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Vicente Garzó‡

Departamento de F́ısica and Instituto de Computación Cient́ıfica Avanzada (ICCAEX),
Universidad de Extremadura, E-06071 Badajoz, Spain

(Dated: November 4, 2020)

A collisional model of a confined quasi-two-dimensional granular mixture is considered to analyze
homogeneous steady states. The model includes an effective mechanism to transfer the kinetic
energy injected by vibration in the vertical direction to the horizontal degrees of freedom of grains.
The set of Enskog kinetic equations for the velocity distribution functions of each component is
derived first to analyze the homogeneous state. As in the one-component case, an exact scaling
solution is found where the time dependence of the distribution functions occurs entirely through
the granular temperature T . As expected, the kinetic partial temperatures Ti of each component are
different and hence, energy equipartition is broken down. In the steady state, explicit expressions for
the temperature T and the ratio of partial kinetic temperatures Ti/Tj are obtained by considering
Maxwellian distributions defined at the partial temperatures Ti. The (scaled) granular temperature
and the temperature ratios are given in terms of the coefficients of restitution, the solid volume
fraction, the (scaled) parameters of the collisional model, and the ratios of mass, concentration, and
diameters. In the case of a binary mixture, the theoretical predictions are exhaustively compared
with both direct simulation Monte Carlo and molecular dynamics simulations with a good agreement.
The deviations are identified to be originated in the non-Gaussianity of the velocity distributions
and on microsegregation patterns, which induce spatial correlations not captured in the Enskog
theory.

I. INTRODUCTION

Granular gases are paradigmatic examples of intrinsi-
cally nonequilibrium systems [1]. A granular gas is com-
posed of macroscopic particles (sizes varying from mi-
crons to millimeters or even larger [2, 3]), where kinetic
energy of the colliding particles is transformed into inter-
nal degrees of freedom in form of vibration, deformation
or microscopical fractures, but it is never returned back
as kinetic energy. Such irreversible flux of energy leads
to new and significantly different physics than in equilib-
rium statistical mechanics [1, 4].
In equilibrium states, maximization of entropy leads to

three conditions, called thermal, mechanical and chemi-
cal equilibrium conditions. The first one, thermal equilib-
rium, implies that every subsection of the system possess
the same temperature. For instance, when applied to a
mixture of particles, equipartition implies that different
subspecies share the same temperature. However, in non
equilibrium states, like those studied here, maximization
of entropy does not apply and energy equipartition may
or may not be satisfied. Violation of thermal equilibrium

∗ brito@ucm.es
† rsoto@dfi.uchile.cl
‡ vicenteg@unex.es; http://www.unex.es/eweb/fisteor/vicente/

can show up in several ways. In fact, it has been reported
that in a monocomponent granular system, different re-
gions of the system can have different temperatures. In
computer simulations, it was shown that a free evolving
granular gas starting from a homogeneous initial condi-
tion forms dense and cold clusters, surrounded by a hot
and dilute gas [5].

Energy equipartition is not verified either in mixtures
of granular particles, which is the subject of the present
paper. The first theoretical articles that described lack
of energy equipartition in granular mixtures under ho-
mogeneous cooling state were reported in the limits of
tracer dynamics [6] and Brownian motion [7], and subse-
quently for general binary mixtures [8]. These theoretical
results were confirmed by the Direct Simulation Monte
Carlo (DSMC) method [9, 10] and by means of molecu-
lar dynamics (MD) simulations [11–18]. In all cases, it
was found that, despite the cooling rates for both types
of particles being the same, they reach different tempera-
tures. These predictions motivated experiments, carried
out by several researchers. In a three-dimensional vi-
brofluidized granular bed filled with particles of two sizes,
tracked by positron emission tomography, it was found
that the granular temperature of the larger particles was
higher than that of the smaller diameter grains [19]. In a
simpler setup consisting of two vertical glass plates with
a monolayer of granular particles inside, that is vertically
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vibrated, mixtures of different types of particles (glass,
aluminum, steel and brass) remain mixed, but reached
different temperatures [20]. In the usual Brazil nut ef-
fect, also vibrated vertically, lack of energy equipartition
induces a separation of hot/cold particles [21]. Recent
results [22], have proved that the velocity distributions
of granular mixtures (and therefore, the temperatures of
each species or component) are quite universal, and do
not depend on the particular mechanism of energy dis-
sipation. Finally, energy equipartition can be restored
by a fine tuning of the particle material properties [23],
so that the effect that the different sizes induce in the
temperature differences can be compensated by concen-
tration differences, for instance.

In the last years, there is a geometry that has attracted
a great deal of attention in the study of granular systems
(see Ref. [24] for a review). It is a confined geometry
in the z-direction by means of two parallel plates at a
distance smaller than two particle diameters, so two par-
ticles cannot be on top of each other. The plates are large
compared with the particle diameters, so it can be consid-
ered a quasi two-dimensional system in the (x, y)-plane.
If the plates are made of glass, it is possible to camera-
track position and velocities of the particles, allowing to
obtain a detailed description of the particles dynamics in
the plane. This makes possible to test and validate ki-
netic and hydrodynamic descriptions of the system. For
systems with smooth plates, energy injection is carried
out by the vertical vibration of the plates, mainly trans-
ferred to the z-component of the particle velocities. By
interparticle collisions, energy is then transferred into the
horizontal direction. As a conclusion, vertical vibration
acts as a thermostat in the horizontal plane and the in-
elastic collisions dissipate the injected energy. However,
when the plates have a rough surface, the dynamics is
much more involved. In such case, they can directly in-
ject energy to the horizontal degrees of freedom but the
rotational degrees of freedom must be also considered in
the theoretical description of the problem.

In the steady state, the temperature of the vertical
degrees of freedom is higher than the horizontal ones,
violating energy equipartition [25, 26]. Such setup, de-
pending on density of particles and amplitude and/or fre-
quency of vibration, can lead to a dynamical phase tran-
sition, where inhomogeneous patterns (clusters) are de-
veloped. Dense and cold clusters are formed, surrounded
by hot, dilute gases violating energy equipartition [27].
However, in a different range of parameters, the system
remains homogeneous and a steady state is reached after
a short term transient. We are interested in this regime.

