in the next chapter 6: Climate Data Processing and Scenario Generation.

5.2 Forest and Road Data

The Olympic Experimental State Forest (OESF) was chosen as the case study forest for this
project. The Washington State Department of Natural Resources manages state trust lands
in the OESF, to generate a sustainable flow of revenue to counties, universities and other
state trust land beneficiaries. Streams in the OESF support robust populations of salmon at a
time when many Northwest salmon runs are losing strength. In the OESF, DNR balances the
two objectives by implementing an experimental approach called "integrated management".

The OESF is managed for both revenue production and ecological values, rather than
separating state trust lands into large areas managed for a single purpose. This is achieved
through innovative silvicultural techniques, landscape-level planning, intentional learning
through research and monitoring, and application of new information to management through
a formal adaptive management process. In 2009, the OESF joined the Experimental Forest
and Range Network (EFRN), in an agreement between DNR and the U.S. Forest Service
Pacific Northwest Research Station that encouraged collaboration between OESF and Forest
Service scientists.

Silviculture and fish research has been conducted on state trust lands on the western
Olympic Peninsula since the 1970s. After the designation of the OESF in 1992, it intensified
and broadened to cover forest and wildlife ecology, geology, and riparian 4 management
among other topics. The majority of the past research and monitoring activities are listed in
the OESF Research and Monitoring Catalog, published by DNR in 2008 with many recently
completed and ongoing projects.

One of the goals of our work was to show how our model could be applied to the Upper
ClearWater landscape of the OESF. The Upper ClearWater is a major river drainage (wa-
tershed) of the OESF which has a rich history of scientific investigation. Thus, a new forest
planning model formulation applied to the Upper ClearWater that includes the impacts of
climate change on road connectivity would make my findings meaningful.

Road network and forest stands data was provided by the Washington State Department
of Natural Resources (DNR) for the Olympic Experimental State Forest (OESF). These data
include important aspects of the forest and road network such as tree and site potential infor-

4Riparian: Relating to or situated on the banks of a river
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mation (the average tree species harvested in this area are Douglas fir and western hemlock5),
road segment information, distribution of forest management units (FMUs), attributes such
as road proximity to streams and also their connectivity to FMUs.

Fig. 5.4 shows a map of Washington State (green points) with the OESF road network at
the upper left corner (blue). Fig. 5.5 (a) shows the same road network (blue) but identifying
segments that have at least one culvert (red). Finally, Fig. 5.5 (b) shows the road network
(blue) and its connectivity to the different FMUs (yellow polygons).

Figure 5.4: Washington State (green) and OESF road network (blue).

(a) Roads (blue), segments with culverts (red). (b) Roads (blue), FMUs (yellow).

Figure 5.5

5Douglas fir is the largest and tallest member of the pine family, and is the most widely used wood for
building and construction. Western hemlock on the other hand, is a type of hemlock also used construction,
roof decking and plywood.
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The road network shown above extends to a total area of 4.450 km2 and has 5.532 FMUs
that cover a total area of 1.095 km2 (270.580 acres). It is made up of 26.348 road segments
with a total length of 10.104 km., and an average length of 383 m. Out of the 26.348 road
segments, 12.249 (46%) have culverts, with an average of 9 culverts per road segment.

Because the goal of this work is to understand how the ARDM can accommodate the im-
pact of future climate change on the road network, having future climate data over each road
segment for every year in the planning horizon was mandatory. To assign the corresponding
climate information to every road segment, a spatial join was done between the road network
and the yearly climate projections data. These climate data projected over the PNW was
partitioned into 49 climate grid cells with a 12km resolution, so two different road segments
inside the same climate cell were associated with the same climate data.

Figure 5.6: Road network and RCM grid cells centers (blue squares).

After trying different approaches to test the ARDM in this area, we realized that the
instance size was too big, and the computational burden of applying a stochastic model was
immense. The initial instance was tested using IBM ILOG CPLEX 64-bit 12.9.0 on an MSI
GP62MVR 7RFX Server with an Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz (eight
processors) with 24 GB RAM and the Ubuntu 18.04.01 Server 64-bit operating system, and
after 10 hours of computer running time, the model only reached a 5% MIP gap.

Reaching a very low gap was crucial for this project for the following reason: The objective
function of a stochastic problem (OF) is made up of the weighted average of the objective
functions OFs of each scenario s. Let’s assume that the model is solved up to a 5% gap.
Now, consider 2 scenarios, s1 and s2, that only differ in the last 3 decades. Because of the
discount rate, the coefficients for these 3 final decades are very small and have little impact
in the OF, and therefore OFs1 and OFs2 are practically identical.
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When the stochastic model is solved, the 5% gap hides this small difference between OFs1
and OFs2 , and it is very likely that we end up with identical solutions for both scenarios s1

and s2 even thought they are different in 30% of the decades6. Because part of the goal of
this project is to analyze the different harvesting and road reconstruction strategies under
every scenario, only a very small gap must be allowed in order to avoid the problem of having
identical solutions for two different scenarios.

After analyzing other possible areas of the OESF that were smaller and therefore could
be solved to optimality in a reasonable time, we ended up working with a landscape located
on the Sol Duc River drainage area in the North part of the OESF. This area is circled in
red in Fig 5.7, followed by a close up in Fig 5.8:

Figure 5.7: Sol Duc River drainage.

Figure 5.8: Sol Duc River drainage road network and FMUs.

6The coefficients of the ARDM are multiplied by zt = (1 + r
100 )

10(1−t) where r is the discount rate and t
is the decade. With r = 0.05, z8 = 0.03, z9 = 0.02 and z10 = 0.01, i.e. very small coefficients.
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This location is a 150 km2 forested land-base, with 98 FMUs covering a total area of 17km2

(4200 acres), which is covered by 4 RCM climate grid cells. This area has an infrastructure
of 65 road segments that add up to a 63.5 kilometer road network, with an average length of
976 m. (min=13 m., max=4.2 km.). Out of the complete network, 53 of the road segments
have culverts (82%), with an average of 15 culverts per road segment (min=1, max=73),
adding up to a total of 821 culverts. The next image shows the road segments with culverts
in red, and the ones without, in blue:

Figure 5.9: Road with culverts (red), and without (blue)

The Sol Duc River drainage is much smaller than the Upper ClearWater area that we
first considered. After doing a couple of test in this new location, we decided that this was
an appropriate OESF area to test the ARDM, mainly because the model could find close to
optimal solutions after a reasonable computational time (which as it was mentioned before,
was crucial to identify differences in harvesting and reconstruction strategies for different
scenarios). Finally, it should be pointed out that due to the size of the area, even flow
constraints (constraints 3.1e and 3.1f of the Model II formulation) and the average ending
constraints (3.1g) were eliminated from the new model because they were not necessary, as
these constraints only apply to big forests. 3.1e and 3.1f constraints ensure a uniform flow of
wood to meet demand variations and is also particularly important for communities whose
stability can be assured only by the steady and continuous flow of raw materials from the
forest resources. Nevertheless, this only applies to the complete forest, it does not apply
independently to particular zone or unit. A forester could decide it is in his/her best interest
to completely harvest a zone in a particular decade without touching it in the previous ones,
something that is permitted as long as the total harvest across all the FMUs is within 25%
from the previous decade. Because the area for our project is small, it can be considered as
a small zone inside the complete OESF forest landscape, and therefore constraints 3.1e and
3.1f do not apply. The same happens with constraints 3.1g: They only apply to the whole
forest as a unit, not for a particular zone.
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Figure 5.10: Sol Duc River on the Olympic Peninsula in Olympic National Park, Washington.

The next chapter describes the process of taking the 12 RCMs precipitation outputs,
transforming them into extra erosion and extreme event probability realizations and then
creating 27 new road reconstruction scenarios.
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Chapter 6

Climate Data Processing and Scenario
Generation

This chapter describes the series of steps at creating the set of 27 road reconstruction costs
scenarios that were used to build the Scenario Tree to test the ARDM. These scenarios are
a sequence of 10 climate intensities for each decade along the planning horizon, which are
then translated into new road reconstruction costs. This new road reconstruction costs were
built by projecting Extreme Event Probability Realizations and Extra Erosion Realizations
over the Sol Duc River area’s road network. The first section of this chapter, Climate
Data Processing, shows how the climate data was processed in order to build erosion and
extreme event realizations of different intensities, and how these were translated into the new
road reconstruction costs realizations. The second section, Scenario Generation, describes
how these new road reconstruction costs realizations were translated into the 27 different
scenarios.

6.1 Climate Data Processing

Having hourly precipitation projections from 1980 until 2100 for every Regional Climate
Model was the first step at creating future road reconstruction cost realizations. It should
be made clear that for this project we assumed that climate only affect these costs, but has
no effect on tree growth or yield. Harvesting adaptation strategies under stochastic tree
growth and yield has been thoroughly studied by other researchers (e.g. Garcia-Gonzalo et
al. (2020)), that is why we decided to leave it outside the scope of this project and focus on
a new effect.

