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El Teniente (ET) mine

Figure: Largest underground copper mine in the world. Located 150 kilometers
south from Santiago and 2300 a.m.s.l., it began production in 1905 and has
today more than 3000 km of underground galleries.
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Exploitation method in ET: Block caving

Figure: Block caving

Large scale exploitation as in ET induces:
- potentially dangerous stress redistribution within rock masses
- evolving, localized microseismic activity (magnitude < 2, 105 per/day,
unknown hypocenters)
- geomechanical instabilities
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Hazardous events: rockbursts

Figure: Rockbursts are violent explosions of rocks and mine structures owed to a
sudden release of mechanical energy, through a large (>3) local seismic event
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Figure: Seismic response of rock masses to mining must be taken into account
both in design and operation stages.

Microseismic monitoring nowadays used to:
- localize seismic sources
- locally quantify energy released as seismic activity
- detect unstable local mechanical episodes (hardening, softening)
relying on predetermined, homogeneous velocity models.

How can we better estimate the velocity field?
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Tomography

Figure: Medical imaging

Example of active tomography:
controlled wave sources (known emission position, time, and wave form...) .
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Seismic Tomography: use seismic waves instead !

Figure: Minimum raypath and wavefront propagation in non-homogeneous
velocity field.

First arrival times of seismic waves to sensors depend on non
homogeneous medium and velocity field and contain information about it
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Passive seismic tomography

Use mining-induced microseisms to estimate velocity field.

Temporal-spatial seismic sources are unknown.
→ Requires simultaneous inversion of sources and velocity field

El Teniente: Lots of data: 5 seisms per minute, ∼ 106 a year,
∼ 100 sensors.

Non-linear inverse problem, with latent variables and large dataset
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Data

Data: First arrival time of P-wave.

Figure: Sismogram
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Forward problem

Figure: Propagation of a seismic wave in an isotropic, non-homogeneous medium

Let s be the (scalar) slowness field, x0 the hypocenter of the microseism,
and x any point in the spatial domain. Travel time:

(x0, x , s)→ F (x0, x , s)
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Forward problem

Figure: Propagation of a seismic wave in an isotropic, non-homogeneous medium

Fermat’s principle

F (x0, x , s) = min
c∈C(x0,x)

∫
c
s(y)dy

Eikonal equation∣∣∇xF (x0, x , s)
∣∣ = s(x), F (x0, x0, s) = 0.
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Forward model

Let’s discretize the spatial domain D on a finite grid (≈ 106 cells).
Efficient solvers based on Eikonal equation. For a given x0 and s,
provides the value of F (x0, x , s) for all x .
M. Noble et al, Accurate 3-d finite difference computation of
traveltimes in strongly heterogeneous media. Geophysical Journal
International, 2014.

Fermat’s principle: gradient of the forward function with respect to
slowness field s.

F (x0, x , s) = min
c∈C(x0,x)

∫
c
s(y)dy = min

c∈C(x0,x)

∫
D
1c(y)s(y)dy .

By the envelope theorem,

∇sF (x0, x , s) = 1raypathmin(x0,x ,s).
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Model

M microseismic events, N sensors. Dataset:

D =
(
t̄ i
)
1≤i≤M ,

where t̄ i stands for the vector of first arrival times of i-th event:

t̄ i =


t i1
t i2
· · ·
t iN

 = t0(i) +


F
(
x0(i), xr(1), s

)
F
(
x0(i), xr(2), s

)
· · ·

F
(
x0(i), xr(N), s

)
+


ε1
ε2
· · ·
εN

 ,

with independent Gaussian recording errors εj ∼ N (0, σ2).

Conditional likelihood of one microseismic event:

p
(
t̄ | t0, x0, s

)
∼ exp

− 1
2σ2

N∑
j=1

(
tj − t0 − F

(
x0, xr(j), s

))2 .
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Model

By integrating out the latent variables
(
t0, x0) corresponding to

hypocenter time and location,

p (t̄ | s)

=

∫
p
(
t̄ |
(
t0, x0) , s) pprior

(
t0, x0) dt0 dx0

∼
∫

exp

− 1
2σ2

N∑
j=1

(
tj − t0 − F

(
x0, xr(j), s

))2 pprior
(
t0, x0) dt0 dx0.

Under assumption of independence of microseismic events:

p (S | s) =
∏
t̄∈S

p (t̄ | s) .
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Model

Then, by Bayes’ theorem,

p (s | S) =
∏
t̄∈S

p (t̄ | s) pprior(s).