Several effective two-dimensional models have been
proposed to study this quasi two-dimensional geometry.
The first simplification is to consider the granular par-
ticles as disks, as the motion in the third direction is
very much confined (but not negligible). Energy injec-
tion can be modeled in several ways, depending if the
plates as smooth or rough, that is, if horizontal momen-
tum is conserved or not. One approach, when momentum

is not conserved, is the stochastic thermostat, which adds
a random force acting on every particle with zero corre-
lation time, and amplitude related with the intensity of
the kicks [28–31]. Other models, which are appropriate
when momentum is conserved, consider random restitu-
tion coefficients (larger or smaller than one) that lead
to a homogeneous steady state [32–34]. In the present
article we will consider the so-called ∆-model also valid
for smooth plates, where the thermostat is a collisional
one, so that energy is injected in every collision [35]. To
be more precise, in a binary collision between particles
of species i and j, apart from the usual inelastic terms
appearing in the collision rules characterized by the con-
stant coefficient of restitution αij ≤ 1, an extra velocity
∆ij is added to the normal component of the relative
velocity of the two colliding spheres. Then, in a binary
collision, the change in kinetic energy is composed by
a dissipation energy term (proportional to 1 − α2

ij) plus
two energy injection terms with intensity depending on
∆ij . The origin of the ∆ij term comes from the transfer
of energy from the z-direction of vibration to the (x, y)-
velocity plane when a collision between particles takes
place. In real collisions, the energy transfer depends on
both the component z of the relative velocity of the collid-
ing particles and the impact parameter in the z-direction.
This means that the parameter ∆ij is not a constant [36].
On the other hand, for simplicity, we consider in this pa-
per a constant energy injection ∆ij , so that terms of the
form ±µij∆ijσ̂ are added to the velocities of the two
colliding particles [σ̂ being the unit vector joining the
centers of the colliding spheres and µij = mi/(mi+mj),
where mi and mj are the masses of the particles]. A
study of the linear hydrodynamics for this model for a
monocomponent system was done in the original paper
[35]. In a series of papers, Brey and coworkers have ex-
tensively studied the ∆-model in the past few years (see
e.g. Ref. [37] and references therein).

On the other hand, to the best of our knowledge, it
must be remarked that up to now no comparison of the
∆-model with experiments or simulations in confined ge-
ometry has been performed. However, it is expected
that the model would be applicable in temporal scales
where friction is weak, as for example in propagation of
waves [38].

How does the system behave when we consider gran-
ular mixtures of particles that evolve with the ∆ij-type
of collisions? Such is the goal of the present article: the
study of a multicomponent mixture of s different types
of particles, having different masses (mi), diameters (σi),
coefficients of restitution (αij), and inter-∆ parameters
(∆ij), where i, j = 1, . . . , s. In particular, we focus on the
stationary temperatures of the different components and
the emergence of the violation of energy equipartition in
the homogeneous state.

The organization of the paper is as follows. In Sect. II,
the extension of the ∆-model to multicomponent gran-
ular mixtures is introduced. Then, the set of Enskog
kinetic equations for the velocity distribution function
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of each component is displayed. In Sect. III, we con-
sider homogeneous solutions and derive evolution equa-
tions for the cooling rates and the temperatures of each
component. The steady state solutions to the above time-
dependent equations are obtained in Sect. IV where the
partial cooling rates ζi associated with the partial tem-
peratures Ti are estimated by considering Maxwellian
distributions defined at Ti. Implicit coupled equations
for the temperatures Ti are obtained by imposing that
ζi = 0 in the steady state. As expected, in general
the partial temperatures are different, violating energy
equipartition. In addition, they exhibit a complex de-
pendence on the parameter space of the system. The
(approximate) theoretical results of the Enskog kinetic
equation are confronted against computer simulations
(carried out independently by both MD and the DSMC
method) in Sect. V for different parameters of a binary
mixture (s = 2). This stringent test allows to gauge the
validity of the different hypotheses (Maxwellian approxi-
mations, molecular chaos assumption and spatial correla-
tions). The paper ends in Sect. VI with a short summary
and a discussion of the results obtained.

II. ENSKOG KINETIC EQUATION. THE

COLLISIONAL MODEL FOR GRANULAR

MIXTURES

A. Collisional model

We consider a granular mixture of smooth inelastic
hard spheres (d = 3) or disks (d = 2) of masses mi and
diameters σi (i = 1, . . . , s). Here, we recall that s means
the number of components or species of the mixture. Let
(v1,v2) denote the pre-collisional velocities of two spher-
ical particles of species i and j, respectively. The collision
rules for the post-collisional velocities (v′

1,v
′
2) are defined

as

v′
1 = v1 − µji (1 + αij) (σ̂ · g)σ̂ − 2µji∆ijσ̂, (1)

v′
2 = v2 + µij (1 + αij) (σ̂ · g)σ̂ + 2µij∆ijσ̂, (2)

where we recall that µij = mi/(mi+mj), g = v1 −v2 is
the relative velocity between the two colliding spheres, σ̂
is the unit collision vector joining the centers of the two
colliding spheres and pointing from particle 1 of compo-
nent i to particle 2 of component j. Particles are ap-
proaching if σ̂ · g > 0. In Eqs. (1) and (2), 0 < αij ≤ 1
is the (constant) coefficient of normal restitution for col-
lisions i-j, and ∆ij is an extra velocity added to the rel-
ative motion, with αji = αij and ∆ji = ∆ij . This extra
velocity points outward in the normal direction σ̂, as re-
quired by the conservation of angular momentum [39].
The relative velocity after collision is

g′ = v′
1 − v′

2 = g− (1 + αij)(σ̂ · g)σ̂ − 2∆ijσ̂, (3)

so that the normal component of g′ verifies the identity

(σ̂ · g′) = −αij(σ̂ · g)− 2∆ij . (4)

As said in the Introduction, the model defined by the
collisional rules (1)–(2) will be referred in this paper as
the ∆-collisional model.

With the set of collision rules (1) and (2), momentum
is conserved but energy is not. The change in kinetic
energy upon collision is

∆Eij ≡
mi

2

(
v

′2
1 − v21

)
+
mj

2

(
v

′2
2 − v22

)

= 2mij

[
∆2
ij + αij∆ij(σ̂ · g)−

1− α2
ij

4
(σ̂ · g)2

]
,

(5)

where mij ≡ mimj/(mi +mj) is the reduced mass. The
right-hand side of Eq. (5) vanishes for elastic collisions
(αij = 1) and ∆ij = 0. Moreover, it is quite apparent
from Eq. (5) that the kinetic energy can be gained or lost
in a collision depending on whether σ̂ · g is smaller than
or larger than 2∆ij/(1− αij).

The collision rules for the so-called restituting collisions
(v′′

1 ,v
′′
2 ) → (v1,v2) with the same collision vector σ̂ are

defined as

v′′
1 = v1 − µji

(
1 + α−1

ij

)
(σ̂ · g)σ̂ − 2µji∆ijα

−1
ij σ̂, (6)

v′′
2 = v2 + µij

(
1 + α−1

ij

)
(σ̂ · g)σ̂ + 2µij∆ijα

−1
ij σ̂. (7)

In the case of a direct collision, the volume transforma-
tion in velocity space is given by dv′

1dv
′
2 = αijdv1dv2,

while in the case of an inverse (or restitution collision)
one has dv′′

1dv
′′
2 = α−1

ij dv1dv2. All these relations will
be employed later for evaluating some collision integrals.

