UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACION

WEFE: THE WORD EMBEDDINGS FAIRNESS EVALUATION FRAMEWORK

TESIS PARA OPTAR AL GRADO DE MAGISTER EN CIENCIAS,
MENCION COMPUTACION

MEMORIA PARA OPTAR AL TITULO DE INGENIERO CIVIL EN
COMPUTACION

PABLO FERNANDO BADILLA TORREALBA

PROFESOR GUIA:
FELIPE BRAVO MARQUEZ
PROFESOR GUIA 2:
JORGE PEREZ ROJAS

MIEMBROS DE LA COMISION:
RICARDO BAEZA-YATES
AIDAN HOGAN
ELTANA SCHEIHING GARCIA

Este trabajo ha sido parcialmente financiado por el programa Iniciativa Cientifica Milenio
Codigo ICN17 _002.

SANTIAGO DE CHILE
2020

Resumen

En el ultimo tiempo, diversos estudios han mostrado que los modelos de word embeddings
exhiben sesgos estereotipados de género, raza y religion, entre otros criterios. Varias métricas
de equidad se han propuesto para cuantificar autométicamente estos sesgos. Aunque todas
las métricas tienen un objetivo similar, la relacién entre ellas no es clara. Dos problemas
impiden una comparacion entre sus resultados: la primera es que operan con parametros de
entrada distintos, y la segunda es que sus salidas son incompatibles entre si. Esto implica
que un modelo de word embedding que muestra buenos resultados con respecto a una métrica
de equidad, no necesariamente mostrara los mismos resultados con una métrica diferente.

En esta tesis proponemos WEFE, the Word Embeddings Fairness Evaluation framework,
un marco tedrico para encapsular, evaluar y comparar métricas de equidad. Nuestro marco
toma como entrada una lista de modelos de word embeddings pre-entrenados y un conjunto de
pruebas de sesgo agrupadas en distintos criterios de equidad (género, raza, religion, etc. ..).
Luego ranquea los modelos segtn estos criterios de sesgo y comprueba sus correlaciones entre
los rankings.

Junto al desarrollo del marco, efectuamos un estudio de caso que mostré que rankings
producidos por las métricas de equidad existentes tienden a correlacionarse cuando se mide
el sesgo de género. Sin embargo, esta correlacion es considerablemente menor para otros
criterios como la raza o la religion. También comparamos los rankings de equidad generados
por nuestro estudio de caso con rankings de evaluacion de desempeno de los modelos de word
embeddings. Los resultados mostraron que no hay una correlaciéon clara entre la equidad y
el desempeno de los modelos. Finalmente presentamos la implementacion de nuestro marco
teorico como libreria de Python, la cual fue publicada como software de codigo abierto.

Abstract

Word embeddings are known to exhibit stereotypical biases towards gender, race, religion,
among other criteria. Several fairness metrics have been proposed in order to automatically
quantify these biases. Although all metrics have a similar objective, the relationship between
them is by no means clear. Two issues that prevent a clean comparison is that they operate
with different inputs, and that their outputs are incompatible with each other. This im-
plies that one method exhibiting good results with respect to one fairness metric does, not
necessarily exhibits the same results with respect to a different metric.

In this thesis we propose WEFE, the Word Embeddings Fairness Evaluation framework,
to encapsulate, evaluate and compare fairness metrics. Our framework needs a list of pre-
trained word embeddings models and a set of bias tests grouped into different fairness criteria
(gender, race, religion, etc...) and it is based on ranking the models according to these bias
criteria and checking the correlations between the resulting rankings.

We conduct a case study showing that rankings produced by existing fairness methods
tend to correlate when measuring gender bias. This correlation is considerably less for other
biases like race or religion. We also compare the fairness rankings with an embedding bench-
mark showing that there is no clear correlation between fairness and good performance in
downstream tasks. We finally present the implementation of our theoretical framework as a
Python library that is publicly released as open source software.

ii

il

Dedicado a mi familia y amigos,
como también a mi perro Don Mota,

que en paz descanse.

v

Agradecimientos

Primero que nada, le agradezco infinitamente y de todo corazén a mi madre Jesica y a mi
padre Claudio por todo el carino y apoyo incondicional que me han entregado, no solo durante
este largo y valioso paso por la universidad, si no que durante toda mi vida. Sin ustedes no
serfa lo que me he convertido. Muchas, pero muchas gracias.

Agradezco de igual manera a mis hermanos Antonio y Claudia, que siempre han estado
de alguna u otra forma presentes y que espero que sea siempre asi. Mencion especial para
Don Mota, nuestro querido perro que estuvo a meses de verme titulado. jDescansa en paz
Motoso!

Doy las gracias también a mis abuelos maternos Arnoldo e Inés, como también a mi Abuela
paterna Olivia, por cuidarme y acogerme, por sus divertidas anécdotas y por las ardientes
discusiones politicas. Muchas gracias a ellos y a toda mi familia por su carifio, experiencia y
conocimiento.

Quiero agradecer en igual medida a mis profesores guia Felipe Bravo y Jorge Pérez por
la gran oportunidad y la confianza que me entregaron para desarrollar este trabajo. Fueron
excelentes tutores y me introdujeron espectacularmente en el mundo de la ciencia. jMuchas
gracias! También, a todos los profesores y profesoras que confiaron en mi para ser profesor
auxiliar de sus ramos. Fueron excelentes oportunidades para complementar mi aprendizaje.

Agradezco con todo mi carino también a mis queridos amigos. Qué hubiese sido mi vida
sin compartir con ustedes el colegio y la universidad; sin los innumerables viernes en la tarde
en 850 (y ocasionalmente los Bella) y sabados por la noche deambulando por CDLV; sin los
partidos ni los trekkings, sin los asados, sin las pizzas después de las clases, sin las protestas,
sin los viajes a la playa ni las salidas al cerrito; sin permitirme experimentar en la cocina, sin
pudrirnos juntos en los juegos por la noche (sobre todo en cuarentena) y en general, sin la
gran cantidad de espléndidos momentos y compania (tanto en las buenas como en las malas)
que ustedes me han entregado a lo largo de todos estos anos.

Por dltimo, hay un sinfin de personas que me han permitido llegar hasta aqui: Angélica,
Marcia, Jaime, profesores y amigos del colegio Manquecura CDLV, personal del DCC y
muchos mas que no he nombrado pero que de todas formas los considero: muchas gracias
por su apoyo, carino y confianza.

iMuchas gracias a todas y todos ustedes por acompanarme y permitirme llegar hasta aqui!

vi

Contents

(1__Introductionl 1
(L1 Prior Definitionsl 2
[L2 Research Probleml 3
(1.3 Research Hypothesis| 4
MA Results o 4
(Lo Research Outcomel 5
M6 Outlime. o 5

2 Background and Related Work| 7
[2.1 Scientific Disciplines| o o 8

[2.1.1 Natural Language Processingl 8
[2.1.2 Machine Learningf o L. 9
[2.2 Word Representations| o oo 10
[2.2.1 One Hot Representations|. 10
[2.2.2 Distributional Hypothesis and Distributional Representations 11
2.2.3 Word Context Matrices., .. 11
[2.2.4 Distributed Representations or Word Embeddings| 13
2.3 Fairness in Machine Learning|, 22
231 BiasinDatal. 23
[2.3.2 Algorithmic Fairness| 24
2.4 Fairness in Word Embeddings| 25
[2.4.1 Works on Bias Measurement in Word embeddings| 25
[2.4.2 Bias Mitigation of Word Embeddings| 28
R5 Discussion] 29

B WEFE Design| 30

[3.1 Building Blocks|o 30
[3.1.1 Target Set| 31
B.1.2 Attribute Setl oo 31
3.1.3 Queryl 31
[3.1.4 Templates and Subqueries| 0oL 31
(3.1.5 Fairness Metricsl. Lo 32

3.2 WEFE Ranking Process| 32
[3.2.1 Creating the Scores Matrix|. 33
[3.2.2 Creating the Rankings| 33
[3.2.3 Gathering Rankings in a Final Matrix{ 33

vil

[3.3 Case Study|
[3.3.1 Embedding models| oo o
[3.3.2 Queries and Query Sets|
[3.3.3 Specific Fairness Metrics|00 000000

[4.2 Components|
[4.2.1 Target and Attribute Sets|
4.2.2 Query|l ..o
[4.2.3 Word Embedding Model|00
424 Metrido

[4.3.1 Simple Query Creation and Execution|

[4.3.3 Aggregating Results and Calculating Rankings
[4.3.4 Ranking Correlations|

[Bibliographyi

A

[A° Word Sets and Queries|

(Al WEAT Word Sets| o o oo oo

B Queries

[B.1 Gender Queries|
(B.2 Ethnicity Queries|
[B.3 Religion Queries|.

[C " WEFE Library Tutoriall

[C.1 Runa Queryl
(C.2 Running Multiple Queries|,
(C.3 Rankings|.
[C.3.1 Differences in Magnitude Using the Same Fairness Metric)
(C.3.2 Differences in Magnitude Using Different Fairness Metrics|
[C.3.3 Calculate Rankings|
[C.3.4 Ranking Correlations|

List of Tables

X

2.1 An example of a word-context matrix.| 12
2.2 WEAT original results using word2vec model [7]. In the figure: N7 is the size |
of the target sets, N4 i1s the size of the attribute sets, d is the value ot the ot |

the metric and p is the p-value of the test.| 26

2.3 RNSB KL-divergence Case Study results.|. 28
[3.1 Details of the embeddings used in our case study| 34
[3.2 Final matrices obtained atter applying our framework for several metrics, em- [
bedding models, and three different query sets.|. 37

Al WEAT word setsl o 57
Al WEAT word setsl 58
(A2 RND wordsetsl 58
(A2 RND word sets| o 59
(A2 RND wordsets| 60
[A.3 Debias Word Embeddings Word sets| 60
[A.3 Debias Word Embeddings Word sets| 61
[A.4 Debias multiclass word setsl o oL 61
[A.5 Bing Liu sentiment lexicon examples 62
[B.1 Gender queries| 64
[B.2 Ethnicity queries| 65
[B.3 Religion queries|o 66
[C.1 Results of the execution of gender queries evaluated on three models of em- |
[beddings using WEAT..| 70
[C.2 Aggregated results of the execution of gender queries evaluated on three em- |
| bedding models using WEAT.| 71
[C.3 Gender and ethnicity aggregated WEAT results comparison.| 73
[C.4 WEAT and RNSB gender aggregated results comparison.| 73
[C.5 WEAT and RNSB rankings calculated from the aggregated results.| 75
[C.6 Correlations between rankings.|. 7

List of Figures

[2.1 ~ Architecture of a skip-gram neural network.| 16
[2.2 National origin identity terms sentiment distribution. 28
[3.1 Spearman correlation matrix of rankings by different measures. | 38
[3.2 Accumulated rankings by metric for the overall results plus WEB.| 39
[4.1 Creation and execution of a gender query on word2vec using WEA'T| 44
[4.2 Creation and execution of several gender queries on various embedding models |
| using WEATo 45
[4.3 Gender bias ranking over various models ot embeddings using WEAT|. . . . 46
[4.4 Calculation of correlations between rankings obtained from the evaluation of |
[bilases on different metrics) Lo 47
[C.1 Graphed results of the execution ot gender queries evaluated on three models |
| of embeddings using WEAT. 000 70
(C.2 Graph of the aggregated results of the execution of gender queries evaluated |
[on three models of embeddings using WEAT| 72
(C.3 Bar chart of the rankings using the metric and bias criteria as a separator |
| (facet). . . o o 76
[C.4 Bar chart of the aggregated rankings by embedding model.| 76
[C.5 Heatmap of the correlations between the rankings.|. 78

Chapter 1

Introduction

Data-driven models consist of a wide range of techniques that focus on inferring patterns from
data. Such inference is achieved through the training process, which consists of analyzing
immense amounts of data to learn their intrinsic relationships. Nowadays, such models are
widely used both in industry and academia. Clear examples of the application of these models
are automatic translators, chatbots and personalized web content search.

Natural language processing (NLP) is a good example of an area of study that has followed
the data driven approach in recent years. Its main objective is to design methods and al-
gorithms capable of understanding or producing unstructured natural language. Commonly,
these methods are focused on solving narrow, well-defined tasks. An example of this is the
Question Answering task: it takes a question as input and gives an answer to it as output,
all in natural language.

One of the fundamental problems in NLP is how to represent words as mathematical
structures that can be operated by a computer. A popular approach is to create the rep-
resentations based on the use of the distributional hypothesis. This hypothesis states that
words occurring in the same contexts tend to have similar meanings [22], or in simpler words,
a word is characterized by the company it keeps [I7]. This strongly suggests that since con-
texts can define words, we can create representations of words based on their context.

Word embeddings are a set of models that use the distributional hypothesis approach to
represent words. Embedding models captures the meaning of words in dense, low-dimensional
continuous vectors derived from the training of neural networks. The training process of the
networks is executed by using large collections of documents, commonly called “corpora”. The
enormous amount of data used in the training process allows word embedding to effectively
capture the semantics of words. The outstanding performance in capturing semantics has
led to word embeddings becoming key components in many NLP systems.[19].

One of the advantages of using word embeddings is the ability to operate them mathemat-
ically. The calculation of the distances between the representations allows the study of the
association between different words, as well as the finding of similar words. Another common
operation is the calculation of analogies: given the representations of words @, 5, Z, find the

representation ¢ such that “a is to b as & is to y”. The most iconic example of is shown by

Mikolov et al. [35] in which for the equation Germany — Berlin ~ France — @, the vector
x = Paris is the most suitable one as a solution.

A widely reported shortcoming of word embeddings is that they are prone to inherit
stereotypical social biases (regarding gender, ethnicity, religion, as well as other dimensions)
exhibited in the corpora on which they are trained [7, [18] [48]. These biases usually show
some attributes (e.g., professions, attitudes, traits) being more strongly associated with one
particular social group than another. An illustrative example is the vector analogy between
the representations of words “man” and “woman” being similar to the relationship between
words “computer programmer” and “homemaker” [5].

Although the previously mentioned works have detected different biases in word embed-
dings, their measurement methods are poorly formalized. Most exploratory work on bias in
embeddings, to the best of our knowledge, has only studied models trained in the English
language and none of them have been used to compare and rank embeddings according to
their biases.

In this thesis we propose a new approach to solve these pitfalls by first formalizing the
bias measurement processes in a theoretical framework and then, by implementing and using
this framework to conduct a case study comparing various embedding models according to
their bias.

Even though our case study does not cover the measurement of bias in other language em-
bedding models, we hope that the implementation and further publication of our framework
as a Python library enables other teams to carry out these studies as seamlessly as possible.

1.1 Prior Definitions

Before continuing, it is necessary to summarize and more formally define some of the concepts
introduced in the previous section, as well as to introduce additional key concepts used in
this thesis.

Word Embeddings Word Embeddings are a set of techniques for representing natural
language words in dense real number vectors. These representations aim to capture the
context of each word.

Social Group We define Social group as a group of people that are grouped together
according to a certain criterion. This criterion can be any character or trait that distinguishes
groups of people, such as gender, social class, religion, ethnicity, among others. For instance,
Asians, Europeans, Hispanics are groups of people defined by the criterion of ethnicity.

Bias In our context, we define bias as the act of treating individuals belonging to different
social groups unequally, usually in a way that is considered unfair.

Target Set A target word set corresponds to a set of words intended to denote a partic-
ulars social group, which is defined by a certain criterion. For example, if the criterion is
ethnicity, we can define the groups of people according to their surnames: a set of target
words representing the Hispanic social group could contain words like “gonzdlez”, “rodriguez”,
“pérez” and a set of target words representing the Asian social group could contain words

A1

like “wong”, “wu” and “chen”.

Attribute Set An attribute word set is a set of words representing some attitude, charac-
teristic, trait, occupational field, etc. that can be associated with individuals from any social
group. For example, we can define the set of intelligence attribute words with the words

A1

“smart”, “ingentous”, “clever”.

Query A query is a collection of target and attribute sets. It is intended to contain the sets
of words whose relationships will be studied by a fairness metric. For example, a query that
studies the relationship between Hispanics and Asians with respect to intelligence would be
composed of the word sets described in the previous point.

Fairness Metric A fairness metric is a function that quantifies the degree of association
between target and attribute words in a word embedding model. Further details and examples
of metrics will be given later in the corresponding chapter.

1.2 Research Problem

The problem of how to quantify the mentioned biases is currently an active area of research |7,
15] 18], 20} [32], 48| 49, 52|, and several different fairness metrics have been proposed in the
literature in the past few years. These metrics compare the representations of several word
sets through vector operations and calculate a numerical score associated with the bias they
were able to detect. Commonly, these comparisons are made between sets of words that are
associated with social groups (target words) and words of attributes that can be associated
(unfairly or not) with people (attribute words).

Although all metrics have a similar objective, the relationship between them is by no
means clear. Two issues that prevent a clean comparison is that they operate with different
inputs (pairs of words, sets of words, multiple sets of words, and so on), and that their
outputs are incompatible with each other (reals, positive numbers, [0, 1] range, etc.).

Moreover, fairness metrics are usually proposed coupled with a specific debias method
[5, B2]. This implies that one debias method exhibiting good results with respect to one
fairness metric does not necessarily exhibit the same results with respect to a different metric.

Currently there are many pre-trained word embeddings circulating on the web. Many of
the NLP systems use these models as key components. Most of these models have never
been subjected to fairness studies: research has tended to focus on studying very specific
biases of a few popular set of embedding models (word2vec [35], fasttext [4], glove [37],
conceptnet [45]). Even worse, to the best of our knowledge there are no simple methods to
compare the bias exhibited by different models of embeddings. In order to prevent these

biases from being inherited in such systems, it would be extremely useful to provide some
mechanism to compare and rank these models according to their unfairness.

Gender bias is arguably the criterion that has received the most attention by the research
community. Most of the metrics and tests have been specially designed for studying this type
of bias. This also provides evidence that more work is needed to propose new experiments
able to consistently test and rank embeddings for criteria beyond gender, such as ethnicity,
religion, social class, political position, among others types of biases.

1.3 Research Hypothesis

Based on the observable differences in the approaches to measuring fairness mentioned above,
we propose that it is possible to formulate a framework to standardize fairness measures and
through its use, propose a methodology to rank models of embeddings according to different
fairness metrics and bias criteria.

1.4 Results

As mentioned in the introduction, the results achieved by the development of this thesis can
be summarized into the three following points:

1. The creation of a theoretical framework that standardizes the main building blocks and
process of bias measuring in word embeddings models.

2. The carrying out of a case study where we were able to measure and rank the embed-
dings according to the gender, ethnic and religious bias that these models presented.

3. The develop of an open-source library that implements the framework and enables the
execution of the case study.

The first result involved the formalization of what a fairness metric is, the parameters
necessary for its operation (a query and an embedding model), its expected outcomes and
the adaptation of the metrics presented in the literature to our proposal. Since it was also
necessary to compare different models of embeddings on different bias tests, this point also
included the development of an aggregation and ranking method based on the framework.

The second result was the execution of a case study that evaluated and ranked gender,
ethnic and religious biases exposed by seven publicly available pre-trained word embedding
models. The evaluation of these biases was carried out using three fairness metrics proposed
in the literature: WEAT [7], RND [18|, and RNSB [48]. This point also considers checking
whether the rankings obtained in assessing word embeddings bias match the ratings derived
from the common tasks for assessing the performance of embedding models (by using the
Word Embedding Benchmark [24] library). The scores and rankings obtained allowed to
elucidate which are the least biased models in the three evaluated areas, the effects of a
debias process on a model with respect to the original and the relationship between model
biases and model performance.

The last result included the implementation of the framework and aggregation mechanisms
as a Python library. We considered that it would be very relevant to publish the library as
an open source toolkit in order to allow anyone to replicate the case study and conduct their
own bias experiments. This is why the library was designed to fulfill the standards required
to be used and extended by the community (conventions, testing, documentation, code-style,
among others).