These next sub-sections describe the series of steps followed in order to create Extreme
Event Probability Realizations (1) and Extra Erosion Realizations (2) for each decade.
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6.1.1 Extreme Event Probability Realizations

Future storms were modeled as the occurrence of historical 100 year 24-hour rainfall events,
which are 24-hour rainfalls bigger than the historical 99th percentile. The historical probabil-
ity (1980-2009) of a 24-hour rainfall being bigger the historical 99th percentile value (Vhist 99),
is equal to 0.01 (by definition) because it is a 100 year event and therefore has a probability
of 1

100
=0.01. However, if future precipitations become more intense, then the distribution

of total precipitation of 24-hour rains, and consequently max. 24-hour rainfalls, will change
and shift to the right, as shown in Fig 6.1. This potential shift will increase the probability
of future yearly max. 24-hour rains being bigger than Vhist 99, and therefore, in the context of
our model, give more frequent storms with culvert destruction potential. As it was mentioned
in section 4.2, the ARDM does not model the actual occurrence of extreme events, it only
takes into account the new probability of these eventualities taking place and builds on it to
create new road reconstruction costs.

Figure 6.1: For the historical yearly max. 24-hour precipitation distribution (black), Vhist 99 corre-
sponds to its 99th percentile. On the other hand, for a new and more intense precipitation distribution
(blue) that has shifted to the right, Vhist 99 only corresponds to the 97th percentile, meaning that it
corresponds to a more frequent 100

3 ≈ 33-year event.

Next, we describe the steps at creating Extreme Event Probability Realizations for each
road segment in every decade.

1. Tridecades:
Estimating the distribution of yearly max. 24 hour precipitations requires consecutive
year data in order to make the proper calculations. Using 30-year periods is an ap-
propriate length of time for estimating the distribution of yearly max. 24 hour rains
because it is roughly long enough to encompass natural variability and to calculate
extreme statistics (Mauger et al., 2018). As a consequence and for modelling purposes,
every year in the 30-year sample data has the exact same distribution for max. 24-hour
precipitations. For this project, the planning horizon was divided into 3 30-year peri-
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ods and 1 40-year period, referred from now on as tridecades1. Years 1980-2009 were
assigned to the Historical Tridecade, 2010-2039 were assigned to the First Tridecade,
2040-2069 were assigned to the Second Tridecade, and years 2070-2109 correspond to
the Third Tridecade (the last tridecade is made of 4 decades instead of 3 because it
is more common to build a 10-period planning model rather than a 9-period one, and
3-30 year tridecades would only add up to a total of 9 decades.). The following steps
describe how we calculated the new yearly max. 24 hour precipitation distribution for
each tridecade, and consequently, the associated probability of storm occurrence for the
tridecade and every decade in it. As it was previously mentioned, given that tridecades
are 30-year periods and the decision periods for the model are decades, each decade
inside a tridecade was associated with the same storm occurrence probability2.

Figure 6.2: Relation between periods, years and tridecades. Periods, or decades, have a length of
ten years, and the first one starts in the year 2010. The first 3 periods are part of the First Tridecade
(Tr.1), periods 4, 5, 6 are part of the Second Tridecade (Tr.2) and periods 7, 8, 9 and 10 are part
of the Third Tridecade (Tr.3). Harvesting and road reconstruction decisions are assumed to occur
at the beginning of every period (red marks), and the climate is assumed to manifest itself at the
middle of every period (blue marks).

2. Yearly Max. 24-hour Precipitations:
To calculate the extreme statistics of future rainfalls, the yearly max. 24-hour precip-
itation of every year was calculated for each grid cell under each RCM. This was an
easy task given that we already had the hourly precipitation for each year.

3. Fitting a Distribution:
With the max. 24-hour precipitation for each year inside a tridecade, Extreme Value
Analysis (EVA) was used to find a function to represent the distribution of yearly max.
24-hour rains. EVA is a branch of statistics that deals with probability distributions
of maximum values of a sample. What it does is it seeks to assess the probability of
events that are more extreme than any previously observed, and has many applications
such as estimating the probability of unusually large floods, side effects of drugs, large
wildfires, economical crisis, and for this study, yearly max. 24-hour rains. Using EVA
as a framework, we selected a set of functions from the Generalized Extreme Value
Distribution3 and used them to try and fit the empirical data of yearly max. 24-hour

1Tridecade is the result of combining the words “three” and “decade” into one word (the last period consists
of “four” decades, but it will also be referred a tridecade for simplification).

2Because there was no climate data for the 10th period (years 2099-2109), it was assumed that it was
identical to the previous decade.

3GEV: Family of continuous probability distributions that combines the Gumbel, Weibull and Frechet
distributions, and is commonly used to model extreme events
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precipitations. Having these extreme rains being represented by a known distribution
allowed me to calculate the probability of any storm being bigger than any given value.

To get an initial understanding of the behaviour of yearly max. 24-hour precipitations,
the first step was to use a graphical test for some grid cells, tridecades and RCMs, and
see if they their empirical distribution could be approximated by known functions. Fig.
6.3 shows the empirical frequency (divided into 10 bins) of max. 24-hour precipitation
for one particular grid cell during the First Tridecade under RCM Access1.0-RCP8.5,
along with 6 known theoretical probability density functions4.

Figure 6.3: Empirical yearly max. 24-hour precipitation frequency vs. 6 known theoretical density
functions: Weibull Min., Log-Normal, Right-Gumbell, Left-Gumbell, Exponential and Generalized
Extreme Value Function.

As it can be seen in Figure 6.3, all theoretical distributions show a good fit except for
the Exponential and the Left-Gumbel function. CDF and QQ-plot graph tests were
also performed in several combinations of RCM-cell-tridecade to asses the quality of fit
of these 6 known density functions (Appendix B and Appendix C). These tests con-
firmed that these distributions were good candidates for modelling the max. 24-hour
precipitations for every RCM-cell-tridecade.

4. Analytical Goodness of Fit:
Because the precipitation data for every trio of RCM-tridecade-grid cell does not neces-
sarily follow the same distribution, an algorithm was executed to find the function that
best fit the empirical data of each one of them. The 6 distributions were evaluated for
each trio and were graded by the AIC criterion: the distribution with lowest AIC was
chosen to model the max. 24-hour precipitation for that particular RCM-tridecade-
gridcell.

4Maximum Likelihood Estimator (MLE) was used to calculate the optimal parameters that best fit the
empirical data, for each one of the theoretical distributions.
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5. Historical 99th percentile:
For every grid cell, the historical yearly 24-hour 99th percentile value (Vhist 99) was cal-
culated from the previously found theoretical distribution.

6. New Storm probabilities for each RCM:
Using the best fitting distribution found in (4) for every RCM-tridecade-grid cell, the
quantile function was applied to calculate the new probability of a yearly max. 24-
hour precipitation being bigger than the Vhist 99 value. Figure 6.4 shows the average %
change of the historical probability of storm occurrence over tridecades across all grid
cells under each RCM:

Figure 6.4: Average % change in probability of storm occurrence (year max. 24-hour precipitation
being bigger than the historical 99th percentile) compared to the historical p=0.01 value, across all
grid cells for every tridecade under the 12 RCMs (each color represents a different RCM).

Although the results differ across RCMs, there is a clear tendency towards an increas-
ing storm occurrence probability as we move through the century. This graph corrob-
orates what the scientific community predicts for future years regarding the increase
in heavy rains over the PNW. Finally, the new storm probability value of each of the
12 RCMs, for every tridecade-grid cell combination, was stored in a quantiles vector
named Q(tridecade,grid cell).

7. Quantile Distribution:
The objective at this step was to fit a Normal distribution to the Q(tridecade,grid cell) vector
for every tridecade-grid cell combination. The idea behind this was that later on, this
Normal distribution would be divided into 3 intervals corresponding to three different
levels of storm intensity. By modelling the quantiles vector as a Normal distribution,
it can be divided in such a way that the left tail can be assigned to the Low Storm
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Probability realization , the middle interval can be assigned to the Moderate Storm
Probability realization, and the right tail can be the Heavy Storm Probability realiza-
tion, each one corresponding to an increasing storm probability.

Because there are not enough data points to build a Normal distribution using the 12
quantile points in Q(tridecade,grid cell), a Bootstrap method was used to fix this issue. The
method consisted of sampling 12 values with replacement from Q(tridecade,grid cell), cal-
culating the average value, storing it in a Replicates Vector, and repeating this process
10.000 times. Now, this Replicates Vector follows a Normal distribution and it can be
divided into the 3 intervals corresponding to the Low (left tail, weight=0.25), Moderate
(middle section, weight=0.5) and Heavy (right tail, weight=0.25) storm probability re-
alizations mentioned earlier, each one corresponding to a different probability of storm
occurrence in a given year. Table 6.1 shows the average probability of storm occurrence
in a given year inside a tridecade, where the average is calculated across every grid cell:

Tridecade Low Moderate Heavy

1 0.022 0.031 0.039
2 0.039 0.044 0.056
3 0.034 0.050 0.067

Table 6.1: Mean yearly probability of storm occurrence over each tridecade under the Low, Moderate
and Heavy realizations. The historical value of p = 0.01 should be used for comparison.