B. Enskog kinetic equation

The extension of the Enskog kinetic equation for the
above collision model to granular mixtures can be easily
done by considering its version for its monocomponent
case [35, 40, 41]. For an s-component mixture, the rele-
vant information at a kinetic level on the state of the sys-
tem is given by the knowledge of the one-particle velocity
distribution functions fi(r,v, t). For moderate densities
and in the absence of external forces, the distributions
fi(r,v, t) of the collisional model obey the set of coupled
Enskog kinetic equations

∂

∂t
fi(r,v; t) + v · ∇fi(r,v; t) =

s∑

j=1

Jij [r,v|fi, fj]. (8)
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The Enskog collision operators Jij of the model read

Jij [r,v1|fi, fj] =

σd−1
ij

∫
dv2

∫
dσ̂Θ(−σ̂ · g − 2∆ij)

×(−σ̂ · g− 2∆ij)α
−2
ij χij(r, r+ σij)fi(r,v

′′
1 ; t)

×fj(r+ σij ,v
′′
2 ; t)− σd−1

ij

∫
dv2

∫
dσ̂Θ(σ̂ · g)

×(σ̂ · g)χij(r, r+ σij)fi(r,v1; t)fj(r+ σij ,v2; t),

(9)

where Θ(x) is the Heaviside step function, σij = σij σ̂,
and σij = (σi + σj)/2.
As it happens in the Boltzmann equation, the expres-

sion (9) of the Enskog collision operator neglects velocity
correlations among the particles that are about to col-
lide (molecular chaos hypothesis), and consequently the
two-body distribution function factorizes into the prod-
uct of the one-particle distribution functions. On the
other hand, in contrast to the Boltzmann equation, it
takes into account the spatial correlations [through the
pair correlation functions at contact χij(r, r ± σij)] be-
tween the colliding pairs as well as the variation of the
distribution functions over distances of the order of the
diameters of spheres [42]. Moreover, although the sys-
tem considered is two-dimensional, our calculations will
be carried out for an arbitrary number of dimensions d.
An important property of the Enskog collision operator

Jij [fi, fj] is that the production term due to collisions

σψi
≡
∫

dv1 ψi(v1)Jij [r,v1|f, f ], (10)

can be expressed in a more convenient form than in (10)
by using some properties of the Enskog collision operator.
It is given by [40, 43]

σψi
≡
∫

dv1 ψi(v1)Jij [r,v1|f, f ]

= σd−1
ij

∫
dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)

×χij(r, r+ σij)fi(r,v1; t)fj(r+ σij ,v2; t)

× [ψi(v
′
1)− ψi(v1)] . (11)

The property (11) is identical to the one obtained in the
conventional inelastic hard sphere (IHS) model (∆ij = 0)
[42, 44], except that v′

1 is defined here by Eq. (1).

III. HOMOGENEOUS TIME-DEPENDENT

STATE

Let us consider spatially homogeneous isotropic states.
In this case, Eq. (8) becomes

∂

∂t
fi(v; t) =

N∑

j=1

Jij [v|fi, fj], (12)

where Jij [fi, fj ] is defined by Eq. (9) with the replace-
ments χij(r, r ± σij) → χij and fj(r ± σij ,v; t) →
fj(v; t). This means that the Enskog collision opera-
tor Jij = χijJ

B
ij , where JB

ij is the Boltzmann collision
operator and χij is the (homogeneous) pair correlation
function at contact for collisions i-j. For practical pur-
poses, and to agree with the equilibrium limit for elastic
collisions (αij = 1 and ∆ij = 0), χij is usually taken to
be the equilibrium pair correlation function.
The collision operators conserve the particle number

of each component and the total momentum:
∫
dv Jij [v|fi, fj ] = 0, (13)

s∑

i=1

s∑

j=1

∫
dv mivJij [v|fi, fj ] = 0. (14)

Nevertheless, in accordance with Eq. (5), the total ki-
netic energy is not conserved in collisions and hence, the
operators Jij verify the constraint

s∑

i=1

s∑

j=1

∫
dv miv

2Jij [v|fi, fj] = −dnTζ , (15)

where ζ is the total cooling rate. It gives the rate of
energy lost due to collisions among all components. In
Eq. (15), n =

∑
i ni is the total number density,

ni =

∫
dv fi(v) (16)

is the number density of the component i, and

T =
1

dn

s∑

i=1

∫
dv miv

2fi(v) (17)

is the (total) granular temperature.
Apart from the granular temperature T , it is also con-

venient to introduce the partial temperatures Ti defined
as

Ti =
1

dni

∫
dv miv

2fi(v). (18)

The temperatures Ti provide a measure of the mean ki-
netic energy of the component i. Comparison between
Eqs. (17) and (18) yields the identity

T =

s∑

i=1

xiTi, (19)

where xi = ni/n is the concentration or mole fraction
of the component i. The “cooling rates” associated with
the partial temperatures can be defined by

ζi =

s∑

j=1

ζij = − 1

dniTi

s∑

j=1

∫
dvmiv

2Jij [v|fi, fj], (20)
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where the second equality defines the quantities ζij .
From Eqs. (15) and (20), one easily gets the relation

ζ =
s∑

i=1

xiγiζi, (21)

where γi ≡ Ti/T is the temperature ratio of component
i. The deviation of γi from 1 provides a measure of the
departure from energy equipartition (i.e., when Ti = T
for any component i).
The time evolution of Ti and T follow directly from the

Enskog equation (12) and the definitions (15) and (20):

ζi = − ∂

∂t
lnTi , ζ = − ∂

∂t
lnT. (22)

It is also convenient to write the time evolution of the
temperature ratios γi(t) = Ti(t)/T (t). Its time evolution
can be easily obtained from Eq. (22) as

∂

∂t
ln γi = (ζ − ζi) . (23)

As usual, after a transient regime, in the same way as
the monocomponent ∆-model case [45] it is assumed that
there is a special solution (normal or hydrodynamic solu-
tion [46]) in which all the time dependence of the distri-
bution functions occurs through the global temperature
of the mixture T (t). Assuming a normal form for multi-
component systems, it follows from dimensional analysis
that fi(v, t) must be of the form

fi(v, t) = niv
−d
th (t)ϕi

(
c,∆∗

ℓj

)
, ℓ, j = 1, . . . , s, (24)

where c ≡ v/vth, vth(t) =
√
2T (t)/m being a thermal ve-

locity defined in terms of the temperature of the mixture
T (t). In addition,m =

∑
imi/s and ∆∗

ij(t) ≡ ∆ij/vth(t).
The consistency of the assumption (24) will be verified
a posteriori when we compare the theoretical predictions
(which are based on the normal solution (24)) for the
global temperature and the partial temperatures against
computer simulations. As we will show later, the good
agreement found between theory and simulations (spe-
cially in the low-density regime) confirms the reliability
of the hypothesis (24).
Contrary to the conventional IHS model [8, 30], the

scaling distribution ϕi depends on T not only through
the dimensionless velocity c but also through the dimen-
sionless characteristic velocities ∆∗

ij ∝ T (t)−1/2. Conse-
quently,

T
∂fi
∂T

= −1

2

∂

∂v
· (vfi)−

1

2

N∑

ℓ,j=1

∆∗
ℓj

∂fi
∂∆∗

ℓj

. (25)

In terms of dimensionless quantities, the Enskog equation
(12) for the scaled distribution ϕi can be written as

1

2
ζ∗


 ∂

∂c
· (cϕi) +

N∑

ℓ,j=1

∆∗
ℓj

∂ϕi
∂∆∗

ℓj


 =

s∑

j=1

J∗
ij [c|ϕi, ϕj ],

(26)

where

J∗
ij [c|ϕi, ϕj ] ≡

vdth
niν

Jij [v|fi, fj] = xjχij

(σij
σ

)d−1

×
∫
dc2

∫
dσ̂Θ(−σ̂ · g∗ − 2∆∗

ij)(−σ̂ · g∗ − 2∆∗
ij)α

−2
ij

×ϕi(c′′1 )ϕj(c′′2 )− xjχij

(σij
σ

)d−1
∫
dc2

∫
dσ̂

×Θ(σ̂ · g∗)(σ̂ · g∗)ϕi(c1)ϕj(c2) . (27)