1.5 Research Outcome

As a result of this work, we were able to publish a paper describing our proposed framework
and our experimental results derived from our case study at the International Joint Confer-
ence on Artificial Intelligence (IJCAI)[2]. Derived from our paper, we published a blog in
KDNuggets [1], a page dedicated to the publication of news in Machine Learning E] We are
also preparing a paper to publish our library in the open-source software track of the Journal
of Machine Learning Research (JMLR). Furthermore, the library is available from its official
websitd? and its implementation code in the github repositoryf}

1.6 OQOutline

The rest of the thesis is organized as follows:

In Chapter 2] we give a brief introduction to the scientific disciplines involved in our
work (Section and the necessary background to understand word representations and
present their most preferred models (Section . Next, we provide an overview of the
research work on machine learning bias (Section[2.3)). and then, we continue with a review of
recent work on bias evaluation in embedding models (Section [2.4)). The chapter closes with a
discussion of the problems presented by the previous works on bias measuring and a proposal

to solve them. (Section [2.5).

In Chapter [3| we describe our framework and the execution of the case study in detail.
We start by showing the WEFE main building blocks (Section ; then we explain how
we use WEFE to compare and rank different models of embeddings according to their bias

(Section [3.2]). Next, we show the parameters used in our case study (Section [3.3). We close
this chapter by providing an extensive analysis of the results produced by the case study

(Section [3.3.4)).

In Chapter 4] we describe the implementation of the library. We begin by giving a brief
motivation about the importance of implementing our framework as an open-source library
(Section . Then we continue by detailing the main classes and functions of the library
(Section and showing the different bias assessment processes that can be executed by
our software (Section [4.3)).

"https://www.kdnuggets.com/2020/08/word-embedding-fairness-evaluation.html
’https://wefe.readthedocs.io
3https://github.com/dccuchile/wefe/

https://www.kdnuggets.com/2020/08/word-embedding-fairness-evaluation.html
https://wefe.readthedocs.io
https://github.com/dccuchile/wefe/

The last chapter of this work (Chapter [5) enumerates the conclusions derived from our
work (Section and provides a comprehensive list of topics for future work (Section .

Chapter 2

Background and Related Work

This chapter is composed of two main topics. First, we present the background which briefly
introduces the reader to the area of knowledge in which the thesis is developed and the
methods associated with it. Then, we go through the related work specific to the topic of
biases in word embeddings. Its structure is as follows: background in the area of natural
language processing and machine learning, word representations, word embeddings, fairness
in machine learning and fairness in word embeddings.

Each of these points is detailed in the following outline: We begin by briefly reviewing the
fields of Natural Language Processing (Section [2.1.1)) and Machine Learning (Section [2.1.2]

Next, we introduce the word representations (Section [2.2)) along with the distributional
hypothesis (Section [2.2.2)). Later, we make a brief overview of the models prior to word em-
beddings: one-hot representations (Section [2.2.1)) and word-context matrices (Section [2.2.3)).

Then, we review word embeddings: their formulation (Section , the tasks they can
solve (Section [2.2.4)), how to obtain these models (Section [2.2.4)), how to evaluate this mod-
els (Section and their limitations (Section [2.2.4)). This is followed by a presentation
of the related work on fairness (Section [2.3)). In this part we will discuss biases in the data
(Section as well as in the algorithms (Section [2.3.2).

The following section presents the related work of fairness in word embeddings (Sec-
tion [2.4). We then review both the assessment (Section and bias mitigation in these
models (Section . Finally, in consideration of the aforementioned issues, we provide a
small discussion arguing for the need to develop a framework to standardize previous work

(Section [2.5).

2.1 Scientific Disciplines

This section intends to briefly contextualize the scientific disciplines in which our work is
developed: natural language processing and machine learning.

2.1.1 Natural Language Processing

Natural Language Processing (NLP) is an area of study of computer science, artificial intel-
ligence and linguistics. There are multiple definitions that vary slightly by author. Golberg,
in his book Neural Network Methods for Natural Language Processing [19] proposes the fol-
lowing definition: NLP is a collective term referring to automatic computational processing
of human languages includes both algorithms that take human-produced text as input, and
algorithms that produce natural looking text as outputs. Eisenstein [12] in his notes sets out
his definition of NLP as: Natural language processing is the set of methods for making human
language accessible to computers. On other hand, Johnson [25] claims that NLP develops
methods for solving practical problems involving language.

In practical terms, NLP focuses its efforts on solving well-defined and limited tasks such as
translation, topic-classification, part-of-speech tagging, among several others. Each of these
tasks is a subfield of this area and has particular objectives, methodologies and evaluation
methods. Although the resolution of these tasks requires the understanding of language, NLP
does not include the study of it among its objectives. On the contrary, this is accomplished
by another area of study: Computational Linguistics. Although both areas share common
problems and their intersections are broad, their goals are different.

The tasks that NLP aims to solve are commonly grouped into three main groups:

e Text Classification: Given a document, assign it a class. In this group we find tasks
such as topic classification (designating a defined topic to a document), spam filtering
and sentiment analysis (defining a feeling or mood to a document), among others.

e Sequence Labeling: Given a sentence, assign a class to each of its words. In these we
find part of speech tagging (POS) and named entity recognition (NER) in the words
that compose the documents, among others.

e Sequence to Sequence: Given some sentence or document, generate another from it. In
this category we find the most challenging tasks, such as translation, question answer-
ing, summarization and chatbots, among others.

The resolution of these tasks presents complex challenges. Its primary challenge is the
very nature of natural language: generally it is very ambiguous, it is constantly changing
and evolving, and presents great difficulty in formalizing the rules that govern it. Gold-
berg proposes three properties that make the computational processing of natural language
challenging [19]:

e The first is that language is discrete. The most basic elements of written language are
characters. These can be combined to represent objects, concepts, events, actions and
ideas. Fach way in which the characters can be combined is a discrete object. This
property states that we cannot always infer the relationship between two words from
the characters that compose them. Take the example of the words dog and cat: we

know that they represent words to designate pets, however, their composition does not
indicate any apparent relationship between them or with pets.

e The second is that language is compositional. The combination of multiple words can
produce phrases or sentences, each with a specific meaning and goal. This property
states that the meaning of a sentence goes beyond the individual words that compose
them. This implies that in order to understand sentences we need to analyze not only
the words and letters that compose them, but the sentence as a whole.

e The third is that language is sparse. This indicates that the way we can combine
characters and words is in practice infinite, which implies, that we will also have infinite
meanings. This fact prevents us from building a definite set of sentences that generalize
to all the others. And even if we manage to establish all the valid sentences up to this
point, we will probably in the future observe cases that we did not consider before.
These reasons make it complex to learn solutions to the example tasks.

The classic approach used to solve these tasks was based on designing very complex systems
of rules defined manually by linguists and programmers. However, due to the difficulty of
their creation and maintenance, as well as their performance limitations, their use began to
decline. Recently, the main focus of solving these tasks changed radically to the intensive
use of methods based on statistics and supervised machine learning, especially the subarea of
deep learning. These techniques have better performance than their predecessors and their
creation is simpler.

2.1.2 Machine Learning

Machine Learning is the field of computer science and artificial intelligence focused on the
study of algorithms that are capable of learning from previous observations (sample data) to
make predictions [I9]. The main objective of these algorithms is the building of mathemat-
ical models able to make decisions without being explicitly programmed. The models are
generated through the training process. In this process, the algorithm tries to infer as many
patterns and regularities as possible from the sample data, trying to internalize the knowl-
edge in the model in the best possible way. The resulting model must be able to generalize
the learned knowledge in order to process samples that it has never observed.

The learning technique varies according to the model to be created: it is supervised when
the algorithm needs labelled data to train and unsupervised when the algorithm is able to
infer knowledge from the non-labelled data.

Although these methods generally have better results than rule-based systems, they also
have difficulties: models expressing complex systems in reality require a massive amount of
data to function properly, the costs and time of tagging large amounts of data are very high,
and the models are often task-specific.

There are many different algorithms for creating such models. Each of these has different
approaches and complexities. Within these are the Neural Networks (NN). Neural Networks is
a family of learning techniques that was historically inspired by the way computation works
in the brain, and which can be characterized as learning of parameterized differentiable
mathematical functions [19]. The basic unit of the networks are the neurons, which are

9

stacked in layers. The production of networks with several layers is known as Deep Learning
(DL). Currently, the great learning capabilities offered by deep learning models and their
associated high performance make them the preferred choice when solving the majority of
NLP tasks. We will not cover in detail their definition and function in this thesis. However,
excellent references can be found in books by Goodfellow [21] or Golderg [19].

2.2 Word Representations

A fundamental issue in NLP is how we represent words as mathematical objects that we
are able to manipulate. In simpler words, we need to convert the words that compose
the documents we work with into vectors so that ML algorithms are able to process them.
Representations will vary depending on the method used to create them. In the following
sections we present different models of vector representations of documents and words. We
start by showing the classic bag of words model and its semantic limitations. Then, we show
how distributional representations solve some of these problems.

2.2.1 One Hot Representations

One hot representation is one of the most basic word and document (set of words) represen-
tations. Its original objective is to model documents through vectors that contain the count
of their words. Its formulation is founded on a very simple representation of words: a one-hot
vectors.

In this model, the words are represented in vectors of the size of the vocabulary used. Each
dimension of the vector will be related to a specific word in the vocabulary. The appearance
of a word in the document is represented as a a one-hot vector, in other words, a vector
whose components are only zeros, except in the dimension to which the word corresponds,
where its value is one.

Representing documents in this model is relatively simple: first calculate the vector rep-
resentation of each word and then average them into a single vector. Formally, let a doc-
ument be a set of words {wy,ws,...,w,} € D Suppose we have a dataset of documents
{dy,dy, ...,d,} € D with |V| different words or tokens (which we will call the vocabulary).
The model consist of vectors € RVl where each dimension of the vector is one-hot encoded
word vector. We can see how the word cat would be represented within the model in the
one-hot vectors shown in formula 2.1}

[ant] [0
casual 0
x = cat — |1 (2.1)
catacombs 0
zoom | 10

10

Then, to represent the documents, simply average the one-hot vectors for each of the
words in the document. This is shown in the formula 2.2}

ID|

T = ’—11)‘ Z x; (2.2)

€D

One of the major advantages is that documents with different lengths and words reside
in the same vector space. However, this type of representation poses two major difficulties.
First, they ignore the meaning of words. Second, for very big vocabularies (most real cases)
the created representations are of high dimensionality, which prevents the correct operation
of the ML algorithms. Possible solutions are detailed in the next part.

2.2.2 Distributional Hypothesis and Distributional Representations

One hot representation is presented as a simple but powerful option to represent the doc-
uments in a vector space where we can easily work with them. However, it has a major
shortcoming: the representations do not contain the meaning of the words. This makes it
impossible to calculate any type of relationship between words.

For example, the one-hot representation of the word cat is as different from that of a dog
as that of a pizza: they all have different dimensions associated with them. This implies
that although we know that the representations of dog and cat should not be totally different
(since they are both animals), this model ignores any relationship between them. We see
that this fact prevents us from relating words by their meaning, which limits their possible
uses.

An option that emerged for this problem is to use the Distributional Hypothesis. The
Distributional Hypothesis states that words that occur in the same context tend to have
similar meanings [22] or equivalently, a word is characterized by the company it keeps.

Using the previous idea, we can create representations that capture the meaning of words
by capturing their context in vectors. These models are known as Distributional Represen-
tations. The first method to implement Distributed Representations is the creation of word
vectors through the use of word-context matrices.

2.2.3 Word Context Matrices

Word-context matrices are models that attempt to capture the distributional properties of
words by using the co-occurrences that occur between them. In practice, each row i represents
a word and each column j represents a context word. Thus, each value in the (i, j) matrix
quantifies the strength of association between a word and its context.

There are several ways to calculate correlation matrices. Below we will present two.

11

I like cats pizza enjoy sleeping
I 0 2 0 0 0 0
like 2 0 1 1 0 0
cats 0 1 0 0 0 0
pizza 0 1 0 0 0 0
enjoy 1 0 0 0 0 1
sleeping 0 0 0 0 1 0

Table 2.1: An example of a word-context matrix.

Co-ocurrence counts

The first option to calculate the force of association consists of counting of the co-occurrences
between a target word w; and the words of its context ¢; over all the documents of the corpus.
The context is defined as windows of words surrounding w; and its length k is a parameter
of the model. If the vocabulary of the context is equal to the vocabulary of the target words,
then the size of the matrix will be |V| x |V|. In other words, each word is represented as a
sparse vector in high dimensional space, encoding the weighted bag of contexts in which it
occurs [19].

For example, for the following documents, the word-context matrix is represented in the

table .1}

o | like cats.
o [like pizza.

e [enjoy sleeping.

In table one can observe the similarity between vectors that appear in the same con-
texts: the ones of cat and pizza. Although they do not represent the same thing, it is
understood that both characterize an entity with the quality of being liked.

The count-based word-context matrix presents an improvement over one-hot by including
semantics in word representations . However, word count is not a very good method of achiev-
ing this. Context words that have a very high count frequency will have very unbalanced
vectors. For example, word-context pairs a cat and the cat will receive a greater importance
in the model than cute cat and small cat, although paradoxically, the latter contexts of cats
are more descriptive than the former ones. [I9] The following method attempts to solve this
problem.

Positive Point-Wise Mutual Information

The correlations can be calculated by using another metric that also captures the association
between a target word and its context: the pointwise mutual information (PMI).

PMI(z,y) = log, (%) (2.3)

12

Formula[2.3|calculates the probability that the context target word pair will occur together
with respect to the probability that both will appear separately in the training data set. These
probabilities are empirically calculated from the number of target and context words that
appear in the dataset. The formula [2.4] shows how to empirically obtain these distributional
vectors:

PMI(w, ¢) = log, (—P(w’c))) —10g2< count(w, ¢) X |D|) (2.4)

P(w)P(c count(w) X count(c)

The above formulation presents two problems. First, it may be that there are word-context
pairs in the model that occur with much less frequency than chance. In these cases, the PMI
values will be negative. Second, word-context pairs that do not exist in the dataset will have
a value of —oo.

To solve these issues of values that represent pairs with very low or no frequencies, we
use only the maximum between the positive value of PMI or zero, which is called Positive
Point-Wise Mutual Information (PPMI). Its definition is presented in the formula [2.5}

PPMI(w, ¢) = max(PMI(w, ¢), 0) (2.5)

Problems of word-context matrices

Although word-context matrices create better representations than one-hot vectors by in-
cluding semantics in the model, these continue to have a large dimensionality (of the size of
the vocabulary).

This presents two challenges for this type of representation: the first is that storing and
working with these matrices is memory intensive. The second is that self-learning classifica-
tion models do not work well with such high dimensional inputs.

As we said before, this implies that various ML methods will not be able to function
properly. This problem can simply be solved by using some type of dimensionality reduction
technique such as Singular Value Decomposition (SVD) on the generated representations.
This will not be covered in this thesis. However, an excellent reference to this method can
be found in Goldberg’s book [19].

With the rise of neural networks, the community has preferred to take another direction:
using distributed representations. These are introduced below.

2.2.4 Distributed Representations or Word Embeddings

Distributed representations or word embeddings consist of a set of models that capture the
semantics of the words within dense continuous vectors of small dimensionality. Like the
previous models, these vectors are based on the distributional hypothesis. In other words,
they represent words based on the context in which they occur. This implies that words that
appear in similar contexts tend to be represented by similar vectors.

13

Word embeddings are trained from large corpora of documents using neural networks.

This

process distributes the semantic of the words across the dimensions of the vectors

(which gives it the name of distributed representations). Because of the learning method, the
dimensions of its vectors are not interpretable. The previous fact represents a disadvantage
with respect to the models previously seen. However, these models are usually more powerful
than the count-based ones. Thanks to their improved performance, they have become central
components in most current NLP systems.

Word Embedding Tasks

The embeddings can perform a multitude of practical tasks. We describe some of them in
the following lines.

Word Similarity. This similarity can be quantified through some measure of vector
similarity. The higher the value of the similarity between two vectors, the more similar
their meanings will be. This leads us to the first task that can be solved by embeddings:
to calculate the similarity between words.

As an example, let us suppose we have a set of animals (dog, lizard, mountain lion, ...)
and cat representations, and a similarity function, such as cosine similarity. We can
find the most similar animal to cat (according to the model) by using the similarity
function. The procedure is the following: First, the similarity of the cat representation
to the representations of all other animals is calculated. Then, we order the words
in a descending order. The words at the beginning of the ordered list are the most
similar words according to the model. The same procedure can be used to calculate
the similarity between any set of word representations.

Finding similar words. We can use the same approach as above to find the words
most similar to a given word. The procedure in general is quite simple: we calculate
the similarity of the chosen word representation with respect to all others and then we
order them according to their obtained values. The words with the highest similarity
scores will be the most similar words, according to the model.

Word Analogies. Let us define the word analogy task as an operation between words
a,b,x and y in the form “a is to b as z is to y” [14]. The word analogy task consists
of solving analogies between different words through arithmetic operations of their
embedding representations. The example par excellence is the one observed by Mikolov
et al [35], where they shows that if they operates the embeddings of ki;zg—ma’n—kwofﬁan
the most similar representation to this resulting vector is queéen.

Clustering. This task consists simply in using some clustering algorithm (like K-
means) to find cluster of words according to their representations. These clusters are
commonly expected to group words according to some coherent criterion or category.

Other Tasks. While the above tasks are the ones that have been given the most
attention, there are many more that can be directly solved using embeddings. These
include odd one out, short document similarity, similarity to a group of words, among

others. A complete reference can be found in the Using Word Embeddings chapter of
Goldberg’s book [19] .

14

Obtaining Word Embedding Models

There are two main approaches for obtaining word embedding models:

1. Training an embedding layer in a task-specific neural network from labeled examples.
If there is enough training data, then the network training procedure will create good
embeddings. The model created with this method captures the information of the
task it solves. For example, if you train in solving sentiment analysis, then its word
embeddings will contain information about the sentiment of the words.

2. To use a pre-trained word embedding model. The idea behind this is to train a model
using an auxiliary task that does not require tagged data. This task must be able to
capture the meaning of the words in a proper way. Note that different iterations of
the learning method using different parameters (corpus, architecture of the network,
training method, dimensions, etc...) will create different representations.

There are many pre-trained word embedding models circulating in the network. Among
the most popular we can find Word2vec [35], 34|, Fasttext [4], Glove [37]. On the other hand,
there are some models worth mentioning such as Conceptnet [45] and Lexvec [40, 41].

Some of these models are described in detail in the following subsections.

Word2vec Word2vec is a software package that implements two word embedding archi-
tectures, skip-gram (SG) and continuous bag of words (CBOW), and two optimization tech-
niques: negative sampling (NS) and hierarchical softmax 35 34]. In this work, we only detail
the skip-gram model with negative sampling. CBOW and hierarchical softmax can be found
directly in their original references [35, [34].

Note that the term Word2vec is commonly used indistinctly to refer to both the soft-
ware and the pre-trained models made available by its authors. The version of pre-trained
Word2vec embeddings is based on skip-gram with negative sampling (SG-NS).

Skip-Gram The first model, skip-gram, consists of training a shallow neural network, (a
network with a single hidden layer with no activation function) to solve the following task:
given a central word that shifts along the training corpus, predict its context words (i.e.,
surrounding words in a context window). In the training process, the network learns co-
occurrence statistics about central and context words. Once the training is completed, the
resulting weights are used as embeddings.

Figure provides a high-level description of the skip-gram architecture. Next, we detail
both the architecture and the training process of the skip-gram model.

