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Abstract

We consider the system of one-sided reflected Brownian motions that is in variational duality with Brownian

last passage percolation. We show that it has integrable transition probabilities, expressed in terms of Hermite

polynomials and hitting times of exponential random walks, and that it converges in the 1:2:3 scaling limit to the

KPZ fixed point, the scaling-invariant Markov process defined in [MQR17] and believed to govern the long-time,

large-scale fluctuations for all models in the KPZ universality class. Brownian last-passage percolation was shown

recently in [DOV18] to converge to the Airy sheet (or directed landscape), defined there as a strong limit of a

functional of the Airy line ensemble. This establishes the variational formula for the KPZ fixed point in terms of

the Airy sheet.
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1. RBM and the KPZ universality class

The model of one-sided reflected Brownian motions (RBM for short) is a system of reflected Brownian

motions XC (#) ≤ XC (# − 1) ≤ · · · ≤ XC (1) on R. They start from an ordered initial condition

X0(#) < X0(=−1) < . . . < X0 (1), perform Brownian motions, and interact with each other by one-sided
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2 Mihai Nica et al.

reflections: XC (: + 1) is reflected to the left off XC (:), so that the particles always remain ordered.

This process and its variational dual, Brownian last-passage percolation, have been studied intensively

from many perspectives; see [OY01, O’C03, War07] and references therein for some early work, and

[GS15, WFS17, DOV18, Ham19, AOW19] for more recent results. RBM can be defined formally in

several equivalent ways. The easiest is to start with # standard Brownian motions �C (1), . . . , �C (#)
initially at X0(1), . . . ,X0(#), let XC (1) = �C (1), and then, recursively for : = 1, 2, . . ., construct XC (:)
by reflecting �C (: + 1) off XC (:), the reflection ' 5 �C of a Brownian motion �C off any continuous

function 5C , with 50 ≥ �0 being easy to define, for example by the Skorokhod representation ' 5 �C =

min{inf0≤B≤C ( 5B + �C − �B), �C }. Since the definition is recursive, it is not difficult to have # = ∞; the

first = < # particles don’t even know the other # − = are there. Note also that using the Skorokhod

representation, one can let some of the initial positions coincide. The system is alternatively defined

by a system of stochastic differential equations involving the joint local times (see [AOW19, Section

4] and references therein). One can define other types of reflections, or point interactions for Brownian

motions; but as far as is understood at this point, only this one has the integrability described in this

article, and we will not consider other models here.

From the Skorokhod representation, it is not hard to see (see [WFS17, Equation (2.1.4)], but note

that in that book, the reflections go the opposite way) that RBM are in variational duality with Brownian

last passage percolation (BLPP): given a family of independent, standard two-sided Brownian motions

(,: ):≥0 and C ≤ C ′ in R, < ≤ <′ in Z, if we define the last passage time

G[(C, <) → (C ′, <′)] = sup
C=C<< · · ·<C<′+1=C

′

<′∑

:=<

(
,: (C:+1) −,: (C: )

)

(i.e. the supremum over up-right paths from (C, <) to (C ′, <′) along R × Z of the Brownian increments

collected along the path), then

XC (=) = min
ℓ≤=

(
X0(ℓ) − G[(0, ℓ) → (C, =)]

)
. (1.1)

The minimization here is over ℓ ≥ 1; equivalently, we can add X0(ℓ) = ∞ and ℓ ≤ 0 and minimize

over all ℓ ≤ =. Using the variational formula (1.1), one then extends to two-sided data: given initial data(
X0(:)

)
:∈Z, one defines the left-hand side of (1.1) for arbitrary = ∈ N by the right-hand side, without

the restriction ℓ ≥ 1 in the minimum. However, the minimum may not actually be attained if X0 (−ℓ)
grows too slowly as ℓ → ∞. The correct condition comes from the growth rate of the last passage times

G[(0, ℓ) → (C, =)], which is known to be of order 2
√
(= − ℓ)C [GW91, Sep97]. This can be used to

show [WFS17, Proposition 2.4] that if, for example, X0(−ℓ) ≥ 2ℓ
1
2
+X for all ℓ ≥ 0 and some X > 0, the

minimum is attained for any C > 0.

RBM and its variational dual BLPP are one of a small group of integrable models that lie in the KPZ

universality class, a huge class of one-dimensional growth models and driven diffusive systems whose

large-scale fluctuations are conjectured to coincide with those of the Kardar-Parisi-Zhang equation.

Models in the class can be interpreted as randomly growing height functions ℎ(C, G), G ∈ R, C ≥ 0, which

converge after zooming out, Y → 0 in the 1:2:3 scaling ℎ ↦−→ hY (t, x) ≔ Y1/2ℎ(Y−3/2t, Y−1x) − 2YC,
to a universal Markov process known as the KPZ fixed point, which can be described either through its

integrable transition probabilities (3.2) or, alternatively, by a variational formula (4.1)/(4.2) involving a

limiting multiparameter process called in various contexts the Airy sheet or the directed landscape. So

the KPZ fixed point and its variational dual, the Airy sheet, should be thought of as the universal limits

in the class.

It is still a great challenge to understand the KPZ universality. The limit for general initial data is proved

for only one or two special models so far, using integrability in a very strong way. In particular, the height

function limit to the KPZ fixed point has been proved for only one model, the totally asymmetric simple

exclusion process (TASEP) [MQR17] (see [MQR+] for an extension to several variants of TASEP). On
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the other hand, the limiting Airy sheet/directed landscape has been proved only for BLPP [DOV18]. Our

purpose in this article is three-fold. We show, 1. RBM have integrable transition probabilities (Theorem

2.1); 2. RBM converge to the KPZ fixed point in the 1:2:3 scaling (Theorem 3.1); and 3. the variational

formula relating the KPZ fixed point and the Airy sheet (Corollary 4.2) by combining 1 and 2 with results

of [DOV18]. A second group [DNV+] is working on obtaining the Airy sheet/directed landscape from

exponential last-passage percolation, which is in a similar duality with TASEP, providing an alternative

route to 2 and 3. These open the door to import methods from one side (e.g. [Ham19]) to the other.

RBM can actually be obtained as the low-density limit of TASEP. Recall that TASEP consists of

particles on the lattice Z performing totally asymmetric nearest neighbour random walks with exclusion:

each particle independently attempts jumps to the neighbouring site to the right at rate 1, the jump being

allowed only if that site is unoccupied. As for RBM, we can consider initial conditions in which there is a

rightmost particle; the particles remain ordered, and their positions can be denoted -C (1) > -C (2) > · · · .
Again, the dynamics of the first # particles -C (1) > -C (2) > · · · > -C (#) is independent of the rest,

so the infinite system makes sense. Consider TASEP with # particles started from initial positions

-0 (1) > -0 (2) . . . > -0 (#) ∈ Z, let ^ > 0 be a scaling parameter, and choose initial particle positions

so that -0 (8) =
√
^X0(8). Then, in the sense of distributions [GS15],

XC (8) = lim
^→∞

^−1/2 (-^C (8) − ^C). (1.2)

This is used only for intuition in our proof; alternatively, if one added a few details (such as trace class

convergence of the kernels), one could use our results to provide an alternative (but less elementary)

proof of (1.2).

