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Abstract: Severe acute respiratory syndrome coronavirus (SARS-CoV-2) has produced significant
health emergencies worldwide, resulting in the declaration by the World Health Organization of
the coronavirus disease 2019 (COVID-19) pandemic. Acute respiratory syndrome seems to be
the most common manifestation of COVID-19. A high proportion of patients require intensive
care unit admission and mechanical ventilation (MV) to survive. It has been well established that
angiotensin-converting enzyme type 2 (ACE2) is the primary cellular receptor for SARS-CoV-2. ACE2
belongs to the renin–angiotensin system (RAS), composed of several peptides, such as angiotensin
II (Ang II) and angiotensin (1-7) (Ang-(1-7)). Both peptides regulate muscle mass and function.
It has been described that SARS-CoV-2 infection, by direct and indirect mechanisms, affects a broad
range of organ systems. In the skeletal muscle, through unbalanced RAS activity, SARS-CoV-2 could
induce severe consequences such as loss of muscle mass, strength, and physical function, which will
delay and interfere with the recovery process of patients with COVID-19. This article discusses the
relationship between RAS, SARS-CoV-2, skeletal muscle, and the potentially harmful consequences
for skeletal muscle in patients currently infected with and recovering from COVID-19.
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1. Introduction

Severe acute respiratory syndrome coronavirus (SARS-CoV-2) has been responsible for significant
health emergencies worldwide since the end of 2019 and throughout 2020, leading to the coronavirus
disease 2019 (COVID-19) pandemic. The World Health Organization reports 13,824,739 confirmed
COVID-19 cases and 591,666 deaths worldwide until July 2020 [1]. This emergency makes it urgent
to identify the mechanisms of action of the virus and the possible consequences. Finding the best
therapeutic strategies to treat patients with SARS-CoV-2 as soon as possible, especially those in critical
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condition, is an essential step to prevent more deaths and complications for those who managed
to survive.

The clinical characteristics of COVID-19 patients can range from an asymptomatic state to an upper
airway infection to severe pneumonia associated with acute respiratory distress syndrome (ARDS),
which requires ventilatory support [2–6]. Chest computed tomography images of patients with the virus
have shown diffuse ground-glass opacities and early-stage lymphocytopenia even before dyspnea [7],
indicating the severity of the disease. The clinical spectrum of pathology presents three main phases:
early infection, pulmonary involvement, and systemic hyperinflammation. The symptoms are those of
a respiratory infection—cough, fatigue, and shortness of breath—as well as less commonly systemic
symptoms, such as headaches, myalgia, and arthralgia [4,7]. The risk factors for the increased severity
of disease progression and increased death include comorbidities, such as high blood pressure, type 2
diabetes mellitus (T2DM), obesity, and cardiovascular disease (CVD), as well as an advanced age [2,5,6].

SARS-CoV-2 is a part of the β-coronavirus genus of the Coronaviridae family, to which SARS-CoV
and Middle East respiratory syndrome coronavirus (MERS-CoV) also belong. Several members of
this coronavirus family belong to α-coronavirus and β-coronavirus genera, which cause respiratory
infections in humans [8–11]. The 30-kb genome of SARS-CoV-2 encodes a large auto-proteolytically
non-structural protein that eventually forms the replicase–transcriptase complex. Moreover, the 3′ end
of the viral genome encodes for four structural proteins, namely the spike (S), envelope (E), membrane
(M), and nucleocapsid (N) proteins [9,12,13]. The SARS-CoV-2 genome shares a 79.6% sequence identity
to SARS-CoV [10,14].

The crucial functional receptor for SARS-CoV-2 infection is angiotensin-converting enzyme 2
(ACE2), which belongs to the renin–angiotensin system (RAS) in humans, and it is highly expressed
in the respiratory and intestinal tract [2,14–17]. SARS-CoV-2 receptor recognition is mediated by
the glycosylated spike protein. After ACE2 binding, the S protein is cleaved and activated by
transmembrane protease serine 2 into S1 and S2 subunits. S1 contains the receptor-binding domain,
which directly binds to the peptidase domain (PD) of the ACE2 membrane, and the activated S2
subunit is responsible for membrane fusion [8,15,18,19]. Moreover, the receptor-binging domain in
the S protein of SARS-CoV-2 differs in five of the six amino acid residues compared to SARS-CoV.
These modifications probably explain the 10- to 20-fold higher affinity for ACE2 of SARS-CoV-2
compared with SARS-CoV [20,21].

