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Resumen

En los discos galácticos, la rotación galáctica establece el movimiento global del gas,
su energía y su momentum pueden transferirse hacia las escalas espaciales de las nubes
moleculares. Además, en el medio interestelar, los movimientos aleatorios y no circulares
surgen de la inyección de energía producto de la formación estelar, interacciones entre nubes,
inestabilidades gravitacionales y termales, entre otros procesos. En esta tesis, nuestro objetivo
es comprender hasta qué punto la dinámica del gas a pequeña escala se ve afectada por los
movimientos a gran escala de la galaxia. Abordamos esta pregunta utilizando una cantidad
inexplorada de mecánica de fluidos: la circulación de un fluido Γ, una medida macroscópica
de rotación local, definida como la integral de línea del campo de velocidad alrededor de una
trayectoria cerrada. Estudiamos cómo las contribuciones relativas de la rotación galáctica
y los movimientos locales no circulares a la circulación del gas cambian en función de la
escala. Como laboratorio de pruebas de nuestra técnica, utilizamos simulaciones numéricas
de discos galácticos utilizando el código de refinamiento de malla adaptativa Enzo, junto con
recetas de formación estelar y su inyección energética. Medimos la distribución de circulación
a diferentes escalas para el conjunto de galaxias tipo disco simuladas. Modelamos el campo
de velocidad del disco galáctico como la suma de la rotación galáctica y un campo aleatorio
Gaussiano. Las distribuciones de Γ provenientes de la rotación galáctica y un campo aleatorio
gaussiano tienen comportamientos diferentes a través de escalas espaciales. El campo aleatorio
Gaussiano está parametrizado por una ley de potencia quebrada en el espacio de Fourier, con
una transición en la escala λc, similar a la forma del espectro de potencia de energía para
fluidos bidimensionales. Definimos la escala espacial λeq como la escala donde la rotación
galáctica y los movimientos no circulares contribuyen igualmente a Γ. Para nuestras galaxias
simuladas, la dinámica de los gases a escala de nubes moleculares suele estar dominada
por movimientos no circulares, pero en el centro de los discos galácticos la rotación galáctica
sigue siendo relevante. Nuestro modelo muestra que la transferencia de rotación desde grandes
escalas se rompe en la escala λc y esta transición es necesaria para reproducir la distribución
de circulación. Encontramos que λeq, y por lo tanto la estructura del campo de velocidad
del gas, se establece por las condiciones locales de estabilidad gravitacional e inyección de
energía producto de la formación estelar.
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Abstract

In galactic disks, galactic rotation sets the bulk motion of gas, and its energy and momen-
tum can be transferred towards the scales of molecular clouds. Additionally, in the interstellar
medium, random and non-circular motions arise from stellar feedback, cloud-cloud interac-
tions, instabilities, among other processes. In this thesis, our aim is to comprehend to which
extent small scale gas dynamics is affected from the large scale motions of the galaxy. We ap-
proach this question using an unexplored quantity of fluid mechanics: the fluid circulation Γ,
a macroscopic measure of local rotation, defined as line integral of velocity field around a clo-
sed path. We study how the relative contributions of galactic rotation and local non-circular
motions to the circulation of gas change as a function of scale. As a test-bed of our technique
we use numercial simulations of galactic disks using the Adaptive Mesh Refinement code En-
zo, coupled with recipes of star formation and stellar feedback. We measure the circulation
distribution at different scales for the set of simulated disk galaxies. We model the velocity
field of the galactic disk as the sum of galactic rotation and a Gaussian random field. The
distributions of Γ coming from galactic rotation and a Gaussian random field have different
behaviors across spatial scales. The Gaussian random field is parametrized by a broken power
law in Fourier space with a break at the scale λc, similar to the shape of energy power spec-
trum for two-dimensional fluids. We define the spatial scale λeq as the scale where galactic
rotation and non-circular motions contribute equally to Γ. For our simulated galaxies, the
gas dynamics at the scale of molecular clouds is usually dominated by non-circular motions,
but in the center of galactic disks galactic rotation is still relevant. Our model shows that the
transfer of rotation from large scales breaks at the scale λc and this transition is necessary
to reproduce the circulation distribution. We find that λeq, and therefore the structure of the
gas velocity field, is set by the local conditions of gravitational stability and stellar feedback.
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Chapter 1

Introduction

The structure of the gas velocity field is crucial for understanding how galaxies and mole-
cular clouds evolve. For example, the dynamical state of gas is one of the key elements in star
formation theories, e.g. invoking turbulence at the scale of molecular clouds (Padoan et al.
2012; Semenov et al. 2016), or galactic rotation as a particular parameter controlling star
formation at galactic scales (Elmegreen 1997; Silk 1997; Kennicutt 1998; Tan 2000; Krum-
holz et al. 2012; Utreras et al. 2016; Jeffreson & Kruijssen 2018; Meidt et al. 2018). The
common picture of star formation involves self-gravity and sources of energy acting against
self-gravity. Galactic rotation is one of those energy sources, acting at the largest spatial
scales, where ordered motions make up the bulk of the kinetic energy. However, while its
importance is evident on large scales, it is not clear down to which spatial scales galactic
rotation remains dynamically relevant. At the scales of molecular clouds or stellar cores, gas
can be dynamically less coupled with galactic rotation and local non-circular motions start
to dominate.

1.1. Star formation

In the study of star formation in galaxies, a substantial amount of work has focused on
the role of galactic rotation and the velocity dispersion of gas. These two physical quantities
control the stability of gas. Galactic rotation works at galactic scales, and its influence is
often parameterized by the Toomre parameter Q (Toomre 1963). The classical form of this
parameter involves the stability of a razor-thin disk of gas with

Q =
κcs

πGΣgas

, (1.1)

where cs is the gas sound speed, κ is the epicyclic frequency given by κ2 = 4Ω2
(
1 + 1

2
∂ ln Ω
∂ lnR

)
,

Σgas is the gas surface density, and G is the gravitational constant. This ideal case illustrates
how galactic rotation delivers support against collapse, in particular to perturbations of size
λ > λrot ≡ 4π2GΣgas/κ

2, setting a maximum size of collapsing fragments (Escala & Larson
2008). Following this line of thought, it is natural to expect that galactic rotation might reduce
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the level of star formation in disk galaxies. In particular, Utreras et al. (2016) showed that
at galactic scales, the efficiency of star formation εSF, for simulated galactic disks, appears
to be proportional to exp(−tff/torb), where tff is the initial free-fall time, and torb = 2π/Ω
is the orbital time. This is shown in the top left panel of Figure 1.1. This expression is
similar to the result of Li et al. (2005), where εSF∝ exp(−4.2Q). We show this result in
the top right panel of Figure 1.1. However, other studies suggest that galactic rotation can
increase the rate of star formation (Tasker & Tan 2009; Krumholz et al. 2012). On the other
hand, velocity dispersion or turbulence, σv, is thought to act at galactic scales, through
the modification of the Toomre parameter by Q = κσv

πGΣgas
, or through the virial parameter,

αvir, at the scale of molecular clouds. The virial parameter measures the balance between
gravitational potential energy W and kinetic energy K, and it is given by αvir = 2K/W .
In simulations of turbulent molecular clouds, Padoan et al. (2012) found that the efficiency
of star formation is proportional to exp(−tff/tcr), where tcr is the cloud crossing time, and
tff/tcr ∝ αvir. This anti-correlation between αvir and εff has been observed in M51 (Leroy
et al. 2017) and in low-pressure atomic-dominated regions in nearby galaxies (Schruba et al.
2019). We display the result from Padoan et al. (2012) in Figure 1.1. If we change tcr by torb,
or αvir by Q, this efficiency has a similar functional form compared to the results of Utreras
et al. (2016) and Li et al. (2005). At different scales, different physical parameters control
gas dynamics, and their functional forms are expected to be dimensionless combinations of
such parameters (Escala 2015).

At galactic scales, for thin galactic disks, typical circular velocities, vrot, are larger than
the velocity dispersion of clouds. In this regime, the motion of gas is dominated by rotation
and its stability is given by Q. Then, we expect that other dimensionless quantities such
as εSF must be functions of Q and Ωt∗, where t∗ is a characteristic timescale, such as the
free-fall time. At the scales of clouds, gas dynamics is less coupled to galactic rotation and
the relevant parameters are self-gravity and kinetic energy. It is then expected to find that
αvir must play a role at these scales.

In summary, star formation shows that there are two distinct regimes for gas dynamics,
one dominated by large scale galactic motions and other ruled by the non-ordered motions at
the size of molecular clouds. However, there is no clear boundary between these two regimes.
At intermediate scales both rotation and turbulence must be equally relevant setting the
evolution of gas dynamics. Moreover, we do not know whether rotation can still influence the
motion of clouds of gas, and if so, how this changes across a galaxy.

1.2. Rotation in clouds

At the scale of molecular clouds, a significant body of observational and theoretical re-
search has been devoted to study the balance between gravitational potential energy W
and kinetic energy K, commonly described by the virial parameter αvir = 2K/W (Padoan
et al. 2017; Leroy et al. 2017; Sun et al. 2018). CO measurements in the PHANGS-ALMA
survey made by Sun et al. (2018) show that αvir varies weakly from cloud to cloud, with
αvir ∼ 1.5− 3.0, expected values for marginally bound clouds or free-falling gas. A common
assumption is that at the scale of molecular clouds, most of the kinetic energy K comes from
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Figure 1.1: Star formation efficiency versus dimensionless parameters. Top Left: Star forma-
tion efficiency per free-fall time as a function of Ω times the initial free-fall time tff (Utreras
et al. 2016). Top Right: Star formation timescale τSF as a function of initial Qsg(min) (Li
et al. 2005). Bottom: Efficiency per free-fall time as a function of tff/tdyn, where tdyn is the
turbulent crossing time in a turbulent medium (Padoan et al. 2012).
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Figure 1.2: Distribution of velocity gradients (left) and position angles of spin (right) of
Milky Way molecular clouds relative to the Galactic plane (Koda et al. 2006). The direction
perpendicular to the Galactic Plane is ψ = 0◦. Prograde and retrograde spins are indicated
with different patterns.

non-circular turbulent motions. This assumption is supported by measurements of velocity
gradients of molecular clouds in nearby galaxies. Studying our galaxy, Koda et al. (2006)
estimated that the fractions of clouds with prograde or retrograde rotation with respect to
the Galaxy’s spin are similar. We show the distribution of velocity gradients and spin orien-
tations found by Koda et al. (2006) in Figure 1.2. Another studied galaxy in this subject
is M33. By measuring velocity gradients, Rosolowsky et al. (2003) found that, if clouds do
rotate, nearly 40% of them are counter-rotating with respect to their<galaxy. Additionally,
they found that within a scale of approximately 500 pc, the spin of molecular clouds is more
aligned with respect to other clouds in that region, as shown in Figure 1.3. This shows that
there is a type of substructure of 500 pc in the gas velocity field.

More recently, Braine et al. (2018) confirmed that in M33 molecular clouds rotate, and
that their rotation is too low to play a role in the gravitational stability of these objects.
We show the distributions of velocity gradients and specific angular momentum from Braine
et al. (2018) in Figure 1.4. The distribution of angular momentum in M33 is almost centered
at zero with a small tendency to negative values (prograde rotation). This shows that the
orientation of galactic rotation has a small effect on the rotation of molecular clouds in M33.
On the other hand, these clouds have local angular velocities similar to the galactic angular
speed.

These observed distributions are expected for clouds dominated by non-circular motions
which have randomly aligned spins. In the field of simulations, Tasker & Tan (2009) found
about 30% of clouds with retrograde rotation in a simulated Milky Way like galaxy, even
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Figure 1.3: Correlation between the position of molecular clouds and their separation Ro-
solowsky et al. (2003). There is a trend that clouds at small distances tend to ave their
velocit gradients aligned with each other. The mean in each bin is weighted according to the
uncertainty in the measurements and the error bars the error in the mean.
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Figure 1.4: Left: Histogram of cloud velocity gradients for the entire sample in black and for
only the brighter clouds in CO in red, from (Braine et al. 2018). Prograde rotation is given a
negative sign here because the galaxy rotation velocity increases with decreasing declination.
Right: Specific angular momenta of the M33 clouds. Red lines indicate data for CO-strong
clouds.

in the absence of stellar feedback. Figure 1.5 shows the distributions of the angle between
cloud angular momentum vectors and the galactic rotation axis. The top panel shows how
the distribution changes during the course of the simulation, getting more random at later
times. The bottom panel shows that after 140 Myr the simulated disk reaches a quasi-steady
state and clouds have similar distributions in their spin independently of their age. Tasker
& Tan (2009) argued that as time progresses, cloud-cloud interactions inject turbulence at
the scale of these interactions. At later times, new clouds are born in a more disordered velo-
city field. However, non-ordered or non-circular motions are also originated by gravitational
instabilities, torques from non-axisymmetric potentials, gas accretion, and stellar feedback
(Goldbaum et al. 2015; Krumholz et al. 2018). These energy sources inject turbulence and
induce non-circular motions that cascade towards small and large scales (Kraichnan 1967;
Bournaud et al. 2010).

Ward et al. (2016) run a simulation similar to the work of Tasker & Tan (2009). However,
they found a small fraction of retrograde clouds, only a 13%. This discrepancy might be
originated from the fact that the simulation of Ward et al. (2016) is more gravitational
stable, injecting less turbulence.

1.3. Rotation versus Velocity dispersion

Observations (Larson 1981; Heyer et al. 2009; Shetty et al. 2012), and simulations of
turbulent ISM (Kritsuk et al. 2013) show that the velocity dispersion of gas, σv, is strongly
correlated with the scale `. This correlation, σv(`) ∝ `b, is one of the so called Larson relations,
which usually varies between b ∈ [0.2, 1.1] (Shetty et al. 2012), while turbulent models show
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Figure 1.5: Top :Distribution of the angle, θ, between cloud angular momentum vectors and
the galactic rotation axis at different times during the course of the simulation. The shaded
bars indicated retrograde rotation, and this population grows with time as more and more
clouds experience collisions and close interactions. Bottom: θ for clouds born after t = 140
Myr in the fully fragmented stage of evolution. The shaded bars indicated retrograde rotation.
The fraction of retrograde clouds is about 25% of the total and nearly independent of cloud
age. Figures from Tasker & Tan (2009).
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b = 0.5 (Kritsuk et al. 2013). On the other hand, we expect that galactic rotation drives
velocity dispersions of the order of σrot

v ≈ Ω` before gas starts to collapse. In short, we have
to different types of velocity fields with σv ∝ `b with b . 1 and σrot

v ∝ `. We expect that at
some particular scale `∗, σv(`∗) ≈ σrot

v (`∗).

This last point is similar to the discussion in Meidt et al. (2018) which compares motions
induced by the gravitational potential of the galaxy and the velocity dispersion of gas. Meidt
et al. (2018) calculate that for a spatial scale Rc

3σ2
gal,iso = 3(κRc)

2,

3σ2
gal = 2(κRc)

2 + (νRc)
2,

where, the subscript iso indicates if motions are isotropic, κ is the epicyclic frequency and ν
the vertical frequency about the galactic plane. Meidt et al. (2018) present the hypothesis that
the observed velocity dispersion of gas clouds, σv, is a combination of motions induced by self-
gravity, σsg and the potential through the epicyclic frequency, σ2

v = σ2
sg + κR2

c . Furthermore,
they argue that clouds in nearby galaxies show signatures of motion driven by the galactic
potential. Under these assumptions, if Rc > σv/κ, where σv is the velocity dispersion of gas,
the Coriolis force is still relevant in the dynamics of molecular clouds.

This work shows that there may be a transition scale between large scale motions, or
motions driven by the large scale galactic potential, and cloud scale turbulence, which in part
could be also generated by torques exerted by the gravitational potential. Since κ and σv vary
with galactocentric radius, we might expect that this transition scale changes across a galaxy.
For example, at the center of galaxies we expect that galactic rotation has a high influence
on the dynamics of clouds. Simulations of the Galactic Center (Kruijssen et al. 2019) show
that molecular clouds are dominated by strong shear and tidal deformations. Moreover, shear
motions from galactic rotation might set the cloud lifetimes in certain conditions (Jeffreson
& Kruijssen 2018).

1.4. Vorticity and power spectrum

One way to estimate the role of galactic rotation is to measure its impact in the local
rotation of gas, i.e. the rotation measured with respect to an inertial reference frame. Local
rotation is defined by the vorticity vector ~ω = ∇×~v, which is extensively studied in the field of
fluid mechanics (Ruppert-Felsot et al. 2005; Musacchio & Boffetta 2017; Couston et al. 2019).
Vorticity has an important role in the dynamics of two-dimensional fluids, which is relevant
since we may think of disk galaxies as quasi-two dimensional fluids. In two-dimensions, the
evolution of the vorticity field is given by:

∂ω

∂t
+ (~v · ∇)ω = ν∇2ω +∇~f, (1.2)

where ν is the viscosity and ~f is the eternal force applied on the fluid. For inviscid fluids with
~f = −∇φ, the equation is reduced to Dω

Dt
= 0, i.e. fluid cells conserve their vorticity. In this
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Figure 1.6: Illustration of two-dimensional power spectrum.

scenario, two conserved quantities appear, energy and enstrophy:

E =
1

2

∫
D
~v2dA ; Z =

1

2

∫
D
ω2dA. (1.3)

Kraichnan (1967) showed that these two invariant quantities give rise to a double cascade
in the kinetic energy spectrum E(k). The theory predicts an inverse energy cascade E(k) ∝
k−5/3 where kinetic energy is transferred to large scales, and a direct enstrophy cascade with
E(k) ∝ k−3. In the presence of a forcing ~f , the inverse cascade occurs in k < kf where kf
is the wavenumber of the forcing scale. The direct cascade transfers enstrophy from kf to
k > kf .

In particular, for two dimensional fluids, we can find long-lived vortex structures in the
vorticity field, usually called coherent structures. These substructures might be the origin of
the correlations in the spin of neighbor clouds (Rosolowsky 2005). Moreover, these structures
are related with the forcing scale in two dimensional fluids. The size of coherent structures
is of the order of the forcing scale `f = 1/kf (Paret & Tabeling 1998; Musacchio & Boffetta
2017). We show an example of these structures in Figure 1.7 that corresponds to a snapshot of
a rotating turbulent flow experiment (Ruppert-Felsot et al. 2005). In the field of astronomy,
it has been suggested that the power spectrum has a break around kz = 1/H where H is
the disk scale height (Bournaud et al. 2010). Apparently, this break can be observed in the
spectrum of the gas surface density Σ(k) (Combes et al. 2012), although this is not supported
by recent studies (Koch et al. 2020). We might argue that, if a forcing scale exists in real
galaxies it might be related with the disk scale height. However, Musacchio & Boffetta (2017)
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Figure 1.7: Snapshot of a rotating turbulent flow experiment (Ruppert-Felsot et al. 2005).
Left: Particle image field in a horizontal plane 4 cm below the lid of the tank. Right: Close-up
of the boxed region (18.7 cm x 18.7 cm) showing a cyclone (circular closed particle streaks)
and an anti-cyclone (elliptical closed particle streaks to the upper-left of the cyclone).

show that the effect of the disk scale height is an additional energy cascade for k > kz as
shown in Figure 1.8.

Then, if we could analyze the vorticity of gas in a galaxy we might be able to find these
scales. However, the measurement of ω is limited by the uncertainties in the velocity field,
and as discussed in section 1.3, we expect that these scales change for different environments
in a galaxy. The power spectrum gives a description of the whole domain making this <type
of analysis more complicated.

Our aim is to create a framework that allows us to obtain the contributions from these two
types of motion to the local rotation. Since non-ordered motions have multiple sources, we
need to adopt a statistical approach. A first order approximation is to consider non-circular
motions as a Gaussian random field, described by a generating function in Fourier space V(k),
where k is the wavenumber. If we know V(k) we also know the magnitude of non-circular
motions as a function of spatial scale. Ultimately, V(k) let us know at which scales galactic
rotation is still relevant.

We employ a quantitative measure of the local rotation of gas, the circulation of a fluid Γ.
We define a 2-component model for gas motions with a smooth function for large scales and
a generating function V(k) to model the non-circular motions. The velocity field arising from
V(k) behaves as a Gaussian random field. We compare the contributions from each component
to the total measured circulation. In this framework, on galactic scales the contribution of
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Figure 1.8: Energy spectrum E2D(k) of the 2D mode v2D represented by the red dashed line,
and 3D mode v3D shown by the blue solid line (Musacchio & Boffetta 2017). The black-dotted
line shows the 2D spectrum of the vertically-averaged vertical velocity vz.
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non-circular motions to the circulation is negligible compared to the large scale ordered
rotation. On the smallest scales the circulation field is given mostly by V(k). In other words,
changes in the behavior of the observed distribution of Γ at different scales illustrates how
the dynamics transitions from circular to non-circular motions. With this in mind, we can
define a spatial scale λeq at which large scale rotation and non-circular motions contribute
equally to the measured circulation of gas.