In the next section, we discuss the complete integrability of the transition probabilities of RBM, by

which we mean a map from arbitrary one-sided initial data to a formula for the < point distributions at

a later time (note that this excludes random initial data, which we do not consider here.) Since RBM is

a limit of TASEP, which was shown to have the same property in an earlier article [MQR17], this is not

a surprise. But the formulas now have a classical flavour from random matrix theory, being expressed

naturally in terms of Hermite polynomials (instead of Charlier polynomials as for TASEP),

�: (G) = (−1):4 1
2
G2

m:4−
1
2
G2

.

2. Transition probabilities of RBM

In [WFS17], the < (spatial) point distributions of RBM and their asymptotics are computed for a few

special initial conditions: packed (converging to the Airy2 process), periodic (or flat, Airy1), stationary

(Airystat), half-periodic (Airy2→1), half-Poisson (Airy2→BM) and periodic-Poisson (Airy1→BM). Note

also that, for special initial data, there has been a recent breakthrough in which two time distributions

have been computed [Joh17]. We are now going to give a formula for the< (spatial) point distributions of

RBM for general right finite initial data at a fixed later time C. These generate the transition probabilities

in the same way that finite dimensional distributions define the Wiener measure.

Let m denote the derivative operator m 5 = 5 ′ and m−1 its formal inverse

m−1 5 (G) =
∫ G

−∞
dH 5 (H), (2.1)

which can be thought of as an integral operator with kernel m−1(G, H) = 1G>H . Also, for a fixed vector

0 ∈ R< and indices =1 < . . . < =<, we introduce the operators

j0 (= 9 , G) = 1G>0 9
, j̄0 (= 9 , G) = 1G≤0 9

(we will use the same notation if 0 is a scalar, writing j0 (G) = 1 − j̄0 (G) = 1G>0).
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4 Mihai Nica et al.

Theorem 2.1. Consider RBM with initial condition {X0(8)}∞8=1
. For any indices 1 ≤ =1 < =2 < . . . < =<,

any locations 01, . . . , 0< ∈ R and any C > 0, we have

P
(
XC (= 9 ) ≥ 0 9 , 9 = 1, . . . , <

)
= det

(
I − j̄0KRBM

C j̄0

)
!2 ( {=1 ,...,=< }×R)

,

where det is the Fredholm determinant, with

KRBM
C (=8 , I8; = 9 , I 9 ) = −m−(= 9−=8) (I8 , I 9 )1=8<= 9

+
= 9−1∑

ℓ=0

∬

R2

d[ 4[−1P�0=[ (g = ℓ, �g ∈ d1) ψ=8 (C, [ − I8) ψ̄= 9−ℓ−1 (C, 1 − I 9 ), (2.2)

where (�: ):≥0 is a discrete time random walk taking Exp[1] steps to the left, g is the hitting time of the

epigraph of the curve (X0(: + 1)):≥0 by �: – that is, g = inf
{
: ≥ 0: �: ≥ X0(: + 1)

}
– and

ψ= (C, G) = C−=/2 1√
2cC

4−
G2

2C �= ( G√
C
), ψ̄= (C, G) = 1

=!
C=/2�= ( G√

C
).

The proof is given in Section 5.

The RBM kernel (2.2) can alternatively be written in a way to harmonize with [MQR17] here. And

for later convenience, it is better to conjugate the kernel by multiplying by 4I 9−I8 (which does not change

the value of the Fredholm determinant):

K̃
RBM

C (=8 , I8; = 9 , I 9 ) ≔ 4I 9−I8KRBM
C (=8 , I8; = 9 , I 9 )

= −4I 9−I8m−(= 9−=8) (I8 , I 9 )1=8<= 9
+ (S−C ,−=8 )∗S̄

epi(X0)
C ,= 9

(I8 , I 9 )
(2.3)

with (see also (3.8) and (3.9) for contour integral formulas for these kernels)

S−C ,−= (I1, I2) = 4I1−I2ψ= (C, I1 − I2) = 4I1−I2 (m=4 1
2
Cm2 )∗(I1, I2),

S̄−C ,= (I1, I2) = 4I2−I1ψ=−1 (C, I1 − I2) = 4I2−I1 m̄ (−=)4−
1
2
Cm2 (I2, I1),

S̄
epi(X0)
C ,= (I1, I2) = E�0=I1

[
S̄−C ,=−g (�g , I2)1g<=

]
,

(2.4)

and where m̄ (−:) (G, H) = (G−H):
(:−1)! is an ‘analytic extension’ of m−: (see (5.9); see also Remark 5.5 for the

meaning of 4−
1
2
Cm2

in this context). Note that the kernel 4I2−I1m−1(I1, I2) making up the first term on

the right-hand side of (2.3) is precisely the transition matrix of the exponential random walk �: . These

equalities are also proved in Section 5; the basic ingredient is the classical relation between Hermite

polynomials and the heat kernel,

m=4
1
2
Cm2 (G, H) = (−1)=C−=/2 1√

2cC
4−

1
2C
(G−H)2

�= ( G−H√
C
). (2.5)

Note that the formulas from [WFS17] for special deterministic initial conditions can be recovered

by computing explicitly the hitting law. This is straightforward in the case of packed initial data: here

X0(:) = 0 for each : ≥ 0, so inside the expectation in (2.4), we have g = 0 if I1 ≥ 0, in which case

�g = I1, and otherwise g = ∞; using this together with (3.8) and (3.9) in (2.3) leads directly to their

formula after removing the conjugation 4I 9−I8 . When < = 1, this is the classic Hermite kernel, and the

distribution is the same as that of the largest eigenvalue of an =×=GUE random matrix [GTW01, Bar01]:

a remarkable fact establishing the key link between random matrix theory and random growth models

and providing much of the motivation for the study of this particular model. For the half-periodic case

X0(:) = −: , : ≥ 0 (which, after a limit, also leads to the full periodic initial condition), it turns out to be

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2020.56
Downloaded from https://www.cambridge.org/core. IP address: 190.153.201.175, on 10 May 2021 at 20:46:40, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2020.56
https://www.cambridge.org/core


Forum of Mathematics, Sigma 5

simpler to use the biorthogonal representation of the kernel, (5.1) below, together with Proposition 5.6;

see [MQR17, Example 2.10] for the analogous computation in the case of TASEP.

