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RESUMEN DE LA TESIS PARA OPTAR
AL GRADO DE MAGÍSTER EN CIENCIAS, MENCIÓN FÍSICA
POR: JAVIER IGNACIO SILVA LAFAURIE
FECHA: 2020
PROF. GUÍA: DOMENICO SAPONE

DATA MINING AND MACHINE LEARNING ALGORITHMS IN COSMOLOGY TO
OPTIMIZE THE CONSTRAINING POWER OF PARAMETERS BY BAYESIAN

INFERENCE

El objetivo de esta tesis es explorar algunos algoritmos de minería de datos y aprendizaje
de máquinas aplicados a datos cosmológicos, especialmente a los observables obtenidos del
agrupamiento de galaxias en la estructura a gran escala de nuestro Universo. Revisamos
como obtener esos observables para el catálogo "New York University Value-Added Galaxy
Catalog", del cual reducimos aproximadamente 6000003 coordenadas de galaxias a tan solo
453 números. Luego, procedemos a constreñirlos, para adquirir información cosmológica,
usando el modelo ΛCDM e inferencia Bayesiana. Además, obtenemos los resultados usando
dos algoritmos: Metropolis-Hastings y DELFI; que están basados en cadenas de Marcov y
redes neuronales, respectivamente. Donde el último puede ser más eficiente que el primero
bajo una arquitectura apropiada. Concluimos que los resultados obtenidos de ambos métodos
son consistentes, pero los errores en los parámetros de Shift y Redshift Space Distortions son
subestimados en comparación con otros trabajos que usaron datos similares.

También usamos las medidas de fσ8(z) de diferentes catálogos junto a medidas de H(z),
obtenidas de los cronómetros cósmicos, para comparar diferentes modelos de Energía Oscura.
Utilizamos diferentes criterios estadísticos, como la evidencia Bayesiana, el criterio de infor-
mación Bayesiano, el criterio de información de Akaike y la figura de mérito. Finalmente,
contrastamos esos criterios para todos los modelos y concluimos que el modelo ΛCDM es
siempre el favorecido con estos datos.

Además, exploramos los observables obtenidos del agrupamiento de galaxias del catálogo
"SDSS DR7 main galaxy sample", usando diferentes tipos de galaxias como trazadores. El
uso de múltiples trazadores puede inducir un sesgo en la función de correlación, que se refleja
en su amplitud y en el pico de las oscilaciones acústicas de bariones. Sin embargo, como
estas galaxias trazan la misma distribución de Materia Oscura, esperamos que el sesgo sea
pequeño y que el uso conjunto de los múltiples trazadores nos ayude a reducir la varianza
cósmica. Finalmente, concluimos que el sesgo es bajo y que los resultados son estadística-
mente consistentes entre los trazadores. Asimismo, al combinar la covarianza de las galaxias,
obtenemos resultados concordantes con otros trabajos que usaron los mismos datos.

Finalmente, estudiamos como el tamaño y el número de celdas, para obtener la covarianza
de los multipolos de la función de correlación usando la técnica de jackknife, afecta en su
precisión para el catálogo "SDSS-III BOSS CMASS sample". Además, los comparamos con
covarianzas obtenidas a través de catálogos de galaxias simulados con la estimación log-
normal, bajo la misma área del catálogo original. Queremos saber cuál es el error propagado
a la escala característica de las oscilaciones acústicas de bariones, y para aquello utilizamos
la corrección de tapering en ambas covarianzas. En conclusión, encontramos que aquel error
no depende de la escala asociada del método de jackknife.
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Abstract

This thesis’s main objective is to explore some of the data mining and machine learning algo-
rithms used in cosmological data, especially to the observables from Galaxy-Clustering in the
Large Scale Structure of our Universe. We review how to construct them using the New York
University Value-Added Galaxy Catalog. We reduce approximately 6000003 galaxies coordi-
nates to just 453. Then, we obtain constraints of the cosmological information encoded in
the observables using the ΛCDM scenario and Bayesian inference. Furthermore, we contrast
the results from the Metropolis-Hastings algorithm and density-estimation likelihood-free in-
ference. The last is a deep learning algorithm that could be efficient than the first under
the correct architecture. We obtain concordant results between both techniques but with
underestimated errors in the shift and Redshift Space Distortions parameters, which encode
the cosmological information, in comparison with works with similar data.

Besides, we combine the Redshift Space Distortions measurements fσ8(z) from several
catalogs with the Hubble data H(z) from cosmic chronometers to compare several Dark En-
ergy models beyond ΛCDM. The performing of different statistical criteria bases our analysis.
We use the Evidence comparison, Bayesian Information Criterion, Akaike Information Crite-
ria, and the Figure of Merit. Therefore, we compare them to different frameworks. The flat
ΛCDM model is favored under this data-set for all the criteria.

We also explore the observables from Galaxy-Clustering using different galaxy targets or
tracers from the SDSS DR7 main galaxy sample. This insight could induce a bias in the
two-point correlation function reflected in its amplitude and the Baryon Acoustic Oscillation
peak. However, since these targets trace the same underlying dark matter field, we expect
a small bias and constraints that help us beat the cosmic variance. We effectively conclude
that the bias is small for this data-set, and the results are statistically consistent between
tracers. We also find accurate constraints on the shift parameter by combining the tracers’
covariances.

Finally, we study how the jackknife size and the number of resamplings impact the pre-
cision of the covariance estimate on the correlation function multipoles and the error on the
inferred baryon acoustic scale, using the SDSS-III BOSS CMASS sample. We compare the
measurements with log-normal mock galaxy catalogs with the same survey geometry. We
also apply the tapering scheme to estimate the precision matrix for both paradigms. The
results from CMASS and mock catalogs show that the error estimate of the baryon acoustic
scale does not depend on the jackknife scale.
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"Aequam memento rebus in arduis servare mentem"

Quintus Horatius Flaccus, Odae (II, 3).

vii



viii



Agradecimientos

Durante este camino de aprendizaje, me he topado con muchas personas que han depositado
un poco de su conocimiento en mi y estoy profundamente agradecido por aquello. Es por
este motivo que agradezco a todos mis profesores de mi enseñanza escolar, que de una u
otra forma, hicieron crecer un interés en mi por las ciencias. Particularmente agradezco
a la academia de astronomía del colegio encabezada por la profesora María Angélica, que
ayudaron a prosperar aun más mi curiosidad por esa disciplina.

También a los profesores de la Universidad de Chile, quienes desde el primer día me
hicieron ver la naturaleza con un exquisito detallismo basado en las matemáticas, y además
un fuerte entusiasmo en ir más allá. A ellos les agradezco igualmente la visión de multidis-
ciplinariedad que dejaron impregnado en mi como clave para el futuro. Asimismo a todos
quienes conforman la Universidad y cada día hacen un gran esfuerzo para que se lleve a cabo
su proyecto educativo.

Al mismo tiempo quiero agradecer profundamente a Domenico, mi profesor guía, que me
ha motivado en varios momentos durante el desarrollo de esta tesis, y sin quien no hubiese
sido posible haber concretado este proyecto.

Agradezco de igual forma a todas las personas que de alguna u otra forma se cruzaron
en mi vida y terminaron siendo mis amigos, los aprecio con todo mi corazón. A aquellos y
aquellas que conocí por el colegio, en el pregrado y en el postgrado, por una fiesta, o por
mera casualidad, estoy muy grato con ustedes por todos los momentos de discusión y ocio
que hemos compartido, y que me han hecho crecer como persona.

De igual forma agradezco infinitamente a toda mi familia, que me han apoyado durante
mi carrera haciendo que esto sea posible, este logro también en suyo, muchas gracias.

