

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA CIVIL

APLICACIÓN DE MICROPILOTES EN SUELOS LICUABLES EN PROFUNDIDADES INTERMEDIAS

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL

BASTIÁN IGNACIO GÓMEZ LAGOS

PROFESOR GUÍA: SEBASTÍAN BOLDRINI LÓPEZ

MIEMBROS DE LA COMISIÓN: ROBERTO GESCHE SCHULER YOLANDA ALBERTO HERNÁNDEZ

> SANTIAGO DE CHILE 2020

RESUMEN DE LA MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL POR: BASTIÁN IGNACIO GÓMEZ LAGOS FECHA: 2020 PROF. GUÍA: SEBASTÍAN BOLDRINI LÓPEZ

APLICACIÓN DE MICROPILOTES EN SUELOS LICUABLES EN PROFUNDIDADES INTERMEDIAS

El objetivo de este trabajo de título es el de estudiar la factibilidad del uso de micropilotes en fundaciones de pasarelas construidas sobre estratos de suelos licuables los cuales se encuentren a una profundidad de 2[m].

Se buscará encontrar una alternativa de fundación a las soluciones construidas en pasarelas de la Región de La Araucanía que representan al problema de estudio, como son el uso de pilotes, en casos de estructuras livianas, como pasarelas, en las cuales el uso de pilotes representa un costo muy alto, dado el impacto de la movilización de los equipos de pilotaje para un volumen de obra tan reducido. Por otra parte, se estudiarán cuales son las fortalezas del uso de PLAXIS para modelamientos dinámicos y sus leyes constitutivas.

Dentro de este trabajo se definió la problemática a analizar, la cual consta de 8 casos diferentes en las cuales cambiará la resistencia del estrato licuable y configuración y número de los micropilotes a utilizar en la fundación.

Para el estudio se plantea establecer un procedimiento de diseño de micropilotes en donde todas las cargas que transmita la estructura a las fundaciones sean absorbidas por los micropilotes, de manera que estos últimos traspasen la carga al suelo a estratos que se encuentren bajo la capa licuable.

Para estudiar el tema, se realizaron modelos dinámicos en un software de modelos numéricos basado en el método de cálculo de elementos finitos denominado PLAXIS (de Bentley Systems), utilizando leyes constitutivas capaces de predecir la evolución de las presiones de poros y el comportamiento de licuación, de forma de evaluar el comportamiento de las fundaciones reforzadas con un sistema de micropilotes, bajo los efectos de un sismo severo, representado según registros sísmicos reales medidos en roca.

Con los resultados obtenidos se pudo deducir que el uso de micropilotes en suelo licuable logró mitigar en gran medida los asentamientos postlicuación; soportan las solicitaciones sísmicas adecuadamente y demostraron un mejor comportamiento en la medida que se incrementó la inclinación.

ii

Tabla de Contenido

	Introducción	1
1.	Descripción del problema 1.1. Proyectos base para el análisis 1.2. Licuación de suelos 1.3. Estratigrafía y característica del suelo 1.4. Estructura 1.5. Fenómenos geotécnicos a analizar 1.5.1. Fricción negativa 1.5.2. Desplazamiento lateral	3 3 4 7 9 12 12 12 13
2.	Diseño de las fundaciones utilizadas en el análisis	15
	2.1. Cálculo de las solicitaciones en las fundaciones mediante método pseudoestático	15
	2.1.1. Fuerzas estáticas	15
	2.1.2. Fuerzas dinámicas	16
	2.1.3. Solicitaciones inducidas	16
	2.2. Arreglos y dados de fundación	16
	2.3. Cálculo de solicitaciones axiales en micropilotes mediante método iterativo .	20
	2.4. Diseño del tipo de barra de micropilotes	23
	2.5. Diseño de las longitudes de micropilotes para cada arreglo	25
	2.5.1. Resistencia por fuste o adherencia de bulbo	25
	2.5.2. Arrancamiento de cono $\dots \dots \dots$	27
	2.5.3. Verificación de largo	29 20
	2.0. Vernicación de pandeo en microphotes en zona neuable	30
3.	Análisis dinámico	34
	3.1. Descripción de los modelos realizados	34
	3.2. Leyes constitutivas de suelo y simulación de licuación	36
	3.2.1. UBCSAND	36
	3.2.2. Hardening Soil	38
	3.3. Registro sísmico	40
4.	Resultados y analisis	42
	4.1. Respuesta de la estructura	42
	4.2. Deformación del dado de fundación	55
	4.2.1. Mitigación de as entamientos en fundaciones con micropilotes	55
	4.2.2. Desplazamiento lateral	59

4.3.	6. Control de deformaciones en estructura		
	4.3.1. Desplazamiento horizontal del dado de fundación	62	
	4.3.2. Asentamiento diferencial	64	
4.4.	Desglose de solicitaciones en el dado de fundación	65	
	4.4.1. Solicitationes totales	65	
	4.4.2. Solicitaciones por efecto de la estructura	67	
	4.4.3. Solicitaciones por el sismo	68	
4.5.	Desplazamiento lateral	69	
	4.5.1. Solicitaciones de corte y momento en micropilotes	69	
	4.5.2. Solicitaciones en el dado de fundación	73	
4.6.	Fricción Negativa	75	
4.7.	Verificación fuerza axiales y de corte en micropilotes	77	
Con	clusión	80	
Bibliog	rafía	83	
A. Cat	alogo de micropilotes ISCHEBECK TITAN	87	
B. Soli	citaciones de momento en micropilotes	90	

Índice de Tablas

2.1.	Solicitaciones en dado de fundación	16
2.2.	Solicitaciones de diseño para la fundación de 12 micropilotes	19
2.3.	Solicitaciones de diseño para la fundación de 18 micropilotes	19
2.4.	Solicitaciones axiales en micropilotes, caso 12 micropilotes inclinados a 20° .	21
2.5.	Solicitaciones axiales en micropilotes, caso 12 micropilotes inclinados a 45° .	21
2.6.	Solicitaciones axiales en micropilotes, caso 18 micropilotes inclinados a 20° .	22
2.7.	Solicitaciones axiales en micropilotes, caso 18 micropilotes inclinados a 45° .	23
2.8.	Características micropilote TITAN 103/51	23
2.9.	Valores de coeficiente de reducción geotécnica para micropilotes cargados axial-	
	mente	24
2.10.	. Capacidad de carga aminorada micropilotes TITAN 103/51. \ldots	24
2.11.	. Datos sección compuesta	25
2.12.	. Largo elegido para elementos verticales	29
2.13.	. Largo elegido para elementos inclinados	29
2.14.	. Módulo de reacción lateral para suelos licuables	32
3.1.	Parámetros a utilizar en ley constitutiva UBCSAND	37
3.2.	Valores a utilizar en modelo constitutivo UBCSAND	38
3.3.	Parámetros a utilizar en ley constitutiva Hardening soil	39
3.4.	Valores a utilizar en modelo constitutivo Hardening soil	40
4.1.	Aceleraciones máximas encontradas	46
4.2.	Valores de frecuencia natural, periodo y amortiguamiento en la base de la	
	estructura	51
4.3.	Valores de frecuencia natural, periodo y amortiguamiento en la pasarela	51
4.4.	Asentamientos finales en dado de fundación.	57
4.5.	Asentamiento diferencial en columnas.	64
4.6.	Solicitaciones axiales en micropilotes, valores en [tonf], casos fundación de 12	~~~
. –	micropilotes	65
4.7.	Solicitaciones axiales en micropilotes, valores en [tonf], casos fundación de 18	
4.0		66
4.8.	Solicitaciones totales en el dado de fundación, casos fundación de 12 micropilotes.	66
4.9.	Solicitaciones totales en el dado de fundación, casos fundación de 12 micropilotes.	67
4.10.	Solicitaciones en columna, casos fundación de 12 micropilotes	67
4.11.	. Solicitaciones en columna, casos fundación de 18 micropilotes	67

4.12. Solicitaciones en dado de fundación por efectos sísmicos, casos fundación de	
12 micropilotes.	68
4.13. Solicitaciones en dado de fundación por efectos sísmicos, casos fundación de	
18 micropilotes	68
4.14. Valores de cortes máximos en micropilotes por sección	72
4.15. Valores de momento máximos en micropilotes por sección	72
4.16. Condición de rotula plástica por interfaz entre suelo.	72
4.17. Solicitaciones por el efecto del desplazamiento lateral, casos fundación de 12	
micropilotes	73
4.18. Solicitaciones por el efecto del desplazamiento lateral, casos fundación de 18	
micropilotes	73
4.19. Profundidad de aplicación de la fuerza lateral por efectos del desplazamiento	
lateral	74
4.20. Solicitaciones por el efecto del desplazamiento lateral, casos fundación de 12	
micropilotes \ldots	75
4.21. Solicitaciones por el efecto de la fricción negativa, casos fundación de 18 mi-	
cropilotes	75
4.22. Profundidad del eje neutro.	77

Índice de Ilustraciones

1.1.	Correlación entre la razón de resistencia cíclica y el valor de SPT- N_{60} para	
	sismos de magnitud Mw=7.5 a diferentes porcentajes de finos. Seed et $al(1984)$	5
1.2.	Coeficiente de reducción de aceleración, $r_{\rm d}$	6
1.3.	Factores de Corrección para ensayo SPT	6
1.4.	Caso de análisis	8
1.5.	Esquema micropilote	10
1.6.	Sección transversal del tablero, unidades en [mm]	11
1.7.	Medidas pasarela, unidades en [mm]	11
1.8.	Fricción negativa en pilote	12
1.9.	Ejemplo de desplazamiento lateral en (a) Terreno con desplazamiento confina- do y (b) Terreno con desplazamiento libre	13
2.1.	Posición de la parte superior de los micropilotes en el fondo del dado de fun- dación de 12 micropilotes- Vista en planta.	17
2.2.	Posición de la parte superior de los micropilotes en el fondo del dado de fun- dación de 18 micropilotes- Vista en planta	18
2.3.	Valores de resistencia por fuste, en relación a valor de N-SPT, Bustamante(1985)	26
2.4.	Valores de coeficiente de reducción geotecnica para micropilotes cargados axial-	_ •
	mente	27
2.5.	Representación gráfica del cono de arrancamiento, vista de corte	28
2.6.	Curva p-y teórica	30
2.7.	Curva de carga crítica de pandeo, suelo licuable de N spt=5 \ldots . \ldots .	33
2.8.	Curva de carga crítica de pandeo, suelo licuable de N spt=15 $\ .\ .\ .\ .$.	33
3.1.	Comportamiento hiperbólico en gráfico tensión-deformación	39
3.2.	Registro de aceleración en roca en la localidad de Rapel	40
3.3.	Respuesta de aceleraciones en superficie para modelo con profundida de roca	
	de 50 [m]	41
3.4.	Esquema aceleraciones en superficie y roca	41
4.1.	Aceleraciones en base de la estructura - Fundación 12 Micropilotes - suelo licuable con Nspt=5.	42
4.2.	Aceleraciones en base de la estructura - Fundación 18 Micropilotes - suelo licuable con Nspt=5	43
4.3.	Aceleraciones en base de la estructura - Fundación 12 Micropilotes - suelo licuable con Nspt=15.	43

4.4.	Aceleraciones en base de la estructura - Fundación 18 Micropilotes - suelo	
	licuable con Nspt=15.	44
4.5.	Aceleraciones en la pasarela - Fundación 12 Micropilotes - suelo licuable con Nspt=5.	44
4.6.	Aceleraciones en la pasarela - Fundación 18 Micropilotes - suelo licuable con	
-	Nspt=5. \ldots	45
4.7.	Aceleraciones en la pasarela - Fundación 12 Micropilotes - suelo licuable con	45
18	Aceleraciones en la pasarela Fundación 18 Micropilates quelo liquable con	40
4.0.	Nspt=15.	46
4.9.	Espectro de fourier de las aceleraciones en base de la estructura - Fundación	
	12 Micropilotes - suelo licuable con Nspt=5	47
4.10.	Espectro de fourier de las aceleraciones en base de la estructura - Fundación	. –
	18 Micropilotes - suelo licuable con Nspt=5	47
4.11.	Espectro de fourier de las aceleraciones en base de la estructura - Fundación	10
1 10	12 Micropilotes - suelo licuable con Nspt=15	48
4.12.	L'Espectro de fourier de las aceleraciones en base de la estructura - Fundacion	40
1 1 9	18 Microphotes - suelo licuable con Nspt=15	48
4.13.	piletes quele liqueble con Nant-5	40
111	Feneretro de feurier de les secleraciones en la pasarela Fundación 18 Miero	49
4.14.	pilotos suelo licuable con Nept-5	40
1 15	Espectro de fourier de las aceleraciones en la pasarela - Fundación 12 Micro-	49
4.10.	pilotes - suelo licuable con Nspt—15	50
4.16	Espectro de fourier de las aceleraciones en la pasarela - Fundación 18 Micro-	00
1.10.	pilotes - suelo licuable con Nspt=15.	50
4.17.	Espectro de aceleración, fundación de 12 micropilotes, N-SPT=5,	52
4.18.	Espectro de aceleración, fundación de 18 micropilotes, N-SPT=5	52
4.19.	Espectro de aceleración, fundación de 12 micropilotes, N-SPT=15	53
4.20.	Espectro de aceleración, fundación de 18 micropilotes, N-SPT=15	53
4.21.	Asentamiento del dado de fundación - Fundación 12 Micropilotes - suelo licua-	
	ble con Nspt= 5	55
4.22.	Asentamiento del dado de fundación - Fundación 18 Micropilotes - suelo licua-	
	ble con Nspt=5	55
4.23.	Asentamiento del dado de fundación - Fundación 12 Micropilotes - suelo licua-	
	ble con Nspt=15	56
4.24.	Asentamiento del dado de fundación - Fundación 18 Micropilotes - suelo licua-	
	ble con Nspt=15	56
4.25.	Asentamiento del dado de fundación - casos sin micropilotes	57
4.26.	Gráfico para determinar la deformación volumétrica en base al factor de segu-	
4.07	ridad.	58
4.27.	Desplazamiento lateral del dado de fundación - Fundación 12 Micropilotes -	50
1 00	Suelo licuable con NSpt=5	59
4.28.	Despiazamiento lateral del dado de lundación - Fundación 18 Micropilotes -	FO
1 20	Desplayamiento lateral del dado de fundación — Fundación 12 Micropiletes	99
4.49.	suelo licuable con Nspt=15	60
	Sucrementation of the second s	00

4.30.	Desplazamiento lateral del dado de fundación - Fundación 18 Micropilotes - suelo licuable con Nspt=15
4 31	Desplazamiento lateral del dado de fundación - casos sin micropilotes
4.32.	Desplazamientos horizontales del dado de fundación, fundación de 12 micro-
1.02.	pilotes, N-SPT=5.
4.33.	Desplazamientos horizontales del dado de fundación, fundación de 18 micro-
	pilotes, N-SPT=5.
4.34.	Desplazamientos horizontales del dado de fundación, fundación de 12 micro- pilotes, N-SPT=15
4.35.	Desplazamientos horizontales del dado de fundación, fundación de 18 micro- pilotes, N-SPT=15
4.36.	Diagrama de cuerpo libre pilote inmerso en arena densa sobre suelo licuable.
4.37.	Resistencia al corte residual en base al valor de N-SPT
4.38.	Deformada de la estructura, punto de aplicación y dirección de solicitaciones dadas por el efecto del desplazamiento lateral.
4.39.	As entamientos de suelo y micropilote - caso de fundación de 12 micropilotes con inclinación de 45° - N - SPT = 5
4.40.	As entamientos de suelo y micropilote - caso de fundación de 18 micropilotes con inclinación de 45° - N - SPT = 5
4.41.	As entamientos de suelo y micropilote - caso de fundación de 18 micropilotes con inclinación de 45° - N - SPT = 15
4.42.	Gráfica de solicitaciones en curva de pandeo crítico - Nspt=5 - Elementos verticales
4.43.	Gráfica de solicitaciones en curva de pandeo crítico - Nspt=5 - Elementos inclinado
4.44.	Gráfica de solicitaciones en curva de pandeo crítico - Nspt=15 - Elementos verticales
4.45.	Gráfica de solicitaciones en curva de pandeo crítico - Nspt=15 - Elementos inclinado
4.46.	Gráfica de solicitaciones de análisis de fuerza axial y fuerza de corte en micropilotes - N-SPT = $5 \dots $
4.47.	Gráfica de solicitaciones de análisis de fuerza axial y fuerza de corte en micropilotes - N-SPT = $15 \dots \dots$
A.1.	Medidas barras titan
A.2.	Tipos de bocas de perforación a utilizar en base al tipo de suelo y su diámetro en base a la barra elegida
A.3.	Diámetro de bulbo en base a suelo, barra y boca utilizada
B.1.	Gráfica de solicitaciones de momento en micropilotes - caso fundación de 12 micropilotes con inclinación de 20° , suelo N - SPT =5 - Resultados obtenidos a los 25 s de iniciado el registro sísmico.
B.2.	Gráfica de solicitaciones de momento en micropilotes - caso fundación de 12 micropilotes con inclinación de 45° , suelo N - SPT = 5 - Resultados obtenidos
	a los 20 s de iniciado el registro sísmico.

B.3.	Gráfica de solicitaciones de momento en micropilotes - caso fundación de 18	
	micropilotes con inclinación de 20°, suelo N - SPT = 5 - Resultados obtenidos	
	a los 30 s de iniciado el registro sísmico.	92
B.4.	Gráfica de solicitaciones de momento en micropilotes - caso fundación de 18	
	micropilotes con inclinación de 45°, suelo N - SPT = 5 - Resultados obtenidos	
	a los 30 s de iniciado el registro sísmico.	93
B.5.	Gráfica de solicitaciones de momento en micropilotes - caso fundación de 12	
	micropilotes con inclinación de 20°, suelo N - SPT = 15 - Resultados obtenidos	
	a los 30 s de iniciado el registro sísmico.	94
B.6.	Gráfica de solicitaciones de momento en micropilotes - caso fundación de 12	
	micropilotes con inclinación de 45°, suelo N - SPT = 15 - Resultados obtenidos	
	a los 20 s de iniciado el registro sísmico.	95
B.7.	Gráfica de solicitaciones de momento en micropilotes - caso fundación de 18	
	micropilotes con inclinación de 20°, suelo N - SPT = 15 - Resultados obtenidos	
	a los 30 s de iniciado el registro sísmico.	96
B.8.	Gráfica de solicitaciones de momento en micropilotes - caso fundación de 18	
	micropilotes con inclinación de 45°, suelo N - SPT = 15 - Resultados obtenidos	
	a los 30 s de iniciado el registro sísmico.	97

Introducción

Uno de los fenómenos más interesantes y complicados en el área de la geotecnia, es la licuación, esta se puede producir principalmente en arenas saturadas con bajo contenido de finos y baja compacidad.

La licuación implica la pérdida de capacidad de soporte del suelo debido a que la fuerza de reacción del suelo ante la carga de la estructura se anula por el rápido aumento de la presión de poros en el suelo, por esto, este fenómeno ha sido estudiado ampliamente por las consecuencias que puede tener en las construcciones que se realizan sobre estos tipos de suelo.