Here, ν = nσd−1vth is an effective collision frequency,
σ =

∑
i σi/s, and g∗ ≡ g/vth. From Eq. (26), one easily

gets the dimensionless version of Eq. (23) as

1

2
ζ∗

s∑

ℓ,j=1

∆∗
ℓj

∂γi
∂∆∗

ℓj

= γi (ζ
∗ − ζ∗i ) , (28)

where ζ∗ = ζ/ν and

ζ∗i =
ζi
ν

=

s∑

j=1

ζ∗ij = −2

d
θi

s∑

j=1

∫
dc c2J∗

ij [ϕi, ϕj ], (29)

where

θi =
mi

mγi
. (30)

Note that the temperature ratios γi are subjected to the
constraint (19). As a consequence, there are s− 1 inde-
pendent temperature ratios.
In summary, the homogeneous time-dependent solu-

tion is defined by the s coupled equations (26) and the
s − 1 equations (28). These 2s − 1 equations must be
solved to obtain the s scaling distributions ϕi along with
the s − 1 temperature ratios γi. Approximate expres-
sions for all the above unknowns are obtained by consid-
ering the simplest approximation: Maxwellian or Gaus-
sian distributions at Ti. This approximate solution will
be worked out in Sec. IV.

IV. STEADY STATE SOLUTION.

MAXWELLIAN APPROXIMATION

We consider the steady state solution. In this case, for
given values of ∆∗

ij , ∂tTi = 0 and so the partial cooling
rates vanish in accordance with Eq. (22):

ζ∗ = ζ∗1 = ζ∗2 = · · · = ζ∗s = 0. (31)

The determination of ζ∗i requires the knowledge of the
scaling distributions ϕi, whose exact form is not known
to date. As in the conventional IHS model [8], the dis-
tributions ϕi can be expanded in a series of Sonine poly-
nomials, the coefficients (cumulants) of the series being
the corresponding velocity moments of ϕi. Usually, the
first two terms are retained in the series expansion; the
second term is related to the kurtosis and measures the
deviation of ϕi from its Maxwellian form. Given that
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the above cumulants are small for conditions of practical
interest, non-Gaussian corrections to ϕi are neglected for
practical purposes. In particular, for the conventional
IHS model, the theoretical predictions for the temper-
ature ratios obtained by considering Maxwellian forms
for the distributions fi show an excellent agreement with
computer simulation results [9], even for strong inelas-
ticity and/or disparate values of the mass and diameter
ratios. We expect that such a good agreement is also
present in the ∆-collision model.
Thus, to estimate the partial cooling rates ζ∗i , we take

the simplest Maxwellian approximation

ϕi(c) → ϕi,M = π−d/2θ
d/2
i e−θic

2

, (32)

where θi is given by Eq. (30). As in previous works on
granular mixtures[8], for the sake of convenience, ϕi,M is
defined in terms of the partial temperature Ti instead of
the (global) granular temperature T . In fact, its second
velocity moment is

∫
dc c2 ϕi,M =

d

2

mTi
miT

. (33)

With the Maxwellian approximation (32), ζ∗i can be
computed and its expression is (see Appendix A for some
technical details)

ζ∗i =
4π(d−1)/2

dΓ
(
d
2

)
s∑

j=1

xjχij

(σij
σ

)d−1

µji(1 + αij)θ
−1/2
i (1 + θij)

1/2

[
1− 1

2
µji(1 + αij)(1 + θij)

]

− 4πd/2

dΓ
(
d
2

)
s∑

j=1

xjχij

(σij
σ

)d−1

µji∆
∗
ij

[
2µji∆

∗
ij√

π
θ
1/2
i (1 + θij)

1/2 − 1 + µji(1 + αij) (1 + θij)

]
, (34)

where θij = θi/θj = miγj/mjγi gives the ratio between
the mean-square velocity of the particles of the compo-
nent j relative to that of the particles of the component
i.
In the limit of mechanically equivalent particles (mi =

m, σi = σ, αij = α, and ∆∗
ij = ∆∗), γi = 1, and Eq. (34)

yields ζ∗i = ζ∗, where

ζ∗ =

√
2π(d−1)/2

dΓ
(
d
2

) χ
(
1− α2 − 2∆∗2 −

√
2πα∆∗

)
. (35)

The expression (35) is consistent with the one obtained
for monocomponent granular gases [35, 45].

A. Binary mixture

The results derived so far apply for an s-component
mixture. For the purposes of illustration, henceforth a
binary mixture (s=2) will be considered. In this case,
the relevant quantities are the steady (scaled) tempera-
ture T ∗ (defined below) and the temperature ratio T1/T2.
Both quantities can be determined from the conditions
(31), namely,

ζ∗1 = 0, ζ∗2 = 0. (36)

The solution to Eqs. (36) with the expression (34) for
the cooling rates provides T ∗ and T1/T2 in terms of the
parameter space of the problem: the mass ratio m1/m2,
the ratio of diameters σ1/σ2, the concentration x1, the
volume fraction φ, the coefficients of restitution α11, α22,
and α12, and the dimensionless velocities ∆∗

11, ∆
∗
22, and

∆∗
12. The volume fraction φ is defined as

φ =

2∑

i=1

π

4
niσ

d
i . (37)

Moreover, we are essentially interested here in a two-
dimensional (d = 2) system. In this case, a good approx-
imation for the pair distribution function is [47]

χij =
1

1− φ
+

9

16

φ

(1− φ)2
σiσjM1

σijM2
, (38)

where Mℓ =
∑

i xiσ
ℓ
i and φ is given by (37) with d = 2.

To scale the granular temperature T , it is convenient
to introduce the parameter ∆ as

∆ =
√
∆2

11 +∆2
22 +∆2

12. (39)

Thus, the reduced (steady) temperature T ∗ is defined as

T ∗ =
T

m∆2/2
. (40)

V. COMPARISON WITH COMPUTER

SIMULATIONS

A. Temperatures

The theoretical results derived in Sec. IV for T ∗ and
T1/T2 from the Enskog kinetic equation are essentially
based on three different approximations: (i) the use of
the simple Maxwellian approximation (32) to estimate
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FIG. 1. Case I. Scaled temperature (1 − α)2T ∗ versus α for
σ1 = 2σ2, φ = 0, and two different values of the mass ratio
m1/m2: m1/m2 = 2 (a) and m1/m2 = 1/2 (b). Symbols
refer to DSMC results (circles) and MD simulations for φ =
0.0016 (triangles), and the lines correspond to the theoretical
predictions derived from the Enskog equation.

the partial cooling rates ζ∗i ; (ii) the absence of velocity
correlations between the velocities of the particles that
are about to collide in (9); and (iii) the approximation
(38) for the pair distribution function at contact. There-
fore, it is important to assess the reliability of these theo-
retical results by comparison with computer simulations.