Finalmente agradezco a todas y todos los científicos e investigadores que han plasmado
su conocimiento, y del cual he tomado pinceladas para trazar este trabajo. Especialmente
a los y las que se han dado el trabajo de pensar y diseñar los experimentos donde se han
recolectado los datos que he usado.

ix



x



Contents

Introduction 1

1 Basics of Cosmology: The Background 5
1.1 The Expanding Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 The Friedmann Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Cosmic Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Proper Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Comoving Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Luminosity Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.4 Angular Diameter Distance . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 The Epochs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.1 The Radiation Domination Era (RDE) . . . . . . . . . . . . . . . . . 16
1.4.2 The Matter Domination Era (MDE) . . . . . . . . . . . . . . . . . . 17
1.4.3 The Dark Energy Domination Era (DEDE) . . . . . . . . . . . . . . 17

2 Basics of Cosmology: Perturbation Theory 19
2.1 The Perturbed Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Gauge-Invariant Perturbations . . . . . . . . . . . . . . . . . . . . . . 20
2.1.2 The Gauge Fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 The Perturbed Energy-Momentum Tensor . . . . . . . . . . . . . . . . . . . 22
2.3 The Perturbed Einstein Tensor . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 The Perturbed Einstein Equations . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 The Perturbed Energy-Momentum Conservation . . . . . . . . . . . . . . . . 27
2.6 The Perturbed Equations In Fourier Space . . . . . . . . . . . . . . . . . . . 29
2.7 Single Perfect Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7.1 Super-Horizon Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7.2 Sub-Horizon Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7.3 Perturbations During RDE . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7.4 Perturbations During MDE . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Multiple Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8.1 Two Fluids: Matter And Radiation . . . . . . . . . . . . . . . . . . . 36

2.9 Interacting Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.9.1 Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.9.2 Baryons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.9.3 Cold Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.9.4 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xi



3 History Of The Universe 54
3.1 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Reheating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4 Thermal History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.1 Big Bang Nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.2 Matter-Radiation Equality . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.3 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.4.4 Photon Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4.5 Drag Epoch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5 Transition from MDE to DEDE . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 From Theory To Observations 80
4.1 Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.1 Gaussian Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Matter Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Correlation Function Estimators . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4 Velocity Field And Redshift Space Distortions . . . . . . . . . . . . . . . . . 94
4.5 Geometrical Distortions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Algorithms Insights 101
5.1 Calculations Of Pairwise Distances . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Kernel Density Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3 Bayesian Statistical Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4 Metropolis-Hastings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.6 Density-Estimation Likelihood-Free Inference . . . . . . . . . . . . . . . . . . 107

6 The Correlation Function For The NYU-VAGC 110
6.1 NYU Value-Added Galaxy Catalog . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Kernel Density Estimation For Random Mask . . . . . . . . . . . . . . . . . 110
6.3 From Redshift To Comoving Distances . . . . . . . . . . . . . . . . . . . . . 112
6.4 Weight Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.5 The NYU-VAGC Two-Point Correlation Function . . . . . . . . . . . . . . . 115
6.6 The Covariance Matrix For The NYU-VAGC . . . . . . . . . . . . . . . . . . 117

7 Cosmological Inference 121
7.1 Models For ξ(r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1.1 Purely Cosmological Model . . . . . . . . . . . . . . . . . . . . . . . 122
7.1.2 Geometrical Model With Shift Parameter . . . . . . . . . . . . . . . . 122
7.1.3 Geometrical Model With Nuisance Parameters . . . . . . . . . . . . . 123
7.1.4 Geometrical Model Considering Non-Linearities . . . . . . . . . . . . 123
7.1.5 Geometrical Model With Redshift Space Distortions . . . . . . . . . . 125
7.1.6 Empirical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2 Results I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.3 Results II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xii



8 Comparing Dark Energy models with Hubble versus Growth Rate data 140
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.2 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9 Cosmological constraints from galaxy multi-tracers in the nearby Universe160
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.5 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10 Does jackknife scale really matter for accurate large-scale structure covari-
ances? 169
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
10.2 Observed galaxy sample: BOSS CMASS DR12 . . . . . . . . . . . . . . . . . 172
10.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.3.1 Two-point correlation functions . . . . . . . . . . . . . . . . . . . . . 173
10.3.2 Jackknife configurations and covariances . . . . . . . . . . . . . . . . 173

10.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
10.4.1 Log-normal mock galaxy catalogues and light-cones . . . . . . . . . . 174
10.4.2 Analytic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.5 Shift parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
10.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
10.7 Discussion and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Conclusions 187

Bibliography 189

xiii



xiv



List of Tables

7.1 The flat prior intervals and parameter constraints derived from the Metropolis-
Hastings algorithm to the empirical model described in section 7.1.6. . . . . 127

7.2 The flat prior intervals and parameter constraints derived from Metropolis-
Hastings algorithm to the models 1, 2, 3, 4, 4B, 4C, 5, 6 and 7 (see section 7.2). 130

7.3 The parameter constraints derived from DELFI to the empirical model (left)
described in section 7.1.6 and for the geometrical analysis (right) described in
eq. (7.13). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.1 The 31 cosmic chronometer data points used in this analysis along with their
related references. The H(z) and σH(z) data are in units of km s−1 Mpc−1. . 147

8.2 Compilation of the cosmic growth fσ8(z) measurements used in this analysis
along with the reference matter density parameter Ωm0 (needed for the redshift
correction) and associated references. . . . . . . . . . . . . . . . . . . . . . . 148

8.3 Ranges of the flat priors used for each parameter. Note that wa depends on
the value of w0 to define its upper bound. This is to ensure that w(a) < −1/3
in order to have acceleration on the expansion of the Universe. . . . . . . . . 149

8.4 Results of the different methods for each model. We also show Hmax = H(z =
2) to compare the extension of the integration in the H-dimension for the FoM
and 3-FoM methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.5 Results of the different methods for each model using the Mock Catalogue.
We also show Hmax = H(z = 2) to compare the extension of the integration
in the H-dimension for the FoM and 3-FoM methods. . . . . . . . . . . . . . 154

8.6 Jeffrey’s Scale as in Ref. [250], which compares the logarithmic Evidence differ-
ence between the two models. The different levels represent different degrees
of belief in that one is the true theory. . . . . . . . . . . . . . . . . . . . . . 154

8.7 Parameter constraints derived from Nested Sampling to each (non-analytical)
model described in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.8 Binned measurements of H(z) and fσ8(z) with equispaced redshifts points
and its uncertainties. These are the gray points shown in Fig. 8.2. . . . . . . 158

8.9 Results of the different methods for each analytic model. These are almost
equal to their numerical versions. . . . . . . . . . . . . . . . . . . . . . . . . 159

8.10 Parameter constraints derived from Nested Sampling to each analytical model
described in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.1 Best-fit constraints from our models. . . . . . . . . . . . . . . . . . . . . . . 167

xv



10.1 Jackknife configurations adopted in our analysis. For each of the four cases
implemented, we indicate the number of jackknife resamplings (NJK), the area
(AJK) and comoving size (SJK) of the individual cell computed in Planck et al.
[202] cosmology at the mean redshift of CMASS, z = 0.56. . . . . . . . . . . 174

10.2 Values of the Hartlap factor [119] as a function of the number of bins nb and
jackknife resamplings NJK used in our analysis. . . . . . . . . . . . . . . . . 178

10.3 Estimates of the α shift parameter and its uncertainty obtained from the
four jackknife configurations coupled with two binning schemes applied to
both CMASS data and a log-normal lightcone. The last row shows the result
obtained from the covariances of the 200 LCs without performing jackknife
resampling. All these results here assume an optimal tapering parameter of
Tp = 500. These results are shown in Fig. 10.5. . . . . . . . . . . . . . . . . . 182

xvi



List of Figures

1.1 The comoving distance as function of the redshift for the flat ΛCDM model,
where we also show its variation as function of the Ωm,0 parameter (Left), which
is equal to 1 − ΩΛ,0 under this model, and as function of the H0 parameter
(Right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 The luminosity distance as function of the redshift for the flat ΛCDM model,
where we also show its variation as function of the Ωm,0 parameter (Left), which
is equal to 1 − ΩΛ,0 under this model, and as function of the H0 parameter
(Right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 The angular diameter distance as function of the redshift for the flat ΛCDM
model, where we also show its variation as function of the Ωm,0 parameter
(Left), which is equal to 1−ΩΛ,0 under this model, and as function of the H0

parameter (Right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 The behavior of the energy density as function of the scale factor using eq. (1.68)

for different components, as well as the curvature. . . . . . . . . . . . . . . . 16
1.5 The Hubble parameter as function of the scale factor for the ΛCDM model

using eqs. (1.31) and (1.72) and considering different regimes and sources -
shown in fig. 1.4- as well as the curvature effect. . . . . . . . . . . . . . . . . 18