The following table shows more specific information on storm occurrence probabil-
ity. While the previous table showed the storm probability in a given year inside a
tridecade, the following table gives the storm occurrence probability in each decade
under every storm intensity:

Intensity 1 2 3 4 5 6 7 8 9 10
Heavy 0.33 0.33 0.33 0.44 0.44 0.44 0.5 0.5 0.5 0.5
Moderate 0.27 0.27 0.27 0.36 0.36 0.36 0.4 0.4 0.4 0.4
Low 0.2 0.2 0.2 0.27 0.27 0.27 0.29 0.29 0.29 0.29

Table 6.2: Average Storm probability for every decade under every storm intensity. The historical
value of p = 0.096 should be used for comparison.

Table 6.2 shows an increasing average probability of storm occurrence across grid cells
as we move through the years, and that there is also a clear difference among different
storm intensities.

The next figure is an example of how the storm occurrence probability is distributed
across grid cells, for two different tridecades and storm intensities (the results for all
combinations of storm intensity-tridecade can be found in Appendix D):
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(a) Low Scenario, 2040-2069 (b) Heavy Scenario, 2070-2099

Figure 6.5: Yearly Probability of storm occurrence across grid cells, in different periods and storm
intensities (bigger circles represent a higher probability).

For example, based only in these two storm intensity-tridecade pairs, we can expect a
lower storm occurrence probability in the outer most part of the OESF area compared
to the inside. It is also interesting to notice that the distribution does not show major
differences for two different combinations of storm intensity-tridecade.

8. Road segment realizations:
In order to assign a storm probability over each road segment of the network with
culverts in each decade, which at this stage was only associated to the grid cells,
a spatial join was performed between the climate and road network data layers as
described in section 5.2: Forest and Road Data.

The process for calculating Extra Erosion Realizations for each road segment in every
decade was a little bit easier, and very similar to the one just described for the Extreme
Event Probability Realizations.

6.1.2 Extra Erosion Realizations

The next steps were followed to create Extra Erosion Realizations for each road segment in
every decade.

1. Historical Decade Precipitation:
To calculate Extreme Event Probability Realizations, the Historical Tridecade was set
to the years 1980-2009 because as it was explained, a 30 year period was necessary
to construct a yearly max. 24-hour precipitation distribution and calculate the Vhist 99

value. For the Extra Erosion Realizations however, this was not necessary. To use the
most recent information available, years 2000-2009 were used as a benchmark for decade
total precipitation, and this value was later used to calculate precipitation increase
in future decades for every combination of RCM-grid cell. Fig 6.6 shows the total
precipitation from year 1980 until 2099, where the data for years 1980-2010 is the
historical data and the values for years 2010-2099 are the average projection values
calculated across all RCMs. Fig. 6.7 on the other hand, shows the average % change
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in total precipitation for every decade under each RCM across all grid cells, while Fig.
6.8 shows the average % change over all RCMs.

Figure 6.6: Average yearly total precipitation projections, calculated across the 12 RCMs.

Figure 6.7: Average precipitation % increase for every decade compared to the historical years
(2000-2009) under every RCM (Decade “0” correspond to historical years 2000-2009 that were used
for comparison. Decade “10” is missing because as it was explained before, there is no climate
information for years 2100-2109 and therefore it was assumed that its climate is identical to the
previous decade (2090-2099)). Each transparent curve represents a different RCM and the red
opaque line is the average tendency curve.
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Figure 6.8: Average % change across all RCMs in every decade.

Fig 6.6 shows how RCMs predict an increasing tendency of total year precipitation over
the PNW. Grouped by decade, Fig. 6.7 shows that, compared to the historical data
(years 1980-2009), RCMs show different % total precipitation change projections for
the future, but there is an increasing tendency as we move through the century. This
conclusion is verified by Fig. 6.6, which shows an increasing average precipitation %
change for future decades across all RCMs.

2. Decade Precipitation Change:
For every RCM-decade-grid cell combination, the total projected precipitation was com-
pared to the historical data. For every decade-grid cell pair, each one of the 12 RCM’s
precipitation % change was stored in a Precipitation Change(decade,grid cell) vector. Using
the same bootstrap method described in the previous section, a Normal distribution of
precipitation change was constructed with these Precipitation Change(decade,grid cell) vec-
tors and was later on divided into 3 intervals, each corresponding to a different climate
intensity: Low, Moderate and High.
The next figure is an example of how the projected % change in total precipitation
differs across the grid cells for two tridecades (the precipitation change heat map for
every combination of decade-scenario over the OESF can be found in Appendix E).
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(a) Low Intensity, 2040-2049 (b) Heavy Intensity, 2090-2099

Figure 6.9: Total precipitation % change, in different periods and different climate intensities.
Bigger circles represent greater change compared to historical data.

For example, based only in these two tridecade-intensity pairs, we can can see a differ-
ent distribution of precipitation change across the OESF when two climate intensity
scenarios and decades are compared: (a) shows a bigger change in the outer most part
of the forest, while (b) shows a bigger change in the inside.

Next, Table 6.3 shows the average erosion % change for every climate intensity. The
erosion % change was calculated by multiplying the total precipitation change by a
factor of 2, just as it was explained in chapter 4.1:

Intensity 1 2 3 4 5 6 7 8 9 10
Heavy 30 32 32 41 33 38 46 46 39 39
Moderate 5 9 9 16 11 14 25 22 17 17
Low -22 -16 -16 -12 -14 -10 2 -4 -7 -7

Table 6.3: Average % change in erosion compared to historical data for every decade under every
climate intensity.

Apart from the fact that more intense climates show a bigger change in erosion com-
pared to historical data, it is also interesting that the erosion change curve grows and
reaches its peak during the years 2070-2089, followed by significant fall in the last 2
decades.

3. Road segment realizations:
Finally, in order to assign a decade precipitation change value (and therefore an erosion
change value) to each road segment in the network, a spatial join was performed between
the climate and the road network data layers.

6.1.3 New Road Reconstruction Cost Realizations

As it was described in the beginning of this chapter and also in chapter 4.3, Extra Erosion
Realizations and Extreme Event Probability Realizations were combined to build New Road
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Reconstruction Cost Realizations. When heavier than historical precipitations are expected,
road segments have to be reconstructed at higher standards in order to last their usual life
cycle (20 years). In addition to that, extra attention has to be paid to road segments with
culverts, because increasing storm probabilities demand even more robust reconstructions
capable of adapting to changes in channel morphology.

The new full reconstruction cost for every road segment i in every period t was calcu-
lated for the 3 possible intensity realizations r ∈ [Low, Moderate, Heavy ] using the following
formula:

Final_Ci,t,r = Ci · (1 +
2xi,t,t+1,r

100
) · 20

10pi,t,r + 20(1− pi,t,r)
(6.1)

This is the same formula as formula (4.4) in chapter 4.3, with the only difference that it now
depends on the climate intensity index r. It is important to notice that this formula does not
allow a different intensity for erosion change and storm probability: the expression regarding
erosion (2·xi,t,t+1,r) and the one for storm probability (pi,t,r) share the same r index. This
subtle detail is based on the assumption that erosion change is positively correlated with
an increase in storm probability, which for our model, means that a realization of Heavy
erosion change can only be coupled with a Heavy realization of storm probability (the same
with Moderate and Low intensities). Although this may look like a natural assumption, this
is not necessarily true, heavier storms could be accompanied by dry decades in the OESF.
WE tested this hypothesis using a correlation test, which showed that erosion and storms
only have a correlation Pearson coefficient of 0.35, which although positive, does not reveal
a strong linear relationship between these two variables. Having said this, we nonetheless
assumed that erosion and storms share the same intensity index r for a particular decade.
This helped us simplify the model as the number of possible scenarios is greatly reduced with
this assumption.

The Extreme Event Probability and Extra Erosion Realizations analysis was done for
the 49 grid cells covering the OESF area. From now on however, our analysis will focus
on the 4 grid cells that cover the Sol Duc River drainage road network, which is the actual
area where the ARDM was tested. Applying formula (6.1) to every intensity-decade-road
segment combination and then taking the average across grid cells yields the following results
regarding the new full cost of reconstruction:
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Intensity 1 2 3 4 5 6 7 8 9 10
Heavy 73870 72747 74463 83058 80773 84272 88809 86111 83523 83523
Moderate 57545 57513 58736 64084 62766 66091 68738 65695 63899 63899
Low 40717 41723 42673 45317 45028 48655 49876 46622 45607 45607

Table 6.4: Average full cost of road reconstruction for every period under each climate intensity

Table 6.4 shows a significant cost difference between the first 3 decades and the rest,
where costs seem to stabilize until the end of the planning horizon. Two extra observations
are that reconstructions costs reach their peak during the years 2070-2089 and that there is
an important difference between the 3 climate intensities.

An even more important measure for evaluating the financial impact of climate change in
infrastructure is the cost per length unit. It is a common forestry practice to measure this
cost per length in USD/station, where one station is equivalent to 100 ft. Historically, the
average cost per length value for the study area is 1850 USD/station. The next table shows
how this value changes across decades and under different climate intensities:

Intensity 1 2 3 4 5 6 7 8 9 10
Heavy 2620 2641 2736 2892 2860 3002 3114 3032 2954 2954
Moderate 2111 2149 2216 2325 2310 2454 2544 2457 2404 2404
Low 1570 1629 1670 1733 1752 1914 1980 1891 1862 1862

Table 6.5: Average cost per station for every decade under each climate intensity.