The central word and the surrounding words (k sized window) are the respective inputs
and outputs of the network. Each input is a word that belongs to a vocabulary of size 10,000.
Both are represented as one-hot encoded vectors. Therefore, the size of the input and output
layers are the size of the corpus vocabulary |V| (in this case, |V| = 10,000). The hidden layer
has 300 neurons. Each neuron has 10,000 parameters (one for each possible input word). Like

Tmage taken from http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model /

15

Output Layer
Softmax Classifier

Hidden Layer

Probability that the word at a

Linear Neurons 3 —— randomly chosen, nearby
In put Vector position is “abandon”

(0] Z

] v

0

T ! —— .. “ability”

o]

10 Z

10 \
A ‘1’ in the position 0 —— .."able”
corresponding to the 1 X
word “ants” i

10 i \ ‘

o]

)

10,000
positions
300 neurons ——> .."zone”

10,000
neurons

Figure 2.1: Architecture of a skip-gram neural network.

we said before, the output layer has one neuron per word in the vocabulary. Therefore, each
neuron has be 300 weights. Each output neuron uses a softmax activation function.

During the training process, the entire training corpus is gone through at least once. At
each training step, a central word is selected from the corpus and its context window. Then,
the network predicts from the central word and the information contained in the hidden layer,
the context words. This result is compared with the words in the window and the weights are
adjusted according to backpropagation. This training process is repeated until the training
loss is minimized as much as possible.

Once the training is over, the matrix containing the hidden layer weights is used as word
embeddings. The matrix with the output weights will also contain contextual information of
the words. However, these are not used in this model.

Formally, let us suppose we have a document corpus formed by a sequence of words
wy, Wy, w3, ..., w; and a window of size k. We denote the word target/center with the letter
w and those in context with the letter ¢. The words in the context c;.; of the letter w; then
correspond to (Wy—k/2, - - ., We—1, Wit1, - - ., Weppy2) (if we assume that k is even). The objective
of the Skip-gram model is to maximize average log probability of the context words given
the target words.

=303 og Pleluw)

t=1 c€cy.p

16

Let C' be the set of all possible context words, commonly the same as the vocabulary. We
model the conditional probability of a context word ¢ appearing next to the central word
using a softmax as:

cw

exp

Pldw) = =———=
2eec eXpeY

Note that both ¢ and @ are model parameters. However, only @ is occupied as the
representation of the word.

Let D be the set of correct word-context pairs (the pairs that exist in the training corpus)
Then, the optimization goal is to maximize the conditional log-likelihood of the context c:

arg max Z log P(clw) = Z (logeaw—Ze‘?'w)

" (w,e)eD (w,c)eD cdeC

Although, it is assumed that maximizing this function will result in good embeddings, this
formulation presents a serious computational problem: the calculation of P(c|w) is compu-
tationally very expensive because summation), "7 runs over all context words, which
is usually a large number. There are two possible variations of the skip-gram model that
address this problem: 1) hierarchical softmax and 2) negative sampling. Negative sampling
will be described as follows, but hierarchical softmax will not be explained in this thesis.

Skip-Gram with Negative Sampling Negative Sampling is a variation of the previous
problem where a different function is optimized. This new objective function intends to solve
the above problem by being more efficient. It consists of maximizing the probability that a
word-context pair (w, ¢) comes from the set of word-context pairs existing in corpus D using
a sigmoid function. In simpler words, this network is trained to be able to distinguish the
“good” word-context pair from the “bad” ones. Its formulation is as follows:

1
P(D = 1|w,Ci) - =
1+ expwa
If we assume that all context words are independent form each other, we can treat each
target word context pair (w,c), ..., (w,) as an independent training sample. Therefore,
the function to be optimized for all words in the context of the target word is:

k
P(D = 1w, c14) = [[P(D = 1w, &;) = H _r

1 4+ exp—wa
i=1 i=1 + p

17

This leads to the following target function:

k
1
argmax log P(D = 1w, c1.x) = E log 1+eua
&d ; e"wa
i=1

In this state, this optimization function will result in an undesired trivial solution: If
we set P(D=1 |w,c) = 1 for all pairs (w,c), then, training will tend to set @/ = ¢ The
way the authors of Word2vec solve this, is through the use of negative samples: pairs that
do not appear in the corpus and whose probability should be very low in the optimization
function. The negative samples D are generated from the following process: for each good
pair (w,c) € D, sample m words wy.,, and add each of (wj, ¢) as a negative example to D.

Then, the optimization function is transformed to:

arg max Z log P(D = 1w, ¢y + Z log P(D = 0|w, ¢1.1)

(w,c)eD w,c€D

The negative words are sampled from a smoothed version of the corpus frequencies:

#w)™
X,)07

This gives more relative weight to less frequent words.

Glove The Glove (global vectors) algorithm, proposed by Pennington et al. [37] is based
on the construction of a word-context matrix to train the embeddings. Its goal is that the
model be able to predict the co-occurrence ratios between words. Through this mechanism
(unlike Word2vec that only takes local contexts into account) Glove tries to take advantage
of the global word counts within its embeddings.

Formally, let us suppose that we build a word-context matrix from a certain corpus. We
can access its values through the function #(w,c). In addition, let the word vectors @ and
context vectors ¢ and b, and b. be their associated biases. The Glove algorithm attempts to
satisfy the following equality constraint:

w - ¢+ by + b, =log #(w,c) Y(w,c) € D

The optimization objective is a weighted least-squares loss. This loss assigns more weight
to the correct reconstructions of frequent terms co-occurrences. It also prevents very common
co-occurrences (such as “it is”) from dominating the loss values [29].

A new feature of Glove is that it uses the addition of the word and context embeddings
generated by the training of network.

18

Lexvex Lexical vectors (LexVec) [41], [40] is a method for creating embeddings that com-
bines PPMI and singular value decomposition methods with skip-gram and negative sam-
pling. Its results in several tests outperform those obtained by the two models mentioned
above [41]. The full detail of its implementation are given in the original publications of the
method works [41], [40].

Fasttext Fasttext [4] extends the skip-gram model to take into account the internal struc-
ture of words. The main idea is that the model not only learn representations for the whole
words, but also the n-grams that compose it.

Specifically, each word is represented as a bag of n-grams. The model learns embeddings
for these n-grams, and the final representation of a word corresponds to the sum of the
embeddings of the n-grams. For example, taking n=3, the representation of the word ’Coffee’
would be composed of the n-grams: “<co”, “cof”, “off”, “fe”, “fee”, “ee>" (where <’ and ’>’
are the symbols for the beginning and end of the word respectively).

The embedding models seen in the previous points assign every concept to a different
vector. This makes the vectors completely unrelated to each other, causing them to be
unable to share their meanings. In contrast, in this model words that have n-grams in
common contain the same vectors in their representations. This allows words that share some
sub-words to share meanings. The above-mentioned fact is quite useful for morphologically
rich languages where words are generated from common stems. A clear example of this
would be comparing the embeddings of the words "amazing" and "amazingly" in Word2vec
and Fasttext. While in Word2vec, both are unrelated vectors, in Fasttext both words are
represented by almost the same sum of n-grams.

Fasttext also has the advantage of being able to deal with out-of-vocabulary words as it
is able to generate a representation for them by summing its composing n-grams.

Conceptnet Numberbatch Conceptnet numberbatch [45] goes beyond distributional se-
mantics by incorporating knowledge graph relationships into the learning process. Its knowl-
edge is collected from resources like WordNet, Wiktionary and DBpedia, as well as common-
sense knowledge from crowd-sourcing and games with a purpose.

The Conceptnet training process is performed in several stages. First, it creates a term-
term matrix, where each value represents the sum of the weights of the path from one word to
another in the knowledge graph. Then, a PPMI matrix is calculated and its dimensionality
is reduced using single value decomposition (SVD) [31]. At this point, the initial embeddings
have been created. Next, retrofitting [16] is used to adjust the embeddings according to
the information of the knowledge graph. Finally, the PPMI embeddings are merged with
Word2vec and Glove to infer additional information. The process of inference and merging
is based on the technique described in the following paper [51].

19

Evaluation

There are multiple ways to evaluate the performance of embeddings in different tasks. Each
of these has a particular objective: from testing their effectiveness in downstream NLP tasks
to exploring the semantics captured by the model. For the above reason, there is no consensus
within the community about which method or methods are the most suitable to evaluate the
performance of embeddings [3].

Schnabel et al. [42] classified the evaluation methods into two categories: intrinsic and
extrinsic methods. A brief explanation of both follows.

Intrinsic evaluation methods Intrinsic evaluation methods are based on measuring the
quality of embeddings based on tasks inherent to embeddings models, such as those seen in
subsection [2.2.4] This type of evaluation is independent of the applications of the model
in downstream tasks. Commonly all data used in these evaluations are created by human
experts or crowd souring. Among these methods we can find:

e Word semantic similarity: Measure the distances between words that humans might
consider similar (explained in subsection [2.2.4]). Commonly an assessor chooses scores
to relate the words. These are then compared to the distances of their representations.

e Analogy: It consists of evaluating the analogy operation (explained in subsection [2.2.4])
on a dataset of questions created manually.

e Categorization: cluster the words in different categories (task explained in subsec-
tion [2.2.4) and compare them with hand-tagged sets.

Extrinsic evaluation methods Extrinsic evaluations measure the contribution of word
embedding models to a specific NLP downstream task. In this case, the evaluation metric of
the specific task is the metric that evaluates the quality of the embedding. In general, any
NLP task that uses embeddings can be considered as an evaluation method. Within these
tasks one can find text classification, sentiment analysis, named entity recognition among
many others.

A comprehensive list of intrinsic and extrinsic evaluation methods, as well as the problems
and limitations that still exist in these can be found in the work published by Barkarov [3].

Word Embedding Benchmark The word embedding benchmark [24] is a software toolkit
that bundles a series of standardized intrinsic tests: analogy, similarity and categorization
tasks. It allows for easy comparison of the performance of various pre-trained embedding
models. The project is open-source, hence the source code and all the tests are publicly
available in a repository ﬂ In addition to this, the authors also published a list with the
evaluation of various popular word embeddings models []|

2https://github.com /kudkudak /word-embeddings-benchmarks
3https://github.com /kudkudak /word-embeddings-benchmarks /wiki

20

Limitations

As we mentioned above, models based on the distributional hypothesis (word-context ma-
trices and word embeddings) manage to capture the semantics of words according to their
contexts. However, thanks to their very formulation, they also have several limitations and
problems.

It is very important that these limitations are exposed and taken into account, considering
the consequences they can cause when used in more complex systems.

Section 10.7 of Goldberg’s book [19] enumerates many relevant shortcomings of these
models. In this subsection, we show some of them.

Definition of Similarity The similarity in distributional models is given only by the
context of the words. There is no control over the type of similarity that can be applied to
representations.

For example, consider the words dog, cat and tiger. If we wanted to find similarity with
respect to pets within the model, cat would be more similar to dog than to tiger. On the
other hand, if we are looking for similarity of cat with respect to both being felines, tiger
would be much more similar than dog. However, in the embedding models, this cannot be
controlled. This poses the first of the limitations.

Black Sheep When we communicate, we often skip details that we take for granted, but
add them when we assume they are not obvious. Goldberg [19] points out a very clear
example: we never say white sheep, because sheep is already associated with a white animal.
However, when black sheep is communicated, it is always accompanied by the color. As a
result of this, models will tend to learn non-obvious relationships as the most common ones
to the detriment of the obvious ones.

Antonyms This is one of the most known limitations of this type of model. We know that
antonyms represent words with opposite meanings. But like synonyms, the antonyms of a
word tend to appear in the same contexts.

Take, for example, the sentences "it’s hot today" and "it’s cold today". Both are extremely
common phrases and their context is exactly the same. However, their meaning is opposite.

This implies that antonyms, having similar contexts, are assigned similar representations
within the model. Obviously, this fact can lead to an undesirable behavior in some NLP
tasks such as sentiment analysis.

Lack of Context While distributional models base their learning on contexts, the rep-
resentations learned are independent of them. This implies that when they are used, they
cannot obtain information from their context. This is a major problem because many words
tend to vary in meaning according to the context around them.

21

This problem can be clearly illustrated in the polysemic words: words that can have
multiple meanings. Consider the example of the word mouse. On the one hand, it can
represent a rodent. On the other hand, it can represent the pointer controller in a computer.

In a common distributional model, the representation of both concepts is contained in a
single vector. This implies that when using a mouse representation, the meaning it renders
will be that of both. And this cannot be selected according to the context.

Biases Several studies have shown the tendency of word embeddings models to inherit
stereotypical social biases (regarding gender, ethnicity, religion, as well as other dimensions)
that occur in the corpus on which they are trained. These biases can induce unintended or
even harmful behavior in NLP systems dependent on such representations. For this reason
it is extremely important to study them and try to mitigate them.

As we already mentioned in the introduction (Chapter[]), the research of this phenomenon
is the main topic of study in this thesis. In order to cover it in a more comprehensive way, it is
necessary to first introduce the field of fairness in machine learning. Once completed, we will
revisit the previous work regarding the analysis and mitigation of bias in word embeddings.

2.3 Fairness in Machine Learning

Machine learning (ML) algorithms are widely used by businesses, governments and other
organizations to make decisions that have a great impact on individuals and society [36].
These algorithms have the power to control the information we consume, the opportunities
we are able to access and the ones we can not and can strongly condition the decisions
we make. There are many examples of decisions made by ML that cover many areas of
our daily lives: movie recommendations, personalized advertising and purchase suggestions,
high-stakes decisions in loan applications, appointments, hiring, among many others. [33]

The use of ML systems responds to the multiple advantages they present with respect
to humans: they do not get tired and can take into account an extremely large amount of
information and factors when making a decision. However, machine learning systems present
an essential problem when performing their functions: just like humans, these systems are
prone to rendering unfair decisions.

Different definitions of bias and fairness applicable to Al systems have been presented
in previous work. In the words of Mehrabi et al. 2019 [33|, fairness is the absence of any
prejudice or favoritism toward an individual or a group based on their inherent or acquired
characteristics. Thus, an unfair algorithm is one whose decisions are skewed toward a par-
ticular group of people. On the other hand, Ntoutsi et al. 2020 [36] defined the bias as
a inclination or prejudice of a decision made by an Al system which is for or against one
person or group, especially in a way considered to be unfair.

With the massive expansion of ML systems in our daily life and the concern that they
exhibit unfair behaviors, the study of fairness in IA models has become a very relevant
research topic. The main objective of this field of study is to detect and analyze the possible
sources of bias and prevent these systems from unfairly treating or harming any social group.

22

There are several studies showing that Al systems make biased decisions:

The Correctional Offender Management Profiling for Alternative Sanctions (COMPAS)
system for predicting the risk of re-offending was found to predict higher risk values for
black defendants (and lower risk for white ones) than their actual risk [26]

Richardson et. al [38] showed shown that police prediction systems in jurisdictions with
extensive histories of illicit police practices presented high risks of dirty data leading
to erroneous or illicit predictions, which in turn risk perpetuating additional harm via
feedback loops.

Google’s Ads tool for targeted advertising was found to serve significantly fewer ads for
high paid jobs to women than to men [I0].

The study of an ML system that judges beauty contest winners showed that it is biased
against darker-skinned contestants [30].

A facial recognition software in digital cameras that overpredicts Asians as blinking [39].

Mehrabi et al.[33] indicates the existence of two sources of unfairness in machine learning
models: those arising from biases in the data and those arising from the algorithms.

2.3.1 Bias in Data

Machine learning relies heavily on learning from enormous amount of data generated by
humans or collected via systems created by humans. These datasets are commonly hetero-
geneous, i.e., they are generated by different social groups, each with its own characteristics
and behaviors and biases. Therefore, any bias that exists in these human-based datasets is
learned by these systems and worse, may even be amplified. Bias in data can exist in many
shapes and forms, some of which can lead to unfairness in different downstream learning
tasks. The following is a description of the most general ones discussed in [47].

Historical Bias: This is the type of bias that exists in the real world as it is or was,
which, even with perfect attribute selection and sampling, is impossible to eliminate.
An example of this is the search for images of CEOs on the web. Statistics show that
only 5% of U.S. CEOs are women, which causes search engines to reflect the same
proportion in their results [47]. While these results reflect reality, it is important to
question whether this type of behavior is indeed desired.

Representation Bias: This type of bias arises when the target population is under-
represented in the data. This type of bias can happen mainly for two reasons: the
samples are not representative of the entire population or the population of interest
has changed during the development of the model. Such is the case of ImageNet, a
public dataset of images of approximately 1.2 million tagged images widely used in
ML. Shankar et al. [43] showed that 45% of their images were taken in the United
States, with the majority remaining in North America and Europe. They finish their
work by showing that models trained with this data and then tested with images of
underrepresented countries perform poorly with respect to the images of the countries
contained in the dataset.

23

e Measurement Bias: It happens when we choose, measure and calculate the features
that will then be used in a classification problem. The chosen set of features and labels
may leave out important factors or introduce group or input-dependent noise. There
are three main reasons for this type of bias: the measurement process varies across the
observed groups, the quality of the groups varies across the observed groups, and the
classification task that use the collected data is an oversimplification of reality. As a
example, Suresh and Guttag [47] shows that within predictive policing applications,
the proxy variable “arrest” is often used to measure “crime” or some underlying notion
of “riskiness”. Because minority communities are often more highly policed and have
higher arrest rates, there is a different mapping from crime to arrest for people from
these communities.

e Aggregation Bias This type of bias occurs when different populations are inappro-
priately combined. In most applications, the populations of interest are heterogeneous,
which means that a single model is not sufficient to describe well all the different groups
within the population. This can lead to no group being well represented or one group
dominating the others.

e Evaluation Bias This occurs when the evaluation method does not represent the
target population. The causes of this are that the measurement method does not
equally represent the population and when the performance metric is external (designed
to evaluate the performance of other tasks) or not appropriate for measuring the model
performance.

e Deployment Bias This bias occurs when the model developed with a certain objective
is incorrectly used to solve another problem. An example of this is risk prediction
algorithms focused on predicting the probability of a person committing a crime. These
algorithms have the ability to be used beyond their original formulation: they can
predict prison time. Collins [9] showed that the indiscriminate use of such systems
outside their original formulation can lead to distortions in the length of sentences and
increase the use of imprisonment over other types of sanctions.

While different resources identify many more sources of bias, we only cover those men-
tioned above.

2.3.2 Algorithmic Fairness

Mehrabi et al. [33] considers a definition of fairness as the absence of any prejudice or fa-
voritism towards an individual or a group based on their intrinsic or acquired traits in the
context of decision-making.

Many applications of the design and implementation of fair algorithms involve classifica-
tion problems. This is mainly due to the potential direct impact that the unfair behavior of
these systems can have on society. Since classification bias is not the main objective of this
thesis, we not go into further detail. However, the above mentioned survey [33] is a proper
reference of this topic as it contains several definitions of fairness in classification.

The fact that modern text classification systems are heavily dependent on word embed-
dings has attracted many researchers to study the fairness exhibited by them. Next, we
review some of the work that has focused on the study of fairness in word embeddings.

24

2.4 Fairness in Word Embeddings

Word embeddings models, as we mentioned in the section [2.2.4] became a core component in
solving downstream tasks of natural language processing. Unfortunately, like all ML models,
the embeddings are also susceptible to bias. Recent findings have led to claim that word
embeddings are prone to perpetuate biases and prejudices contained in the corpora on which
they are trained. The effects of this are at first sight alarming: the extensive use of biased
embeddings in NLP systems cause them to render unfair decisions.

The study of fairness in word embeddings models has focused on two objectives: 1) mea-
suring the bias present in these models, and 2) trying to mitigate it. In the following sections
we show a set of studies that, through different metrics and tests, evidence different types of
bias (gender, ethnic) in the embedding models as well as other efforts that have been made
to mitigate it.

2.4.1 Works on Bias Measurement in Word embeddings

Below, we disucss three important works about the measurement of bias in word embeddings.
Our contribution is strongly based on the proposals of these papers.