1.6 The normalized density parameter as function of the scale factor using eqs. (1.35)
and (1.36) for different sources -shown in fig. 1.4- as well as the curvature, and
using the total Hubble parameter from eq. (1.72), which is shown in fig. 1.5.
We also plot the sum of all components shown, which is equal to 1 according
to eq. (1.34). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 The evolution of the potentials φ and ψ for four scales computed using the soft-
ware CLASS [46], which follow the behavior of eqs. (2.135), (2.136) and (2.138).
We also plot the time of densities equality to determinate RDE and MDE, and
the recombination time (see section 3.4.3). These potentials differ at the be-
ginning because the neutrino decoupling (see section 3.4), but they get close
to each other quickly, considering that the x−axis is logarithm. . . . . . . . . 34

2.2 The absolute value of the density contrast (eq. (2.63)) as function of the con-
formal time for two characteristic scales -super-horizon limit at the top and
sub-horizon limit at the bottom- and different components, computed using
the software CLASS [46]. We consider the effects of the interacting fluids
studied in sections 2.9.1 to 2.9.4, which take place near recombination. We
also include the time of densities equality to determinate RDE and MDE, and
the recombination time (see section 3.4.3). . . . . . . . . . . . . . . . . . . . 50

xvii



2.3 The fields δ(τ, k) and θ(τ, k) from eqs. (2.63) and (2.64), respectively, for
photons (upper panel), baryons (central panel) and cold dark matter (lower
panel) computed using the software CLASS [46]. We consider the interacting
fluids effects from section 2.9. We also show the time of densities equality to
determinate RDE and MDE, the recombination time (see section 3.4.3), the
horizon k = aH which set the limit between sub-horizon and super-horizon
scales, the comoving sound horizon ks (see eq. (3.127)), and the comoving
diffusion scale kd that affects photons. . . . . . . . . . . . . . . . . . . . . . 52

2.4 The potentials fields φ(τ, k) (left) and ψ(τ, k) (right) computed using the soft-
ware CLASS [46]. We consider the effects of the interacting fluids studied in
sections 2.9.1 to 2.9.4. We also include the time of densities equality to de-
terminate RDE and MDE, the recombination time (see section 3.4.3) and the
horizon (blue dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1 Top. The NYU-VAGC galaxies showing its sky covering. Bottom. The mask
of random points Poisson distributed over the same geometry and area than
NYU-VAGC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 The NYU-VAGC sky covering using the Hammer projection. . . . . . . . . . 112
6.3 Top. The histogram with a logarithm y−axis scale shows the number of galax-

ies as a function of redshift for the NYU-VAGC (green) and the samples ob-
tained from the KDE technique for the random points (blue). Bottom. The
normalized histogram with a linear y−axis scale with the NYU-VAGC galaxy
redshifts (green), the redshift samples obtained from KDE for randoms (blue),
and the KDE probability distribution function (orange). . . . . . . . . . . . 113

6.4 The distribution of galaxies in redshift-real space from the NYU-VAGC, as-
suming Planck 2018 [59] as fiducial cosmology. The blue triangle indicates our
position in the origin of the coordinate reference system of eq. (6.3). . . . . . 114

6.5 The two-point correlation signal for the NYU-VAGC using three different
power spectrums in the weighting scheme, as we argued in section 6.4. We plot
the r2ξ̂ signal to better distinguish the expected BAO peak near 110 [h−1Mpc].
Finally, we show the signal computed using the Landy & Szalay estimator ξ̂LS
from eq. (4.76) (solid lines) and the Peebles & Hauser estimator ξ̂PH from
eq. (4.72) (dashed lines). For both cases, we display the linear and logarith-
mic binning used and detailed in section 6.5. . . . . . . . . . . . . . . . . . . 116

6.6 The shot noise for the NYU-VAGC computed by eq. (6.6), using only one
weight scheme with P (k) = 15000

[
Mpc3

]
since there is not a big difference

between the three power spectrum used. We show the error for the Landy &
Szalay estimator ξ̂LS from eq. (4.76) (solid lines) and for the Peebles & Hauser
estimator ξ̂PH from eq. (4.72) (dashed lines). In both cases, we display the
linear and logarithmic binning used and detailed in section 6.5. . . . . . . . . 117

6.7 The Npatch = 40 sky patches of the NYU-VAG that were used to compute the
variance of two-point correlation signal through the jackknife technique. They
were obtained using the k−means algorithm from scikit-learn. . . . . . . 118

6.8 The variability in the two-point correlation signal computed through jackknife
technique for Npatch = 40 sky patches of the NYU-VAGC coverage (see fig. 6.7)
and detailed in section 6.6. We plot the r2ξ̂ signal to better distinguish the
expected BAO peak near 110 [h−1Mpc]. . . . . . . . . . . . . . . . . . . . . . 119

xviii

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html


6.9 The normalized covariance matrix obtained by jackknife technique (see sec-
tion 6.6) for Npatch = 40 sky patches of the NYU-VAGC coverage. The nor-
malization is computed as C(norm)

ij = Cij/
√
CiiCjj, where Cij is obtained from

eq. (6.7). Note that its form is because we are using a logarithmic binning. . 120

7.1 The contour plot for the empirical model, which shows the posterior probability
distribution function, obtained from the Metropolis-Hastings algorithm, for all
the parameters involved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2 The contour plot for the models-1, 2, 3, which shows the posterior probability
distribution function, obtained from the Metropolis-Hastings algorithm, for all
the parameters involved. The numerical results are presented in table 7.2. . . 131

7.3 The contour plot for the models-4, 4B, 4C, which shows the posterior proba-
bility distribution function, obtained from the Metropolis-Hastings algorithm,
for all the parameters involved. The numerical results are presented in table 7.2.132

7.4 The contour plot for the models-1, 2, 5, 6, 7, which shows the posterior proba-
bility distribution function, obtained from the Metropolis-Hastings algorithm,
for all the parameters involved. The numerical results are presented in table 7.2.133

7.5 The negative log-loss from eq. (5.22) as function of the number of simulations
for DELFI in the model-0 (left) and the model-3 (right). . . . . . . . . . . . 134

7.6 The contour plot for the model-0, which shows the comparison of the posterior
probability distribution function obtained from the Metropolis-Hastings versus
DELFI. The numerical results are presented in tables 7.1 and 7.3. . . . . . . 138

7.7 The contour plot for the model-3, which shows the comparison of the posterior
probability distribution function obtained from the Metropolis-Hastings versus
DELFI. The numerical results are presented in tables 7.2 and 7.3. . . . . . . 139

8.1 3-FoM plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.2 The conjoined plots of the cosmic growth fσ8(z) versus the cosmic expansion
H(z) for differents models described in the text. Also the 1σ error regions
(shaded areas) and the real binned data (gray points) are shown. . . . . . . . 153

8.3 These figures show the percentage difference of FoM (upper panel) or 3-FoM
(lower panel) between a model and ΛCDM. We only present the models with-
out perturbations in the dark sector. Here, ∆FoM = FoMΛCDM − FoMmodel

and likewise for the 3-FoM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9.1 Galaxy number density, as a function of redshift, of the SDSS Hα, [O ii] and
LRG samples at 0.02 < z < 0.22. . . . . . . . . . . . . . . . . . . . . . . . . 163

9.2 Normalised covariance matrix obtained from the monopole auto- and cross-
correlation functions of the three SDSS galaxy tracers. . . . . . . . . . . . . 165