3. From RBM to the KPZ fixed point

The KPZ fixed point is a Markov process on the space UC of upper semi-continuous functions

h : R −→ R ∪ {−∞} satisfying h(x) ≤ �|x| + � for some �, � < ∞, with the topology of lo-

cal Hausdorff convergence of hypographs. It is shown in [MQR17] that it is the limit of the 1:2:3

rescaled TASEP height functions, h(t, x; h0) = limY→0 Y
1/2 [ℎ2Y−3/2t(2Y−1x) + Y−3/2t

]
, as long as

h0 (x) = limY→0 Y
1/2ℎ0 (2Y−1x), all in the sense of the topology of UC in probability; here we are

using h(t, x; h0) to denote the state of the Markov process at time t given initial state h0. The KPZ fixed

point is conjectured to be the universal limit under such scalings for models in the KPZ universality

class (see [Qua11, CQR15, MQR17, MFQR+] for more background on the KPZ fixed point). Our next

theorem proves this for RBM.

Before stating the result, we present the precise definition of the KPZ fixed point through its transition

probabilities (for simplicity, we present here the formula that uses Klim from [MQR17, Equation 3.21]

rather than the one appearing in the main results of that paper). For x ∈ R, t > 0, let

S−t,x (D) = t−1/34
2x3

3t2
+ Ix

t Ai(t−1/3D + t−4/3x2),

which is the integral kernel of the operator 4xm2− t
3
m3

. For h0 ∈ UC with h0 (x) = −∞ for x > 0, let

S
epi(−h−

0
)

−t,x
(E, D) = EB(0)=E

[
S−t,x−3 (B(3), D)13<∞

]
,

where 3 is now defined as the hitting time of the epigraph of −h−
0

by B(G), a Brownian motion with

diffusion coefficient 2, with h−
0
(x) = h0 (−x). For such initial data, the KPZ fixed point kernel reads

KFP
t (=8 , ·; = 9 , ·) = −4 (x 9−x8)m2

1x8>x 9
+ (S−t,x8 )∗S

epi(−h−
0
)

−t,−x 9
, (3.1)

and the transition probabilities for the KPZ fixed point h(t, x) are defined through their finite dimensional

distributions, which are given by Fredholm determinants,

Ph0
(h(t, x1) ≤ a1, . . . , h(t, x<) ≤ a<) = det

(
I − j̄−aKFP

t j̄−a

)
!2 ( {x1 ,...,x< }×R)

. (3.2)

The process is statistically spatially invariant, so the corresponding formulas for h0 ∈ UC with

h0 (x) = −∞ for x > x0 are easily recovered. Such data are dense in UC, and it is shown in [MQR17]

that the probabilities are continuous functions of h0 ∈ UC. So the general formula can be obtained from

(3.2) by approximation (see [MQR17, Theorem 3.8]).

Consider a family of initial conditions X
(Y)
0

for RBM satisfying, for some h0 ∈ UC,

− Y1/2 (X(Y)
0

(−2Y−1x) − 2Y−1x) −−−−→
Y→0

h0 (x) (3.3)

in distribution in UC, where the left-hand side is interpreted as a linear interpolation to make it a

continuous function of x ∈ R. The left-hand side of (3.3) (as well as the right-hand side of (3.4) below)

has the interpretation as a kind of inverse function of the height function (whose definition we have not

given and will not need here; see (2.1) and Section 3 in [MQR17] for the definition in the context of

TASEP). The scaling limits look at perturbations of height functions from flat, so the limit of the inverse

function naturally picks up a minus sign. Note that the convergence (3.3) requires a far more restrictive

lower bound on the growth of X0 (−ℓ), ℓ > 0 than the one used after (1.1) to show that the minimum

is achieved; it is being assumed to grow linearly. These conditions correspond to upper bounds needed

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2020.56
Downloaded from https://www.cambridge.org/core. IP address: 190.153.201.175, on 10 May 2021 at 20:46:40, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2020.56
https://www.cambridge.org/core


6 Mihai Nica et al.

on the initial data for the KPZ fixed point to prevent blowup: once the initial data grows quadratically, a

blowup occurs in finite time (see [SV20] for the precise statement). We assume linear upper bounds on

UC because it is a nice class where the solution stays and exists for all time, and trace class bounds on

the kernel turn out to be very tricky if one considers the general case of quadratic growth.

Let X
(Y)
C denote RBM with this initial data, and define the 1:2:3 rescaled RBM:

X
(Y)
t

(x) = Y1/2 (X(Y)
Y−3/2t

(Y−3/2t − 2Y−1x) + 2Y−3/2t − 2Y−1x
)
. (3.4)

Theorem 3.1. Assume that the initial data satisfy (3.3). Then, for each t > 0, in UC in distribution,

− X (Y)
t

(x) −−−−→
Y→0

h(t, x; h0). (3.5)

By the Markov property, the above convergence extends to multitime distributions. One could also

upgrade the result to space-time convergence by employing the variational formula and the Brownian

Gibbs property [CH14] (or, alternatively, from the explicit formulas as done for TASEP in [MQR17])

to show that the trajectories are Hölder 1
2
− in space and Hölder 1

3
− in time and using this to derive the

necessary tightness.

The rest of this section is devoted to the proof of Theorem 3.1. An important ingredient will be a

variational formula for the limit of X
(Y)
t

that follows from [DOV18]; the formula is stated and proved in

Section 4 (see Proposition 4.1).

At the level of convergence of kernels, the proof is analogous to the proof of the convergence of the

TASEP kernels in [MQR17] but in this case uses the standard convergence of Hermite polynomials

to Airy functions. Our goal is to study the limit of the kernel Y−1/2K̃
RBM

C (=8 , I8; = 9 , I 9 )1I8≤−0̃8 , D 9 ≤−0̃ 9

defined in terms of K̃
RBM

C from (2.3) with

C = Y−3/2t, =8 = Y
−3/2t − 2Y−1x8 , I8 = −2Y−3/2t + 2Y−1x8 + Y−1/2D8 , [ = Y−1/2E

and 0̃8 = −2Y−3/2t + 2Y−1x8 − Y−1/2a8 (the Y−1/2 in front of the kernel comes from the I8 change

of variables). In view of (3.2), our goal is to show that this kernel converges in a suitable way to

KFP
t (x8 , D8; x 9 , D 9 )1D8≤−a8 , D 9 ≤−a 9

. Note that the change of variables transforms the indicator functions

in the desired manner.

Recall first that 4H−Gm−1(G, H) is the transition probability for the exponential random walk �: . Thus,

under this scaling and for x8 > x 9 , the first term on the right-hand side of (2.3) becomes −Y−1/2 times the

probability density for the walk �: to go from 2Y−1x8+Y−1/2D8 to 2Y−1x 9 +Y−1/2D 9 in time 2Y−1 (x8−x 9 ).
This converges to −4 (x8−x 9 )m2 (D8 , D 9 ) by the central limit theorem.