We have carried out simulations in this paper by em-
ploying the standard simulation methods. The first one
is the DSMC method [48] adapted to dilute granular
gases. Since the DSMC method solves numerically the
set of Boltzmann equations, it also assumes molecular
chaos hypothesis. However, this method goes beyond
the Maxwellian approximation since it determines the
exact velocity distribution functions fi. In this context,
the comparison of DSMC results versus analytical results
for very dilute systems (φ→ 0) can be used to assess the
accuracy of the Maxwellian approximation (32) for deter-
mining the cooling rates (34). The second method is MD
simulations. This method avoids any assumptions inher-
ent in the kinetic theory description [molecular chaos and
Eq. (38) for accounting the spatial correlations in the En-
skog equation] and/or approximations (Maxwellian dis-
tributions) made for evaluating the partial temperatures.
For both methods, we simulate directly the ∆-model,
i.e., particles move in two dimensions, with collisions de-
scribed by the rules (1) and (2).
As in our previous papers on energy nonequipartition

in granular mixtures [8, 9, 11, 18, 23, 49–51], given that
the number of parameters involved in the problem is rel-
atively high, for the sake of simplicity we take a common
coefficient of restitution α ≡ α11 = α22 = α12, and an
equimolar mixture x1 = 1

2 . For a monocomponent gran-
ular gas, the solution of Eq. (35) gives that the reduced
temperature scales with the coefficient of restitution as

2 4 6 8 10
1.0

1.1

1.2

1.3

1.4

1.5

1.6

a=0.7

a=0.8

a=0.9
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/T
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FIG. 2. Case I. Temperature ratio T1/T2 versus the mass
ratio m1/m2 for σ1 = σ2, and three different values of the
(common) coefficient of restitution α: α = 0.9, 0.8 and 0.7.
The lines refer to the Enskog theoretical results while the
symbols correspond to the results obtained by numerically
solving the Enskog equation by means of the DSMC method
(circles) and by performing MD simulations for φ = 0.0016
(triangles). Note that the results obtained from DSMC and
MD simulations are practically indistinguishable.

T ∗ ∝ 1/(1−α)2 [35]. Hence, for the binary case, in order
to compare results and obtain values of order one, we will
present the scaled value (1− α)2T ∗ instead of the scaled
global temperature T ∗.
Three different cases or systems are considered. In the

following, we study each one of the cases separately.

CASE I

We first analyze the usual case for binary mixtures,
that is, when the components differ only in their masses
and diameters. Hence, we assume here that ∆11 = ∆22 =
∆12 and we analyze the dependence of the scaled tem-
perature (1−α)2T ∗ and the temperature ratio T1/T2 on
the common coefficient of restitution α, the parameters
of the mass and diameter ratios (m1/m2 and σ1/σ2), and
the solid volume fraction φ.
The results for the global temperature, defined in

Eq. (40), are shown in Fig. 1 as a function of α for two
different mass ratios and a very low density (φ = 0.016).
Solid lines are the Enskog predictions, while symbols re-
fer to DSMC and MD simulations. We observe first an
excellent agreement between both methods of simulation,
showing again the consistency of the DSMC method to
numerically solve the Boltzmann equation. With respect
to the comparison with the theoretical results, we see
that the analytical results compare quite well with sim-
ulations, with deviations smaller than 4 or 5% for large
dissipation, i.e. for α = 0.4. Such deviations are due
to non-Gaussian corrections to the velocity distribution
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functions. We have measured in DSMC the 4th cumu-
lant, with the definition κi = 〈v4〉i/2〈v2〉2i − 1 where

〈vℓ〉i =
∫
dv vℓ fi(v)/ni. (41)

By definition, κi vanishes when fi is approximated by
its Maxwellian approximation (32). For instance, for
the simulation at m1/m2 = 1/2 and α = 0.9, we find
that κ1 = −0.046 and κ2 = −0.034. These values in-
crease with inelasticity, reaching at α = 0.4 the values
of κ1 = −0.13 and κ2 = −0.087. Similar numbers are
obtained for the other case (m1/m2 = 2) presented in
Fig. 1. Such values are the origin of the discrepancies
observed in Fig. 1 between the Enskog theory and DSMC
simulations.
Figure 2 shows the lack of energy equipartition, as we

plot the ratio T1/T2 for equal sized particles as a func-
tion of the mass ratio in the case of small volume frac-
tion. As in the conventional IHS model [8], the temper-
ature of the heavier particles is larger than that of the
lighter ones since the temperature ratio T1/T2 increases
steadily with the growing ratio of masses. Enskog re-
sults are plotted together with DSMC simulations (cir-
cles) and MD simulations (triangles). As we see in this
plot, both types of simulations agree again with great ac-
curacy, while they separate from the Enskog prediction
as the mass ratio grows. As before, the discrepancy is
due to the use of the Maxwellian approximation (32) in
the analytical calculation of T1/T2. In fact, the kurto-
sis of DSMC and MD are quite similar (for α = 0.7 and
m1/m2 = 10 are κ1 = −0.039, κ2 = −0.12 for DSMC
and κ1 = −0.034, κ2 = −0.12 for MD).
To elucidate the role of density, we consider in what fol-

lows particles of equal size (σ ≡ σ1 = σ2). This election
has the advantage that, despite the Enskog results de-
pend on φ through χij(φ), such dependence vanishes for
the computation of T ∗ and T1/T2 when considering par-
ticles of equal size and equimolar mixtures. Indeed, when
σ1 = σ2 and x1 = 1

2 , Eq. (38) yields χ11 = χ22 = χ12 and,
hence, they factor in the equations (36). As a result, the
Enskog theory does not predict any dependence of the
stationary temperatures on the global volume fraction in
the situation above. This is a consequence of both the
energy injection and dissipation mechanisms being colli-
sional. This cancellation takes place at the level of the
Enskog theory but if there are position correlations not
captured in the expression (38) for χij , density correc-
tions may appear. The comparison with MD simulations
carried out in Fig. 3 tests this prediction, for which we
make MD simulations at very low as well as moderate
densities (up to φ = 0.2). The Enskog theory has shown
to be quite accurate in the above range of densities for
the IHS model of granular fluids (see the comparison with
MD simulations in Refs. [11, 52–56] and with real exper-
iments in [57, 58]). It is quite apparent from Fig. 3 that
the density dependence in this case is rather weak, and
mostly appears at high mass ratio, validating the Enskog
hypothesis.
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FIG. 3. Case I. Temperature ratio T1/T2 versus the mass
ratio m1/m2 for σ1 = σ2, α = 0.7, and three different values
of the volume fraction φ: φ = 0.0016 (triangles), 0.1 (circles)
and 0.2 (squares). Symbols refer to MD simulations and the
line to the Enskog theoretical result.