9.3 Shift parameter α as a function of redshift from different BAO measurements:
6DFGs [38], MGS [210], DES [3], WiggleZ [41], Lowz-BOSS [105], CMASS-
BOSS [266] and Lyα-BOSS [79]. . . . . . . . . . . . . . . . . . . . . . . . . . 167

xix



10.1 Monopole (top) and quadrupole (bottom) auto-correlation functions of the
BOSS CMASS galaxies (markers) computed using two different binning schemes
(20 and 10 linear bins in s) coupled with the jackknife configurations given in
Table 10.1 for the error estimation (200, 100, 50, 20 resamplings). We overplot
the mean ±σ values from the 200 log-normal light-cones (Sec. 10.4.1) as orange
lines with the 1σ uncertainty as shaded area. The analytic best-fit models to
the CMASS measurements that we use to estimate the α shift parameter (see
Sec. 10.4.2) are shown as dashed purple curves. . . . . . . . . . . . . . . . . . 177

10.2 Normalised monopole and quadrupole auto- and cross-covariances obtained
from the 200 log-normal light-cones without jackknife resampling. The nor-
malisation is computed as Cnorm

ij = Cij/
√
Cii Cjj, where Cij is given in Eq. 10.12.

The mean value and 1σ dispersion of these mocks are shown in Fig. 10.1 as a
solid line with the corresponding shaded region. . . . . . . . . . . . . . . . . 179

10.3 Normalised covariances obtained from jackknife resampling performed on a
light-cone (upper triangles) and on BOSS CMASS data (lower triangles). We
display the 20, 50, 100 and 200 jackknife configurations, respectively, coupled
with two binning schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

10.4 Left: Ratios of the 1σ uncertainties obtained from the CMASS jackknife co-
variances and the 200 LCs without JK. The solid (dashed) lines correspond to
the monopole (quadrupole) measurements. Right: Ratios of the 1σ errors ob-
tained by applying jackknife to one of the light-cones and those from 200 LCs
without jackknife. For the 20 JK LC scheme we show two different light-cone
realisations (blue and turquoise lines). We remind the reader that the 200,
100 and 50 JK configurations are coupled with 20 s bins, while the 20 JK case
with 10 bins. The horizontal dotted lines are shown to help the comparison. 181

10.5 Summary of the α shift parameters obtained from the covariances calculated
using the jackknife configurations and binning schemes reported in Table 10.3.
The points are color-coded as in Fig. 10.1, where each colour corresponds to a
different jackknife/binning scheme. The results from CMASS are represented
by dots, those from LCs by squares. The vertical line shows the value α = 1 to
help the comparison. For the 20 JK case applied to a LC, we show two different
LC realisations, one of them indicated with a star symbol (turquoise), to high-
light how the 1σ error can fluctuate due to the small number of resamplings.
All these results are calculated assuming a tapering parameter Tp = 500. . . 183

10.6 Shift parameter α and its uncertainty as a function of the tapering parameter
Tp. Top: results from covariances computed from 200 light-cones without jack-
knife and from jackknife performed on a LC. We have offset the Tp values on the
x-axis by multiplying them, from left to right, by [0.75, 0.80, 0.85, 0.90, 0.95, 1.0].
Bottom: results from CMASS jackknife resampling. The Tp values have been
offset by multiplying them, from left to right, by [0.80, 0.85, 0.90, 0.95, 1.0]. . 184

xx



Introduction

How our Universe starts if it does? What is its size? How old is it? Those have been some
of the recurrent questions for ourselves as humans during all our existing. Which have been
boarded by philosophy, theology, and science, whose replies have not been wholly satisfactory
and concordant.

Nonetheless, since the Renaissance in the 15th century, science would start to be struc-
turally ordered by a system known as the scientific method, which we use until nowadays.
This change is essential to try to explain the questions mentioned above with a perspective
based on the mathematical logic, where the first step was putting the Sun at the center and
not the Earth. It also opened the field to the modern Cosmology. Over time, we discover new
theories and create technology, which increases our knowledge and capabilities to understand
our Universe. Nowadays, we have some explanations, based on the scientific method, for the
original questions.

The modern Cosmology is able to partially explain the beginning, evolution, size, and age
of our Universe consciously, even what components make it up. Unfortunately, we need to
invoke to mystery explanations not entirely cleared at all yet, which are Inflation, the dark
matter, and the dark energy. Nonetheless, these pillars are not fictitious because the actual
data sustain them, then it is necessary to explain their nature. For that, in the last decades,
more resources have been destined to observatories, and experiments focused on reducing our
uncertainties to compare new results with several models proposed by theorists.

Even when we do not thoroughly understand the nature of Inflation and the dark sector,
we have a favorite model subtended by actual data, and its name is ΛCDM. For it, the dark
energy is driven by a cosmological constant in the Einstein equations, known as Λ, which
encodes the vacuum energy in a possible quantum gravity theory. On the other hand, the
CDMmeans Cold Dark Matter, which is a type of matter that does not interact (or it interacts
very weakly) with photons, and it is the second principal component after dark energy.
The particles that constitute stars, planets, and ourselves are known as baryonic matter.
We also know pretty well forms of energy like photons, neutrinos, between others. These
components, together with inflation, form the ΛCDM model. Nonetheless, other models
beyond ΛCDM can change the nature of the dark energy, even some of them modify the
Einstein gravity. Meantime, different approaches vary the candidates to dark matter with
known and theoretical sources, which seems not to be affected by electromagnetic phenomena.

Nowadays, we have a window open to the observable Universe in all the frequencies of
the electromagnetic spectrum. Even new ones are arising due to gravitational waves. This
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information received requires a lot of resources to catch it, save it, and analyze it, because
we can not do it manually. Therefore, we need to develop machines that can perform those
tasks, but since the resources are limited, we also need to ensure that they are efficient. These
must obtain the most useful information in the least time possible and optimize the resources
like memory and storage, for example.

We have developed new techniques to resolve some of the problems listed above, especially
in data collection and analysis. For example, the art of reducing millions and millions of data
to just a few enriched numbers is known as Data Mining, which uses many math models,
available techniques, and others in the state-of-art for its purpose. Also, there are methods
in which the machine is trained statistically with known data to apply then that knowledge
with a new one. These techniques are what we know as machine learning. And it has been
a great success recently since its capability to make good predictions without completely
understanding the algorithms behind, especially in fields like Economy and Biology.

In Cosmology, we seek some data to construct what we call observables. These contain a
lot of cosmological information that helps to better understand the Universe in what we live.
Some of these observables are grouped according to the nature of the data. For example,
we have the Supernovae (SN), the Cosmic Microwave Background (CMB), the Galaxy Clus-
tering, and the Weak Lensing, between others. The SN, which are explosions of stars that
release a lot of energy, can be observed from far away, allowing us to compute distances in
the late Universe. Their magnitude can be standardized and they help us to determine the
expansion of our Universe. On the other hand, the photons from the CMB radiation were
the first released from the primordial plasma, which contains a lot of information of the early
Universe. This radiation has very low energy nowadays, but with significant technological
development, we can measure it well. Then, we have the Galaxy Clustering, which encodes
how the galaxies are distributed in the late Universe. This geometrical disposition helps us
to understand how was the evolution of our Universe from micro to macro cosmos due to the
expansion. Finally, the Weak Lensing accounts for the deformations and magnifications of
the shape of galaxies, which should be random. Still, like the matter content of our Universe
deflects the light, it takes a non-zero signal that effectively measures the matter.

The CMB, Galaxy Clustering, and Weak Lensing signals are in general too small, hence we
need to ensure an excellent signal to noise ratio to obtain useful cosmological information. We
can do it by seeking a large patch in the sky because we use statistical techniques to construct
those signals. For the CMB, we have complete sky maps, but we also manage small patches
with a fair resolution that helps us understand the small scales. For the Galaxy Clustering
and Weak Lensing, useful statistics requires a lot of galaxies distributed at some scale of
interest, and in redshift if we want to consider the evolution. Therefore, we need to construct
sensitive receivers that are increasingly crossing technological barriers.