Mathematical formulation of the problem

arg max
s

O(s|S),

where the objective function is the (renormalized) log-posterior distribution
on s:

O(s,S) :=
1
M

∑
t̄∈S

(
log p (t̄ | s) +

1
M

pprior(s)

)
.
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Gradient of the objective

Figure: Minimum raypath in non-homogeneous velocity field. Vector raypathmin

indicates which cells of the discretized mine are visited by the minimum raypath.

∇s log p (t̄ | s) =
1
σ2

N∑
j=1

∫
raypathmin

(
x0, xr(j), s

) (
tj − t0 − F

(
x0, xr(j), s

))
· ppost

(
t0, x0|t̄, s

)
dt0 dx0.
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Stochastic gradient descent

To perform a classical gradient descent, we need the gradient of the
objective function

∇s O(s,S) =
1
M

∑
t̄∈S

∇s log p (t̄ | s) .

Too heavy to compute at each iteration!

→ noised version of the gradient, computed on a mini-batch of data B
with |B| � M:

∇s O(s,S)≈∇s O(s,B) =
1
|B|
∑
t̄∈B

∇v log p (t̄ | v) .
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Algorithm

Input: sensors’ locations
(
xr(j)

)
1≤j≤M , P−wave triggers data

(
t̄ i
)
1≤i≤M .

Parameters: step size γ, mini-batch size m = |B|.

Initialize slowness field s .

Iterate: update s .
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Algorithm: update rule

Under current slowness field s , compute for all x , xr travel-times
F (x , xr , s) (back-propagation, FORTRAN).

Pick a new mini-batch of data B.

For each event in B, compute the a posteriori distribution of the
hypocenter, ppost

(
t0, x0|t̄, s

)
.

Compute the minimum raypath between each likely hypocenter and
sensor, raypathmin

(
x0, xr(j), s

)
(FORTRAN).
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Algorithm: update rule

Compute the noised gradient:

∇sO(s,B) =
1
|B|σ2

∑
t̄∈B, 1≤j≤N

∫
dt0 dx0 (tj − t0 − F

(
x0, xr(j), s

))
· raypathmin

(
x0, xr(j), s

)
ppost

(
t0, x0|t̄, s

)
.

Update s :

s ← s + γ∇sO(S, s).
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Generation of synthetic data

The synthetic dataset D is generated with:
1005 hypocenters sampled uniformly in spatial domain. We use
batches of size m = 500.

Sensor array: real one of El Teniente mine.
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Synthetic velocity fields: checkerboards

Figure: Checkerboard: two possible values
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Checkerboard reconstruction, 64 blocks, El Teniente sensors
array
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Checkerboard reconstruction, 64 blocks, El Teniente sensors
array

Figure: Reconstruction of 64 block checkerboard model, ET sensors array.Claire Delplancke (U. of Bath) Scalable passive seismic tomography 2020 March 6th 24 / 30



Checkerboard accuracy reconstruction, El Teniente sensors
array

Reconstruction of the checkerboard velocity model

number of blocks constant learning rate adaptive learning rate

8 63 % 100 %

27 37 % 81 %

64 34 % 78 %

Table: Accuracy of the reconstruction up to a 2% discrepancy
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Marmousi model

Figure: True Marmousi velocity field
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Marmousi model

Figure: Reconstruction with our algorithm
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Marmousi model: inner workings

True number of cells in Marmousi model: 351000.

The number of iterations is divided into loops. In the first loop, the
velocity field model used in the reconstruction consists of 3 blocks. At
the beginning of each successive loop, the number of blocks is
multiplied by 4. Total number of blocks at the end is 98304.
We start the iterations assuming a larger value of the standard
deviation than the true one, and decrease it at the beginning of each
new loop.
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Conclusions

Algorithm is able to quickly reconstruct synthetic velocity field from a
streaming of simulated noisy first-arrival time records
Reconstruction accuracy depends on raypath density.
Algorithm can extend to other (deterministic) parametrization of the
velocity field
Parallel implementation enables systematic use.
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Perspectives

Mathematical and ML improvements
I Include regularization in the prior on the slowness field
I Bayesian sampling on the a posteriori on the slowness field
I More astute parametrization of the velocity field

What about real data?

no data quality standard, black-box
preprocessing, systematic errors badly understood
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Monitoring on test dataset

Figure: Monitoring on test dataset
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