ACE2 is part of the non-classical RAS axis [22]. ACE2 is a carboxypeptidase with two domains:
a full extracellular amino-terminal PD domain and a carboxy-terminal collectrin-like domain containing
a transmembrane helix intracellular segment [18,23]. The N-terminal catalytic domain of ACE2 produces
angiotensin (1-7) (Ang-(1-7)) by two different processes, cleaving a residue from angiotensin I (Ang I)
to produce angiotensin (1-9) (Ang-(1-9)), which has subsequent modifications made to it by other
enzymes to become Ang-(1-7), and removing a single residue from angiotensin II (Ang II) to generate
Ang-(1-7). Ang- (1-7) has a positive effect on different tissues because it promotes vasodilation, reduced
proliferation, and prevents apoptosis [18,23].

ACE2 expresses in several tissues and organs in the body, such as the heart, kidney, small intestine,
and, to a lesser extent, the lung and skeletal muscle [2,24]. It is highly expressed in the epithelium of the
upper airway (nose and oropharynx), which is the principal entry point of SARS-CoV-2 in humans [7].

2. RAS Dysregulation and Its Relationship with COVID-19

RAS is a complex hormonal axis that, in physiological conditions, regulates blood pressure,
hydro-electrolyte balance, inflammation, and fibrosis [25,26]. RAS is also one of the modulators of
muscle mass [27,28]. RAS is divided into the following axes.
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2.1. Classical Axis

This axis is composed of several peptides generated by the proteolytic action of enzymes
belonging to RAS. Thus, Ang I is converted to Ang II by ACE. Ang II can bind to a family of
G-protein-coupled receptors named angiotensin type 1 (AT1R) and type 2 (AT2R) receptors. The effects
of AT1R-dependent Ang II and its intracellular signaling pathways result in harmful effects, such as
inflammation, vasoconstriction, and atherogenesis, which can participate in the genesis of diseases,
such as insulin resistance and thrombosis [29,30]. By contrast, AT2R stimulation by Ang II causes
vasodilation, decreased platelet aggregation, and the promotion of insulin actions. Despite these
beneficial effects, the expression of AT2R is low in most tissues in healthy adults [30] (Figure 1).
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Figure 1. The renin–angiotensin system (RAS) and its physiological functions. The RAS regulates
complex process as blood pressure, inflammation, carbohydrate metabolism or fibrosis, among others.
It is composed of different peptides obtained by proteolytic cleavage mediated by specific enzymes
belong to RAS. Thereby, angiotensin I (Ang I) is converted to Ang II by angiotensin-converting enzyme
(ACE), and this second peptide can interact with its receptor angiotensin type 1 (AT1R), having
some adverse biological effects, for example, an increase in blood pressure and pro-inflammatory
events. However, Ang II, by its interaction with another receptor, AT2R, mediates opposite effects like
vasodilatation and anti-inflammatory processes. Furthermore, Ang II can be converted to Ang-(1-7) by
soluble ACE2 action and mediates the same beneficial effects through Mas receptor (MasR) signaling.
ACE: angiotensin-converting enzyme; ACE2: angiotensin-converting enzyme 2; AT1R: angiotensin
II type 1 receptor; AT2R: angiotensin II type 2 receptor; Ang I: angiotensin I; Ang II: angiotensin
II; Ang-(1-7): angiotensin (1-7); MasR: Mas receptor; EC: extracellular; IC: intracellular. Created
with BioRender.