To test if circulation is a useful tool to find the transition scale between galactic rotation
and non-circular motions, we use hydrodynamical simulations of galactic disks with different
initial conditions. Numerical simulations are an excellent testbed for the study of circulation
since they provide the full velocity field, and allow us to look for observable signature by
changing different physical parameters, such as rotation or self-gravity.
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Chapter 2

Vorticity and Circulation

In this chapter we introduce the concepts of vorticity and circulation of a fluid and some
of their properties.

2.1. Vorticity

When we study the motion of fluids there are several properties of interest, such as its
bulk motion, shear stresses, compression, and its local spin. One of the most useful notions
in fluid dynamics is the vorticity vector, ~ω. The vorticity is a measure of the local rotation,
and its direction is parallel to the spin of a fluid element. In absolute terms, the vorticity
measures two times the local rotation of a fluid. The vorticity is given by the curl of the
velocity field

~ω = ∇× ~v =

(
∂vz
∂y
− ∂vy

∂z

)
x̂+

(
∂vx
∂z
− ∂vz
∂x

)
ŷ +

(
∂vy
∂x
− ∂vx

∂y

)
ẑ. (2.1)

To make this concept clearer let us imagine a fluid with a circular velocity field ~v = v(R)φ̂,
where φ̂ is the azimuthal unit vector in cylindrical coordinates. In cylindrical coordinates,
the vorticity is

~ω =

(
1

R

∂vz
∂φ

9
∂vφ
∂z

)
R̂ +

(
∂vR
∂z

9
∂vz
∂R

)
φ̂+

1

R

(
∂(Rvφ)

∂R
9
∂vR
∂φ

)
ẑ (2.2)

=
vφ(R)

R

(
1 +

∂ ln vφ(R)

∂ lnR

)
ẑ. (2.3)

In the top row of Figure 2.2 we show the velocity vector field for different choices of
vφ(R): solid body rotation (vφ ∝ R), a flat velocity curve (vφ = v0), and vφ ∝ 1/R. The
vector field is computed on a circular path of radius R and its center is at a position x = 10R
and y = 0 in Cartesian coordinates. In the bottom row, we show the residual velocity field
after subtracting the velocity of the center of the circle. Regions of gas in a field with solid
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Figure 2.1: Velocity vector field for different circular velocity profiles, vφ(R): solid body
rotation vφ ∝ R, a flat velocity curve vφ = v0, and vφ ∝ 1/R. Top: Vector field around a
circular path of radius R. The center of the circles is located at (x, y)=(10R, 0). Bottom:
residual velocity field after subtracting the velocity at the center of the circle.
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Figure 2.2: Illustration of the local rotation of fluid elements for different azimuthal velocity
fields. Blue squares represent the fluid elements in two different positions in their path Left:
Solid body rotation, v ∝ R. The local rotation of any fluid element (blue squares) is equal
to the galactic angular velocity Ω. Middle: Flat velocity curve, v = v0. The local rotation of
fluid elements Ω/2. Right: Irrotational flow, v ∝ 1/R. For this flow the local rotation of a
fluid element is zero.

body rotation rotate around their center. For flat velocity curves, gas experiences local shear
motions. Finally, for vφ ∝ 1/R we can see that gas is stretched and compressed, but it does
not appear to be rotating.

Now, let us compute the vorticity field for each of these examples. In the case of solid
body rotation ~ω = 2Ωẑ, where Ω(R) = v0/R, and patches of gas experience a local rotation
of ω/2 = Ω with respect to a local inertial reference frame. For a flat velocity curve ~ω = Ωẑ,
and the local rotation is half the galactic rotation Ω/2. We notice from equation 2.2 that
there is a critical case when v(R) ∝ 1/R. For such a velocity field, ~ω = 0 and fluid elements
experience no local rotation with respect to an inertial reference frame. This kind of fluid is
called irrotational. We illustrate the net rotation of fluid elements on each of these fields in
Figure 2.2.

One important aspect of vorticity and irrotational fields comes from the Helmholtz’s theo-
rem: the vector velocity can be decomposed as the sum ~v = ~vi +~vs, where ~vi is the irrotational
component (∇ × ~vi = 0) and ~vs is the solenoidal component (∇ · ~vs = 0). In general, the
Helmoltz decomposition states that a vector field can be decomposed as ~v = −∇Φ +∇× ~A,
where ~vi = −∇Φ and ~vs = ∇× ~A. Then,

~ω = ∇× ~v = ∇× ~vs = −∇2 ~A, (2.4)

the vorticity field only has information of the solenoidal component of the velocity field, that
can be recovered solving the Poisson equation ∇2 ~A = −~ω with the proper border conditions.
Motions such as compression or stretching (∇~v 6= 0) do not contribute to the vorticity field.
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Figure 2.3: Illustration of a fluid circular element centered at (x0, y0) with a two dimensional
velocity field ~v(x, y) = u(x, y)î + v(x, y)ĵ

2.1.1. Angular momentum and gravitational stability

There is an insightful relation between vorticity and the angular momentum of an infini-
tesimal fluid element. First, let us imagine a fluid element V which center of mass is located
at ~r0 = (x0, y0, z0) with a velocity ~v = (u, v, w). Figure 2.3 illustrates the fluid element in two
dimensions.

Now, we expand the velocity field around the point ~r0.

u(x0 + x, y0 + y, z0 + z) = u(x0, y0, z0) +
∂u

∂x
(~r0)x+

∂u

∂y
(~r0)y +

∂u

∂z
(~r0)z + ... (2.5)

v(x0 + x, y0 + y, z0 + z) = v(x0, y0, z0) +
∂v

∂x
(~r0)x+

∂v

∂y
(~r0)y +

∂v

∂z
(~r0)z + ... (2.6)

w(x0 + x, y0 + y, z0 + z) = w(x0, y0, z0) +
∂w

∂x
(~r0)x+

∂w

∂y
(~r0)y +

∂w

∂z
(~r0)z + ... (2.7)

Now we can measure the angular momentum vector with respect to the center of mass of
V
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~L~r0 =
∫
ρ ~r × ~v d~r (2.8)

=
∫
ρ

[
y

(
∂w

∂x
x+

∂w

∂y
y +

∂w

∂z
z

)
− z

(
∂v

∂x
x+

∂v

∂y
y +

∂v

∂z
z

)]
(2.9)

+
∫
ρ

[
z

(
∂u

∂x
x+

∂u

∂y
y +

∂u

∂z
z

)
− x

(
∂w

∂x
x+

∂w

∂y
y +

∂w

∂z
z

)]
(2.10)

+
∫
ρ

[
x

(
∂v

∂x
x+

∂v

∂y
y +

∂v

∂z
z

)
− y

(
∂u

∂x
x+

∂u

∂y
y +

∂u

∂z
z

)]
. (2.11)

(2.12)

Since the origin of the reference frame is the center of mass, the terms xy, xz and yz are zero
after integration. We have dropped the symbol (~r0) from the derivatives.

~L~r0 =
∫
ρ~r × ~vd~r =

∫
ρ

[
y2∂w

∂y
− z2∂v

∂z

]
x̂+

∫
ρ

[
z2∂u

∂z
− x2∂w

∂x

]
ŷ (2.13)

+
∫
ρ

[
x2 ∂v

∂x
− y2∂u

∂y

]
ẑ (2.14)

=

[
I22

∂w

∂y
− I33

∂v

∂z

]
x̂+

[
I33

∂u

∂z
− I11

∂w

∂x

]
ŷ +

[
I11

∂v

∂x
− I22

∂u

∂y

]
ẑ, (2.15)

I11, I22, and I33 are the components of the moment of inertia tensor I. If the three components
of the moment of inertia are equal I11 = I22 = I33 = I, then

~L~r0 = I · ~ω. (2.16)

From equation 2.16 we can see that there is a close relation between vorticity and the local
angular momentum of gas. Angular momentum gives support against compression or collapse
due to self-gravity. In this context, an important astrophysical parameter is the Toomre
parameter Q (Toomre 1964). The Toomre parameter tells us whether radial perturbations
in an axisymmetric disk are stable against gravitational collapse and fragmentation. The
sources of stability are the rotation of gas, sound speed and velocity dispersion. In its usual
form, Q is given by

Q =
κcs

πGΣgas

, (2.17)

where G is the gravitational constant, κ is the epicyclic frecuency, cs is the sound speed, and
Σgas is the gas surface density. The epicyclic frequency κ takes into account the rotation of
gas, and its given by

κ2(R) = 4Ω(R)2

(
1 +

∂ ln Ω(R)

∂ lnR

)
= 2

v2
φ(R)

R2

(
1 +

∂ ln vφ(R)

∂ lnR

)
= 2Ω(R)ωrot(R), (2.18)

where we have used equation 2.2, and ωrot is the vorticity originated from the circular velocity
vφ(R) = RΩ(R). This implies that for an irrotational fluid κ = 0 and the Toomre parameter
Q = 0. Any perturbation larger than the thermal Jeans scale, λJ ≡ c2

s/πGΣgas, is gravitatio-
nally unstable and is not supported by rotation. It is noteworthy that in an irrotational fluid
its angular velocity Ω 6= 0 and its shear ∂Ω

∂r
6= 0. We may be tempted to study the vorticity

field of real astrophysical fluids, unfortunately, vorticity is a local quantity, defined for an
infinitesimal fluid element. For finite regions of space, there is another measure of rotation
called circulation and its related to ω.
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2.2. Circulation of a fluid Γ

A scalar quantity that measures the rotation for finite and two-dimensional regions of
fluids is called circulation Γ (Pedlosky 1992). Circulation is defined as the line integral of
the velocity field along a closed path,

Γ =

∮
δS

~v · d~l. (2.19)

An important property of Γ is that it is an additive quantity. For example, if we dived a
region S into subregions S1 and S2

Γ =

∮
δS

~v · d~l =

∮
δS1

~v · d~l +

∮
δS2

~v · d~l = Γ1 + Γ2 (2.20)

The mutual boundary of S1 and S2, that divides the region, is integrated in different directions
for Γ1 and Γ2, and does not contribute to their sum.

For a continuous velocity field, we can apply Stokes’ theorem, which relates the line integral
along a closed path to the surface integral over the area enclosed by it. This allows us to
make the connection between Γ and ~ω:

Γ =

∮
δS

~v · d~l =

∫
S

~∇× ~v · d~S =

∫
S

~ω · d~S. (2.21)

Figure 2.4: Illustration of the circulation in a closed region for different velocity fields.
Left: Constant velocity field, vx = 0 and vy = v0. Middle: Shear across the x-axis, vx = 0
and vy ∝ x. Right: Solid body rotation with angular velocity Ω0. The length of the arrows
represents the magnitude of the velocity field.

We can think of circulation as the area-weighted integral of the vorticity field. For a two
dimensional fluid, the vorticity may also be seen as the circulation per unit area for an
infinitesimal fluid element. Figure 2.4 illustrates the circulation around a circular path for
different velocity fields. A fluid with a constant velocity v0 has Γ = 0, as it is constant in
both magnitude and direction, and the line integral cancels out due to the change of direction
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Figure 2.5: Region S with circulation Γ = 0. At smaller scales the circulation field can have
different distributions that are consistent with Γ = 0.
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of the path with respect to the velocity field. In other words, bulk displacements make no
contribution to Γ. A shear velocity field of the form ~v = (0,Ω0x) has ω = Ω0 and Γ = πr2Ω0.
The last example in Figure 2.4 shows solid body rotation, ~v = (−Ω0y,Ω0x), with ω = 2Ω0

and Γ = 2πr2Ω0.

However, realistic velocity fields are not completely smooth and behave differently at
different scales. For instance, we might find that over a region S the circulation is Γ = 0. But
this does not imply that ω = 0 over the whole region. Since the circulation is an additive
quantity, if we divide S into N small sub-regions si , and Γ = 0, then

ΓS =

∫
S

~ω · d~S =

∫
s1+...+sN

~ω · d~S =
N∑

i=1

Γsi = 0. (2.22)

The sum of all Γi gives zero. There are infinite ways to distribute the values of Γi to get
Γ = 0 (see Figure 2.5). The exact distribution of the circulation at this smaller scale will
depend on the nature of the velocity field. This implies that only a multi-scale measurement
of the circulation can characterize the velocity field.

To have a full picture of the rotation of a fluid, we need to compute the circulation of gas at
each point in the fluid on regions of different sizes. By doing this, we can create distributions
of circulation at different spatial scales. Since Γ can grow with the size of different scales, let
us define the normalized circulation γ:

γ =

∫
S
~ω · d~S∫
S

dS
=

Γ

A
, (2.23)

where A is the area of S. For solid body rotation with angular velocity Ω0, γ = 2Ω0 for any
fluid patch, and the distribution of γ will be a Dirac delta function δ(ω − 2Ω0). In the case
of a rotating fluid with added random motions the distribution of γ will be broader at small
scales and will get narrower as we increase the size of the region in question, since we are
adding more random numbers and then dividing by a larger area.

We already know how to compute the vorticity for smooth circular velocity fields using
equation 2.2. But we need to find a way to describe vorticity fields with a random nature.
We cannot use pure white noise, since for discrete fields its distribution at different scales
depends only on the maximum resolution of the field, and a field of this characteristics has no
physical meaning. In the next section, we introduce the concept of Gaussian Random fields
that allow us to represent random velocity fields with parameters that we can associate with
different physics.
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Chapter 3

Circulation and numerical tools

3.1. Gaussian Random Fields

In this thesis, we model the two dimensional velocity field as the sum of two components
with different properties: the first being an axisymmetric and smooth velocity field, vrot =
RΩ(R), which is given by galactic rotation. The second field corresponds to a Gaussian
random field (GRF), vnc. GRFs are fields which follow a Gaussian distribution. In this paper,
we will use a continuous GRF which is defined by a generating function in Fourier space
that specifies the contribution from each spatial scale to the random velocity field (Lang
& Potthoff 2011). This kind of random fields are widely used in cosmology to model the
primordial perturbations of the density field (Pranav et al. 2019).

In this section we explain the properties of GRFs which come mostly from the work of
Lang & Potthoff (2011). We also extend its properties to the measurements of circulation at
different spatial scales.

3.1.1. Definition of Gaussian Random Fields

Let W(~r) be a Gaussian white noise field, with mean value E(W(~x)) = µ = 0, and
covariance E(W(~r)W(~p)) = δ(~r − ~p), where δ(~r) is the Dirac delta function. From W(~r) we
can create a random Gaussian field v(~r) by the equation:

v(~r) = F−1
(
V(~k)F(W)(~k)

)
(~r) =

∫
e2πi(~k,~r)V(~k) d~k

∫
e−2πi(~k,~p) W(~p)d~p, (3.1)

where (·, ·) represents the dot product, V(~k) is an even and positive function in Fourier
space, F is the Fourier transform operator, and F−1 is the inverse Fourier transform:

f̂(~k) = F(f)(~k) =

∫
e−2πi(~k,~r)f(~r)d~r & f(~r) = F−1(f̂)(~r) =

∫
e2πi(~k,~r)f̂(~k)d~k. (3.2)
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The covariance Cv(~r, ~p) and variance σ2
v(~r) = Cv(~r, ~r) of the GRF v(~r) are given by:

Cv(~r, ~p) =

∫
e−2πi(~k,~r−~p)V2(~k)d~k & σ2

v(~r) =

∫
V2(~k)d~k. (3.3)

The statistical properties of the GRF v(~r) are contained in the function V(~k), while W(~r)

sets one of the random realizations of this field. In terms of physics, the V(~k) field is related to
the kinetic energy power spectrum E(k). For a velocity field v(~r) with mean value 〈v(~r)〉 = 0,
the mean kinetic energy per unit mass is

1

2
〈v(~r)2〉 =

∫ ∞
0

E(k)dk =
1

2
σ2
v =

1

2

∫
V2(~k)d~k. (3.4)

In this work, we analyze the velocity field in two dimensions, and we assume a symmetric
function V(~k) = V(k). With these two points the relation from above is reduced to E(k) =
2πV2(k)k.

3.1.2. Vector fields, vorticity and circulation

Equation 3.1 shows how to create a GRF v(~r) that is a scalar function. For a two dimen-
sional velocity field, we need to define two components vx(~r) and vy(~r). We assume that these
two random fields are uncorrelated, which is a major assumption and possibly unphysical in
some scenarios. Once we have both fields we can compute the vorticity field ~ω(~r).

The vorticity field is given by the curl of the velocity field, ~ω(~r) = ∇× ~v(~r). The Fourier
transform of the curl operator corresponds to F(∇ × ~v)(~k) → −2πi~k × ~̂v(~k). We are only
interested in the z-component of the vorticity field, which we refer as ω. Then, the Fourier
transform of ω is ω̂(~k) = −2πi(kxv̂y(~k) − kyv̂x(~k)). If vx and vy are defined by V(k), then ω
will be defined by the function W(k) = 2πV(k)k. Then, the vorticity field is given by

ω(~r) = F−1
(
W(~k)F(W(~r))

)
=

∫
e2πi(~k,~r) W(~k) e−2πi(~k,~r′) W(~r′) d~kd~r′. (3.5)

The variances of the velocity fields and the vorticity fields are related by:

σ2
ω

σ2
v

=

∫
W(k)2kdk∫
V(k)2kdk

= 4π2

∫
V(k)2k3dk∫
V(k)2kdk

=
1

4π2

∫
W(k)2kdk∫
W(k)2 1

k
dk
. (3.6)

Now we have a relation between ω(x, y) and the function that sets the statistical properties
of the velocity field V(k). For our calculations, we use the function W(k) to compute the
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properties of random fields. To translate our calculations to the parameters of the velocity
field we use W(k) = 2πV(k)k.

What follows from here is to compute the normalized circulation γ(~r, `) for a square region
of size ` centered at ~r = (x, y):

γ(~r, `) =
1

`2

∫ x+ `
2

x− `
2

∫ y+ `
2

y− `
2

ω(~r′′)d~r′′. (3.7)

Replacing equation 3.5 in 3.7

γ(~r, `) =
1

`2

∫ x+ `
2

x− `
2

∫ y+ `
2

y− `
2

d~r′′
∫

e2πi(~k, ~r′′)W(~k)e−2πi(~k,~r′)W(~r′)d~kd~r′. (3.8)

To get rid of x and y in the limits of the integrals we apply the variable change ~r′′ → ~r+ ~r′′

and we get

γ(~r, `) =
1

`2

∫ `
2

− `
2

∫ `
2

− `
2

d~r′′
∫

e2πi(~k,~r)e2πi(~k, ~r′′)W(~k)e−2πi(~k,~r′)W(~r′)d~kd~r′. (3.9)

Now, we can integrate the term e2πi(~k, ~r′′)d~r′′ over the square region∫ `
2

− `
2

∫ `
2

− `
2

e2πi(~k, ~r′′)d~r′′ =

∫ `
2

− `
2

e2πikxx′′dx′′
∫ `

2

− `
2

e2πikyy′′dy′′ =
sin(πkx`)

πkx

sin(πky`)

πky
, (3.10)

γ(~r, `) =
1

`2

∫
e2πi(~k,~r)W(~k)

sin(πkx`) sin(πky`)

π2kxky
e−2πi(~k,~r′)W(~r′)d~kd~r′. (3.11)

We can see that γ(~r, `) has the form F−1
(
M(~k)F(W(~r))

)
with

M(~k) =
1

`2
W(~k)

sin(πkx`) sin(πky`)

π2kxky
. (3.12)

Then, γ(~r, `) is a two dimensional GRF with a variance given by:

σ2
γ,` =

∫
M(~k)2d~k =

1

`4

∫
W(~k)2 sin(πkx`)

2 sin(πky`)
2

π4k2
xk

2
y

dkxdky (3.13)

3.1.3. Examples and numerical tests of Gaussian Random Fields

We have derived equations showing how the variance of the probability density distribution
of γ, pdf(γ), changes with spatial scale `. In this thesis, we deal with discrete velocity fields
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and therefore we need to test the applicability of our equations to velocity and vorticity maps
with different parameters. We start by showing how the velocity and vorticity maps change
with different generating functions V(k). For the first examples we choose V(k) to be of the
form:

V(k) =

{
V0k

−n if kmin ≤ k < kmax

0 elsewhere (3.14)

We start by looking how the fields change with the exponent of the power law n, with
values n ∈ 1, 2, 3. We create maps with dimensions 1024 × 1024 with kmax = 256/L and
kmin = 2/L. Since this exercise is only to illustrate the structure of the different fields with
arbitrary units, we normalize each field, velocity and vorticity, by its standard deviation.