Define

SY
−t,x(E, D) = Y−1/24−

1
2
C
S−C ,−= ([, I) = Y−1/24−

1
2
C4[−Iψ= (C, [ − I),

S̄
Y
−t,−x(E, D) = Y−1/24

1
2
C
S̄−C ,= ([, I) = Y−1/24

1
2
C4I−[ ψ̄= (C, [ − I)

so that, after scaling, the second term on the right-hand side of (2.3) reads (SY
−t,x8

)∗S̄Y,epi(−h−
0
)

−t,−x 9
with

S̄
Y,epi(−h−

0
)

−t,−x 9
(E, D) = Y−1/2

EY1/2�0=E

[
S̄
Y

−t,−x 9− 1
2
Yg (Y1/2�g , D)1g<=

]
. Now the standard asymptotics of Her-

mite polynomials (see e.g. [AGZ10, Lemma 3.7.2])

=1/12k= (2
√
= + =−1/6G) −→ Ai(G), k= (G) = (2c)−1/4(=!)−1/24−

1
4
G2

�= (G)

gives the pointwise convergence

SY
−t,x(E, D) −→ S−t,x (E, D), S̄

Y
−t,−x (E, D) −→ S−t,−x(E, D). (3.6)
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Finally, using this scaling inside the integral in (2.2) (or in the expectation defining S̄
Y,epi(−h−

0
)

−t,−x 9
above)

and rescaling accordingly, we get that the random walk � converges to the Brownian motion B and the

hitting time g converges to the Brownian hitting time 3 to the epigraph of curve −h−
0
(y), leading to

Y−1/2K̃
RBM

C (=8 , I8; = 9 , I 9 ) converging to the right-hand side of (3.1).

This proves the limit (3.5) at the level of pointwise convergence of the kernels involved. The transition

probabilities are given in terms of Fredholm determinants, so to prove they in fact converge, one needs

more. To provide the simplest possible proof, we take the following route. We show that if h0 is made up

of multiple narrow wedges (see below), and X
(Y)
0

are natural approximations of such, the convergence

of kernels is in trace norm. Since the Fredholm determinant is continuous in the trace class topology,

this proves the desired convergence of probabilities in the case of multiple narrow wedges. Together

with Proposition 4.1, this yields the variational formula

h(t, x; h0)
dist
= sup

y∈R

{
A(0, x; t, y) − (x−y)2

t
+ h0 (y)

}

for multiple narrow wedge h0, where A(s, x; t, y) is the Airy sheet constructed in [DOV18] (see also

(4.2)). Multiple narrow wedges are dense in UC, and both sides are continuous functions of h0 ∈ UC,

so we conclude that the variational formula holds for all h0 ∈ UC. Using Proposition 4.1 again, we

therefore conclude Theorem 3.1. (For more background on the Fredholm determinant, including the

definition and properties of the Hilbert-Schmidt and trace norms to be used below, we refer to [Sim05]

or [QR14, Section 2]).

We start by defining approximate multiple narrow wedges. Fix aℓ < · · · < a1 ≤ 0 and b1, . . . , bℓ ∈ R,

and consider RBM initial data X
(Y)
0

(8) = ∞ for 8 < −2Y−1a1, X
(Y)
0

(8) = −2Y−1a: − Y−1/2b: for

2Y−1a: ≤ 8 < −2Y−1a:+1, : = 1, . . . , ℓ − 1 and X(Y) (8) = −2Y−1aℓ − Y−1/2bℓ for 8 ≥ −2Y−1aℓ . Then

−X (Y)
0

(x) −−−−→
Y→0

d
b1 ,...,bℓ
a1 ,...,aℓ

(x)

in UC, where the multiple narrow wedge d
b1 ,...,bℓ
a1 ,...,aℓ

(x) equals b: if x is one of the a: ’s and −∞ for all

other x.

As explained above, Theorem 3.1 follows from:

Proposition 3.2. Let h0 = d
b1 ,...,bℓ
a1 ,...,aℓ

, and let −X (Y)
0

be their approximations prescribed above. Then (3.5)

holds.

Proof. We need to prove the convergence of the scaled RBM kernel in trace norm. For simplicity, we

will prove this only for the kernel corresponding to one-point distributions: that is, the kernel K̃
(=) ,RBM

C

coming from (2.3) (after scaling) with =8 = = 9 = =; at the end of the proof, we will explain how

the proof extends to the general case. Additionally, for notational simplicity, we will take all b: ’s to

be 0; the extension to general b: ’s is straightforward, as will be clear from the proof. We will write

;: = ⌈−2Y−1a:⌉.
Consider first the single narrow wedge case, ℓ = 1, for which X

(Y)
0

(8) = ∞ for 8 < −2Y−1a and

X
(Y)
0

(8) = 2Y−1a for 8 ≥ −2Y−1a (here a = a1). Since the walk �: takes strictly negative steps, g < = if

and only = > ; and �; > 2Y−1a, in which case g = ; = ⌈−2Y−1a⌉. Then, recalling again that the transition

matrix of the walk �: is &exp(G, H) ≔ 4H−Gm−1(G, H), we have S̄
epi(X0)
−C ,= = (&exp);j2Y−1aS̄−C ,=−;1;<=, and

thus (using (S−C ,−=)∗(&exp); = (S−C ,−=+;)∗, which follows from (2.4))

K̃
(=) ,RBM

C = (S−C ,−=+;)∗j2Y−1aS̄−C ,=−;11;1<=. (3.7)
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From (2.5) and the formula 4
1
2C
m2(I) = 1

2ci

∫
iR+X 3F 4

CF2/2−FI , valid for any X ∈ R, we get

S−C ,−= (I1, I2) =
1

2ci

∫

iR+X
dF F=4

1
2
CF2+(1−F) (I1−I2) , (3.8)

while using the representation �= (G) = =!
2ci

∫
W0

dF 4−F
2/2+FG

F=+1 , we get

S̄−C ,= (I1, I2) =
1

2ci

∫

W0

dF
1

F=+1
4−

1
2
CF2+(F−1) (I1−I2) , (3.9)

where W0 is any positively oriented contour around the origin. From [WFS17, Lemmas 5.12 and 5.13],

we have, for each fixed t, x, that: 1. The limits in (3.6) hold uniformly on compact sets of E, D; 2. For

each a ∈ R, there is a �a < ∞ such that for D > a,

|SY
−t,x (D) | ≤ �a4

−D |S̄Y
−t,−x(D) | ≤ �a4

−D , (3.10)

where the operators SY
−t,x, S̄

Y
−t,−x from (3.6) are written as functions of one variable given that they

are convolution operators. The scaled version of K̃
(=) ,RBM

C is (SY
−t,x−a)∗j0S̄

Y
−t,−x+a, which we need to

consider acting on !2 ((−∞,−a]); we may then split the resulting operator as the product of two factors,

j̄−a (SY
−t,x)∗j0 and j0S̄

Y
−t,−x j̄−a, whose Hilbert-Schmidt norms

‖ j̄−a(SY
−t,x)∗j0‖2

2
=
∫ ∞
0

dE
∫ a

−∞dD SY
−t,x (E, D)2,

‖j0S̄
Y
−t,−x j̄−a‖2

2
=
∫ ∞
0

dE
∫ a

−∞dD S̄
Y
−t,−x (E, D)2

are bounded independent of Y by (3.10). Since the trace norm of a product is bounded by the product of

the Hilbert-Schmidt norms, this provides a uniform (in Y) bound on the trace norm of (SY
−t,x)∗j0S̄

Y
−t,−x

on !2 ((−∞,−a]). Now, if we want to prove that (SY
−t,x−a)∗j0S̄

Y
−t,−x+a converges to (S−t,x−a)∗j0S̄−t,−x+a

in trace norm in this space, we can control the trace norm of the difference of the two sides by the sum of

‖ j̄−a (SY
−t,x)∗j0− j̄−a(S−t,x)∗j0‖2‖j0S̄

Y
−t,−x j̄−a‖2 and ‖ j̄−a(S−t,x)∗j0‖2‖j0S̄

Y
−t,−x j̄−a− j0S−t,−x j̄−a‖2,

both of which vanish as Y → 0 by a simple truncation argument using the uniform convergence on

compact sets together with (3.10) and the analog estimate for |S−t,x (D) | (see e.g. [MQR17, Equation

(3.21)]).