We can observe similar results than in Table 6.4 regarding differences in decades and
climate intensities. The peak is reached in the 7th decade, where the average reconstruction
cost per length is 68% higher than the historical value.

6.2 Scenario Generation

To build scenarios for the stochastic program, we used the New Road Reconstruction Cost Re-
alizations. A scenario consists of a sequence of 10 climate intensities which then get translated
into road reconstruction costs for every decade. As an example, sequence Low -Low - Low -
Moderate-Moderate-Moderate-Heavy-Heavy-Heavy-Heavy represents a scenario where the cli-
mate intensity is Low in the first 3 decades, Moderate in decades 4-6 and Heavy through
decades 7-10. Road reconstruction costs are then calculated accordingly to the considered
scenario using formula (6.1).

It is important to emphasize that these climate intensities are only revealed in the middle
of each decade, after the DM made harvesting and road reconstruction actions for that
particular decade (which is assumed to occur at the beginning of the decade). This means
that at the start of any decade, the DM is unaware of how the decade’s climate intensity
is going to be like, he/she only has information of how it has been in the previous decades.
Another thing to have in mind is that because road reconstruction costs depend on future
climate intensities (formula (6.1)), there is no one-to-one relationship between the decade’s
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climate intensity and its road reconstruction costs. The actual cost of reconstruction that
a DM is going to end up paying is unknown at the time of repair. As it was explained in
chapter 4.1, this cost is only revealed afterwards, and if a DM builds a low quality structure,
the state charges him/her an extra fee later on for the extra maintenance costs by adjusting
the his/her OF downwards (and upwards if it is the other way around).

This scenario structure has 310 = 59.049 possible scenarios (3 possible intensities in each
one of the 10 decades), which can be too big in terms of computational effort. In order to
reduce the number of scenarios, we assumed that decades inside their respective tridecade
would share the same intensity: Decades 1, 2 and 3, which are part of the First Tridecade,
will all have the same associated intensity r for a particular scenario s, and the same applies
to the other two tridecades. Because there are only 3 tridecades in the planning horizon
(First Tridecade= {Decades 1,2,3}, Second Tridecade= {Decades 4,5,6} and Third Tridecade
= {Decades 7,8,9,10}), and decades inside a tridecade must have the same climate intensity,
the scenario space is left with only 27 elements (3 possible intensities for each tridecade).
Reducing the number of scenarios in such a way allowed us to show the benefits of a stochastic
program without the computational burden of analyzing almost 60.000 scenarios.

The specific details and structure of these 27 scenarios and their interaction is explained
in detail in the next chapter. We explain the structure of a Scenario Tree and how it was
implemented to build the ARDM Stochastic Program, which shows a new adaptive strategy
for harvesting and road reconstruction schedules under climate uncertainty.
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Chapter 7

Stochastic Program

The 27 scenarios created in the previous chapter were used to model climate uncertainty
in the ARDM. Although there are infinitely many possibilities for how future precipitations
may turn out to be through this century, GCMs allow us to have an educated guess and a
probability distribution for these potential scenarios. Using a finite number of scenarios that
accurately represent the broad spectrum of plausible future precipitations over the OESF, we
were able to build a stochastic programming framework to solve an optimization harvesting
and road reconstruction problem over the Sol Duc River area. The specific details of this
stochastic framework is best explained by a Scenario Tree, which is described next.

7.1 Scenario Tree:

To understand the concept of a scenario tree, let’s introduce some notation first: Let T
denote the set of periods in the planning horizon where |T | = T is the number of periods
(T = 10 in this study). Let Ω be the set of possible scenarios, which in this case is 33=27
(three possible climate intensities in each one of the 3 tridecades). Now, as it was explained
in the previous chapter, a scenario ω ∈ Ω is a sequence of 10 decade climate intensities,
which are then translated into road reconstruction costs using formula (6.1). A scenario is
represented by a path from the root-node to a leaf-node in the scenario tree, where each
node in the sequence represents the start of a particular decade where the DM has to make
harvesting and road reconstruction decisions. On the other hand, edges coming out of the
nodes represent the possible climate intensity for that node. We have to remember that the
climate intensity is only revealed in the middle of the decade after the DM’s harvesting and
reconstruction actions made in the beginning of the decade, that is why it makes sense to
model the climate intensity as the edge that leaves the node (this will become more clear
with Fig 7.1). Finally, each scenario ω has an associated probability denoted by pω, with∑

ω∈Ω p
ω = 1.

For this project, it is assumed that transition probabilities from one climate intensity to
another are constant, which means that going from a Low intensity decade to a Low intensity
decade has the same probability as moving towards a Moderate or Heavy intensity decade.
Although this may seem counter intuitive, this assumption comes from the fact that because
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climate intensities were assumed to be constant during each tridecade, and tridecades are
30 year periods, climate can be considered temporally independent over such long periods of
time. For this scenario tree, this means that if Eω represents the sequence of edges forming
scenario ω, then pω =

∏
e∈Eω P(e), where P(e) represents the probability of edge e.

Now, let’s denote by N t the subset of parallel nodes belonging to period t such that
N = ∪t∈TN t and N t ∩ N t+1 = ∅ for t ∈ T \ {T} (e.g. N 1 is a singleton and N 2 are
3 decision nodes after experiencing 3 different possible climate intensities in period 1). Let
Ω(n) denote the set of scenarios that traverse node n. We have Ω(1) = Ω and Ω(n)∩Ω(n′) = ∅
∀n 6= n′ ∧ n,n ′ ∈ N t. Let In denote the set of successor nodes to node n, for n ∈ N (In = ∅
for n ∈ N T (leaf-nodes)). Let’s also define η as the set of nodes having more than one leaf-
node as successor (|In∩N T | > 1 =⇒ n ∈ η). Consider Xω the matrix of variables ∀ω ∈ Ω ,
and Xω

n represent the vector of variables at node n ∈ η under scenario ω ∈ Ω. Finally, let Zn
represent an auxiliary vector of variables at the node n and fω(·) the linear function of the
OF under scenario ω. With all this in mind, the stochastic program can be stated as follows:

max
∑
ω∈Ω

pωfω(Xω) (7.1)

s.t. Xω ∈ Cω ∀ω ∈ Ω (7.2)
Xω
n = Zn ∀ω ∈ Ω(n), n ∈ η (7.3)

Equation (7.1) maximizes the expected value from all scenarios, while equations (7.2)
demand that the solution for a specific scenario respects that scenario’s specific constraints
(Cω is the feasible set for scenario ω). Equations (7.3) on the other hand, impose non-
anticipativity constraints, which require that the solution vectors of two scenarios should
be the same in node n if the two scenarios are indistinguishable up to that node. Non-
anticipativity constraints, or NACs assert that if two scenarios ωi and ωk are identical up to
a certain period t, then the decisions made for scenarios ωi and ωk must also be identical up
to period t. This means that under two different scenarios that are identical up to a period t,
a DM should make the same decisions up to that period in both scenarios, because making
different actions would be unrealistic and it would mean that DM is anticipating what is
going to happen after t. Although NACs are a key and necessary element of multi-stage
stochastic programming as they avoid unrealistic solutions, they usually make up a large
constraint set making some problems much harder to solve.

The next figure shows the ARDM scenario tree representation for this study:
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ω27 : Heavy-Heavy-Heavy

ω26 : Heavy-Heavy-Moderate

ω25 : Heavy-Heavy-Low
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Figure 7.1: ARDM Scenario Tree representation.
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This scenario tree consists of 118 nodes, 27 scenarios and 10 periods (T = |T | = 10). Each
node represents the start of a decade where the DM has to make a decision regarding harvest
and road reconstructions. On the other hand, edges coming out of a node represent possible
climate intensities of the source node under a specific scenario. When a node splits into 3
different leaves, each existing edge represents a different intensity path: Low, Moderate or
Heavy, which are represented by the letters L, M and H respectively (Fig 7.1): For example,
following the path from node 1 to node 97, we realize that scenario ω22 represents the {H,
H, H, M, M, M, L, L, L} scenario, which is equivalent as saying that decades 1-3 have Heavy
intensity climate, decades 4-6 have Moderate intensity climate and decades 7-10 have Low
intensity climate. As it was previously mentioned, decades in the same tridecade have the
same climate intensity, that is why nodes in period 2, 3, 5, 6, 8 and 9 have only one edge
coming out of them. To have an idea of the scenario tree concepts previously defined, here
are a couple of examples of how these concepts apply to the scenario tree in Fig. 7.1:

1. Ω(5) = {ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8, ω9}, Ω(24) = {ω13, ω14, ω15}, N 1 = {1}, N 3 =
{5, 6, 7}, I35 = {56, 57, 58}, I38 = {37} and η = N \ (N 8 ∪N 9 ∪N 10).

2. To exemplify NACs, we can see that for scenarios ω24, ω25 and ω26, climate intensities
are identical up to the start of period 7 (node 30). This means that non-anticipativity
constraints will force the solutions of periods 1-7 to be identical for ω24, ω25 and ω26,
as the DM has identical information up to those periods.