Figure 3.1 shows the velocity and vorticity fields for different values of n. Higher exponents
mean that most of the structure of the fields is contained at low wavenumbers k, i.e. at larger
scales. As the exponent grows we see how the structure of each field is dominated by large
structures. For n = 1 in the velocity fields we see a mixture of large scale structure plus
variations at the small scales. An exponent n = 1 for V(k) implies an exponent n = 0 for
W , which means that the vorticity field is almost pure white noise. Something noteworthy is
the similitude between the structure of the vorticity fields with velocity fields at the previous
row. The cause of this resemblance is that their corresponding generating functions V(k) and
W(k) are the same power law.

To illustrate that the relation W(k) ∝ V(k)k does hold for discrete fields, we show the
profiles of ṽx(k), ṽy(k) and ω̃z(k), which are the Fourier transforms of the velocity and vorticity
fields. Figure 3.2 shows the profiles in Fourier space for V(k) ∝ n−2.

For the following examples and tests we use the same model of V(k) used to analyze the
simulations, a broken power law:

V(k) =


V0k

−n1 if kmin ≤ k < kc

V0k
−n1+n2
c k−n2 if kc ≤ k ≤ kmax

0 elsewhere
(3.15)

This function has a new important parameter, the transition wavenumber kc. We show
how the GRFs change for different values of kc in Figure 3.3. We set n1 = 1 and n2 = 3 and
choose values for kc ∈ (256/L, 32/L, 4/L), where L is the length size of the image.

The generating function of the vorticity field is then

W(k) =


W0k

−n1+1 if kmin ≤ k < kc

W0k
−n1+n2
c k−n2+1 if kc ≤ k ≤ kmax

0 elsewhere
(3.16)

with W0 = 2πV0.

Our first test consists in computing the standard deviation of the velocity and vorticity
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Figure 3.1: Velocity and vorticity maps for different functions V(k) ∝ k−n. From left to right
we show the fields vx(x, y), vy(x, y) and ωz(x, y). From top to bottom the exponent n takes
the values 1, 2 and 3. Each field has been normalized by its standard deviation, i.e. the fields
correspond to vx/σvx, vy/σvy and ωz/σω
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Figure 3.2: Profiles of the Fourier transforms of the velocity and vorticity fields as a function of
wavenumber k. Left: Profiles of ṽx(k) a ṽy(k) as a function of k shown by the blue and orange
lines respectively. The black dashed lines illustrates the proportionality ṽ ∝ k−n = k−2. Right:
Profile of ω̃z(k) as a function of k. The black dashed lines illustrates the proportionality
ω̃ ∝ k−n+1 = k−1.

fields, i.e., σv and σω from equations 4.8 and 3.16. Let us start with the velocity field:

σ2
v =

∫
V2(~k)d~k = 2πV2

0

[∫ kc

kmin

k−2n1kdk + k−2n1+2n2
c

∫ kmax

kc

k−2n2kdk

]
. (3.17)

For convenience we rewrite equation 3.17 as σ2
v = 2πV2

0I(n1, n2)

I(n1, n2) =



k2−2n1
c − k2−2n1

min

2− 2n1

+ k
2(n2−n1)
c

k2−2n2
max − k2−2n2

c

2− 2n2

if n1 6= 1 ; n2 6= 1

ln

(
kc

kmin

)
+ k

2(n2−n1)
c

k2−2n2
max − k2−2n2

c

2− 2n2

if n1 = 1 ; n2 6= 1

k2−2n1
c − k2−2n1

min

2− 2n1

+ k
2(n2−n1)
c + ln

(
kmax

kc

)
if n1 6= 1 ; n2 = 1

ln

(
kmax

kmin

)
if n1 = 1 ; n2 = 1

(3.18)

With this definition we can write σ2
ω = 2πW2

0I(n1− 1, n2− 1) = 8π3V2
0I(n1− 1, n2− 1). And

now we can relate σv and σω through the equation

σω = 2πσv

√
I(n1 − 1, n2 − 1)

I(n1, n2)
. (3.19)

Equation 3.19 is key to our work since what we actually do is to compute properties of
the circulation field for different functions W(k) and we link its parameters to parameters
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Figure 3.3: Two dimensional maps of vx, vy, and ωz for different values of kc. The velocity
maps are generated using equation 4.8, with n1 = 1 and n2 = 3. From top to bottom kc takes
the values 256/L, 32/L, and 4/L.
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of V(k). We may want to test whether discrete velocity fields are able to reproduce equation
3.19, however discrete fields only have information down to the resolution level. For example,
if we want to compute the dispersion of the vorticity field we have to compute σ2

γ,` from
equation 3.13, with ` equal to the grid size of the discrete field. The same applies to the
velocity field. Therefore, the next step in our tests is to check equation 3.13.

3.1.4. How to compute σ2γ,`

Now that we have already define the basis of GRFs and its application to velocity and
vorticity fields, we continue with the actual application of GRFs to our work. For a given
vorticity map, obtained from V(k), we compute the normalized circulation γ(~r, `) for different
spatial scales `. From these measurements, we compute its variance σ2

γ,` and we compare it
to the values obtained from equation 3.13. We do this for different combinations of n1, n2,
kc and σv. Finally, we have to choose an algorithm to calculate equation 3.13 for a given set
of parameters.

To integrate equation 3.13 we use one of the methods of Montecarlo integration. Given a
function f(x) and a probability density function p(x) we can write the integral of f(x) as

I =

∫
V

f(x)dx =

∫
V

p(x)
f(x)

p(x)
dx = Ep

[
f(x)

p(x)

]
, (3.20)

where Ep[x] is the expected value of x that follows the distribution p(x). Thus, if we choose
random numbers (x1, ..., xN) from the distribution p(x)

I = ĺım
N→∞

1

N

N∑
i=1

f(xi)

p(xi)
. (3.21)

This method is useful for functions that are too steep, replacing f(x) by a flatter function
f(x)/p(x) and sampling values of x more efficiently.

To compute equation 3.13 we choose p(k) = W2(k)k/2πA, where A is a normalization
constant. To draw samples of k from p(k) we need to define the cumulative density distribution
P (k)

P (k) =

∫ k

kmin

p(k′)dk′ =
1

2πA

∫ k

kmin

W2(k′)k′dk′ ; P (kmax) = 1. (3.22)

The normalization of p(k) implies that A =
∫
W(k)d~k = σ2

ω. To obtain a random number
following the distribution p(k) we need to compute k = P−1(ξ), where ξ follows the uniform
distribution U(0, 1). Since W(k) is a broken power law that changes in kc (equation 3.16),
we need to define the point ξc = P (kc) to properly invert P (k). We begin by replacing the
exponents of the power law by m1 = n1 − 1 and m2 = n2 − 1. With these substitutions V(k)
and W(k) have the same form. Now we can use what we have already calculated for V(k) in
equation 3.18.
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For simplicity we start by making some definitions

f1 =
k2−2m1

c

2− 2m1

− k2−2m1
min

2− 2m1

; f2 =
k

2(m2−m1)
c

2− 2m2

[
k2−2m2

max − k2−2m2
c

]
g1 = ln(kc/kmin) ; g2 = k2(m2−m1)

c ln(kmax/kc)

Now we can express A and ξc in terms of f1, f2, g1 and g2

if m1 6= 1 ; m2 6= 1 ; A = f1 + f2 ; ξc = f1/A
if m1 = 1 ; m2 6= 1 ; A = g1 + f2 ; ξc = g1/A
if m1 6= 1 ; m2 = 1 ; A = f1 + g2 ; ξc = f1/A
if m1 = 1 ; m2 = 1 ; A = g1 + g2 ; ξc = g1/A

(3.23)

ξ ≤ ξc ξ > ξc

m1 6= 1;m2 6= 1 k = (k292m1

min + (2 9 2m1)Aξ)
1

292m1 k = (k292m2
c + (2 9 2m2)k

2(m19m2)
c A(ξ 9 ξc))

1
292m2

m1 = 1;m2 6= 1 k = kmin exp (ξA) k = (k292m2
c + (2 9 2m2)k

2(m19m2)
c A(ξ 9 ξc))

1
292m2

m1 6= 1;m2 = 1 k = (k292m1

min + (2 9 2m1)Aξ)
1

292m1 k = kc exp (A(ξ 9 ξc)k
2(m19m2)
c )

m1 = 1;m2 = 1 k = kmin exp (ξA) k = kc exp (A(ξ 9 ξc)k
2(m19m2)
c )

Knowing how to distribute k according to p(k) we can calculate equation 3.13 :

σ2
γ,` =

σ2
ω

π4`4N

N∑
i=1

sin2(πkx,i`) sin2(πky,i`)

k2
x,ik

2
y,i

. (3.24)

We use kx,i = ki cosφi and ky,i = ki sinφi where φi is a random variable with a distribution
U(0, 2π). In the limit ` → 0 we have γ → ω from equation 3.7 and σγ → σω from equation
3.24. Since one of our main parameters is the velocity dispersion σv, we use equation 3.19 to
rewrite equation 3.24 as:

σ2
γ,` = 4π2σ2

v

I(n1 − 1, n2 − 1)

I(n1, n2)

N∑
i=1

sin2(πkx,i`) sin2(πky,i`)

k2
x,ik

2
y,i

. (3.25)

This is the equation we use to compute numerically σ2
γ,` as a function of n1, n2, σv and kc,

where k is sampled from the probability density function p(k).

We now test how well equation 3.25 is able to reproduce the dispersion of γ in a set
of discrete velocity fields with different values for n1, n2 and kc. Since one velocity map is
only one realization of a GRF, we create 40 pairs of velocity maps (vx, vy) for each set of
parameters. For these examples we use the following configurations: the exponents take one
of these three pairs of values (n1 = 1, n2 = 2), (n1 = 1, n2 = 3), and (n1 = 2, n2 = 3), while
kc takes the values (16/L, 45/L, 128/L), where L is the size of the square velocity maps.
We show the comparison between the numerical integration of equation 3.25 and the values
measured in discrete fields in Figure 3.4.

Figure 3.4 shows how our numerical integration of the dispersion of γ, σaγ , nicely follows
the measured dispersion σmγ . Below each plot we show the fractional error of σaγ as a function
of `. We can observe how the uncertainty of σmγ grows with `, and how the error notably
increases when ` > L/4.
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Figure 3.4: Dispersion σγ as a function of scale `. The blue solid line shows the dispersion of
γ obtained from equation 3.25, while the yellow line shows σγ obtained from 40 realizations
of GRFs. From left to right: the exponents (n1, n2) take the values (1,2), (1,3), and (2,3).
From top to bottom: increasing kc with values 16/L, 45/L, and 128/L where L is the spatial
size of the velocity maps.
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3.1.5. Toy Models

Now that we have established how to compute σγ numerically, we create toy models to
show clearly how the parameters of V(k), n1, n2, kc, and σv, affect σγ at different scales `.
We create velocity maps with size L = 1 and resolution L/N , with N = 104. To aid our eyes
to compare the effects of changing parameters we normalize σω = 1. The function V(k) is
defined by equation 4.8.

We show the dispersion in γ` as a function of ` for different combinations of parameters
in Figure 3.5. The dispersion is calculated by the integral 3.25. In the top panel we vary
kmax from 10 to 104, while n1 = n2 = 0 which represents white noise. The parameter kmax

displaces the curve as a function of scale. In the middle panel we vary n1 = n2 = n from
-0.5 to 3.0 while kmin = 1 and kmax = 500 are fixed. Fields with exponents between -0.5 and
1 show similar profiles. There is a notorious degeneracy between curves with low exponents.
Finally, in the bottom panel, we vary kc from kmin to kmax while kmin = 1, kmax = 500, n1=1.0,
n2=2.5 are fixed values. Changing kc has a similar behavior to changing kmax, at least for the
exponents used here.

The next step is to illustrate the differences between the circulation that is originated
from a GRF and the circulation from a circular velocity field. We begin by creating circular
velocity fields that follow

~vrot(R) = RΩ(R)φ̂ ; Ω(R) ∝ (R + r0)−β,

ωrot(R) ∝ (R + r0)−β−1[(2− β)R + 2r0].

Circular velocity fields are computed over a 2000×2000 grid with a size L = 1, and we
choose r0 = 1/2000, i.e. equal to the size of a resolution element. We start by computing
the circulation from the circular velocity fields, γrot, with β ∈ (0, 0.5, 1, 1.5). We show the
16th, 50th and 84th percentiles of the circulation γrot in the top-left panel of Figure 3.6. We
have normalized the values of γrot such that the mean value of γrot equals 1 at the highest
resolution. For solid rotation, β=0, the distribution of γrot is single-valued. For other values
of β, each percentile converges to an specific value at small `. Since Ω(R) is a decreasing
function of R, each percentile corresponds to γrot measured along a unique radius in the field.
It is important to notice that for these models γrot is always positive. Variations at large scale
are due to low sampling, e.g, at ` = L/2 there are only 4 elements.

Now we create different Gaussian random vorticity fields, that can be added to γrot. These
models are described by V(k) in equation 4.8, and its parameters are shown in Table 3.1. From
these random vorticity fields we obtain γnc for each model. We normalize γnc fields such that
their variance σ2

γ = 1 at the highest resolution. Models 1 and 2 show similar distributions as
a function of `. As seen before in Figure 3.6, at low values of the exponent n the distribution
of γnc does not depend strongly on n. Model 3, a single power law from k ∈ [4, 64], lies
close to model 5 which corresponds to a broken power law with kc = 64. The only difference
between these two models is the behavior of V(k) for values of k > 64: for Model 3, at k > 64,
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Figure 3.5: Dispersion of the distribution of γ(~r, `) as a function of spatial scale. Left: The
parameters n1 and n2 are fixed to zero, and kmin = 1. The parameter kmax is varied bet-
ween the values kmax ∈ [10, 102, 103, 104]. Middle: We fix the parameters kmin = 1 and
kmax = 500. The parameters n1 and n2 are equal to n1 = n2 = n, which corresponds
to a function V(k) with a single power-law. The parameter n takes values from the set
[−0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]. Right: The fixed parameters are kmin = 1, kmax = 500,
n1=1.0, n2=2.5. We vary the parameter kc ∈ [1, 2, 10, 50, 100, 200, 300, 500]
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Figure 3.6: Percentiles of γ for coherent galactic rotation, γrot, and for random velocity fields,
γnc and different toy models. Each field has been computed in a 2000× 2000 grid. Left: Solid
lines show median values for γrot as a function of the scale `, while dashed lines correspond
to the 16th and 84th percentiles. Middle: Percentiles of γnc as a function of `, for different
models of Gaussian random fields defined in Table 3.1. Dashed lines show the 16th and 84th
percentiles which correspond to 1σ uncertainties for γnc. Solid lines show the median values
of γnc. Right: Percentiles of toy models for γrot + γnc. The model of γrot has β = 1 for the
four lines. The red and green lines correspond to γrot plus Model 1 and Model 4 respectively.
Yellow and blue lines have the same models for γnc but with twice the magnitude.
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Table 3.1: Toy Models
Model n1 n2 kmin kmax kc

1 0.0 - 4 500 -
2 1.0 - 64 500 -
3 1.0 - 4 64 -
4 1.0 3.0 4 500 16
5 1.0 3.0 4 500 64

V(k) = 0 which is equivalent to n2 = ∞, while for model 5, V(k) ∝ k−3. This shows that
functions V(k) with high values of n2 are similar to single power laws with kmax = kc. The
bottom panel of Figure 3.6 shows the distribution of 4 different composite models using a
velocity field with β = 1.0 plus models 1 and 4 times a factor 1 or 2. Since model 1 changes
mostly at small scales, for most of spatial scales the circulation is given by γrot until the width
of both distributions is comparable. Then, if we increase the magnitude of the random field
the transition where σγrot ∼ σγnc moves to larger scales as shown by the yellow dashed lines in
Figure 3.6. It is important to mention that as we increase the magnitude of the random field
the number of regions with negative circulation, i.e. with retrograde rotation with respect to
the galaxy also increases.
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Chapter 4

Algorithm and Code

In this chapter we explain how we obtained the dynamical information from the simula-
tions, and how this is formations is processed and analyzed to get insights about the nature
of the velocity field at different spatial scales. We also define relevant new physical spatial
scales that define the problem of circulation according to our models.

4.1. The Principle

In this section we describe how we extract information from the normalized circulation
field, γ, defined by equation 3.7. Hereafter, and for simplicity, we will refer to the normalized
circulation simply as the circulation unless explicitly stated.

Let us imagine a two-dimensional fluid with velocity field ~v. We assume that ~v can be
composed by an ordered and smooth circular velocity field, ~vrot, and a non-circular, random
field, ~vnc, i.e. ~v = ~vrot + ~vnc, where

~vrot(R) = vrot(R)φ̂, (4.1)

ω =
vrot(R)

R

(
1 +

∂ ln vrot(R)

∂ lnR

)
. (4.2)

This gets translated into two components of the circulation field γ = γrot + γnc, since

γS =
1

A

∫
∇× ~v · d~S =

1

A

∫
∇× (~vrot + ~vnc) · d~S = γSrot + γSnc. (4.3)

The superscript S means that these values correspond to an specific surface S. Through this
work, these surfaces are defined by square regions of side `, and surface area `2, for different
positions in the (x, y) plane. Then γ is a function γ(x, y, `).

For a fixed scale `, we can measure the probability density distribution (pdf) of γ. The
terms γrot and γnc behave differently as we show now. First, lets see how γrot behaves. The
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circulation γrot(x, y, `) is given by

γrot(x, y, `) =
1

`2

∫ y+ `
2

y− `
2

∫ x+ `
2

x− `
2

ωrot(x
′, y′)dx′dy′ =

∫ `
2

− `
2

∫ `
2

− `
2

ωrot(x 9 x
′, y 9 y′)dx′dy′. (4.4)

We can write ωrot(x 9 x′, y 9 y′) as a Taylor expansion

ωrot(x 9 x
′, y 9 y′) = ωrot(x, y)− ∂ωrot(x, y)

∂x
x′ − ∂ωrot(x, y)

∂x
y′ + ... (4.5)

We assume that ωrot is a smooth function, i.e. high order derivatives go to zero. Replacing
equation 4.5 in equation 4.4 we get

γrot(x, y, `) ≈ ωrot(x, y). (4.6)

This shows that γrot is of the order of ωrot across different scales `. For the field γnc something
different happens. Imagine that we choose a square region of size `× `, and we divide it by
N ×N elements. We can approximate the integral that defines γnc(x, y, `)

γnc(x, y, `) =
1

`2

∫
ωnc(x, y)dS ≈ 1

`2

N2∑
i=1

ωnc,i
`2

N2
=

1

N2

N2∑
i=1

ωnc,i = 〈ωnc〉 (4.7)

If ωnc is a continuous white noise field 〈ωnc〉 = 0. In real fluids, and for discrete velocity
fields, there is a minimum size where the velocity field stops behaving as a random field. But
for sufficiently large regions, large ` and consequently large N , 〈ωnc〉 tends to zero. As we
saw in section 3.1.5, if ωnc is a Gaussian random field, the variance of γnc converges to zero
for high values of `.

From this discussion we can summarize that, at sufficiently large scales `, the contribu-
tion from γnc(`) vanishes and pdf(γ) ' pdf(γrot). On the other end, for small scales ` the
contribution from γnc(`) increases while γrot(`) is about the same order. At small scales, the
distribution of γnc gets broader, while the distribution of γrot converges to ωrot given by equa-
tion 4.1. If the amplitude of pdf(γnc) is sufficiently high, it may occur that at small scales
pdf(γ) is similar to pdf(γnc). We illustrate this point in Figure 4.2.

We create two maps, ωrot(x, y) and ωnc(x, y) with size N ×N = 4000× 4000. For ωrot we
assume a constant circular velocity field vrot = v0, while ωnc is a GRF, such that the Fourier
transform of the velocity field, ṽnc(k), obeys:

ṽnc(k) ∝

 k−3/2 if 8/L ≤ k < 128/L
k−3 if 128/L ≤ k ≤ 1000/L
0 elsewhere

(4.8)

We show both maps, ωrot(x, y) and ωnc(x, y), and their sum in the first row of Figure 4.2. For
discrete maps, ωrot(x, y) = γ(x, y, `) when ` is equal to the resolution of the map. We can see
that, at the level of the resolution of the images (` = L/N), γ ' γnc and the contribution
from γrot is hard to notice. As we increase ` to 125L/N we can start to notice the contribution
of γrot in the center of the map. For a scale ` = 400L/N , γ is clearly dominated by γrot. This
example shows how γ(x, y, `) can transition from γ ' γnc at small scales to γ ' γrot at large
scales.
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Figure 4.1: Circulation maps γrot, γnc and γrot + γnc for three different scales. We generate
γrot assuming a constant velocity field, and γnc is a GRF generated by a broken power law
in Fourier space with n1 = 3/2, n2 = 3, kmin = 8/L, kmax = 1000/L, and kc = 128/L (see
equation 4.8).The maps have a resolution of 4000 × 4000. From left to right, each column
shows maps of γrot(x, y, `), γnc(x, y, `) and γrot(x, y, `) +γnc(x, y, `) respectively. The first row
shows maps with a scale ` = L/N , equal to the resolution of the velocity fields. The middle
and bottom row show maps where ` = 125L/N and ` = 400L/N respectively.
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Figure 4.2: Histogram of circulation maps γrot, γnc and γrot + γnc, shown in Figure 4.1. From
left to right, each panel shows the histograms of γ for ` = L/N , 125L/N , and 400L/N . Blue,
yellow and green lines correspond to γrot, γnc, and γrot + γnc respectively.