Para combatir lo anterior, en la actualidad se utilizan, entre otras alternativas, fundaciones en base a pilotes, de forma de poder tomar resistencia de suelos competentes a mayor profundidad. Alternativamente también se han utilizado mejoramientos de suelos mediante vibrocompactación, columnas de grava o reemplazos masivos por suelos competentes, de manera de mitigar el aumento de presión de poros, y con esto, la ocurrencia de la licuación bajo las fundaciones. Esto funciona bien para estructuras de gran peso como edificios de más de 2 pisos.

En el caso de estructuras livianas tales como casas o estructuras de menos de 2 pisos en las cuales no se necesita una gran capacidad de soporte pero que de igual forma están construidas sobre suelos potencialmente licuables, se utilizan losas de fundación. Por otra parte, se tienen algunas estructuras las cuales presentan un peso menor a edificios de dos pisos pero que no presentan la superficie para poder realizar una losa de fundación, estas estructuras son en las que se enfocará este trabajo y corresponden a pasarelas; en éstas los pilotes pueden resultar exagerados e incluso inviables dado el alto costo de su implementación. Es por esto que se evaluará el uso de micropilotes como una solución alternativa a los pilotes tradicionales para ser usados en la fundación de este tipo estructuras que estén construidas sobre suelos licuables.

Los micropilotes son pilotes perforados con diámetros pequeños, menores a 300 [mm], los cuales están compuestos por un refuerzo de acero y un mortero o lechada de cemento inyectado. De esta forma, la carga es transmitida por el refuerzo de acero para luego ser tomada por la fricción que se obtiene entre el mortero y el suelo.

Dado el reducido diámetro, los micropilotes tienen poco momento de inercia en su sección para tomar cargas de flexión, por lo cual, los micropilotes se diseñan como un sistema de varios elementos con diferentes inclinaciones que trabajan únicamente en su sentido axial. El trabajo realizado corresponde a una ampliación del estudio iniciado en la tesis de título del alumno Sergio Meneses de Ingenería Civil, Mención Estructuras, Construcción y Geotecnia, de la universidad de Chile, realizada en el año 2019. Tal trabajo se titula "Análisis de sistemas de micropilotes para su uso en suelos licuables" y estudia la factibilidad del uso de un sistema de micropilotes en un suelo en el cual el estrato licuable se encuentra en la superficie del terreno, es decir, se encuentra sobre el suelo competente, y presenta espesores de entre 3 y 8[m]. Por otra parte, el diseño de la estructura fue basado en una pasarela, generando un modelo simplificado con el mismo período de vibración y un solo grado de libertad.

Este trabajo logra diferenciarse del realizado por Sergio Meneses¹ ya que incorpora los siguientes casos y situaciones que no fueron observadas o que fueron simplificadas:

- Análisis de sensibilidad de parámetros de las leyes constitutivas, analizando dos suelos licuables con valores distintos de SPT-N lo cual conlleva a una caracterización distinta al establecer parámetros de constitutivas diferentes para la licuación. De esta forma se busca observar como la variación de este parámetro afecta en el potencial de licuación y la resistencia del suelo.
- Modelamiento completo de la pasarela, con 3 cepas que se mueven en conjunto a diferencia de una cepa aislada.
- Fenómeno de *Lateral Spreading*: En su trabajo, Sergio Meneses (2019) realizó el modelo de los micropilotes sin diferenciar si la sección de este se encontraba en el estrato licuable, de esta forma obtuvo un corte máximo que recibía el elemento pero no en donde se presentaba este valor. En este trabajo el elemento se diferenciará por estratos de forma que se pueda observar donde se presenta el corte máximo y cuanto aumenta el esfuerzo cortante de los micropilotes entre la sección que se encuentra en estrato competente y licuable.
- Modificación en condiciones de borde: Sergio Meneses (2019) en su trabajo utilizó un tipo de condiciones de borde las cuales no son las recomendadas para un análisis sísmico puesto que estas le entregaban resultados erróneos a raíz de un problema en el borde del modelo con el suelo licuable. En este trabajo se resolverá el problema en los bordes del modelo y se utilizarán las condiciones de borde recomendadas para este tipo de análisis para así obtener resultados que se asemejen más a la realidad.

En el presente trabajo se evaluará la viabilidad del uso de micropilotes en suelos licuables, lo cual puede traer problemas que no se presentan en pilotes normales tales como, pandeo debido a la perdida de confinamiento y falla por corte debido a las fuerzas horizontales producidas por la licuación del suelo durante un sismo. La forma de realizar esta evaluación será generando un modelo numérico de la estructura y suelo de manera de representar la interacción que ocurre entre estos cuando el sistema es sometido a una aceleración al nivel de roca basal, según un registro del sismo ocurrido en 2010.

¹Análisis de sistemas de micropilotes para su uso en suelos licuables, Sergio Meneses, 2019

Capítulo 1

Descripción del problema

1.1. Proyectos base para el análisis

Para la realización de este trabajo se debió realizar un estudio de diversos proyectos de ingeniería asociados enfocándose en la sección de mecánica de suelos, de esta forma se desprendieron las características del suelo, de la estructura y fundaciones. Los proyectos investigados se presentan a continuación:

- Estudio de mecánica de suelos, proyecto de normalización hospital de Chile Chico, región de Aysen: La estratigrafía presente en este terreno consta de una capa superficial licuable compuesta por limo arcilloso y luego una capa no licuable de limo arenoso. La probabilidad de licuación en este terreno se encontró en base al índice de plasticidad y límite líquido de los finos. No se encuentra presencia de nivel freático.
- Informe de mecánica de suelos, pasarela Ramadillas, región del Biobío: Este terreno constaba de un estrato con valores de Nspt bajos (<10) en donde los estratos no plásticos eran los que correspondían a arenas limosas con finos no plásticos y un valor de Nspt de 4-8 golpes/pie. Estos estratos se encontraban a profundidades intermedias de 5 [m]. Los valores de Nspt en los estratos no licuables variaban entre los 30 y 45 golpes/pie. El nivel freático se encontraba en el nivel de superficie. La estructura a construir correspondía a una pasarela peatonal.
- Memoria de cálculo, mejoramiento de suelos, región del Biobío: En este terreno se encuentra un estrato licuable a 15 [m] de profundidad el cual consta de un porcentaje de finos menor al 10 % y valores de $(N_1)_{60}$ corregido entre 10 y 25. Nivel freático en superficie.
- Informe de mecánica de suelos y Memoria de cálculo, pasarela playa Blanca sur, región del Biobío: En esta zona se tenia un aumento paulatino de la resistencia del suelo conforme aumentaba la profundidad desde los 8 golpes/pie en superficie hasta 30 golpes/pie a los 9 metros. El nivel freático se encontró a 1[m] de la superficie. Solución para las fundaciones, pilotes. Se entregan valores de carga y dimensiones de pasarela peatonal.

En base a los informes descritos se eligieron valores característicos para el modelamiento de dos tipos de suelo licuable. Para los datos de la estructura se tomaron las características reales de la pasarela playa Blanca Sur para realizar el modelamiento. El detalle de el suelo y estructura a utilizar se presentará en las siguientes secciones.

1.2. Licuación de suelos

La geotecnia abarca una gran cantidad de problemas y estudios acerca del comportamiento del suelo, de forma estática y dinámica, uno de estos problemas es el de la licuación del suelo. La licuación en suelos es un fenómeno que ocurre debido a un aumento repentino en la presión de poros del suelo, generado por una carga cíclica (un sismo por ejemplo), y que produce la perdida de resistencia de este.

Puesto que la ocurrencia de que un suelo sufra el problema de licuación depende de muchos factores, es muy difícil tener con certeza si un suelo puede licuar o no. Por esto es que se plantea el siguiente método que busca estimar la probabilidad de licuación del suelo.

<u>Análisis simple de evaluación de potencial de licuación en suelos saturados</u>: Propuesto por primera vez por Seed & Idriss (1971), este análisis ha evolucionado con el tiempo y es utilizado globalmente para analizar al resistencia del suelo a la licuación. Este método pretende entregar un factor de seguridad frente a la licuación:

$$FS = CRR/CSR$$

CRR(Cyclic Resistance Ratio o Relación de Resistencia Cíclica): Representa la capacidad del suelo para resistir la licuefacción. Este valor se estima a partir de los valores de N_{SPT} . En la figura 1.1, se presenta el gráfico utilizado para determinar la relación de resistencia cíclica, a partir del valor de N_{SPT} , a diferentes porcentajes de finos y para un sismo de magnitud Mw=7.5.

Figura 1.1: Correlación entre la razón de resistencia cíclica y el valor de SPT- N_{60} para sismos de magnitud Mw=7.5 a diferentes porcentajes de finos.²

CSR(Cyclic Stress Ratio o Relación de Esfuerzo Cíclico): Expresa el esfuerzo que generará un sismo de una determinada magnitud, se determina dividiendo el esfuerzo de corte promedio inducido por la solicitación sísmica τ por la presión vertical efectiva σ'_v . El esfuerzo de corte inducido por la fuerza sísmica se calcula de la siguiente manera:

$$\tau = 0.65 \cdot \sigma_v \cdot \frac{A_{max}}{g} \cdot r_{\rm d}$$

 σ_v : Presión vertical total.

 A_{max} : Aceleración máxima del sismo.

 $r_{\rm d}$: Coeficiente de reducción de aceleración.

 τ : Esfuerzo de corte promedio inducido.

²Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations. Seed et al, 1985.

Figura 1.2: Coeficiente de reducción de aceleración, $r_{\rm d}.$ 3

Al ser este método basado en ensayos generales en terreno, e ideados para una maquinaria en particular, se debe corregir el valor de N_{SPT} para tomar en cuenta las distintas metodologías y equipos a utilizar en terreno. Estas correcciones se obtienen a partir de la presión de sobrecarga, relación de energía, diámetro de perforación, longitud del varillaje y tipo de muestrador, estos valores se muestran en la tabla 1.3. De esta forma, el valor de SPT encontrado en terreno se debe multiplicar por los factores de corrección mostrados para ser utilizado en el gráfico de CRR.

Factor	Variable	Símbolo	Corrección
Presión de sobrecarga.		C _N =	(Pa/σ' _{vo}) ^{0.5} *
			C _N menor o igual
			que 2
Relación de energía	Martillo cilíndrico	C _E =	0.5-1.0
	Martillo de seguridad		0.7-1.2
	Martillo automático -Cilíndrico		0.8-1.3
Diámetro de la perforación	65 – 115 mm	C _B =	1.0
	150 mm		1.05
	200 mm		1.15
Longitud del varillaje	3 – 4 m	C _R =	0.75
	4 – 6 m		0.85
	6 – 10 m		0.95
	10 – 30 m		1.0
	>30 m		<1.0
Tipo de muestreador	Cuchara partida estándar	C _S =	1.0
	Cuchara partida sin liners		1.1 – 1.3

Figura 1.3: Factores de Corrección para ensayo SPT. 4

 $^3\mathrm{CPT}$ AND SPT BASED LIQUEFACTION TRIGGERING PROCEDURES, Ross W. Boulanger, I. M. Idriss, 2014

 $^{^4 \}rm Liquefaction$ Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils, Youd et al. 2001

1.3. Estratigrafía y característica del suelo

Como se vio anteriormente el fenómeno de licuación del suelo requiere un análisis extenso, esto se hace aun más complejo a la hora de realizar el diseño de fundación, esto porque un suelo posiblemente licuable puede encontrarse tanto en superficie o en profundidad, apareciendo o desapareciendo en un terreno descrito. En este trabajo se enfocará en el caso en que este suelo este comprendido entre dos estratos de suelo competente.

Para poder observar el comportamiento de una gran variedad de suelos se asumirán valores hipotéticos para dos condiciones diferentes de suelos licuables.

Las características de ambos suelos nombrados anteriormente serán las siguientes:

• Suelo Competente: Arena limosas con finos plásticos, compacidad media a alta.

$$N_{SPT} = 35 golpes$$

$$\gamma_s = 1.8[tonf/m^3]$$

$$\gamma_o = 1.7[tonf/m^3]$$

$$\phi = 35^{\circ}$$

• Suelos licuables: Arena con finos no plásticos, compacidad baja.

$$N_{SPT1} = 5golpes$$
$$N_{SPT2} = 15golpes$$
$$\gamma_s = 1.65[tonf/m^3]$$
$$\gamma_o = 1.5[tonf/m^3]$$
$$\phi_1 = 28^{\circ}$$
$$\phi_2 = 30^{\circ}$$

Es importante notar que solo se definirá la resistencia por fuste para la longitud del micropilote desarrollado en el suelo competente, bajo el estrato licuable con el fin de realizar un diseño conservador. Por otra parte, se definió que el nivel freático se encontrara a 1[m] de la superficie.

Se propone la siguiente estratigrafía a estudiar:

Figura 1.4: Caso de análisis.

1.4. Estructura

Actualmente es posible divisar que la industria de la construcción viene en rápida alza con distintos tipos de construcción (edificios, puentes, represas, casas, etc) a lo largo de todo el país, siendo una de las áreas de mayor crecimiento en los últimos años. Ante lo anterior es de vital importancia realizar investigaciones acerca de la manera mas óptima y segura de realizar estas construcciones, manteniendo los costos de producción relativamente bajos.

Una de las partes más importantes en la construcción de estructuras son las fundaciones, estas cumplen la función de distribuir y transmitir las cargas de la estructura al suelo para aprovechar la capacidad del suelo. Existen una gran variedad de fundaciones posibles para las estructuras, para este caso, el de suelos licuables, las soluciones mas comunes para enfrentar estos casos es el uso de reemplazo de suelo (en los casos que el estrato licuable es superficial y de bajo espesor), columnas de gravas o pilotes. El uso de pilotes funciona de manera perfecta para el caso de edificios o estructuras de gran envergadura, pero para el caso de estructuras livianas su uso podría no ser justificado al tener un gran costo de ejecución.

Por lo anterior, es que en el presente trabajo se investigará el método de fundación mediante micropilotes. Los micropilotes, corresponden a un tipo de fundación profunda de forma que su función es transmitir los esfuerzos a un nivel de suelo competente. Estos cuentan con un diámetro pequeño (menor a 300 [m]) en comparación a un sistema de pilotes tradicional. Al tener estas dimensiones, los micropilotes pueden ser construidos en una mayor variedad de terrenos pero en cambio cuentan con una menor resistencia y rigidez, tanto axial como flexional en comparación con los pilotes.

Los primeros micropilotes fueron utilizados en Italia en los años 50, en donde se comenzaron a construir pilotes con diámetros más pequeños a los descritos en los códigos de construcción de esos años. Estos fueron creados ante la necesidad de recalzar edificios y monumentos históricos con un sistema el cual proporcione un buen soporte que resista las cargas transmitidas, no afecté a la estructura, pueda ser realizado en un entorno de espacio reducido y pudiera ser ejecutado en cualquier suelo ⁵ ⁶. Estos elementos fueron nombrados como *Radice del pali* o pilas de raíz. ⁷

En los años 60 el uso de las "pilas de raíz" fue introducido en Alemania y el Reino Unido en edificios históricos y obras subterráneas. Su utilización en Estados Unidos fue por primera vez a inicios de la década del '70 pero su desarrollo y masificación no ocurrió hasta finales de la década del '80 ya que existía escepticismo respecto a su uso.⁸

⁵Bruce, D. A., 1994. "Small Diameter Cast-in-Place Elements for Load Bearing and In Situ Earth Reinforcement, in Ground Control and Improvement by P. P. Xanthakos, L. W. Abramson, and D. A. Bruce. John Wiley and Sons. Chapter 6. pp. 406-492.

⁶Bruce, D. A., DiMillio, A. F. and Juran, I., 1995. Introduction to Micropiles: An International Perspective, "Foudation Upgrading and Repair for Infrastructure Improvement, ASCE, New York, NY.

⁷Ellis, I. W., 1990. "Mini Pile Underpinning," The Maintainance of Brick and Stone Masonry Structures, London-New York: E. & F. N., first edition.

⁸Bruce, D. A., DiMillio, A. F., and Juran, I., 1995b. "Primer on Micropiles, *Çivil Engineering*, Vol. 65, No 12, December, pp 51-54.

Figura 1.5: Esquema micropilote.⁹

La estructura ejemplo en la cual se basará este trabajo será la de una pasarela peatonal que presenta un peso relativamente bajo en comparación con un edifico de más de 3 pisos y es posible encontrarla en múltiples localidades de Chile. Esta corresponde a la pasarela Playa Blanca Sur ubicada en la ruta 160, localidad de Coronel. El material del cual esta construida es hormigón armado grado H-40, el cual tiene un peso de 25 $[kN/m^3]$ y un módulo de elasticidad de 29725.41 [MPa]. La estructura está constituida por dos rampas de acceso y una pasarela en altura que permite el tránsito por sobre la pista de autos. Las rampas de acceso y la pasarela trabajan como estructuras independientes unas de otras, de esta forma, la estructura a analizar es la presentada en la figura 1.7 en donde el análisis se enfocará en la cepa central y su respectiva fundación.

 $^{^9\}mathrm{Catálogo}$ micropilotes: Datos técnicos, bocas de perforación y diámetro eficaz del cuerpo de inyección, ISCHEBECK

La forma del tablero de la pasarela, construido se presenta en la figura 1.6.

Figura 1.6: Sección transversal del tablero, unidades en [mm]

Las medidas de la pasarela se muestran en la figura 1.7.

Figura 1.7: Medidas pasarela, unidades en [mm]

Como se dijo anteriormente, y observando la figura 1.7, la cepa a analizar corresponde a la que se encuentra en medio. Esta cepa no recibe cargas de las rampas. Por otra parte, el tablero se reparte entre las cepas de la izquierda y derecha, por lo tanto, la longitud tributaria del tablero que ejercerá carga sobre la cepa central será de 9.5 [m] de la izquierda y de 6.7 [m] de la derecha. Por último, la cepa tiene un diámetro de 60 [cm].

1.5. Fenómenos geotécnicos a analizar

1.5.1. Fricción negativa

En los casos usuales de pilotes o micropilotes cargados axialmente por el peso de la estructura, se tiene que los pilotes o micropilotes se asientan verticalmente, bajando en relación al suelo circundante. Este desplazamiento es lo que genera la resistencia del micropilote por fricción del suelo. La fricción negativa (Downdrag en inglés) se produce debido a que el pilote se asienta menos que el suelo circundante. El asentamiento relativo de este estrato de suelo genera una fuerza de fricción que actúa en la dirección de la gravedad, por lo que, en vez generar resistencia a una carga de compresión, la fricción negativa impone fuerzas adicionales al elemento. Este fenómeno se produce en micropilotes que están puestos en estratos blandos propensos a asentarse, como los suelos licuables descritos en este trabajo. Debido a que los asentamientos del micropilote y del suelo varían respecto a la profundidad, la fricción negativa se aplicará desde donde el suelo asiente mas que los micropilotes hasta que estos igualen su asentamiento, el llamado punto neutro 1.8. De igual forma, el esfuerzo axial del micropilote aumentará hasta el punto neutro, punto en el cual deja de actuar la fricción negativa, y disminuirá por efecto de la fricción positiva.