7.2 Stochastic Program and Naïve Models

To measure the financial benefits of using the stochastic approach of the ARDM, we created
4 control models for comparison called the Naïve Models (NMs). NMs represent a naïve
decision maker that doesn’t take the uncertainty of future climate into consideration, and
either believes there will be no climate change (which means that he/she assumes that future
precipitation and storm events will behave exactly like the historical record) or gives proba-
bility 1 to a single scenario, meaning that it’s in his/her belief that there is only one possible
path for future climate change.

The most attractive naïve model to compare the ARDM to is the one were the DM
completely ignores climate change. This comparison could potentially show the the financial
risks of ignoring climate change in harvesting and road reconstruction planning, and serve
as evidence for the non-scientific audience that is still skeptical about it. In the context of
this work, a NM that doesn’t take climate change into consideration believes in a 0% extra
erosion for every decade, and a constant storm probability of 0.01 (which corresponds to the
historical probability of a 100 year 24-hour event).

For this project, the ARDM was compared with 4 naïve models:

1. Nocc_NM : A DM that does not take climate change into consideration and projects
an historical climate for the future.

2. Low_NM : A DM that believes in a Low intensity future. This DM is optimistic about
future climate change and considers that extra erosion and storm probability will change
in a Low intensity fashion for all 3 future tridecades.
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3. Mod_NM : A more conservative DM that also uses climate projections for his/her
decisions but assumes an average change. By taking an expected value for erosion and
storms, this DM assumes a Moderate climate intensity for all 3 future tridecades.

4. Heavy_NM : A pessimistic DM that projects a Heavy climate intensity for all 3 future
tridecades.

Contrary to the ARDM, the NMs believe in one possible intensity for the next 3 tridecades,
and therefore concentrates the full probability distribution on it. One should expect that NMs
perform worse than the ARDM, except maybe in scenarios that are very similar to the one
that the naïve DM bases his/her harvesting and road reconstructions decisions on. This is
because the ARDM gives a positive probability to every possible scenario, and even though
it should outperform the NMs in most cases, a naïve DM could be lucky enough so that
future climate behaves in a very similar way as he/she expected and based the harvesting
and reconstruction decisions upon.

To compare the performance of the ARDM to the Naïve Models, their solutions were
tested against all 27 scenarios to see how they performed under every possible future climate
change trajectory1. The results of these model-scenario pairs are shown in the next Results
chapter.

1we acknowledge that this is a simplifying assumption because there are infinite number of possible climate
trajectories, but the 27 scenarios were designed to cover a wide range of them so that the results were as
representative as possible.
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Chapter 8

Results

8.1 Deterministic Model

The ARDM and the Naïve Models were applied to the Sol Duc River drainage area, which is
made up of a total of 98 FMUs and 65 road segments, 53 of them having culvert infrastructure.
The minimum rotation age was set to 40 years and the oldest age class in the initial inventory
was set to 4 decades (parameters Z and P in Model II, respectively). Also, a 5% discount
rate was applied to the model for two reasons: 1) When the EFCM was applied to the Upper
ClearWater River landscape, the authors also applied a 5% discount rate, and so using that
same value would make our results comparable. 2) After trying with different discount rates,
we observed that as the discount rate was smaller, the ARDM’s execution times grew in a
non-linear way and it took more time to reach reasonable MIP gaps. A small discount rate
was necessary in this study because future decades have a greater impact in the objective
function as the value of this parameter gets smaller. With low discount rate values, two
scenarios that only differ in the last decades can show significantly different solutions, unlike
a situation where the last decades are not very relevant for the harvesting schedule and so
these two scenarios end up with almost identical solutions. After analyzing the trade off
between future decades relevance and execution times, we decided that the best decision
was to set the discount rate to 5%. The ARDM and Naïve Models were solved using these
parameters and tested against 27 climate scenarios, each scenario consisting of a sequence
of climate intensities for each one of the 10 periods in the planning horizon (2010-2110),
translated later into new road reconstruction costs (formula (6.1)).

Before comparing the performance between the ARDM and NMs, we decided to test a
deterministic model under every scenario. This deterministic model has the same formulation
as the ARDM and NMs but the only difference is that all the information of future road
reconstruction costs is known in advance at the start of the planning horizon. Although this
model is not very realistic, it serves as a benchmark (upper bound) for the other models
and also to have an initial understanding of the problem and its solutions. Table 8.1 shows
the solutions of this deterministic model under every scenario, showing the Profit (O.F.
value), harvest and management profits (HMP), revenues (HMR), total costs (HMC ), road
reconstruction costs (RRC ), number of FMUs accessed in the harvesting schedule (#FMUs),
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total volume harvested measured in MBF (Volume), number of roads segments reconstructed
(#Links), and total road length reconstruction (#Stations), measured in number of stations,
which is equivalent to 100 ft.

Scenario Profit HMP HMR HMC RRC #FMUs Volume #Links #Stations
Heavy-Heavy-Heavy 11699022 14177407 18552062 4374654 2478384 177 218752 130 4311
Heavy-Heavy-Mod 11728179 14178165 18554463 4376296 2449987 177 218437 128 4242
Heavy-Heavy-Low 11755538 14178165 18554463 4376296 2422627 177 218437 128 4242
Heavy-Mod-Heavy 11726146 14309290 18787785 4478493 2583144 179 221230 141 4614
Heavy-Mod-Mod 11750500 14308296 18793829 4485530 2557796 179 218814 138 4593
Heavy-Mod-Low 11774876 14308296 18795360 4487061 2533421 179 219315 138 4593
Heavy-Low-Heavy 11760471 14309290 18789316 4480024 2548818 179 221731 141 4614
Heavy-Low-Mod 11784649 14309290 18787785 4478493 2524640 179 221230 141 4614
Heavy-Low-Low 11808553 14315898 18809297 4493398 2507345 179 219014 141 4614

Mod-Heavy-Heavy 12211349 14331121 18806744 4475623 2119772 181 221896 156 4749
Mod-Heavy-Mod 12240687 14331121 18806744 4475623 2090434 181 221896 156 4749
Mod-Heavy-Low 12268050 14331121 18806744 4475623 2063071 181 221896 156 4749
Mod-Mod-Heavy 12232752 14347778 18845479 4497700 2115026 179 221849 141 4613
Mod-Mod-Mod 12257106 14346785 18851248 4504463 2089679 179 219341 138 4592
Mod-Mod-Low 12281482 14346785 18849991 4503206 2065304 179 218932 138 4592
Mod-Low-Heavy 12267077 14347778 18843948 4496169 2080702 179 221348 141 4613
Mod-Low-Mod 12291255 14347778 18843948 4496169 2056523 179 221348 141 4613
Mod-Low-Low 12315158 14354386 18864324 4509938 2039228 179 218761 141 4613

Low-Heavy-Heavy 12813721 14622188 19160791 4538604 1808467 183 223904 165 5095
Low-Heavy-Mod 12843059 14622188 19160791 4538604 1779129 183 223904 165 5095
Low-Heavy-Low 12870422 14622188 19160791 4538604 1751766 183 223904 165 5095
Low-Mod-Heavy 12813721 14622188 19160791 4538604 1808467 183 223904 165 5095
Low-Mod-Mod 12843059 14622188 19160791 4538604 1779130 183 223904 165 5095
Low-Mod-Low 12870422 14622188 19160791 4538604 1751766 183 223904 165 5095
Low-Low-Heavy 12816896 14634214 19198706 4564492 1817318 183 224056 167 5251
Low-Low-Mod 12843334 14630989 19183610 4552622 1787655 183 224944 166 5151
Low-Low-Low 12870422 14622188 19160791 4538604 1751766 183 223904 165 5095

Table 8.1: Deterministic model solutions under 27 climate intensity scenarios.

The deterministic model was solved to optimality under all scenarios for the same reason
described in section 5.2: a gap could hide the profit difference in similar scenarios. Looking at
the road reconstruction costs of the first 2 scenarios, Heavy-Heavy-Heavy and Heavy-Heavy-
Moderate, the RRC difference is 28.397 USD, while the average OF (Profit) is 11.713.600
USD. This means that the RRC difference only represents a 0.24% of the average OF, and
so, if the models were not solved to optimality then the MIP relative gap would hide the
difference in the road reconstruction costs and both scenarios would probably have the exact
same solution.

Continuing with the analysis of table 8.1, there are a number of interesting observations
that can be drawn. On average, profits are approximately $12.3 million, total costs (harvest-
ing and reconstruction costs) are $4.5 million and road reconstruction costs are $2 million.
Costs represent 37% of the profits, road reconstruction costs represent 47% of the total costs
and 17% of the profits. On the other hand, the OF values get higher as the scenarios get less
intense, which makes sense because more intense scenarios represent higher road reconstruc-
tion costs. It should be pointed out that although there are pairs of scenarios where one is
clearly more intense than the other (Pareto more intense), such as Heavy-Heavy-Heavy being
more intense than Heavy-Low-Low and Moderate-Moderate-Moderate because the first one
has a higher intensity in every tridecade, there are pairs of scenarios where this comparison
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is not very clear. For example, scenario a: Low-Heavy-Moderate and b: Low-Moderate-Heavy
are not comparable, because the first one is more intense in the second tridecade but less
intense in the third. Even though we would expect that the solution for scenario a has a
lower OF compared to scenario b because road reconstruction costs paid in tridecade 2 have
a greater impact on the OF compared to the reconstructions made in tridecade 3 (because
of the discount rate) and scenario a has a higher climate intensity in the second tridecade,
the results show a different reality. Table 8.1 shows that scenario b has a lower OF than
scenario a, even though we would expect the contrary. This shows that we should be careful
in assuming certain results for pairs of scenarios that are not strictly comparable.