Semantics derived automatically from language corpora necessarily contain hu-
man biases

This work published by Caliskan et al. 2017 [7] is the first to show the existence of bias in
word embeddings. The authors present a study on gender and ethnic biases in embeddings
through the adaptation of the Implicit Association Test (IAT), (a bias test developed in
psychology): The Word Embedding Association Test (WEAT).

The IAT consists of measuring the differences in response times when subjects are asked
to match concepts that they find similar, as opposed to two concepts that they find different.
Studies using this methodology have reported significant differences in response time when
running these tests. Response times are generally much shorter when the target concepts are
likely to be associated. For example, subjects are much quicker to label insects as unpleasant
and flowers as pleasant than if they were asked to do the opposite [7].

WEAT adapts IAT by quantifying the degree of association between the representations
of two sets of target words (word representing social groups) and two sets of attribute words
(words representing some attitude, characteristic, trait, occupational field). Since a word
representation can contain different meanings, WEAT uses word sets that define the tested
categories. The metric is calculated by performing arithmetic operations between the em-
beddings vectors of the words from each set. The result of this metric is a numerical result
which the more positive the value, the more target 1 will be related to attribute 1 and target
2 to attribute 2. On the other hand, the more negative the value, the more target 1 will be
related to attribute 2 and target 2 to attribute 1. The ideal score is 0.

The results of this study, based on previous IAT works, reveal biases regarding ethnicity
(in relation to pleasantness) and gender (in relation to occupations). The Table [2.2| shows
the tests performed in the study.

25

Target words Attribute words NT NA d p

Flowers vs insects Pleasant vs unpleasant 25x2 25x2 1.50 1077
Instruments vs weapons Pleasant vs unpleasant 25x2 25x2 1.53 1077
Eur.-American vs Afr.-American names Pleasant vs unpleasant 32x2 25x2 141 1078
Eur.-American vs Afr.-American names Pleasant vs unpleasant 16x2 25x2 1.50 10*
Eur.-American vs Afr.-American names Pleasant vs unpleasant 16x2 8x2 1.28 1073
Male vs female names Career vs family 8x2 8x2 1.81 1073
Math vs arts Male vs female terms 8x2 8x2 1.06 .018
Science vs arts Male vs female terms 8x2 8x2 1.24 1072
Mental vs physical disease Temporary vs permanent 6x2 7x2 1.38 1072
Young vs old people’s names Pleasant vs unpleasant 8x2 8x2 1.21 1072

Table 2.2: WEAT original results using word2vec model [7]. In the figure: Ny is the size of
the target sets, N4 is the size of the attribute sets, d is the value of the of the metric and p
is the p-value of the test.

In the first two tests, the authors present a set of baseline tests to explain how the metric
behaves. They compare types of flowers target word set with pleasant attribute words and
isects target word sets with unpleasant attribute words. Then, they repeat this same test
for musical instruments and weapons with respect to pleasant and unpleasant attribute word
sets. The results obtained in both tests serve as a reference to indicate what values WEAT
should take when detecting a strong relationship between targets and attributes.

The following three experiments explore ethnicity bias using the same criteria: names
commonly associated with white people are related to pleasant terms and names commonly
associated with black people are related to unpleasant terms. The results are conclusive: the
models detect a positive association between the sets and therefore, a marked ethnic bias
against the black people.

Afterwards, gender bias tests are performed by comparing feminine terms with family and
arts and masculine terms with career, mathematics and science. Once again, we can observe
positive relationships between the groups, with the career and family experiment being the
strongest detected in the whole study.

The words used in each test as well as the full results of this study can be found in the
appendix of the original article [7].

Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes

In a similar way, Garg et al. 2018 [18] develop a framework to quantify changes in stereotypes
and attitudes toward women and ethnic minorities in the 20th and 21st centuries in the
United States. The Relative Norm Distance (RND) metric was proposed to accomplish
that goal. This work uses a different terminology: group words represent social groups (e.g.,
gender, ethnicity) and neutral words correspond to words that are not intrinsically related
to any social group (e.g, firefighter, doctor). RND compares the embeddings of two sets of
social group words against a single set of neutral words.

26

The results revealed that certain adjectives and occupations became more closely re-
lated to certain social groups over time. Thus, the authors showed that word embeddings
are a powerful lens through which we can systematically quantify common stereotypes and
other historical trends. The complete study and its results can be found in the original
publication [18]. Additionally, the authors made available the code and words used in the
experiments of this study on Github [1

A Transparent Framework for Evaluating Unintended Demographic Bias in Word
Embeddings

Sweeney and Najafian [48] present a framework and a metric for evaluating discrimination
across protected groups via the relative negative sentiment associated with demographic
identity terms. The proposed metric, the Relative Negative Sentiment Bias (RNSB)
relies on a sentiment lexicon of positive and negative words for measuring bias. The main
assumption is that in a fair model, a representation of a protected (e.g., “Indian”) group term
should have no difference in the probability of being classified as negative with respect to
another protected group term (e.g. “Italian”). Therefore, in a fair model, the probability
distribution of belonging to the negative sentiment class should be the same for all the terms
tested.

The approach trains a logistic regression on the word embeddings matching the words
of the lexicon, which is then applied to a set of protected group identity termsE] such as
American, Mexican, and Canadian. Then, the metric is calculated as the Kullback-Leibler
(KL) divergence between the negative sentiment probability of the identity terms (after
normalization) and a uniform distribution.

The novelties of this metric are:

e It can be directly applied to more than 2 social groups.

e [t is used to compare different pre-trained embedding models according to fairness.
See [44] and Table [2.3]

Figure shows the sentiment distribution of the demographic identity terms tested in
their case study. The bottom histogram is the uniform distribution of negative sentiment in
a perfectly fair scenario: there is no representation with more or less negative sentiment than
the others. The top left shows the glove distribution. In this one it can be noted that terms
such as Mexican, Indian or Russian are more likely to be negative than the other terms.
The notorious difference between this distribution and the fair one implies the existence of a
significant ethnic bias in this model. The top right distribution corresponds to conceptnet,
which shows a more even and therefore fairer distribution than the previous one.

Table shows the comparison between the values of different models of embeddings
according to two case studies. In both cases, conceptnet is the least biased according to the
metric result; then it is followed by word2vec with results close to the previous one, and
finally glove with significantly higher scores than the other models tested.

“https://github.com/nikhgarg/EmbeddingDynamicStereotypes
5Tn their original work, a single word per social group

27

https://github.com/nikhgarg/EmbeddingDynamicStereotypes

GloVe Negative Sentiment Distribution

02
- l .
0 I — — -
. PN
[\0 2 t‘-r c’\a 02 NG
< RG] o~ .

0 AT, o o)

3 (& @ ¥ o c\ 0

2! 4 &7 R { () e Q,Q & '
B «® v‘ Q 2 M « (\o& ?s(‘ e W

ConceptNet Negative Sentiment Distribution

& L0 s R NP S O B L
6\" ‘\‘7 @ \(\ el N N o e \’D x[3 o W
e N N o g\\\Q &‘.{0 eoq w«e . q@q : e}\ \(\6 Qo i&;’ 9(‘6" @

o¥ & & PR
Fair Uniform Distribution

AT "\ L o0 TS, o) o L O 0 A ot L
N, \‘) (e N) \\‘9 (\(4 O (@ WD xC O ‘_\‘9 D
SN T T (SO T

S
PO

00

Figure 2.2: National origin identity terms sentiment distribution.

Case Study Glove Word2vec Conceptnet
National Origin Identity 0.6225 0.1945 0.0102
Religion Identity 0.3692 0.1026 0.0291

Table 2.3: RNSB KL-divergence Case Study results.

2.4.2 Bias Mitigation of Word Embeddings

There have also been attempts to automatically mitigate bias (this process is commonly
referred to as debiasing) in pre-trained word embeddings. Bolukbasi et al. [5] observed that
there is one direction in the embedding space that largely captures gender. The proposed
debiasing approach sets gender neutral words (e.g., occupations) to zero in the subspace
generated by the gender direction.

On the other hand, Zhao et al [50] propose training debiased embeddings by changing the
loss function. The change is targeted at concentrating all the gender-specific information to
a particular dimension which can be later discarded.

However, Gonen and Goldberg [20] have argued that those approaches only hide the bias
but do not eliminate it completely.

28

Several other debiasing methods have been proposed in recent years. |8 [11], 27 28], 132} 50,
52].. Each of those proposes a different way to achieve this goal. However, we will not go into
detail on these because it falls outside of the focus of this work. However, a comprehensive
survey of methods focused on gender bias mitigation can be found in the work proposed by
Sun et al. [46].

2.5 Discussion

As already discussed in Section [2.2.4] there are many pre-trained word embeddings models
that can be freely obtained from the Web. Although previous studies have begun to measure
bias in these models, they are limited in both the measured bias criteria (gender, ethnicity)
and the tested models. Moreover, each study proposes its own metric with particular features.
Every metric operates with different inputs (pairs of words, sets of words, multiple sets of
words) and produces outputs that are incompatible with each other (reals, positive numbers,
[0, 1] range, etc.). As a consequence, the relationship between these metrics is unclear.

The fact that each metric provides a different way to measure bias can be useful in un-
derstanding bias from multiple points of view. It can also be very valuable in understanding
which metrics are most likely to agree or disagree with each other. The possibility of using
these metrics to measure and rank the bias of different word embedding models in a more
standardized way is the main motivation of this thesis. To carry out such a study, we must
first develop a common basis for unifying these different views of the same problem. With
this goal in mind, we created a theoretical framework that aims to formalize the main build-
ing blocks for measuring bias in word embedding models: the Word Embedding Fairness
Evaluation framework (WEFE). In the following chapter we present a detailed description of
our proposal, as well as a case study in which our framework is put into practice.

29

Chapter 3

WEFE Design

In this chapter we describe the design of our main contribution to the area: WEFE: the Word
Embeddings Fairness Evaluation framework, as well as its application for our case study. The
structure of this chapter is described in the following lines:

The first section (Section describes the building blocks of the theoretical framework.
In this section we find the definition of target (Section [3.1.1)) and attribute (Section [3.1.2))
word sets, the queries (Section [3.1.3), the templates (Section [3.1.4) and the fairness metrics

(Section [3.1.5]).

The second section describes the process needed to run rank the embeddings using multiple
bias tests and metrics (Section [3.2). First we detail how to run bias tests for the same criteria
(gender, ethnicity or religion) on multiple embedding models and store the obtained scores
in a matrix (Section [3.2.1)). Then, we show how we convert the scores matrix into rankings
(Section @ and finally, how we gather several rankings all into a single ranking matrix

(Section [3.2.3

Section defines the parameters used in the development of the case study: the em-

bedding models (Section [3.3.1)), the queries (Section [3.3.2)) and metrics (Section [3.3.3]) used.

The last section (Section [3.3.4)) gives an exhaustive analysis of the results obtained by
running the case study.

3.1 Building Blocks

WEFE is a framework that standardizes the bias measurement in word embeddings in a
unified theoretical framework. In this section we formally define its main building blocks.

WEFE works over pretrained word embeddings. We assume that a word embedding model
M is simply a function mapping a word w to a vector M(w) in RY, where d is called the
dimension of the embedding. For the rest of this article, and when the embedding model is
clear from the context, words will not be explicitly distinguished from their corresponding
embedding vectors.

30

3.1.1 Target Set

A target word set (denoted by T') corresponds to a set of words intended to denote a particular
social group, which is defined by a certain criterion. This criterion can be any character, trait
or origin that distinguishes groups of people from each other e.g., gender, social class, age,
and ethnicity. For example, if the criterion is gender we can use it to distinguish two groups,
women and men. Then, a set of target words representing the women social group could
contain words like “she”, “woman”, “girl”, etc. Analogously, the target words for the men
social group could include “he”, “man”, “boy”, etc. It should be noticed that constructing

target sets of words that represent groups of people is a subjective procedure.

3.1.2 Attribute Set

An attribute word set (denoted by A) is a set of words representing some attitude, charac-
teristic, trait, occupational field, etc. that can be associated with individuals from any social
group. For example, the set of science attribute words could contain words such as “tech-

YN

nology”, “physics”, “ chemistry”, while the art attribute words could have words like “poetry”,
“dance” and “literature”. As for the case of target words, constructing attribute sets of words
is a subjective procedure.

3.1.3 Query

A query is a pair @ = (T,.A) in which 7T is a set of target word sets, and A is a set of
attribute word sets. That is T = {11, Ts,...,T,} where every T; is a target word set, and
A= {A, Ay, ..., A, } where every A; is an attribute word set. For example, consider the
target word sets

Twomen = {she, woman,girl,...},

Tmen = {he,man,boy,...},
and the attribute word sets

Ascience = {math, physics, chemistry, ...},

A.e = {poetry, dance, literature, . . .}.

Then the following is a query in our framework

Q - ({Twomen; Tmen}a {Ascience7 Aart})- (31)

Queries are the main building blocks used by fairness metrics to measure bias of word em-
bedding models. But before we explain how fairness metrics work in our context, we need to
introduce some further technicalities.

3.1.4 Templates and Subqueries

A query template is simply a pair (t,a) € N x N. We say that query @ = (T, .A) satisfies
a template (t,a) if |T] = ¢ and |A| = a. For example, the query in equation (3.1 above,
satisfies the template (2,2).

31

A template can also be used to produce all subqueries that satisfy the template. Formally,
given query @ = (7,.A) and template s = (t,a), we denote by Q(s) as the set of all queries
Q = (T',A") such that 7" C T, A" C A, and @' satisfies template s, that is |T'| = ¢
and |A’| = a. For example, given the query @ in equation above, the template (2,1)
produces two subqueries

Ql = ({TwomenaTmen}a{Ascience})
QQ - ({TwomenaTmen}a{Aart})

and then Q(s) = {Q1,Q2}. As we later show, templates can be used to solve the input
mismatch of fairness metrics.

3.1.5 Fairness Metrics

Intuitively, a fairness metric is a function that quantifies the degree of association between
target and attribute words in a word embedding model. In our framework, every fairness
metric is defined as a function that has a query and a model as input, and produces a real
number as output. As we have mentioned in Section [2.4.1] several fairness metrics have been
proposed in the literature. But, using our terminology, not all of them share a common input
template for queries. Thus, we assume that every fairness metric comes with a template
that essentially defines the shape of the input queries supported by the metric. For instance,
a metric such as WEAT [7] has a (2,2) template, while the RND metric [I§] has a (2,1)
template.

Formally, let F' be a fairness metric with template sp = (tp,ar). Given an embedding
model M and a query @ that satisfies sp, the metric produces the value F(M, Q) € R that
quantifies the degree of bias of M with respect to query Q).

We still have the problem of how to interpret the value F'(M, Q). Although it depends on
every particular metric, we assume that the metric is equipped with a total order relation <g
that establishes what is to be considered as less biased. That is, if we fix a query @) and we
consider two different models My and My, then F(My, Q) <p F(Maj, Q) states that model
M, s less biased than model My when measuring bias with respect to query (). Notice that
with this order relation, we can avoid having to actually interpret the value given by F', and
just use it to compare embedding models, which is exactly what the ranking part of WEFE
does.

3.2 WEFE Ranking Process

Next, we will show how to rank by fairness the embeddings models using multiple queries
and multiple fairness metrics. Our starting point is composed of three sets:

e aset Q={Q1,Q2,...,Q,} of predefined queries where each Q); represents a particular
bias test over a certain criterion,

e aset M ={M;,M,,...,M,} of pre-trained word embedding models, and

e aset F = {Fy,..., F,} of fairness metrics, where every F} comes with its particular
template s; = (%, a;) and order relation <g.

32

3.2.1 Creating the Scores Matrix

Lets fix a fairness metric F' € F and assume that s = (¢, a) is its associated query template.
The first step is to update Q by adding all subqueries that satisfy the template. Formally,
we create the new set

Qr = Q1(s) UQa(s)U---UQ,(s)

where Q;(s) is the set of all subqueries of @Q); that satisfy template s = (¢,a). We note that
Qp is usually bigger than Q (they coincide if the template of the metric is satisfied by all
the original queries in Q).

Now for a fixed embeddings model M € M we can compute the value F/(M, Q) for every
@ € Qr. We can think of these values as a row vector of fairness scores, where every
component of the vector corresponds to a different query. We repeat this process for every
model M; € M to construct a scores matrix associated to the fairness metric /. This matrix
is of dimensions | M| x |QF|.

3.2.2 Creating the Rankings

The next step is to create the ranking. First, we aggregate each of the scores by embedding
model (for each row). To do this, we need to choose an aggregation function that is consistent
with the metric F. In particular, we need to ensure that the aggregation satisfies the following
monotonicity property with respect to <g. Let x, y, 2’ and 3 be arbitrary values in R, and
assume that x <p y and 2/ <p y/. Then it must hold that agg(x,z") <g agg(y,y’). For most
of the metrics that we use in our case study, an aggregation function such as the mean of the
absolute values of the scores would satisfy this property. But for more complicated metrics
deciding on a good aggregation function might not be a trivial matter.

After aggregating the scores we end up with a column vector of size |[M| over whose
we can use <p to construct a ranking for all the embeddings in M. For us, this ranking
is represented by another column vector which values are a permutation of the values in
{1,2,...,|M|} stating the index for each embedding model in the generated ranking. This
ranking is generated in an ascending way, that is, smaller scores get the top positions.

3.2.3 Gathering Rankings in a Final Matrix

Finally, we can repeat the previous process for each one of the fairness metrics in F to obtain
a final matrix of size | M| x |F| containing the ranking indexes of every embedding model for
every metric. In our case study, we use this matrix to study correlations among the fairness
rankings produced by different metrics and for different sets of queries.

There are several aspects of the process that should be noticed. First, the dimensions
of the final matrix (]JM| x |F|) is independent of the queries used to define the bias that
we are considering. Moreover, every column in this matrix represents a fairness metric as a
permutation of the same set of integers ({1,2,...,|M|}).

These two aspects allow us to effectively compare all different fairness metrics even though
they can receive different forms of queries as inputs, and produce different scores as outputs.

33

Name Number of dimensions Training Corpus References

Conceptnet, word2vec, Glove,
and OpenSubtitles 2016
Wikipedia 2017, UMBC webbase
Fasttext 300 corpus and statmt.org news [4]
dataset (16B tokens)

Twitter (2B tweets, 27B tokens,

Conceptnet 300 [45]

Glove-twitter 200 1.2M vocab, uncased) [37]
Glove-wikipedia 300 ngﬁ‘ﬁfjgﬁa:egigaword 4
Lexvec 300 Common Crawl [41] [40]
Word2vec S0 a%%gulf i\g)e())wlfillion words) 351 B4)
Wordzwee a0 (ahont 100 ilion words) F51 511 5

Table 3.1: Details of the embeddings used in our case study

We also notice that we can compare all metrics without needing to actually change any of
its particularities.

Finally, any other meaningful ranking of embeddings can be added to this matrix and the
correlations and comparisons can still be computed. In our case study, we add a performance
ranking obtained from the Word Embedding Benchmark [24].

3.3 Case Study

In this section we instantiate our framework to conduct a case study in which seven publicly
available word embedding models are compared according to four fairness metrics. These
metrics are described in detail in the next section. We first briefly describe the embedding
models and queries.

3.3.1 Embedding models

Table shows a complete detail of the pre-trained word embeddings models used in our
case study. Note that we added a word2vec gender debiased model in order to check the
effects of this procedure according to our queries. Most of the models were obtained using
Gensim library interfacd’] Lexvec and Gender Hard Debiased Word2vec were obtained from
their original sources [

"https://github.com/RaRe-Technologies/gensim-data
’https://github.com/alexandres/lexvec
3https://github.com/tolga-b/debiaswe

34

https://github.com/RaRe-Technologies/gensim-data
https://github.com/alexandres/lexvec
https://github.com/tolga-b/debiaswe

3.3.2 Queries and Query Sets

We consider a total of 25 queries satisfying the (2, 2) template, all of them built upon previous
work.