Figura 1.8: Fricción negativa en pilote.¹⁰

¹⁰DESIGN AND CONSTRUCTION GUIDELINES FOR DOWNDRAG ON UNCOATED AND BITUMEN-COATED PILES, Jean-Louis Briaud and Larry M. Tucker, 1996

1.5.2. Desplazamiento lateral

El fenómeno de desplazamiento lateral (Lateral spreading en inglés) inducido por la licuación del suelo se define como el desplazamiento lateral de una capa de suelo superficial debido a la licuación de un estrato inferior durante un evento sísmico. De esta forma el bloque superior de suelo se transporta lateralmente como un bloque intacto por sobre el estrato inferior ¹¹ como se observa en la figura 1.9.

Figura 1.9: Ejemplo lateral spreading en (a) Terreno con desplazamiento confinado y (b) Terreno con desplazamiento libre.¹¹

Debido a los grandes desplazamientos que pueden ocurrir durante este fenómeno es que una gran variedad de estructuras son propensas a dañarse debido a esto. Estructuras superficiales suelen desprenderse de sus fundaciones generando daños a las estructuras subterráneas, que quedan sometidas a compresión, pandeo y esfuerzos flectores adicionales a las cargas que le induce la estructura, dependiendo de la dirección en que son dispuestas. Por ejemplo, una tubería dispuesta en el sentido de movimiento de tierra estará sometida a fuerza axial mientras que una colocada en perpendicular estará sometida a esfuerzos cortante ¹¹.

¹¹EPOLLS: An Empirical Method for Prediciting Surface Displacements Due to Liquefaction-Induced Lateral Spreading in Earthquakes, Alan F. Rauch, 1997

La magnitud de desplazamiento del suelo dependerá de una gran variedad de factores definidos por Alan Rauch 12 , los cuales son los siguientes:

- Respuesta del suelo: un comportamiento dilatante conlleva menores magnitudes de desplazamiento mientras que un contractivo implica un mayor desplazamiento y fallas.
- Esfuerzo de corte drenado residual (S_u) : Debido a lo difícil que es estimar el valor de S_u en suelos licuables es que estimar el efecto de lateral spreading en base a este valor es algo que no es posible realizar.
- Contenido de finos: En ensayos de modelos a escalas realizados por Toyota y Towhata ¹³ se presentaron mayores niveles de deformaciones cuando se agregaron finos a arenas limpias. Añadiendo a esto Barlett y Youd ¹⁴ ¹⁵ ¹⁶ observaron una gran correlación entre el porcentaje de finos y la deformación. Por otra parte, y como fue explicado en un comienzo, la plasticidad del fino afectará la licuación del suelo, y con esto, la magnitud de deformaciones, teniendo que un fino plástico no generará licuefacción y ni deformación.
- Espesor estrato licuable: Un aumento de espesor del estrato licuable genera un mayor desplazamiento en la superficie.

¹²EPOLLS: An Empirical Method for Prediciting Surface Displacements Due to Liquefaction-Induced Lateral Spreading in Earthquakes, Alan F. Rauch, 1997

¹³Dynamic analysis of lateral flow of liquefied ground, Towhata, I. y Toyota, H., 1994

¹⁴Empirical prediction of lateral spread displacement, Barret, S.F. y Youd, T.L. 1992a

¹⁵Empirical analysis of horizontal ground displacement generated by liquefaction-induced lateral spread, Barret, S.F. y Youd, T.L., 1992b

¹⁶Empirical prediction of liquefaction-induced lateral spread, Barret, S.F. y Youd, T.L., 1995

Capítulo 2

Diseño de las fundaciones utilizadas en el análisis

2.1. Cálculo de las solicitaciones en las fundaciones mediante método pseudoestático

Las solicitaciones presentadas a continuación fueron extraídas del informe de cálculo correspondiente a la pasarela Playa Blanca Sur¹. Se trabajará con un sismo de diseño en perpendicular a la dirección de la pasarela. La combinación de cargas a utilizar será acorde a la norma AASHTO, 1.33(Sy+0.33Sx)+D+0.25SC. Con Sy dirección del sismo en la dirección y, Sx sismo en dirección x, D la carga muerta y SC la sobrecarga.

2.1.1. Fuerzas estáticas

Las fuerzas estáticas presentadas en este trabajo corresponderán a la carga muerta debido al peso propio del tablero, baranda y a la sobrecarga de uso. Los valores de carga por metro lineal son los siguientes:

$$q_{Tablero} = 1.084[tonf/m]$$
$$q_{Baranda} = 0.1[tonf/m]$$
$$q_{SobreCarga} = 0.83[tonf/m]$$

De esta forma las solicitaciones por elemento son:

Pasarela, izq = 12.98[tonf] Pasarela, der = 9.088[tonf] PesoPropio, cepa = 4.7[tonf] P, total = 26.67[tonf]

¹MEMORIA DE CÁLCULO - Pasarela Playa Bca Sur- Cepa 1, 2011

2.1.2. Fuerzas dinámicas

Las cargas sísmicas son determinadas considerando un coeficiente sísmico igual a 0.24 con un porcentaje de sobrecarga del 25%. De esta forma las fuerzas horizontales que genera cada elemento son:

Pasarela, izq = 4.124[tonf] Pasarela, der = 2.908[tonf] PesoPropio, Cepa = 1.504[tonf] Corte, Total = 8.536[tonf]

2.1.3. Solicitaciones inducidas

Finalmente, las solicitaciones producidas en la fundación se muestran en la tabla 2.1, a estos valores se le debe agregar el peso del dado de fundación, lo cual se realizará a continuación.

Fx[tonf]	2.845
Fy[tonf]	8.536
Fz[tonf]	-26.67
Myz[tonf-m]	17.91
Mzx[tonf-m]	57.01
Mxy[tonf-m]	0

Tabla 2.1: Solicitaciones en dado de fundación

2.2. Arreglos y dados de fundación

Se diseñarán dos fundaciones para poder analizar y comparar posteriormente cual realiza un mejor trabajo ante la licuación. Las fundaciones en las que irá la estructura descrita anteriormente estarán compuestas por un dado de fundación y micropilotes introducidos en éste. • Arreglo de 12 micropilotes: El primer sistema de fundación estará compuesto por 12 micropilotes posicionados de manera simétrica en las cuatro esquinas del dado, lo anterior se presenta en las figuras 2.1. Este sistema pretende ser una representación de un arreglo clásico de micropilotes, acorde a las estructuras estudiadas previamente.

Figura 2.1: Posición de la parte superior de los micropilotes en el fondo del dado de fundación de 12 micropilotes- Vista en planta.

Los micropilotes 1-4-7-10 serán verticales hacia abajo mientras que los demás estarán inclinados hacia afuera del dado. Las flechas presentes en la figura 2.1 representan la dirección de cada elemento. Los micropilotes están posicionados de forma tal que la resistencia que generará la fundación será equitativa en todas las direcciones.

Se analizarán dos casos de este tipo de fundación con inclinaciones de micropilotes de 20° y 45°.

• Arreglo de 18 micropilotes: El segundo diseño de fundación a utilizar será un sistema diferente a lo utilizado en fundaciones normales, éste constará de 18 micropilotes. Las medidas y disposiciones de este arreglo se presentan en la figura 2.2.

Figura 2.2: Posición de la parte superior de los micropilotes en el fondo del dado de fundación de 18 micropilotes- Vista en planta

El arreglo de 18 micropilotes presenta una mayor cantidad de soporte lateral ante los efectos sísmicos. Los micropilotes 1-4-7-10 serán verticales hacia abajo mientras que los demás estarán inclinados hacia afuera del dado. Las flechas presentes en la figura 2.2 representan la dirección de cada elemento.

Se analizarán dos casos de este tipo de fundación con inclinaciones de micropilotes de 20° y 45°

Con las dimensiones presentadas anteriormente se tiene que el dado de fundación tendrá un volumen total de $0.7[m^3]$ para el caso de 12 micropilotes y de $1.58[m^3]$ para el caso de 18 micropilotes, al ser de hormigón el dado de fundación tendrá un peso total de 1.75[tonf] y 3.94[tonf] respectivamente. Incluyendo esta fuerza en el problema los esfuerzos totales serán los siguientes.

Fx[tonf]	2.845
Fy[tonf]	8.536
Fz[tonf]	-28.42
Myz[tonf-m]	17.910
Mzx[tonf-m]	57.01
Mxy[tonf-m]	0

Tabla 2.2: Solicitaciones de diseño para la fundación de 12 micropilotes.

Fx[tonf]	2.845
Fy[tonf]	8.536
Fz[tonf]	-30.61
Myz[tonf-m]	17.910
Mzx[tonf-m]	57.01
Mxy[tonf-m]	0

Tabla 2.3: Solicitaciones de diseño para la fundación de 18 micropilotes.

2.3. Cálculo de solicitaciones axiales en micropilotes mediante método iterativo

La determinación de los esfuerzos que presenta cada micropilote se realizará mediante un método iterativo basado el cual se basa en las siguientes afirmaciones 2 :

- El dado o zapata de hormigón armado se comporta como un cuerpo rígido.
- Se establece una rigidez axial conocida los elementos. Dado lo anterior, se asume un comportamiento elástico de estos elementos en su sentido axial. El termino axial se refiere a esfuerzos de compresión y tracción. La rigidez a utilizar será de 10000[tonf/m]
- Se omiten otros efectos de cargas sobre los micropilotes tales como fricción negativa.
- Se modelan las conexiones micropilotes-zapata como rotulas de forma que no se considera resistencia de flexión en estas.

De esta forma, el modelo se basa en que la zapata de hormigón se desplaza y rota como un cuerpo rígido mientras que los micropilotes se comprimen y traccionan de acuerdo a los movimientos del dado. Así los grados de libertad del problema quedan definidos únicamente por lo desplazamientos y giros de la fundación, medidos desde el centro de gravedad de esta.

La modulación de este problema requiere que se cumpla un equilibrio de fuerzas entre las solicitantes (denominadas desde ahora como S_0) y la suma de las reacciones de los elementos $(\sum F_{0/Pi})$, en donde este valor se encuentra trasladando las fuerzas de la siguiente forma:

$$F_{0/Pi}) = \begin{pmatrix} Fx' \\ Fy' \\ Fz' \\ Myz' \\ Mzx' \\ Mxy' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & dz & dy \\ -dz & 0 & -dx \\ -dy & dx & 0 \end{pmatrix} \begin{pmatrix} Fx \\ Fy \\ Fz \end{pmatrix}$$

Siendo $F_{i'}/M_{ij'}$ las fuerzas trasladadas al centro de gravedad, dx, dy y dz, las distancias hasta el centro de gravedad de cada elemento y F_i el esfuerzo descompuesto en su respectiva dirección de cada elemento.

Gracias a que la fundación se modela como un cuerpo rígido, es posible obtener las variaciones de largo de los elementos a partir de los grados de libertad definidos, esto implica que cualquier punto de la zapata se obtiene de sus desplazamiento y rotaciones.

Dado lo anterior es posible definir los esfuerzos que recibe cada elemento en base al movimiento de la fundación, por lo que restaría encontrar cuales son los valores de grados de libertad que representan a este movimiento, proceso que no es trivial ya que por la trigonometría, encontrar el desplazamiento y giros es un problema no-lineal. Para poder encontrar los valores de los grados de libertad (GDL) del problema se propone utilizar el método de la rigidez tangente de la siguiente forma:

²Schiel, F. "Statik der Pfahlwerke" Auflage, Berlin. 1960.

$$GDL_{i+1} = GDL_i + \frac{S - R_i}{K_i}$$
$$K_i = \frac{R_i - R_{i-1}}{GDL_i - GDL_{i-1}}$$

Con $R_{\rm i}$ la suma de las reacciones de cada los elementos e i el paso de cada iteración.

Por la naturaleza del procedimiento anterior, el largo que se le da a cada elemento no afecta mayormente en el resultado final, porque lo que importa en el cálculo es la deformación axial. De esta forma, es posible definir las solicitaciones y luego el largo de cada elemento.

Realizando el proceso descrito en esta sección al problema presentado en este trabajo, entrega los siguientes valores de esfuerzos axiales internos en cada micropilote, en donde un valor positivo indica compresión y uno negativo tracción.

F	[tonf]
1	25.285
2	-14.521
3	14.497
4	49.333
5	18.133
6	-2.689
7	-30.501
8	9.279
9	-18.846
10	-54.548
11	-23.543
12	-1.486

Tabla 2.4: Solicitaciones axiales en micropilotes, caso 12 micropilotes inclinados a 20°

F	[tonf]
1	21.979
2	-7.995
3	8.116
4	53.711
5	16.134
6	1.244
7	-29.266
8	5.240
9	-15.188
10	-60.998
11	-19.236
12	-7.960

Tabla 2.5: Solicitaciones axiales en micropilotes, caso 12 micropilotes inclinados a 45°

F [tonf]	
1	23.306
2	-8.143
3	11.597
4	35.233
5	14.196
6	-2.322
7	-26.958
8	4.539
9	-14.852
10	-38.885
11	-17.7968
12	-1.925
13	-3.486
14	-0.328
15	2.384
16	-3.099
17	-5.815
18	0.229

Tabla 2.6: Solicitaciones axiales en micropilotes, caso 18 micropilotes inclinados a 20°

F [tonf]	
1	19.786
2	-6.682
3	8.206
4	35.356
5	9.351
6	-0.930
7	-25.297
8	2.656
9	-11.897
10	-40.866
11	-13.433
12	-3.653
13	-2.080
14	-1.273
15	0.553
16	-2.614
17	-4.381
18	-1.550

Tabla 2.7: Solicitaciones axiales en micropilotes, caso 18 micropilotes inclinados a 45°

2.4. Diseño del tipo de barra de micropilotes

Los tipos de micropilotes a utilizar en este trabajo serán micropilotes autoperforantes ISCHEBECK TITAN 103/51. Se selecciona este micropilote de muy alta capacidad ya que los resultados de Sergio Meneses ³ sugieren que las solicitaciones externas por fricción negativa y desplazamiento lateral pueden ser incluso superiores a las cargas que induce la estructura.

TITAN 103/51		
Características		
Diámetro ext[mm]	103	
Diámetro int[mm]	51	
Carga de fluencia[kN]	2,670	
Carga de rotura[kN]	3,660	
Corte admisible[kN]	899	
Peso[kg/m]	25.3	
	5,680	
Rigidez Axial (EA) $[10^3 \text{ kN}]$	1,022	
Rigidez Flexional (EI) $[10^6 \text{ kN-mm}^2]$	794	

Tabla 2.8: Características micropilote TITAN 103/51. 4

 $^{^3\}mathrm{Análisis}$ de sistemas de micropilotes para su uso en suelos licuables, Sergio Meneses, 2019

⁴Catálogo micropilotes: Datos técnicos, bocas de perforación y diámetro eficaz del cuerpo de inyección, ISCHEBECK

De la tabla 2.8 se observa que la carga admisible axial es de $2,670[kN] \approx 267[tonf]$, ésta corresponde a la capacidad interna del elemento, para el caso de estos micropilotes se debe disminuir la capacidad de carga por un factor según se especifica en la norma AASHTO 2010. Este valor depende del tipo de solicitación y sus valores se presentan en la tabla 2.9.

Solicitación	Factor de Corrección
Tracción	0.8
Compresión	0.75

Tabla 2.9: Valores de coeficiente de reducción geotécnica para micropilotes cargados axialmente. 5

Luego, la capacidad de carga interna de los micropilotes será:

Capacidad de carga minorada a la compresión [tonf]	200
Capacidad de carga minorada a la tracción [tonf]	213

Tabla 2.10: Capacidad de carga aminorada micropilotes TITAN 103/51.

Los valores presentados en la tabla 2.10 son mayores a los resultados obtenidos en las tablas 2.4, 2.5, 2.6 y 2.7, por lo tanto, el diseño cumple en términos de carga interna.

Acorde al catalogo de micropilotes ISCHEBECK TITAN (Apéndice A), los micropilotes tipo 103/51, en conjunto con un suelo con $N_{SPT} < 50$, se utiliza una broca de diámetro 220 [mm]. Por otra parte, el diámetro de bulbo que se genera en arenas corresponde a 275 [mm].

Ya que el micropilote consta tanto del acero como de la lechada de cemento que forma el bulbo, es necesario tomar en consideración el aporte a la rigidez flexional y a la rigidez axial que el cuerpo inyectado de la lechada de cemento agrega al elemento. Así, las propiedades de la sección compuesta, entre acero y cemento se calculan de la siguiente manera.

$$A_{Cemento} = \pi \frac{D_{bulbo}^2 - D_{barra}^2}{4}$$
$$I_{Cemento} = \pi \frac{D_{bulbo}^4 - D_{barra}^4}{4}$$
$$E_{Cemento} = 34[kN/mm^2]$$
$$EA_{Total} = EA_{Cemento} + EA_{Acero}$$
$$EI_{Total} = EI_{Cemento} + EI_{Acero}$$

⁵LRFD Bridge Design Specifications, AASHTO, 2010

Sección Compuesta		
Diámetro bulbo[mm]	275	
$A_{Cemento}$ [mm ²]	51063	
$E_{Cemento}[kN/mm^2]$	34	
$EA_{Cemento}[10^3 kN]$	1736	
$EA_{Total}[kN]$	2758.157	
$I_{Cemento}$ [mm ⁴]	0.003	
$\mathrm{EI}_{Cemento}[\mathrm{kN}\text{-}\mathrm{mm}^2]$	5288	
$\mathrm{EI}_{Total}[10^{6}\mathrm{kN}\text{-}\mathrm{mm}^{2}]$	794	

Luego, se tienen los siguientes valores de diseño:

Tabla 2.11: Datos sección compuesta

De la tabla 2.11 se puede desprender que la lechada de cemento entrega un aumento en la resistencia axial del elemento, pero en cambio, su aporte a la resistencia flexional es casi nulo.

2.5. Diseño de las longitudes de micropilotes para cada arreglo

La resistencia de los micropilotes se basa en dos mecanismos de falla respectivas al terreno, por arrancamiento de cono del terreno y capacidad de fricción última de bulbo.

2.5.1. Resistencia por fuste o adherencia de bulbo

La resistencia por fuste de los elementos se basa en la fricción que ocurre entre el suelo circundante y el bulbo alrededor del micropilote. Esta resistencia aplica tanto en tracción como en compresión. La forma de cálculo se realiza relacionando datos de ensayos in-situ con formulas y gráficos, procedimiento dispuesto por Bustamante(1985), incorporando factores de reducción de la norma AASHTO 2010. Los factores que controlan esta resistencia son: diámetro de perforación, propiedades del suelo, sistema de perforación y metodología de inyección de mortero.
El cálculo de la resistencia por fuste del elemento estará dada por la siguiente formula:

$$N_{\rm adm} = \Phi \sum l_{\rm i} \cdot \pi \cdot \phi \cdot q_{\rm s}$$

 N_{adm} : Fuerza admisible.

 Φ : Factor de reducción acorde a la AASHTO, figura 2.4.

 l_i : Largo del estrato.