CASE II

In Case II we consider that the two components are
mechanically equivalent (m1 = m2, σ1 = σ2), except for
the interparticle energy injection, such that ∆11 = ∆22,
but ∆12 = λ∆11, with λ ≥ 0. This case implies that
collisions 1-2 are produced with a different ∆ that 1-1 or
2-2 collisions. For instance, if λ = 0, 1-2 collisions do not
gain energy, but are purely inelastic. However, if λ > 1
the 1-2 collision gains more energy than the 1-1 or 2-2
collisions and the system heats up. Although this case is
somehow artificial and difficult to implement in practice,
its study is of interest. Similarly to undriven granular
mixtures with α11 = α22, but α12 different [59], this case
puts the theory to a stringent test because T1 trivially
equals T2 by construction (both Enskog theory and com-
puter simulations yield T1/T2 = 1). This makes easier
the identification of the deviations from the theoretical
predictions, as for example, our analysis on microsegre-
gation in Section VB.
The dependence of the scaled temperature (1−α)2T ∗ is

studied for different values of λ in Fig. 4 for a low density
mixture. As mentioned before, in the case of λ = 0 [case
(c)] 1-2 collisions are purely dissipative, so one expects
a lower temperature than the cases when λ > 0. As λ
grows, the average temperature grows as well. For this
choice of parameters, both MD and DSMC simulations
agree well with the Enskog theory. It is found for this
case that the values of the kurtosis κi are smaller than in
Case I. It is worth noticing that the case of λ = 0 has the
smallest kurtosis, typically 4 times smaller that the cases
(a) and (b). This means that its velocity distribution is
close to a Maxwellian distribution and consequently the
agreement with the theory is excellent.
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FIG. 4. Case II. Plot of (1 − α)2T ∗ versus α for m1 = m2,
σ1 = σ2, φ = 0, ∆11 = ∆22, and ∆12 = λ∆11. Three different
values of λ have been considered: λ = 2 (a), λ = 0.9 (b), and
λ = 0 (c). Symbols refer to DSMC results (circles) and MD
simulations (triangles) for φ = 0.01 while the lines correspond
to the Enskog theoretical results.

The effect of density is shown in Fig. 5, where we have
selected the case λ = 0 for which the agreement between
theory and simulations is excellent at low density. Im-
portant deviations of up to 20% are obtained in the most
inelastic case. These deviations are the effect of position
and velocity correlations; while the first correlation is ac-
counted for by the approximation (38) of χij , the second
one is neglected in the Enskog theory. Subsection VB
describes the origin of such correlations.

CASE III

Here, we consider that the two components differ in
the energy injection at collisions, such that ∆11 < ∆22,
and we take for simplicity ∆12 = (∆11 + ∆22)/2. Oth-
erwise, the components of the mixture are mechanically
equivalent (m1 = m2, σ1 = σ2). We analyze the depen-
dence of (1 − α)2T ∗ and T1/T2 on α for different values
of the ratio ∆22/∆11. In this case, the particles of type
1 reach a higher temperature than if they were alone, as
collisions 1-2 inject more energy that collisions 1-1 (be-
cause ∆12 > ∆11). On the contrary, particles of type 2
are cooler than if they were alone, due to the fact that
∆12 is smaller that ∆22. In general, as Figs. 6 and 7
show, the Enskog results agree well with DSMC and MD
simulations at low density. It is apparent from Fig. 7 that
the temperature ratio is clearly different from 1, showing
again the lack of energy equipartition. In this case, the
injection of energy of particles of type 1 is smaller than
for particles of type 2, despite the interparticle collisions
compensate that difference. The net balance is a ratio
T1/T2 always smaller than 1.
The Enskog results together with MD simulations for
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FIG. 5. Case II. Plot of (1−α)2T ∗ versus α for m1 = m2, σ1 =
σ2, φ = 0, ∆11 = ∆22, and ∆12 = λ∆11, with λ = 0. Three
values of the volume fraction φ are presented: φ = 0.0016
(triangles), 0.1 (circles) and 0.2 (squares). Symbols refer to
MD simulations and the line to the Enskog theoretical result.
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FIG. 6. Case III. Plot of (1 − α)2T ∗ versus α for m1 = m2,
σ1 = σ2, φ = 0, ∆22 = λ∆11, and ∆12 = (∆11 + ∆22)/2.
Three different values of λ have been considered: λ = 2 (a),
λ = 5 (b), and λ = 10 (c). Symbols refer to DSMC results
(circles) and MD simulations (triangles) for φ = 0.01 while
the lines correspond to the Enskog theoretical results.

three different densities are plotted in Figs. 8 and 9. We
observe that the effect of density for Case III is larger
than for Case I, but smaller than for Case II. In this
case (see Fig. 8) the effect of non Gaussianity and the
density effects act in opposite directions. It is important
to note again that kurtosis also shows a weak dependence
with density and therefore the discrepancies with Enskog
theory are mainly due to correlations not captured in the
theory, which are discussed in the next Subsection.
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FIG. 7. Case III. Plot of T1/T2 versus α for m1 = m2, σ1 =
σ2, φ = 0, ∆22 = λ∆11, and ∆12 = (∆11 + ∆22)/2. Three
different values of λ have been considered: λ = 2 (a), λ = 5
(b), and λ = 10 (c). Symbols refer to DSMC results (circles)
and MD simulations (triangles) for φ = 0.01 while the lines
correspond to the Enskog theoretical results.
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FIG. 8. Case III. Plot of (1− α)2T ∗ versus α for m1 = m2,
σ1 = σ2, λ = 5, and three different values of density: φ =
0.01 (solid line and circles), φ = 0.1 (triangles), and φ = 0.2
(squares). Symbols refer to MD simulations and the line to
the Enskog theoretical result.

B. Pair distribution functions

To study the development of spatial correlations, we
analyze the spatial distribution of particles obtained in
MD simulations. Figure 10 presents the results for a
dense simulation of case III, with a large contrast in
the energy injection (λ ≡ ∆22/∆11 = 5). According
to Figs. 8 and 9, MD simulations show an important
density dependence on T ∗ and T1/T2. The top panel
shows a snapshot, where it is evident that the system
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FIG. 9. Case III. Plot of T1/T2 versus α for m1 = m2,
σ1 = σ2, λ = 5, and three different values of density: φ = 0.01
(solid line and circles), φ = 0.1 (triangles), and φ = 0.2
(squares). Symbols refer to MD simulations and the line to
the Enskog theoretical result.

remains globally homogeneous, while there is a tendency
for the less energetic particles (type 1, black particles
in the figure) to aggregate because they separate at a
smaller speed after collisions, compared with the case
when a particle of type 2 is involved. This is a manifes-
tation of microsegregation. The displayed snapshot is in
the stationary regime and the aggregates are dynamical,
continuously forming and dissolving. No coarsening is
observed.

The aggregation of type 1 particles makes 1-1 collisions
more frequent than the mean-field estimation made by
the Enskog theory. As these collisions are less energetic,
T1 is smaller than the prediction of the Enskog theory,
resulting in the decrease of the global temperature and
the temperature ratio with density, as shown in Figs. 8
and 9.