Nonetheless, with the actual data, we can also try to improve the signal with some of the
new techniques mentioned, especially those based in Signal Processing. We indeed have a
system based on performing experiments every time more sensitives with a useful statistics
framework to extract information. Still, maybe we will not be able to do that forever due
to the physical limitations of our Universe. Thus, it is vital to research new signals or
observables that can help us in our task and spend time on how we can extract the maximal
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information from the existing ones.

The previous comments motive us to optimally process data for Cosmology, especially
the Large Scale Structure of our Universe. This process requires several steps from the data
collection until the extract of cosmological information. Therefore, we will review how we
can do it and the techniques, traditional and new ones, involved in these processes.

The outline of this thesis is the following: In chapter 1, we underline the Cosmological
theory based on the ΛCDM model at the background level, which says to us how our homo-
geneous and isotropic Universe evolves. Besides, we seek some of the principal distances and
how they are related to the redshift, which is one of the attributes best determined. Finally,
we mention some of the principal epochs, at a background level, that allowed our Universe.

In chapter 2, we go beyond the Cosmological background theory, and we study our Uni-
verse at first order in perturbations in energy density using General Relativity as our frame-
work. We obtain the cosmological equations in real and Fourier space to apply them to the
principal components of our Universe: photons, baryons, dark matter, and neutrinos. We
excluded dark energy since it has not perturbations by definition of the ΛCDM model.

Once constructed the background and the linear order of perturbations for the ΛCDM
model, we can trace the history of our Universe, which we do in chapter 3. For that, we also
require the mechanism of inflation, which we explain briefly. Then, we can track the formation
of the principal components, their interactions and evolution, and, more importantly, the
fingerprints that they left in the actual observables.

In chapter 4, we construct the principal observable for this thesis, which is based on the
two-point statistics for the matter density contrast. Besides, we study how to obtain this
signal from a galaxy survey and relate it with the theoretical one, considering the distortions
induced by the proper movements of galaxies and their distances.

We also need to review the technicalities required to construct our observable. For that
reason, in chapter 5, we make a brief review of the design of the principal algorithms to
build the observable, and how to extract cosmological information from it. We also need to
find methods to make them faster, especially in data mining, since we will analyze a lot of
information. For that task, we emphasize some of the more efficient algorithms.

In chapter 6, we take the New York University Value-Added Galaxy Catalog to construct
our observable using the techniques studied in the last chapters. We will build several esti-
mators, which we will compare. Finally, we also estimate the uncertainty on the observable.

In chapter 7, we choose one of the observables constructed in the last chapter to apply
statistical techniques and algorithms to obtain the cosmological information. We use two
ways of inference, but we also compare several models in the literature. Finally, we discuss
the results, and we make a brief analysis of how they can improve in the future.

We also present three works related with observables from Galaxy Clustering in chapters 8
to 10, which were developed during the master project. We compare the cosmic chronometers
versus the growth rate of structure in chapter 8. The first is an expansion measurement, and
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the second is a geometrical one since we can obtain it from the analysis of Galaxy Clustering.
Then, we use actual data in both measurements to constrain several dark energy models
against the ΛCDM.

In chapter 9, we construct the two-point correlation function for three galaxy tracers from
the same survey. Then, we constrain that data to get cosmological information and compare
how it differs between the targets.

Finally, in chapter 10, we compute the covariance of the two-point correlation function
using the jackknife technique and mock catalogs. Then, we compare the final cosmological
information obtained from the different methods. The importance of this lies in the lack of
a strict consensus on how we can get the uncertainties in Galaxy Clustering. Even when the
mock catalogs are the most used, they require some assumptions or additional information.
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Chapter 1

Basics of Cosmology: The Background

The main hypothesis of modern Cosmology is the cosmological principle [150], which says
that the distribution of matter and energy in our Universe is homogeneous and isotropic on
large enough scales. We can see this as a natural generalization of the Copernican principle
in which we are not in a privileged point in the Universe, but also that no point is. This
statement is not a big deal for a static universe, since it has always been and has stayed
in the same way. Nonetheless, the discovery made by Hubble a century ago [129] suggests
that our Universe is not static; in fact, the physical distance between two points is increasing
on time. Therefore, the cosmological principle and the Universe expansion are going to lay
the foundations in the description of the smooth and expanding Universe and its evolution,
which we will study in this chapter basing most of our discussions in [23, 31].

As we study our Universe on lower cosmological scales, it seems that the cosmology princi-
ple is broken, which happens in almost all physical theories because chaotic processes appear.
For that, our Universe on large scales, which is homogeneous and isotropic, will be referred
to as the background universe or just background. To describe it, we are going to use the
four-dimensional coordinates Xµ ≡ (x0 = t, x1, x2, x3) since we are going to work in a General
Relativity framework, where t is the cosmic time, and xi are the three-dimensional coordi-
nates. We also set the fundamental constants to one c = } = kB = 1. Besides we always are
going to use dots to indicate derivation with respect to cosmic time ϑ̇ = dϑ/dt and primes
to indicate derivation with respect to conformal time ϑ′ = dϑ/dτ , which we will be define in
the next section. Finally we will use the Minkowski metric under the convention (−1, 1, 1, 1).

1.1 The Expanding Universe

After Hubble discovered that the galaxies are moving away from each other, it was necessary
to reconsider the real distance between two points in the space. We know that the physical
distance, given a reference system, is ∆~r = ~r2− ~r1 in which ~r1 and ~r2 are the position vectors
of the objects under the reference system. Since the coordinates themself are changing, the
election of a coordinate system is no longer trivial; therefore, we need to consider an ideal
system that contains our Universe, but it is not expanding, this is also known as a system
that does not follow the Hubble flow. For that system, we preserve the notion of distance
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that we had, and then it is just ∆~r. However, as observers, we only are available to measure
distances in a system that follows the Hubble flow because we are in the Universe, not outside
it. This defines the comoving frame, in which the distance ∆~x = ~x2 − ~x1 is the comoving
distance, where ~x1 and ~x2 are the position vectors in comoving coordinates.

The cosmological principle states that our Universe is homogeneous and isotropic, along-
side with its expansion. Then, if we observe that two points moving away of 100l.y. during
a period ∆t, then other two points in a different region will also move away of 100l.y.. We
can express that sentence defining a function that relates the physical coordinates with the
comoving ones, which is kwon as the scalar factor a, and imposing that it must depend only
on time: a(t), because if not, the expansion would stop being homogeneous. Hence we can
relate both coordinates systems using ~r = a(t)~x, and therefore, the relation between distances
is ∆~r = a(t)∆~x. We can derive it using the chain rule and obtain

d∆~r

dt
= ȧ(t)∆~x+ a(t)∆̇~x

=
ȧ(t)

a(t)
∆~r + a(t)~v

= H(t)∆~r + ~vp ,

(1.1)

where we defined the peculiar or proper velocity of the object with respect to the Hubble
flow ~vp ≡ a(t)~v and the Hubble parameter as

H(t) ≡ ȧ

a
. (1.2)

In the absence of proper velocity, the eq. (1.1) tells us that the velocity between two points
is proportional to the distance, this is known as the Hubble law. In our reference system
(the Earth) and at present time, the Hubble parameter is known as the Hubble constant
H0 ≡ H(t = ttoday) = 100h km s−1 Mpc−1, where we also defined the dimensionless reduced
Hubble parameter h, that describes the uncertainty in the value of H0. We also are going to
introduce the conformal time τ as

τ ≡
∫

dt

a(t)
, (1.3)

which says that for a free particle with velocity c = 1 as photons, the comoving distance
traveled during a conformal time interval ∆τ is just ∆τ . In the same way that eq. (1.2), we
can define a conformal Hubble parameter as

H ≡ 1

a

da

dτ
=
a′

a
= aH .