 ϕ : Diámetro de bulbo.

 q_s : Resistencia por fuste del estrato (friccion bulbo-suelo).

El factor q_s correspondiente a la resistencia por fricción unitaria correspondiente al suelo se encontrará acorde a los ábacos descritos por Bustamante(1985). De esta forma se utilizará un $q_s = 200[kN/m^2]$ valor asociado a un suelo medio denso en la curva IRS, cifra que implica que la presión de inyección de la lechada de cemento es mayor a la presión de confinamiento del suelo.

Figura 2.3: Valores de resistencia por fuste, en relación a valor de N-SPT, Bustamante(1985)

Limit State	Method/ Ground Condition	Resistance Factor
	Side Resistance (Bond Resistance): Presumptive Values	0.55 ⁽¹⁾
Compression Resistance of	Tip Resistance on Rock O'Neill and Reese (1999)	0.50
Single Microphe, <i>q_{stat}</i>	Side Resistance and Tip Resistance Load Test	Values in Table 10.5.5.2.3-1, but no greater than 0.70
Block Failure, ϕ_{bl}	Clay	0.60
	Presumptive Values	0.55 ⁽¹⁾
Uplift Resistance of Single Micropile, φ _{up}	Tension Load Test	Values in Table 10.5.5.2.3-1, but no greater than 0.70
Group Uplift Resistance, ϕ_{ug}	Sand & Clay	0.50

Figura 2.4: Valores de coeficiente de reducción geotecnica para micropilotes cargados axialmente 6

Acorde a lo anterior, se utilizará un factor de seguridad Φ igual a 0.55.

De esta forma, la resistencia de adherencia de bulbo por metro lineal en estrato competente, puesto que es el único que entrega resistencia, es de 13.224 [tonf/m].

2.5.2. Arrancamiento de cono

La falla por cono de arrancamiento esta definida por la masa de suelo que se opone a la tracción de los elementos. El volumen de suelo que resiste se presenta gráficamente en la figura 2.5. Al igual que en el cálculo de adherencia de bulbo, se utilizará un factor de reducción de 0.55 acorde a AASHTO(2010).

⁶AASHTO LRFD Bridge Design Specifications(2010).

Figura 2.5: Representación gráfica del cono de arrancamiento, vista de corte.

De la figura 2.5, Lv es el largo del micropilote, β la inclinación del micropilote respecto a la vertical, ϕ el ángulo de fricción del suelo, el cono de arrancamiento tiene forma cilíndrica en los primeros 2/3 del largo del micropilote para luego tener forma de cono en el último tercio de largo.

De esta forma el volumen de suelo es el siguiente:

$$V_{cono} = \frac{1}{3} \cdot \pi \cdot (tan\phi \cdot \frac{L}{3})^2 \cdot \frac{L}{3} = 0.039 \cdot tan^2\phi \cdot L^3$$
$$V_{cilindro} = \pi \cdot (tan\phi \cdot \frac{L}{3})^2 \cdot \frac{2L}{3} = 0.233 \cdot tan^2\phi \cdot L^3$$
$$V_{Total} = 0.272 \cdot tan^2\phi \cdot L^3$$
$$P_{Total} = \Phi \cdot \gamma \cdot V_{Total}$$
$$P_{inclinado} = P_{vertical} \cdot cos(\beta)$$

 β = Inclinación respecto a la vertical.

La ecuación anterior se encuentra generalizando las propiedades del suelo, para el caso de este trabajo se abordara de una forma conservadora utilizando un valor de $\phi = 30^{\circ}$ y $\gamma = 16.5 \ [kN/m^3]$, correspondientes al suelo licuable.

2.5.3. Verificación de largo

Con el fin de poder decidir cual es el largo correcto para utilizar en los elementos se debe dejar de lado en el cálculo el estrato licuable puesto que no proporciona resistencia.

En las siguientes tablas se presenta el largo de elementos a utilizar y la verificación de las solicitaciones máximas y resistencias en micropilotes.

Largo[m]			
Largo en estrato competente [m]	22		
Resistencia por adherencia de bulbo [tonf]	213		
Resistencia por arrancamiento de cono [tonf]	1281		

Tabla 2.12: Largo elegido para elementos verticales

Por otra parte, el largo elegido para los elementos en diagonal, 20° y 45° , es el siguiente:

Largo[m]	25		
Inclinación	20°	45°	
Largo en estrato competente[m]	21.8	20.8	
Resistencia por adherencia de bulbo[tonf]	211.5	201.3	
Resistencia por arrancamiento de cono[tonf]	1204	906	

Tabla 2.13: Largo elegido para elementos inclinados

2.6. Verificación de pandeo en micropilotes en zona licuable

El análisis del pandeo en micropilote se asemeja en gran medida al problema de pandeo de una columna compuesta por un material elástico, situación que ya ha sido resuelta por una gran variedad de autores. Existen dos formas de afrontar el problema, considerando o no el aporte lateral del suelo. Se verá el caso en que el suelo aporta resistencia ya que el asumir que no existe suelo circundante que aporte reacción lateral es una hipótesis muy conservadora que entrega resultados muy desfavorables. Por otra parte, el parámetro del micropilote como rigidez flexional será el de la sección compuesta entre la barra de acero y el cemento (valor expuesto en la tabla 2.8).

La forma de asemejar el problema de la columna con el de un micropilote en suelo débil es modelar el suelo como una cama de resortes, pero ya que esta hipótesis asumiría que el suelo se comporta de manera lineal y no falla se debe seleccionar un módulo de reacción lateral acorde al desplazamiento esperado y la resistencia del suelo. De esta forma se utiliza el módulo de reacción lateral secante, el cual se encuentra en el gráfico p-y. Este gráfico muestra la relación entre carga lateral y desplazamiento lateral del suelo, actualmente existen una variedad de métodos para estimar estas curvas los cuales se basan en datos experimentales e hipótesis teóricas.

Figura 2.6: Curva p-y teórica ⁷

Siguiendo el análisis de pandeo de Euler, implementado la reacción lateral, se presenta la siguiente ecuación diferencial para un elemento sujeto a una carga axial de compresión:

⁷Allen Cadden, Buckling of Micropiles(2002).

$$EI\frac{\mathrm{d}^4y}{\mathrm{d}x^4} + P\frac{\mathrm{d}^2y}{\mathrm{d}x^2} + E_s y = 0$$

 $EI \ [tonf \cdot m^2]$: Rigidez flexional. $P \ [tonf]$: Carga axial. $E_s \ [MPa]$: Módulo de reacción lateral del suelo.

Resolviendo la ecuación anterior se tiene la siguiente solución:

$$P_{cr} = P_E + \frac{E_s l^2}{\pi^2}$$
$$P_E = \frac{\pi^2 E I}{l^2}$$

l [m]: Largo de micropilote.

 $P_{E}\ [tonf]:$ Fuerza de Euler para producir pandeo en una columna.

 P_{cr} [tonf]: Carga crítica que produce el pandeo en el elemento.

La primera parte de la ecuación anterior representa la solución de Euler de pandeo en columna, mientras que la segunda refleja la contribución lateral del suelo.

Como se dijo anteriormente, esta definición teórica asume un comportamiento lineal y constante del suelo, por esto es que es necesario definir cuál es la validez de este análisis. Por una parte, se utiliza el módulo secante el cual se encuentra a pequeñas deformaciones, y el modulo de reacción lateral se mantiene constante a medida que aumenta la profundidad, lo cual no ocurre en suelos débiles como es el caso de este trabajo.

El análisis de pandeo en este trabajo se realizará en los estratos licuables, de esta forma es necesario encontrar el modulo de reacción lateral del suelo licuable mientras se produce el fenómeno de licuación. Definir este valor se realizará en base a la investigación Puri y Prakash⁸. El valor E_s del suelo cuando no se encuentra licuando se encontrará en base al parámetro Nspt y la aproximación estimada dada por Kulhway y Mayne ⁹, siendo esta correlación la siguiente:

$$\frac{E_S}{Pa} = \alpha N_{60}$$

 $\alpha = \begin{cases} 5, & \text{Arenas con finos.} \\ 10, & \text{Arena limpia normalmente consolidada.} \\ 15, & \text{Arena limpia sobreconsolidada.} \end{cases}$

 N_{60} : Parámetro encontrado de ensayo SPT.

 $Pa \ [MPa]$: Presión atmosférica.

 E_S : Módulo de reacción lateral del suelo.

 α : Corrección dependiente del tipo de suelo.

⁸PILE DESIGN IN LIQUEFYING SOIL, Puri & Prakash, 2008

⁹Manual on Estimating Soil Properties for Foundation Design, Kulhawy, F.H. and Mayne, Paul, 1990

Para tomar en cuenta el efecto de la licuación es que es necesario utilizar factores de reducción al parámetro anterior, estos valores varían dependiendo de la localidad. Siguiendo la práctica común de Estados Unidos, se multiplica la curva p-y por un factor de degradación el cual varía entre 0.1 y 0.3^{10} . Este valor decrese con el aumento de la presión de poros ¹¹ y se toma como 0.1 cuando la presión de poros excede el 100%. Otras investigaciones sugieren que este parámetro debe depender de la densidad inicial del suelo ¹² siendo entre 0.1 y 0.2 para una densidad relativa del 35% y 0.25 a 0.35 para una densidad relativa del 55%. Para este trabajo se utilizará un factor de degradación de 0.1, de forma que se asumirá que la razón de exceso de presión de poros será igual a 1 lo cual implica una licuación total del estrato.

Utilizando lo anterior, los valores de módulo de reacción lateral a utilizar en este trabajo son:

Pa [MPa]	C).1	
α]	10	
Reducción por licuación	0.1		
Nspt	5	15	
Es [MPa]	50	150	

Tabla 2.14: Módulo de reacción lateral para suelos licuables

Utilizando estos valores de reacción lateral encontrados junto a los parámetros del micropilote definidos en las tablas 2.8 y 2.11, se presentan los siguientes gráficos 2.7 y 2.8 que muestran la curva de fuerza crítica del elemento en soluciones de primer, segundo, tercer y cuarto grado (representados por la letra n).

¹⁰PILE DESIGN IN LIQUEFYING SOIL, Puri & Prakash, 2008

¹¹Centrifuge Modeling of Liquefaction Effects During Earthquakes, Dobry et al, 1995

¹²Observed Seismic Lateral Resistance of Liquefying Sand, Wilson et al ,1999

Figura 2.7: Curva de carga crítica de pandeo, suelo licuable de Nspt=5

Figura 2.8: Curva de carga crítica de pandeo, suelo licuable de N
spt=15 $\,$

Capítulo 3

Análisis dinámico

3.1. Descripción de los modelos realizados

El software PLAXIS es una herramienta para el análisis de problemas correspondientes al área de la geotecnia. En el se puede desarrollar análisis de deformación, estabilidad y flujo en suelos.

PLAXIS permite incorporar y utilizar leyes constitutivas avanzadas generados por el usuario para obtener una simulación del comportamiento no-lineal del suelo. Por otra parte, el módulo PLAXIS 3D-Dynamics permite, en conjunto con las leyes constitutivas, analizar el efecto de vibraciones en el suelo, las cuales pueden ser provocadas por sismos, hincado de pilotes, automóviles, trenes o maquinaria pesada. Estas leyes constitutivas y módulo de PLAXIS serán utilizados en la verificación de la fundación de este trabajo.

Previamente se nombraron todas las configuraciones de suelo y fundación a utilizar, juntando y mezclando éstas se tiene un total de 8 modelos a realizar con el fin de poder analizar las diferencias que se producen en los resultados. Los casos a analizar son:

- 1. Fundación de 12 micropilotes con inclinación de 20°, estrato licuable de 3 [m] a 2 [m] de profundidad y N-SPT=5.
- 2. Fundación de 12 micropilotes con inclinación de 45°, estrato licuable de 3 [m] a 2 [m] de profundidad y N-SPT=5.
- 3. Fundación de 18 micropilotes con inclinación de 20°, estrato licuable de 3 [m] a 2 [m] de profundidad y N-SPT=5.
- 4. Fundación de 18 micropilotes con inclinación de 45°, estrato licuable de 3 [m] a 2 [m] de profundidad y N-SPT=5.
- 5. Fundación de 12 micropilotes con inclinación de 20°, estrato licuable de 3 [m] a 2 [m] de profundidad y N-SPT=15.
- 6. Fundación de 12 micropilotes con inclinación de 45°, estrato licuable de 3 [m] a 2 [m] de profundidad y N-SPT=15.
- 7. Fundación de 18 micropilotes con inclinación de 20°, estrato licuable de 3 [m] a 2 [m]

de profundidad y N-SPT=15.

8. Fundación de 18 micropilotes con inclinación de 45°, estrato licuable de 3 [m] a 2 [m] de profundidad y N-SPT=15.

El modelo tendrá dimensiones de 120 m de largo por 120 m de ancho para evitar problemas de frontera, tendrá una altura de 50 [m] punto en el cual se considerará la capa de roca, donde se aplicará el registro sísmico.

Para un correcto modelamiento es necesario definir las condiciones de borde y condiciones iniciales del problema. En el caso de las condiciones de borde estas son de restricción de deformaciones y amortiguamiento dinámico, ambas impuestas en los 4 extremos horizontales del modelo, para el caso de las deformaciones se tendrá en las direcciones $x \in y$ la condición "Normally Fixed" que implica que se permiten deformaciones solo en su dirección, en cambio en la dirección z se dejara deformación libre en la parte superior, donde se ubica la estructura, y en la parte inferior condición "Fully Fixed" que anula las deformaciones en todos los sentidos. Por otra parte, las condiciones de borde dinámicas del modelo pueden ser tres:

- None: Solo las fijaciones estándar impuestas en las condiciones de borde son utilizadas por lo que no se aplican condiciones de borde dinámicas especiales
- Viscous boundaries: Corresponde en amortiguadores viscosos aplicados en la dirección del borde, esto absorve la onda de energía que llega a los bordes.
- **Compliant Base**: Solo disponible para la base del modelo, corresponde a una combinación entre el uso de Viscous boundaries en junto al movimiento generado.
- Free Field: Disponible en las direcciones del modelo, es una combinación entre Viscous boundaires y el movimiento generado.

Acorde a lo sugerido por el desarrollador del software ¹, la opción a utilizar en el caso de sismos es Compliant Base y Free Field, mientras que la opción Viscous boundaries es usada mayormente en casos en que la fuerza dinámica se ejerce desde el interior del modelo.

El tipo de condición free-field es la recomendada para el tipo de problema de este trabajo pero este genera problemas en los casos en que el suelo licuable esta en contacto con el borde del modelo. Sergio Meneses (2019) en su trabajo utilizó la condición viscosa para su modelo 2 debido a estos problemas de borde ante lo cual obtuvo resultados que no podrían ser correctos. Para este trabajo se realizará un modelo en el cual se tenga suelo no licuable en el borde del problema y así poder utilizar la condición free-field y obtener mejores resultados en comparación a los encontrados por Sergio.

Posteriormente se deben definir las condiciones iniciales del modelo, el software permite realizar un cálculo por fases de forma de ir tomando en cuenta todas las etapas, tanto de construcción como sísmicas. Esto permite también cambiar las leyes constitutivas del suelo para definir exactamente cuando se quiere generar la licuación. Las leves constitutivas serán nombradas por ahora y luego serán descritas profundamente. De esta forma se presentan 3 fases en el cálculo:

¹https://www.plaxis.com/support/tips-and-tricks/on-the-use-of-dynamic-boundary-conditions/

²Análisis de sistemas de micropilotes para su uso en suelos licuables, Sergio Meneses, 2019

- 1. Etapa inicial: No se presenta la estructura a analizar en el problema y el suelo licuable presenta la ley constitutiva *Hardening Soil* de forma que no se presentará licuación. En esta primera fase la carga gravitacional es aplicada en el suelo de forma de establecer un estado de carga inicial antes de la construcción de la estructura
- 2. Etapa de Construcción: Se coloca la estructura en el modelo, el suelo licuable mantiene el modelo de *Hardening Soil*
- 3. Etapa Dinámica: Se aplica la aceleración en la base del modelo y el suelo licuable cambia su ley constitutiva a la de *UBCSAND* con el cual se impone un aumento de presión de poros y la licuación del suelo.

3.2. Leyes constitutivas de suelo y simulación de licuación

Como fue dicho anteriormente, los modelos de leyes constitutivas cumplen un rol vital en el modelamiento ya que estos definirán el comportamiento del suelo. Para este trabajo se utilizarán dos modelos de leyes constitutivas, UBCSAND y Hardening Soil.

3.2.1. UBCSAND

El modelo de leyes constitutivas para poder simular la licuación del suelo es UBCSAND-3D, este modelo incorpora en el material un comportamiento no-lineal, dependiente del esfuerzo, anisotropía inducida, acoplamiento de corte-volumen y rotación de los ejes principales del esfuerzo. Utilizando estas características de comportamiento con hipótesis razonables, el modelo permite obtener una representación confiable del problema de la licuefacción y predecir los aspectos críticos del comportamiento del suelo ante cargas complejas (ejemplo: cíclicas) ^{3 4}. Para poder medir el fenómeno de licuación se utiliza la relación de presión de poro r_u la cual relaciona el esfuerzo efectivo inicial previo a la acción sísmica y el esfuerzo efectivo durante la acción dinámica. Cuando se tiene un valor de razón de presión de poro igual a 1 el estrato se tiene que la presión de poro acumulada se iguala al esfuerzo total, r_u se calcula de la siguiente manera.

$$r_u = 1 - \frac{\sigma'_v}{\sigma'_{0v}}$$

Este modelo genera una gran deformación durante la simulación sísmica, siempre y cuando la razón de presión de poro sea mayor a 0.5. El modelo predice el incremento de presión de poro aunque los esfuerzos de corte significativos que ocurren en un sismo no se observan hasta que el flujo por licuación es alcanzado. Se asumirá que el suelo se encuentra en licuación cuando tenga una valor de razón de presión de poros mayor a 0.7 5 .

³Material Models Manual, PLAXIS 2019

⁴STUDY OF CONSTITUTIVE MODELS FOR CYCLIC LIQUEFACTION IN SAND, N. Dinesh, K. Rajagopal, S. Banerjee, Indian Geotechnical Conference 2016

 $^{^5\}mathrm{SEVERAL}$ OBSERVATIONS ON ADVANCED ANALYSES WITH LIQUEFIABLE MATERIALS, Beaty & Pearlea (2011)

Para conseguir lo anterior, el modelo requiere de una serie de parámetros del suelo los cuales se obtienen mediante fórmulas y parámetros del suelo que se muestran en la tabla 3.1.