2.2. Non-Classical Axis

The effects of Ang II in adults are regulated and, in many cases, counteracted by the non-classical
RAS axis [27,31,32]. In this axis, ACE2 converts Ang II to Ang-(1-7), which has beneficial effects, such as
vasodilation and anti-fibrotic and anti-atrophic effects in skeletal muscle. Ang-(1-7) signals through
the Mas receptor (MasR) and promotes similar biological effects as AT2R-mediated actions [26,33]
(Figure 1).
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When SARS-CoV-2 enters human cells, it down-regulates the surface expression of ACE2
protein [34], which could occur due to the enzyme endocytosis complex with the virus protein
S [7,35]. Furthermore, the binding of SARS-CoV-2 to ACE2 appears to induce ACE2 release as a
soluble form in serum, further decreasing ACE2 activity [36,37]. These events would lead, on the one
hand, to an exaggerated increase in the activation of the classical RAS pathway (ACE/Ang II/AT1R),
which could induce a pro-fibrotic and pro-inflammatory state, vasoconstriction, increased membrane
permeability, and apoptosis of lung epithelial cells [28–31] (Figure 2). This situation directly induces
acute lung injury (ALI) and ARDS and can lead to death [10]. On the other hand, a decrease in the
expression of ACE2 involves a reduction in Ang-(1-7), which could imply diminished anti-inflammatory,
anti-fibrotic, and anti-atrophic effects. Both conditions, increases in Ang II/AT1R and decreases in
ACE2/Ang-(1-7), have been identified in other chronic diseases, such as CVD and T2DM, and could
happen in SARS-CoV-2 [18,25,38] (Figure 2).
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Figure 2. Schematic representation of the mechanism related to SARS-CoV-2 and RAS. SARS-CoV-2
binds through the spike (S) protein to its membrane receptor ACE2 in the respiratory epithelial
membrane, permitting S protein’s cleavage by membrane proteases and exposing the S2’ fusion
membrane domain to enter the cell by endocytosis and initiate the replication of the virus. One of
the important consequences is the diminution of soluble ACE2 availability, resulting in subsequence
increase and decrease levels of circulation Ang II and Ang-(1-7), respectively, causing a RAS imbalance.
ACE2: angiotensin-converting enzyme 2; Ang-(1-7): angiotensin (1-7); EC: extracellular; IC: intracellular.
Created with BioRender.

This information would indicate that the dysregulation of RAS could be fundamental in the
clinical development of SARS-CoV-2 [7]. Increased activity of ACE/Ang II/AT1R has been raised as a
possible cause of the pathophysiological effects of SARS-CoV. This could produce an increase in the
inflammatory and fibrotic state and a decrease in ACE2/Ang-(1-7)/MasR activity, which would also
happen in SARS-CoV-2 [39,40].
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In this regard, it has been demonstrated that ACE2 decreases its expression in mice with severe
ALI induced by acid aspiration or sepsis. Simultaneously, components of the classical RAS pathway
(ACE, Ang II, AT1R) increase at the pulmonary and systemic levels. These changes promote the
pathogenesis of lung disease, induce edemas, and impair lung function. The authors conclude that
ACE2 has a protective effect in mice with ALI [39]. Furthermore, it has been demonstrated that the
SARS-CoV spike protein increases Ang II and ACE2 down-regulation, resulting in lung injury [34].
ACE2 is upregulated through a negative feedback mechanism by blocking AT1R, leading to lung
protection from virus damage, which could be attributed to the increased conversion of Ang II to
Ang-(1-7) [41]. Furthermore, it has been found that ACE2 down-regulation induces the persistent
elevation of Ang II through local interaction with the AT1R, triggering a vicious cycle in which Ang II
down-regulates ACE2, leading to a local increase in Ang II in the tissues [42].

To date, the use of ACE and AT1R blockers (ARB) as a possible treatment to reduce lung
inflammatory response and mortality in patients with COVID-19 pneumonia could confirm that RAS
dysregulation is a part of the pathophysiology of COVID-19. However, this is still controversial
because, for example, ARB can increase ACE2 expression, causing harmful consequences for patients
with COVID-19 [43,44].

3. RAS and Its Role in the Loss of Muscle Mass

Skeletal muscle is the most abundant tissue in mammals, and it has critical functions in body
homeostasis, such as movement, body support, breathing, heat generation, and endocrine function.
Thus, muscle mass loss alters the proper functioning of the body.

A loss of muscle mass can occur because of various causes, such as aging, malnutrition, prolonged
rest, physical inactivity, and chronic diseases (neurological, cardiac, respiratory, endocrine, etc.) [45].
A decrease in muscle mass is associated with other negative consequences, such as loss of strength and
physical performance, a syndrome known as sarcopenia [46].

Sarcopenia is a crucial determinant of frailty, leading to a loss of autonomy and functionality
in daily living activities, hospitalization, and the institutionalization of patients [47]. Sarcopenia
mechanisms include increased protein degradation and decreased synthesis, autophagy dysregulation,
increased oxidative stress and myonuclear apoptosis, and mitochondrial dysfunction [28,48]. Soluble
molecules regulate these mechanisms; these are called atrophic factors, and one of them is Ang
II [28,49,50].

All the components of RAS are found in skeletal muscle. Therefore, dysregulation of both axes will
directly affect skeletal muscle mass and function [27]. In this regard, classical RAS pathway activation
has been associated with detrimental consequences in skeletal muscle, such as muscular atrophy,
fibrosis, and insulin resistance [24,27]. Ang II binding to AT1R can generate a cascade of intracellular
events in skeletal muscle, including increased reactive oxygen species (ROS) production, protein
degradation, development of fibrosis, and decreased protein synthesis [27,32]. Increased Ang II levels
have been observed in chronic pathologies, such as heart failure, chronic kidney failure, and obesity.
This event has significant clinical relevance because sarcopenia occurs secondary to most chronic
diseases, and it can accelerate the loss of functionality and increase morbidity and mortality [27].