4.1.1. The scale at which gas non-circular motions start to dominate

We have just seen an example where the circulation of gas can be dominated by non-
circular or random motions at the smallest scales, and dominated by the large scale velocity
field at large scales. If the amplitude of γnc is high enough, there must be scale ` = λeq at
which γnc and γrot contribute equally to the net circulation γ.

The scale λeq depends on the properties of γrot, and γnc which depend on the local dynamics
of gas. For example, γrot in Figure 4.1 increases towards the center and its effects already can
be seen at intermediate scales. Therefore, for that velocity field, the transition from γ being
dominated by γrot to γnc occurs at smaller scales toward the center of the map. Hence, we
expect λeq to depend on the position in the fluid.

Definition of λeq

Now that we have introduced the notion of the scale λeq, we need to choose a numerical
definition. We start by defining the function fγ(`) =

∑
γ2

nc,`/
∑
γ2

rot,`, that measures the ratio
of the contributions of γrot and γnc. Then, λeq is given by the equation

fγ(λeq) = 1.0 with fγ(`) =

∑
γ2

nc,`∑
γ2

rot,`

(4.9)

We compare their squared values since γ can have negative values. Additionally, comparing
their square values is similar to comparing their total power.

For a random variable x with mean value µx and standard deviation σx, the expected
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value of
∑
x2 is µ2

x + σ2
x. We can rewrite fγ(`) as

fγ(`) =
µ2
γnc(`) + σ2

γnc(`)

µ2
γrot(`) + σ2

γrot(`)
=

σ2
γnc(`)

µ2
γrot(`) + σ2

γrot(`)
(4.10)

where µγnc , µγrot , σγnc , and σγrot , are the mean values and standard deviations of γnc and γrot

as a function of `. For a region with constant ωrot, fγ(λeq) = 1.0 is equivalent to the equation
σγnc(` = λeq) = ωrot.

4.2. Measuring circulation γ and γrot

The aim is then to obtain the three fields, ω, ωrot, and ωnc, from our simulations. We can
compute ω directly from the simulations. To get ωrot we need to choose how to model the
smooth profile of the velocity field (i.e. the rotation curve). Finally, we model the random
component by means of a function in Fourier space on the spatial coordinates. We have to
point out that since we are computing the vorticity field for a discrete grid this field is also
γ at the resolution level.

4.2.1. Two dimensional vorticity field

We calculate ω(x, y) as follows. First we compute the two dimensional velocity field ave-
raging along the z-axis:

~V (x, y) =

∫ z0
−z0 ~v(x, y, z)ρ(x, y, z)dz∫ z0

−z0 ρ(x, y, z)dz
, (4.11)

where ρ is the gas density, ~v = (vx, vy) are the x and y components of the three dimensional
velocity field, and ~V = (Vx, Vy) is the reduced two-dimensional field. We choose z0 = 1 kpc
over the whole galactic plane. Then ω(x, y) is given by

ω(x, y) =
∂Vy(x, y)

∂x
− ∂Vx(x, y)

∂y
. (4.12)

Note that we are considering all the gas in z ∈ [-1kpc,1kpc] to compute the integrated velocity
fields, which is about 20 times the scale height of our simulated galaxies. We are not using
a density threshold to integrate the velocity field. In observations, different tracers do not
necessarily trace all the gas and are biased towards high density regions.

4.2.2. Smooth component

Since the definition of ωrot(R) involves radial derivatives we choose to parameterize ωrot

by an analytic function. To get ωrot we fit a rotation curve of the form

Vrot(R) = v0 arctan(R/R1) exp(−R/R2), (4.13)
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to the circular velocity field, and we apply equation 2.2 to obtain ωrot. The arctan(x) function
provides a good fit to observed rotation curves (Courteau 1997), while the exp(−x) function
recovers the decay of the rotation curve for our simulated galaxies. To fit the function in
equation 4.13, we divide the disk in radial bins of width 500 pc. For each radial bin we have
a pair velocity-uncertainty (vi , δvi), where vi is the median of the circular velocity and δvi
is half of the difference between the 84th and 16th percentiles of the circular velocity field.
Finally, we perform a least-squares optimization to fit the rotation curve. The vorticity of
the field Vrot(R) is

ωrot(R) = v0 exp

(
− R

R2

)[
R1

R2
1 +R2

+ arctan

(
R

R1

)(
1

R
− 1

R2

)]
(4.14)

4.2.3. Differential component

Our main assumption is that we can separate the vorticity and circulation fields as

ω(x, y) = ωrot(x, y) + ωnc(x, y) & γ(x, y, `) = γrot(x, y, `) + γnc(x, y, `), (4.15)

where x, and y are the spatial coordinates of the fields, and ` is the spatial scale at which
circulation is being measured. The next step is to model the difference ∆γ(x, y, `) = γ(x, y, `)9
γrot(x, y, `). We can measure and model γ(x, y, `) and γrot(x, y, `) from the simulations. We
need to choose at which scales we compute both circulations and within what spatial domain.

We use N` = 40 scales, ` ∈ [`1, `2, ..., `N`], within `min and `max. The smallest scale, `min

is equal to the spatial resolution of the simulations ∆x. The maximum scale is chosen to be
`max ≈ 5 kpc. The scales between `min and `min are integers and quasi-logarithmic spaced. This
means that we create logarithmic spaced intervals and we truncate them, skipping repeated
intervals. We also bound the region of interest to a galactic radius of Rmax =15 kpc, and only
within this radius circulation is measured.

4.2.4. Computing γ

Once the vorticity maps ω, and ωrot, from simulations are saved, we compute γ as follows:

1 We go over each cell of vorticity maps that lie within Rmax

2 We split the computation of γ on different processors. Each processor computes γ(x, y, `)
and γrot(x, y, `) for a subset of the points within the domain. We compute and save γ
and γrot separately since it allows us to test different models for γrot.

3 To numerically compute γ(x, y, `) for different scales we do the following.
• Since γ =

∫
ωdS/

∫
dS we can scale the area of each cell to different units. We

choose that the area dA of each element on the vorticity maps equal to 1, dA = 1.
For each point we compute separately the sum Γi ,j =

∑
ωi ,jdSi ,j and Ai ,j =∑

dSi ,j .
• We compute Γ1

i ,j at the point (i , j ) at the resolution level. In this case, Γ1
i ,j = ωi ,j .
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Figure 4.3: Illustration of the computation of γ. In the left panel we show the integrated area
to compute γ centered at the cell (i , j ) with a scale ` = 2∆x. In the right panel, we show in
orange the new area to be integrated to compute γ at the next scale ` = 3∆x.

• We calculate Γni ,j and Ai ,j recursively. For the scale ` = (n + 1)∆x we compute
Γn+1
i ,j = Γni ,j +

∑
bound

ωi ,jdSi ,j and An+1
i ,j = Ani ,j +

∑
bound

dSi ,j , where
∑

bound

is the sum-

mation along the boundary of the region as shown in the right panel of Figure 4.3.
The values of dSi ,j on the corners have values 1/4 or 3/4 when n + 1 is even or
odd respectively. For the rest of the boundaries dSi ,j = 1/2.
• If ` = (n+ 1)∆x ∈ [`1, `2, ..., `N`] we save the values of Γn+1

i ,j and An+1
i ,j .

• We get γi ,j = Γi ,j/Ai ,j . For each coordinate (i , j ), we have an array of circulation
values for different scales

γi ,j = [γi ,j (`1), γi ,j (`2), ..., γi ,j (`N`)]. (4.16)

• We also save the radius Ri ,j of each cell

4.3. The model for γnc

The next step is to define the model of γnc to compare it with the measured difference
γ − γrot. Our model for γnc is a Gaussian random velocity field as described in section 3.1.
The velocity field is defined by a function in Fourier space V(k) which for this thesis is given
by the broken power law:

V(k) ∝


k−n1 if 4/L ≤ k < kc
k−n2 if kc ≤ k ≤ N/4L
0 elsewhere

(4.17)
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where n1 and n2 are the exponents of the power law, L is the physical size of the vorticity
map, N its resolution, and kc is the critical wave number where V(k) breaks. By adding the
constraint of continuity for V(k) at kc, we need a parameter that sets the amplitude V (k)
to fully characterize this function. This parameter is the characteristic velocity dispersion of
the random velocity field.

σ2
0 = 2π

∫ kmax

kmin

V(k)2kdk. (4.18)

To resume, the parameters defining the velocity field that originates γnc are (n1, n2, kc, σ0).

We already now that γrot changes with galactic radius R. We expect that the properties
of γnc also depend on the position on the galactic disk. As a first approximation for our
work, we assume that its properties change with radius R. This is a good approximation for
our simulations since they lack large scale structures that break the axisymmetry. Galaxies,
simulated and observed, with structures like bars and spiral arms, γrot and γnc would have a
significant dependence on the azimuthal angle φ.

We divide the galactic disks on nine radial annuli, 3 kpc wide, centered on 1.5, 3.0, 4.5,
6.0, 7.5, 9.0, 10.5, 12.0, and 13.5 kpc. As mentioned in section 4.2.4, we vary the scale `
from the resolution of the simulations 30 pc to around 5 kpc. Notice that ` can be larger
than the width of a radial annulus. We might argue that within a radial annulus there is
no information of scales larger than the width of the radial bin. However, the function V(k)
has information about the correlation between two points in the velocity field, and within
each radial annulus we can find points separated by distances larger than 3 kpc. The center
of each square region of side ` is inside the 3 kpc annulus but it can cover cells outside the
annulus. Information from neighbor regions will affect the values of the parameters within
each annular region. This might smooth the resulting radial profiles of our model parameters.

In summary, our models for the dynamical fields are:

V (x, y) = Vrot(R) + Vnc(x, y;n1(R), n2(R), kc(R), σ0(R))

ω(x, y) = ωrot(R) + ωnc(x, y;n1(R), n2(R), kc(R), σ0(R))

γ(x, y) = γrot(R) + γnc(x, y;n1(R), n2(R), kc(R), σ0(R)).

4.4. Deriving the parameter distributions

At each radial annuli, we are looking for the parameters n1, n2, kc, and σ0, that best
represent the equation γ = γrot + γnc. However, for a given set of parameters, the field γnc

is a random realization from a parent GRF and is not single-valued. This means that the
expression γ = γrot + γnc has to be looked as the sum of two distributions rather than the
sum of two fields or images. Then, to look for parameters that can model our data we need to
compare γ, γrot, and γnc as distributions. We choose to compare histograms of γ and γrot +γnc

as the final ingredient of our technique.

At each spatial scale ` we compare the distributions of γ and γrot+N (0, σγ) whereN (0, σγ)
is a random field with dispersion σγ. We are in fact, comparing the difference γ and γrot with
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Figure 4.4: Illustration of the propagation of uncertainty for different scales. At the right
we show the closed path used to compute γ with ` = ∆x, consisting on 4 elements. In the
right panel, we show the closed path for a region with ` = N∆x, with N = 3. This path has
4×N = 12 elements.

a normal distribution. Therefore, we compute the histogram of ∆γ = γ − γrot.

To build the histograms and to compare them, we must choose the width of the bins,
∆γ, and the uncertainty, εγ, for each measurement with their propagation in the histogram
bins. For the bin width we choose a conservative criteria: 8 times the bin-width set by the
Freedman-Diaconis rule (Freedman & Diaconis 1981), ∆γ = 16 IQR (γ) N−1/3 where IQR(γ)
is the interquartile range of γ and N is the total number of data points. Freedman-Diaconis
rule attempts to minimize the integrated mean squared difference of the histogram model
and the true underlying density.

For the uncertainty in γ, we set an uncertainty of εv = 1 km/s in the measured velocity
at the resolution of the simulation ∆x (≈ 30 pc) which is comparable with the precision
of recent gas velocity measurements on nearby galaxies (Druard et al. 2014; Caldú-Primo
& Schruba 2016; Koch et al. 2018; Sun et al. 2018). To propagate the uncertainty we use
equation 2.19. For a square region with area ∆x ×∆x, i.e. at the maximum resolution, the
circulation is the sum of the integral along the four faces of the square. This is illustrated in
the left panel of Figure 4.4. For a cell at (i , j ), Γ = (ui ,j− 1

2
+ vi+ 1

2
,j − ui ,j+ 1

2
− vi− 1

2
,j )∆x and

its uncertainty is εΓ =
√

4ε2
v∆x = 2εv∆x. Since γ = Γ/A, its uncertainty is εγ = 2εv/∆x.

A square region of size ` = N∆x is delimited by 4N linear segments, N at each si-
de. Then, Γ is the sum of 4N elements and its uncertainty is 2

√
Nεv∆x, while for γ is

2
√
Nεv∆x/(N∆x)2 = (2εv/∆x)×N−3/2 = εγN

−3/2. The scaling of the uncertainty of γ with
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N is not straightforward if we use equation 2.21. We have to recall that ω is the difference
between two terms. If we add the vorticity of two neighbor cells we are also subtracting the
line integral along the line that both regions share. For that reason, when we compute the
uncertainty in γ for a region with N×N elements, we are adding 4N terms instead of N×N .

The histogram counts of our distributions have Poisson noise, i.e. and uncertainty of√
hj =

√
Nj, where Nj is the number of data points lying in th j-th bin. We also have

to propagate the uncertainties in εγ into the histogram. Let us consider the j-th bin with
endpoints [lj,uj] and a data point with value γi with uncertainty εi . Assuming that γi is the
mean value of a Gaussian random variable with standard deviation εi the probability pij that
this data point lies within [lj,uj] is

pij =
1

2

[
erf

(
uj − γi√

2εi

)
− erf

(
lj − γi√

2εi

)]
, (4.19)

where erf is the error function. Each bin acts like a Bernoulli random variable: we add 1 if
the measurement lies in the bin or zero otherwise, with a probability pij and 1−pij respectively.
The variance for the Bernoulli distribution is pij (1− pij ). Then the total variance in the j-th
bin due to the uncertainties in γ is σ2

hj
=
∑N

i pij (1− pij ).

At this point we have built a histogram distribution of ∆γ = γ − γrot at each scale `. We
fit a Normal distribution N (0, σγ) using the least-squares method. This step creates an array
σγ(`) as a function of ` with its respective uncertainty εσ.

4.5. Markov Chain

Now that we have defined how to compute σγ from simulations, we need to explore the
parameter space θ = (n1, n2, kc, σ0) of the function V(k). Each parameter vector θ defines
a different curve σγnc(`,θ). To find the posterior distributions of θ given our data D, i.e.
P (θ|D) we use the Bayes’ theorem:

P (θ|D) =
P (D|θ)P (θ)

P (D)
. (4.20)

In this equation, P (D|θ) is the the likelihood to obtain D that in our case corresponds to
the array σγ(`). Our likelihood is given by

P (D|θ) =
∏
`

1√
2πεσ

exp

(
−(σγ(`)− σγnc(`,θ))2

2ε2
σ

)
, (4.21)

P (θ) is our prior knowledge of the parameters. We assume uniform prior distributions for
each parameter with n1 ∈ [n1,min, n1,max], n2 ∈ [n2,min, n2,max], kc ∈ [kc,min, kc,max], and σ0 ∈
[σ0,min, σ0,max]. P (D) is the Bayesian evidence of the data which ensures proper normalization.

We can compare different models θ1 and θ2 by comparing their posterior probabilities
given the data:

r =
P (θ2|D)

P (θ1|D)
=
P (D|θ2)P (θ2)

P (D|θ1)P (θ1)
. (4.22)
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To sample the posterior distributions we use Markov Monte Carlo methods. Specifi-
cally we use the Metropolis within Gibbs scheme shown in Algorithm 4.5. The function

Algorithm 1 Metropolis-within-Gibbs Algorithm
Input: Starting point θ0, function f(θ), transition kernel q(y|x)
Output: An array of points θ0,θ1, ...,θN , with θ = (θ1, ..., θd)
1: for t = 1 to N do
2: for i = 1 to d do
3: Generate θi? from qi(θ

i |θ1
t+1, ..., θ

i−1
t+1 , θ

i+1
t , ..., θd

t )

4: Calculate r =
f(θi?|θ1t+1,...,θ

i−1
t+1 ,θ

i+1
t ,...,θdt )

f(θit|θ1t+1,...,θ
i−1
t+1 ,θ

i+1
t ,...,θdt )

qi (θ
i
t|θ1t+1,...,θ

i−1
t+1 ,θ

i+1
t ,...,θdt )

qi (θi?|θ1t+1,...,θ
i−1
t+1 ,θ

i+1
t ,...,θdt )

5: Sample a uniform random variable U
6: if U <r then θit+1 = θi?
7: else θit+1 = θit
8: end for
9: end for

f(θi?|θ1
t+1, ..., θ

i−1
t+1 , θ

i+1
t , ..., θd

t ) is the conditional probability of getting the i -th parameter
equal to θi?, given that the other parameters remain unchanged. For example, if we want
to compare a proposed step to from kc,t to kc,? we need to compare:

r =
P ((n1,t+1, n2,t+1, kc,?, σ0,t)|D)

P ((n1,t+1, n2,t+1, kc,t, σ0,t)|D)

qkc(kc,t|n1,t+1, n2,t+1, σ0,t)

qkc(kc,?|n1,t+1, n2,t+1, σ0,t)
. (4.23)

The function q(y|x) is the transition kernel or proposal distribution that samples the proposed
step from x to y. In this work the transition function is:

q(θ2|θ1) =
4∏
i

1√
2πσθi

exp

(
−(θi ,2 − θi ,1 )2

2σ2
θi

)
. (4.24)

Since q(θ2|θ1) = q(θ1|θ2) the ratio r is reduced to

r =
f(θi?|θ1

t+1, ..., θ
i−1
t+1 , θ

i+1
t , ..., θd

t )

f(θit |θ1
t+1, ..., θ

i−1
t+1 , θ

i+1
t , ..., θd

t )
. (4.25)

We need to choose the values for σθi . To do this we do the following. During the first 1000
steps of the Markov chain, we compute the ratio r using the tempered probabilities:

r =
P (D|θ2)βP (θ2)

P (D|θ1)βP (θ1)
, (4.26)

with β = ((t − 1)/1000)1/2, where t is the number step in the chain. For the first steps of
the chain, r ≈ P (θ2)/P (θ1) and the new points are almost sampling the prior distribution.
As t increases the posterior probability converges to the desired distribution. For t > 1000
we set β = 1. At each step we update the mean µ and standard deviation s values for each
parameter θ using

µt+1 =
tµt + θt+1

t+ 1
(4.27)

s2
t+1 =

t

t+ 1
s2
t +

t

(t+ 1)2
(θt+1 − µt)2. (4.28)
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At the start of the chain we set µ0 = 1
2
(θmin + θmax), s0 = 1

2
(θmax − θmin), and the first step

is draw from the prior distribution.

At each step we set the standard deviations of the transition kernel by σθ,i = 1
2
st,i .

The factor 1
2
has two reasons: (i) the optimal step size for Gaussian posteriors is σjump =

2.38σposterior/d = 0.595σposterior, and (ii) st,i overestimates the standard deviation of the pos-
terior distribution due to the first steps. For this reason, we also add 4000 initial steps to let
σθ,i converge closer to its optimal value. With these steps we get an acceptance rate around
0.2 and 0.3.

We use 72 random walkers that follow this algorithm. Each random walker creates a chain
with 10000 values of θ after the first 5000 that are used for the convergence of the sampling
algorithm. Once we have samples of θ = (n1, n2, kc, σ0) we can reconstruct the PDFs of the
model parameters. These samples also establish the parent distribution of γnc.