Now we consider a general multiple narrow wedge. The same argument as above shows that if the

epigraph of X
(Y)
0

is hit, then it has to be hit at the beginning of one of the blocks of packed particles,

and then by inclusion-exclusion one gets (recall ;1 < · · · < ;ℓ)

S̄
epi(X0)
−C ,= =

ℓ∑

:=1

(−1):+1
∑

1≤?1≤···≤?: ≤ℓ
(&exp);?1 j2Y−1a?1

(&exp);?2
−;?1 j2Y−1a?2

· · ·

· · · (&exp);?:−;?:−1 j2Y−1a?:
S̄−C ,=−;?: 1;?: <=.

(3.11)

Therefore, K̃
(=) ,RBM

C can be expressed as
∑ℓ

:=1 (−1):+1
∑

1≤?1≤···≤?: ≤ℓ  ?1 ,..., ?:
1;?: <= with

 ?1 ,..., ?:
= (S−C ,−=+;?1

)∗j2Y−1a?1
(&exp);?2

−;?1 j2Y−1a?2
· · · (&exp);?:−;?:−1 j2Y−1a?:

S̄−C ,=−;?: .

From the arguments used in the case of a single narrow wedge, we know that (S−C ,−=+;?1
)∗j2Y−1a?1

and j2Y−1a?:
S̄−C ,=−;?: converge, respectively, after properly scaling and truncating to !2 ((−∞,−a]),

to (S−t,x−a?1
)∗j0 and j0S−t,−x+a?:

, with the convergence holding in Hilbert-Schmidt norm. On the
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other hand, the inner factor j2Y−1a?1
(&exp);?2

−;?1 j2Y−1a?2
· · · j2Y−1a?:−1

(&exp);?:−;?:−1 j2Y−1a?:
con-

verges under our scaling to j04
(a1−a2)m2

j0 · · · j04
(a:−1−a: )m2

j0 by the central limit theorem, and it

is not hard to see that the convergence holds in operator norm. Recall that the trace norm satis-

fies the inequality ‖� ‖1 ≤ ‖�‖op‖ ‖1 with respect to the operator norm. Thus, using the same

argument as for the single narrow wedge case, the whole product converges in trace norm to

(S−t,x−a?1
)∗j04

(a1−a2)m2

j0 · · · j04
(a:−1−a: )m2

j0S−t,−x+a?:
. Summing as on the right-hand side of (3.11)

and using inclusion exclusion in the opposite direction then leads directly to KFP
t for h0 = d

0,...,0
01 ,...,aℓ

, since

B can only hit the epigraph of this function if it is positive at one of the points a1, . . . , aℓ .

We have proved the desired convergence of the kernel in (2.3) in the one-point case corresponding

to =8 = = 9 = =. To prove the convergence in trace norm of the extended kernel, it suffices to prove the

convergence of each of its entries (i.e. of the right-hand side of (2.3) for general =8 and = 9 ). The kernel

corresponding to =8 , = 9 has two terms. The convergence of the second term follows from exactly the

same arguments as above (the only difference is that in the decomposition (3.7), the two pieces depend

on different values of =, but this is not a problem since they were estimated separately anyway). To

upgrade to trace norm the convergence of the first term (for =8 < = 9 ), an additional conjugation by a

multiplication operator is needed, but this conjugation does not affect the convergence of the other term;

the argument is essentially the same as in [MQR17] (see Remark B.5 there), where the same conjugation

is employed in the proof of the convergence of the TASEP kernels. �

4. From RBM to the Airy sheet variational formula

By coupling copies of TASEP starting with different initial conditions, and using compactness, the Airy

sheet

A(x, y) = h(1, y;dx) + (x − y)2

is defined in [MQR17] as a two-parameter process, where we have started the KPZ fixed point with

the UC function dx (x) = 0, dx (u) = −∞ for u ≠ x: the narrow wedge at x. Applying the preservation

of maximum property of the KPZ fixed point, h(t, x; f1 ∨ f2)
dist
= h(t, x; f1) ∨ h(t, x; f2), repeatedly to

multiple narrow wedges and taking limits (see [MQR17, Section 4]) leads to the variational formula

h(t, x; h0)
dist
= sup

y∈R

{
t1/3

A(t−2/3x, t−2/3y) − 1
t
(x − y)2 + h0 (y)

}
. (4.1)

The equality is in distribution, as functions of x, for fixed t.

More generally, one can consider the space-time Airy sheet or directed landscape [CQR15, DOV18]

A(s, x, t, y) = h(t, y; s, dx) + (x−y)2

t−s
,

where h(t, y; s, h̄) denotes the KPZ fixed point at time t starting at h̄ at time s. This gives, for any s ≥ 0

and any h̄ ∈ UC,

h(t, x; s, h̄) dist
= sup

y∈R

{
A(s, x; t, y) − (x−y)2

t−s
+ h̄(y)

}
, (4.2)

with equality in distribution in the space of continuous functions of t ∈ [s,∞) into UC (or, if one

prefers, in the space of continuous functions of t ∈ (s,∞) into Hölder 1
2
− functions). The variational

formula (4.2) follows from (4.1) by the Markov property and scaling invariance of the KPZ fixed point

together with the semigroup property of the Airy sheet [MQR17, Theorem 4.18]: if A1 and A
2 are

independent copies and t1 + t2 = t are all positive, then for Â8 (x, y) = A
8 (x, y) − (x − y)2, one has

supz

{
t
1/3
1

Â
1(t−2/3

1
x, t

−2/3
1

z) + t
1/3
2

Â
2 (t−2/3

2
z, t

−2/3
2

y)
}

dist
= t1/3

Â
1 (t−2/3x, t−2/3y) (this is called metric

composition in [DOV18]).
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The disadvantage of resorting to compactness arguments is that they cannot tell one that the limiting

object is defined uniquely, and all one can conclude is that the variational expressions (4.1) and (4.2) hold

for any limit point. In [DOV18], this is overcome by showing that the sheet is a (non-explicit) functional

of the Airy line ensemble [CH14]. Since the Airy line ensemble is defined uniquely as a determinantal

point process, the uniqueness of the Airy sheet follows as a consequence. We stress that, at this stage,

nothing ensures that the Airy sheets coming from the two constructions in [MQR17] and [DOV18] are

the same object. The equality, however, will be a consequence of our main result, Corollary 4.2.