From them we construct three query sets Qgender With 7 queries, Qethnicity With 9 queries,
and Qreligion With 9 queries. For the sake of space we cannot describe the content of each
query, but we next list the previous work from which we form all of them. We take the
attribute word sets pleasant, unpleasant, math and arts from [7]; the target sets ethnicity-
surnames, male and female, and attribute words related to intelligence, appearance, sensitive
and occupations were taken from [I8]; the attribute word set religion was taken from [32];
positive and negative sentiment attribute words were taken from the Bing Liu lexicon [23].

The full list of queries with their respective sets of words are available at queries annex
Bl

3.3.3 Specific Fairness Metrics

Next, we describe the four fairness metrics we consider in this case study from the point of
view of WEFE.

Word Embedding Association Test (WEAT)

Proposed by Caliskan et al. [7] the WEAT metric receives two sets 77 and T5 of target words,
and two sets A; and A, of attribute words. Thus, in our terminology, it always expects a query
of the form Q = ({7}, T»},{A;, A2}) and then its associated template is swear = (2,2). Its
objective is to quantify the strength of association of both pair of sets through a permutation
test. Given a word embedding w, WEAT defines first the measure d(w, A, Ay) as

(mean,ea, cos(w,z)) — (mean,ea, cos(w, z))

where cos(w,) is the cosine similarity of the word embedding vectors. Then for a query

Q = ({11, 1x},{A1, As}) the WEAT metric is defined as

FWEAT(M7Q) = Z d(w,Al,Ag) — Z d(w,Al,Ag)

weTy weTs

The idea is that the more positive the value given by Fywgar, the more target 77 will be
related to attribute A; and target 75 to attribute As. On the other hand, the more negative
the value, the more target T} will be related to attribute Ay and target T5 to attribute Aj.
The ideal score is 0. This would imply that there is no unjustified relationship between the
target sets and the attribute sets. Thus, the order induced by WEAT is such that * <p . ¥
iff [2] < [y,

35

WEAT Effect Size (WEAT-ES)

This metric represents a normalized measure that quantifies how far apart the two distribu-
tions of association between targets and attributes are. It also receives queries with template
SWEAT-ES = (2,2). Then Fywgar.ps(M, Q) is computed as:

mean,er, d(w7 Ay, Az) — meallyeT, d<w7 Ay, Az)
StdwETluTz d(w7 A17 AQ)

Since the ideal is also 0, we define <pyparps JUSt a8 <pypar-

Relative Norm Distance (RND)

Proposed by Garg et al. [1§], it receives queries with template sgxp = (2,1). Given a query
Q = ({T1,Tx},{A}) the metric Frap(Q) is computed as

5= (1ovem) — e — Jovs(r) -1

T€EA

where || - ||2 represents the Euclidean norm, and avg(7') is the vector resulting from averaging
all the vectors in T'. That is, RND averages the embeddings of each target set, and then for
each one of the attribute words, it computes the norm between the words and the targets
averages and then subtracts the norms. The more positive (negative) that the relative norm
distance is, the more associated the attribute set is towards group two (one). The optimal
value here is 0, and thus as for WEAT we let © <g, ., v iff |z| < |y|.

Relative Negative Sentiment Bias (RINSB)

We consider a straightforward generalization of this metric [48]|ﬂ RNSB receives as input
queries with two attribute sets A; and Ay and two or more target sets, and thus has a template
of the form s = (N,2) with N > 2. Given a query @ = ({11,72,...,T,},{A1, A2}) and an
embedding model M, in order to compute the metric Frnsg(M, Q) one first constructs a
binary classifier Ca, 4,)(-) using set A; as training examples for the negative class, and A,
as training examples for the positive class. After the training process, this classifier gives for
every word w a probability C(4, a,)(w) that can be interpreted as the degree of association
of w to attribute Ay (value 1 — Ca, a,)(w) is the degree of association to A;). Now, we
construct a probability distribution P(-) over all the words w in T} U - - - U T,,, by computing
C(4,,4.)(w) and normalizing it to ensure that > P(w) = 1. The main idea behind RNSB is
that the more that P(-) resembles a uniform distribution, the less biased the word embedding
model is. Thus, one can compute Frnsg(M, @) as the distance between P(-) and the uniform
distribution U(-). RNSB uses the KL-divergence to compute that distance. As before, the
optimal value is 0. Since it cannot deliver negative values, we let v <p, o, v iff 2 <.

4In the original RNSB proposal, attribute sets of words are always associated to positive and negative
lexicons, and in the experiments they only consider singletons as target sets.

36

Queries set by criteria Gender Ethnicity

Model name WEAT WEAT-ES RND RNSB WEAT WEAT-ES RND RNSB
conceptnet-numberbatch 19.08-en dim=300 | 2 (0.37) 2 (0.20) 2(0.01) 1(0.02) |1 (0.46) 1 (0.14) 2(0.03) 1 (0.03)
fasttext-wiki-news dim=300 5(0.71) 4(047) 3(0.02) 2(0.02) | 3(0.49) 5(0.20) 3 (0.06) 2 (0.04)
glove-twitter dim—200 3(050) 3(0.41) 5(0.13) 5(0.23) | 6(0.75) 6(042) 5 (0.16) 5 (0.07)
glove-wiki-gigaword dim=300 4(0.66) 7(0.84) 6(0.18) 6(0.29) | 7(1.00) 7(0.58) 6(0.26) 4 (0.07)
lexvec-commoncrawl W+C dim=300 6 (0.79) 5 (0.71) 7(0.33) 7(0.32) | 2(0.47) 2 (0.15) 7(0.73) 7 (0.17)
word2vec-gender-hard-debiased dim=300 1 (0.16) 1 (0.08) 1 (0.00) 3(0.03) | 4(0.52) 3(0.19) 1 (0.03) 3(0.05)
word2vec-google-news dim=300 7(0.90) 6(0.82) 4(0.08) 4(0.14) | 5(0.53) 4(0.19) 4(0.15) 6 (0.12)
Queries set by criteria Religion Overall

Model name WEAT WEAT-ES RND RNSB WEAT WEAT-ES RND RNSB WEB
conceptnet-numberbatch 19.08-en dim=300 | 4 (0.96) 1 (0.11) 2 (0.05) 2 (0.07) | 2 (0.61) 1 (0.15) 2(0.03) 2 (0.04) 1
fasttext-wiki-news dim=300 1(0.84) 3(0.16) 3(0.13) 1(0.04)| 3(0.68) 3(026) 3(0.07) 1(0.03) 2
glove-twitter dim=200 2(0.84) 2(0.15) 6(0.44) 5(0.18) | 4(0.71) 4(0.32) 5(025) 5(0.15) T
glove-wiki-gigaword dim=300 7(118) 7(027) 5(0.33) 3(0.10) | 7(0.97) 7(0.54) 6(0.26) 4(0.14) 6
lexvec-commoncrawl W-+C dim=300 3(094) 6(0.21) 7(0.89) 6(0.22) | 5(0.73) 5(0.33) 7(0.65) 7 (0.23) 4
word2vec-gender-hard-debiased dim=300 6(1.05) 5(0.19) 1(0.03) 4(0.17) |1 (0.61) 2(0.16) 1 (0.02) 3 (0.09) 5
word2vec-google-news dim=300 5 (1.04) 4 (0.19) 4(0.20) 7(0.31) | 6(0.82) 6 (0.37) 4(0.15) 6 (0.19) 3

Table 3.2: Final matrices obtained after applying our framework for several metrics, embed-
ding models, and three different query sets.

3.3.4 Results

Using the WEFE ranking process described in Section together with the three query
sets, the four fairness metrics and the seven embedding models described above, we obtained
three scores matrices that are shown in Table @, one for each query set Qgender; Qethnicity
and Qyeligion. Additionally, we created a fourth matrix (Overall in Table by applying
our framework to query set Q = Qgender U Qethnicity U Qreligion cOntaining all our queries using
an aggregation function that performs a weighted average of the different query sets (the
weights correspond to the cardinality of each query set).

We add an additional column to this last matrix obtained by running the Word Embedding
Benchmark (WEB) on our embedding models. WEB rankings are obtained by adding up
the rankings produced by all the metrics implemented by the benchmark. Notice that WEB
metrics are ranked in descending order unlike the metrics evaluated in WEFE.

In addition, we generate correlation matrices between the rankings using Spearman’s rank
correlation coefficient (Figure . These allow us to state whether or not the rankings are
aligned with each other according to the criteria evaluated. Such agreement would allow us
to state more strongly that the rankings obtained are more reliable.

If we focus on the gender results in Table[3.2] we can observe a clear tendency for word2vec-
gender-hard-debiased and conceptnet to be at the top of the ranking. We can also observe
that the debiased version of word2vec outperforms the non-debiased version across all met-
rics. Another noteworthy result derived from Figure [3.1] are the high correlations observed
between all metrics for gender. This implies a consistency between metrics with respect to
gender bias.

For the case of ethnicity, although conceptnet consistently outperforms other models (with
rankings, 1, 1, 2, and 1) the differences in terms of absolute scores with the closest competitor
is very short. Moreover, for ethnicity the correlations between each ranking is almost totally

lost (Figure [3.1).

37

Gender Ranking Correlation

RNSB

RND|

WEAT-ES|

WEAT]

WEAT-ES

Religion Ranking Correlation

Ethnicity Ranking Correlation

RNSB|

RND}

WEAT-ES

WEAT]

WEAT-ES RND RNSB

Overall Ranking Correlation

RNSB

RND

WEAT-ES|
WEAT-ES

WEAT] WEAT]

WEAT-ES WEAT WEAT-ES WEB

Figure 3.1: Spearman correlation matrix of rankings by different measures.

Something similar happens for the case of religion in which not only the correlation be-
tween the rankings is lost but in which it is not clear at all what method is the best. Another
observation worth reporting is that for the case of both ethnicity and religion the differ-
ences between word2vec and word2vec-gender-hard-debiased in terms of absolute values are
considerably less notable compared with the gender case.

Other results that are somewhat consistent across the three tables and the four metrics,
are that models, glove-twitter, glove-wikipedia, lexvec and word2vec-google-news, are rarely
found in top ranking positions.

Unlike the results for ethnicity and religion, the overall matrix shows a more consistent
behavior (Table [3.2). Conceptnet and fastext take the first two places in all metrics. In
addition, the low scores obtained by the above-mentioned models are maintained. Similarly

to the gender matrix, the four fairness metrics exhibit clear positive ranking correlations
(Figure |3.1)) in the overall matrix.

In relation to the rankings obtained from the Word Embedding Benchmark (WEB), al-
though conceptnet and fasttext maintain their leading positions (Table , there is no clear
correlation between WEB and WEFE rankings (Figure . For example, lexvec, which is
poorly ranked among WEFE scores, is in the middle of the WEB ranking. In the case of
word2vec and its gender debiased variation, their positions in WEB and WEFE rankings
are swapped. This suggests that the gender debiasing method proposed in [5] can affect the
performance of the embedding model in word similarity and analogy tests.

38

Metric
glove-wiki-gigaword WEAT

WEAT-ES

lexvec-commoncrawl W+C RND
RNSB
WEB

wordzvec-google-nEWS_-
gIOVe-tv\‘ritter_-
word2vec-gender-ha rd—debiased_
conceptnet-numberbatch-

0 10 20 30

Ranking

Figure 3.2: Accumulated rankings by metric for the overall results plus WEB.

These misalignments can be further analyzed in Figure [3.2] The figure displays the rank-
ings obtained by the overall WEFE rankings and WEB results using cumulative graph bars
(i.e., the larger the size of a bar the lower its position in the corresponding ranking). The
figure allows for easy detection of models with good WEFE rankings and poor WEB rank-
ings, such as word2vec gender-hard-debiased version and glove-twitter, as well as the opposite
effect: high bias and good WEB performance, such as word2vec and lexvec.

39

Chapter 4

WEFE Library

The WEFE library is an open source implementation of our framework for measuring bias in
word embedding models. The library is currently published and can be found at the following
linK'l It was developed in the Python programming language and is integrated with various
of the popular data science libraries available for this language. It can be installed using the
pipﬂ or condaE| package manager tools. The project was released under the BSD 3-Clause
license and is publicly hosted on GithuH] The source code was structured according to
the design and code patterns recommended by sickit-learn community. It has an extensive
documentation which contains several tutorials, the API definition, a guide explaining how
to contribute to the project, how to execute the tests and how to compile the documentation.

The library was designed to meet the following objectives:

e Encapsulating existing fairness metrics from previous work and designing new ones.

e Encapsulating the test words used by fairness metrics into standard objects called
queries.

e Computing a fairness metric on a given pre-trained word embedding model using user-
given queries.

It also provides more advanced features for:

e Running several queries on multiple embedding models and returning a DataFrame
with the results.

e Plotting those results on a barplot.

e Based on the above results, calculating a bias ranking for all embedding models. This
allows the user to evaluate the fairness of the embedding models according to the bias
criterion (defined by the query) and the metric used.

e Plotting the rankings on a barplot.

"https://wefe.readthedocs.io/en/latest/about.html
’https://pypi.org/project/wefe/
3https://anaconda.org/pbadilla/wefe
“https://github.com/dccuchile/wefe

40

https://wefe.readthedocs.io/en/latest/about.html
https://pypi.org/project/wefe/
https://anaconda.org/pbadilla/wefe
https://github.com/dccuchile/wefe

e Correlating the rankings. This allows the user to see how the rankings of the different
metrics or evaluation criteria are correlated with respect to the bias presented by the
models.

In the next section we provide details of the library and its implementation. We start
presenting a brief motivation of why we implemented and published this library. Then, we
present the design of the main components and the typical processes involved in measuring
bias. We end by showing the advanced processes of the library such as the calculation of
several queries on various embeddings, the aggregation of these results, their subsequent
conversion to rankings and finally, the calculation of correlations between rankings.

In addition, the tutorials containing the user guide and the replication of the case studies
from previous papers can be found in Annex [C]

4.1 Motivation

One of the main requirements to conduct our case study was the implementation of the
fairness metrics and queries used in previous studies.

We tried to reuse all publicly available resources (open source code, word sets) and to
recreate the missing ones. However, when the development of our theoretical framework was
completed, it became evident that it would not be possible to unify directly their implemen-
tations. Each code and resource was developed to meet the requirements of each particular
work. This severely constrained its reuse and extension.

These reasons led us to re-implement the metrics and queries under the guidelines of our
framework. The high degree of formalization provided by WEFE allowed us not only to
implement the metrics, but to develop them into a well-designed and highly extensible code.

Moreover, the lack of standardized tools to measure bias in embeddings, the limitations
in our case study and the high-level development we were carrying out led to the idea of
publishing our code as an open library available to any member of the research community.

4.2 Components

In this Section we show the design and implementation of each building block of our frame-
work shown in Chapter [3]

4.2.1 Target and Attribute Sets

As we explained in the previous chapters, each set of target words T is a set of words that
denotes a particular social group. In code, each word is represented by a string. Therefore,
the most direct way to represent these sets is by using a list of string arrays.

The pattern applies for the A attribute word sets (words that represent attributes, traits,
occupations, among others). Each attribute word is represented in the code as a string.
Thus, a set of attribute words is represented by a list of string arrays.

41

Furthermore, a collection of attribute word sets is simply represented as a list containing
these sets. The same applies for a collection of attribute sets.

The decision not to create particular classes for these two main components is due to the
simplicity that Python offers to represent them. We allow the logic that checks and processes
these sets to reside in the class that will contain both sets: Query.

4.2.2 Query

As a reminder, in our framework a query is a pair @ = (7T,.A) in which T is a set of target
word sets, and A is a set of attribute word sets. In simpler words, this component is intended
to be the container for of target and attribute sets.

Our query objects are implemented by the Query class. When a Query object is created,
it must receive as parameters lists with the targets and attribute sets. Additionally, it can
receive the names of the sets, which allows the user to define a name for the query. All these
parameters are stored as attributes. In addition, the the method responsible for creating the
object automatically calculates the query template and stores it as an additional attribute.

4.2.3 Word Embedding Model

The WordEmbeddingModel class is a container class focused on storing the embedding models
on which the bias measurements will be performed.

The mandatory parameters of this class are the model (gensim’s KeyedVectors or gensim’s
api loaded models) and the name of the model used. For some embedding models such as
conceptnet [45] words can contain a prefix that indicates their language before the word. For
instance, the English word cat in conceptnet is associated with the token /c/en/cat. This
is why there is the possibility of providing a parameter prefix that will be used to find the
representations of each word.

4.2.4 Metric

A fairness metric is a function that quantifies the degree of association between targets and
attribute words through vectorial operations in our framework. The library expands this
definition even further: each metric is implemented in a different class which inherits the
BaseMetric class and its operations are implemented in a particular method.

The BaseMetric class contains functions that are common for all metrics. The two main
functionalities of this class are: 1) validate the inputs and, 2) transform the word of each set
of the query into embeddings.

Every fairness metric class must implement the run_query method. This method is the
standard interface for calculating a fairness score. The method receives as input a query,
an embeddings model and other configuration parameters, and returns the calculated score.
The common procedure that this class performs is described below:

42

1. The first step consists of checking the input parameters and transforming words into
embeddings (using the BaseMetric).

2. The second step consists of performing vectorial operations of the embeddings of the
words associated with the query.

3. The final step consists of returning the calculated score.

4.2.5 Utils

Our library also implements a series of utility functions that facilitate the execution of several
processes. The three main functions are listed below:

e Run_queries: a function to test multiple queries on various word embedding models
in a single call. It has a large number of functionalities that can be configured through
the parameters. Among the most important is the aggregation by embeddings, which
allows to add the results of the queries by model. These aggregations are relevant
to compare and subsequently rank the bias that the models present according to the
queries evaluated.

e Create_ranking: this function takes the aggregated results by model, typically gener-
ated by the previous function, and turns them into rankings.

e Calculate_ranking correlations: this function takes a list of arrays containing fair-
ness rankings calculated with the previous function and calculates the Spearman cor-
relation between them.

4.3 Bias Measurement Processes
In this section we describe the most important processes implemented by the library:

1. The execution of a simple query.
2. The execution of several queries in one call.
3. The aggregation of their results and their subsequent conversion to ranking.

4. The calculation of the correlation between different rankings.

4.3.1 Simple Query Creation and Execution

The simplest process that can be executed is to create and run a query. The diagram
in Figure shows and example in which a gender bias test using the WEAT metric is
executed. The representations used are obtained from the word2vec [35] embedding model.

The blue rounded rectangular boxes from the first column show the process’s inputs: The
first box contains the sets of target and attribute words that will be used. The second contains
the given word embedding model. The third contains the metric that will calculate the final
fairness scores in the next steps.

43

Create the Query:
query = Query(
[male_names, female_names],
[career, family],
. . ['Male names', 'Female names'],
Define the Attribute Sets ['Career’, 'Family'])

career = ['executive', 'management’,

‘professional’, ..]
family = ['home', 'parents’, Bias Score
‘children’, ..]

Run the query

{'query_name': 'Male
weat.run_query(query, model)

Load a Word Embedding names and Female némes
wrt Career and Family',

Model ‘result’: 1.25161}
model = WordEmbeddingModel(

api.load("word2vec-google
-news-300"))

Instantiate a Fairness Metric

metric = WEAT()

Inputs

Outputs

Figure 4.1: Creation and execution of a gender query on word2vec using WEAT.

The green rectangles from the second and thrid columns indicate the actions of the process.
The upper box shows the creation of the query using the word sets defined in the above step.
Then, we execute the measurement by passing the query and the word embedding model to
the run_query function. Finally, the score obtained when executing the previous step is the
output of the process, which is represented by the orange rounded rectangle.

4.3.2 Runners

We usually want to test several queries on several embedding models to study the biases gen-
erally. Trying to execute run_query on each pair embedding-query can be complex and will
require extra work to implement. For that reason the library also implements a function to
test multiple queries on various word embedding models in a single call: the run_queries util.
The diagram contained in the figure [1.2] shows a typical case of execution of run_queries.