4.5.1. Computing σγnc

For one of the steps of this algorithm we need to compute σγnc(`,θ). As discussed in
section 3.1.4, we compute σγnc(`,θ) numerically through equation 3.1.4. Instead of performing
a numerical integration of σγnc(`,θ) at each step of the chain we create a grid of 723 values
in the (n1, n2, kc) space over which we pre-tabulate the integral. The parameter σ0 works as
the normalization of V(k) and can be handled independently. The intervals chosen to create
the grid are n1 ∈ (0.8, 2.5), n2 ∈ (2.0, 20.0), and kc ∈ (2kmin, kmax/2). For n1 and n2 we use
linear spacing while for kc we use a logarithmic spacing to create the grids.
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Chapter 5

Simulations

To test if circulation is a useful tool to find the transition scale between galactic rotation
and non-circular motions, we use hydrodynamical simulations of galactic disks with different
initial conditions. Numerical simulations are an excellent testbed for the study of circulation
since they provide the full velocity field, and allow us to look for observable signatures by
changing different physical parameters, such as rotation or self-gravity.

We create a set of simulated galaxies using the adaptive mesh refinement code Enzo (Bryan
et al. 2014). The simulations are evolved in comoving coordinates in a ΛCDM universe from
a redshift z = 0.2, where we have adopted the values Ωm = 0.3, ΩΛ = 0.7, and H0 =
67 km s−1Mpc−1. We run three simulations in a box of 483.35 kpc with periodic boundary
conditions. For a disk of 50 kpc in diameter, the box size is around ten times larger, that
ensures that the simulated galaxy is not greatly affected by the boundary conditions. The
size of the parent grid is 1283, that corresponds to a coarse resolution of 3.7 kpc. We add 7
levels of refinement that translates in a maximum resolution of 29.5 pc.

We use two criteria to refine a given gas cell, and both criteria have to be fulfilled: refine-
ment by baryon mass and Jeans length.

• Baryon Mass: This refinement criterion refines a cell if the cell baryonic mass mcell is
larger than:

mcell > m0r
αl (5.1)

where m0 is the maximum mass for refinement at the root grid level, r is the refinement
factor, l is the refinement level, and α defines how the mass threshold changes at each
level. For α = 0 this method gives a constant mass threshold for every level. In our
simulations α = 0, and m0 = 8518.58M�.
• Jeans length: In order to prevent artificial fragmentation, we refine gas cells such

that the Jeans length is resolved by a number of cells NJ (Truelove et al. 1998). This
is translated into the following criterion:

∆x

(
πkBT

N2
JGρmH

)1/2

(5.2)

We use NJ = 4 following Truelove et al. (1997).
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During the first 500 Myr, we use only 6 levels of refinement, with an effective resolution
of 59 pc until a quasi-steady state is reached. Then the resolution is increased to 30 pc for
the following 200 Myr. Over 80% of the mass in gas cells is found at the highest resolution.

5.1. Initial conditions

The simulated galaxies are modeled as four-component systems that include gas, stars
particles, a stellar potential and dark matter (DM). In the case of gas, we model it using
grids, while the stellar potential and DM are represented by external potentials. Star particles
form from gas cells and are not added at the beginning of the simulations.

5.1.1. Gas

The gas is initially set as a rotation-supported disk, with an initial density profile described
by an exponential radial profile, and the vertical density initially follows a sech2 profile:

ρgas = ρ0 exp

(
− R

R0

)
sech2

(
z

2z0

)
, (5.3)

where R0 is the disk scale length of 3.5 kpc, and z0 is the disk scale height of 0.4 kpc. The
total gas mass for this profile is

Mgas = 8πz0R
2
0ρ0. (5.4)

5.1.2. Stars

To model the stellar potential we use a Miyamoto-Nagai profile (Miyamoto & Nagai 1975),
which models the stellar disk and bulge of a galaxy. The stellar potential is given by

Φ?(R, z) = − GM?√
R2 + (a+

√
z2 + b2)2

, (5.5)

where M? is the total stellar mass of the field, and a and b are characteristic length scales.
When a = 0, the potential is equivalent to the Plummer’s spherical potential (Plummer
1911). We adopt the values a = 5 kpc and b = 200 pc, which are similar to the fitted values
for the stellar disk of the Milky Way (Kafle et al. 2014).

We add this potential field in Enzo as an acceleration vector field ~a? = aRR̂ + az ẑ, given
by

aR = −∂Φ?

∂R
= − GM?R

(R2 + (a+
√
z2 + b2)2)3/2

(5.6)

az = −∂Φ?

∂z
= − GM?z

(R2 + (a+
√
z2 + b2)2)3/2

a+
√
z2 + b2

√
z2 + b2

. (5.7)
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5.1.3. Dark Matter

The dark matter potential is described by the Navarro-Frenk-White profile (Navarro et al.
1997) given by

ΦNFW (r) =
ρcDM

δc
(r/rs)(1 + r/rs)2

, (5.8)

where rs = r200/cDM is a characteristic radius, ρc = 3H2/8πG is the critical density, cDM is
the concentration parameter, and δc is defined

δc =
200

3

c3
DM

ln(1 + cDM)− cDM/(1 + cDM)
. (5.9)

The characteristic radius r200 corresponds to the volume at which the mean density within
r200 is 200 time the critical density, i.e.

M200 = 200ρc
4π

3
r3

200. (5.10)

We adopt a value cDM = 21 for M200 = 8× 1011M� and cDM = 26.45 for M200 = 4× 1011M�.
The values for the initial conditions of our simulations are summarized in Table 5.1. In our
nomenclature G stands for the amount of gas and E for the relative magnitude of the external
potential.

Table 5.1: Simulation parameters
Run Mgas M? M200

M� M� M�
G2E1 2× 1010 1× 1011 8× 1011

G1E1 1× 1010 1× 1011 8× 1011

G1E0.5 1× 1010 5× 1010 4× 1011

5.2. Radiative cooling

An accurate treatment of the cooling produced by the metal content requires taking into
account several transitions and chemical reactions, which translates in a higher consumption
of computational resources. Most metal cooling methods rely on assumptions on the subgrid
physics in order balance accuracy and speed. For this reason, we employ the simplest cooling
method available in Enzo, that consists in using the analytic cooling function of Sarazin &
White (1987), which assumes a fully ionized gas with a constant metallicity of 0.5Z�. This
allow the gas to radiative cool down to 104 K. We add the cooling curves defined in Rosen
& Bregman (1995) to cool the gas down to 300 K, that assume a fully ionized gas of solar
metallicity. This imposes a minimum value for the Jeans scale λJ . For a surface density of
10M�pc−2 and a temperature T = 300 K, λJ is of the order of 100 pc. This means that
overdensities in our simulations are more representative of HI clouds.
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5.3. Star formation

Our recipe of star formation follows the Cen & Ostriker (1992) algorithm, which assumes
that stars are formed in overdense, converging and gravitationally unstable regions of gas.
In order to create a star particle from a gas cell, the following criteria must be fulfilled: (i)
the number density n exceeds a density threshold nthres, (ii) the velocity flow is converging
(collapse), (iii) the cooling time is shorter than the local free-fall time, (iv) the gas mass in
the cell is greater than the Jeans mass, and (v) the resulting particle has at least a mass
mmin. These criteria are numerically given by

ncell > nthres = 100cm−3 (5.11)
∇ · ~v < 0 (5.12)

tcool < tdyn ≡
√

3π

Gρ
(5.13)

mcell > mJ ≡
4π

3

(
λJ
2

)3

(5.14)

m? > mmin. (5.15)

If these criteria are satisfied a star particle is formed with a mass equal to m? =εSF mcell,
where εSF is the numerical star formation efficiency. We adopt the value εSF= 0.1.

5.4. Stellar Feedback

We include stellar feedback that can be divided in two groups: (i) early stellar feedback
in the form of radiation and stellar winds, (ii) and late feedback given by SNe explosions.
SNe feedback alone is not able to regulate star formation in galaxies (Girichidis et al. 2016)
and fails to reproduce some galactic properties (Hopkins et al. 2014). Early stellar feedback
is relevant since it can disperse clouds before the explosions of the first supernova (Murray
et al. 2010; Walch et al. 2012), and reduces the ambient density in which supernovae explode
(Kannan et al. 2020). To compute the energy or momentum injection as a function of time,
for each type of stellar feedback, we use tabulated results from STARBURST99 (Leitherer
et al. 1999) assuming a Kroupa IMF, solar metallicity, and instantaneous star formation.

5.4.1. HII Regions

Young massive stars emit significant amounts of ionizing radiation during their first Myr
after formation. This radiation can create bubbles ionized gas with temperatures around 104

K, HII regions, reducing the star formation rate near newborn stars. This type of feedback is
important since it provides an early source of heating that can halt the gravitational collapse
of gas. Photo-heating and ionization in simulations also shows to result in simulated galaxies
more similar to observed galaxies (Stinson et al. 2013).
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Figure 5.1: Number of ionizing photons as a function of time. The solid blue line shows
the number of ionizing photons per second from the tabulated data of STARBURST99. The
orange solid line shows the analytic function given by the equation 5.17 .

The size of HII regions, assuming full ionization within them, can be estimated by the
Strömgren radius that is given by the equation:

RS =

(
3S

4παBn3

)1/3

, (5.16)

where RS is the radius of the Strömgren sphere, S is the number of ionizing photons per time
unit, αB = 2.6−13cm3 s−1 is the Case B recombination rate of hydrogen at a temperature
T = 104 K, and n is the number density of gas. To compute RS in simulations we use
an analytic approximation of S, according to the results of STARBURST99. The analytic
function of S is

S = 5× 1046sech

(
t2

t20

)
s−1 ; t0 = 2.6726 Myr, (5.17)

where t is the age of a stellar particle in the simulation. We show the curve from STAR-
BURST99 and the analytic function of S in Figure 5.1.

To add the energy budget of HII regions, we follow the approach of Goldbaum et al. (2016).
At each time step, we compute RS around young stars with an age lower than 10 Myr. Next,
we compare the volume of the Strömgren sphere, VS = 4πR3

S/3, with the volume of the cell
where the star particle resides, Vc = ∆x3, where ∆x is the size of the cell. If VS > Vc, the
cell is heated to a temperature of 104 K. If VS < Vc and the cell’s temperature is lower than
104 K we correct the energy input by VS/Vc. This means that, if an energy ∆E is needed to
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heat the gas to 104 K, we add ∆E×VS/Vc instead. By doing this we ensure that HII regions
always increase the thermal energy of gas. If 2Vc > VS > Vc we increase the temperature of
neighbor cells in the same way.

5.4.2. Stellar Winds and Radiation Pressure

The radiation from young massive stars not only can ionize gas but it can also change
the momentum of the neighboring gas (Agertz et al. 2013; Marinacci et al. 2019). This early
type of feedback is often claimed to drive strong outflows, drive turbulence and cause the
destruction of star-forming clouds before the explosions of the first supernovae (Matzner
2002; Agertz et al. 2013). If Lbol(t) is the bolometric luminosity of a stellar population, the
momentum injection rate is given by:

ṗrad = (1 + e−τUV + τIR)
Lbol(t)

c
. (5.18)

The term (1 + e−τUV ) represents the absorption and scattering of UV light. For the UV
opacities found in star forming regions (1 + e−τUV ) ≈ 1. The last term, τIR takes into account
multiple scattering of IR photons by dust grains. For our simulations, and assuming an IR
opacity if κIR = 10 cm2g−1, the optical depth of IR radiation is usually τIR ' 0.2. We do not
consider the scattering of IR photons and we set τIR = 0.

The rate momentum injection is then given by Lbol/c. We get Lbol from tabulated results
of STARBURST99. To compute the momentum injection, first we calculate the cumulati-
ve bolometric energy Ebol(t) =

∫ t
0
Lbol(t

′)dt′. We also approximate Ebol(t) by an analytic
function. The cumulative energy for a stellar population as a function of time is given by

Ebol(t) = ηbol
M?

M�
Ē(t)M�c

2, (5.19)

where ηbol = 4.98× 10−4, and Ē(t) is a dimensionless function given by

Ē(t) =
1

3

(
tanh

(
t

t0

)
+ 2 tanh

(
t

t1

))
, (5.20)

where t0 = 27 Myr, and t1 = 4.9 Myr. We show our analytic approximation of Ebol(t) and
the tabulated values of STARBURST99 in Figure 5.2.

Stars can also add momentum to the surrounding gas through stellar winds. Stellar winds
also help to disperse dense gas clouds from which stars are born (Marinacci et al. 2019).
To account this source of feedback we use the tabulated calculations of STARBURST99
of the cumulative momentum as a function of time from stellar winds. We approximate
the momentum injection by an analytic function. A star particle with mass M? injects a
momentum pwind(t) given by:

pwind(t) = ηwind
M?

M�
p̄(t)M�c, (5.21)
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Figure 5.2: Normalized bolometric cumulative energy of a stellar population. The blue line
shows the normalized integral of bolometric luminosity for a stellar population according to
STARBURST99 calculations. The orange line shows the analytic approximation in equation
5.20.

where ηwind = 2.57× 10−4, and p̄(t) is a dimensionless function given by

p̄(t) =
1

3

(
1 + tanh

(
t− t0
t1

)
+ tanh

(
t

t2

))
, (5.22)

where t0 = 3.12 Myr, t1 = 1.29 Myr, and t2 = 4.46 Myr. The total momentum input from
a stellar population is ηwindM�c per solar mass, and p̄(t) is a function that goes from 0 to
1. In the simulations, for a given time interval [t, t + ∆t] we inject a momentum ∆pwind =
pwind(t+∆t)− pwind(t). We split this momentum among the nearest six cells to the cell where
the star resides in. We show our analytic approximation of pwind(t) and the tabulated values
of STARBURST99 in Figure 5.3.

Since the momentum from stellar winds and radiation is added for one stellar particle at
a time, there is some cancellation of the injected momentum for groups of stellar particles
separated by one cell (Hopkins & Grudić 2019).

5.4.3. Supernova II explosions

SN feedback plays an important role regulating star formation and shaping the structure of
the ISM (Agertz et al. 2013; Hopkins et al. 2014). Supernovae deposit energy, momentum and
metals into the ISM. In this work, we implement SN feedback by changing the thermal energy
of gas cells directly where stellar particles reside. We calculate the rate of energy injection
using the tabulated information in STARBURST99. We show in Figure 5.4 the energy rate
or luminosity, and the cumulative energy desposited by SN explosions for a stellar population
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Figure 5.3: Normalized momentum input of a stellar population. The blue line shows the
normalized integral of the rate of momentum injection for a stellar population according to
STARBURST99 calculations. The orange line shows the analytic approximation in equation
5.22.

of 106M�. Similar to the other feedback recipes, we use an analytic function to compute the
amount of energy to be deposited in gas cells. The rate of energy injection is given by

ĖSN(t) =



0 t ≤ 3.21 Myr

L0 + L1 sech2

(
t− t1
t0

)
3.21 Myr < t ≤ 10.768 Myr

L2

(
t

t0

)δ
10.768 Myr < t < 38.2 Myr

0 38.2 Myr ≤ t

(5.23)

where L0 = 1.72 × 1040erg/s, L1 = 2.69 × 1038erg/s, L2 = 1.41 × 1040, t0 = 8.30 Myr,
t1 = 5.55 Myr, and δ = −0.593. This analytic function is illustrated by the dash-dotted
lines in Figure 5.4. Equation 5.23 has errors below 4% compared to the tabulated results of
STARBURST99. For a time step ∆t we deposit an energy

ESN = ηSNĖSN(t?)

(
M?

106M�

)
∆t, (5.24)

where M? is the particle mass, t? the stellar particle age, and ηSN is a factor to change the
amount of energy deposited per stellar mass.

5.5. Additional Simulations

We run a second set of simulations using only supernovae feedback to explore the effects
of changing the feedback prescription. This second set has a higher density threshold of
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Figure 5.4: Supernova Feedback: Energy rate or luminosity, and the cumulative energy des-
posited by SN explosions for a stellar population of 106M�. The blue and yellow solid lines
represent tabulated results from STARBURST99 (Leitherer et al. 1999) assuming a Kroupa
IMF, solar metallicity, and instantaneous star formation. Dashed orange and purple lines
correspond to the analytic approximation in equation 5.23.
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2800 cm−3, necessary to match the Kennicutt-Schmidt relation (Kennicutt 1998). Except
from the expected decrease in the magnitude of non-circular motions due to the injection of
less energy on small scales, most of the conclusions from the previous set of simulations hold
also for these simulations.
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Chapter 6

Results

6.1. Disk structure

We begin by checking the structure of our simulated galaxies at t = 700 Myr. In Figure
6.1 we show projections of the gas density field across the z-axis. These maps have a spatial
dimension of (50 kpc)2. Our galaxies show a flocculent structure and do not present grand
design spiral patterns or bars. Near the galactic center, we see clumps with different sizes for
each simulation, particularly larger clumps for G2E1 which show signs of tidal interactions.
Structures in G1E0.5 appear to be less affected by shear due to the lower magnitude of its
rotation curve. Structures in G1E0.5 appear to be more decoupled from galactic rotation
in comparison to G2E1 and G1E1. The dashed white circle of 15 kpc radius in Figure 6.1
shows the outer edge of the outermost radial annulus where we measure the circulation of
gas. When we measure the circulation within square regions of size 5 kpc, and centered on
a point at radius 15 kpc, we include points that are up to a distance of 18.54 kpc from the
galactic center. We show a 18.54 kpc radius dotted circle for illustrative purposes in Figure
6.1.

The middle panel of Figure 6.1 shows the surface density of the stellar particles formed
in the course of the simulation. The stellar distributions show no clear sign of spiral struc-
tures. On the other hand, all the simulations show large stellar clusters. G2E1 shows the
largest stellar cluster at the center of this galaxy. On the other extreme, G1E1 has a stellar
distribution that is more homogeneous, but it does not have a large radial extension.

In the bottom panel of Figure 6.1 we show the face-on projection of the temperature field
weighted by density. This map is computed as:

T (x, y) =

∫
ρ(x, y, z)T (x, y, z)/

∫
ρ(x, y, z)dz. (6.1)

We can see that regions of low density adjacent to high density regions show temperatures
up to 107K produced by stellar feedback. If we zoom-in we can see the effects of the recipe
for HII regions. Figure 6.2 shows the temperature map at the center of each galaxy. We can
clearly see small points of high temperature within the knots and filaments of high density.
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Figure 6.1: Face-on projections of simulated galaxies at t = 700 Myr of size (50 kpc)2. From
left to right we show the projections for G2E1, G1E1, and G1E0.5. Top: Gas surface density
map. Dashed white circles delimit the region inside 15 kpc which corresponds to the maximum
radius of the defined annuli. The dotted line shows the maximum radius of the cells that
are included in the analysis of circulation, which corresponds to 18.54 kpc. Middle: Surface
density of stellar particles formed in the simulations. Bottom: Density weighted projection of
the temperature field.
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Figure 6.2: Temperature maps of size (5 kpc)2

Figure 6.3: 2D Phase plots of temperature and density of gas. The plots correspond to runs
G2E1, G1E1, G1E0.5 from left to right. Colors represent the total mass in cells with the
respective values of T and ρ. The black dashed line represent a curve of constant pressure
P ∝ ρT .
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In Figure 6.3 shows T − ρ phase diagrams of the ISM. These diagrams shows that we are
not resolving the cold ISM due to the temperature floor at 300 K. Instead of giant molecular
clouds, the overdensities in these simulations represent HI clouds. Most of the mass is in the
cold phase of the ISM. Regions with temperatures below 300 K correspond to expanding
regions that cool adiabatically. The gas also follows paths of constant pressure P ∝ ρT
illustrated by the black dashed line in Figure 6.3.

Another important diagnostic of dynamics for galactic disks is the Toomre parameter Q
(Toomre 1964). The classical Toomre parameter is Q = κcs/πGΣ with cs the sound speed, κ
the epicyclic frequency, and Σ the gas surface density. Variations of this parameter include the
effects of the total velocity dispersion of gas σv, with Q = κσv/πGΣ. However, for turbulent
fields σv its itself a function of k (Romeo et al. 2010) while cs is not. Other approaches include
the effect of stars, and disk thickness in the stability of disks. In particular Romeo & Falstad
(2013) define the Toomre parameter for a multi-component disk as

1

QN

=
N∑
i=1

Wi

TiQi

, (6.2)

where Qi = κσi/πGΣi is the Toomre parameter of the i -th component, σi is the radial
velocity dispersion, Ti is the thickness correction given by

T ≈

 1 + 0.6
(
σz
σR

)2

for 0 ≤ σz/σR < 0.5

0.8 + 0.7
(
σz
σR

)
for 0 ≤ σz/σR < 0.5

(6.3)

and Wi are the weights

Wi =
2σmσi
σ2
m + σ2

i

, (6.4)

where the index m denotes the component with smallest Q : Qm = min{Qi}. Figure 6.4
shows the profiles of the Toomre parameter for gas, stars, and the multi-component version
of Romeo & Falstad (2013). To compute these profiles and their errorbars we use the data
of the following 30 Myr. We see that Qgas shows high values compared to Qstars. The blue
line shows the multi-component Toomre parameter which lies close to Qstar. This shows that
stars keep the disk near marginal stability, i.e. Q ≈ 1. Except for G1E0.5, we don’t see a
clear radial trend for Q. Li et al. (2005) suggested that the efficiency of star formation may
be controlled by the Q parameter. However, Q does not show the behaviour of εSF.