As mentioned before, the canonical RAS pathway’s increased activation induces protein
degradation and decreases synthesis in skeletal muscle, which regulates muscle mass [51]. An increase
in circulating Ang II stimulates Ser-307 phospho-insulin receptor substrate 1, which alters the protein
kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway and reduces the levels
of insulin-like growth factor type 1 (IGF1) and thus muscle protein synthesis. Because of the
aforementioned, Ang II also blocks insulin signaling in skeletal muscle, affecting the translocation of
glucose transporter type 4 (GLUT-4) to the sarcolemma and glucose homeostasis [27,52]. Furthermore,
Ang II can induce the activation of caspase-3 and the dephosphorylation of Akt, which allows the
nuclear translocation of FoxO1 to increase the expression of two muscle-specific E3 ligases belonging
to the ubiquitin–proteasome system (UPS), atrogin-1/muscle atrophy F-box, and muscle RING-finger
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protein-1 (MuRF-1) [53,54]. Thus, mechanisms that impair the insulin-IGF1/mTOR signaling pathway
and UPS overactivation contribute to skeletal muscle mass loss in almost all atrophic conditions [27,53].
On the other hand, the Ang-(1-7)/MasR signaling pathway’s activation prevents harmful effects
dependent on Ang II in skeletal muscle and, therefore, prevents sarcopenia [31,55].

Ang II/AT1R increases inflammation, an event associated with increased muscle wasting in
chronic pathologies. This inflammatory process could occur through the activation of NF-κB due to
the phosphorylation and ubiquitination of IκBα protein in a ROS-dependent way. This effect could
be increased by pro-inflammatory cytokines, such as interleukins [56]. In this context, IL-6 would
act by enhancing UPS activation and E3-ligase expression (catabolic path), decreasing the levels of
IRS-1 and phosphorylated Akt (anabolic path), and increasing the suppressor of cytokine signaling 3
expression (inflammatory path) [57]. Ang II can also activate the tumoral necrosis factor α (TNF-α)
/TNF receptor 1 complex, which inactivates Akt, favoring glycogen synthase kinase 3 beta (GSK3β)
activation, and, consequently, the activation of UPS and protein degradation [58]. Finally, Ang II/AT1R
binding can activate transforming growth factor β (TGFβ) signaling, leading to an inflammatory state
through extracellular signal-regulated kinase 1/2 and Jun N-terminal kinase pathway activation [59].
Ang-(1-7)/MasR axis shows opposite effects on TGFβ signaling, decreasing TGFβ expression in skeletal
muscle [60].

As a counterpart, the activation of the non-classical RAS pathway produces Ang-(1-7) production
through the degradation of Ang II-mediated by ACE2. Ang-(1-7), through MasR, regulates
and counteracts many of the negative actions of Ang II/AT1R [22,27,31,32]. ACE2, meanwhile,
inactivates Ang II and is a negative regulator of Ang II-dependent signaling [39]. In this regard,
ACE2/Ang-(1-7)/MasR in skeletal muscle shows anti-atrophic, anti-fibrotic, and anti-inflammatory
activities [27,31,32,61–63]. In murine models, this axis can increase the muscle strength and functionality
of animals [64], and it can also increase the activity of Akt/mTOR-p70S6K, favoring the synthesis
of muscle proteins. Furthermore, non-classical RAS axis activation can decrease muscle protein
degradation by inducing several events, such as decreased activity and expression of MuRF-1 and
atrogin-1, diminution of ROS production, and prevention of nuclear factor-kappa beta (NF-κB) signaling
activation [24,27,31,32,62,65]. Ang-(1-7) can also prevent a decrease in muscle fibers’ diameter and
avoid the transition in their type [31,62,66].

4. Dysregulation of RAS by COVID-19 and Its Possible Harmful Effects on Skeletal Muscle

Skeletal muscle can be severely affected by RAS dysregulation as a result of chronic pathologies.
As mentioned previously, the mechanisms involved reduce the synthesis and increase muscle protein
degradation as an inflammatory and fibrotic process. These events lead to muscle mass loss, strength,
and physical function, affecting people’s quality of life. If a period of hospitalization (e.g., in the
intensive care unit (ICU)) or invasive mechanical ventilation (IMV) and sepsis are added to this chronic
condition, the deterioration of skeletal muscle can be much more severe and aggressive, and recovery
could be prolonged.