	Parámetros UBCSAND
$K_G^{ m e}$	Módulo de corte elástico
$K_B^{ m e}$	Módulo de compresibilidad elástico
K_G^p	Módulo de compresibilidad plástico
$m_{ m e}$	Razón de dependencia de esfuerzos del módulo elástico de compresibilidad
$n_{ m e}$	Razón de dependencia de esfuerzos del módulo elástico de corte
n_p	Razón de dependencia de esfuerzos del modulo plástico de corte
$P_{ref}[kN/m^2]$	Presión de referencia
ϕ_{cv}	Ángulo de fricción de volumen constante
ϕ_p	Angulo de fricción máximo
$C[kN/m^2]$	Cohesión
σ_t	Resistencia a la tracción y límite de tensión
Rf	Razón de falla
$(N_1)_{60}$	Índice de penetración estándar corregido
$f_{ m dens}$	Factor de densificación
f_{post}	Factor de post-licuación

Tabla 3.1: Parámetros a utilizar en ley constitutiva UBCSAND

De los parámetros anteriores es sugerido utilizar $m_{\rm e} = 0.5$, $n_{\rm e} = 0.5$ y $n_p = 0.4$, para las razones de dependencia ⁶. Por otra parte, para los factores de densificación y post-licuefacción se utilizará $f_{\rm dens} = 0.45$ y $f_{post} = 0.02$ ⁷.

Los demás valores se encuentran mediante las siguientes ecuaciones 8 :

$$\phi_p = \phi_{cv} + \frac{(N_1)_{60}}{10} + max(0; \frac{(N_1)_{60} - 15}{5})$$
$$K_G^{e} = 21.7 \cdot 20 \cdot (N_1)_{60}^{0.333}$$
$$K_B^{e} = 0.7 \cdot K_G^{e}$$
$$K_G^{p} = K_G^{e} \cdot (N_1)_{60}^{2} \cdot 0.003 + 100$$
$$Rf = 1.1 \cdot (N_1)_{60}^{-0.15}$$

⁶PLAXIS LIQUEFACTION MODEL UBC3D-PLM, A. Petalas & V. Galavi, 2013

⁷EVALUATION OF THE UBC3D-PLM CONSTITUTIVE MODEL FOR PREDICTION OF EARTH-QUAKE INDUCED LIQUEFACTION ON EMBANKMENT DAMS, Antonia Makra, Msc Graduation Thesis 2013

⁸EVALUATION OF THE UBC3D-PLM CONSTITUTIVE MODEL FOR PREDICTION OF EARTH-QUAKE INDUCED LIQUEFACTION ON EMBANKMENT DAMS, Antonia Makra, Msc Graduation Thesis 2013

Utilizando lo anterior, se tiene que para los suelos licuables de este trabajo los siguientes parámetros

Nspt	5	15
$K_G^{\rm e}$	742.126	1070.326
$K_B^{\rm e}$	519.488	749.228
K_G^p	155.659	822.470
$m_{\rm e}$	0.5	0.5
n _e	0.5	0.5
n_p	0.4	0.4
$P_{ref}[kN/m^2]$	100	100
ϕ_{cv}	28	30
ϕ_p	28.5	31.5
$C[kN/m^2]$	0	0
σ_t	0	0
Rf	0.864066533	0.732789093
$f_{\mathrm{de}ns}$	0.45	0.45
f_{post}	0.02	0.02

Tabla 3.2: Valores a utilizar en modelo constitutivo UBCSAND

3.2.2. Hardening Soil

El modelo de leyes constitutivas que regirá al suelo previo a la licuefacción y al suelo competente, sera el de Hardening soil. Este modelo permite simular el comportamiento de distintos tipos de suelos, ya sea, duros o blandos. A diferencia del modelo clásico elástico-plástico de Mohr-Coulomb, este modelo de plasticidad endurecida no presenta una superficie de fluencia fija en el espacio de las tensiones principales, ya que ésta puede expandirse debido a deformaciones plásticas⁹.

Cuando es sometido a un esfuerzo desviador el suelo presenta una disminución de su rigidez junto a una deformación plástica irreversible, esta relación entre la deformación axial y el esfuerzo desviador puede ser vista en la realización de ensayos triaxiales drenados y se puede aproximar a una hipérbola (figura 3.1). El modelo de Hardening soil mejora la relación anterior planteando una teoría plástica, a diferencia de elástica, introduciendo dilatancia en el suelo y un máximo o cierre por fluencia (*yield cap*). Lo anterior se realiza incorporando valores de rigidez secante de ensayos triaxiales, rigidez tangente de cargas edométricas, rigidez en carga-descarga y potencia de la dependencia tensional a la rigidez. De esta forma el modelo puede representar correctamente los fenómenos de carga-descarga que se generan durante un sismo.

⁹Material Models Manual, PLAXIS 2019

Figura 3.1: Comportamiento hiperbólico en gráfico tensión-deformación ¹⁰

Los parámetros a utilizar en este modelo son los siguientes:

	Parametros Hardening soll
$E_{50}[kN/m^2]$	Rigidez secante en ensayos triaxiales
$E_{oed[kN/m^2]}$	Rigidez tangente en cargas edométricas
$E_{ur}[kN/m^2]$	Rigidez en carga-descarga
m	Potencia de la dependencia tensional a la rigidez
Phi	Ángulo de dilatancia
Ko	Coeficiente de presión lateral
$P_{ref}[kN/m^2]$	Presión de referencia
ϕ	Ángulo de fricción
$C[kN/m^2]$	Cohesión
$ u_{ur}$	Razón de poisson en carga-descarga
Rf	Razón de falla
$(N_1)_{60}$	Índice de penetración estándar corregido
$G_0[kN/m^2]$	Modulo de corte para pequeñas deformaciones
$G_{ur}[kN/m^2]$	Modulo de corte en carga-descarga

Б тт • 1

Tabla 3.3: Parámetros a utilizar en ley constitutiva Hardening soil

Se considero un valor de ν igual a 0.2, para m uno de 0.5 y el valor de Φ se aproximó a ϕ -30¹¹. Los demás valores de rigidez se obtuvieron a partir de algunos parámetros obtenidos y definidos anterior mente para el modelo UBCSAND, el cálculo de estos se presenta a continuación 12 :

$$G_0 = K_G^{\text{e}} \cdot P_{ref}$$
$$G_{ur} = G_0/3$$
$$E_{ur} = 2 \cdot (1 + \nu_{ur}) \cdot G_{ur}$$
$$E_{oed} = E_{50} = E_{ur/3}$$

¹⁰Material Models Manual, PLAXIS 2019

¹¹THE HARDENING SOIL MODEL - A PRACTICAL GUIDEBOOK, Rafa l F. Obrzud & Andrzej Truty, 2018

¹²Material Models Manual, PLAXIS 2019

Suelo	Licuable(Nspt=5)	Licuable(Nspt=15)	No Licuable(Nspt=35)
$E_{50} [kN/m^2]$	13853.011	19979.426	37856.692
$E_{oed} [kN/m^2]$	13853.011	19979.426	37856.692
$E_{ur} [kN/m^2]$	41559.032	59938.277	113570.076
m	0.5	0.5	0.5
$C [kN/m^2]$	0	0	0
phi	28	30	35
Phi	0	0	5
Ko	0.531	0.5	0.426
$P_{ref} [kN/m^2]$	100	100	100
Rf	0.864	0.733	0.645
ν_{ur}	0.2	0.2	0.2
$G_0 [kN/m^2]$	51948.791	74922.846	141962.595
$G_{ur} [kN/m^2]$	17316.264	24974.282	47320.865

Utilizando las relaciones anteriores, los parámetros utilizados para cada tipo de suelo son:

Tabla 3.4: Valores a utilizar en modelo constitutivo Hardening soil

3.3. Registro sísmico

El registro sísmico a utilizar corresponde a la medición de la aceleración registrada en roca durante el sismo del 27 de Febrero del 2010 en la localidad de Rapel en dirección Norte-Sur, durante 75 segundos, graficado en la figura 3.2. Este sismo será aplicado transversal a la dirección de la pasarela.

Figura 3.2: Registro de aceleración en roca en la localidad de Rapel.

El registro descrito anteriormente cuenta con una frecuencia de muestreo de 100 datos por segundo, de forma que el período de registro entre datos es de 0.01 [s], con una cantidad

de 7500 datos a utilizar valor que corresponderá también a los puntos calculados durante el modelamiento.

Este registro fue analizado por Sergio Meneses ¹³ en su trabajo en el cual se concluyó que la profundidad de la roca debe ser de 50 [m] ya que se obtuvo una aceleración máxima en superficie cercana a los 0.4 [g], valor de diseño máximo acorde a la norma chilena sísmica de edificios. De igual forma se realizó un modelo de calibración para verificar que una profundidad de roca de 50 [m] sea la óptima, las aceleraciones encontradas se muestran en el gráfico 3.3. De esta forma, la aceleración será aplicada en la base de roca y se analizará la respuesta en superficie como se muestra en la figura 3.4, teniendo la aceleración del sismo en base de roca (\ddot{u}_g) y la respuesta en superficie (\ddot{u}) .

Figura 3.3: Respuesta de aceleraciones en superficie para modelo con profundida de roca de 50 [m].

Figura 3.4: Esquema aceleraciones en superficie y roca.

¹³ANÁLISIS DE SISTEMAS DE MICROPILOTES PARA SU USO EN SUELOS LICUABLES, MEMO-RIA PARA OPTAR AL TITULO DE INGENIERIA CIVIL, Sergio Meneses, 2019

Capítulo 4

Resultados y analisis

4.1. Respuesta de la estructura.

A continuación se presentan las aceleraciones en superficie que se obtuvieron, tanto en la base de la estructura como en la pasarela.

Figura 4.1: Aceleraciones en base de la estructura - Fundación 12 Micropilotes - suelo licuable con Nspt=5.

Figura 4.2: Aceleraciones en base de la estructura - Fundación 18 Micropilotes - suelo licuable con Nspt=5.

Figura 4.3: Aceleraciones en base de la estructura - Fundación 12 Micropilotes - suelo licuable con Nspt=15.

Figura 4.4: Aceleraciones en base de la estructura - Fundación 18 Micropilotes - suelo licuable con Nspt=15.

Figura 4.5: Aceleraciones en la pasarela - Fundación 12 Micropilotes - suelo licuable con ${\rm Nspt}{=}5.$

Figura 4.6: Aceleraciones en la pasarela - Fundación 18 Micropilotes - suelo licuable con Nspt=5.

Figura 4.7: Aceleraciones en la pasarela - Fundación 12 Micropilotes - suelo licuable con Nspt=15.

Figura 4.8: Aceleraciones en la pasarela - Fundación 18 Micropilotes - suelo licuable con Nspt=15.

	Amax,base [g]	Amax,pasarela [g]
Fundación de 12 Micropilotes con inclinación de 20° - N-SPT=5	0.3666	1.286
Fundación de 12 Micropilotes con inclinación de 45° - N-SPT=5	0.4361	1.4506
Fundación de 18 Micropilotes con inclinación de 20° - N-SPT $=5$	0.3433	1.0818
Fundación de 18 Micropilotes con inclinación de 45° - N-SPT=5	0.4413	1.0737
Fundación de 12 Micropilotes con inclinación de 20° - N-SPT=15	0.3718	0.8893
Fundación de 12 Micropilotes con inclinación de 45° - N-SPT=15	0.3923	0.7731
Fundación de 18 Micropilotes con inclinación de 20° - N-SPT=15	0.3687	0.8925
Fundación de 18 Micropilotes con inclinación de 45° - N-SPT=15	0.417	0.7291

Tabla 4.1: Aceleraciones máximas encontradas

Se analizarán las respuestas de aceleración de la estructura encontrando el período de vibración de la estructura y el amortiguamiento. Estos valores se encontrarán utilizando la transformada de Fourier, llevando los valores al espacio de la frecuencia. En este espacio, la frecuencia en donde se encuentre la mayor amplitud (Amax) corresponderá a la frecuencia de vibración natural de la estructura (f_n). El amortiguamiento se encuentra acorde al método del ancho de banda¹, definiendo dos frecuencias ($f_1 ext{ y } f_2$) en las cuales se tiene un valor de amplitud igual a 0.707Amax. Luego, el amortiguamiento se calcula como:

$$\beta = \frac{f_2 - f_1}{2f_n} \tag{4.1}$$

¹On the use of the half-power bandwidth method to estimate damping in building structures, George A. Papagiannopoulos, George D. Hatzigeorgiou, 2011

Figura 4.9: Espectro de fourier de las aceleraciones en base de la estructura - Fundación 12 Micropilotes - suelo licuable con Nspt=5.

Figura 4.10: Espectro de fourier de las aceleraciones en base de la estructura - Fundación 18 Micropilotes - suelo licuable con Nspt=5.

Figura 4.11: Espectro de fourier de las aceleraciones en base de la estructura - Fundación 12 Micropilotes - suelo licuable con Nspt=15.

Figura 4.12: Espectro de fourier de las aceleraciones en base de la estructura - Fundación 18 Micropilotes - suelo licuable con Nspt=15.

Figura 4.13: Espectro de fourier de las aceleraciones en la pasarela - Fundación 12 Micropilotes - suelo licuable con Nspt=5.

Figura 4.14: Espectro de fourier de las aceleraciones en la pasarela - Fundación 18 Micropilotes - suelo licuable con Nspt=5.

Figura 4.15: Espectro de fourier de las aceleraciones en la pasarela - Fundación 12 Micropilotes - suelo licuable con Nspt=15.

Figura 4.16: Espectro de fourier de las aceleraciones en la pasarela - Fundación 18 Micropilotes - suelo licuable con Nspt=15.

Los valores de amplitud máxima, amortiguamiento y frecuencia de vibración natural encontrados de los espectros de Fourier para cada caso se presenta a continuación.

Caso	Amax	0.707Amax	fn [Hz]	T [s]	f1 [Hz]	f1 [Hz]	beta	beta [%]
Fundación de 12 Micropilotes con inclinación de 20° - N-SPT=5	0.0720	0.0509	1.6	0.625	1.529	1.865	0.1052	10.52
Fundación de 12 Micropilotes con inclinación de 45° - N-SPT=5	0.0750	0.0530	1.2	0.833	0.919	1.276	0.1488	14.88
Fundación de 18 Micropilotes con inclinación de 20° - N-SPT=5	0.0863	0.0610	1.2	0.833	0.992	1.267	0.1146	11.46
Fundación de 18 Micropilotes con inclinación de 45° - N-SPT=5	0.0840	0.0594	1.2	0.833	0.989	1.291	0.1258	12.58
Fundación de 12 Micropilotes con inclinación de 20° - N-SPT=15	0.0872	0.0617	1.6	0.625	1.527	1.87	0.1072	10.72
Fundación de 12 Micropilotes con inclinación de 45° - N-SPT=15	0.0806	0.0570	1	1.000	0.873	1.112	0.1195	11.95
Fundación de 18 Micropilotes con inclinación de 20° - N-SPT=15	0.0868	0.0614	1.8	0.556	1.662	1.919	0.0714	7.14
Fundación de 18 Micropilotes con inclinación de 45° - N-SPT=15	0.0651	0.0460	1.8	0.556	1.542	1.928	0.1072	10.72

Tabla 4.2: Valores de frecuencia natural, periodo y amortiguamiento en la base de la estructura.

Caso	Amax	0.707Amax	fn [Hz]	T [s]	f1 [Hz]	f1 [Hz]	beta	beta [%]
Fundación de 12 Micropilotes con inclinación de 20° - N-SPT=5	0.6179	0.4369	1.6	0.625	1.5200	1.6810	0.0503	5.03
Fundación de 12 Micropilotes con inclinación de 45° - N-SPT=5	0.6892	0.4873	1.6	0.625	1.4460	1.6930	0.0772	7.72
Fundación de 18 Micropilotes con inclinación de 20° - N-SPT=5	1.0420	0.7367	1.6	0.625	1.5340	1.7200	0.0581	5.81
Fundación de 18 Micropilotes con inclinación de 45° - N-SPT=5	1.0090	0.7134	1.6	0.625	1.5249	1.7080	0.0572	5.72
Fundación de 12 Micropilotes con inclinación de 20° - N-SPT=15	0.4176	0.2952	1.6	0.625	1.5200	1.6830	0.0509	5.09
Fundación de 12 Micropilotes con inclinación de 45° - N-SPT=15	0.4934	0.3488	1.6	0.625	1.4960	1.6900	0.0606	6.06
Fundación de 18 Micropilotes con inclinación de 20° - N-SPT=15	0.6721	0.4752	1.6	0.625	1.5334	1.7260	0.0602	6.02
Fundación de 18 Micropilotes con inclinación de 45° - N-SPT=15	0.6333	0.4477	1.6	0.625	1.5274	1.7290	0.0630	6.30

Tabla 4.3: Valores de frecuencia natural, periodo y amortiguamiento en la pasarela.

Con el valor de amortiguamiento se procede a calcular el espectro de aceleración respectivo de cada caso, esto se realiza en base al algoritmo de Nigam-Jennings² el cual utilizando la aceleración absoluta (respuesta en superficie sumado a la aceleración en roca), entrega los valores de desplazamiento y velocidad de la estructura, en base a la siguiente ecuación de un grado de libertad.

$$\ddot{u}^T = \ddot{u} + a = -(2\beta\omega\dot{u} + \omega^2 u) \tag{4.2}$$

En donde u es el desplazamiento, \dot{u} la velocidad, \ddot{u} la aceleración de la estructura, ω la frecuencia angular, β amortiguación de la estructura, a la aceleración externa (sismo) y \ddot{u}^T la aceleración absoluta

 $^{^2 \}rm CALCULATION OF RESPONSE SPECTRA FROM STRONG-MOTION EARTHQUAKE RECORDS, Navin C. Nigam, Paul C. Jennings, 1970$

Con esto se puede generar el espectro de aceleración, el cual se gráfica a continuación junto al espectro de aceleración para suelo E, detallado en la norma NCh433.

Figura 4.17: Espectro de aceleración, fundación de 12 micropilotes, N-SPT=5.

Figura 4.18: Espectro de aceleración, fundación de 18 micropilotes, N-SPT=5.

Figura 4.19: Espectro de aceleración, fundación de 12 micropilotes, N-SPT=15.

Figura 4.20: Espectro de aceleración, fundación de 18 micropilotes, N-SPT=15.

De lo anterior se desprende lo siguiente:

- La mayor inclinación de los micropilotes generó un aumento en la amortiguación de la base de la estructura.
- Una mayor rigidez lateral implica una mayor aceleración basal, esto ya que los casos en que la inclinación de micropilotes fue de 45° tuvieron una aceleración máxima mayor en la base.
- El suelo con N SPT = 5 tuvo aceleraciones mayores en la pasarela en comparación con el suelo de mejor calidad N SPT = 15.
- Los espectros de aceleración de los modelos realizados tuvieron amplitudes de aceleración mayores que los de un espectro de aceleración dados por la norma para un suelo tipo E.

4.2. Deformación del dado de fundación.

4.2.1. Mitigación de asentamientos en fundaciones con micropilotes

A continuación se presentan los asentamientos del dado de fundación de la cepa central que se obtuvieron.

Figura 4.21: Asentamiento del dado de fundación - Fundación 12 Micropilotes - suelo licuable con Nspt=5.

Figura 4.22: Asentamiento del dado de fundación - Fundación 18 Micropilotes - suelo licuable con Nspt=5.

Figura 4.23: Asentamiento del dado de fundación - Fundación 12 Micropilotes - suelo licuable con Nspt=15.