(1.4)

1.2 The Friedmann Equations

The Friedmann equations describe the dynamics of the background universe. To obtain them
we need the framework of General Relativity theory introduced by Einstein in 1916, a metric
that describes the spacetime gµν(t, ~x) and characterizes the line-element ds2 ≡ gµνdx

µdxν ,
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and also the energy-momentum tensor Tµν that contains all the possible matter and energy
species to consider. Those enter in the Einstein equations as

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν , (1.5)

where we define the Einstein tensor Gµν , G is the Newton gravitational constant, Rµν is the
Ricci tensor, and R is the Ricci scalar or curvature scalar, given by

R ≡ tr (Rµν)

= gµνRµν .
(1.6)

In the equation above gµν is the inverse of the metric that satisfies gµλgλν = δµν , where δµν is
the Kronecker delta. The Ricci tensor is defined through

Rµν ≡ ∂λΓ
λ
µν − ∂νΓλµλ + ΓλλρΓ

ρ
µν − ΓρµλΓ

λ
νρ , (1.7)

where ∂α indicates a derivation with respect to Xα and Γµαβ are the Christoffel symbols,
which we define using the derivatives of the metric as

Γµαβ ≡
1

2
gµλ (∂αgβλ + ∂βgαλ − ∂λgαβ) . (1.8)

The eq. (1.5) describes the geometry of the spacetime that controls the dynamics over the
objects that it contains. It was applied to study our Solar system, but also to get solutions
to static universes. After Hubble observations, the scientists Friedmann, Lemaitre, Rober-
son, and Walker propose solutions of eq. (1.5) for non-stationary Universes. They used the
Friedman-Lemaitre-Roberson-Walker (FLRW) metric to describe a homogeneous, isotropic
and expanding Universe, where its line-element is characterized by

ds2 = −dt2 + a2(t)

(
dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdφ2

))
, (1.9)

here we used polar coordinates and where the constantK = −1, 0, 1 indicates if we are talking
about a closed, open or flat geometry, respectively. Note that the spacetime in eq. (1.9) has
a rescaling symmetry under

a→ λa , r → r/λ , K → λ2K , (1.10)

which tells us that the geometry of the Universe stays the same if we rescale a, r,K simul-
taneously by some λ. Thus we can use this freedom to set the scale factor today to one:
a0 ≡ a(t = ttoday) = 1, and then a becomes dimensionless, meanwhile r and K−1/2 inherit
the dimension of length.

The energy-momentum tensor for one single perfect fluid with energy density ρ(t) and
pressure P (t), is:

T µν = (ρ(t) + P (t))uµuν + Pδµν , (1.11)

where uµ is the four-velocity of the fluid in comoving coordinates, which obeys gµνuµuν = −1.

To obtain the Einstein equations, we need to compute the Christoffel symbols through
eq. (1.8) and the metric in eq. (1.9):

Γ0
ij = a2Hγij , (1.12)
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Γi0j = Γij0 = Hδij , (1.13)

Γ1
11 =

Kr

1−Kr2
, (1.14)

Γ1
22 = −r

(
1−Kr2

)
, (1.15)

Γ1
33 = −r

(
1−Kr2

)
sin2 θ , (1.16)

Γ2
33 = sin θ cos θ , (1.17)

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1

r
, (1.18)

Γ3
23 = Γ3

32 = cot θ , (1.19)

whereas, the other Christoffel symbols, which indexes do not appear in the equations above,
vanishes. In eq. (1.12), γij is defined as

γij ≡ δij +K
xixj

1−K (xkxk)
, (1.20)

since we choose polar coordinates, γij becomes diagonal, and its values are

γ11 =
1

1−Kr2
, (1.21)

γ22 = r2 , (1.22)

γ33 = r2 sin2 θ . (1.23)

Using eqs. (1.12) to (1.19) we proceed to compute the Ricci tensor through eq. (1.7):

R00 = −3
(
H2 + Ḣ

)
, (1.24)

R0i = Ri0 = 0 , (1.25)

Rij = a2

(
3H2 + Ḣ +

2K

a2

)
γij , (1.26)

then we can obtain the Ricci tensor using eq. (1.6) and the FLRW metric (eq. (1.9))

R = 6

(
2H2 + Ḣ +

K

a2

)
. (1.27)

Finally, the components of the Einstein tensor, using Gµ
ν = gµαGαν , are:

G0
0 = −3

(
H2 +

K

a2

)
, (1.28)

G0
i = Gi

0 = 0 , (1.29)

Gi
j = −

(
3H2 + 2Ḣ +

K

a2

)
δij , (1.30)
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then we can connect them directly with the energy momentum T µν in eq. (1.11) through
Gµ

ν = 8πGT µν . For the (00) component we have that T 0
0 = −ρ, which gives us the first

Einstein equation

H2 =
8πG

3
ρ− K

a2
. (1.31)

For the (ij) component, we have that T ij = Pδij, which give us the second Einstein equation

3H2 + 2Ḣ = −8πGP − K

a2
. (1.32)

If we combine eqs. (1.31) and (1.32) to eliminate the K/a2 term, we obtain the Friedmann
equation

ä

a
= −4πG

3
(ρ+ 3P ) . (1.33)

It is convenient to rewrite eq. (1.31) as

Ω + ΩK = 1 , (1.34)

where we had defined the normalized density parameter Ω:

Ω ≡ 8πGρ

3H2
, (1.35)

and the normalized density parameter of curvature ΩK :

ΩK ≡ −
K

(aH)2 . (1.36)

The Einstein tensor satisfies the Bianchi identities ∇µG
µ
ν = 0, where

∇µG
µ
ν ≡ ∂µG

µ
ν + ΓµµαG

α
ν − ΓανµG

µ
α . (1.37)

Then by eq. (1.5), the energy-momentum tensor also satisfies the Bianchi identities which
imply that the energy-momentum tensor is conserved

∇µT
µ
ν = 0 , (1.38)

therefore we can obtain another equation using the ν = 0 component of eq. (1.38), together
with eqs. (1.11) to (1.19) and (1.37):

ρ̇+ 3H (ρ+ P ) = 0 . (1.39)

For adiabatic perfect fluids, the pressure is a function of the energy density P (t) = wρ(t),
where w defines the equation of state parameter. We omitted some time-space dependency
or in another variable for the function w, since at the beginning, we are going to study fluids
where it is constant i.e. just a number. In those cases the eq. (1.39) has a solution given by

ρ(t) = ρ0 exp

(
−3 (1 + w)

∫ t

t0

H(t′)dt′
)
. (1.40)
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1.3 Cosmic Distances
We have shown that in an expanding Universe, our inherent concept of physical distance
changes a bit. Thus, we have to find a way to measure distances in our Universe, which we call
observable distances, but it is not trivial because of the expansion and the geometry present
in the FLRW spacetime. Besides, the observable distances can be affected by astrophysical
processes, which varies depending in the source that we are seeking. To start, we are going
to write the eq. (1.9) recovering the c units

ds2 = −c2dt2 + a2(t)
(
dχ2 + f 2

K (χ)
(
dθ2 + sin2 θdφ2

))
, (1.41)

where we have defined the radial coordinate χ through the change of variables

dχ ≡ dr2

√
1−Kr2

, (1.42)

therefore under the right integral limits, χ is

χ =


R0 sinh−1

(
r
R0

)
K = −1

r K = 0

R0 sin−1
(

r
R0

)
K = 1

. (1.43)

In eq. (1.41) we also defined the function fK , that appears after the change of variable, and
its values are

fK (χ) ≡


R0 sinh

(
χ
R0

)
K = −1

χ K = 0

R0 sin
(
χ
R0

)
K = 1

, (1.44)

which is also possible to write in a compact way as

fK (χ) =
R0√
−K

sinh

(√
−K χ

R0

)
, (1.45)

where we can recover the value for flat geometries taking the limit K → −0. Note that
in eqs. (1.43) to (1.45) we introduced the length scale R0, which appears by completeness
because we choose to make the scale factor dimensionless in the last section.