In SARS-CoV-2, there is a hyperinflammatory state with a dysregulation of RAS that could induce
atrophy of skeletal muscle with all the associated functional consequences. If the condition is severe,
it may cause ARDS, shock, myocardial injury, acute kidney injury, and multi-organ failure, aggravating
the state and probably leading to ICU admission and IMV use [67]. The latter is a form of invasive
support used in severe forms of COVID-19. The prolonged use of IMV on ICU patients is directly
associated with further complications, such as ventilator-associated pneumonia, pneumothorax and
pneumomediastinum, and ventilator-induced diaphragmatic dysfunction (VIDD), leading to elevated
mortality [68].
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In a recent study with 73 adult patients (median age: 61 years, mostly male (83.6%)), COVID-19
ARDS was associated with prolonged mechanical ventilation (MV) and high short-term mortality,
among other factors [67]. In another study involving 21 cases (average age: 70 years old, 52% male),
all patients developed severe ARDS, 81% were admitted to the ICU, most of them needed MV (71%),
and they had a high mortality rate (67%) [69].

The severe inflammation observed in SARS-CoV-2 patients could increase the classical RAS axis
and decrease the expression and activity of the non-classical axis. These events, added to the patients’
ICU status and MV, could generate a harmful effect in skeletal muscle that could slow down recovery
or increase death risk.

In this context, muscle wasting involving diaphragmatic and lower limb muscles is experienced
by 50% of ICU patients, causing severe respiratory and physical complications that might remain for
years after hospital discharge [70]. Considering other pathologies similar to COVID-19, a dysfunction
in the diaphragm muscle has been seen as a characteristic of severe symptoms, so it is expected that
this behavior could be identical in COVID-19 [68,71,72].

5. Diaphragmatic Dysfunction for Invasive Mechanical Ventilation in COVID-19 Patients

Considering all antecedents and the clinical outcomes in patients with COVID-19, there is a high
probability that patients in the ICU, especially those with IMV, can develop diaphragmatic dysfunction.

Diaphragmatic dysfunction is one of the most significant consequences of using IMV. From a
physiological perspective, diaphragm dysfunction is directly related to diaphragm weakness (DW).
It can be defined as the diaphragm’s reduced ability to generate a negative intrathoracic pressure,
usually less than 11 cm H2O [73,74]. The prevalence of diaphragmatic dysfunction in critically ill
patients who require intubation, such as those affected by COVID-19, is high at 60%. It can be as high
as 80% in patients requiring prolonged MV and experiencing difficult weaning [75]. DW also correlates
with higher mortality, and it is a more reliable predictor of ICU mortality [75].

DW in patients with IMV may be caused by the underlying effects of pathologies, sepsis, and other
systemic infections that are responsible for many cases of ICU-acquired DW. Other factors that contribute
to DW are the drugs used during ICU stay (neuromuscular blocking agents and corticosteroids) and
atrophy resulting from IMV use [73,75].

In humans, the use of IMV causes weaning failures in approximately 20% of patients because
of the rapid deterioration of diaphragm muscle endurance and strength; this condition is called
ventilator-induced diaphragmatic dysfunction (VIDD) [76]. VIDD is the most significant factor for
failed weaning in mechanically ventilated patients [73]. The mechanisms underlying VIDD could
be the following: (1) disuse atrophy secondary to diaphragm inactivity from excessive ventilatory
support [77]; (2) hypercapnia, which induces a marked reduction in diaphragm force as assessed
by phrenic nerve stimulation [78]; and (3) excessive loading, which causes structural damage and
myofiber remodeling (load-induced injury because of insufficient ventilatory support) [73,79].

Diaphragm dysfunction is associated with pathophysiological changes in skeletal muscle, which are
common in both animal and human studies, and include increased oxidative stress, muscle fiber
atrophy, and injury and the activation of several major proteolytic pathways (ubiquitin–proteasome,
caspases, calpains) [80–83]. In VIDD, muscle atrophy in the diaphragm with decreased type II muscle
fibers (fast-twitch) within the early course of the disease has been reported (12 to 18 h after controlled
mechanical ventilation [CMV] [81,84]. There is also a remodeling process with an increase in hybrid
fibers concomitantly with a decrease in type I fibers (slow twitch), which can be identified at later
stages [85]. Together with these changes, observing abnormal sarcomere structure areas and an
irregular Z-line structure in the diaphragm is possible [83].
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Protein synthesis pathways are decreased in VIDD [86]. Six hours of CMV is associated with a 30%
decrease in mixed protein synthesis and a 65% decline in myosin heavy-chain protein synthesis [86].
These changes remained consistent throughout 18 h after CMV [83]. Furthermore, proteolytic systems
are activated in animal models of VIDD and also in patients with MV. Specifically, there is an activation
of the calpain and caspase systems, UPS, and the autophagy–lysosomal systems [73,79,84,87–89].