The first column with blue rounded rectangular figures shows the inputs: word sets, word
embeddings and a fairness metric. The second column with green rectangles shows the actions
performed. First the queries are created and then WEAT is executed for each query-model pair
using run_queries. The results are the fairness scores obtained. They are represented by
the orange rounded rectangle.

4.3.3 Aggregating Results and Calculating Rankings

The execution of run_queries commonly delivers many scores. While each studies a specific
bias, these alone do not provide information on the overall bias of the embeddings. We can
provide a good indicator of the bias contained in the models by aggregating the scores. We
can require that when we execute run_queries we calculate the aggregations in the same
call by setting the aggregate_results parameter as True. This is shown in Figure [4.3]

44

Load/ Create the Word Sets Create the queries set - Inputs

o s . query_1 = Query([male_terms, female_terms], - Actions
i = [,A'Yy 2 [career, family],

Lisa
female_names = ['Joh ', -

['Male terms', 'Female terms'],

['Career’, 'Family']) Outputs

career = ['executive
'professional’, ..

family = ['home', 'parents’,
‘children', ..]

query_2 = Query([male_terms, female_terms],
[science, arts],
['Male terms', 'Female terms'],
[*Science’, ‘Arts’])

Load Word Embedding

Models

model_1 = WordEmbeddingModel(Bias Scores Table
api.load('glove-twitter-25"),
‘glove twitter dim=25') Run the Queries Male terms and Female

model 2 = WordEmbeddingModel(terms wrt Career and Male terms and Female
api.load('glove-twitter-50"), WEAT_gender_results = run_queries(LT e S Clenee
‘glove twitter dim=50°) WEAT,

gender_queries, 0715369 0766402

models,

queries_set_name="'Gender Queries')

0.799666 -0.660553

Import a Fairness Metric

from wefe import WEAT

Figure 4.2: Creation and execution of several gender queries on various embedding models
using WEAT.

Additionally, a ranking that is calculated from these aggregated results may be easier to
interpret when looking for the less biased models. For that reason, the Figure also shows
how to calculate rankings through the create_ranking function.

As in the previous process, the first column with blue rounded rectangular figures shows the
entries: word sets, word embeddings and a metric. The second column with green rectangles
shows the actions performed. First the queries are created and then WEAT is executed for each
query-model pair using run_queries. The difference now is that the runner function can
be configured with the parameters aggregate_results and return_only_aggregation so
that it only returns the aggregated scores per embedding (row). The following column shows
the outputs of this process process: 1) the aggregated results (which can be used directly to
describe the tested bias) and 2) the rankings associated with the previous scores (that are
computed using the create_ranking function).

4.3.4 Ranking Correlations

A set of queries subject to some criteria and a set of embeddings can be tested several times
using different metrics. Each metric will return different results according to the operations
it performs. Therefore, each metric will generate a different ranking.

As we explained our case study of Section [3.3] similar rankings will imply greater reliability
in the results. We can verify this agreement of the rankings through correlation matrices. In
our software, these matrices can be calculated using the calculate_ranking_correlations
function.

45

Ranking

Load/ Create the Word Sets Create the queries set

WEAT Gender bias average of abs values score
query_1 = Query([male_terms, female_terms],

'Lis [career, family], model_name

'Male terms', 'Female terms'], -

female_names = ['Joh %‘Career, eamity]) 1 word2vec-google-news-300
*Miki 2 & glove-wiki-gigaword-300

CEIEER = [‘EXEC”U‘.’E > Imanagement o query_2 = Query([male_terms, female_terms], glove-twitter-200

professional’, ..] =
family = ['home®, parents’ [science, arts],
Y= 'child:-en"p] 2 [‘'Male terms', 'Female terms'],
: ['Science', 'Arts’])

male_names = ['Amy’

Create the Ranking

Load Word Embedding Ranking = create_ranking([weat_results])
Models

model_1 = WordEmbeddingModel(.
api.load('glove-twitter-25"), Run the Queries Aggregated Bias Scores Table
‘glove twitter dim=25")

model_2 = WordEmbeddingModel(WEAT_gender_results = run_queries(WEAT Gender bias average of abs values score
api.load('glove-twitter-50'), WEAT,

‘glove twitter dim=50°) gender_queries,
models,
aggregate_results=True, glove-wiki-gigaword-300 0.802102
return_only_aggregation=True,
queries_set_name='Gender bias')

Model Name

word2vec-google-news-300 0806355

glove-twitter-200 0.438586

Import a Fairness Metric

from wefe import WEAT

Figure 4.3: Gender bias ranking over various models of embeddings using WEAT.

The diagram contained in Figure [£.4] shows the common process for calculating correla-
tions. The blue boxes show the process inputs. Each of these boxes represents the aggregation
of scores obtained from run_queries. In each case, run_queries is executed with the same
set of queries and embedding but varying the metrics. The green rectangles represent the
actions of the process. First, a ranking is calculated from the inputs. Then, these rankings
are used to calculate the correlations. Finally, the orange box is the output of the process.
An example of a correlation matrix derived from the above process is shown in the figure.

46

Gender aggregated results
calculated with WEAT

gender_WEAT = run_queries(WEAT,
gender_queries,
models, ...)

Gender aggregated results with
RND
gender_RND = run_queries(RND,

gender_queries,
models, ...)

Gender aggregated results with
RNSB

gender_RNSB = run_queries(RNSB,
gender_queries,
models, ...)

Figure 4.4: Calculation of correlations between rankings

biases on different metrics.

Correlation Matrix
Create the Rankings

WEAT: RND: RNSB:
rankings = create_ranking([gender_WEAT, Gender Gender Gender
gender_RND averageof averageof average of

TEnee absvalues absvalues abs values

ARG score score score

WEAT:
Gender
average of 1.0 05 05
abs values
score

RND: Gender
Calculate the Correlation Matrix average of 05 10 10
abs values
score
correlations = RNSB
calculate_ranking_correlations(ranking) Gmﬂe;
average of -05 1.0 1.0
abs values
score

47

obtained from the evaluation of

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis we presented the Word Embedding Fairness Evaluation framework (WEFE),
a theoretical framework that formalizes the main building blocks for measuring bias in word
embedding models. Using this framework, we conducted a case study where we evaluated
and ranked different publicly available pre-trained word embedding models under different
fairness metrics and bias criteria. We also implemented and released our framework as an
open-source library along with instructions to replicate the case study previously mentioned.

Our framework allows for a clean comparison of the bias measurements by abstracting away
several components such as target and attribute sets, queries, templates, fairness scores, and
order relations among those scores.

When applying our framework to specific pre-trained embeddings using various fairness
metrics, we were able to spot some differences among these metrics. In particular, we showed
that the most widely used fairness metrics are not always correlated beyond the gender di-
mension. This gives evidence of the difficulty of measuring bias for according to other criteria
such as religion or ethnicity, and reveals the necessity of more research in that direction.

In addition, we were able to observe that there is no direct correlation between the perfor-
mance of the embeddings and the bias they contain. This tells us that while a model may be
among the best according to its standard performance evaluation, it will not necessarily be
the least biased. This is precisely because these metrics neglect the fairness component. For
this reason, when implementing an embeddings-dependent NLP system, it is very important
to consider both the performance and the bias of the chosen model. Otherwise, there is a
risk of inheriting totally avoidable unfair behavior in these systems.

One important subjective aspect in our framework is the design of the queries (target
and attributes) used to test bias. We followed the previous work closely when selecting the
words composing every query, but this selection may definitely impact the rankings obtained.
Although we were able to propose a small but well formulated set of queries, we left out many
very important criteria that have not been considered until now, such as political views, social

48

class, gender discrimination against LGBT-+ people, among many others. It also excludes
several groups within the tested categories. Such is the case for ethnicity, which considers a
very small subset of social groups with respect to the whole spectrum of social groups within
our population.

Another limitation of existing metrics is that they are not able to identify the source of the
bias. As suggested by the distributional hypothesis, these biases may come from the corpus
on which the embeddings are trained. This is probably the reason why conceptnet [45], which
is built from a knowledge graph apart from a corpus, produced better results. However, the
bias may also come in part from the specific algorithm used to obtain the word embeddings
or even from the hyperparameters used to train them. On the other hand, we do not know
if the observed biases are mere statistical coincidence or are actually under the influence of
the above-mentioned variables. Thus it is still not clear why some models are less biased
than others. Further experimental studies are needed to analyze the origin of the bias in the
embedding models considering parameters such as the corpus and the training algorithms.

Regarding the debiased model, we detected a decrease in gender bias in the case study
scores. However, our results did not include the tests proposed by Gonen and Goldberg [20],
which questioned the effectiveness of debias methods and metrics for measuring it. Therefore,
although our results reflected a decrease in gender bias in the debiased model with respect
to the original, we cannot conclude with certainty that the mitigation process is actually
effective. It is also important to note that the study failed to clarify the effects of the bias
mitigation methods on model performance and the effect of this process on the other social
groups evaluated.

On another subject, the literature and our efforts to measure and mitigate the problems of
bias in embeddings been focused only on the discrimination detected in the English speaking
countries and its culture. As far as we know, there are a few studies that address this
issue [52]. In the near future, this could become a big problem considering that Al is rapidly
expanding all over the world. It is therefore necessary to promote fairness research in other
languages in order to minimize the potential damage that these systems may cause.

We also have released WEFE as an open source libraryﬂ for easily performing bias mea-
surements in word embedding models along with tutorials to reproduce the experiments
conducted in the case study as well as other previous studies.

5.2 Future Work

It is important to note that our study is limited to the fairness metrics and embeddings
we used. This area of study has advanced after the selection of the works on which our
framework is based. This is why in the future it is important to expand our study with more
recent metrics, such as those proposed in [32] 49| 6], as well as broadening the set of proven
embeddings.

"https://wefe.readthedocs.io/en/latest/

49

https://wefe.readthedocs.io/en/latest/

It is also necessary to broaden the criteria of bias assessed so far, as well as to assess
whether the queries used in this and previous studies are valid and correct for assessing bias.
This implies that in the future, it is of vital importance not only to create more and better
queries, but also to design a standardized methodology to generate, validate or refute them.

Another point of interest is to address the origin of the bias in this type of models. As
previously mentioned, it is not possible through our case study to identify the origin of
the bias. The main impediment to carrying out an objective comparison is the fact that
all the models we tested were trained using different corpora, training algorithms and their
hyperparameters.

An alternative strategy is to perform the same case study with embeddings trained with
a fixed corpus, but varying their training algorithm and hyper parameters. For example,
one could use the Google news corpus to train several instances of glove, word2vec and
fastext with different hyperparameters (dimension, window size, etc...) and then rank their
biases using the same queries of the case study. On the other hand, to test the training
corpus effect on model biases, the reverse process can be performed: train models with fixed
training algorithms and hyperparameters, but vary the corpus and then rank them according
to the detected bias.

Since each training procedure is a random process, each model may exhibit different
biases, even under the same hyperparameters. For this reason, it is advisable to carry out
these procedures several times and perform corresponding statistical tests on their results to
provide greater robustness.

With regard to the debias methods: we still need to include more metrics and queries to
verify the real impact of those methods over the models. We also know that there are currently
more methods of debiasing and embedding proposed, so it is also a task for the future to
include them [1T, 27, 28, B2, 50, 52]. On the other hand, models debiased according to
criteria different from gender, such as ethnicity and religion, were not considered in our study.
This presents and important research opportunity that we plan to explore.

We emphasize that it is imperative to investigate the bias of word embeddings in other
languages apart from English, since these models are widely used across many languages.
We identified a series of questions that will be very interesting for the development of this
area. These are listed below:

e What happens to gender biases in grammatically gendered languages?

e What criteria of bias will be universal and which will be irrelevant when changing
language?

e Are the biases purely cultural and/or language-related? To illustrate this question,
we put the case of the ethnic bias against the Black population: Will the results be
repeated in cultures where this type of bias is considerably less or non-existent?

e Are the queries used in the case study valid for other languages or will they have to be
adapted and validated for each language and context?

e What influence does the training corpus have on the detected biases?

20

Finally, it is worth mentioning that although our software is capable of implementing our
entire case study, it is still in a relatively initial version. To achieve the completeness we want,
we need to integrate new metrics, implement new methods for loading word embeddings
models, create new queries and integrate popular debias methods. Moreover, taking into
account the popularity that contextualized word embedding models have gained [I3], it would
also be useful to study the feasibility of including the work on measuring bias in these models
within our framework.

o1

Bibliography

1]

2l

3]

4]

[5]

(6]

17l

8]

9]
[10]

Pablo Badilla and Felipe Bravo-Marquez. Word embedding fairness evaluation blog on
kduggets.

Pablo Badilla, Felipe Bravo-Marquez, and Jorge Pérez. Wefe: The word embeddings
fairness evaluation framework. In Proceedings of the 29th International Joint Conference
on Artificial Intelligence and the 17th Pacific Rim International Conference on Artificial
Intelligence (IJCAI-PRICAI 2020), 2020.

Amir Bakarov. A survey of word embeddings evaluation methods. arXiv preprint
arXiw:1801.09536, 2018.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word
vectors with subword information. Transactions of the Association for Computational
Linguistics, 5:135-146, 2017.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T
Kalai. Man is to computer programmer as woman is to homemaker? debiasing word

embeddings. In Advances in neural information processing systems, pages 4349-4357,
2016.

Marc-Etienne Brunet, Colleen Alkalay-Houlihan, Ashton Anderson, and Richard Zemel.
Understanding the origins of bias in word embeddings. In International Conference on
Machine Learning, pages 803-811, 2019.

Aylin Caliskan, Joanna J Bryson, and Arvind Narayanan. Semantics derived automat-
ically from language corpora contain human-like biases. Science, 356(6334):183-186,
2017.

Kaytlin Chaloner and Alfredo Maldonado. Measuring gender bias in word embeddings
across domains and discovering new gender bias word categories. In Proceedings of the
First Workshop on Gender Bias in Natural Language Processing, pages 25-32, 2019.

Erin Collins. Punishing risk. Geo. LJ, 107:57, 2018.

Amit Datta, Michael Carl Tschantz, and Anupam Datta. Automated experiments on ad
privacy settings: A tale of opacity, choice, and discrimination. Proceedings on privacy
enhancing technologies, 2015(1):92-112, 2015.

02

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21

22]

23]

[24]

Sunipa Dev and Jeff Phillips. Attenuating bias in word vectors. In The 22nd Interna-
tional Conference on Artificial Intelligence and Statistics, pages 879-887, 2019.

Jacob Eisenstein. Introduction to natural language processing. MIT press, 2019.

Kawin Ethayarajh. Bert, elmo, gpt-2: How contextual are contextualized word repre-
sentations?, Mar 2020.

Kawin Ethayarajh, David Duvenaud, and Graeme Hirst. Towards understanding lin-
ear word analogies. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3253-3262, 2019.

Kawin Ethayarajh, David Duvenaud, and Graeme Hirst. Understanding undesirable
word embedding associations. In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1696-1705, Florence, Italy, July 2019.
Association for Computational Linguistics.

Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris Dyer, Eduard Hovy, and Noah A
Smith. Retrofitting word vectors to semantic lexicons. arXiv preprint arXiv:1411.4166,
2014.

John R Firth. A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis,
1957.

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou. Word embeddings
quantify 100 years of gender and ethnic stereotypes. Proceedings of the National Academy
of Sciences, 115(16):E3635-E3644, 2018.

Yoav Goldberg. Neural network methods for natural language processing. Synthesis
Lectures on Human Language Technologies, 10(1):1-309, 2017.

Hila Gonen and Yoav Goldberg. Lipstick on a pig: Debiasing methods cover up system-
atic gender biases in word embeddings but do not remove them. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
609-614, Minneapolis, Minnesota, June 2019. Association for Computational Linguis-
tics.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Zellig S Harris. Distributional structure. Word, 10(2-3):146-162, 1954.

Minging Hu and Bing Liu. Mining and summarizing customer reviews. In Proceedings
of the tenth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 168-177. ACM, 2004.

Stanislaw Jastrzkebski, Damian Lesniak, and Wojciech Marian Czarnecki. How to eval-
uate word embeddings? on importance of data efficiency and simple supervised tasks.

23

http://www.deeplearningbook.org

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

CoRR, abs/1702.02170, 2017.

Mark Johnson. Introduction to computational linguistics and natural language process-
ing (slides). 2014 Machine Learning Summer School, 2014.

Surya Mattu Julia Angwin, Jeff Larson and Lauren Kirchner. Machine Bias. There’s
software used across the country to predict future criminals. And it’s biased against
blacks., 2016 (accessed July 6, 2020).

Masahiro Kaneko and Danushka Bollegala. Gender-preserving debiasing for pre-trained
word embeddings. CoRR, abs/1906.00742, 2019.

Saket Karve, Lyle Ungar, and Joao Sedoc. Conceptor debiasing of word representations
evaluated on weat. arXw preprint arXiv:1906.05993, 2019.

Keita Kurita. Paper dissected: "glove: Global vectors for word representation" ex-
plained, May 2018.

Sam Levin. A beauty contest was judged by Al and the robots didn’t like dark skin., 2016
(accessed July 6, 2020).

Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity with
lessons learned from word embeddings. Transactions of the Association for Computa-
tional Linguistics, 3:211-225, 2015.

Thomas Manzini, Lim Yao Chong, Alan W Black, and Yulia Tsvetkov. Black is to
criminal as caucasian is to police: Detecting and removing multiclass bias in word em-
beddings. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 615-621, Minneapolis, Minnesota, June 2019. Associa-
tion for Computational Linguistics.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram
Galstyan. A survey on bias and fairness in machine learning. arXiv preprint
arXiw:1908.09635, 2019.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. In 1st International Conference on Learning Rep-
resentations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track
Proceedings, 2013.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111-3119, 2013.

Eirini Ntoutsi, Pavlos Fafalios, Ujwal Gadiraju, Vasileios losifidis, Wolfgang Nejdl,
Maria-Esther Vidal, Salvatore Ruggieri, Franco Turini, Symeon Papadopoulos, Em-
manouil Krasanakis, et al. Bias in data-driven artificial intelligence systems—an in-
troductory survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Dis-

o4

37|

[38]

[39]

[40]

|41

[42]

[43]

[44]

[45]

|46]

47|

48]

covery, 10(3):e1356, 2020.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors
for word representation. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1532-1543, 2014.

Rashida Richardson, Jason M Schultz, and Kate Crawford. Dirty data, bad predictions:
How civil rights violations impact police data, predictive policing systems, and justice.
NYUL Rev. Online, 94:15, 2019.

Adam Rose. Are Face-Detection Cameras Racist?, 2010 (accessed July 6, 2020).

Alexandre Salle, Marco Idiart, and Aline Villavicencio. FEnhancing the lexvec dis-

tributed word representation model using positional contexts and external memory.
arXiv preprint arXw:1606.01283, 2016.

Alexandre Salle, Aline Villavicencio, and Marco Idiart. Matrix factorization using win-
dow sampling and negative sampling for improved word representations. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pages 419-424, Berlin, Germany, August 2016. Association for Com-
putational Linguistics.

Tobias Schnabel, Igor Labutov, David Mimno, and Thorsten Joachims. FEvaluation
methods for unsupervised word embeddings. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 298-307, Lisbon, Portugal,
September 2015. Association for Computational Linguistics.

Shreya Shankar, Yoni Halpern, Eric Breck, James Atwood, Jimbo Wilson, and D. Scul-
ley. No classification without representation: Assessing geodiversity issues in open data
sets for the developing world, 2017.

Robyn Speer. Conceptnet numberbatch 17.04: better, less-
stereotyped ~ word vectors. http://blog.conceptnet.io/posts/2017/
conceptnet-numberbatch-17-04-better-less-stereotyped-word-vectors/,

2017 (accessed July 6, 2020).