The following result follows from the construction of the Airy sheet in [DOV18] together with the

relation between RBM and Brownian last passage percolation.

Proposition 4.1. In the setting of Theorem 3.1, assume now that −X (Y)
0

(x) −→ h0 (x) for some finitely

supported h0 ∈ UC, meaning that h0 (x) = −∞ for x outside some finite interval. Then for each t > 0,

− X (Y)
t

(x) −−−−→
Y→0

sup
y∈R

{
A(0, x; t, y) − (x−y)2

t
+ h0 (y)

}
(4.3)

in distribution (locally) in UC, where A(s, x; t, y) stands for the the Airy sheet constructed in [DOV18].

Proof. Thanks to the 1:2:3 scaling invariance of the KPZ fixed point, we may assume without loss of

generality that t = 1. Additionally, by spatial invariance, we may assume without loss of generality

that the support of h0 is contained in (−∞, 0], so that we can work in the setting of RBM with a first

particle XC (1) as in the previous section. Consider the scaling C = Y−3/2, = = Y−3/2 − 2Y−1x, so that

X
(Y)
1

(x) = Y1/2 (X(Y)
C (=) − C − =) and (1.1) yield

−X (Y)
1

(x) = max
1≤ℓ≤=

{
Y1/2 (−X

(Y)
0

(ℓ) + ℓ
)
+ Y1/2 (� [(0, ℓ) → (C, =)] + C + (= − ℓ)

)}
.

Changing variables ℓ ↦→ −2Y−1y, and in view of (3.4), this becomes

max
y∈[x− 1

2
Y−1/2 , 1

2
Y ]

{
−X (Y)

0
(−2y) + Y1/2� [(0,−2Y−1y) → (Y−3/2, Y−3/2 − 2Y−1x)]

+ 2Y−1 − 2Y−1/2 (x − y)
}
.

X
(Y)
0

(−2y) converges in distribution, locally in UC, to −h0 (y); and since h0 (y) = −∞ for y outside some

finite interval [a, b], then as Y → 0, we obtain the same thing by optimising over the set [a − 1, b + 1].
Let s = −2Y1/2y and s′ = 1 − 2Y1/2x to get

max
y∈[a−1,b+1]

{
−X (Y)

0
(−2y) + Y1/2� [(Y−3/2s + 2Y−1y, Y−3/2s) → (Y−3/2s′ + 2Y−1x, Y−3/2s′)]

+ 2Y−1 − 2Y−1/2 (x − y)
}
.

The variables s, s′, y vary over a compact set as Y → 0, so assuming that x also does, using the uniformity

of the convergence in [DOV18, Theorem 1.5], we deduce (4.3) in distribution, locally in UC. �

We can now fill in the gap between [DOV18] and [MQR17] that results from the limiting objects in

[MQR17] having been defined as limits from TASEP and those in [DOV18] having been derived from

BLPP. Since the KPZ fixed point is defined through its transition probabilities, there is no ambiguity in

its definition. So Proposition 3.2 shows that the right-hand side of (4.3) is given by the KPZ fixed point

h(t, x; h0) for multiple narrow wedge data (defined before Proposition 3.2). Since such data are dense

in UC, and both sides of (4.2) are continuous on UC, we have that (4.2) holds for all h0 ∈ UC. At the

same time, a second group [DNV+] are filling the gap from the other side, proving that the result in

[DOV18] can also be obtained from exponential last-passage percolation, which is in variational duality
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with TASEP. Since the Airy sheet is obtained as the same functional of the Airy line ensemble, which is

unique, again there is no ambiguity, and TASEP converges to the unique Airy sheet of [DOV18]. Either

route leads to the main result:

Corollary 4.2. The KPZ fixed point Markov process constructed in [MQR17] and the (unique) Airy

sheet/directed landscape constructed in [DOV18] are related by the variational formula (4.2).

5. From TASEP to RBM

5.1. Biorthogonal ensemble for RBM

Recall (2.1) the operator m−1 5 (G) =
∫ G

−∞ dH 5 (H), the notation being consistent with the fact that, when

restricted to a suitable domain, m−1 is the inverse of the derivative operator m. Recall also that m−1 can

be regarded as an integral operator with integral kernel m−1(G, H) = 1G>H ; more generally, it is easy to

check that m−< ≔ (m−1)< has integral kernel

m−<(G, H) = (G − H)<−1

(< − 1)! 1G>H .

The next result can be derived by following the biorthogonalization approach introduced in [Sas05,

Bor+07] for TASEP in the case of RBM (based on the explicit). The proof is also contained implicitly in

the proof of [FSW15, Proposition 4.2]; see also [WFS17, Lemma 3.5]. Or it can alternately be derived

by taking the low-density limit of the result for TASEP from [Sas05, Bor+07].

Theorem 5.1. Consider RBM with initial condition {X0(8)}∞8=1
. For any indices 1 ≤ =1 < =2 < . . . < =<,

any locations 01, . . . , 0< ∈ R and any C > 0,

P
(
XC (= 9 ) > 0 9 , 9 = 1, . . . , <

)
= det

(
I − j̄0KRBM

C j̄0

)
!2 ( {=1 ,...,=< }×R)

with

KRBM
C (=8 , G8; = 9 , G 9 ) = −m−(= 9−=8 ) (G8 , G 9 )1=8<= 9

+
= 9∑

:=1

	
=8
=8−: (G8)�

= 9

= 9−: (G 9 ),

where

	
=
: = m

:4
1
2
Cm2

XX0 (=−:)

for : < = and the functions �=
:

are defined implicitly by:

(1) The biorthogonality relation 〈	=
:
,�=

ℓ
〉!2 (R) = 1:=ℓ .

(2) �
=
:
(G) is a polynomial of degree at most = − 1 in G for each : .

Remark 5.2. Using (2.5), we have that 	=
:
(G) = (−1): C:/2ℎ: (C, G − -0 (=− :))FC (G − -0 (=− :)), with

ℎ: (C, ·) the scaled Hermite polynomials ℎ: (C, G) = �: (G/
√
C), which are orthogonal with respect to the

Gaussian weight FC (G) = (2cC)−1/24−
1
2C
G2

. Hence (ignoring the prefactor (−1): C:/2) the problem of

finding the �=
:
’s can be rephrased as follows:

For fixed = > 0, and given a family of shifted Hermite functions ( 5: ):=0,...,=−1, 5: (G) = ℎ: (C, G −
X0(=− :))FC (G−X0(=− :)), find a family of polynomials (6: ):=0,...,=−1, with 6: of degree : , which

is biorthogonal to ( 5: ):=0,...,=−1.