Redox disturbance also occurs because of prolonged CMV, which results in increased ROS
production and diminished antioxidant capacity in the diaphragm [83,90]. This redox alteration has
adverse effects on crucial contractile proteins, such as actin and myosin, which are oxidized in the
diaphragm during prolonged CMV and lipid peroxidation [91]. These events have high relevance
because redox disturbances in skeletal muscle promote contractile dysfunction and the activation
of proteolytic systems [82,83]. Finally, CMV produces extensive diaphragm remodeling through
the alteration of gene expression. In this condition, stress-sensitive genes are upregulated, whereas
structural protein and energy metabolism genes are down-regulated from 6 to 18 h after CMV [83,92].

The contribution of the classical RAS axis to DW has been reported in a preclinical model of
MV. In this model, there are high circulating levels of Ang II. The relevance of this fact is that with
the use of AT1R blockers, DW was recovered, suggesting that Ang II participates in the generation
of DW [93]. The mechanisms involved in Ang II-dependent DW were previously discussed in this
review. Interestingly, there is evidence showing the preventive effect of the non-classical RAS axis on
MV-induced DW. Thus, Ang-(1-7) administration during MV has a protective role on the diaphragm’s
muscular fibers, maintaining muscular fiber features, and reducing atrophy [66].

Although there is no known history of the presence of diaphragmatic dysfunction in patients with
COVID-19 in the ICU and MV to date, it is most likely that it is occurring, as the alteration is indifferent
to the cause of MV. However, it could even worse because of the loss of muscle mass associated with
RAS dysregulation mentioned earlier.

6. ICU-Acquired Weakness in COVID-19

Another possible consequence of ICU stays and the use of MV in COVID-19 patients may be the
development of ICU-acquired weakness (ICUAW).

ICUAW is a limb and respiratory weakness syndrome that develops in the wake of critical
illness [94]. The incidence of ICUAW is approximately 80% in ICU patients, and it is associated with a
longer duration of MV and hospitalization, along with more significant functional impairment for
survivors [95]. ICUAW is a manifestation of nerve and muscle dysfunction due to generalized systemic
inflammation and risk factors such as sepsis, shock, and the presence of multi-organ failure [96].
Although some risk factors are present in COVID-19 patients, ICUAW has yet to be determined in
those critically ill with SARS-CoV-2.

ICUAW commonly manifests in three different manners, which can often coincide: polyneuropathy,
myopathy, and muscle atrophy [97].

Critical illness polyneuropathy (CIP) and critical illness myopathy (CIM) are characterized by
flaccid and symmetric paralysis, producing limb and respiratory, skeletal muscle weakness. However,
in CIP, there is a distal axonal polyneuropathy in sensory and motor nerves. Meanwhile, in CIM,
the sensory function is preserved despite muscle weakness [95,98]. The etiology for the development
of CIP and CIM is not fully understood. Despite this, it could include microcirculatory abnormality
(loss of the blood–nerve barrier), metabolic or bioenergetic dysfunction, channelopathy (inexcitability
of the endoneural or muscle membrane), and/or direct toxic effects of ICU care (hyperglycemia or
lipids in parenteral nutrition in CIP and corticosteroids or neuromuscular blockade in CIM) [98].
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Muscle atrophy was observed in type II fiber together with myosinolysis (proteolytic degradation
of myosin), which is consistent with primary myopathy and neurogenic muscle atrophy [95,97].

These pathophysiological disorders translate clinically into a loss of strength and muscle mass,
weakness, and significant functional disorders in daily living activities, aside from being an independent
predictor of mortality in critically ill patients [95].

Patients with ICUAW maintained significantly worse handgrip strength and reported worse
physical functioning-related quality of life [99]. Despite improvements in overall strength in the
timeline, physical function-related quality of life remained significantly below the expected age-adjusted
indicators at all-time points [99].