Robyn Speer, Joshua Chin, and Catherine Havasi. ConceptNet 5.5: An open multilingual
graph of general knowledge. pages 4444-4451, 2017.

Tony Sun, Andrew Gaut, Shirlyn Tang, Yuxin Huang, Mai ElSherief, Jieyu Zhao, Diba
Mirza, Elizabeth Belding, Kai-Wei Chang, and William Yang Wang. Mitigating gender
bias in natural language processing: Literature review. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 1630-1640, Florence,
Italy, July 2019. Association for Computational Linguistics.

Harini Suresh and John V. Guttag. A framework for understanding unintended conse-
quences of machine learning, 2019.

Chris Sweeney and Maryam Najafian. A transparent framework for evaluating unin-

95

http://blog.conceptnet.io/posts/2017/conceptnet-numberbatch-17-04-better-less-stereotyped-word-vectors/
http://blog.conceptnet.io/posts/2017/conceptnet-numberbatch-17-04-better-less-stereotyped-word-vectors/

[49]

[50]

[51]

[52]

tended demographic bias in word embeddings. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 16621667, 2019.

Nathaniel Swinger, Maria De-Arteaga, Neil Thomas Heffernan IV, Mark DM Leiserson,
and Adam Tauman Kalai. What are the biases in my word embedding? In Proceedings
of the 2019 AAAI/ACM Conference on Al, Ethics, and Society, pages 305-311, 2019.

Jieyu Zhao, Yichao Zhou, Zeyu Li, Wei Wang, and Kai-Wei Chang. Learning gender-
neutral word embeddings. arXiv preprint arXiw:1809.01496, 2018.

Kai Zhao, Hany Hassan, and Michael Auli. Learning translation models from mono-
lingual continuous representations. In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 1527-1536, 2015.

Pei Zhou, Weijia Shi, Jieyu Zhao, Kuan-Hao Huang, Muhao Chen, Ryan Cotterell, and
Kai-Wei Chang. Examining gender bias in languages with grammatical gender. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 5275-5283, Hong Kong, China, November 2019. Association for Com-
putational Linguistics.

26

Appendix A

Word Sets and Queries

The following appendix lists all the word sets used for the construction of the queries in our
case study.

The word sets were collected from different previous works. To maintain order, the word
sets are grouped according to their source in different subsections. Each subsection contains
the source work of the word sets and a table detailing the name of the sets and the words
belonging to them. Note that the word sets shown below were collected from previous works
and in no way represent the opinions or thoughts of the author.

A.1 WEAT Word Sets

The source of the following word sets is the work published by Caliskan et al. 2017 [7].
Most of these word sets come from psychology studies. The detail of each of these sources is
documented in their work.

Table A.1: WEAT word sets

Set name Words

Pleasant 5 caress, freedom, health, love, peace, cheer, friend, heaven, loyal, pleasure,
diamond, gentle, honest, lucky, rainbow, diploma, gift, honor, miracle,
sunrise, family, happy, laughter, paradise, vacation.

Unpleasant 5 abuse, crash, filth, murder, sickness, accident, death, grief, poison, stink,
assault, disaster, hatred, pollute, tragedy, divorce, jail, poverty, ugly, can-
cer, kill, rotten, vomit, agony, prison.

European Ameri- Adam, Harry, Josh, Roger, Alan, Frank, Justin, Ryan, Andrew, Jack,

can names 9 Matthew, Stephen, Brad, Greg, Paul, Jonathan, Peter, Amanda, Court-
ney, Heather, Melanie, Sara, Amber, Katie, Betsy, Kristin, Nancy,
Stephanie, Ellen, Lauren, Colleen, Emily, Megan, Rachel.

Continued on next page

27

Table A.1: WEAT word sets

Set name

Words

African American
names 5

European Ameri-
can names 7
African American
names 7

Pleasant 9
Unpleasant 9
Male names
Female names
Career

Family
Math

Arts

Male terms
Female terms
Science

Arts 2
Male terms 2
Female terms 2

Alonzo, Jamel, Theo, Alphonse, Jerome, Leroy, Torrance, Darnell, Lamar,
Lionel, Tyree, Deion, Lamont, Malik, Terrence, Tyrone, Lavon, Marcellus,
Wardell, Nichelle, Shereen, Ebony, Latisha, Shaniqua, Jasmine, Tanisha,
Tia, Lakisha, Latoya, Yolanda, Malika, Yvette.

Brad, Brendan, Geoffrey, Greg, Brett, Jay, Matthew, Neil, Todd, Allison,
Anne, Carrie, Emily, Jill, Laurie, Kristen, Meredith, Sarah.

Darnell, Hakim, Jermaine, Kareem, Jamal, Leroy, Rasheed, Tremayne,
Tyrone, Aisha, Ebony, Keisha, Kenya, Latonya, Lakisha, Latoya, Tamika,
Tanisha.

joy, love, peace, wonderful, pleasure, friend, laughter, happy.

agony, terrible, horrible, nasty, evil, war, awful, failure.

John, Paul, Mike, Kevin, Steve, Greg, Jeff, Bill.

Amy, Joan, Lisa, Sarah, Diana, Kate, Ann, Donna.

executive, management, professional, corporation, salary, office, business,
career.

home, parents, children, family, cousins, marriage, wedding, relatives.
math, algebra, geometry, calculus, equations, computation, numbers, ad-
dition.

poetry, art, dance, literature, novel, symphony, drama, sculpture.

male, man, boy, brother, he, him, his, son.

female, woman, girl, sister, she, her, hers, daughter.

science, technology, physics, chemistry, Einstein, NASA, experiment, as-
tronomy.

poetry, art, Shakespeare, dance, literature, novel, symphony, drama.
brother, father, uncle, grandfather, son, he, his, him.

sister, mother, aunt, grandmother, daughter, she, hers, her.

A.2 RND Word Sets

The source of the following word sets is the work published by Garg et al. 2018 [I8]. The
sets were collected from a repository published by their authors E|

Table A.2: RND word sets

Set name

Words

Adjectives appear-
ance

alluring, voluptuous, blushing, homely, plump, sensual, gorgeous, slim,
bald, athletic, fashionable, stout, ugly, muscular, slender, feeble, hand-
some, healthy, attractive, fat, weak, thin, pretty, beautiful, strong.

Continued on next page

Thttps://github.com /nikhgarg/EmbeddingDynamicStereotypes

o8

Table A.2: RND word sets

Words

Set name
Adjectives other-
ization
Adjectives sensi-
tive

Asian surnames

Black surnames

Chinese surnames

Hispanic
names

sur-

Russian surnames

White surnames

Christianity re-
lated words

Islam related
words

Terrorism related
words

Male occupations

devious, bizarre, venomous, erratic, barbaric, frightening, deceitful, force-
ful, deceptive, envious, greedy, hateful, contemptible, brutal, monstrous,
calculating, cruel, intolerant, aggressive, monstrous.

inhibited, complacent, sensitive, mellow, solemn, studious, intelligent, bril-
liant, rational, serious, contemplative, cowardly, timid, shy, passive, deli-
cate, gentle, soft, quiet, working.

cho, wong, tang, huang, chu, chung, ng, wu, liu, chen, lin, yang, kim,
chang, shah, wang, li, khan, singh, hong.

harris, robinson, howard, thompson, moore, wright, anderson, clark, jack-
son, taylor, scott, davis, allen, adams, lewis, williams, jones, wilson, mar-
tin, johnson.

chung, liu, wong, huang, ng, hu, chu, chen, lin, liang, wang, wu, yang,
tang, chang, hong, li.

ruiz, alvarez, vargas, castillo, gomez, soto, gonzalez, sanchez, rivera, men-
doza, martinez, torres, rodriguez, perez, lopez, medina, diaz, garcia, castro,
cruz.

gurin, minsky, sokolov, markov, maslow, novikoff, mishkin, smirnov, orloff,
ivanov, sokoloff, davidoff, savin, romanoff, babinski, sorokin, levin, pavlov,
rodin, agin.

harris, nelson, robinson, thompson, moore, wright, anderson, clark, jack-
son, taylor, scott, davis, allen, adams, lewis, williams, jones, wilson, mar-
tin, johnson.

baptism, messiah, catholicism, resurrection, christianity, salvation, protes-
tant, gospel, trinity, jesus, christ, christian, cross, catholic, church.

allah, ramadan, turban, emir, salaam, sunni, koran, imam, sultan, prophet,
veil, ayatollah, shiite, mosque, islam, sheik, muslim, muhammad.

terror, terrorism, violence, attack, death, military, war, radical, injuries,
bomb, target, conflict, dangerous, kill, murder, strike, dead, violence, fight,
death, force, stronghold, wreckage, aggression, slaughter, execute, over-
throw, casualties, massacre, retaliation, proliferation, militia, hostility, de-
bris, acid, execution, militant, rocket, guerrilla, sacrifice, enemy, soldier,
terrorist, missile, hostile, revolution, resistance, shoot.

physician, doctor, laborer, conservationist, proprietor, operator, mechanic,
surveyor, physicist, machinist, architect, photographer, optometrist, mill-
wright, tradesperson, sales, upholsterer, smith, manager, statistician,
doorkeeper, athlete, bailiff, typesetter, clerk, boilermaker, cabinetmaker,
official, conductor, porter, bookbinder, chemist, inspector, professor, sales-
person, lawyer, farmer, electrician, sailor, mailperson, geologist, setter,
lumberjack, instructor, plasterer, judge, toolmaker, sheriff, surgeon, sci-
entist, jeweler, compositor, engineer, carpenter, artist, soldier, clergy,
painter, shoemaker, plumber, mason, cook, draftsperson, pilot, chiroprac-
tor, dentist, fireperson, police, gardener, driver, guard, welder.

Continued on next page

29

Table A.2: RND word sets

Set name

Words

Female occupa-
tions

Common White
occupations
Common Black
occupations

Common Asian
occupations

Common Hispanic
occupations

Male terms

Female terms

Adjectives intelli-
gence

bankteller, cashier, bartender, teacher, baker, dancer, nutritionist, broker,
dietitian, author, entertainer, economist, nurse, secretary, clerical, thera-
pist, technician, veterinarian, attendant, janitor, weaver, musician, wait-
staff, psychologist, designer, pharmacist, librarian, accountant, newsper-
son, administrator, housekeeper.

plasterer, janitor, porter, cook, shoemaker, laborer, guard, doorkeeper,
baker, gardener, cashier, attendant, clerk, mason, upholsterer.

farmer, veterinarian, pilot, optometrist, physicist, dentist, chiropractor,
geologist, statistician, plasterer, surveyor, author, architect, setter, tool-
maker.

plasterer, conductor, boilermaker, millwright, mason, fireperson, conserva-
tionist, setter, toolmaker, plumber, upholsterer, farmer, bookbinder, cab-
inetmaker, carpenter.

optometrist, veterinarian, physicist, geologist, pharmacist, chiroprac-
tor, statistician, millwright, toolmaker, setter, author, scientist, dentist,
lawyer, judge.

he, son, his, him, father, man, boy, himself, male, brother, sons, fathers,
men, boys, males, brothers, uncle, uncles, nephew, nephews.

she, daughter, hers, her, mother, woman, girl, herself, female, sister,
daughters, mothers, women, girls, females, sisters, aunt, aunts, niece,
nieces.

precocious, resourceful, inquisitive, sagacious, inventive, astute, adaptable,
reflective, discerning, intuitive, inquiring, judicious, analytical, luminous,
venerable, imaginative, shrewd, thoughtful, sage, smart, ingenious, clever,
brilliant, logical, intelligent, apt, genius, wise.

A.3 Debias Word Embeddings Word Sets

Table A.3: Debias Word Embeddings Word sets

Set name Words

Male terms woman, girl, she, mother, daughter, gal, female, her, herself, Mary.
Female terms man, boy, he, father, son, guy, male, his, himself, John.

Male related monastery, spokesman, catholic priest, dad, men, councilman, grandpa,
words grandsons, prostate cancer, testosterone, uncle, wives, father, grandpa,

he, boy, boys, brother, brothers, businessman, chairman, colt, congress-
man, dad, dads, dudes, ex girlfriend, father, fatherhood, fathers, fella,
fraternity, gelding, gentleman, gentlemen, grandfather, grandson, he, him-
self, his, king, kings, male, males, man, men, nephew, prince, schoolboy,
son, sons, twin brother.

Continued on next page

60

Table A.3: Debias Word Embeddings Word sets

Set name

Words

Female related
words

convent, spokeswoman, nun, mom, women, councilwoman, grandma,
granddaughters, ovarian cancer, estrogen, aunt, husbands, mother,
grandma, she, girl, girls, sister, sisters, businesswoman, chairwoman, filly,
congresswoman, mom, moms, gals, ex boyfriend, mother, motherhood,
mothers, granny, sorority, mare, lady, ladies, grandmother, granddaugh-
ter, she, herself, her, queen, queens, female, females, woman, women, niece,
princess, schoolgirl, daughter, daughters, twin _sister.

A.4 Debias Multiclass Words Sets

Table A.4: Debias multiclass word sets

Set name Words

Male terms he, his, son, father, male, boy, uncle.

Female terms she, hers, daughter, mother, female, girl, aunt.

Male roles manager, executive, doctor, lawyer, programmer, scientist, soldier, super-

Female roles

Black related

terms
White related
terms
Asian related
terms
Black related
words
White related
words
Asian related
words

Judaism related
terms

Christianity terms
Islam terms
Greed terms
Conservative
terms

Terrorism terms

visor, rancher, janitor, firefighter, officer.
secretary, nurse, clerk, artist, homemaker, dancer, singer, librarian, maid,

hairdresser, stylist, receptionist, counselor.
Africa, African, black.

America, Caucasian, Europe, white.

Asia, Asian, china.

slave, musician, runner, criminal, homeless.
manager, executive, redneck, hillbilly, leader, farmer.
doctor, engineer, laborer, teacher.

jew, Judaism, rabbi, synagogue, Torah.

bible, christian, Christianity, church, priest.

imam, Islam, mosque, Muslim, Quran.

greedy, cheap, hairy, liberal.

judgmental, conservative, familial.

violent, terrorist, dirty, uneducated.

61

A.5 Bing Liu Sentiment Lexicon

The complete sentiment lexicon produced by bing-liu [23] contains around 6800 words be-
tween the positive and negative word sets. For the sake of space we only give some examples
of this one. The complete sets can be found at the footnote

Table A.5: Bing Liu sentiment lexicon examples

Set name

Words

Positive words

Negative words

a-+, abound, abounds, abundance, abundant, accessable, accessible, ac-
claim, acclaimed, acclamation, accolade, accolades, accommodative, acco-
modative, accomplish, accomplished, accomplishment, accomplishments,
accurate, accurately, achievable, achievement, achievements, achievible,
acumen, adaptable, adaptive, adequate, adjustable, admirable, admirably,
admiration, admire, admirer, admiring, admiringly, adorable, adore,
adored, adorer, adoring, adoringly, adroit, adroitly, adulate, adulation,
adulatory, advanced, advantage, advantageous, advantageously, advan-
tages, adventuresome, adventurous, advocate, advocated, advocates, af-
fability, affable, affably, affectation, affection, affectionate, affinity, af-
firm, affirmation, affirmative, affluence, affluent, afford, affordable, afford-
ably, afordable, agile, agilely, agility, agreeable, agreeableness, agreeably,
all-around, alluring, alluringly, altruistic, altruistically, amaze, amazed,
amazement, amazes, amazing, amazingly, ambitious, ...

2-faced, 2-faces, abnormal, abolish, abominable, abominably, abominate,
abomination, abort, aborted, aborts, abrade, abrasive, abrupt, abruptly,
abscond, absence, absent-minded, absentee, absurd, absurdity, absurdly,
absurdness, abuse, abused, abuses, abusive, abysmal, abysmally, abyss,
accidental, accost, accursed, accusation, accusations, accuse, accuses, ac-
cusing, accusingly, acerbate, acerbic, acerbically, ache, ached, aches, achey,
aching, acrid, acridly, acridness, acrimonious, acrimoniously, acrimony,
adamant, adamantly, addict, addicted, addicting, addicts, admonish, ad-
monisher, admonishingly, admonishment, admonition, adulterate, adul-
terated, adulteration, adulterier, adversarial, adversary, adverse, adver-
sity, afflict, affliction, afflictive, affront, afraid, aggravate, aggravating,
aggravation, aggression, aggressive, aggressiveness, aggressor, aggrieve,
aggrieved, aggrivation, aghast, agonies, agonize, agonizing, agonizingly,
agony, aground, ail, ailing, ailment, aimles, ...

’http://wuw.cs.uic.edu/~1iub/FBS/opinion-lexicon-English.rar

62

http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar

Appendix B

(Queries

The following tables provides details of the queries sets used in our case study. The sets of
queries are arranged in three different tables. The first table (Table contains the details
of the queries used to study gender bias, the second table (Table contains the queries
that study ethnicity bias and the third table (Table contains the queries that study

religion bias.

All queries were built using a template size (2.2). Through the mechanisms of sub-series
generation (Section [3.1.4), the original queries were adapted to work with metrics compatible
with smaller sizes.

Since there are duplicate names between sets of words, we detail their source between
parentheses. WEAT refers to the sets in the table [A.I, RND to the sets in the table [A.2]
Debias multiclass refers to the sets in the table [A.4] and Bing Liu refers to the sets in the
table [A5]

63

B.1 Gender Queries

Table B.1: Gender queries

Target set 1

Target set 2

Attribute set 1

Attribute set 2

Male terms (RND)
Male terms (RND)
Male terms (RND)
Male terms (RND)
Male terms (RND)
Male terms (RND)

Male terms (RND)

Female
(RND)
Female
(RND)
Female
(RND)
Female
(RND)
Female
(RND)
Female
(RND)
Female

(RND)

terms

terms

terms

terms

terms

terms

terms

Career (WEAT)
Math (WEAT)
Science (WEAT)
Intelligence (RND)

Intelligence (RND)

Positive words
(Bing Liu)
Man Roles (Debias
multiclass)

Family (WEAT)
Arts (WEAT)

Arts (WEAT)
Appearance (RND)
Sensitive (RND)

Negative words

(Bing Liu)
Woman Roles (De-
bias multiclass)

64

B.2 Ethnicity Queries

Table B.2: Ethnicity queries

Target set 1

Target set 2

Attribute set 1

Attribute set 2

White last
(RND)
White last
(RND)
White
(RND)
White
(RND)
White
(RND)
White
(RND)
White
(RND)
White
(RND)
White
(RND)

last

last

last

last

last

last

last

names

names

names

names

names

names

names

names

names

Black
(RND)
Asian
(RND)
Hispanic last
(RND)
Black
(RND)
Asian
(RND)
Hispanic last
(RND)
Black
(RND)
Asian
(RND)
Hispanic last
(RND)

last

last

last

last

last

last

names

names

names

names

names

names

names

names

names

Pleasant 5 (WEAT)
Pleasant 5 (WEAT)

Pleasant 5 (WEAT)

Occupations white
(RND)
Occupations white
(RND)
Occupations white
(RND)

Positive words(Bing
Liu)

Positive words
(Bing Liu)

Positive words
(Bing Liu)

Unpleasant 5
(WEAT)
Unpleasant 5)
(WEAT)
Unpleasant 5
(WEAT)
Occupations black
(RND)

Occupations Asian
(RND)

Occupations His-
panic (RND)
Negative words
(Bing Liu)

Negative words
(Bing Liu)

Negative words
(Bing Liu)

65

B.3 Religion

Queries

Table B.3: Religion queries

Target set 1

Target set 2

Attribute set 1

Attribute set 2

Christianity terms
(Debias multiclass)
Christianity terms

(Debias multiclass)
Islam terms (Debias

multiclass)

Christianity — terms
(Debias multiclass)
Christianity terms

(Debias multiclass)
Islam terms (Debias

multiclass)

Christianity terms
(Debias multiclass)
Christianity terms

(Debias multiclass)
Islam terms (Debias
multiclass)

I[slam terms (Debias
multiclass)

Judaism terms (De-
bias multiclass)
Judaism terms (De-
bias multiclass)
Islam terms (Debias
multiclass)

Jew terms (Debias
multiclass)

Jew terms (Debias
multiclass)

Islam terms (Debias
multiclass)

Jew terms (Debias
multiclass)

Jew terms (Debias
multiclass)

Pleasant 5 (WEAT)
Pleasant 5 (WEAT)

Pleasant 5 (WEAT)

Conservative (De-
bias multiclass)
Conservative (De-
bias multiclass)
Terrorism (Debias
multiclass)

Positive words
(Bing Liu)

Positive words
(Bing Liu)

Positive words
(Bing Liu)

Unpleasant 5
(WEAT)
Unpleasant 5)
(WEAT)
Unpleasant 5
(WEAT)

Terrorism (Debias
multiclass)

Greed (Debias mul-
ticlass)

Greed (Debias mul-
ticlass)
Negative
(Bing Liu)
Negative
(Bing Liu)
Negative
(Bing Liu)

words

words

words

66

Appendix C

WEFE Library Tutorial

The following pages present a comprehensive user guide on how to use the WEFE library
presented in Chapter [l Below:

e We introduce how to run a simple query using some embedding model.
e We present how to run multiple queries on multiple embeddings.

e We show how to compare the results obtained from running multiple sets of queries on
multiple embeddings using different metrics through ranking calculation.

e We describe how to calculate the correlations between the rankings obtained.