Because of the expansion, the light that gives us the information from distant objects
suffers changes in its wavelength. That process is known as Redshift since the wavelength
of the light gets stretched. Suppose we observe a far galaxy at a fixed comoving distance
from us that emits a signal whose duration is ∆τ in conformal time. In that case, its value
still will be ∆τ when we receive that signal since, in the conformal frame, the time intervals
are the same for free particles. Nonetheless, the physical time intervals are different, those
that we can measure at the emission and detection points. In the point of emission the time
interval is ∆t1 = a(τ1)∆τ , and in the point of detection the time interval is ∆t0 = a(τ0)∆τ .
Using the relation λ = c∆t we find that

λ0

λ1

=
a(τ0)

a(τ1)
, (1.46)
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then we check that in absence of expansion i.e. a(τ0) = a(τ1), the wavelength is unchanged.
To take account in the change of wavelengths, we are going to define the Redshift parameter
z as

z ≡ λ0 − λ1

λ1

, (1.47)

then by eq. (1.46), we have that

1 + z =
a(t0)

a(t1)

=
1

a(t1)
,

(1.48)

where in the last line, we used the freedom given by the rescaling symmetry (eq. (1.10)).

1.3.1 Proper Distance

The proper distance is the distance between two objects measured at some specific time t
simultaneously, then dt = 0 in eq. (1.41), and assuming that the two points are in the same
direction i.e. dΩ2 ≡ dθ2 + sin2 θdφ2 = 0. Therefore, the metric in eq. (1.41) becomes

ds2 = a2(t)dχ2 , (1.49)

and the proper distance dp is the integral over ds

dp ≡
∫

ds

= a(t)

∫ χ2

χ1

dχ = a(t)∆χ .
(1.50)

Note that we have found a similar expression in section 1.1, where we called ∆χ as the
comoving distance, which will be introduced in the next section formally. Nonetheless, we
must emphasize that the proper distance is not an observable because it violates causality.

1.3.2 Comoving Distance

We already argued that the comoving distance emerges in an expanding universe because,
in a static one, we are only concerned about the physical distance. We also saw that the
proper distance is not physical since it violates causality, hence we need to introduce new
measurable distances. Imagine that we want to measure the distance between two points,
where we start measuring at time t1 from the first and then we travel until the second point
at time t2. If this measure is made at the light speed, we have ds = 0 since light satisfies
null geodesic equations. Besides, we are going to assume that the two points are in the same
direction (dΩ2 = 0). Then, eq. (1.41) takes the form

ds2 = −c2dt2 + a(t)2dχ2 = 0 , (1.51)
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Figure 1.1: The comoving distance as function of the redshift for the flat ΛCDM model,
where we also show its variation as function of the Ωm,0 parameter (Left), which is equal to
1− ΩΛ,0 under this model, and as function of the H0 parameter (Right).

and we define the comoving distance dc as the integral over dχ

dc ≡
∫ χ2

χ1

dχ

=

∫ t2

t1

c

a(t)
dt = c

∫ a2

a1

da

a2H(a)

= −c
∫ z2

z1

dz

H(z)
,

(1.52)

where in the second line we used the definition in eq. (1.2) to obtain dt = da/(aH), and in
the third line we used the relation in eq. (1.48) to get da = −dz/(1 + z)2. If we want to
compute the distance to us, then t2 = t0, with a(t2) = 1 and by eq. (1.48), z2 = 0. Finally,
the comoving distance between an object at redshift z and us is

dc = c

∫ z

0

dz′

H(z′)
, (1.53)

which is shown in fig. 1.1. Note that the comoving distance is also not an observable, because
we are not available to measure at light speed.

1.3.3 Luminosity Distance

To obtain a measurable distance, we also need to consider the processes in which the light is
involved. Light coming from observations in the form of flux, which we define as

F ≡ L

S
, (1.54)

where L is the absolute luminosity of the emission source, and S is the area in which the
luminosity is projected as light travels. For a flat Universe, the surface projected is a sphere
with area A = 4πr2, where r is the proper radius r = aχ. Nevertheless, for a non-flat
Universe, the general expression for that surface is the integral over the angular part in
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Figure 1.2: The luminosity distance as function of the redshift for the flat ΛCDM model,
where we also show its variation as function of the Ωm,0 parameter (Left), which is equal to
1− ΩΛ,0 under this model, and as function of the H0 parameter (Right).

eq. (1.41), i.e. S =
∫
a2f 2

K(χ)dΩ2 = 4πa2f 2
K(χ), where we computed it in all the angles. We

can write the light flux of eq. (1.54) as

F =
LO

4πa2(t0)f 2
K(χ)

, (1.55)

here we called LO as the luminosity observed at time t0, for example, in the telescope. That is
not the same at the emission point because the expansion causes luminosity to be redshifted,
then it is not absolute at all. We proceed to introduce the luminosity distance as

dL ≡
√

Ls
4πF , (1.56)

where Ls is the luminosity produced by the source. Then, after using eq. (1.55), the luminosity
distance is

dL = a(t0)fK(χ)

√
Ls
L0

. (1.57)

Like we mentioned before the expansion also makes the luminosity to be redshifted. Since
the luminosity is the energy over amount of time L = E/∆t and the energy of the photons
depends on the wavelength as E ∝ λ−1, we have that Es/EO = λO/λs = a(t0)/a(ts) because
eq. (1.46). We will also use that ∆t0 = a(t0)∆τ and ∆ts = a(ts)∆τ where ts is the time
of emission. Both of them have the same ∆τ since it is the same signal as we argued in
the derivation of redshift formula (section 1.3). Therefore Ls/LO = (Es/∆ts)/(EO/∆t0) =
a2(t0)/a2(ts), which we can replace in eq. (1.57), and obtain

dL =
a2(t0)

a(ts)
fK(χ) . (1.58)

Note that as observers, we defined t0 at our time and then a(t0) = 1 because of the rescaling
symmetry. Using eq. (1.45) we can write the luminosity distance as

dL(a) =
1

a

R0√
−K sinh

(
c

√
−K
R0

∫ 1

a

da′

a′2H(a′)

)
, (1.59)

13



0.0 0.5 1.0 1.5 2.0 2.5
z

0

500

1000

1500

2000

2500

3000
d
A
(z

)
[ M

p
c]

0.0

0.2

0.4

0.6

0.8

1.0

Ω
m
,0

0.0 0.5 1.0 1.5 2.0 2.5
z

0

1000

2000

3000

4000

5000

6000

d
A
(z

)
[ M

p
c]

20

30

40

50

60

70

80

90

100

H
0

[ k
m
/s

M
p
c

]

Figure 1.3: The angular diameter distance as function of the redshift for the flat ΛCDM
model, where we also show its variation as function of the Ωm,0 parameter (Left), which is
equal to 1− ΩΛ,0 under this model, and as function of the H0 parameter (Right).

where we also used eq. (1.52). In redshift space we can use the eq. (1.53) and therefore
eq. (1.59) takes the form

dL(z) =
R0√
−K (1 + z) sinh

(
c

√
−K
R0

∫ z

0

dz′

H(z′)

)
. (1.60)

which is shown in fig. 1.2 for a flat geometry. The luminosity distance is used when we
know the luminosity of the source, because it is the same in all the cosmos, at least without
considering the redshift. These types of sources are named standard candles, and an example
is Supernovae Ia, which has a light curve that can be calibrated and standardized.