Looking at harvesting and maintenance revenues, costs and profits also increase for less
intense scenarios, which can be explained by the fact that more FMUs were accessed in the
solutions of these scenarios (although the difference is not very significant). One interesting
observation is that less intense scenarios, scenarios where the first tridecade is of low intensity,
make more road reconstructions and still have lower road reconstruction costs. Also, even
though all scenarios are different between each other and were also solved to optimality, some
of them have the exact same solution (this becomes clear by observing the #FMUs, Volume,
#Links and #Stations columns of table 8.1: e.g scenarios Mod-Heavy-Heavy, Mod-Heavy-
Mod and Mod-Heavy-Low have the same values for these columns). As it was explained
earlier, this result is most likely explained by the fact that these scenarios are identical in the
initial decades, and only differ in future decades that do not have an important impact in
the OF (because of the discount rate). As a consequence, the schedule gives almost complete
priority to the initial decades and the actions in future periods only adapt to this decisions.

After this initial understanding of the problem and the behaviour of its solutions, the
next step was to analyze the solutions that come from applying the ARDM and NMs to
every scenario. The objective was to see what conclusions drawn for the deterministic model
(higher profits, harvest revenues, costs and lower road reconstruction costs for less intense
scenarios) also apply to these two types of models and what new insights can we get from
their solutions.

8.2 ARDM/Stochastic Model vs. Naïve Models

To test the benefits of the ARDM, a stochastic model that uses climate projections to opti-
mize its harvesting and road reconstruction schedule, we compared it to the 4 naïve models
described in section 7.2: Low_NM, Mod_NM, Heavy_NM and Nocc_NM. The next table
shows the average computer runs made for each one of these models, which were solved
using IBM ILOG CPLEX 64-bit 12.9.0 on an MSI GP62MVR 7RFX Server with an In-
tel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz (eight processors) with 24 GB RAM and the
Ubuntu 18.04.01 Server 64-bit operating system. It includes the computational run times of
the ARDM and all the other naïve models: Although in this project we only compared the
ARDM to the 4 naïve model just mentioned, this table also shows all the 28 possible naïve
models, which are 28 DMs believing in only one (out of the 28 scenarios, considering the
no-climate-change scenario) possible scenario for the future.
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Model Time (minutes)
ARDM 440

Nocc_NM 2.73
Heavy-Heavy-Heavy 9.96
Heavy-Heavy-Mod 7.56
Heavy-Heavy-Low 3.30
Heavy-Mod-Heavy 6.47
Heavy-Mod-Mod 3.33
Heavy-Mod-Low 4.00
Heavy-Low-Heavy 6.8
Heavy-Low-Mod 3.75
Heavy-Low-Low 3.5

Mod-Heavy-Heavy 6.2
Mod-Heavy-Mod 5.30
Mod-Heavy-Low 3.51
Mod-Mod-Heavy 7.65
Mod-Mod-Mod 4.78
Mod-Mod-Low 2.98
Mod-Low-Heavy 7.42
Mod-Low-Mod 3.93
Mod-Low-Low 3.88

Low-Heavy-Heavy 3.21
Low-Heavy-Mod 4.28
Low-Heavy-Low 1.85
Low-Mod-Heavy 7.1
Low-Mod-Mod 3.2
Low-Mod-Low 2.48
Low-Low-Heavy 12.77
Low-Low-Mod 2.15
Low-Low-Low 2.03

Table 8.2: Average computational time runs for each model. The models highlighted in light blue are
the ones used for this project, where the ‘Heavy-Heavy-Heavy’ row represents the Heavy_NM, the
‘Mod-Mod-Mod’ row represents the Mod_NM and the ‘Low-Low-Low’ row represents the Low_NM .

One thing to notice is that each model has only one computational time, not one for each
of the 27 scenarios under which they were tested. In the case of he ARDM, this is because
the stochastic model is solved simultaneously for all the scenarios taking into consideration
non-anticipativity constraints. In the case of the naïve models, this is because their solution
is evaluated under each scenario, but the solution is exactly the same. The decisions of a
naïve DM are not affected by the climate he/she sees during the planning horizon, and so
testing the model in each scenario is equivalent as taking the unique solution and evaluating
it under all the particular scenarios’ new road reconstruction costs.

The ARDM was solved to a 0.3% MIP gap and all the other models were solved to
optimality. The ARDM takes on average 7.3 hours to reach this gap, which is explained by
the large scenario structure and its NACs constraints that drastically increase the size of the
problem. Regarding the naïve models, their average computational times range from 2 to 13
minutes with an average of 4.86 minutes, but there is not a clear pattern of their behaviour
regarding the different intensities.
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The next table shows the OF (Profit) of the 5 models evaluated in every scenario:

Scenario ARDM Low_NM Mod_NM Heavy_NM Nocc_NM
Heavy-Heavy-Heavy 11684335 11517515 11689578 11699022 11671239
Heavy-Heavy-Mod 11711097 11546853 11715664 11728158 11697609
Heavy-Heavy-Low 11735710 11574216 11740040 11755339 11722225
Heavy-Mod-Heavy 11697504 11517515 11721306 11699022 11688602
Heavy-Mod-Mod 11726413 11546853 11747392 11728158 11714972
Heavy-Mod-Low 11753536 11574216 11771768 11755339 11739588
Heavy-Low-Heavy 11744850 11517515 11753499 11699022 11705898
Heavy-Low-Mod 11770790 11546853 11779585 11728158 11732268
Heavy-Low-Low 11795166 11574216 11803961 11755339 11756884
Mod-Heavy-Heavy 12209139 12153940 12199292 12198934 12209139
Mod-Heavy-Mod 12235391 12183278 12225378 12228070 12235509
Mod-Heavy-Low 12260032 12210641 12249754 12255251 12260125
Mod-Mod-Heavy 12226502 12153940 12231020 12198934 12226502
Mod-Mod-Mod 12252177 12183278 12257106 12228070 12252872
Mod-Mod-Low 12277141 12210641 12281482 12255251 12277488
Mod-Low-Heavy 12242450 12153940 12263213 12198934 12243798
Mod-Low-Mod 12268820 12183278 12289299 12228070 12270168
Mod-Low-Low 12293343 12210641 12313675 12255251 12294784
Low-Heavy-Heavy 12808273 12813721 12728356 12717756 12767643
Low-Heavy-Mod 12837392 12843059 12754442 12746892 12794013
Low-Heavy-Low 12865431 12870422 12778818 12774073 12818629
Low-Mod-Heavy 12799678 12813721 12760084 12717756 12785006
Low-Mod-Mod 12837720 12843059 12786170 12746892 12811376
Low-Mod-Low 12865777 12870422 12810546 12774073 12835992
Low-Low-Heavy 12807728 12813721 12792277 12717756 12802302
Low-Low-Mod 12830809 12843059 12818363 12746892 12828672
Low-Low-Low 12864430 12870422 12842739 12774073 12853288

Table 8.3: Profit comparison of 5 models. Values in green represent scenarios in which the ARDM
outperforms the corresponding NM, while values in red represent the contrary.

The first observation is that, the same as in the deterministic models, the OF increases as
scenarios get less intense. On the other hand, going from highest to lowest in terms of profit,
the ARDM has a weighted average (weights given by the different scenario probabilities) profit
of $12.268 million, Mod_NM has an average profit of $12.261 million, Nocc_NM an average
of $12.258 million, Heavy_NM has an average of $12.232 million, and finally, Low_NM has
an average of $12.189 million.

Before continuing with the analysis, it is important to reflect on the fact that the previous
result does not show a very big difference between models in terms of profit. The biggest
difference is between the ARDM and the Low_NM models, with a difference of approximately
$80 thousand that only represents a 0.7% improvement. With this in mind, one could be
tempted into concluding that the benefits of using a stochastic model are irrelevant, but
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there are 2 reason why this is incorrect. First, as it was mentioned earlier, the final area
of study selected for this work is very small compared to the original, and in a real life
harvest schedule, it would only represent a small fraction of the complete forest. Compared
to the UCW, the harvesting area of this study is 6 times smaller and 56 times smaller than
the OESF. Although we can not simply scale up the cash flows by acres because they are
greatly dependent on factors such as maturity of timber and age class distribution, revenues
and costs generally increase with the size of forest. If the ARDM was applied to this big
areas, and we assumed a linear scaling of cash flows, the $80 thousand difference captured
by the ARDM would be translated into $480 thousand and $4.5 million for the UCW and
OESF, respectively. Event though this is just an approximation, these new figures are not
insignificant at all and show a great potential for this stochastic model.