Please note that the ongoing development of this library may cause the following to be
deprecated in the future. To see the documentation of the most recent deploy of the library,
visit the link contained in the following footnote]

C.1 Run a Query

The following code explains how to run a gender query using Glove embeddings and the
Word Embedding Association Test (WEAT) as the fairness metric. Below we present the
three usual steps for performing a query in WEFE:

e Load a word embeddings model as a WordEmbeddingModel object.

First, we load the word embedding pretrained model using the gensim library and
then we create a WordEmbeddingModel instance. For this example, we will use a 25-
dimensional Glove embedding model trained from a Twitter dataset.

Load the modules

from wefe.query import Query

from wefe.word_embedding_model import WordEmbeddingModel
from wefe.metrics.WEAT import WEAT

from wefe.datasets.datasets import load_weat

import gensim.downloader as api

Thttps:/ /wefe.readthedocs.io/en/latest/

67

twitter_25 = api.load('glove-twitter-25")
model = WordEmbeddingModel (twitter_25, 'glove twitter dim=25")

e Create the query using a Query object

Define the target and attribute words sets and create a Query object that contains
them. Some well-known word sets are already provided by the package and can be
easily loaded by the user. Users can also set their own custom-made sets. For this
example, we will create a query with gender terms with respect to family and career.
The words we will use will be taken from the set of words used in the WEAT paper [7]
(included in the package).

load the weat word sets

word_sets = load_weat()

query = Query([word_sets['male_terms'], word_sets['female_terms']],
[word_sets['career'], word_sets['family']],
['Male terms', 'Female terms'], ['Career', 'Family'])

e Instantiate the Metric

Instantiate the metric that you will use and then execute run_query with the param-
eters created in the previous steps. In this case we will use the WEAT metric.

weat = WEAT()

result = weat.run_query(query, model)
print (result)

The results obtained are as follows:

{'query_name': 'Male Terms and Female Terms wrt Arts and Science',
'result': -0.010003209}

C.2 Running Multiple Queries

We usually want to test several queries that study some criterion of bias: gender, ethnicity,
religion, politics, socioeconomic, among others. Let us suppose you have created 20 queries
that study gender bias on different models of embeddings. Trying to run_query on each pair
embedding-query can be a bit complex and will require extra work to implement.

This is why the library also implements a function to test multiple queries on various word
embedding models in a single call: the run_queries util.

The following code shows how to run various gender queries on different Glove embedding
models trained from the Twitter dataset. The queries will be executed using the Effect size
variant of WEAT.

1. Load the models:

Load three different Glove Twitter embedding models. These models were trained using
the same dataset varying the number of embedding dimensions.

from wefe.query import Query
from wefe.datasets import load_weat
from wefe.word_embedding_model import WordEmbeddingModel

68

from wefe.metrics import WEAT, RNSB
from wefe.utils import run_queries, plot_queries_results

import gensim.downloader as api
. Load the word sets:

Now, we will load the WEAT word set and create three queries. The first query is
intended to measure gender bias and the other two are intended to measure ethnicity
bias.

Load the WEAT word sets
word_sets = load_weat()

Create gender queries
gender_query_1 = Query([word_sets['male_terms'], word_sets['female_terms']],
[word_sets['career'], word_sets['family']],
['Male terms', 'Female terms'], ['Career', 'Family'])
gender_query_2 = Query([word_sets['male_terms'], word_sets['female_terms']],
[word_sets['science'], word_sets['arts']],
['Male terms', 'Female terms'], ['Science', 'Arts'])
gender_query_3 = Query([word_sets['male_terms'], word_sets['female_terms']],
[word_sets['math'], word_sets['arts_2']],
['Male terms', 'Female terms'], ['Math', 'Arts'])

gender_queries = [gender_query_1, gender_query_2, gender_query_3]
. Run the queries on all Word Embeddings using WEAT Effect Size.

Now, to run our list of queries and models, we call the function run_queries. The
mandatory parameters of the function are 3:

(a) a metric,
(b) a list of queries, and,
(c) a list of embedding models.

It is also possible to provide a name for the criterion studied in this set of queries
through the parameter queries_set_name.

Notice that one can pass the metric’s parameters using a dict object in the metric_params
parameter. In this case, we specify that WEAT returns its Effect size variant as a result
by delivering the following parameter to

run_queries: metric_params{’return_effect_size’: True}

Run the queries
WEAT_gender_results = run_queries(WEAT,

gender_queries,

models,

metric_params={

'return_effect_size': True

3,

queries_set_name='Gender Queries')
WEAT _gender_results

69

Male terms and Male terms and Male terms and

Model name Female terms wrt. Female terms wrt. Female terms wrt.
Career and Family Science and Arts Math and Arts
glove twitter dim=25 0.715369 0.766402 0.121468
glove twitter dim=>50 0.799666 -0.660553 -0.589894
glove twitter dim=100 0.681933 0.641153 -0.399822

Table C.1: Results of the execution of gender queries evaluated on three models of embeddings
using WEAT..

The results of this execution can be found in the table If more than 20% (by
default) of the words from any of the word sets of the query are not included in the
word embedding model, the metric will return NaN. This behavior can be changed using
a float number parameter called lost_vocabulary_threshold.

4. Plot the results in a barplot: The following code shows how to graph the above results
using the utility plot_queries_results. The graph is displayed in the figure
plot_queries_results(WEAT_gender_results) .show()

Word Embedding Model
M glove twitter dim=25

M glove twitter dim=50
I I M glove twitter dim=100

Male terms and Female terms wrt Male terms and Female terms wrt Male terms and Female terms wrt
Career and Family Science and Arts Math and Arts

Query

0.8

0.

(=]

0.

o

0.

]

Bias measure

-0.2

-0.4

—0.6

Figure C.1: Graphed results of the execution of gender queries evaluated on three models of
embeddings using WEAT.

5. Aggregating Results:
The execution of run_queries in the previous step gave us many results evaluating
the gender bias in the tested embeddings. However, these do not tell us much about
the overall fairness of the embedding models with respect to the criteria evaluated.
Therefore, we would like to have some mechanism that allows us to aggregate the
results directly obtained in run_query so that we can evaluate the bias as a whole.

For this, when using run_queries, one must set the aggregate_results parameter as
True. This default value will activate the option to aggregate the results by averaging

70

WEAT:
Gender Queries
average of abs
values score

Male terms and Male terms and Male terms and
Model name Female terms wrt. Female terms wrt. Female terms wrt.
Career and Family Science and Arts Math and Arts

glove twitter dim=25 0.715369 0.766402 0.121468 0.534413
glove twitter dim=50 0.799666 -0.660553 -0.589894 0.683371
glove twitter dim=100 0.681933 0.641153 -0.399822 0.574303

Table C.2: Aggregated results of the execution of gender queries evaluated on three embed-
ding models using WEAT.

the absolute values of the results and put them in the last column.

This aggregation function can be modified through the aggregation_function pa-
rameter. Here one can specify a string that defines some of the aggregation types that
are already implemented, as well as provide a function that operates in the results
dataframe.

The aggregation functions available are (the parameter is listed in monospaced font):
e Average: avg.
e Average of the absolute values: abs_avg.
e Sum: sum.
e Sum of the absolute values: abs_sum.

Notice that some functions are more appropriate for certain metrics. For metrics re-
turning only positive numbers, all the previous aggregation functions would be okay.
In contrast, for metrics returning real values (e.g., WEAT, RND), aggregation functions
such as sum would make different outputs cancel each other out.

Let us aggregate the results from previous example by the average of the absolute
values:

WEAT _gender_results_agg = run_queries(WEAT,
gender_queries,
models,
metric_params={'return_effect_size': True},
aggregate_results=True,
aggregation_function='abs_avg',
queries_set_name='Gender Queries')
WEAT_gender_results_agg

Finally, we can ask the function to return only the aggregated values (through
return_only_aggregation parameter) and then plot them.

WEAT _gender_results_agg = run_queries(WEAT,
gender_queries,
models,
metric_params={'return_effect_size': True},
aggregate_results=True,
aggregation_function='abs_avg',
return_only_aggregation=True,
queries_set_name='Gender Queries')

71

WEAT _gender_results_agg
plot_queries_results(WEAT_gender_results_agg) .show()

0.7 Word Embedding Model
B glove twitter dim=25
0.6 M glove twitter dim=50
B glove twitter dim=100
0.5
o
-
2
2 04
o
€
8 03
m
0.2

0.1

WEAT: Gender Queries average of abs values score

Query

Figure C.2: Graph of the aggregated results of the execution of gender queries evaluated on
three models of embeddings using WEAT.

C.3 Rankings

When we want to measure various criteria of bias in different embedding models, two major
problems arise:

1. One type of bias can dominate the other because of significant differences in magnitude.

2. Different metrics can operate on different scales, which makes them difficult to compare.

To show that, suppose we have two sets of queries: one that explores gender biases and
another that explores ethnicity biases, and we want to test these sets of queries on 3 Twitter
Glove models of 25, 50 and 100 dimensions each, using both WEAT and Relative Negative
Sentiment Bias (RNSB) as bias metrics.

C.3.1 Differences in Magnitude Using the Same Fairness Metric

The first problem that can occur is that the bias scores obtained from one set of queries are
much higher than those from the other set, even when the same metric is used. To prove
this, we execute the gender and ethnicity queries using WEAT and the 3 models mentioned
above. As can be seen in Table [C.3], the results of ethnicity bias are much greater than those
of gender.

72

WEAT: Gender Queries WEAT: Ethnicity Queries

Model Name average of abs average of abs
values score values score
glove twitter dim=25 0.210556 2.64632
glove twitter dim=>50 0.292373 1.87431
glove twitter dim=100 0.225116 1.78469

Table C.3: Gender and ethnicity aggregated WEAT results comparison.

WEAT: Gender Queries RNSB: Gender Queries

Model Name average of abs average of abs
values score values score
glove twitter dim=25 0.210556 0.032673
glove twitter dim=>50 0.292373 0.049429
glove twitter dim=100 0.225116 0.0312772

Table C.4: WEAT and RNSB gender aggregated results comparison.

C.3.2 Differences in Magnitude Using Different Fairness Metrics

The second problem that can occur is that one metric delivers results with different orders of
magnitude to another, even though both measure the same queries. To test this, we execute
the gender queries using WEAT and RNSB metrics and the 3 models mentioned above. As
we can see in the Table [C.4] differences between the results of both metrics of an order of
magnitude.

C.3.3 Calculate Rankings

Rankings allow us to focus on the relative differences reported by the metrics (for different
models) instead of focusing on the absolute values. The following code loads the models and
create the queries:

from wefe.query import Query

from wefe.datasets.datasets import load_weat

from wefe.word_embedding_model import WordEmbeddingModel

from wefe.metrics import WEAT, RNSB

from wefe.utils import run_queries, create_ranking,
plot_ranking, plot_ranking correlations

import gensim.downloader as api
Load the models

model_1 = WordEmbeddingModel (api.load('glove-twitter-25'),
'glove twitter dim=25')

73

model_2 = WordEmbeddingModel (api.load('glove-twitter-50"),
'glove twitter dim=50")
model_3 = WordEmbeddingModel (api.load('glove-twitter-100"),

'glove twitter dim=100')

models = [model_1, model_2, model_3]

Load the WEAT word sets
word_sets = load_weat()

Create gender queries
gender_query_1 = Query([word_sets['male_terms'], word_sets['female_terms']],
[word_sets['career'], word_sets['family']],
['Male terms', 'Female terms'], ['Career', 'Family'])
gender_query_2 = Query([word_sets['male_terms'], word_sets['female_terms']],
[word_sets['science'], word_sets['arts']],
['Male terms', 'Female terms'], ['Science', 'Arts'])
gender_query_3 = Query([word_sets['male_terms'], word_sets['female_terms']],
[word_sets['math'], word_sets['arts_2']],
['Male terms', 'Female terms'], ['Math', 'Arts'])

Create ethnicity queries

ethnicity_query_1 = Query([word_sets['european_american_names_5'],
word_sets['african_american_names_5']],
[word_sets['pleasant_5'], word_sets['unpleasant_5']],
['European Names', 'African Names'],
['Pleasant', 'Unpleasant'])

ethnicity_query_2 = Query([word_sets['european_american_names_7'],
word_sets['african_american_names_7']],
[word_sets['pleasant_9'], word_sets['unpleasant_9']],
['European Names', 'African Names'],
['Pleasant 2', 'Unpleasant 2'])

gender_queries = [gender_query_1, gender_query_2, gender_query_3]
ethnicity_queries = [ethnicity_query_1, ethnicity_query_2]

Now, we run the queries with WEAT and RNSB: First, run the WEAT queries:

WEAT _gender_results = run_queries(WEAT,
gender_queries,
models,
aggregate_results=True,
return_only_aggregation=True,

queries_set_name='Gender Queries')

74

WEAT: Gender WEAT: Ethnicity RNSB: Gender RNSB: Ethnicity

Model Name Queries average Queries average Queries average Queries average
of abs values of abs values of abs values of abs values
glove twitter dim=25 1 3 3 3
glove twitter dim=50 3 2 2 1
glove twitter dim=100 2 1 1 2

Table C.5: WEAT and RNSB rankings calculated from the aggregated results.

WEAT _ethnicity_results = run_queries(WEAT,
ethnicity_queries,
models,
aggregate_results=True,
return_only_aggregation=True,
queries_set_name='Ethnicity Queries')

Then, run the queries using RNSB:

RNSB_gender_results = run_queries(RNSB,
gender_queries,
models,
aggregate_results=True,
return_only_aggregation=True,
queries_set_name='Gender Queries')

RNSB_ethnicity_results = run_queries(RNSB,
ethnicity_queries,
models,
aggregate_results=True,
return_only_aggregation=True,
queries_set_name='Ethnicity Queries')

To create the ranking we use the create_ranking function. This function takes all the
DataFrames containing the calculated scores and uses the last column to create the ranking.
It assumes that the scores are already aggregated.

ranking = create_ranking([
WEAT _gender_results, WEAT ethnicity_results, RNSB_gender_results,
RNSB_ethnicity_results

iD)
print (ranking)

Finally, we plot the rankings using the plot_ranking function. The function can be used
in two ways:

e With facet by Metric and Criteria. This figure shows the rankings separated by each
bias criteria and metric (i.e, by each column). Each bar represents the position of the

75

embedding in the corresponding criterion-metric ranking.

plot_ranking(ranking, use_metric_as_facet=True)

WEAT: Gender Queries average of abs values score WEAT: Ethnicity Queries average of abs values score RNSB: Gender Queries average of abs values score

RNSB: Ethnicity Queries average of abs values score

glove itter dim=25

2
Ranking Ranking Ranking Ranking

°

2

w

Figure C.3: Bar chart of the rankings using the metric and bias criteria as a separator (facet).

e Without facet. This figure shows the accumulated rankings for each embedding model.
Each bar represents the sum of the rankings obtained by each embedding. Each color
within a bar represents a different criterion-metric ranking.

o dm_zsl---

o dl’n_so---l
o dmmo-ll-
0 2 4 6

Ranking

Figure C.4: Bar chart of the aggregated rankings by embedding model.

C.3.4 Ranking Correlations

We can see how the rankings obtained in the previous section correlate to each other by
using a correlation matrix. To do this we provide the calculate_ranking_correlations

76

WEAT: Gender WEAT: Ethnicity RNSB: Gender RNSB: Ethnicity
Queries average Queries average Queries average Queries average
of abs values score of abs values score of abs values score of abs values score

WEAT: Gender

Queries average 1 -0.5 -0.5 -1
of abs values score

WEAT: Ethnicity

Queries average -0.5 1 1 0.5
of abs values score

RNSB: Gender

Queries average -0.5 1 1 0.5
of abs values score

RNSB: Ethnicity

Queries average -1 0.
of abs values score

0.5 1

ot

Table C.6: Correlations between rankings.

function. This function takes the rankings as input and returns the Spearman correlation
between them.

from wefe.utils import calculate_ranking_correlations, plot_ranking_correlations
correlations = calculate_ranking_correlations(ranking)
correlations

Finally, we also provide a function to graph the correlations. This function enables us to
visually analyze how the rankings correlate to each other.

correlation_fig = plot_ranking correlations(correlations)
correlation_fig.show()

7

RNSB: Ethnicity Queries average of abs values score

RNSB: Gender Queries average of abs values score

WEAT: Ethnicity Queries average of abs values score

WEAT: Gender Queries average of abs values score

(2 5 L2 B
e by (N %
90, o 5’/;99 ege @reg
oF or
3, bs a3 P % OF
K } Yoy, cY
Q) . g . N . Ueg .
Sre Coy, Ore Co,.e

Figure C.5: Heatmap of the correlations between the rankings.

78

	Introduction
	Prior Definitions
	Research Problem
	Research Hypothesis
	Results
	Research Outcome
	Outline

	Background and Related Work
	Scientific Disciplines
	Natural Language Processing
	Machine Learning

	Word Representations
	One Hot Representations
	Distributional Hypothesis and Distributional Representations
	Word Context Matrices
	Distributed Representations or Word Embeddings

	Fairness in Machine Learning
	Bias in Data
	Algorithmic Fairness

	Fairness in Word Embeddings
	Works on Bias Measurement in Word embeddings
	Bias Mitigation of Word Embeddings

	Discussion

	WEFE Design
	Building Blocks
	Target Set
	Attribute Set
	Query
	Templates and Subqueries
	Fairness Metrics

	WEFE Ranking Process
	Creating the Scores Matrix
	Creating the Rankings
	Gathering Rankings in a Final Matrix

	Case Study
	Embedding models
	Queries and Query Sets
	Specific Fairness Metrics
	Results

	WEFE Library
	Motivation
	Components
	Target and Attribute Sets
	Query
	Word Embedding Model
	Metric
	Utils

	Bias Measurement Processes
	Simple Query Creation and Execution
	Runners
	Aggregating Results and Calculating Rankings
	Ranking Correlations

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Appendixes
	Word Sets and Queries
	WEAT Word Sets
	RND Word Sets
	Debias Word Embeddings Word Sets
	Debias Multiclass Words Sets
	Bing Liu Sentiment Lexicon

	Queries
	Gender Queries
	Ethnicity Queries
	Religion Queries

	WEFE Library Tutorial
	Run a Query
	Running Multiple Queries
	Rankings
	Differences in Magnitude Using the Same Fairness Metric
	Differences in Magnitude Using Different Fairness Metrics
	Calculate Rankings
	Ranking Correlations