Figura 4.24: As
entamiento del dado de fundación - Fundación 18 Micropilotes - suelo licu
able con ${\rm Nspt}{=}15.$

Figura 4.25: Asentamiento del dado de fundación - casos sin micropilotes.

En la tabla 4.4, se presentan los valores de asentamiento finales post-licuación de cada caso.

Caso	Asentamiento final [mm]
Fundación de 12 micropilotes con inclinación de 20° - N-SPT=5	-17.5
Fundación de 12 micropilotes con inclinación de 45° - N-SPT=5	-25.2
Fundación de 18 micropilotes con inclinación de 20° - N-SPT=5	-23.1
Fundación de 18 micropilotes con inclinación de 45° - N-SPT=5	-20.6
Fundación sin micropilotes - N-SPT $=5$	-43.4
Fundación de 12 micropilotes con inclinación de 20° - N-SPT=15	-19.8
Fundación de 12 micropilotes con inclinación de 45° - N-SPT=15	-24.3
Fundación de 18 micropilotes con inclinación de 20° - N-SPT=15	-25.4
Fundación de 18 micropilotes con inclinación de 45° - N-SPT=15	-20.1
Fundación sin micropilotes - N-SPT $=15$	-38.4

Tabla 4.4: Asentamientos finales en dado de fundación.

De manera de evaluar el rendimiento de la estructura, se calcula el asentamiento teórico acorde a la estimación propuesta por Ishihara ³ quien estima el asentamiento de arenas licuables en base a ensayos triaxiales realizados. La estimación del asentamiento en arenas se realiza en base al factor de seguridad y densidad de la capa de suelo, de las cuales se puede calcula la deformación volumétrica.

El valor de la densidad relativa del suelo se encontrará en base al valor de SPT-N, mediante las formulas propuestas por Meyerhof⁴:

³Evaluation of settlements in sand deposits following liquefaction during earthquakes, Ishihara, K., Yoshimine, M. 1992

⁴Discussion for session I, Meyerhoff G. G., 1957, Proc. 4th International Conference on Soil Mechanics and Foundation Engineering

$$D_r = 21\sqrt{\frac{(N_1)_{60}}{1.7}} = 16\sqrt{(N_1)_{60}}$$
(4.3)

El factor de seguridad a utilizar se calculó acorde al método descrito en el capítulo (1.2.), estos valores fueron de 0.05 para el caso del suelo con N-SPT = 5 y de 0.11 para el caso del suelo con N-SPT = 15.

Luego, en base a los factores de seguridad y densidad relativa del suelo se encuentra la deformación volumétrica para cada caso acorde a la figura 4.26.

Figura 4.26: Gráfico para determinar la deformación volumétrica en base al factor de seguridad. 6

Luego, el asentamiento teórico es de 150 [mm] y 81 [mm] para los suelos de N-SPT = 5 y 15, respectivamente.

Respecto a los resultados anteriores se puede observar lo siguiente:

- Al aumentar la cantidad de micropilotes de 20° aumenta el asentamiento, esto puede ser debido a un incremento de la fricción negativa, en cambio, al aumentar la cantidad de micropilotes de 45° disminuye el asentamiento, esto puede ser porque aquí el problema del asentamiento queda controlado por el efecto de la carga lateral.
- En general, el cambio de N-SPT de los suelos no afecto mayormente en el asentamiento.
- Los asentamientos encontrados en los modelos fueron menores a los calculados teóricamente.

⁶Discussion for session I, Meyerhoff G. G., 1957, Proc. 4th International Conference on Soil Mechanics and Foundation Engineering

4.2.2. Desplazamiento lateral.

Se presentan los desplazamientos laterales de la fundación en la dirección del sismo.

Figura 4.27: Desplazamiento lateral del dado de fundación - Fundación 12 Micropilotes - suelo licuable con Nspt=5.

Figura 4.28: Desplazamiento lateral del dado de fundación - Fundación 18 Micropilotes - suelo licuable con Nspt=5.

Figura 4.29: Desplazamiento lateral del dado de fundación - Fundación 12 Micropilotes - suelo licuable con Nspt=15.

Figura 4.30: Desplazamiento lateral del dado de fundación - Fundación 18 Micropilotes - suelo licuable con Nspt=15.

Figura 4.31: Desplazamiento lateral del dado de fundación - casos sin micropilotes.
4.3. Control de deformaciones en estructura

4.3.1. Desplazamiento horizontal del dado de fundación

Se analiza el desplazamiento horizontal del dado de fundación acorde a los datos recopilados por Mouton (1985)⁷ quien recopila información acerca de los daños ocurridos a una gran variedad de puentes de Estados Unidos y Cánada, de esta forma el análisis realizado es solo estadístico y solo será usado como una referencia ya que la tolerancia de una estructura al desplazamiento horizontal depende del tipo de estructura, distribución de cargas y detalles constructivos. El desplazamiento máximo horizontal a usar será de 1.5 pulgadas igual 38.1 [mm], este valor corresponde al valor promedio al cual estructura afectadas a asentamientos y desplazamientos horizontales, como lo es este caso, sufrieron daños.

Figura 4.32: Desplazamientos horizontales del dado de fundación, fundación de 12 micropilotes, N-SPT=5.

⁷TOLERABLE MOVEMENT CRITERIA FOR HIGHWAY BRIDGES, Moulton, L. K., H. V. S. GangaRao, and G. T. Halverson. 1985. Federal Highway Administration, U.S. Department of Transportation, Washington, DC,

Figura 4.33: Desplazamientos horizontales del dado de fundación, fundación de 18 micropilotes, N-SPT=5.

Figura 4.34: Desplazamientos horizontales del dado de fundación, fundación de 12 micropilotes, N-SPT=15.

Figura 4.35: Desplazamientos horizontales del dado de fundación, fundación de 18 micropilotes, N-SPT=15.

Acorde a las figuras 4.32, 4.33, 4.34 y 4.35, se puede apreciar que en ningún caso se cumplió que los desplazamientos relativos entre base y pasarela estuvieran dentro del límite descrito.

De esta forma se tiene que el desplazamiento horizontal máximo en el dado de fundación entró en el rango de valores en que estadísticamente se producen daños en estructuras afectadas a deformaciones verticales y horizontales.

4.3.2. Asentamiento diferencial

Luego, se analiza el asentamiento diferencial de las columnas acorde a la distorsión angular límite, estipulado por la norma AASHTO ⁸. El asentamiento diferencial se define como la diferencia entre el asentamiento de dos columnas, la distorsión angular se calcula como el asentamiento diferencial dividido por las distancia entre columnas. El valor límite de distorsión angular a utilizar será de 0.004.

	As	entamiento[mm	1]	Distorsión	angular
Caso	Cepa izquierda	Cepa central	Cepa derecha	Cepa izquierda	Cepa derecha
Fundación de 12 micropilotes con inclinación de 20° - N-SPT=5	-16.7	-17.5	-18.8	0.00005	0.00010
Fundación de 12 micropilotes con inclinación de 45° - N-SPT=5	-20.6	-25.2	-24.8	0.00025	0.00003
Fundación de 18 micropilotes con inclinación de 20° - N-SPT=5	-20.3	-23.1	-23.2	0.00015	0.00001
Fundación de 18 micropilotes con inclinación de 45° - N-SPT=5	-23.8	-20.6	-19.4	0.00017	0.00009
Fundación de 12 micropilotes con inclinación de 20° - N-SPT=15	-19.7	-19.8	-20.7	0	0.00007
Fundación de 12 micropilotes con inclinación de 45° - N-SPT=15	-19.8	-24.3	-22.9	0.00024	0.00011
Fundación de 18 micropilotes con inclinación de 20° - N-SPT=15	-24.0	-25.4	-25.3	0.00007	0.00001
Fundación de 18 micropilotes con inclinación de 45° - N-SPT=15	-21.6	-20.1	-19.3	0.00008	0.00006

Tabla 4.5: Asentamiento diferencial en columnas.

Con los valores de la tabla 4.5 se tiene que para todos los casos se cumple una distorsión angular dentro de los límites impuestos por la norma.

⁸LRFD Bridge Design Specifications, 2010. American Association of State Highway and Transportation Officials - AASHTO.

4.4. Desglose de solicitaciones en el dado de fundación.

Se procederá a realizar un desglose de las solicitaciones en el dado de fundación encontradas con tal de ver cuanto fue el efecto de la fricción negativa y del desplazamiento lateral.

Las solicitaciones presentadas a continuación corresponden a las solicitaciones encontradas en un instante de tiempo en donde se obtuvieron solicitaciones axiales máximas en micropilotes, entre 20 y 30 s dependiendo del caso.

4.4.1. Solicitaciones totales

Las solicitaciones totales del dado de fundación se encontrarán en base a las solicitaciones axiales en micropilotes.

	Fundación de 12 micropilotes.			
	N-SP'	$\Gamma = 5$	N-SPT = 15	
Número de micropilote	Inclinación de 20°	Inclinación de 45°	Inclinación de 20°	Inclinación de 45°
1	7	-68	36	49
2	72	-93	-64	-78
3	3	-48	33	25
4	-20	-66	35	50
5	4	-32	26	26
6	75	-91	64	-81
7	13	100	-18	9
8	-98	-9	11	-55
9	19	33	8	14
10	17	93	-19	10
11	8	22	14	10
12	-96	-12	8	-51

Tabla 4.6: Solicitaciones axiales en micropilotes, valores en [tonf], casos fundación de 12 micropilotes.

	Fundación de 18 micropilotes			
	N-SPT = 5		N-SPT = 15	
Número de micropilote	Inclinación de 20°	Inclinación de 45°	Inclinación de 20°	Inclinación de 45°
1	62	92	50	72
2	31	-60	-49	-75
3	29	36	30	39
4	63	87	52	76
5	33	38	35	38
6	41	-63	-49	-76
7	-46	-21	-29	33
8	18	-57	22	-53
9	-17	15	-6	28
10	-45	-13	-32	24
11	-22	19	-10	30
12	19	-62	18	-60
13	-42	-60	-52	-75
14	11	26	17	32
15	20	-54	25	-51
16	8	20	12	29

Tabla 4.7: Solicitaciones axiales en micropilotes, valores en [tonf], casos fundación de 18 micropilotes.

	Fundación de 12 micropilotes				
	N-SP'	$\Gamma = 5$	N-SPT = 15		
	Inclinación de 20°	Inclinación de 45°	Inclinación de 20°	Inclinación de 45°	
Fx [tonf]	8	19	-10	4	
Fy [tonf]	-240	115	13	37	
Fz [tonf]	8	-103	105	-17	
Mx [tonf-m]	-111	-67	42	42	
My [tonf-m]	-12	-4	18	-2	
Mz [tonf-m]	2	-1	13	0	

Tabla 4.8: Solicitaciones totales en el dado de fundación, casos fundación de 12 micropilotes.

	Fundación de 18 micropilotes				
	N-SP'	$\Gamma = 5$	N-SPT = 15		
	Inclinación de 20°	Inclinación de 45°	Inclinación de 20°	Inclinación de 45°	
Fx [tonf]	4	2	5	0	
Fy [tonf]	30	6	98	30	
Fz [tonf]	134	-151	8	-92	
Mx [tonf-m]	93	91	41	29	
My [tonf-m]	2	1	11	15	
Mz [tonf-m]	0	1	1	2	

Tabla 4.9: Solicitaciones totales en el dado de fundación, casos fundación de 12 micropilotes.

4.4.2. Solicitaciones por efecto de la estructura.

Luego, se presentan las solicitaciones obtenidas de los modelos de PLAXIS en la columna lo cual corresponde al aporte de la estructura en las solicitaciones totales presentadas anteriormente. Estas solicitaciones se obtienen en un tiempo igual al que se obtuvieron las solicitaciones en micropilotes.

	Fundación de 12 micropilotes				
	N-SP'	T = 5	N-SPT = 15		
	Inclinación de 20°	Inclinación de 45°	Inclinación de 20°	Inclinación de 45°	
Fx [tonf]	1	-3	-1	-1	
Fy [tonf]	-10	-16	1	1	
Fz [tonf]	-26	-27	-20	-19	
Mx [tonf-m]	-3	4	-2	3	
My [tonf-m]	-55	84	-3	-6	
Mz [tonf-m]	0	0	0	0	

Tabla 4.10: Solicitaciones en columna, casos fundación de 12 micropilotes..

	Fundación de 18 micropilotes				
	N-SP'	$\Gamma = 5$	N-SPT = 15		
	Inclinación de 20°	Inclinación de 45°	Inclinación de 20°	Inclinación de 45°	
Fx [tonf]	-2	-3	-2	-2	
Fy [tonf]	-7	-9	-2	-1	
Fz [tonf]	-23	-24	-20	-19	
Mx [tonf-m]	4	-3	3	-2	
My [tonf-m]	-29	-43	12	-2	
Mz [tonf-m]	0	0	0	0	

Tabla 4.11: Solicitaciones en columna, casos fundación de 18 micropilotes..

4.4.3. Solicitaciones por el sismo.

Las solicitaciones en la fundación generadas por el efecto del movimiento sísmico del suelo y por sus asentamientos se obtienen restando los valores de las solicitaciones totales menos las impuestas por la estructura para así encontrar el aporte del sismo en las solicitaciones en el dado de fundación.

	Fundación de 12 micropilotes				
	N-SP'	$\Gamma = 5$	N-SPT = 15		
	Inclinación de 20°	Inclinación de 45°	Inclinación de 20°	Inclinación de 45°	
Fx [tonf]	9	21	-9	5	
Fy [tonf]	-251	131	13	37	
Fz [tonf]	34	-82	124	2	
Mx [tonf-m]	-114	-71	44	39	
My [tonf-m]	-67	-88	21	4	
Mz [tonf-m]	2	-1	13	0	

Tabla 4.12: Solicitaciones en dado de fundación por efectos sísmicos, casos fundación de 12 micropilotes.

	Fundación de 18 micropilotes				
	N-SP'	$\Gamma = 5$	N-SPT = 15		
	Inclinación de 20°	Inclinación de 45°	Inclinación de 20°	Inclinación de 45°	
Fx [tonf]	6	5	7	2	
Fy [tonf]	38	14	100	31	
Fz [tonf]	157	-127	28	-73	
Mx [tonf-m]	89	93	38	30	
My [tonf-m]	31	44	0	17	
Mz [tonf-m]	0	1	1	2	

Tabla 4.13: Solicitaciones en dado de fundación por efectos sísmicos, casos fundación de 18 micropilotes.

De las tablas 4.12 y 4.13, el efecto del deplazamiento lateral se aprecia en las solicitaciones Fy y Mx, mientras que el efecto de la fricción negativa se ve en la solicitación Fz.

Del desglose realizado a las fuerzas se puede desprender que:

- Una inclinación de micropilotes de 45° produce solicitaciones axiales maximas en micropilotes mayores en comparación a una inclinación de 20°
- El uso de 18 micropilotes disminuyó el valor de las solicitaciones axiales en micropilotes.
- En general, los casos con 12 micropilotes tuvieron solicitaciones axiales mayores en los micropilotes inclinados, por otra parte, en los casos con 18 micropilotes los elementos verticales presentaron igual o mayor solicitación axial en comparación con los inclinados.
- La solicitación axial máxima en micropilotes fue de 100 [tonf] admisibles a la capacidad de los elementos seleccionados.
- Las solicitaciones en el dado de fundación Fy y Mx están asociadas al efecto del desplazamiento lateral. La solicitación Fz corresponde al aporte de la fricción negativa.

4.5. Desplazamiento lateral

El efecto del desplazamiento lateral se analizará en base a la comparación entre el esfuerzo de corte y momento encontrados en los micropilotes del modelo de PLAXIS. El aporte del desplazamiento lateral en las solicitaciones axiales de los micropilotes será analizado posteriormente.

La respuesta de los pilotes o grupo de pilotes ante fuerzas sísmicas ha sido recopilada por variados autores ⁹ ¹⁰ ¹¹. El análisis de fuerza lateral bajo fuerza sísmica depende de la profundidad:

- Zona superficial: esta zona se extiende hasta 8 veces el diámetro del pilote y en la cual dominan cargas inerciales
- Zona intermedia: esta zona se ubica entre la superficial y la zona profunda, aquí dominan las cargas inerciales y cinéticas
- Zona Profunda: esta zona se ubica a una profundidad de 8 a 12 veces el diámetro del pilote y en la cual dominan las cargas cinéticas

4.5.1. Solicitaciones de corte y momento en micropilotes.

Para el análisis del problema es necesario definir la flexibilidad del micropilote para así definir el tipo de falla que ocurrirá, esto se calcula en función del largo elástico:

$$T = \left(\frac{EI}{Es}\right)^2 \tag{4.4}$$

$$Z = L/T \tag{4.5}$$

En donde EI corresponde a la rigidez a flexión del micropilote, Es el modulo de Young del suelo, L el largo del micropilote y Z la flexibilidad relativa. Para este caso se presenta una flexibilidad relativa de 22.8, valor mayor a 5, ante lo cual se espera que si los micropilotes colapsan será por la generación de rótulas plásticas ¹². Estas rótulas plásticas se generarán en los puntos de interfaz entre un estrato y otro.

Con un colapso por rotulas plásticas, se tiene que toda la sección del micropilote se plastifica, luego el momento plástico total de la del elemento es:

$$Mp = SF_y \tag{4.6}$$

Con S el primer momento de área y F_y el esfuerzo interno de fluencia. Con esto el momento plástico total es de 7.52 [tonf-m].

⁹A seismic pile foundation design analysis, Pender, M.J. (1993)

¹⁰Seismic response of end-bearing piles, Gazetas G, (1984)

¹¹Piles under dynamic loads: State of the Art, Novak M. (1991).

¹²Design of piles in liquefiable soils, Madabushi, G., Knappett, J., Haigh, S., (2009)

Acorde al problema de este trabajo se tendrá un desplazamiento lateral afectado por cargas inerciales. Para el cálculo de las fuerzas se utilizará el análisis del límite de equilibrio para corteza no licuable compuesta por arenas densas. Esto implica que el suelo reacciona con presión pasiva total. El diagrama de cuerpo libre para este caso se muestra en la figura 4.36.

Figura 4.36: Diagrama de cuerpo libre pilote inmerso en arena densa sobre suelo licuable.¹⁴

Para este límite de equilibrio se tendrán las siguientes ecuaciones:

$$H_A = 1/2 \cdot K_p \gamma h^2 D \tag{4.7}$$

$$H_B = 1/2 \cdot K_p \gamma h^2 D + p_l L D \tag{4.8}$$

$$M_A = 1/6 \cdot K_p \gamma h^3 D - M_{TOP} \tag{4.9}$$

$$M_B = 1/6 \cdot K_p \gamma h^3 D + 1/2 \cdot K_p \gamma h^2 L D + 1/2 p_l D L^2 - M_{TOP}$$
(4.10)

En donde K_p es el coeficiente de reacción pasivo, p_l la presión lateral ejercida por el suelo licuado producto del desplazamiento lateral y M_{TOP} , el momento resistente que entrega al conexión entre el micropilote y el dado de fundación, en este caso se considerará como el momento plástico final del micropilote ya que se asumirá que este será menor que el momento resistente de la conexión.