A second reason is that the costs in this model only consider harvesting, management and
road reconstruction costs, and do not consider the fixed cost of buying/renting the land. On
DNR land for example, the right to harvest forest stands is given competitively via auctions
where the highest bidders are awarded contracts to cut and haul timber, where the bare land
value is approximately $2500 per acre. Given that this renting cost was not included in the
model’s OF, this means that the total profits for the foresters are much lower than what is
shown in table 8.3, and therefore the $80 thousand difference represents more than a 0.7%
improvement. Assuming a cost of $2500 per acre, the bare land value of this study area
would be $10.5 million (4200 acres), and the new weighted average profits for every model
would be: $1.768 million for the ARDM, $1.762 million for the Mod_NM, $1.758 million for
the Nocc_NM, $1.732 million for the Heavy_NM and $1.688 million for the Low_NM. The
biggest profit difference is also between the ARDM and Low_NM, with the same value of
$80 thousand, but now represent a 4.7% improvement.

Going deeper into the 5 models’ solution analysis, the next figure shows how the profit
(not considering land renting costs) difference between the ARDM and NMs changes for
different scenarios:

Figure 8.1: ARDM vs. Heavy_NM and Low_NM : Profit difference (ARDM minus NM) under the
27 scenarios.
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Figure 8.2: ARDM vs. Mod_NM and Nocc_NM : Profit difference (ARDM minus NM) under the
27 scenarios.

Figure 8.1 shows that when the DM has a Low Naïve approach, it outperforms the ARDM
in the first 9 scenarios, where the intensity in the first tridecade is Low. Although the average
difference is not very big ($7.152 USD), it makes sense that the naïve model performs better
than the ARDM when they are evaluated in these scenarios because the naïve DM puts
all the probability in the Low-Low-Low scenario, which is identical to these scenarios in
the first tridecade (the decades that have the highest impact in the OF). As the scenarios
move “further” away from Low-Low-Low, the benefits of using a stochastic approach get
bigger, with a maximum difference of $223 thousand compared to the NM. In the case of the
Heavy_NM model also shown in figure 8.2, the conclusions are exactly the opposite: The
NM outperforms the ARDM only in the 6 most intense scenarios, with an average difference
of $9 thousand. As scenarios move “further” away from the Heavy-Heavy-Heavy scenario, the
ARDM performs better than the NM, with a maximum difference of $91.7 thousand.

On the other hand, Figure 8.2 also shows very interesting results: The “No climate change”
model is only better (or equal) than the ARDM model in scenarios where the first tridecade
has Moderate intensity, although the benefits are very small (600 USD on average). On the
other scenarios, the ARDM outperforms the Nocc_NM with a maximum profit difference of
$46 thousand. The analysis of the profit difference between the ARDM and Mod_NM show
somewhat different results than the ones observed in the other 3 naïve models. The naïve
model in this case outperforms the ARDM in more than 50% of the total scenarios (15 vs.
12). The Mod_NM has better solutions than the ARDM in all the scenarios that start with
a Heavy intensity tridecade, and in most of the scenarios that start with a Moderate intensity
tridecade. In contrast, the stochastic model has a higher OF in scenarios with low intensity
climate for the first tridecade, with a maximum difference of $86 thousand. It seems that
the conservative naïve model that assumes a constant moderate intensity is the best naïve
alternative to the stochastic model.
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The next table shows a summary of the performance of the ARDM versus the 4 naïve
models, showing the number of scenarios where the ARDM has a higher/lower OF than
each NM (#<ARDM and #>ARDM respectively), the worst case scenario loss of each NM
compared to the ARDM (Worst Case), the best case scenario benefit (Best Case) , and the
weighted average profit benefit (Profit Benefit) of this new stochastic model against all the
other NMs:

Model Profit Benefit #<ARDM #>ARDM Worst Case Best Case

Heavy_NM 35.728 21 6 -91.704 19.629
Mod_NM 6.404 12 15 -86.613 23.802
Low_NM 79.414 18 9 -227.335 14.043
Nocc_NM 10.469 20 7 -46.802 1441

Table 8.4: Solutions comparison between ARDM and NMs.

The naïve model that minimizes the weighted average profit (calculated across all scenar-
ios) difference with the stochastic model is the Mod_NM, with a value of 6.404 USD, followed
by the Nocc_NM. This shows that even though the Mod_NM has a better win rate over the
ARDM, this stochastic model still yields better results in terms of average profit. The model
that does worse in this metric is the Low_NM, followed by the Heavy_NM. The most likely
reason for this results is the fact that the Mod_NM is the one that best approximates the
expected climate intensity for future periods, followed by the “no climate change” approach.
The Low approach is too naive with regards to the future and underestimates the future
reconstruction costs, that is why it is the worst performing model. On the other hand, the
Heavy intensity approach is the second worst, probably because the DM’s decisions in this
model are too cautious and inefficient.

With this results in mind, a DM that wants to compete with the ARDM to minimize the
OF difference across scenarios should probably make his/her decisions assuming a moderate
future climate change for all the planning horizon. On the other hand, a more risk averse
forester could try to minimize the worst case scenario. For this matter, the results show
that a “no climate change” model is the best approach that this DM can take, even better
than the Mod_NM and the Heavy_NM (with the downside of having the lowest “Best Case”
scenario). The Nocc_NM and the Heavy_NM are the models that have the lowest win rate
against the ARDM in terms of scenarios with better solutions, while the moderate approach
yields the best results in this metric.
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8.2.1 Schedule comparison: ARDM vs. NMs

Besides the profit difference between models, it is also interesting to analyze how the solutions
differ regarding harvesting and road reconstruction actions. To motivate this analysis, let’s
observe the differences in timber extraction and road reconstruction schedules between the
best performing naïve model, Mod_NM, and the stochastic model, in the Low-Heavy-Low
scenario, where we find that the OF difference is the biggest:
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Figure 8.3: ARDM (left) vs. Mod_NM (right): Harvest and road reconstruction actions under the
Low-Heavy-Low scenario. Green FMU’s are the ones accessed during that period, while black road
segments are the ones that are reconstructed.

These actions can be summarised in the next table, where HMR represents the Harvest
& Management Revenues, HMC is Harvest & Management Costs, HMP is Harvest & Man-
agement Profits, Area is the total area of the FMUs harvested (measured in acres), Total
Volume is the harvested timber volume (measured in MBF), RRC is Road Reconstruction
Costs, the Tier1 RRC and Tier2 RRC fields represent the road reconstruction costs at cost
tier 1 and 2 respectively, and Total Length is the length of the reconstructed network in that
particular period (measured in number of stations (100 ft.)):
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Field\Decade 1 2 3 4 5 6 7 8 9 10

Profit 1811859 1740276 23062623 23104195 19241 0 184125 0 0 133652 0 0 0 0 12140107 11140243 37194 0 0 0

HMR 2757956 2667639 33043025 32785726 145539 0 873202 0 0 2745414 0 0 0 0 28908682 26552859 431395 0 0 0

HMC 389011 370268 7819086 776739 66864 0 349131 0 0 1261899 0 0 0 0 14195327 13112788 285530 0 0 0

HMP 2368955 2297372 25223939 25020986 78675 0 524071 0 0 1483515 0 0 0 0 14713355 13440070 145865 0 0 0

#FMUs 5 4 87 87 1 0 4 0 0 7 0 0 0 0 84 81 2 0 0 0

Area 256 232 4170 4118 39 0 159 0 0 382 0 0 0 0 4071 3849 63 0 0 0

Total Volume 5523 5245 113318 112571 466 0 3249 0 0 10006 0 0 0 0 99847 91110 1382 0 0 0

RRC 557096 557096 2161316 1916790 59434 0 339947 0 0 1349863 0 0 0 0 2573248 2299866 108671 0 0 0

Tier1 RRC 233842 233842 339398 339398 56410 0 37801 0 0 0 0 0 0 0 0 0 83053 0 0 0

Tier2 RRC 323254 323254 1821919 1577393 3024 0 302145 0 0 1349863 0 0 0 0 2573248 2299866 25618 0 0 0

#Reconstr. 20 20 57 50 9 0 12 0 0 21 0 0 0 0 55 47 10 0 0 0

#Tier1 Reconstr 13 13 17 17 8 0 5 0 0 0 0 0 0 0 0 0 7 0 0 0

#Tier2 Reconstr 7 7 40 33 1 0 7 0 0 21 0 0 0 0 55 47 3 0 0 0

Total Length 778 778 1854 1675 100 0 277 0 0 562 0 0 0 0 1762 1577 156 0 0 0

Table 8.5: Model comparison for every decade: ARDM (white) vs. Mod_NM (light blue)

There are a couple of interesting things to notice in the previous figure and table:

1. Both models have very similar actions for the first and second decade.
2. Both models have decades in which no harvesting or road reconstruction is performed.

There are two main reasons for this: First, the even flow constraints were eliminated
from the model, which allows consecutive periods to have drastically different volumes
of timber harvested. A DM may decide to harvest all FMUs in one decade and nothing
the next. Second, trees have a rotation age of 40 years, and so the same FMUs cannot be
accessed over and over again. After a big harvest decade, it is better to hold extraction
for a couple of years before reconstructing road segments and re-accessing the FMUs.