In the case of COVID-19, to date, there have been no studies on ICUAW. There is limited research
indicating the medium-term characteristics of recovered COVID-19 patients with or without the MV
requirement. An analysis performed in three hospitals in Wuhan, China, showed that critically ill
patients requiring ICU admission and MV, or oxygen therapy, had a considerable 60-day mortality.
Furthermore, an age older than 65 years, thrombocytopenia at ICU admission, ARDS, and acute kidney
injury were independent predictors of these patients’ 60-day mortality [100]. Similar results were
recently reported, and they showed that the survival time of non-survivors is likely to be within
1–2 weeks after ICU admission [101].

There is a report that tracked individuals who were discharged from the hospital after recovery
from COVID-19. This study shows that the mean length of a hospital stay was 13.5 days. However,
the most critical data were those on the evaluation of patients 60 days after the onset of the first COVID-19
symptom; at the time of the assessment, only 12.6% were completely free of any COVID-19–related
symptoms, 32% had one or two symptoms, and 55% had three or more. The four most frequent
symptoms at 60 days after the onset of the first COVID-19 symptoms were fatigue (53.1%), dyspnea
(43.4%), joint pain (27.3%), and chest pain (21.7%) [102].

These are the first studies to identify the medium-term effects of the virus, the risk of death,
and the disabling symptoms. Among the latter, the most prevalent is fatigue, which could be related to
the loss of muscle mass associated with RAS dysregulation that we discussed previously and would be
even more aggressive in ICU and IMV patients. A significant complication in ICU patients is weakness
and muscle mass loss, including that of appendicular and respiratory muscles, such as the diaphragm.
A percentage of patients with COVID-19 require ventilatory support and an ICU stay, which can
undoubtedly affect their muscle mass. The reasons for this can be the use of MV and prolonged rest
and the dysregulation of the RAS axis, the latter of which is a part of the disease’s pathophysiology.

Therefore, studying and analyzing ICUAW and its phases in patients with COVID-19 are necessary.
Despite the importance of exploring the preventive and treatment aspects of COVID-19 patients,
particular emphasis must be placed on these patients’ recovery phase. Antecedents that support this
fact indicate that the loss of muscle mass, strength, and physical performance will be one of the main
limitations of recovery from ICUAW.

The side effects related to infection by SARS-CoV-2 negatively influence skeletal muscle health [103].
These events are related to immobilization because of hospitalization and bed rest, IMV use, ICU stay,
and physical inactivity due to public health recommendations for sustained quarantine (remaining at
home, closing parks, gyms, and fitness centers) to prevent the spread of SARS-CoV-2. These pathological
consequences of COVID-19 could be attributed partly to the deregulation of RAS (Figure 3).
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Figure 3. Highlights the possible mechanism by SARS-CoV-2 induces skeletal muscle atrophy through
RAS dysregulation. RAS dysregulation due to SARS-CoV2 infection (decreased Ang II and Ang-(1-7))
plus its hospitalization consequences, for example, mechanical ventilation (MV) use, intensive care
unit (ICU) stays, ventilator-induced diaphragmatic dysfunction (VIDD), ICU-acquired weakness
(ICUAW), diaphragmatic dysfunction in critical patients and physical inactivity due to public health
recommendations in sustained quarantine, could originate loss of skeletal muscle mass and strength
and decreased physical performance. Created with BioRender.

7. Possible Therapeutic Interventions

Potential therapies to treat skeletal muscle complications due to SARS-CoV-2 are yet to be
investigated. Most research is still focused on the early stages of the pathology and because it has been
a relatively short time since its outbreak. Based on the well-established treatments for skeletal muscle
health recovery in other similar conditions, it is possible to speculate that therapeutic interventions
should include pharmacological and non-pharmacological approaches [104].

The pharmacological approach could consider blocking the classical RAS pathway and/or
increasing the activity of the non-classical pathway and anti-inflammatory drugs. Regarding the
classical RAS pathway, the ACE inhibitors and angiotensin receptor blockers (ARBs) could be considered
a good alternative. Nevertheless, it has been hypothesized that they could increase Ang II plasma levels,
increasing ACE2 expression, and inducing more target molecules to be available for the SARS-CoV-2
virus [105–107]. At present, no evidence has shown that continued use of ACE inhibitors and ARBs
increases the risk of SARS-CoV-2 severe infection or the risk of death [108–111]. At skeletal muscle
levels, a minor activity of the RAS classical pathway could decrease the atrophic stimulus.