El valor de p_l se encontrará en base a la resistencia al corte residual (Su), $p_l = S_r * \alpha_L^{-15}$, con α_l factor de corrección que toma en cuenta el volumen de suelo que contribuye la presión sobre el micropilote, este factor toma valores realistas de entre 1 a 6. Es importante notar que los valores usados para el cálculo son desconocidos y están sujetos a incertidumbres. Ante lo cual se utilizarán valores medios, S_r en base al gráfico 4.37 y $\alpha_L = 3$.

¹⁴Design of piles in liquefiable soils, United Kingdom, Imperial College Press. Madabushi, G., Knappett, J., Haigh, S., (2009).

¹⁵ANALYSIS AND DESIGN OF PILES IN LIQUEFYING SOILS, Misko Cubrinovski, 2010

Figura 4.37: Resistencia al corte residual en base al valor de N-SPT.¹⁶

Resolviendo las ecuaciones anteriores se llegan a los siguientes valores esperados de momento y corte:

• Caso estrato suelo licuable de N-SPT=5:

$$Z_A = 2[m]$$
$$Z_B = 5[m]$$
$$H_A = 2.97[tonf]$$
$$H_B = 5.94[tonf]$$
$$M_A = -6.42[tonf - m]$$
$$M_B = 2.99[tonf - m]$$

• Caso estrato suelo licuable de N-SPT=15:

$$Z_A = 2[m]$$

$$Z_B = 5[m]$$

$$H_A = 2.97[tonf]$$

$$H_B = 19.8[tonf]$$

$$M_A = -6.42[tonf - m]$$

$$M_B = 23.78[tonf - m]$$

En las tablas 4.14 y 4.15 se presentan los valores de corte y momento máximo en micropilotes por profundidad obtenidos en los modelos PLAXIS.

¹⁶Seed, R.B. & Harder, L.F. 1991. SPT-based analysis of cyclic pore pressure generation and undrained residual strength. H. Bolton Seed Memorial Symposium.

	Co	orte max [te	onf]
	0 - 2 [m]	2 - 5 [m]	5 - 25 [m]
Fundación de 12 micropilotes con inclinación de 20° - N-SPT=5	23.6	15.2	25.7
Fundación de 12 micropilotes con inclinación de 45° - N-SPT=5	29.5	13.7	6.8
Fundación de 18 micropilotes con inclinación de 20° - N-SPT=5	14.3	27.9	11.2
Fundación de 18 micropilotes con inclinación de 45° - N-SPT=5	20.5	40.5	25.2
Fundación de 12 micropilotes con inclinación de 20° - N-SPT=15	14.7	19.1	13.6
Fundación de 12 micropilotes con inclinación de 45° - N-SPT=15	13.6	13.5	8.8
Fundación de 18 micropilotes con inclinación de 20° - N-SPT=15	8.3	27.8	10.3
Fundación de 18 micropilotes con inclinación de 45° - N-SPT=15	16.6	55.5	39.7

Tabla 4.14: Valores de cortes máximos en micropilotes por sección

	Mome	ento max [t	onf-m]
	0 - 2 [m]	2 - 5 [m]	5 - 25 [m]
Fundación de 12 micropilotes con inclinación de 20° - N-SPT=5	9.7	9.6	8
Fundación de 12 micropilotes con inclinación de 45° - N-SPT=5	12.2	11.8	5.6
Fundación de 18 micropilotes con inclinación de 20° - N-SPT $=5$	7.5	6.1	5.1
Fundación de 18 micropilotes con inclinación de 45° - N-SPT=5	7.7	8.7	8.7
Fundación de 12 micropilotes con inclinación de 20° - N-SPT=15	5.7	5.8	5.8
Fundación de 12 micropilotes con inclinación de 45° - N-SPT=15	8.3	6.7	6
Fundación de 18 micropilotes con inclinación de 20° - N-SPT=15	6.8	6.2	6.3
Fundación de 18 micropilotes con inclinación de 45° - N-SPT=15	8.1	12.2	12.2

Tabla 4.15: Valores de momento máximos en micropilotes por sección.

En las figuras del anexo B. se presentan los diagramas de solicitación de momento obtenidas en micropilotes mediante PLAXIS junto al máximo y mínimo obtenidos. De estas figuras se ve que los valores de momento máximos y mínimos se tienen en las interfaces entre suelos.

Luego, se comparan los valores de momento encontrados y se define si se produciran rotulas plásticas en las interfaces entre suelos.

	Interfaz # 1 a 2 [m] de profundidad	Interfaz # 2 a 5 [m] de profundidad
Fundación de 12 micropilotes con inclinación de 20° - N-SPT=5	SI	SI
Fundación de 12 micropilotes con inclinación de 45° - N-SPT=5	SI	NO
Fundación de 18 micropilotes con inclinación de 20° - N-SPT=5	NO	NO
Fundación de 18 micropilotes con inclinación de 45° - N-SPT=5	SI	SI
Fundación de 12 micropilotes con inclinación de 20° - N-SPT=15	NO	NO
Fundación de 12 micropilotes con inclinación de 45° - N-SPT=15	SI	NO
Fundación de 18 micropilotes con inclinación de 20° - N-SPT=15	NO	NO
Fundación de 18 micropilotes con inclinación de 45° - N-SPT=15	SI	SI

Tabla 4.16: Condición de rotula plástica por interfaz entre suelo.

De los resultados se aprecia que:

- En los casos con 12 micropilotes, el corte máximo se produjo en suelo no licuable superficial (0 2 [m]). En los casos con 18 micropilotes, el corte máximo se encontró en la sección en el suelo licuable (2 5 [m])
- Los cortes máximos fueron mayores en los casos con 18 micropilotes.

- Los cortes teóricos fueron menores que los cortes de modelos en los casos con N-SPT = 5 y en los casos de fundación de 18 micropilotes y N SPT = 15. Solamente en los casos con 12 micropilotes y N SPT = 5 se tuvieron cortes menores en modelos.
- Los valores de momento máximo en micropilotes se tuvieron en las interfaces entre suelo, de forma este es el sector donde se generarán rótulas plásticas.
- La existencia de rotulas plásticas en la primera interfaz a 2 [m] de profundidad fue mas común que en la segunda interfaz mas profunda.
- En general, una inclinación de 20 ° mitigó la generación de rotulas plásticas.
- El caso de fundación de 12 micropilotes con inclinación de 20° fue el único en donde la variación de N SPT en el suelo afecto la generación de rotulas plásticas.

4.5.2. Solicitaciones en el dado de fundación.

Las solicitaciones aplicadas en el dado de fundación por efecto del desplazamiento lateral, en base a los resultados obtenidos anteriormente, serán las siguientes.

	Fundación de 12 micropilotes									
	N-SP'	$\Gamma = 5$	N-SP7	$\Gamma = 15$						
	Inclinación de 20°	Inclinación de 45°	Inclinación de 20°	Inclinación de 45°						
Fy [tonf]	-251	-251 131		37						
Mx [tonf-m]	-114	-71	44	39						

Tabla 4.17: Solicitaciones por el efecto del desplazamiento lateral, casos fundación de 12 micropilotes

	Fundación de 18 micropilotes									
	N-SP'	$\Gamma = 5$	N-SP7	$\Gamma = 15$						
	Inclinación de 20°	Inclinación de 45°	Inclinación de 20°	Inclinación de 45°						
Fy [tonf]	38	14	100	31						
Mx [tonf-m]	89	93	38	30						

Tabla 4.18: Solicitaciones por el efecto del desplazamiento lateral, casos fundación de 18 micropilotes

Con el fin de encontrar el punto de aplicación de la fuerza horizontal se dividirá el valor del momento (Mx) por el de la fuerza (Fy).

	Profundidad [m]
Fundación de 12 micropilotes con inclinación de 20° - N-SPT=5	0.45
Fundación de 12 micropilotes con inclinación de 45° - N-SPT=5	-0.54
Fundación de 18 micropilotes con inclinación de 20° - N-SPT=5	2.39
Fundación de 18 micropilotes con inclinación de 45° - N-SPT=5	6.65
Fundación de 12 micropilotes con inclinación de 20° - N-SPT=15	3.47
Fundación de 12 micropilotes con inclinación de 45° - N-SPT=15	1.06
Fundación de 18 micropilotes con inclinación de 20° - N-SPT=15	0.38
Fundación de 18 micropilotes con inclinación de 45° - N-SPT=15	0.98

Tabla 4.19: Profundidad de aplicación de la fuerza lateral por efectos del desplazamiento lateral.

Con la deformada de la estructura se puede apreciar el punto de aplicación y la dirección de la fuerza de corte y giro.

Figura 4.38: Deformada de la estructura, punto de aplicación y dirección de solicitaciones dadas por el efecto del desplazamiento lateral.

4.6. Fricción Negativa

Las solicitaciones aplicadas en el dado de fundación por efecto de la fricción negativa son las siguientes, lo cual esta asociado a la fuerza vertical.

	Fundación de 12 micropilotes									
	N-SP'	$\Gamma = 5$	N-SPT = 15							
	Inclinación de 20°	Inclinación de 45°	Inclinación de 20°	Inclinación de 45°						
Fz [tonf]	34	-82	124	2						

Tabla 4.20: Solicitaciones por el efecto del desplazamiento lateral, casos fundación de 12 micropilotes

	Fundación de 18 micropilotes									
	N-SP'	$\Gamma = 5$	N-SPT = 15							
	Inclinación de 20°	Inclinación de 45°	Inclinación de 20°	Inclinación de 45°						
Fz [tonf]	157	-127	28	-73						

Tabla 4.21: Solicitaciones por el efecto de la fricción negativa, casos fundación de 18 micropilotes

De las tablas anteriores se desprende que se produce fricción negativa en los casos de fundación de 12 micropilotes con inclinación de 45° con N-SPT = 5, fundación de 18 micropilotes con inclinación de 45° con N-SPT = 5 y fundación de 18 micropilotes con inclinación de 45° con N-SPT = 15.

Luego, se procede a encontrar el eje neutro de estos casos, comparando el asentamiento del suelo con el de los micropilotes.

Figura 4.39: As entamientos de suelo y micropilote - caso de fundación de 12 micropilotes con inclinación de 45° - N - SPT = 5.

Figura 4.40: As entamientos de suelo y micropilote - caso de fundación de 18 micropilotes con inclinación de 45° - N - SPT = 5.

Figura 4.41: As entamientos de suelo y micropilote - caso de fundación de 18 micropilotes con inclinación de 45° - N - SPT = 15.

	Profundidad eje neutro [m]
Fundación de 12 Micropilotes con inclinación de 45° - N-SPT=5	10.55
Fundación de 18 Micropilotes con inclinación de 45° - N-SPT=5	11.14
Fundación de 18 Micropilotes con inclinación de 45° - N-SPT=15	8

Tabla 4.22: Profundidad del eje neutro.

4.7. Verificación fuerza axiales y de corte en micropilotes.

Se grafican las solicitaciones maximas en micropilotes obtenidas en el gráfico de pandeo presentado en el capítulo 2.6.

Figura 4.42: Gráfica de solicitaciones en curva de pande
o crítico - N
spt=5 - Elementos verticales

Figura 4.43: Gráfica de solicitaciones en curva de pande
o crítico - Nspt=5 - Elementos inclinado

Figura 4.44: Gráfica de solicitaciones en curva de pandeo crítico - Nspt=15 - Elementos verticales

Figura 4.45: Gráfica de solicitaciones en curva de pande
o crítico - Nspt=15 - Elementos inclinado

Observando los gráficos se puede apreciar que las solicitaciones se encontraron bajo las curvas de carga crítica por lo que el diseño cumple en pandeo.

Luego se incorpora el efecto del corte encontrado en los micropilotes. El análisis se realizará acorde a lo dictado por la Federal Highway Administration (FHWA) de Estados Unidos ¹⁷. Se define la curva de falla para los micropilotes por la siguiente ecuación:

$$\left(\frac{N}{R_n}\right)^2 + \left(\frac{Q}{R_c}\right)^2 = 1 \tag{4.11}$$

¹⁷Recommendations clouterre 1991: Soil nailing recommendations, 1991 for designing, calculating, constructing and inspecting earth support systems using soil nailing. Washington, D.C.: U.S. Dept. of Transportation, Federal Highway Administration.

En donde N es la solicitación axial del micropilote, Q el corte del micropilote, R_n la carga de fluencia de la barra y R_c la mitad del valor de R_n .

Figura 4.46: Gráfica de solicitaciones de análisis de fuerza axial y fuerza de corte en micropilotes - N-SPT = 5

Figura 4.47: Gráfica de solicitaciones de análisis de fuerza axial y fuerza de corte en micropilotes - N-SPT = 15

Con lo anterior se puede ver que la estructura no tiene problemas de solicitaciones axiales y de corte en micropilotes.

79

Conclusiones y recomendaciones de diseño

El modelamiento de casos con dos suelos de distinta resistencia logró evidenciar como afecta esto en la respuesta de la estructura, siendo en algunos casos más claro que en otros.

- No se observaron diferentes valores de aceleración máxima en la base de la estructura para distintos suelos, en cambio, en la pasarela se observaron aceleraciones máximas mayores en los casos de suelo con N-SPT = 5.
- Los espectros de aceleración asociados al suelo de N-SPT = 15 tuvieron amplitudes mayores.
- Los valores de asentamiento fueron similares con los dos tipos de suelos utilizados.
- En los desplazamientos relativos entre la base de la estructura y la pasarela se observaron valores menores en los casos con suelo de N-SPT = 15.
- Las solicitaciones axiales en micropilotes fueron mayores en los casos con suelo de N-SPT = 5.
- Los desplazamiento laterales finales de la base de la estructura fueron generalmente menores cuando el suelo tenia una resistencia de un N-SPT = 15.
- En general, se nota una mejora de la respuesta de la estructura y de la fundación en un suelo con menor potencial de licuación.

Con el análisis de aceleraciones en la base y pasarela se pudo deducir que una mayor amortiguación se logró en los casos en que la fundación tiene 18 micropilotes y cuando estos tuvieron una inclinación de 45°

Al realizar la comparación entre espectros de aceleración entre respuestas de modelos, la diferencia mas clara se apreció en el período al cual la curva presentaba su valor más alto. En los suelos con N-SPT = 5 el peak se encontró entre un período de 0.3 - 0.4 [s]. En cambio, en los suelos de N-SPT = 15 el peak se encontró a un período mayor alrededor de 1.15 [s]. Entre los dos tipos de fundación analizados, no se observaron mayores diferencias en amplitudes.

Ningún caso logró obtener amplitudes similares al espectro de diseño de la norma NCh433 para un suelo tipo E, ante lo cual se concluye que tal como lo señala la norma, se deben realizar estudios de riesgo sísmico especiales para suelos tipo F como este y el espectro a utilizar debe ser mas exigente que el que se establece para un suelo tipo E.

Analizando la forma de los espectros de aceleración construidos, se ve que la curva presenta

un pico antes de un período de 1 [s] y luego otro después de 1 [s]. Lo anterior puede causar problemas al construir ya es necesario que construir estructuras que tengan un período mayor a estos dos peaks, lo cual sería mayor a 2 [s], con lo que se limita el rango de rigidez a utilizar en la estructura para así obtener amplitudes bajas de aceleración.

Respecto al efecto del desplazamiento lateral en los desplazamientos de la fundación y las solicitación en los micropilotes:

- En general, las solicitaciones de corte en el dado de fundación por el efecto del desplazamiento lateral fueron mayores con un suelo de N-SPT = 5.
- El desplazamiento lateral fue mayor en los casos de fundación de 12 micropilotes en comparación a los casos de 18 micropilotes.
- Las solicitaciones de corte en micropilotes fueron mayores en los casos de la fundación de 18 micropilotes.

Debido a las características que poseen los micropilotes (relación largo y rigidez flexional), la falla por rotulas plásticas será el tipo de falla predominante y en la que se debe basar el diseño de este tipo de fundaciones. Como se expuso en la sección (4.5.) es segura la generación de rótulas plásticas en algunos casos por lo que es recomendable diseñar a partir de que se generarán rotulas plásticas en los puntos que se encuentren entre interfaces de suelos y buscar soluciones. Ante estos problemas y observando los resultados obtenidos se puede decir acerca de las solicitaciones de momento en micropilotes que: las solicitaciones de momento obtenidas estuvieron en un rango de entre 6 y 12 [tonf-m], con 7.52 [tonf-m] el momento plástico total; el uso de una menor inclinación de micropilotes disminuyó la solicitación; el uso de 18 micropilotes disminuyó el momento en el suelo de N - SPT = 5 pero, en cambio, en los casos con N - SPT = 15 aumentó la solicitación por momento. La mejor condición para que no ocurran rotulas plásticas debido a sus bajas magnitudes de momento de micropilotes corresponde a una inclinación de 20° y 18 micropilotes.

Observando los resultados de fricción negativa obtenidos se puede concluir que una inclinación de micropilotes de 45° propicio que se generará la fricción negativa. Se pudo obtener también la profundidad de los ejes neutros, en el caso con 12 micropilotes el eje neutro se posicionó por sobre el estrato licuable, en cambio, en los casos con 18 micropilotes el eje neutro estuvo bajo el estrato licuable. Lo anterior se complementa con los resultados de asentamientos obtenidos y se puede deducir que el uso de 18 micropilotes no ayuda a disminuir los asentamientos de la estructura.

Con el análisis de solicitaciones en micropilote y dado de fundación de los dos tipos de fundaciones se pudo concluir que una fundación de 12 micropilotes presenta mayores solicitaciones axiales en micropilotes y mayores solicitaciones en dado de fundación por el efecto del desplazamiento lateral pero en cambio, el efecto de la fricción negativa en la solicitación vertical del dado de fundación es menor.

Analizando las deformaciones del dado de fundación no se observan diferencias claras entre los tipos de fundación utilizados.

Comparando las solicitaciones totales en el dado de fundación dadas por los modelos, tablas 4.8 y 4.9, con las solicitaciones pseudoestáticas, tablas 2.1 y 2.3, se pueden observar

las siguientes diferencias:

- El valor de la solicitación que induce la estructura perpendicular al sismo (Fx) encontrada con los modelos de plaxis fue similar a la del caso pseudoestático para una fundación de 18 micropilotes pero fue mayor en una fundación de 12 micropilotes.
- La fuerza principal asociada al sismo (Fy), asociada al empuje lateral del suelo sobre el dado de fundación y micropilotes que induce el desplazamiento, resultó ser mucho mayor en los modelos a la fuerza horizontal que le impone la estructura.
- Los valores de fuerza vertical (Fz) estuvieron claramente influenciados por el efecto del asentamiento generando fricción negativa, de manera que las solicitaciones axiales de los micropilotes fueron mucho mayores a las que se generan debido a la reacción basal de la estructura.
- El valor del momento en el eje x (Mx) de diseño fue óptimo en los casos del suelo de N-SPT = 15, en donde la solicitación en el dado dada por los modelos fue menor. En cambio, en los casos de suelo con N-SPT = 5, los valores encontrados en los modelos fueron el doble al de diseño.
- El valor del momento en el eje y (My) encontrado de los modelos fue igual o menor al de diseño.