The challenge in such problems is to actually find the biorthogonal functions �
=
:

in a form that is

useful. Our strategy here is to compute them formally as a limit of the corresponding biorthogonal

functions found for TASEP in [MQR17] and then simply check that the result satisfies (1) and (2) above.
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5.2. TASEP

#-particle TASEP was solved by Schütz [Sch97] using the coordinate Bethe ansatz, which leads to

a formula for the transition probabilities given as the determinant of an explicit # × # matrix (an

analogous formula can be written for RBM – see [War07, Proposition 8] – and is the starting point in

the derivation of Theorem 5.1). However, and as in Theorem 5.1, one is usually interested in studying

<-point distributions of the process for arbitrary < ≤ # and, moreover, in obtaining formulas that are

suitable for taking # → ∞. [Sas05, Bor+07] realized that this can be achieved by rewriting Schütz’s

formula in terms of a (signed) determinantal point process on a space of Gelfand-Tsetlin patterns and

employing the Eynard-Mehta technology [EM98] to derive a Fredholm determinant formula for the <-

point distributions. The result is precisely the TASEP version of Theorem 5.1, but we will not need to

state it explicitly. Instead, we will state a version of this result that follows from [MQR17], where the

biorthogonalization is performed explicitly.

To state the result, we need to introduce some additional notation. Define kernels

&(G, H) = 1G>H , &−1 (G, H) = 1G=H−1 − 1G=H .

They can be regarded as operators acting on suitable functions 5 : Z −→ R, so for example & 5 (G) =∑
H<G 5 (H), &−1 5 (G) = ∇+ 5 (G) ≔ 5 (G + 1) − 5 (G). Next we consider the kernel

4−C∇
− (G, H) = 4−C CG−H

(G − H)!1G≥H ,

with ∇− 5 (G) = 5 (G) − 5 (G − 1). (4−C∇−)C≥0 is the semigroup of a Poisson process with jumps to the

left at rate 1; this formula is actually valid for all C ∈ R, and it defines the whole group of operators

(4−C∇− )C ∈R (so, in particular, 4−C∇
−

is invertible, with inverse 4C∇
−
).

Theorem 5.3 ([Bor+07, Lemma 3.4], [MQR17, Theorem 2.2]). Suppose that TASEP starts with

particles -0(1) > -0(2) > · · · , and let 1 ≤ =1 < =2 < · · · < =<. Then, for C > 0,

P
(
-C (= 9 ) > 0 9 , 9 = 1, . . . , <

)
= det

(
I − j̄0 TSP

C j̄0

)
ℓ2 ( {=1 ,...,=< }×Z)

with

 TSP
C (=8 , G8; = 9 , G 9 ) = −&= 9−=8 (G8 , G 9 )1=8<= 9

+
= 9∑

:=1

Ψ
=8
=8−: (G8)Φ

= 9

= 9−: (G 9 ), (5.1)

where, for : < =,

Ψ=
: (G) = 4

−C∇−
&−:X-0 (=−:) (G) =

1

2ci

∮

Γ0

dF
(1 − F):

FG+:+1−-0 (=−:)
4C (F−1) (5.2)

with Γ0 any positively oriented simple loop including the pole at F = 0 but not the pole at F = 1,

and where the functions Φ=
:
(G), : = 0, . . . , = − 1, are given by Φ=

:
(G) = (4C∇− )∗ℎ=

:
(0, ·) (G) with

ℎ=
:
(ℓ, ·) : Z −→ R defined recursively through ℎ=

:
(:, I) = 1, I ∈ Z, and, for ℓ < : , ℎ=

:
(ℓ, -0 (=− ℓ)) = 0,

and

ℎ=: (ℓ, I) =
∑-0 (=−ℓ)

H=G ℎ=
:
(ℓ + 1, H), (5.3)

where, as usual,
∑I

H=G ℎ(H) = −∑G
H=I ℎ(H) if G > I.

Remark 5.4. We have stated the last result in a slightly different way than (but equivalent to) [MQR17].

First, while in that paper the TASEP kernels were conjugated by 2G in order to connect them directly

to certain probabilistic objects (basically, a random walk with Geom[ 1
2
] steps), here we will omit that

conjugation; this will allow us to state formulas in terms of slightly simpler kernels that are available
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in the continuous space setting of RBM. Second, the TASEP biorthogonal functions Φ=
:
, which solve

a discrete space version of (1) and (2) of Theorem 5.1, were expressed in [MQR17] in terms of the

solution of an initial–boundary value problem for a discrete backward heat equation, while here we

write down this solution explicitly; this allows us to compute the limiting �
=
:
’s very easily.

5.3. Brownian scaling limit of the TASEP biorthogonal functions

We compute now the limit of the TASEP formulas under the scaling (1.2). The limits can be proved

rigorously, but since this will not be necessary in our derivation, we will just state them and explain how

they arise (see the comments just after Theorem 5.1.)

Since & is a discrete integration operator, it is not surprising that after scaling, it converges to m−1.

In fact, we have for any C ∈ R and < ∈ Z≥0 that

^−(<−1)/2&<(
√
^ G + ^C,

√
^ H + ^C) −−−−→

^→∞
m−<(G, H),

as can be checked, for instance, by using the explicit formula &<(G, H) =
(G−H−1
<−1

)
1G≥H+<. The limit

can be extended suitably to all < ≤ 0 to get that, after scaling, &−< converges to m<. Consider next

the Poisson semigroup (4−C∇−)C≥0. We are interested in the scaling
√
^ 4−^C∇

−(
√
^ G,

√
^ H + ^C), which is

simply
√
^ times the probability that a Poisson random variable with parameter ^C equals

√
^ (H−G) + ^C.

By the central limit theorem,

√
^ 4−^C∇

−(
√
^ G,

√
^ H + ^C) −−−−→

^→∞
4

1
2
Cm2 (G, H). (5.4)

Combining the above two facts leads directly to the following: for : < =, and replacing C by ^C and

taking -0(= − :) =
√
^X0 (= − :) in (5.2),

^:/2+1Ψ=
: (
√
^ G + ^C) −−−−→

^→∞
m:4

1
2
Cm2

XX0 (=−:) (G) = 	
=
: (G).

We turn now to the Φ=
:
’s. For the functions ℎ=

:
that are used to construct them (see (5.3)), we have

^−(:−ℓ)/2ℎ=: (ℓ,
√
^G) −−−−→

^→∞
h=
: (ℓ, G), (5.5)

where h=
: (ℓ, G) is given by h=

: (:, I) = 1 and

h=
: (ℓ, I) =

∫ -0 (=−ℓ)

G

dH h=
: (ℓ + 1, H) for ℓ < :. (5.6)

Each h=
: (ℓ, ·) is a polynomial of degree : − ℓ. We want to use (5.5) to write a limit forΦ=

:
. This function

is defined by applying 4C∇
−

to ℎ=
:
(0, ·); and from (5.4), we have, formally, that under the scaling we are

interested in, 4C∇
−

should converge to 4−
1
2
Cm2

. Hence

^−(:/2+1)Φ=
: (
√
^ G + ^C) −−−−→

^→∞
4−

1
2
Cm2

h=
: (0, ·).