In order to make this intuition more quantitative, we
have measured the pair correlation functions gij(r) in
MD simulations. The pair correlation functions at con-
tact are obtained as χij = limr→σ+ gij(r). For inelastic
collision rules, as for Eqs. (1) and (2), the pair correla-
tion function at contact is discontinuous and depends on
the angle between the relative velocity g = v1 − v2 and
the vector joining the center of the particles r = r1 − r2,
distinguishing pairs that are about to collide from those
that just collided [60]. The Enskog theory uses only the
pair correlations of particles that are about to collide and,
consequently, in the MD simulations we extract only the
correlation functions of pairs with r ·g < 0, properly nor-
malized such at large distances they approach unity. As
advanced from the snapshot, g11 > g12 > g22 at short
distances, implying that Eq. (38) for χij is not com-
pletely accurate [for φ = 0.2 and x1 = 1

2 , Eq. (38) gives
χ11 = χ22 = χ12 ≃ 1.43]. As discussed before, MD simu-
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lations show a value of χ11 about a 20% larger than that
of Eq. (38), while χ22 is, however about a 15% smaller.
These differences quantify the effect of the spatial corre-
lations on the temperatures.
Deviations of χij respect to their predicted theoreti-

cal —equilibrium— values, could be universal in granu-
lar gases. For instance, it was observed in monocompo-
nent randomly driven granular gases [61], where it was
found an increment in the pair distribution function g(r),
but the long range structure remains homogeneous. In
the case of granular mixtures, we are only aware of one
study [62] where the pair distribution function was mea-
sured, giving evidence of microsegregation, but in that
case macroscopic segregation also occurred. The ob-
served microsegregation results from recollision events,
which are not included in the Enskog description. How-
ever, although these effects can be large in the pair cor-
relation functions themselves (as shown in the bottom
panel of Fig. 10), their impact on the Enskog predictions
for T ∗ and T1/T2 is not quite significant and only pro-
duces a discrepancy between theory and MD simulations
that is not larger than 7%. This excellent agreement jus-
tifies the use of the Enskog theory, which is much simpler
than including recollision events in the theory.
The lower temperature obtained for Case II as increas-

ing density (see Fig. 5) is also a result of microsegrega-
tion. Indeed, for λ = 0, when 1-2 particles collide, they
separate slower than if the particles were of equal type,
resulting in an effective attractive interaction between
dissimilar particles. When recollisions take place as the
density increases, the frequency of 1-2 collisions is larger
than the mean-field estimation made by the Enskog the-
ory. As these collisions dissipate more energy, the global
temperature is reduced. A similar reasoning can be used
to show that for λ > 1, the effect of density is also to
decrease the global temperature (not shown).

VI. DISCUSSION

The present paper is focused on the study of the En-
skog kinetic theory for mixtures of granular particles,
evolving under the so-called ∆-model. In particular, we
are interested here in obtaining the partial temperatures
of the components of the mixture in a homogeneous state.
As expected from previous works on IHS model [8, 42],
the lack of energy equipartition is also present in the ∆-
model as a consequence of the nonequilibrium nature of
inelastic collisions.
The theoretical development starts with the extension

of the ∆-model to multicomponent granular mixtures.
Then, following standard procedures, the set of Enskog
kinetic equations for the velocity distribution functions of
each component is provided where the nonlinear Enskog
collision operators Jij [fi, fj ] are given by Eq. (9). As hap-
pens in the conventional IHS model [42], explicit results
for the first few velocity moments of the distribution func-
tions (granular hydrodynamics) can be derived thanks to
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FIG. 10. Molecular dynamic results for case III, with φ = 0.2,
α = 0.7, and λ ≡ ∆22/∆11 = 5. Top: snapshot of the system
in the steady state. Black (blue) circles are particles of type
1 (2). Bottom: pair correlation functions gij as a function
of the interparticle distance r/σ. The (common) value of χij

predicted by Eq. (38) is represented by the asterisk.

the use of the property (11) for the production term due
to collisions. In general, the distribution functions con-
tain a spatial dependence so hydrodynamic variables can
be inhomogeneous, relaxing to homogeneous ones via the
corresponding transport coefficients.
Before considering inhomogeneous states and in order

to extract relevant results for the partial temperatures,
we assume in this paper spatially homogeneous isotropic
states where the hydrodynamic variables transform into
homogeneous variables. In the time-dependent problem,
the distribution functions fi(v, t) of each component have
the scaling form (24) with the time dependence provided
by the (global) granular temperature T (t), as required
for a normal or hydrodynamic solution. However, in
contrast to the IHS model [8], the dependence of the
scaling functions ϕi on T is not only encoded through
the scaled velocity c = v/vth (vth ∝

√
T being a thermal

velocity) but also through the dimensionless parameters
∆∗
ij = ∆ij/vth. This type of scaling is common in driven
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granular mixtures [51, 63].

Assuming the scaling (24), we have derived evolution
equations for the temperature ratios γi(t) = Ti(t)/T (t)
[see Eq. (28)]. These quantities measure the departure
from the energy equipartition. The evolution equation
for the temperatures leads, after a transient regime, to
stationary values obtained when the (reduced) partial
cooling rates ζ∗i vanish [see Eq. (22)]. On the other
hand, the computation of ζ∗i requires the knowledge of
the scaling distribution function ϕi. Since those functions
are not exactly known, ϕi is usually expanded in Sonine
polynomials where only the first two terms are generally
retained for practical purposes. However, based on the
results derived in the IHS model for granular mixtures [8]
where the non-Gaussian corrections to ϕi are in general
very small, we estimate here ζ∗i by taking the simplest ap-
proximation for ϕi: the Maxwellian approximation (32).
It is important to remark that the Maxwellian distribu-
tion ϕi,M is defined at the temperature of the component
i, so that the corresponding Maxwellians for two com-
ponents can be quite different due to the temperature
differences.

For purposes of illustration, a binary mixture has been
considered. In this case, the numerical solution to the
conditions ζ∗1 = ζ∗2 = 0 allows us to determine the
(steady) temperature ratio T1/T2 as a function of the
parameter space of the system: the mass ratio m1/m2,
the diameter ratio σ1/σ2, the concentration x1, the vol-
ume fraction φ, the coefficients of restitution αij , and
the parameters ∆∗

ij . Although our analytical results are
approximate, we expect that they are not restricted to
quasielastic systems and apply for arbitrary composition,
mass ratio, particle diameter, and a wide range of density
(namely, an expected accuracy comparable to that of the
Enskog theory for the conventional IHS model).

To assess the reliability of the (approximate) Enskog
results, we have also performed MD and Monte Carlo
(DSMC method) simulations of the same system. Since
the parameter space for a binary mixture is huge (10
independent parameters for evaluating T1/T2), for the
sake of simplicity, we have considered here a (common)
coefficient of restitution α, an equimolar mixture x1 = 1

2 ,
and have selected some combination of parameters out
of this huge parameter space. They are labelled Case
I, II and III. An exhaustive comparison between Enskog
theory and computer simulations have been performed
separately for each one of the above Cases.

The main result is that the Enskog theory is able to
predict the temperatures of each component and capture
the lack of energy equipartition with good accuracy. The
validity of the Enskog prediction goes beyond the Boltz-
mann limit of low density, and compares quite well with
simulations, both DSMC and MD. Each type of simula-
tion allows us to identify the effect of the two approxi-
mations [Maxwellian approximation, use of the form (38)
for χij , and absence of velocity correlations] carried out
in the theoretical analysis. The DSMC method does not
contain space correlations, but the velocity distribution

functions are not Maxwellians since they are character-
ized by a kurtosis different from zero. We have observed
that the impact of the Gaussian approximation is always
smaller than 10% for the global temperature and the tem-
peratures of the individual components. On the contrary,
MD simulations avoids the above assumptions since con-
tains the three effects: non-Gaussianity and spatial and
velocity correlations. This allows us to demonstrate the
lack of energy equipartition of the ∆-model in a broader
context. At high densities, the analysis of the spatial
configurations and pair distribution functions shows mi-
crosegregation originated in the different dynamics of the
components. Although these effects cannot be captured
by the Enskog kinetic theory, they produce a small influ-
ence on the (steady) granular temperature and the tem-
perature ratio, except for Case II (which can be consid-
ered as a somehow artificial case) for small coefficients of
restitution. In conclusion, the present results give again
support to the use of the Enskog equation for the descrip-
tion of granular flows across a wide range of densities,
length scales, and inelasticity. Despite this success, the
observed microsegregation opens the necessity of devel-
oping kinetic theories that go beyond the Enskog theory
but, as has been mentioned in several previous works [42],
no other theory with such generality exists yet.