3. The “Big Harvests” occur in the same decades (2nd and 8th), and they represent almost
the complete harvest volume of the planning horizon. For the ARDM model, 95% of
the total volume is harvested in period 2 and 8, and for the Mod_NM, 93% is harvested
in those periods.

4. Some decades show activity for one model and no activity at all for the other one. Hav-
ing said this, periods where this occurs (3, 4, 5 and 9) do not show many reconstruction
or harvest actions done on behalf of the active model.

5. The ARDM model makes more reconstructions (163 vs. 138) and accesses more FMUs
(183 vs. 179) during the planning horizon, which results in 4853 extra MBF. harvested
timber and an extra total length reconstruction of 10 km.
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Although it would be interesting to do this analysis for all naïve models under every
scenario, it is not practical because the combinations are too many (108 combinations: 27
scenarios for the 4 naïve models). We can replace this by observing the actions of every naïve
model, which do not depend on the scenario (that is why they are called naïve DMs, they
do the same actions under every scenario, what changes is the cost of road reconstructions)
and compare this to the weighted average solution of the ARDM model across all scenarios.
This will show the general differences in the actions that these 5 models take:

Feature ARDM Heavy_NM Moderate_NM Low_NM Nocc_NM

#FMUs 181 177 179 183 182
Area (acres) 8646 8432 8581 8759 8682

Total Volume (MBF.) 220869 218752 219843 223904 222219
#Reconstr. 155 130 138 165 157

#Tier1 Reconstr. 47 32 30 52 50
#Tier2 Reconstr. 108 98 108 113 107

Total Length (#stations) 4808 4311 4592 5095 4848

Table 8.6: Schedule comparison between all models

The first thing to notice is that the Low_NM is the most active model, both in terms of
harvesting and road reconstruction decisions, followed by the ARDM and Nocc_NM models.
The Low_NM has the highest percentage of road reconstructions made at cost tier 1 (31.5%),
followed closely by the ARDM model (30%), and also has the highest volume harvested
compared to other models (although it is only 1.3% higher than the average). Although the
ARDM model has similar results than the Low_NM at a global scale, its results in terms
of profit are much better because the timing is better. Because the Low_NM model is very
optimistic about the future, the DM takes unnecessary actions and also with bad timing.
Among all models, the Heavy_NM model is the less active, which makes sense because
this DM is very cautious about future climate change and prefers to avoid unnecessary
reconstructions, which translates into a downside in terms of profit.

Table 8.4 showed that the Mod_NM model outperforms the stochastic model in more
than 50% of the scenarios and has the lowest weighted average profit difference compared
to the ARDM. Nonetheless, the ARDM is, on a average, a better performing model. Table
8.6 shows that the ARDM has higher activity than the Moderate_NM in every aspect,
and it appears than having higher harvesting and reconstruction actions performed at the
right timing (thanks to the information regarding climate projections) gives the necessary
advantage for this model to produce more profitable schedules. Although the results differ
across scenarios, the ARDM has a conclusive better performance than the other naïve models,
probably thanks to its preemptive and data driven approach.
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Chapter 9

Conclusions

Climate change will have a progressively higher impact on the world as we move through
this century. Global air temperatures will rise, there will be an increasing risk of fire, and
precipitation patterns will get more severe. The data shows that we can specifically expect a
more vigorous hydrological cycle in terms of annual precipitation and bigger, more frequent
rain storm events. Among all the consequences this will have for foresters, the ones analyzed
in this study were the accelerated road decay as a consequence of higher erosion rates and
the increasing probability of storm events that have the potential of altering channel width
and thus destroy culvert infrastructure.

Using a set of 12 GCMs from the Climate Model Inter-comparison Project, we were able
to build these two precipitation effects for the next century and translate them into a new
stochastic road reconstruction cost structure. Using these new cost parameters and building
on the EFCM, we constructed the ARDM, the first formulation for optimal adaptation of
forest roads maintenance and uncertain road access to timber resources due to climate change.
This model was applied to the Sol Duc River drainage area, a 150 km2 forest land-base located
in the Olympic Experimental State Forest in Washington State with a 63.5 km. road network.

To test the benefits of using the ARDM under a climate uncertain future, we compared
this model to 4 naïve approaches, where each of these formulations models a decision maker
that either does not have information of future precipitation projections, or believes in one
single climate scenario. Unlike the ARDM, which adapts its strategy throughout the plan-
ning horizon, these “stubborn” DMs stick to their initial schedule and continue with their
harvesting and road reconstruction decisions ignoring precipitation patters along the decades.

The stochastic and naïve models were tested against 27 climate scenarios that well rep-
resent the range of potential future climate trajectories. It was interesting to see that some
naïve models outperformed the ARDM in particular scenarios, usually the ones that most
closely resembled that particular DM’s naïve approach. Although the stochastic model clearly
was a more profitable approach compared to the other models, the Mod_NM, which repre-
sents a forester who believes in an average climate intensity (expected value from the GCM’s
projections) for the whole century, was the best candidate at competing with the ARDM in
terms of profit.
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The ARDM has a $33 thousand dollar average profit difference compared to the naïve
models, and outperforms the Low Naïve model by $80 thousand. When the costs of renting
the land are considered, we see an average profit improvement of 2% compared to the naïve
models (4.7% compared to the Low Naïve model). Although the overall profit improvement
may seem small, it can be explained by several factors like the ones that were discussed
during this study. First, the use of 5 % discount rates over a large time span significantly
attenuates any savings that accrue more than 30 years into the future. Although smaller
discount rates were evaluated, their impact in the computational run times and MIP gap
was significant. Considering the fact that getting close to optimal solutions in a reasonable
time was very important, a 5% discount rate value was finally deemed to be the best option.
Second, the area of study was too small, 6 times smaller than the area where the EFCM
was applied (Upper ClearWater). In addition to the fact that profits increase with the size
of the forest, having a more complex road network would also allow the ARDM to show its
preemptive and adaptive potential by finding cheaper hauling routes. When there are too
few options to choose from (65 road segments in this study), the ARDM is not allowed to
show its full potential.

We are confident that the benefits of the ARDM would drastically improve if it was
applied to a bigger area with a lower discount rate and considering a wider range of climate
intensities. To do this, we would have to change the ARDM non-anticipativity constraints
(responsible for the huge size of the problem and its inefficiency) by another algorithm such
as the Progressive Hedging approach (PH), which was used by Veliz et al. (2015) and many
others in the past years. A PH algorithm solves each scenario independently and only then
uses a convergence heuristic to force non-anticipativity on nodes and pair of scenarios that
require it. It is a much better solution for stochastic problems when the size of the instance
and number of scenarios increases, and it would allow the ARDM to be applied in larger
areas with a much bigger set of scenarios and more complex road network.

9.1 Final Thoughts

In these last decades, we have seen how climate change has produced increasingly negative
effects to our planet. Based on the increasing melting of the North Pole, more frequent
and intense hurricanes in the North Atlantic and devastating fires affecting countries such
as Brazil, Australia and the US, it is clear that these serious effects of our changing climate
have to be dealt with. It is important that we take decisive actions to reduce the emissions
of greenhouse effects and take a step towards a more sustainable economy with a greater
consideration for wildlife and nature. In the field of forestry, scientists have already started
studying the effects of climate change and the use of integrated managing to increase both
revenue production and ecological sustainability (e.g. DNR in the OESF). Building on the
work of many other researchers, the ARDM is a new formulation that aims to improve
this same integrated managing approach by considering the effects of precipitation on road
networks. Although there is a long way ahead and some modifications have to be done in
order to create a more robust model, this study shows the ARDM’s great potential and its
ability to include an important effect of climate change in its adaptive formulation.
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Appendix

A: Final Model

max

|T |∑
l=1
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∑
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∑
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φjαis
j
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10(1−t) (9.1a)
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∑
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Nm,k +

|T |∑
l=k+Z

Wm,k,l =
k−Z∑
t=−P

Wm,t,k, ∀m ∈M,k = 1, ..., |T |, (9.1h)

∑
m

l−Z∑
k=−P

vm,k,lWm,k,l = Hl, ∀l = 1, ..., |T |, (9.1i)

t−Z∑
k=−M

Wm,k,t ≥ Hminxm,t ∀m ∈M, t ∈ T, (9.1j)

t−Z∑
k=−M

Wm,k,t ≤ Hmaxxm,t ∀m ∈M, t ∈ T, (9.1k)

1.25Ht ≥ Ht+1 ∀t = 1, ..., |T | − 1, (9.1l)
0.75Ht ≤ Ht+1 ∀t = 1, ..., |T | − 1, (9.1m)∑

m

|T |∑
t=−P

Aget,|T |Nm,tAm ≥
∑
m

−1∑
t=−P

Aget,1am,tAm (9.1n)

61



B: CDF

Figure 9.1: Empirical vs Theoretical CDF of 6 distributions.
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C: QQ-plot

Figure 9.2: QQ-plot of 6 distributions.
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D: Storm probability intensity in the PNW

Figure 9.3: Distribution of Storm Probability over tridecade and scenario.
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E: Precipitation change intensity in the PNW

Figure 9.4: Distribution of Precipitation change over decade and scenario.
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