Remark 5.5. The backward heat kernel appearing above does not make sense in general, but in this

setting it is applied to the polynomial h=
: (0, ·), in which case its action can be defined by expanding it as

a (finite) power series. Furthermore, one can check that the group property 4Bm
2

4Cm
2

? = 4 (B+C)m
2

? holds

for any B, C ∈ R and any polynomial ?.

The preceding computations suggest the following result, which we prove directly. It is worth noting

how simple the proofs are using this method, once one has the candidate biorthogonal functions.
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Proposition 5.6. The functions �=
:

defined through (1) and (2) of Theorem 5.1 are given explicitly by

�
=
: = 4

− 1
2
Cm2

h=
: (0, ·).

Proof. The fact that �=
:

is a polynomial of degree at most = − 1 follows from the above discussion and

the same fact for h=
: (0, ·). For the biorthogonality, we note first that by (5.6), we have the simple identity

m:h=
ℓ
(0, -0 (= − :)) = (−1):1:=ℓ . Using this and the comment made in Rem. 5.5, we compute

〈	=
: ,�

=
ℓ 〉!2 (R) = 〈m:4 1

2
Cm2

XX0 (=−:) , 4
− 1

2
Cm2

h=
ℓ (0, ·)〉!2 (R)

= 〈m:XX0 (=−:) , h
=
ℓ (0, ·)〉!2 (R) = (−1):m:h=

ℓ (0,X0 (= − :)) = 1:=ℓ

as desired, where we have used the formula 〈X (:)G0
, 5 〉!2 (R) = (−1): 5 (:) (G0) for X

(:)
G0

the :th distributional

derivative of XG0
. �

5.4. Representation as hitting probabilities

The next step is to represent KRBM
C in terms of hitting times, thus producing a formula that is nicely set

up for the 1:2:3 KPZ scaling limit.

Let (�∗
:
):≥0 denote a random walk with Exp[1] steps to the right; its transition matrix is &∗

exp with

&exp (G, H) = 4H−Gm−1(G, H) the transition matrix of the walk �: introduced earlier. We claim that below

the ‘curve’ (X0 (= − ℓ))ℓ=0,...,=−1 defined by the initial data, h=
: (ℓ, ·) can be represented as a hitting

probability,

h=
: (ℓ, G) = 4

X0 (=−:)−G P�∗
ℓ−1
=G

(
gℓ,= = :

)
, G < X0(= − ℓ), (5.7)

with gℓ,= = min{ℓ ≤ : ≤ =, �∗
:
≥ X0 (= − :)}. This can be proved easily using (5.6) and the formula

P�∗
ℓ−1
=I (gℓ,= = :) =

∫ X0 (=−ℓ)
I

dH 4−(H−I)P�∗
ℓ
=H (gℓ,= = :), valid for ℓ < : . Next, define

�0,= (G1, G2) =
=−1∑

:=0

m−(=−:)XX0 (=−:) (G1)h=
: (0, G2)

so that

KRBM
C (=8 , ·; = 9 , ·) = −m−(= 9−=8)1=8<= 9

+ m=8−= 9 4
1
2
Cm2

�0,= 9
4−

1
2
Cm2

; (5.8)

note that the backward heat kernel acts on the second variable of �0,= 9
, which defines a polynomial, so

the action is well defined as in Rem. 5.5.

Introduce the kernel

m̄ (−<) (G, H) = (G − H)<−1

(< − 1)! , (5.9)

which may be thought of as an analytic extension of m−<(G, H) = (G−H)<−1

(<−1)! 1G>H . Note that
(
m̄ (−<) )

<≥0

is no longer a semigroup, but we do have mm̄ (−<) = m̄ (−<+1) for < > 1 (however, mm̄ (−1) = 0).

Proposition 5.7. Let (�: ):≥0 be a random walk taking Exp[1] steps to the left and g = min{: ≥ 0 :

�: ≥ X0(: + 1)}. For any G1, G2,

�0,= (G1, G2) = E�0=G1

[
4G1−�g m̄ (−=+g) (�g , G2)1g<=

]
. (5.10)

Proof. We have �0,= (G1, G2) =
∑=−1

:=0 P�
∗
−1
=G2

(g0,= = :)P�∗
0
=X0 (=−:) (�∗

=−: = G1)4G1−G2 for G2 <

X0(=) by (5.7) and the definition of �∗
:
. On the other hand, P�∗

0
=X0 (=−:) (�∗

=−: = G1) =
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∫ ∞
X0 (=−:) d[ 4X0 (=−:)−[ P�∗

:
=[ (�∗

=−1
= G1) while, by the memoryless property of the exponential,

P�∗
−1
=G2

(g0,= = :, �∗
:
∈ d[) = P�∗

−1
=G2

(g0,= = :)4X0 (=−:)−[d[ for [ ≥ X0 (= − :). Thus

�0,= (G1, G2) = 4G1−G2E�∗
−1
=G2

[
(&∗

exp)=−g
0,= (�∗

g0,= , G1)1g0,=<=

]
.

Reversing the direction of the walk, the right-hand side can be rewritten as 4G1−G2E�0=G1[
(&exp)=−g (�g , G2)1g<=

]
= E�0=G1

[
4G1−�gm−=+g (�g , G2)1g<=

]
with g as in the statement. This is valid

for all G2 < X0 (=), and for those we have �g − G2 > X0(= − g) − X0(=) ≥ 0, which implies that the

formula we just obtained coincides with the right-hand side of (5.10) (for such G2). But by definition, we

know that �0,= (G1, G2) is a polynomial in G2, and so is the right-hand side of (5.10). Since they coincide

at infinitely many points, the result follows. �

Using

m=4
1
2
Cm2 (G, H) = (−1)=C−=/2 1√

2cC
4−

1
2C
(G−H)2

�= ( G−H√
C
) = ψ= (H − G) (= ≥ 0),

m̄ (−=)4−
1
2C
m2 (G, H) = 1

(=−1)! C
(=−1)/2�=−1( G−H√

C
) = ψ̄=−1 (G − H) (= ≥ 1)

(the first is (2.5), while for the second we have used 4−
1
2C
m2

G= = C=/2�= ( G√
C
) and the fact that the parity

of �= matches that of = to turn (−1)=�= (G) into �= (−G)), we get from (5.8) that

KRBM
C (=, G8; =, G 9 ) = −m−(= 9−=8) (G8 , G 9 )1=8<= 9

+
∫ ∞

−∞
d[ ψ=8 (C, [ − G8)E�0=[

[
4[−�g ψ̄= 9−g−1(C, �g − G 9 )1g<= 9

]
,

which yields Theorem 2.1 as well as (2.3).
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