6.2. Star formation

We need to test whether our recipes of star formation and stellar feedback produce a
realistic rate of star formation. The most common benchmark is the Kennicutt-Schmidt
relation (Kennicutt 1989). Observations show that at first order, the star formation per unit
area, ΣSFR, in galaxies can be parameterized by

ΣSFR ∝ ΣN
gas, (6.5)
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Figure 6.4: Radial profiles of the Q Toomre parameter for each run. Yellow lines show
the Toomre parameter for the gaseous component, while the purple line shows the Toomre
parameter of the stellar component. The blue line shows the effective Toomre parameter as
defined by (Romeo & Falstad 2013).

where Σgas is the gas surface density, and N is the exponent of the power law. Kennicutt
(1989) found empirically an index of 1.4, that has been proposed to come from the ratio
between Σgas and the free-fall time tff . In Figure 6.5 we show the ΣSFR − Σgas plot for our
galaxies at t = 700 Myr.

To compute Σgas and ΣSFR we divide the disk of each galaxy in annulus with a width of
500 pc, and we consider the gas and particles within 1000 pc from the midplane in the vertical
axis. We consider all the gas inside these annular regions. To compute the star formation rate
we consider stars formed in the last 10 Myr. We show Σgas and ΣSFR for each one of these
regions as circles in the left panel of Figure 6.5.

For comparison with observational studies, we show as shaded regions the regimes of
normal and starburst galaxies defined by Daddi et al. (2010). These two sequences follow
a relation ΣSFR ∝ Σ1.42

gas . The star formation across the galactic disks of our galaxies falls
in the sequence of normal disk galaxies. In table 6.1 we show the fits to the star formation
relations. All the simulations show an exponent lower than 1.5. Comparing each run, G2E1
and G1E0.5 show higher ΣSFR for a given Σgas. G2E1 has the highest gas content and a
similar gas fraction compared to G1E0.5. It is noteworthy that, although G1E0.5 and G1E1
have the same initial gas content, G1E0.5 is consistently forming stars at a higher rate. This
result agrees with the work of Utreras et al. (2016) that found that the efficiency of star
formation is anti-correlated with the degree of galactic rotation. G1E0.5 has a lower rotation
compared to G1E1, about 1.4 times lower.

We also compare our results with the star formation relation proposed by Escala (2015),
given by:

ΣSFR =εSF

√
G

L
Σ3/2

gas , (6.6)
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Table 6.1: Star formation relations
log10 ΣSFR ∝ N log10 Σgas + C log10 ΣSFR ∝ N log10 Σ

3
2
gas

√
G
H

+ C

Run N C N C
G2E1 1.28± 0.18 −3.53± 0.24 1.01± 0.14 −1.80± 0.06
G1E1 1.41± 0.06 −3.84± 0.09 0.84± 0.04 −2.01± 0.02
G1E0.5 1.31± 0.08 −3.48± 0.11 0.81± 0.05 −1.86± 0.02

Figure 6.5: Star formation relations. Left : ΣSFR vs Σgas. Yellow, blue and purple circles
represent runs G2E1, G1E1, and G1E0.5 respectively. The blue shaded region corresponds
to the normal sequence of star formation as defined by Daddi et al. (2010), whereas the
orange shaded region corresponds to the sequence of starburst galaxies. Right : ΣSFR vs
(GΣgas/H)1/2. The black dashed line represents a relation ΣSFR =εSF (GΣgas/H)1/2.

where L represents a characteristic length scale of the system, and εSF is the dimensionless
efficiency of star formation. This relation is motivated by dimensional analysis, that states
that only quantities with the same dimensions can be compared. In equation 6.6, the star
formation efficiency εSF is likely to be related with the dynamics inside molecular clouds
through dimensionless quantities, which have been found and tested in simulations (Padoan
et al. 2012; Semenov et al. 2016).

We assume that L is the scale height H. To compute H we divide each annulus in subre-
gions with at least 200 cells. On each of these regions we compute Hi as

Hi =
√
〈z2〉 − 〈z〉2 & 〈zn〉 =

∑
mjz

n
j∑

mj

. (6.7)

Then, for each annulus we have a distribution of values Hi . We take the median as the
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representative value of the scale height H. We do this to reduce the effect of possible bending
modes in the galactic disks, which can spuriously increase the values of H. We plot equation
6.6 in the right panel of Figure 6.5. The black dashed line in Figure 6.6 illustrates a linear
relation (exponent equal to one). We fit power law relations to these values, and the results
are displayed in table 6.1. We see that adding the effect of the scale height splits the points
of G2E1 from the others, showing a higher star formation rate for the same conditions of gas
content and self gravity.

Figure 6.6: Dimensionless efficiency of star formation εSF vs galactocentric radius. Yellow,
blue and purple lines represent runs G2E1, G1E1, and G1E0.5 respectively.

There is also a consistent trend: at higher gas surface densities the efficiency of star
formation decreases. Since the Σgas increases towards the center of galaxies, this trend can be
seen as the variation of the efficiency versus the galactic radius. We plot εSF versus radius in
Figure 6.6. For our simulations the efficiency increases with galactocentric radius. Although
the galactic center has a higher gas content it shows a lower efficiency. Since there is a clear
trend, there must be a secondary parameter controlling the εSF.

In simulations of galactic disks, Utreras et al. (2016) found εSF∝ exp(−1.9Ωtff), where Ω
is the angular velocity and tff is the initial free-fall time. To compute εSF Utreras et al. (2016)
consider entire galaxies as a single region of star formation. Here, to estimate the rotation of
each annular region we compute the vorticity ωrot coming from the galactic circular velocity.
To compute the free-fall time we use

tff ≈
1√
Gρ
≈
√

H

GΣ
(6.8)
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Figure 6.7: Dimensionless efficiency of star formation εSF vs galactocentric radius. Yellow,
blue and purple lines represent runs G2E1, G1E1, and G1E0.5 respectively.

64



Figure 6.8: Profiles of rotational velocities and large scale vorticity. Left: Radial profiles
of the circular velocity vrot, which are used to compute the large scale vorticity component
ωrot. Solid lines show the median values of the rotation curve. Shaded regions represent 1σ
uncertainties due to variations in the velocity field. The analytic models of the rotation curves
are shown as the dashed lines. Right: Radial profiles of vorticity ωrot(R). The solid and dashed
lines correspond to the median values and the analytic models respectively. The gray dotted
line shows a function proportional to exp(−R/5kpc) for comparison.

We plot εSF versus ωrot

√
H
GΣ

in the top panel of Figure 6.7. We see that there is an apparent
trend between these two quantities although the scatter of G2E1 is large to make any con-
clusion. We have assumed that there is a balance between rotation in the plane, ωrot and the
vertical strength of gravity. We can relax that assumption by taking H = 100 pc if we con-
sider it as the typical size of clouds or if the vertical self-gravity is limited by our resolution.
Using H = 100 pc, εSF appears to be better correlated to ωrot

√
H
GΣ

. This could indicate that
we are witnessing the effects of rotation in the efficiency of star formation. However, as we
see in Figure 6.6, the efficiency is correlated with radius, hence any parameter that increases
or decreases with radius will show a correlation with the efficiency of star formation.

6.3. Vorticity

We show the rotation curves vrot(R) of each run in the left panel of Figure 6.8. The
shaded regions show the variations in the tangential velocity field. Analytic rotation curves
are obtained by fitting equation

Vrot(R) = V0arctan(R/R1) exp(−R/R2) (6.9)

to the velocity field. We show the fitted functions as dashed lines in Figure 6.8. In the right
panel of Figure 6.8 we also show the resulting vorticity ωrot(R). We see that the vorticity
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coming from galactic rotation, ωrot(R), decreases as we get far from the galactic center. This
also implies that the circulation γrot decreases as a function of radius. If the parameters
that define the turbulent velocity field remain constant across the galactic disk, the relative
contribution from γrot to the total circulation γ would decrease with galactocentric radius. In
that scenario, the scale at which gas dynamics transitions from being dominated by galactic
rotation to being dominated by non-circular motions, i.e. λeq, increases with galactocentric
radius since at large radii the vorticity produced by galactic rotation is smaller.

In Figure 6.9 we show the maps of the vorticity fields ωrot, ω, and their difference ω−ωrot.
In the top panels we see the smooth component ωrot. In the middle panels we show the
vorticity field of the two dimensional velocity field defined in section 4.2.1. We can see that
towards the center of galaxies, the vorticity takes more positive values. This claim is more
evident once we subtract ωrot to ω. This resulting field is shown in the bottom panel of 6.9.
We can see that the vorticity field has a non-ordered component with structures growing in
size at large radii.

6.4. Model parameters

We have assumed that the velocity field can be decomposed as the sum of two fields
vrot and vnc, where vnc is the non-circular component modeled as a GRF. The non-circular
component is modeled by the function V(k) in Fourier space which takes the parameters n1,
n2, λc, and σ0 to characterize the velocity field for different annuli.

In Figure 6.10 we show the probability distributions of n1, n2, λc, and σ0, where λc = 1/kc
corresponds to the characteristic scale of the model V(k). Keep in mind that, given the shape
of the chosen function V(k), the parameters n1, n2, and λc are correlated parameters. Runs
G2E1 and G1E1 show variations of n1 between 1.0 and 1.9. The distribution of λc ranges
from its minimum value ∼ 240 pc to 1.1 kpc. In the annulus of G1E1 centered at 4.5 kpc λc
is unresolved. The parameter σ0 shows narrow distributions. G2E1, the most massive galaxy,
shows values of σ0 above 30 km s−1 at all radii. The distribution of n2 gets flat for values
over 5. The model is not sensitive to variations of n2 over n2 = 5. Equation 3.6 shows the
contribution from each scale ` and the amplitude of the vorticity field through an integral of
V(k). As the values of n2 increases, the contribution from k > kc to the vorticity field starts
to get smaller. This suggests that the function V(k) can be approximated as a single power
law with a cut at kc, i.e. V(k > kc) = 0. This is shown later in section 6.10.

We show in Figures 6.11 to 6.15 detailed distributions for each galaxy in different regions.
The diagonal plots show the marginalized distributions for each parameter. The off-diagonal
plots on each Figure show two-dimensional histograms of the model parameters which help to
visualize the correlation between them. We can see a negative correlation between λc and n1,
and also between λc and n2 for low values of n2. In Figure 6.11 we see that the distribution
of n2 peaks close to the lower limit imposed by our prior. This is also true for the annular
regions 3-6 kpc in G2E1, 0-3 kpc in G1E1, and 3-6 kpc in G1E0.5. In these figures is notorious
how the correlation between λc and n2 disappears for n2 > 5. As mentioned before this is
consistent with a single power law with a cut at kc which corresponds to the limit n2 →∞.
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Figure 6.9: Vorticity maps of simulated galaxies for a region of 40 kpc x 40kpc. Top: Maps
of the smooth component ωrot. Middle: Maps of the measured vorticity ω. Bottom Maps of
the difference between ω and ωrot.
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Figure 6.10: Posterior distributions of model parameters. From top to bottom we plot the
distributions for each of the three simulations. From left to right we show normalized dis-
tributions of n1, n2,λc = 1/kc, and σ0. The distribution for each annulus is shown with a
characteristic color, going from purple to yellow with increasing galactocentric radius. The
vertical black dashed line in the distributions for λc corresponds to eight times the resolution
of the simulations, the minimum allowed value for λc.
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Figure 6.11: Distributions of parameters n1, n2, λc = 1/kc, and σ0 for run G2E1, in the radial
annulus [1.5 kpc - 4.5 kpc]. Purple histograms in the diagonal show the marginal posterior
distributions for n1, n2, λc = 1/kc, and σ0 in descending order. Off-diagonal plots show two-
dimensional histograms of the model parameters. White contours show the 68%, 95%, and
99.7% confidence intervals.

Figures 6.11, 6.14, and 6.15 show the distributions for each run at the same location on the
galactic disk, between 6 and 9 kpc from the center. The three runs show the same behaviors
in their distributions.

For an easier comparison between the parameters of each galaxy we create their correspon-
ding radial profiles. Radial variations of the parameters are summarized in Figure 6.16. If we
look at the first and second panels of Figure 6.16 we can see that n1 and λc are anti-correlated
for runs G2E1 and G1E1. This is also true for G1E0.5 but is not noticeable in Figure 6.16.
G1E1 and G1E0.5 show similar values of σ0 at large galactocentric radius besides having
different rotation curves. They also show similar profiles of λc at large radii. Their profiles
of σ0 have large magnitudes compared to the velocity dispersion profiles measured in nearby
galaxies from CO emission lines (Sun et al. 2018). For velocity dispersions derived from HI in
Mogotsi et al. (2016) our profiles are also higher. However, derived velocity dispersion profiles
in Romeo & Mogotsi (2017) for some nearby galaxies show similar magnitudes, reaching up
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Figure 6.12: Distributions of parameters n1, n2, λc = 1/kc, and σ0 for run G2E1, in the
radial annulus [6 kpc - 9 kpc].

70



Figure 6.13: Distributions of parameters n1, n2, λc = 1/kc, and σ0 for run G2E1, in the radial
annulus [10.5 kpc - 13.5 kpc].
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Figure 6.14: Distributions of parameters n1, n2, λc = 1/kc, and σ0 for run G1E1, in the radial
annulus [6 kpc - 9 kpc].
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Figure 6.15: Distributions of parameters n1, n2, λc = 1/kc, and σ0 for run G1E0.5, in the
radial annulus [6 kpc - 9 kpc].
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Figure 6.16: Radial profiles of the median values of the model parameters n1, λc = 1/kc, σ0

and λeq. Yellow, purple and blue colors represent runs G2E1, G1E1, and G1E0.5 respectively.
Error bars represent the 16th - 84th percentile interval for each parameter.

to 50 km s−1 in HI and CO. In our model, σ0 considers the velocity dispersion of the whole
annular region, with velocities measured at the maximum resolution and without a density
cut. Then, σ0 has not to be understood as the average velocity dispersion for clouds in an
annular region. In addition, σ0 sets the amplitude for each component of the velocity field.
Therefore we expect that the velocity dispersion of our model is a factor 1.4 higher.

Let us discuss the behaviour of the exponents n1 and n2. The exponent n1 shows how
the circulation is distributed on larges scales down to the scale λc = 1/kc. Beyond kc, i.e. at
scales smaller than λc, the function V(k) drops quickly showing values of n2 with no apparent
upper limits. As we will see in section 6.10, we get the similar results if V(k) = 0 for scales
larger than λc.

We have to point out that spatial correlations in the non-circular field are given by V(k),
and GRFs have coherent substructures unlike white noise fields. The scale λc could be sho-
wing the size of the coherent structures in the velocity field (Musacchio & Boffetta 2017).
Coherent structures are long lived structures that can be identified in the vorticity field
(Ruppert-Felsot et al. 2005) which transport mass and energy accross different scales. For
scales smaller than the size of these structures, i.e. k > kc, the function V(k) decays quickly,
meaning that there is little information about the circulation field. One interpretation is that
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circulation or rotation is transferred from large scales down to the scale λc. Below the scale
λc the redistribution of circulation from large scales stops and the distribution of γ starts to
converge. At these scales, the solenoidal component of the velocity field starts to show cohe-
rent structures that are decoupled from the random behavior of the non-circular component.
An observational example of this scale might be found in Rosolowsky et al. (2003), where
the velocity gradients of massive of clouds within regions 500 pc are preferentially aligned.
In other words, Rosolowsky et al. (2003) showed an observational correlation in the velocity
field for scales smaller than 500 pc, which is similar to the values we find for λc.

6.5. Scales at which gas dynamics transitions from galac-
tic rotation to non-circular motions

Now that we have obtained the distribution of the parameter we can start to answer the
main question we are attempting to answer. What is the role of galactic rotation on small
scales? We want to know down to what scales galactic rotation still dominates the dynamics
of gas, or even molecular clouds. In our framework, this information is encapsulated in the
scale λeq, the scale at which the contributions to the circulation field from galactic rotation
and non-circular motions are roughly the same.

The right bottom panel of Figure 6.16 shows the radial profiles of λeq. Within 8 kpc
from the galactic center, λeq increases with galactocentric radius, and varies between the
resolution limit of 30 pc to 3 kpc. This shows that, as we get farther from the galactic center,
gas dynamics at the scale of clouds is predominantly dominated by non-circular motions.

In the radial annulus centered at 7.5 kpc, G2E1 and G1E1 have similar values of ωrot, n1,
and λc while G2E1 has a higher λeq by about a factor of 2. They clearly differ in the magnitude
of σ0. This suggest that for the same rotation curve differences in λeq are mainly driven by
differences in σ0. Run G2E1 has the largest values of σ0, and likewise it has the largest values
of λeq. The fundamental change between these two simulations is their gas surface density.
Surface density can affect σ0 in two ways: (i) increasing non-circular motions due to the stellar
feedback, and (ii) making the gas disk more unstable against gravitational fragmentation,
and gravitational instabilities inject more turbulence. On the other hand, G1E1 and G1E0.5
show similar profiles for σ0 and λc at large radii but λeq is larger for G1E0.5. This illustrates
the effect of the rotation curve, which for G1E0.5 has a lower magnitude. In the central region
of G1E1, λeq goes to zero, below the resolution of our simulations. This means that λeq is
not resolved in these regions and that galactic rotation is the dominant source of circulation
down to the resolution limit.

6.6. Distribution of γ

Now we show how the measured distributions of γ change with spatial scale ` and how
our model compares with them. Figure 6.17 shows percentiles of the circulation γ and the
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Figure 6.17: Percentiles of circulation γ at different annuli, as a function of scale ` for each
simulation. Solid lines represent the percentiles of γ measured in the simulation. Each color
shows a different percentile. Dotted lines show the percentiles of γrot + γnc for the median
values of n1 , λc = 1/kc , and σ0 . Shaded regions represent 1σ uncertainty intervals from the
posterior distributions of the model parameters. Vertical purple and orange lines show the
spatial scales λc = 1/kc and λeq respectively, with their corresponding uncertainty illustrated
by the shaded regions. Black-dashed horizontals lines represent γ = 0.

model γrot + γnc as a function of scale for three of the nine annuli. We show the results for
each individual run for all the annuli in Figures 6.18 to 6.20. Each percentile is shown with
a different color. The percentiles of the measured circulation are shown as solid lines, while
the models γrot + γnc are shown by the dotted lines with their respective 1σ intervals.

Let us first discuss the general characteristics of these distributions. At the smallest spatial
scale, γ is equal to the vorticity measured at the spatial resolution of the simulation. Near
the galactic center the distributions of γ are much broader at every scale `. This is also true
for the large scale component of circulation, γrot. As shown in Figure 6.8, the slope of ωrot

decreases with radius, which means that within a annulus variations in ωrot also decrease
with radius. We can see how the width of the distribution of γ changes from large to small
scales: towards small scales it gets broader as the influence of non-circular motions becomes
more important while above scales of hundreds of parsecs it starts to converge towards a
constant level, set by the galactic rotation component. Figure 3.6 shows how the width of
the distribution of γ looks for coherent rotation and a random field as a function of scale.
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Figure 6.8 shows that ωrot and consequently the probability density function of γrot are
always positive, according to the chosen orientation of the z-axis. At galactic scales, γ is grea-
ter than zero since γ ' γrot. On the other hand, the distribution of γnc, the GRF component,
is half positive/half negative at any scale. At the scales where non-circular motions start to
become important, γ starts to show negative values. This departure to negative values is not
the same for every region, it depends on the magnitude of γrot and the dispersion of γ at
the smallest scales, which depends on γnc. By looking at the percentile curves we see that
the percentage of regions with retrograde rotation varies between 20 to 40% at the smallest
scales, with the highest fractions in G2E1. If we look at the individual distributions we can
see how the fraction of regions with negative circulation at the smallest scales increases with
radius until a distance of around 10 kpc, as shown in Figure 6.16 by λeq.

We show the scales λc and λeq in Figure 6.17. For scales smaller than λc the rate at
which the distribution broadens starts to decrease until it stops. This is also illustrated in
the examples of GRFs in Figure 3.4. With regard to λeq, we can see how λeq shifts from left
to right depending on the average value of γ at large scales, and its variance at the largest
and smallest scales.