In the extension to mixtures of the ∆-model, we con-
sider that the parameters ∆ij could be chosen arbitrarily.
However, in a confined three-dimensional system under
vibration, they should be computed considering the full
collisional geometry and the effect of the vibrating plates.
This a tremendous task with only partial known results
up to now. In Ref. [36], the vertical-to-horizontal energy
balance was obtained for the case of a monocomponent
granular gas in a box with smooth elastic plates vibrating
at infinite frequency but finite velocity V0. By equating
the energy balance [their Eq. (31) with Eq. (35) of this
article], an approximate mapping to the ∆-model can be
made, obtaining the scaling ∆ ∼ V0[(H − σ)/σ]3, where
H is the plate separation. No direct scaling with the co-
efficient of restitution is possible as the functional form
for the energy balance is not equal to that of Eq. (35).
Additionally, they showed that the vertical energy that is
injected into the horizontal degrees of freedom increases
with the time between grain-grain collisions as a result
of successive collisions with the plates. Modeling this
phenomenon as ∆ increasing in time between collisions
generates a gas-liquid phase transition [64]. The muti-
component case is considerably more complex and futher
research is needed to unveil the mapping between the pa-
rameters of the ∆-model to those of the three dimensional
system.

The results obtained in this paper opens up the possi-
bility of deriving the Navier–Stokes hydrodynamics equa-
tions of the mixture with explicit forms of the correspond-
ing transport coefficients. These coefficients can be ob-
tained for instance by solving the set of Enskog equa-
tions for states with small spatial gradients by means of
the Chapman–Enskog method adapted to inelastic col-
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lisions [42, 46]. The reference state in this method is obtained from the local version of the time-dependent
homogeneous state defined by Eq. (24), namely,

fi,ℓ(r,V; t) = ni(r; t)v
−d
th (T (r; t))ϕi

(
V

vth(T (r; t))
,

∆ij

vth(T (r; t))

)
, (42)

where V = v−U(r; t) is the peculiar velocity and U(r; t)
is the mean flow velocity of the mixture. On the other
hand, given the technical difficulties associated with the
Enskog equation, we plan as a first step to consider dilute
granular mixtures described by the Boltzmann kinetic
equation. In contrast to the results obtained from the
IHS model for low-density gases [65–67], an interesting
feature of the ∆-model is that there will be nonvanish-
ing first-order contributions to the partial temperatures
and the cooling rate, which are proportional to ∇ · U.
The computation of these contributions along with the
Navier–Stokes transport coefficients associated with the
mass, momentum, and heat fluxes is in progress and will
reported in the near future.
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Appendix A: Evaluation of the cooling rate

In this Appendix the cooling rates ζ∗i =
∑

i ζ
∗
ij defined

by Eq. (29) are evaluated by using the Maxwellian ap-

proximation (32). Henceforth, it is understood that the
dimensionless quantities of Sec. IV will be used and the
asterisk will be deleted to simplify the notation. To com-
pute all the integrals, we use the property (11), which in
the homogeneous state reads

∫
dc1h(c1)Jij [c1|ϕi, ϕj ] = xjχij

(σij
σ

)d−1

×
∫

dc1

∫
dc2 ϕi(c1)ϕj(c2)

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)

× [h(c′1)− h(c1)] . (A1)

As in previous calculations [41], the integral defining the
quantities ζij can be divided in two parts; one of them
already computed in the conventional IHS model (with
∆ij = 0) and the other part involving terms proportional
to the parameter ∆ij . Thus,

ζij = ζ
(0)
ij + ζ

(1)
ij , (A2)

where the contribution ζ
(0)
ij is [8, 42]

ζ
(0)
ij =

4π(d−1)/2

dΓ
(
d
2

) xjχij

(σij
σ

)d−1

µji(1 + αij)θ
−1/2
i

× (1 + θij)
1/2
[
1− 1

2
µji(1 + αij)(1 + θij)

]
.

(A3)

Let us consider the new contribution ζ
(1)
ij . It is given by

ζ
(1)
ij = −8

d
θixjχij

(σij
σ

)d−1

µji∆ij

∫
dc1

∫
dc2ϕi(c1)ϕj(c2)

×
∫
dσ̂Θ(σ̂ · g)(σ̂ · g)

[
µji∆ij − (σ̂ · c1) + µji(1 + αij)(σ̂ · g)

]

= −8

d
θixjχij

(σij
σ

)d−1

µji∆ij

∫
dc1

∫
dc2ϕi(c1)ϕj(c2)

[
B1µji∆ijg −B2(g · c1) +B2µji(1 + αij)g

2
]
,

(A4)

where [30]

Bk ≡
∫

dσ̂Θ(σ̂ · g)(σ̂ · ĝ)k = π(d−1)/2Γ
(
k+1
2

)

Γ
(
k+d
2

) . (A5)

In order to evaluate ζ
(1)
ij , one replaces ϕi by its

Maxwellian approximation (32) and the result is

ζ
(1)
ij = −8

d
θixjχij

(σij
σ

)d−1

µji∆ij(θiθj)
d/2Iζ , (A6)
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where

Iζ ≡ π−d

∫
dc1

∫
dc2 e

−θic
2
1−θjc

2
2

[
B1µji∆ijg

−B2(g · c1) +B2µji(1 + αij)g
2
]
. (A7)

The integral (A7) can be performed by the change of
variables

x = c1 − c2, y = θic1 + θjc2, (A8)

with the Jacobian (θi + θj)
−d

. With the change of vari-
ables (A8), the integral Iζ is given by

Iζ =
πd/2

2Γ
(
d
2

) (θiθj)−
d
2

[
2µji∆ij√

π

(
θi + θj
θiθj

)1/2

− θ−1
i

+µji(1 + αij)
θi + θj
θiθj

]
, (A9)

where Ωd = 2πd/2/Γ(d2 ) is the total solid angle in d di-

mensions. With this result, ζ
(1)
ij can be finally written

as

ζ
(1)
ij = − 4πd/2

dΓ
(
d
2

)xjχij
(σij
σ

)d−1

µji∆ij

[
2µji∆ij√

π
θ
1/2
i

× (1 + θij)
1/2 − 1 + µji(1 + αij) (1 + θij)

]
.

(A10)

The expression (34) for ζi is easily obtained from
Eqs. (A3) and (A10).
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[42] V. Garzó, Granular Gaseous Flows (Springer Nature
Switzerland, Basel, 2019).

[43] R. Soto, D. Risso, and R. Brito, “Shear viscosity of a
model for confined granular media,” Phys. Rev. E 90,
062204 (2014).
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