On the other hand, it is known that Ang-(1-7)/MasR axis induces skeletal muscle protein synthesis
and decreases its degradation. Ang-(1-7)/MasR increases the activity of Akt/mTOR-p70S6K, favoring
the synthesis of muscle proteins and reducing protein degradation, by decreasing ROS, IKK, NF-κB and
the activity of MuRF-1 and atrogin-1 [24,27,31,32,62,65]. Moreover, Ang-(1-7) can prevent a decrease in
muscle fiber diameter and avoid the transition in their type [31,62,66]. This non-classical RAS action
could decrease the negative SARS-CoV-2 consequences in the skeletal muscle through Ang-(1-7) effects.



Int. J. Mol. Sci. 2020, 21, 7904 11 of 18

The most widely used drugs for treating acute inflammation in COVID-19 are corticosteroids,
but they can directly induce muscle atrophy and weakness [112]. Immunotherapies, such as IL-1 and
IL-6 inhibitors, which do not have the adverse effects of corticosteroids on skeletal muscle, are also
being investigated to treat acute inflammation in patients with COVID-19 [113].

As for the non-pharmacological approach, the primary therapeutic tool to treat the musculoskeletal
condition is exercise. Based on the proposed skeletal muscle consequences of RAS deregulation,
exercise interventions should focus on two main muscle groups: respiratory muscles and appendicular
muscles. The pulmonary function of patients surviving COVID-19 pneumonia is affected, with a
restrictive pattern even 6 weeks after hospital discharge [114]. A recent study with a 6-week respiratory
rehabilitation program, which included diaphragmatic and respiratory muscle training and cough
exercises, showed an improvement in pulmonary function and 6-min walk distance [115]. However,
further clinical trials are still needed to identify the optimal training parameters for respiratory
rehabilitation in COVID-19 survivors.

Exercise training is well known to increase skeletal mass, strength, and physical performance [116].
Unfortunately, to date, there is no published evidence on physical training programs, whether
aerobic, strength or combined, that focus on skeletal muscle health in COVID-19 patients. In this
regard, resistance training could be a primary therapeutic tool to rectify SARS-CoV-2 consequences,
especially when there is a low tolerance to the effort, as occurs in other chronic respiratory
patients [117–119]. In people with a greater tolerance for exercising, endurance training could
improve physical performance, dyspnea, and fatigue symptoms [117,119]. Furthermore, evidence
indicates that endurance training has been shown to induce an increase in the non-classical RAS
pathway, which elevates Ang-(1-7) levels with the positive effects mentioned above [120,121].

8. Conclusions

Considering this background, we propose that skeletal muscle tissue is severely affected by
SARS-CoV-2. Among the mechanisms involved in this dysfunction are the increased activity of Ang
II/AT1R and the lower activity of ACE2 and Ang-(1-7). This unbalanced RAS activity, together with
IMV use, ICU stay, prolonged rest, and a lack of physical activity, leads to the loss of muscle mass,
strength, and physical function. All these factors have adverse effects on patients’ recovery toward
their total functional level and may even influence post-virus mortality. Appropriate and timely
evaluation and treatment of skeletal muscle disease are essential to allow patients to recover more
quickly from functional limitations. Further research is needed on potential therapies that focus on the
loss of muscle mass, strength, and physical function in COVID-19 patients.
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Abbreviations

ACE angiotensin-converting enzyme
ACE2 angiotensin-converting enzyme 2
Akt protein kinase B
ALI acute lung injury
Ang I angiotensin I
Ang II angiotensin II
Ang-(1-7) angiotensin (1-7)
Ang-(1-9) angiotensin (1-9)
ARB angiotensin II type 1 receptor blocker
ARDS acute respiratory distress syndrome
AT1R angiotensin II type 1 receptor
AT2R angiotensin II type 2 receptor
CIM critical illness myopathy
CIP Critical illness polyneuropathy
CMV controlled mechanical ventilation
COVID-19 coronavirus disease 2019
CVD cardiovascular disease
DW diaphragm weakness
ICU intensive care unit
ICUAW ICU-acquired weakness
IGF1 insulin-like growth factor type 1
IL-6 Interleukin 6
IMV invasive mechanical ventilation
MasR Mas receptor
mTOR mammalian target of rapamycin
MuRF-1 muscle RING-finger protein-1
NF-κβ Nuclear factor-kappa beta
PD peptidase domain
RAS renin–angiotensin system
ROS reactive oxygen species
SARS-CoV Severe acute respiratory syndrome coronavirus
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
T2DM Type 2 diabetes mellitus
TGFβ transforming growth factor β
UPS ubiquitin–proteasome system
VIDD ventilator-induced diaphragmatic dysfunction
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