We see that our model reproduces the shape of the distributions of γ as a function of
`, with some discrepancies at both extremes of the distributions. Figure 6.17 also displays
1σ uncertainties around the median value for our model of V(k). Best agreement is seen at
large galactocentric radii where the distributions are better sampled since the number of cells
in each annulus increases with radius. Near the galactic center we expect to observe large
variations due to low sampling. In addition, it is more difficult to set a well defined center
of rotation near the center of the galaxy, since the interactions with small structures can be
comparable or greater than the large scale gravitational influence of the galaxy. Regardless,
Figure 6.17 shows that our model can reproduce the trends in the measured distribution of
γ(`). This supports our assumption that the velocity field can be separated as the sum of
large scale circular motions and a GRF representing non-circular motions.

Although we are able to capture the general behaviour of γ there are noticeable discrepan-
cies. In Figure 6.17 we see a systematic discrepancy at the 90th percentile, with measured
values greater than the model. In some regions we also see discrepancies at the 10th per-
centile. These discrepancies are more noticeable at small radii for runs G1E1 and G1E0.5 as
shown in Figures 6.19 and 6.20.

In the first and second panels of Figures 6.19 and 6.20, we see a less symmetry with
respect to the median, and a distribution that is broader than our model. This shows that
the extreme values of γ coming from non-circular motions are not represented in our model.
One possibility is that within an annulus the model parameters change quickly. In our model,
we are assuming a unique Gaussian distribution for each radial bin instead of a superposition
of Gaussian distributions for each radius. However, in this scenario, the distributions of γ
should be more symmetric. In some regions the deviation from the model of the 90th percentile
is higher compared to the 10th percentile. This asymmetry is likely to come from errors in
our modeling of ωrot. There may be other large scale motions driven by galactic rotation
that would tend to present positive values of circulation. Some of the discrepancies could
be explained by regions under collapse: when high density regions collapse, their vorticity ω
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Figure 6.18: G2E1: Percentiles of circulation γ at each annuli, as a function of scale `.
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Figure 6.19: G1E1: Percentiles of circulation γ at each annuli, as a function of scale `.
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Figure 6.20: G1E0.5: Percentiles of circulation γ at each annuli, as a function of scale `.
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Figure 6.21: Percentiles of γ = γrot + γnc as a function of the scale `, for a single power law
V(k) from kmin = 4/L to kmax = 1/4∆x. Solid lines show the percentiles of γ measured in
the simulations. Dotted lines show the percentiles of γnc and the shaded regions correspond
to 1σ uncertainties.

increases in magnitude. Kruijssen et al. (2019) found that simulated molecular clouds with
higher densities show higher velocity gradients. By checking the velocity divergence in the

x-y plane, i.e. ∇xy · ~v =
dvx
dx

+
dvy
dy

, we find that between the percentiles 20% to 80% of

ω the median value of ∇xy · ~v is close to zero. However, at the extremes of the distribution
of ω, ∇xy · ~v drifts to negative values. Once a cloud of gas starts to collapse, ∇ · ~v < 0, the
magnitude of ω increases. It might be possible to address this discrepancy by considering the
conservation of angular momentum or the conservation of circulation, but that is beyond the
scope of this work.

Interestingly, run G2E1, which has a higher gas content, shows more symmetric distri-
butions of γ and less discrepancies between the observed and modeled distributions. One
possibility is that in this galaxy deviations from the rotation curve are dominated by stellar
feedback since it has a higher star formation rate. We expect the distribution of circulation,
coming from this source of non-circular motions, to be more symmetric.

As mentioned before, our model captures the distribution of circulation at different spatial
scales. One way to show this is to compare the measured distributions of γ assuming a different
model of V(k). We show in Figure 6.21 an example of the percentiles obtained by using a
function V(k) with a single power-law from kmin = 4/L to kmax = 1/4∆x. We see that
without the inclusion of the break at kc or a variable kmax the model is unable to reproduce
the plateau of the percentiles at the smallest scales.
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Figure 6.22: Comparison between λc and characteristic spatial scales of gas clumps measured
in the simulations. The orange line shows the epicyclic scale as a function of galactocentric
radius. The purple line represents the length scale of fragmentation λf = (Mc/Σgas)

1/2. The
blue line shows the characteristic separation between clumps, λint. Error bars represent the
16th - 84th percentile interval for each parameter.

6.7. Relation with other spatial scales

The next step is to link the structures in the velocity field with structures in the density
field. One of the first scales that should affect the behavior of the velocity field is the scale
height. However, the scale height of the gas density field for the three runs is of the order of
100 pc, which is usually smaller than λc by a factor of 4-5. We continue analyzing different
structures that exist in the plane of galactic disks.

Let us assume that the scale λc is related with the fragmentation of gas with a characte-
ristic scale λf . If Σgas(R) is the gas surface density profile we can estimate a characteristic
mass for the fragments or clumps as Mc ≈ πΣgas(λf/2)2, then the scale of fragmentation is
approximated by:

λf ≈
(
Mc

Σgas

)1/2

(6.10)

The scale λc could also be related with interactions between clumps (Dobbs & Pringle
2013). If cloud-cloud interactions play a role, it is worth studying the typical distance bet-
ween clumps of gas at each radius.

To compute the two aforementioned scales we need to define a clump of gas. We use the
following criteria to define a gas clump:

• Each cell in the clump has a number density above 100 cm−3.

• Clumps are gravitationally bound.

• Clumps have a minimum of 20 cells (a 3× 3× 3 cube without the corners has 19 cells).
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The clumps identified by these criteria have typical sizes of 100 pc, while in nearby gala-
xies sizes range between 10 and 100 pc (Rosolowsky 2007; Heyer et al. 2009; Colombo et al.
2014). These sizes are of the order of the scale height across the disk for the three runs. We
measure Mc as the total gas content in the clump. To compute the typical distance, we do
the following: for each clump we average the distance to the three closest clumps and we
average that quantity at each annulus. We refer to this scale as λint.

We show λf and λint in Figure 6.22. For most regions, λint and λf are of the same order
of magnitude and they appear to be correlated. The spatial scale λc seems to lie closer to
λf . However, the scatter of these scales is too large to derive any strong conclusion. Each
annulus has a characteristic Σgas, Ω and σv, quantities that are dynamically correlated. In
that regard it is not surprising that spatial scales defined by these quantities show similar
behaviors.

Another scale related with a change of the behavior of the velocity field is the epicyclic
scale σv/κ (Meidt et al. 2018), where σv is the velocity dispersion of a gas cloud, and κ is
the epicyclic frequency. Epicyclic motions correspond to the evolution to small perturbations
of circular orbits under the gravitational potential of the galaxy. Structures larger than their
corresponding epicylic scale are ensured to be affected by the galactic potential. Figure 6.22
shows σz/κ as the orange solid line, where σz corresponds to the dispersion velocity in the
z-axis in a radial bin. The choice of σv = σz assumes that once a structure has formed its
velocity dispersion is nearly isotropic. Like the scales λf and λint, the epicyclic scale lies close
to λc.

The physical correlations between all these scales and their level of uncertainty make
difficult to compare them with λc. Therefore, we are not able to elucidate the fundamental
physical origin of λc. We can only conclude that λc is related with the formation of structure in
our simulations and that the details of gas dynamics below such structures do not significantly
affect the overall circulation of gas.

6.7.1. Circulation scales: λc and λeq

We start this section discussing the role that gravitational instabilities can play setting the
distribution of circulation, particularly their effect in λc and λeq. First, we recall the Toomre
parameter, Q = κσv/πGΣ, which for marginal stable systems (Q ≈ 1). If we set κ at a fixed
value κ0, marginal stability requires σv = πGΣ/κ0 ∝ Σ. At the scales of clouds, the relevant
parameter is the virial parameter αvir, which for nearly spherical clouds can be expressed as
(Sun et al. 2018)

αvir =
5σ2

vR

fGM
. (6.11)

whereM is the cloud mass,R is the cloud radius, σv is the one-dimensional velocity dispersion,
and f is a geometrical factor that quantifies the density structure inside the cloud. For clouds
with αvir ≈ 1 we get

σv =

√
fαvirGπ

5

√
RΣ. (6.12)
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Figure 6.23: Spatial scales as a function of galactocentric radius: solid pink and yellow lines
correspond to λeq and λc respectively. The shaded regions correspond to 1σ uncertainties.
The classical instability scales for two dimensional disks, λrot and λJ, are shown as solid
light-blue lines and black dashed lines respectively. The dot-dashed line shows the effective
values λrot after adding the effects of resolution.

Therefore, for virialized clouds of constant size, we expect that σv grows with
√

Σ. For
any of these two pictures, we expect that galaxies with higher column densities have more
randomness in their velocity fields. This is illustrated by the run G2E1 in Figure 6.16, which
shows higher values of σ0 and λeq compared to the other runs.

Since we are dealing with galactic disks, the first step to visualize relations with gravita-
tional instabilities is to compute λrot, and the two-dimensional thermal Jeans scale λJ, given
by c2

s/GΣ, where cs is the gas sound speed and Σ is the gas surface density. The thermal
Jeans scale sets the size of the smallest structures that can be formed. Both length scales,
λrot and λJ, are shown in Figure 6.23. Because the stability of a quasi two-dimensional fluid is
affected by the disk thickness, or the resolution in the case of simulations, we have to consider
the dispersion relation ω2

p(k) = κ2−2πGΣ|k|e−kε, where ωp is the frequency of perturbations
and ε is the disk thickness with a minimum value set by the numerical resolution (Binney
& Tremaine 2008, p. 552). Perturbations where ω2

p(k) < 0 correspond to instabilities. At the
limit of marginal stability ωp(k) = 0, and D(k) = κ2 − 2πGΣ|k|e−kε = 0. The function D(k)
is a convex function with its minimum value satisfying ∂D(k)/∂k = 0. Assuming k > 0

∂D(k)

∂k
= 0→ k = ε−1 . (6.13)

The minimum value of D(k) indicates the most unstable wavenumber k. For a disk to be
stable, we need D(ε−1) > 0. This translates in the condition:

ε >
2πGΣ

eκ2
=

1

2πe
λrot. (6.14)

This means that a disk can be fully stabilized by rotation, and its resolution or disk thickness.
To obtain the correct values of λrot, that we call λrot,c, we solve the equation ω2

p(k) = 0. We
plot λrot,c in Figure 6.23 as the dot-dashed blue line. Once the disk thickness is considered,
near the galactic centers equation 6.14 is fulfilled and any radial perturbation is stable against
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fragmentation. This means that in the inner regions of these galaxies gravitational instabilities
are not resolved. At these scales we do not expect to see an important injection of energy
due to gravitational instabilities. The effect of the disk thickness is more noticeable in our
additional simulations in Figure 6.28: If λrot,c is not resolved λeq falls below the resolution of
the simulations.

For this set of simulations, λc lies between λJ and λrot,c, that is, within the range of scales
in which gravitational instabilities can exist, consistent with this scale being associated with
scales of structure formation. For all runs we see that λeq is above λJ, it increases with
radius, and in some regions is higher than λrot,c. Since λrot,c is the maximum size of unstable
perturbations, clouds formed in regions where λeq > λrot,c will be predominantly dominated
by non-circular motions.

For all runs we see that λeq can show values up to kiloparsec scales. For G2E1, λeq is higher
than λrot in most regions. This is probably caused by the high star formation rate, due to
its higher gas content densities, and associated increase in feedback-induced non-circular
motions. In Figure 6.28, our simulations with only supernova feedback show values of λeq

lower than λrot and lower than λc. This last point shows that only considering the difference
in gas content between simulations without taking into account stellar feedback is insufficient
to explain differences in λeq across the different runs. These additional simulations also show
and apparent correlation between λeq and λrot. However, once we use a more energetic type of
feedback λeq grows and this apparent correlation disappears. This suggest that there might be
two different regimes where the distribution of circulation is set by gravitational instabilities
or by stellar feedback. This idea goes in line with results from numerical simulations and
analytical models showing that turbulence can be powered by gravity or stellar feedback,
and that the dominant driver of turbulence changes across the evolution of the Universe
(Goldbaum et al. 2015; 2016; Krumholz & Burkert 2010; Krumholz et al. 2018)

Since we are discussing the turbulent behavior of gas and its dynamical stability, we
can also discuss the relevance of the turbulent Jeans scale λturb = σ2

v/GΣ, with σv is the
velocity dispersion of gas considering non-thermal motions. However, σv is a function of scale
` (Elmegreen & Scalo 2004; Romeo et al. 2010) and to properly take into account the effects
of turbulence we need know how σv changes with `. Here we take a first order approach
considering σv = (c2

s +σ2
z)

1
2 , where σz is the mass-weighted vertical dispersion velocity in the

disk of the galaxy. In this approximation, we are assuming that the velocity dispersion at
the scale of the disk sale-height is a representative value of the velocity dispersion for bound
structures in presence of turbulence. To compute λturb we use a temperature cut of T < 5000
K to avoid considering gas that is currently affected by stellar feedback. We show λturb in
Figure 6.23. For runs G2E1 and G1E1 λturb is of the order of λc which suggest that λc could
be tracing the scales at which turbulent structures are affected by their self-gravity. This is
not shown by run G1E0.5, but we need to keep in mind that we are assuming that σ2

z is a
good proxy for the turbulent velocity in the plane of the galaxy for self-gravitating structures.

In the field of fluid dynamics, it is known that in turbulent fluids coherent structures natu-
rally arise, and that these structures are fundamental for the transport of angular momentum
across different scales (Kraichnan 1967; Ruppert-Felsot et al. 2005). These studies motivates
us to look for structures which can be defined by kinematics only. One alternative is to look
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for structures which behavior is defined by the ratio between the galactic angular velocity
that traces the galactic potential, and the local non-circular motions at cloud scales. A spatial
scale that goes in that direction and compares the magnitudes of the velocity dispersion of
gas and the galactic potential is the epicyclic scale σv/κ (Meidt et al. 2018). However, as
shown in Figure 6.22, if we use the velocity dispersion across the z-axis the epicyclic scale is
of the order of λc, which in most regions is smaller than λeq. Another approach is to consider
the velocity dispersion in the x−y plane, σxy, within a radial bin. To compute σxy we subtract
the circular velocity model to the velocity field. The scale σxy/κ compares the energy in the
non-circular velocity field with respect to epicyclic motions given by the galactic potential.
We show the spatial scale σxy/κ in Figure 6.23 as the orange line.

Figure 6.23 shows that σxy/κ is similar to λeq. This result would suggest that the ratio
σxy/κ is a good proxy for λeq. However, this might be valid only for our feedback prescription
and for galaxies with an average star formation rate according to the Kennicutt-Schmidt
relation (Kennicutt 1998; Daddi et al. 2010). For our second set of simulations with only SN
feedback, the values of λeq are usually lower than σxy/κ and λc. This again shows the effect of
using different feedback prescriptions. Momentum feedback prescriptions change the velocity
field more aggressively, λeq shows large values and is similar to σxy/κ.

We can interpret this difference as differences in the sources of non-circular motions. Si-
mulations with only thermal supernova feedback can lose this source of energy quickly due
to our resolution of 30 pc, producing a lower effect in the velocity field. In this scenario, gra-
vitational instabilities might become a relevant source of non-circular motions or turbulence.
On the other hand, the stellar feedback prescription used in our main simulations changes
explicitly the velocity field at the smallest scales and increases directly the magnitude of V(k).
Feedback might erase the correlation between gravitational instabilities and the non-circular
motions at small scales.

This point has implications for the analysis of star formation in numerical simulations. In
simulations with mechanical stellar feedback, i.e. momentum injection, the velocity field is
explicitly changed and the amount of kinetic energy at small scales increases. This reduces the
coupling between the dynamics of clouds and galactic rotation, and also the coupling between
the efficiency of star formation and the galactic environment. The magnitude of correlations
between star formation and galactic properties found in simulations might depend on the
specific stellar feedback prescription used.

Up to this point we have showed that the distribution of circulation is affected by stellar
feedback and gravitational instabilities. It is interesting to discuss what other studies have
shown respect to the distribution of circulation or rotation. Here we mention the works of
Tasker & Tan (2009) and Ward et al. (2016), that used simulations to measure how the
rotation of molecular clouds aligns with respect to the rotation of their galaxies. These
simulations have similar surface gas densities and the same shape of the velocity curve,
but with different magnitudes. Both simulations have weak forms of feedback; Tasker & Tan
(2009) did not include stellar feedback in their simulations, and the simulations in Ward et al.
(2016) had a reduced feedback efficiency of 10%. Hence, we expect that their distribution
of circulation is set by gravitational instabilities. For comparison, at a galactocentric radius
of 8 kpc, λrot ' 2100 pc in Tasker & Tan (2009), and λrot ' 1500 pc in Ward et al. (2016).
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In addition, the simulation of Ward et al. (2016) shows spiral structures while the density
field in Tasker & Tan (2009) is more random. The simulation of Tasker & Tan (2009) is
more unstable than the one from Ward et al. (2016) and consequently the former should
have higher values of λeq, or a higher fraction of molecular clouds with retrograde rotation
respect to their galaxy. These simulations effectively find different fractions of retrograde
clouds, 30% in Tasker & Tan (2009) and 13% Ward et al. (2016) respectively. This shows
that more unstable systems are more dominated by non-circular motions and have higher
values of λeq. Tasker & Tan (2009) also analyzed the effects of resolution, which directly
influences the size of molecular clouds and the stability of gas dynamics as shown by λrot,c.
Tasker & Tan (2009) show that as the resolution is increased more molecular clouds present
retrograde rotation. In summary, these studies show that in the absence of strong feedback,
gravitational instabilities play a role setting how circulation is distributed at smaller scales,
and also show the relevance of the spatial resolution used in numerical simulations.

6.8. Power Spectrum

We can analyze the dynamics across different scales by means of the power spectrum
E(k). To compare our results with the findings of experimental studies of thin fluid layers,
we compute the power spectrum of the two dimensional velocity field ~V (x, y) = u2D(x, y)î +
v2D(x, y)ĵ, obtained by

u2D(x, y) =

∫
ρ(x, y, z)u(x, y, z)∫

ρ(x, y, z)dz
& v2D(x, y) =

∫
ρ(x, y, z)v(x, y, z)∫

ρ(x, y, z)dz
. (6.15)

We obtain the Fourier transforms ũ2D(k) = F(u2D) and ṽ2D(k) = F(v2D). The power
spectrum E(k) is defined as 1

2
(ũ2D(k)2 + ṽ2D(k)2)k, such that

∫
E(k)dk is the average kinetic

energy per unit mass of the two dimensional field.

We show the power spectrum for our simulations in Figure 6.24. We have normalized
E(k) by k−5/3, that means that a curve with a slope close to zero in Figure 6.24 represents a
k−5/3 power-law. From 5 kpc to around 1 kpc E(k) shows a slope consistent with the inverse
energy cascade of two dimensional fluids. For scales lower than 500 pc E(k) shows steeper
power-laws. Run G1E0.5 shows a power-law k−3 down to 100 pc, while G2E1 and G1E1 fall
more quickly. The curves of G1E1 and G1E0.5 in Figure 6.24 flatten towards scales smaller
than 100 pc. This has been observed in the power spectrum of thin fluids, where at scales
smaller than the thickness of the fluid layer an energy cascade with E(k) ∝ k−5/3 appears.

In this formalism, the inverse energy and the direct enstrophy cascade are represented by
n1 = 4/3 ≈ 1.33 and n2 = 2 for our function V(k). As shown in Figure 6.16, the distribution
for the exponent n1 ranges between 1.1 and 1.8. This exponent lies close to the expected
values of both regimes. On the other hand, n2 which should be associated with the enstrophy
cascade has no upper limit in our model and the scale where V(k) breaks, λc, is of the order
of 240 to 1 kpc. If we look the middle panel of Figure 3.5 in section 3.1.5, we see that for
high values of n the distribution of γ starts to be less sensitive to changes in n. It is likely
that most of the information of the distribution of γ is given by n1 and kc. If this is the case,
kc is related with the turbulent forcing scale kf . Experiments of thin layer fluids show strong
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Figure 6.24: Kinetic energy power spectrum E(k) normalized by k−5/3. In this plot a flat curve
represents the inverse energy cascade for two-dimensional turbulence. The black dashed line
shows the slope of the expected enstrophy cascade. The black vertical line lies at k = 1/(2∆x),
where ∆x is the spatial resolution.

long-lived vortices at the scale λf = 1/kf (Musacchio & Boffetta 2017). Then, the turbulent
picture also suggest that λc might be related with the formation of structure in the turbulent
velocity field.

6.9. Low feedback simulations

In this section we show the results for the simulations with supernova feedback only. Since
these simulations have a lower stellar feedback we add the suffix "low"to distinguish them
from the simulations presented in the main text.