Ante un eventual uso de un sistema de fundación y estratigrafía similar al propuesto en este trabajo, es necesario cuantificar y evaluar el efecto del desplazamiento lateral y la fricción negativa en las solicitaciones de diseño en micropilotes, por lo cual se tienen las siguientes recomendaciones de diseño.

- Realizar diseño con solicitaciones en dado de fundación debido de efectos geotécnicos, como es el desplazamiento lateral y fricción negativa, en desprecio de los esfuerzos dados por la estructura ya que estos son mayores y mas predominantes a la hora de diseñar.
- Diseñar las respuesta en superficie realizando estudios de riesgo sísmico específico tomando en consideración que el espectro de aceleración tendrá dos picos y amplitudes del doble a las de un suelo E acorde a la norma NCh433.
- Diseñar en base de que se generarán rótulas plásticas en las interfaces de suelos, puesto que esto sucedió en la mitad de los casos analizados. Reforzar la sección del micropilote a esas profundidades.
- Diseñar la serviciabilidad de la estructura en base de que el desplazamiento basal será alto y mayor al que ocurre con una estratigrafía sin suelo licuable.

Finalmente, respecto al uso de micropilotes como un método de fundación profunda, estos logran cumplir con los análisis estructurales, es decir, las solicitaciones axiales y de corte se mantienen dentro de los márgenes y no se producen pandeos. Pero al realizar un análisis mas exhaustivo se pueden encontrar problemas como lo son la generación de múltiples rótulas plásticas en los micropilotes. Si bien en este trabajo se abarcaron una variedad de casos, se podría avanzar en el estudio al estudiar casos con un mayor espesor de estrato e intercalaciones de estratos licuables y no licuables.

Bibliografía

- [pla2019] (2019). Material Models Manual. PLAXIS.
- [AASHTO2010] AASHTO (2010). LRFD Bridge Design Specifications. American Association of State Highway and Transportation Officials.
- [Administration.1991] Administration., F. H. (1991). Recommendations clouterre 1991: Soil nailing recommendations–1991 for designing, calculating, constructing and inspecting earth support systems using soil nailing.
- [Aly2014] Aly, A. (2014). Analysis of buckling load for micropiles embedded in a weak soil under vertical axial loads. International Journal of Civil, Vol. 3, Issue 3.
- [Barret992a] Barret, S.F. y Youd, T. (1992a). Empirical prediction of lateral spread displacement. 5th U.S.-Japan Workshop on earthquake resistant design of lifeline facilities and countermeasures against soil liquefaction.
- [Barret992b] Barret, S.F. y Youd, T. (1992b). Empirical analysis of horizontal ground displacement generated by liquefaction-induced lateral spread. National center of earthquake engineering research.
- [Barret1995] Barret, S.F. y Youd, T. (1995). Empirical prediction of liquefaction-induced lateral spread. J. Geotech. Engrg.
- [Beaty and Perlea2011] Beaty, M. and Perlea, V. (2011). Several observations on advanced analyses with liquefiable materials.
- [Beaty2011] Beaty, M. H. (2011). UBCSAND Constitutive Model on Itasca UDM Web Site.
- [Briaud and Tucker1996] Briaud, J.-L. and Tucker, L. M. (1996). DESIGN AND CONS-TRUCTION GUIDELINES FOR DOWNDRAG ON UNCOATED AND BITUMEN-COATED PILES.
- [Bruce1994] Bruce, D. A. e. a. (1994). Small diameter cast-in-place elements for load bearing and in situ earth reinforcement in ground control and improvement.
- [Bruce and Juran1995a] Bruce, D. A., D. A. F. and Juran, I. (1995a). Introduction to micropiles: An international perspective.

[Bruce and Juran1995b] Bruce, D. A., D. A. F. and Juran, I. (1995b). Primer on micropiles.

- [Cadden2002] Cadden, Allen. Gómez, J. (2002). Buckling of Micropiles A review of historic research and recent experiences. Schnabel Engineering Associates.
- [Cakir] Cakir, Ferit. Mohammadi, J. Micropiles applications for seismic retrofitting of historical bridges.
- [Chih-Wei Lu2020] Chih-Wei Lu, Min-Chien Chu, L. G. K.-S. P. (2020). Estimation of settlement after soil liquefaction for structures built on shallow foundations. ELSEVIER, Soil Dynamics and Earthquake Engineering 129 (2020) 105916.
- [Cubrinovski.2010] Cubrinovski., M. (2010). Analysis and design of piles in liquefying soils.
- [D.A. Bruce] D.A. Bruce, A.W. Cadden, P. S. Practical Advice for Foundation Design Micropiles for Structural Support.
- [de Obras Públicas MOP2011] de Obras Públicas MOP, M. (2011). *MEMORIA DE CÁLCU-LO Pasarela Playa Bca Sur- Cepa 1*.
- [DIN1983] DIN (1983). DIN4128 -Small diameter injection piles (cast-in-place concrete piles and composite piles). Deutsches Institut für Normung.
- [Dobry and .L1995] Dobry, R., T. V. and .L, L. (1995). Centrifuge Modeling of Liquefaction Effects During Earthquakes. Proc.1st International Conference on Earthquake Engineering, Tokyo, Vol.3.pp.1291-1324.
- [Ellis1990] Ellis, I. W. (1990). Mini pile underpinning.
- [G1984] G, G. (1984). Seismic response of end-bearing piles.
- [G.1957] G., M. G. (1957). Discussion for session i.
- [George A. Papagiannopoulos2011] George A. Papagiannopoulos, G. D. H. (2011). On the use of the half-power bandwidth method to estimate damping in building structures.
- [H. Bolton Seed1985] H. Bolton Seed, K. Tokimatsu, L. F. H. R. M. C. (1985). Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations. Journal of Geotechnical Engineering Vol. 111, Issue 12 (December 1985).
- [Hernández Del Pozo] Hernández Del Pozo, Juan. Ocete, I. L. F. H. G. J. Micropilotes Inyectados – Técnica y Cálculo.
- [Instituto Nacional de Normalización] Instituto Nacional de Normalización, I. Diseño sismico de estructuras.
- [Instituto Nacional de Normalización2012] Instituto Nacional de Normalización, I. (2012). Diseño sísmico de estructuras e instalaciones industriales.

[ISCHEBECK] ISCHEBECK. Catálogo micropilotes: Datos técnicos, bocas de perforación y

diámetro eficaz del cuerpo de inyección.

- [Ishihara1992] Ishihara, K., Y. M. (1992). Evaluation of settlements in sand deposits following liquefaction during earthquakes.
- [Juran2003] Juran, I. (2003). Synthesis of the results and recommendations of the French national project on micropiles. The international center for ground improvement, Polytechnic University, New York.
- [Kulhawy and Mayne1990] Kulhawy, F. and Mayne, P. (1990). Manual on estimating soil properties for foundation design.
- [M.2010] M., B. (2010). SOIL MECHANICS AND FOUNDATIONS. 3rd Edition, John Wiley Sons Inc.
- [M.1991] M., N. (1991). Piles under dynamic loads: State of the art.
- [Madabushi2009] Madabushi, G., K. J. H. S. (2009). Design of piles in liquefiable soils.
- [Meneses2019] Meneses, S. (2019). Análisis de sistemas de micropilotes para su uso en suelos licuables. Memoria para optar al título de ingeniero civil, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile.
- [N. Dinesh. K. Rajagopal. Banerjee2016] N. Dinesh. K. Rajagopal. Banerjee, S. (2016). Study of constitutive models for cyclic liquefaction in sand. Indian Geotechnical Conferenc IGC2016, IIT Madras, Chennai, India.
- [NIGAM and JENNINGS] NIGAM, N. C. and JENNINGS, P. C. Calculation of response spectra from strong-motion earthquake records.
- [Pender1993] Pender, M. (1993). A seismic pile foundation design analysis.
- [Petalas2013] Petalas, Alexandros. Galavi, V. (2013). PLAXIS liquefaction model UBC3D-PLM. PLAXIS.
- [R. B. Seed and Faris2003] R. B. Seed, K. O. Cetin, R. E. S. M. A. M. K. J. W. J. M. P. M. F. R. R. S. J. B. R. E. K. and Faris, A. (2003). RECENT ADVANCES IN SOIL LIQUEFACTION ENGINEERING: A UNIFIED AND CONSISTENT FRAMEWORK. 26th Annual ASCE Los Angeles Geotechnical Spring Seminar.
- [Rafa l F. Obrzud2018] Rafa l F. Obrzud, A. T. (2018). THE HARDENING SOIL MODEL
 A PRACTICAL GUIDEBOOK. Z Soil.PC 100701 report.
- [Rauch1997] Rauch, A. F. (1997). EPOLLS: An Empirical Method for Prediciting Surface Displacements Due to Liquefaction-Induced Lateral Spreading in Earthquakes.
- [Ross W. Boulanger2014] Ross W. Boulanger, I. M. I. (2014). CPT AND SPT BASED LIQUEFACTION TRIGGERING PROCEDURES. Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California.

[Schiel1960] Schiel, F. (Auflage, Berlin. 1960). Statik der Pfahlwerke.

- [Seed1991] Seed, R.B. Harder, L. (1991). Spt-based analysis of cyclic pore pressure generation and undrained residual strength.
- [Shatri2014] Shatri, Vlora. Bozo, L. S. B. S. B. (2014). Analysis of Buckling of Piles Fully Embedded in Ground According to Finite Element Method.
- [Towhata1994] Towhata, I. y Toyota, H. (1994). Dynamic analysis of lateral flow of liquefied ground. 5th U.S.-Japan Workshop on earthquake resistant design of lifeline facilities and countermeasures against soil liquefaction.
- [UNE2006] UNE (2006). UNE-EN 14199 Ejecución de trabajos geotécnicos especiales Micropilotes. Una Norma Española.
- [Vijay K. Puri2008] Vijay K. Puri, S. P. (2008). *PILE DESIGN IN LIQUEFYING SOIL*. The 14th World Conference on Earthquake Engineering, Beijing, China).
- [Wilson.D.O. Boulanger and Kutter2000] Wilson.D.O. Boulanger, R. and Kutter, B. (2000). Observed Seismic Lateral Resistance of Liquefying Sand. Journal of Geotechnical and Geo-Environmental Engineering, ASCE, Vol.126, No. 10, pp. 898-906.
- [Youd et al.2001] Youd, T., Idriss, I., Andrus, R., Arango, I., Castro, G., Christian, J., Dobry, R., Finn, L., Jr, L., Koester, J., Liao, S., and Marcuson, W. (2001). Liquefaction resistance of soils: Summary report from the 1996 nceer and 1998 nceer/nsf workshops on evaluation of liquefaction resistance of soils. *Journal of Geotechnical and Geoenvironmental Engineering*, 127.
- [Ćosić2002] Ćosić, Mladen. Folić, B. S. S. (2002). Buckling analysis of 3d model of slender pile in interaction with soil using finite element method.

Apéndice A

Catalogo de micropilotes ISCHEBECK TITAN

Tipo de barra	unidad	TITAN 30/16	TITAN 30/14	TITAN 30/11	TITAN 40/20	TITAN 40/16	TITAN 52/26	TITAN 73/56	TITAN 73/53	TITAN 73/45	TITAN 73/35	TITAN 103/78	TITAN 103/51	TITAN 127/103
Diámetro nominal exterior Ø	mm	30	30	30	40	40	52	73	73	73	73	103	103	127
Diámetro nominal interior Ø	mm	16	14	11	20	16	26	56	53	45	35	78	51	103
Sección de acero efectiva A _{ef}	mm²	340	375	415	730	900	1250	1360	1615	2239	2714	3140	5680	3475
Carga de rotura F _u	kN	245	275	320	540	660	925	1035	1160	1575	1865	2270	3660	2320 ²⁾
Carga en el límite elástico aparente F _y	kN	190	220	260	425	525	730	830	970	1270	1430	1800	2670	2030
Carga en el límite elástico f _{0.2}	N/mm ²	560	585	625	590	590	585	610	590	560	530	565	470	585
Módulo de rigidez al axil E x A 1)	10³ kN	63	69	83	135	167	231	251	299	414	502	580	1022	640
Módulo de rigidez a la flexión E x I 1)	10 ⁶ kNmm²	3,7	3,8	5,2	15	17	42	125	143	178	185	564	794	1163
Peso	kg/m	2,7	2,87	3,29	5,6	7,17	9 <mark>,</mark> 87	10,75	14,1	17,8	21,2	25,3	44,6	28,9
Longitud de barras disponibles	m	3	3/4	2/3/4	3/4	2/3/4	3	6,25	3	3	3	3	3	3
Rosca	-	izqu.	izqu.	izqu.	izqu.	izqu.	izqu./ derecha	de- recha	de- recha	de- recha	de- recha	de- recha	de- recha	de- recha

Figura A.1: Medidas barras titan

Tipo de barra	Воса	Diámetro	Roca	Suelo cohesivo	Arenas y gravas	Gravas grue- sas y bolos
		mm	mm	mm	mm	mm
TITAN 30/	Boca de botones	42	52			
TITAN 30/	Boca de botones	46	56			
TITAN 30/	Boca de botones	51	61			
TITAN 30/	Boca de botones	55	65			
TITAN 30/	Boca en cruz con plaquitas	46	56			
TITAN 30/	Boca botones de metal duro	51	61			
TITAN 30/	Boca con escarlador	75	85			
TITAN 30/	Boca en cruz	76		100	125	150
TITAN 30/	Boca en cruz	90		115	140	165
TITAN 30/	Boca arclila	75		100	125	150
TITAN 30/	Boca arclila	95		120	145	170
TITAN 30/	Boca en Punta de Hincado	75		100		
TITAN 40/	Boca arcilla	110		135	160	185
TITAN 40/	Boca arcilla	150		175	200	225
TITAN 40/	Boca de botones	70	80			
TITAN 40/	Boca botones de metal duro	70	80			
TITAN 40/	Boca botones de metal duro	90	100			
TITAN 40/	Boca en cruz con plaquitas	70	80			
TITAN 40/	Boca en cruz con plaquitas	90	100			
TITAN 40/	Boca en cruz	90		115	140	165
TITAN 40/	Boca en cruz	115		140	165	190
TITAN 40/	Boca con escarlador	90	100			
TITAN 40/	Boca en Punta de Hincado	90		115		
TITAN 52/	Boca en cruz	115		140	165	190
TITAN 52/	Boca en cruz	130		155	180	205
TITAN 52/	Boca arcilla	130		155	180	205
TITAN 52/	Boca arcilla	175		200	225	250
TITAN 52/	Boca en cruz con plaquitas	115	125			
TITAN 52/	Boca botones de metal duro	115	125			
TITAN 73/	Boca en cruz	130		155	180	205
TITAN 73/	Boca en cruz	175		200	225	250
TITAN 73/	Boca trialeta con plaq. de metal duro	130	140			
TITAN 73/	Boca arcilla	200		225	250	275
TITAN 73/	Boca botones de metal duro	130	140			
TITAN 73/	Boca con escarlador	130	140			
TITAN 103/	Boca arcilla	220		245	270	295
TITAN 103/	Boca arcilla	280		305	330	355
TITAN 103/	Boca en cruz	175		200	225	250
TITAN 103/	Boca botones de metal duro	175	185			
TITAN 103/	Boca trialeta con plaq. de metal duro	175	185			
TITAN 127/	Boca en cruz	200		225	250	275
TITAN 127/	Boca arcilia	220		245	270	295
TITAN 127/	Boca botones de metal duro	200	210			

Diámetro en relación con Boca y suelo

Figura A.2: Tipos de bocas de perforación a utilizar en base al tipo de suelo y su diámetro en base a la barra elegida

	Boca	Boca Boca arcilla Boca		Boca de botones	Boca en cruz y tri-	Boca botones de	Boca con escari-
	Ømm		en cruz		aleta con plaquitas	metal duro	ador
	Descripción	Arcillas, limos y arenas terrenos	Jan Barris		30/ 40/ 52/ 103/	30/ 40/ 52/ 73/. 103/	
		poco cohesivos y blandos sin obstácu- los de valores < 50 S.P.T.	Arenas y gravas con obstáculos de valores > 50 S.P.T.	Roca alterada y disgre- gada, filita, esquisto, arcillas duros < 70 MPa	Dolomita, granito, Sandstein 70-150 MPa	Roca muy dura; > 70 MPa	para perforaciones rec- tilíneas máxima desvia- ción a lo largo ± 2 % total
	TITAN 30/	75	76	42	46	51	75
ierda		95	90	46 51 55			
i izqu	con adaptador 40	110 150	115	70	70 90	70 90	90
n rosca	TITAN 40/ con adaptador 52	110 150 175	90 115 <mark>13</mark> 0	70	70 90	70 90 115	90
CO	TITAN 52/	130 175	115 130			115	
la	TITAN 52/ con adaptador 73	130 175 200	115 130 175		115	115	130
1 2 2	TITAN 73/	200	130		130	130	130
er		200	175		100	100	100
sca d	con adaptador 103	220 280			175	175	
on ro	TITAN 103/	220 280	175		175	175	
S.	TITAN 127/	220	200			200	

Figura A.3: Diámetro de bulbo en base a suelo, barra y boca utilizada

Apéndice B

Solicitaciones de momento en micropilotes

Figura B.1: Gráfica de solicitaciones de momento en micropilotes - caso fundación de 12 micropilotes con inclinación de 20°, suelo N - SPT =5 - Resultados obtenidos a los 25 s de iniciado el registro sísmico.

Figura B.2: Gráfica de solicitaciones de momento en micropilotes - caso fundación de 12 micropilotes con inclinación de 45°, suelo N - SPT = 5 - Resultados obtenidos a los 20 s de iniciado el registro sísmico.

Figura B.3: Gráfica de solicitaciones de momento en micropilotes - caso fundación de 18 micropilotes con inclinación de 20°, suelo N - SPT = 5 - Resultados obtenidos a los 30 s de iniciado el registro sísmico.

Figura B.4: Gráfica de solicitaciones de momento en micropilotes - caso fundación de 18 micropilotes con inclinación de 45°, suelo N - SPT = 5 - Resultados obtenidos a los 30 s de iniciado el registro sísmico.

Figura B.5: Gráfica de solicitaciones de momento en micropilotes - caso fundación de 12 micropilotes con inclinación de 20°, suelo N - SPT = 15 - Resultados obtenidos a los 30 s de iniciado el registro sísmico.

Figura B.6: Gráfica de solicitaciones de momento en micropilotes - caso fundación de 12 micropilotes con inclinación de 45° , suelo N - SPT = 15 - Resultados obtenidos a los 20 s de iniciado el registro sísmico.

Figura B.7: Gráfica de solicitaciones de momento en micropilotes - caso fundación de 18 micropilotes con inclinación de 20°, suelo N - SPT = 15 - Resultados obtenidos a los 30 s de iniciado el registro sísmico.

Figura B.8: Gráfica de solicitaciones de momento en micropilotes - caso fundación de 18 micropilotes con inclinación de 45°, suelo N - SPT = 15 - Resultados obtenidos a los 30 s de iniciado el registro sísmico.