These runs have a lower energy input coming from stellar feedback. Therefore, their SFR
efficiency is higher and at the time of comparison the additional simulations have less mass
in gas. Runs G2E1, G1E1, and G1E0.5 have 2.9, 1.3, and 1.4 times more gas than G2E1-low,
G1E1-low, and G1E0.5-low respectively. Particularly, G2E1 has 1.8 × 1010M� of gas in the
disk, while all the other runs have below 1 × 1010M� in gas. This makes G2E1 the most
unstable disk at this point of time. This might explain why G2E1 shows the largest values
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Figure 6.25: Percentiles of circulation γ within [1.5-4.5] , [6-9] and [10.5-13.5] kpc for G2E1
and G2E1-low, as a function of scale `. Solid lines represent the percentiles of γ in the
simulation while dashed regions represent 1σ uncertainty intervals for the model V(k) around
the median values, showed as dotted lines. Vertical lines show the spatial scale λc = 1/kc

and its corresponding uncertainty illustrated by the dashed region. Black-dashed horizontals
lines show γ = 0.

of σ0 which translates into higher values of λeq.

In Figures 6.25 to 6.27 we compare the distributions of γ for our main runs and their low
stellar feedback counterparts. The former runs shows broader distributions of γ, and their
fraction of regions with retrograde rotation slightly higher. However, as pointed out before,
the comparison is not straightforward since the low-feedback runs have less mass in gas
compared to the main runs. For these simulations we also see high discrepancies between our
model and the measured distribution of γ in the central regions of galaxies. These deviations
occur at the 90-th percentiles of γ.

We see slight changes of λc caused by changes in stellar feedback. The main difference
is seen for λeq. For all the regions shown in Figures 6.25-6.26 λeq < λc. This implies that,
without the proper treatment of stellar feedback, the kinematics of gas at scales smaller than
the height scale of simulations are affected by the rotation curve or potential of the galaxy.
For some of the regions λeq is not resolved.

In Figure 6.28 we show the scales λeq, λc, and the scales of gravitational instability for
G2E1-low, G1E1-low, and G1E0.5-low. Each galaxy shows a similar behaviour; at some par-
ticular radii R∗, λeq decreases beyond the resolution of the simulations. We see from 6.8 and
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Figure 6.26: Percentiles of circulation γ within [1.5-4.5] , [6-9] and [10.5-13.5] kpc for G1E1
and G1E1-low, as a function of scale `. Solid lines represent the percentiles of γ in the
simulation while dashed regions represent 1σ uncertainty intervals for the model V(k) around
the median values, showed as dotted lines. Vertical lines show the spatial scale λc = 1/kc

and its corresponding uncertainty illustrated by the dashed region. Black-dashed horizontals
lines show γ = 0.
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Figure 6.27: Percentiles of circulation γ within [1.5-4.5] , [6-9] and [10.5-13.5] kpc for G1E0.5
and G1E0.5-low, as a function of scale `. Solid lines represent the percentiles of γ in the
simulation while dashed regions represent 1σ uncertainty intervals for the model V(k) around
the median values, showed as dotted lines. Vertical lines show the spatial scale λc = 1/kc

and its corresponding uncertainty illustrated by the dashed region. Black-dashed horizontals
lines show γ = 0.

Figure 6.28: Spatial scales as a function of galactocentric radius for simulations without early
stellar feedback. Solid pink and yellow lines correspond to λeq and λc respectively. The shaded
regions correspond to 1σ uncertainties. The classical instability scales, λrot and λJ are shown
as a solid light-blue line and a black dashed line. The dot-dashed line shows the effects of the
spatial resolution of the simulation on λrot.
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6.16 that ωrot(R) decays exponentially while σ0 decays somewhat linearly, which also holds
for these simulations. At the center, where ωrot peaks, λeq << ∆x. Since ωrot decays faster,
at some particular radius λeq ' ∆x, and λeq starts to be resolved.

Since these galaxies have a lower gas content at this point in time, they are more stable
against gravitational collapse. In Figure 6.28 the shaded regions correspond to the regions
where equation 6.14 is satisfied, and any axisymmetric perturbation is stable. The resolution
of our simulations is not high enough to resolve λrot. The regions where λeq is resolved overlap
with the regions where λrot is resolved, once we consider the effect of the disk thickness. This
shows that, λrot must be resolved in order to study λeq in simulations.

For these runs, λeq does not follow the curves of σxy/κ. On the other hand, the appear to
have the same trends of λrot and λc at least where λrot is resolved. This could indicate that in
these simulations, the major source of turbulence and non-circular motions are gravitational
instabilities, whereas in our main runs non-circular motions are mainly originated from stellar
feedback.

6.10. Effects of changing the model

We begin by analyzing the effects of changing our model of ωrot. Our method to compute
ωrot, and consequently γrot, is to measure a radial profile for the circular velocity field. The
resulting radial profiles depends on the chosen size of the radial bins. In the main text we use
the analytic function in equation 4.13 to compute γrot. To test the sensitivity with respect to
the chosen rotation curves, we calculate λeq for different velocity models. The simplest model
corresponds to measuring the median values of the rotation curve at intervals of 500 pc. To
compute the derivatives in equation 2.2 we fit a 4th order polynomial function to ln(v(R))
as a function of ln(R). We show the resulting λeq as the blue line in the left panel of Figure
6.29. We see that this approach to model the rotation curve does not alter our results for λeq.

We also test the effects of adding information in the azimuthal component by means of a
Fourier series expansion, and include the radial component of the velocity field. The velocity
field and its vorticity are given by:

vθ(R, θ,m) = A0 +
m=4∑
j=1

Aj cos(jθ) +Bj sin(jθ), (6.16)

vR(R, θ,m) = C0 +
m=4∑
j=1

Cj cos(jθ) +Dj sin(jθ), (6.17)

ωz =
1

R

(
∂(Rvθ)

∂R
− ∂vR

∂θ

)
, (6.18)

where the coefficients Aj, Bj, Cj, and Dj are functions of radius and m is the order of the
expansion. We have considered terms up to the fourth order. To obtain Aj(R), Bj(R), Cj(R),
and Dj(R) as functions of R we separate the disk in radial bins of constant width. We tested
bin-widths of 200, 500 and 800 pc but they get almost the same results in λeq. We show the
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Figure 6.29: Radial profiles of λeq Left: Different choices of the large-scale velocity field.
The magenta line shows λeq obtained in the main text with its respective 1σ uncertainties
as a shaded region. The yellow line shows the resulting profile of λeq using a Fourier series
expansion for the large scale velocity field with a radial bin of 200 pc. The blue line shows
the results for the median rotation curve. Right: Different models for V(k). The magenta line
corresponds to the model of V(k) used in the main text. The model with a unique power-
law and fixed kmax is shown in yellow. The blue line corresponds to a single power-law and
variable kmax.

effect of this complex velocity field on λeq in the left panel of Figure 6.29 using a bin-width
of 200 pc. We see that this choice for the model of ωrot does not lead to major changes. At
large galactocentric radius the estimation of λeq is a bit lower.

6.11. Different models for the random velocity field

Now we test how different models for V(k) change the resulting curves of λeq. For our
model, the spatial scale λeq, at which large scale motions and non-circular motions contribute
equally to the circulation of gas, depends on the function V(k). The first model of V(k) consist
on a power law (n1 = n2), and the wavenumber k is bounded between the values kmin = 4/L
and kmax = 1/4∆x. The second model also consist on a single power law but allowing kmax

to vary. We show these models in the right panel of Figure 6.29. We can see that the fiducial
model used for V(k) shows similar results for λeq if we use a single power law with a variable
kmax. However, if we fix kmax = 1/4∆x the values of λeq are higher.
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6.12. Limitations and Caveats

The work presented here is largely exploratory and aimed at establishing the basic con-
cepts associated with modeling the spatially dependent distribution of gas circulation in disk
galaxies. Here we discuss some of the limitations associated with this modeling. In a future
work we expect to address several of these limitations in order to apply the presented methods
to extract information from observed galaxy velocity fields.

6.12.1. Velocity model

The main assumption in our model is that the velocity field in the plane of the disk can be
approximated by the contribution of two different fields: ~V = ~Vrot+~Vnc, where ~Vrot corresponds
to the galactic velocity curve and ~Vnc to a Gaussian random velocity field. In real galaxies,
we find other types of coherent motions which are different from galactic rotation and pure
random motions. Among these, we find induced motions by galactic bars and spirals, and
epicyclic motions. At the scale of epicycles, gas is still affected by the tidal forces exerted
by the galactic potential (Meidt et al. 2018). According to Meidt et al. (2018), depending
on the strength of self-gravity, the dynamical structure of clouds show preferred orientations
in radial or azimuthal coordinates, which does not occur in our model of Vnc. In addition,
galactic bars and spirals would also produce deviations from global galactic rotation which
we are implicitly including in ~Vnc.

Figure 6.17 shows that our simple model can successfully fit the distribution of circulation
across different spatial scales in general terms but there are some clear deviations in particular
regimes (e.g., small scale, prograde rotating regions with high values of γ at intermediate
galactocentric radii) which probably signal more complex types of motions not recovered by
the model. Moreover, due to conservation of angular momentum, the vorticity in high density
regions is enhanced. It is unclear how to statistically model these type of motions.

6.12.2. Full velocity field

In this work we have made use of isolated galaxy simulations whose rotation axis is aligned
with the z-axis of the simulation box by default. To compute the circulation we use the two-
dimensional velocity field ~V (x, y), the density weighted projection across the z-axis of the
three-dimensional velocity field. We can separate the total circulation into two terms Γx and
Γy:

Γ =

∮
~v · d~r =

∮
vx · dx+ vy · dy = Γx + Γy (6.19)

where x and y are coordinates on the plane of the disk. In observations we only have
access to the velocity along the line of sight, which will be the sum of one of the velocities
in the plane of the galaxy, vx or vy, and vz, motions vertical to the disk midplane. Consider
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a disk with inclination i such that the line of sight lies in the x-z plane. The coordinates
in the plane of the sky are z′ = z sin i + x cos i and y′ = y. The axis of the line of sight is
x′ = x sin i + z cos i and the velocity is vLOS = v′x = vx sin i + vz cos i . On the midplane z = 0
and the projected position z′ = x cos i . From the observed quantities we can compute

Γ′ =

∮
vLOSdz′ = sin i cos i

∮
vxdx+ cos2 i

∮
vzdx

Γ′ = sin i cos iΓx + cos2 iKxz

(6.20)

where Γx is the component of Γ in the x-axis and Kxz is the sum of vertical motions along the
x-axis. The term Kxz should be of the order of 〈vz〉`. This component has to be treated as
an additional term in the assumed decomposition of the velocity field. In this work we have
assumed that the velocity field in the plane is the sum of galactic rotation plus a random
component. For vx this means vx = −Ωy + δvx, where Ω is the galactic angular velocity
and δvx is the random velocity term. For vz we can assume that vz = δvz. Then Γ′ ≈
− cos i [y sin i

∮
Ωdx+ `(〈vx〉 sin i−〈vz〉 cos i)] At large scales 〈vx〉 and 〈vz〉 are approximately

zero while at small scales both terms behave like random variables. The sum of these two
terms would be the observed random component. Since we want to compare them with
galactic rotation, the best inclination has to maximize the contribution of Ω to Γ′ which
occurs at i = 45◦.

6.12.3. Surface brightness limits and recovery of velocity informa-
tion

A major limitation comes from the observational detection limits for different transition
lines which lead to an incomplete sampling of the velocity field. For example, the CO (1-
0) transition has a critical density ' 103cm−3, tracing the distribution of molecular gas in
galaxies. This implies that we can only observe a small fraction of the velocity field at the
scales of molecular clouds. Proper ways of dealing with noise and censored data in faint
regions will also need to be implemented.

6.12.4. Simulations

In this paper we use hydrodynamical simulations of disk galaxies to test our method. The
results presented here are valid to our set of simulations, with their defined prescriptions
for star formation and stellar feedback. However, caution should be taken before directly
extrapolating our findings to the environments of real galaxies. Here we list what we consider
are the most important aspects at which our simulations and observed galaxies differ.

• Resolution: The maximum spatial resolution corresponds to 30 pc. In practice this
means that we are able to resolve structures and instabilities of the order of 100 pc,
corresponding to approximately four times our resolution. In nearby galaxies, the size
of molecular clouds typically ranges from tens to hundreds of parsecs. Although we see
formation of structures, this resolution is not enough to resolve the inner turbulence
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of molecular clouds, their gravitational collapse, and the interactions of clouds smaller
than 100 pc. A higher resolution would imply more interactions and a higher velocity
dispersion at the smallest scales studied here. Then, we might expect a change in the
values of n2 which sets the behavior of V(k) at large wavenumber k, i.e. at smaller
spatial scales. Despite this caveat, λeq and λc are well resolved almost everywhere.
• Temperature: Gas is allowed to cool due to radiation down to a temperature of 300

K. This means that the smallest structures in our simulations are more similar to HI
clouds. Also, this temperature floor sets a minimum Jeans scale as a function of gas
surface density

λJ,min =
5

3

kBTmin

µmp

1

GΣgas

= 133pc

(
Σgas

10M�pc−2

)−1

, (6.21)

assuming a mean molecular weight µ = 0.6, according to the cooling curve of Rosen &
Bregman (1995) that assumes a fully ionized disk. In local galaxies, the Jeans length
is of the order of a few pc, about two orders of magnitude below the average Jeans
scales found in our simulations. The temperature floor leads to an overestimation of
the relevance of the Jeans scale. It is important to mention that to compute the radial
profiles of λJ showed here, we are considering all the gas in an annulus and its respective
average temperature instead of the average λJ for cold and dense gas. This makes sense
for our analysis since we are computing the circulation for all the gas within the physical
volume described in the paper. However, for regions with densities below 10M�pc−2

the minimum value for λJ is larger than four resolution elements. Then, even for our
resolution the values of λJ are likely overestimated and should be considered as upper
limits.
• Stellar feedback: In our recipe of stellar feedback, we include the direct injection of

momentum from radiation pressure and stellar winds to the six nearest cells. Although
the amount of added momentum ~p? does not explicitly change with spatial resolution,
the typical masses, mcell, of cells around star particles do change with different spatial
resolution. This translates in different magnitudes for the change of the velocity field
around star particles, since the velocity ~v? = ~p?/mcell. We have not tested how sensitive
to resolution is this feedback prescription.
• Spiral arms and bars : A relevant difference between observations, other simulations

and our runs is that our simulated galaxies lack grand design spiral arms. The main
difference is that the old stellar population in this work is represented by an external
axisymmetric potential, whereas other studies use particles (Renaud et al. 2013) or
spiral potentials (Dobbs et al. 2015). Only new stars are particles, hence only this
stellar component can respond to perturbations making the stellar disk more stable.
The impact of spiral arms and bars in our analysis can be separated by their effect on
large and small scales. At large scales, the bulk motion vrot must be a function of radius,
and the azimuthal angle. At small scales, spiral and bars can induce vortex motions by
Kelvin-Helmholtz, Rayleigh-Taylor instabilities or tidal fields (Dobbs & Bonnell 2006;
Renaud et al. 2013). These structures create new sources of turbulence, therefore the
velocity field at the scale of molecular clouds has different properties. In this work,
we have divided disk galaxies in annular regions and measured radial profiles of the
parameters that define the small scale velocity field vnc. To test the effect of spirals and
arms we also need to separate regions according to their azimuthal distance to these
structures.
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Conclusions

In this thesis we have characterized the rotation of gas in galaxies at different scales by
measuring the circulation Γ, a macroscopic measure of fluid rotation. We choose to measure
this quantity since it let us compute the local degree of rotation for patches of gas of arbi-
trary size and shape. The circulation of a fluid also has the advantage that at small scales
its distribution is given by the dynamics at small scales, while at large scales the behavior
at small scales gets erased from the distribution of Γ, and it is dominated by large scale
motions instead. This motivated us to develop a method to measure the contributions of
large-scale motions, i.e. galactic rotation, and non-circular motions in the observed distribu-
tion of circulation at different spatial scales. Non-circular motions are modeled as Gaussian
random velocity fields (GRF), described by a generating function in Fourier space V(k). We
characterize how the parameters of GRFs give rise to velocity fields with different properties,
and how the final distribution of Γ changes with these parameters. We also developed the
mathematical formulation and algorithm to be applied in discrete velocity fields, that let us
recover the parameters of the GRF. We use a Bayesian approach to recover the parameter
distributions of the GRFs. Once we get these distribution we can show quantitatively down
to what scales galactic rotation is still relevant. We apply this method on three hydrodyna-
mical simulations of galactic disks, performed with the AMR code Enzo (Bryan et al. 2014)
that includes star formation, supernova feedback, momentum feedback from stellar winds,
and HII regions, and with a spatial resolution of 30 pc. For the stellar feedback recipes we
implement analytic approximations to the tabulated results of STARBURST99 (Leitherer
et al. 1999). Our simulations show star formation rates consistent with normal galaxies. We
also run three additional simulations with only supernova feedback.

We summarize the major points of this work:

• We model the velocity field of galaxies with two components: a galactic component
given by the circular velocity profile and a Gaussian random component. The random
component is obtained from a function V(k) which functional form correspond to a
broken power-law with exponents n1, and n2, transitioning at the wavenumber k = kc.
The amplitude of V(k) is defined by the characteristic velocity dispersion of the random
field σ0. We apply the model to hydrodynamical simulations and confirm that motions
can be well modeled by two components with different circulation, as hypothesized.
The model successfully reproduces the distribution of circulation as a function of scale,
except when regions are under gravitational collapse.

• We find that a sharp transition in the behaviour of gas dynamics at the scale λc = 1/kc is
necessary to fit the circulation distribution. This may correspond to the scale at which
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kinematics transition from being coupled to the galaxy to more disordered motion,
associated with feedback-driven turbulence or gravity-driven turbulence. However, the
resolution of the current simulations limits our ability to probe this in greater detail.
• The scale λc is similar to the scale at which gas fragments, and to the epicyclic scale
σz/κ that defines the scale at which self-gravity and the potential of the galaxy are
equally important to determine the internal dynamics of clouds. The scale λc is also
similar to the scale of fragmentation and the distance between clumps suggesting that
λc shows the formation of structure in the density field.
• We introduce a dynamical spatial scale λeq. At spatial scales similar to λeq the contribu-

tions of galactic circular motions and non-circular motions to the observed circulation
or local rotation of gas are roughly the same. For regions larger than λeq galactic ro-
tation dominates the circulation of gas and consequently the measured rotation. At
these scales the distribution of circulation shows largely positive values which means
that gas rotates in the same orientation of the galaxy. For patches of gas smaller than
λeq, non-circular and random motions start to dominate the observed circulation and
retrograde rotating regions can be found.
• We find that λeq depends on the local properties of gas. From the center of the galaxies,
λeq increases with galactocentric radius. This shows that the spatial scale at which gas
dynamics is dominated by non-circular motions depends on the position in the galactic
disk. We see different behaviors in the central regions and outskirts of galaxies. Galactic
rotation shows to be more important or dominant towards the center of galactic disks.
• The scale λeq is similar to the ratio σxy/κ, as predicted by models about balance of

rotation and turbulence, where σxy is the in-plane velocity dispersion of the two dimen-
sional velocity field within a radial annulus and κ is the epicyclic frequency. However,
when suppressing momentum-feedback in simulations, λeq can be lower than σxy/κ, and
its radial profile might be correlated with the spatial scales of gravitational instabilities
since self-gravity becomes a relevant source of turbulence.
• In some regions λeq is greater than λrot. The formation of structures in such regions

will be dominated by non-circular motions. Depending on the sources of feedback,
turbulence, and local dynamics λeq can be larger or smaller than λrot. Particularly, for
strong modes of stellar feedback λeq can be larger than λrot.
• Stellar feedback changes λeq by injecting momentum at smaller scales, increaing mo-

tions that do not follow galactic rotation. Different prescriptions of stellar feedback will
produce different velocity fields that show different coupling between the dynamics of
gas at small scales and the large scale galactic rotation. This can also produce changes
in the coupling between star formation and galactic rotation.

This work shows that the characterization of the ISM circulation, from the modeling of
velocity fields of galaxies, opens the possibility of directly measure scales associated with
gravitational collapse and structure formation, and to study how these scales change with
galactic environment. It also shows that rotation is dynamically important in some environ-
ments like the centers of galactic disks. However, there are many differences between our
simulated galaxies and real ones that have to be addressed before extrapolating our results.
For example, our resolution of 30 pc does not allow us to resolve the inner turbulence of
molecular clouds, and with our temperature floor of 300 K we are unable to model molecular
clouds and their interactions. Additionally, we have found that the gravitational collapse of
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gas clouds is not included in the characterization of the velocity fields, that our simulations
show to be an important feature at the smallest scales. Additionally, for real galaxies we
have to consider the effect of structures such as spiral arms or bars. On the other hand,
interesting aspects may appear by measuring the circulation in observations. For example,
future telescopes like the Square Kilometer Array will allow us to measure full velocity maps
of HI and test this method without the problems that tracers of molecular gas show.
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