1.3.4 Angular Diameter Distance

Another observable distance is that we can measure from the size of a distant object l, which
we observe in the sky with an angle δθ. It is called the angular diameter distance, and we
define it as

dA ≡
l

δθ
, (1.61)

where δθ � 1. The object size in a flat Universe that sustains and angle dΩ would be
l = rdΩ, with r the conformal radius, but for a general geometry the angular length of the
object is described by the angular part of eq. (1.41), i.e. l = a(ts)fKdΩ where ts is the time
of emission. Setting dΩ = δθ in eq. (1.61), we find that the angular distance is

dA = a(ts)fK (χ) , (1.62)

which after using eqs. (1.45) and (1.52) becomes in

dA(a) = a
R0√
−K sinh

(
c

√
−K
R0

∫ 1

a

da′

a′2H(a′)

)
. (1.63)

Now using eq. (1.53) we find the eq. (1.63) as function of redshift

dA(z) =
R0√
−K (1 + z)−1 sinh

(
c

√
−K
R0

∫ z

0

dz′

H(z′)

)
, (1.64)
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which is shown in fig. 1.3 for a flat geometry. We also note the similitude with eq. (1.60), in
fact, the relation between both distances is

dA(z) =
dL(z)

(1 + z)2
. (1.65)

The angular diameter distance is used to measure the distances from objects or events with
the same size; those are known as standard ruler. Examples are the CMB anisotropies and
the BAO peak at large scales in Galaxy Clustering.

1.4 The Epochs
In general, it is impossible to find an analytical solution for a(t) using the Friedmann equation
(eq. (1.33)) because, in a complex Universe, many species enter into the energy-momentum
tensor. Nonetheless, we can find good approximations if we consider that the Universe is
dominated by a single component, which certainly works at some epochs in the history of
our Universe. We already saw that there is a form in which we can relate the pressure and
the energy density through an equation of state parameter (EoS) defined as

w(a) ≡ P

ρ
. (1.66)

Therefore assuming only one single component with an EoS parameter w, we can write
eq. (1.39) as

dρ

ρ
= −3(1 + w)

da

a
, (1.67)

which for a constant w has the next solution

ρ(a) = ρ0a
−3(1+w) , (1.68)

where we are going to set ρ0 as the energy density today (t = t0 and a = 1). Inserting the
solution of eq. (1.68) into eq. (1.33) we find a equation for a(t), which solution is

a(t) =

(
t

t0

) 2
3(1+w)

. (1.69)

If we replace eq. (1.69) into eq. (1.68) we can find the solution of ρ(t) that does not depend
on the EoS parameter

ρ(t) = ρ0

(
t

t0

)−2

. (1.70)

The eq. (1.70) tells us that the energy density always decreases because the expansion causes
the energy to spread in a larger volume. We can see its behavior for different species in
fig. 1.4, and for Ω(a) in fig. 1.6.

If we have more than one component in the Universe, the eq. (1.39) remains the same,
but now ρ =

∑
ρi and P =

∑
wiρi because the energy-momentum is additive. However, this

time is not possible to find and exact solution for ρ(a). In these cases, we can approximate
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Figure 1.4: The behavior of the energy density as function of the scale factor using eq. (1.68)
for different components, as well as the curvature.

ρ ∼ ρd, where ρd is the specie that dominates in a certain epoch due to eq. (1.68), and this
depends exclusively on the EoS parameter w (see fig. 1.4).

If the EoS parameter depends only on the scale factor or time, the eq. (1.67) still works,
but now the solution is given by

ρ(a) = ρ0a
−3 exp

(
−3

∫ a

1

w(a′)

a′
da′
)
. (1.71)

Finally if we consider the three most abundant components in our Universe. i.e. radiation(w =
wr), matter (w = wm) and dark energy (w = w(a)), we can write the Hubble parameter using
eq. (1.31) but with ρ as the sum of our species, whose solutions will be given by eqs. (1.68)
and (1.71). Then, the total Hubble parameter is

H2(a) =
8πG

3

[
ρr,0a

−3(1+wr) + ρm,0a
−3(1+wm) + ρK,0a

−2

+ ρDE,0a
−3 exp

(
−3

∫ a

a0=1

w(a′)

a′
da′
)]

,

(1.72)

where ρK,0 = −3K/(8πG).

1.4.1 The Radiation Domination Era (RDE)

We are going to consider as radiation all the species with p� m, like photons and relativistic
neutrinos. In those cases, the EoS parameter is w = 1/3 for both bosons and fermions, greater

16



than matter and dark energy. In an expanding Universe, for greater values of w, earlier it is
domination due to eq. (1.68). Therefore the radiation was the first specie dominating in the
Universe, and during that epoch, the Hubble parameter (see fig. 1.5) can be approximated
as

H2(a) ≈ H2
0 Ωr,0a

−4 , (1.73)

where Ωr,0 = 8πGρr,0/ (3H2
0 ) ∼ 8.051× 10−5 [233] is the normalized radiation energy density

parameter at nowadays.

1.4.2 The Matter Domination Era (MDE)

For non-relativistic particles, the equation of state parameter is w ' 0 for both bosons and
fermions. Then wm < wr making matter the next specie that dominates in the history
of our Universe after RDE. During this epoch, the Hubble parameter (see fig. 1.5) can be
approximated as

H2(a) ≈ H2
0 Ωm,0a

−3 , (1.74)

where Ωm,0 = 8πGρm,0/ (3H2
0 ) = 0.311± 0.006 [59] is the normalized matter energy density

parameter at nowadays. Here we do not make the difference between dark matter and
baryons, since both behaves as the same at the background level.

1.4.3 The Dark Energy Domination Era (DEDE)

The next "specie" to consider should be the curvature since as we saw in eq. (1.72), it obeys
a power law proportional to a−2 which due eq. (1.68) is equivalent to have an EoS parameter
wK = −1/3. However, the curvature has a minimal normalized energy density ΩK at all the
epochs in the history of our Universe (a problem that we will discuss in section 3.1) and then
it can not compete with the other species.

An Universe with accelerating expansion requires a component with w < −1/3; as the
dark energy is responsible for that acceleration, we can infer that it has that kind of EoS
parameter. Since it is a complete mystery, many theories try to explain its nature and propose
several models for w. The most accepted is w = −1 for dark energy driven by a cosmological
constant Λ. Nowadays the dark energy is the dominant specie in our Universe. However,
it is not entirely dominant yet to approximate the Hubble parameter only with its density
parameter because there is still a lot of matter present. This issue is known as the why now
problem. Then, the Hubble parameter (see fig. 1.5) can be approximate considering both as

H2(a) = H2
0

(
Ωm,0a

−3 + ΩDE,0a
−3 exp

(
−3

∫ a

a0=1

w(a′)

a′
da′
))

, (1.75)

where ΩDE,0 = 8πGρDE,0/ (3H2
0 ) ∼ 0.7 [59] is the normalized dark energy density parameter

at nowadays.
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Figure 1.5: The Hubble parameter as function of the scale factor for the ΛCDM model using
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Hubble parameter from eq. (1.72), which is shown in fig. 1.5. We also plot the sum of all
components shown, which is equal to 1 according to eq. (1.34).
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Chapter 2

Basics of Cosmology: Perturbation
Theory

Based on the cosmological principle, we have treated our Universe as perfectly homogeneous
and isotropic. However, since it is dynamical and governed by gravity and pressure, the
perfect homogeneous hypothesis breaks down in its evolution and forces zones of initial over-
density to grow or oscillate. To avoid this, we should have had a perfectly homogeneous
Universe in the distant past, but the initial overdensities were of order 1 part in 105 [80],
which was not small enough. To understand the formation and evolution of large-scale struc-
tures, we have to take account of these inhomogeneities, but as long as these perturbations
remain small, we can treat them using perturbation theory to first or linear order in Einstein
equations. We will base most of the discussions of this chapter on [80, 31, 23].

2.1 The Perturbed Metric
To make perturbation theory in Einstein equations, we need first to consider small pertur-
bations around the FLRW metric described in eq. (1.9). Then a metric that deviates from
the FLRW spacetime can be written as the sum of an unperturbed FLRW part ḡµν (τ) plus
the perturbed part δgµν (τ, ~x):

gµν (τ, ~x) = ḡµν(τ) + δgµν (τ, ~x) . (2.1)

The δgµν is also called the perturbed metric, and their entries have to be small compared with
those of the zeroth-order part ḡµν to make perturbation theory. The perturbed metric has
10 independent coefficients since it is a symmetric tensor, and those degrees of freedom can
be decomposed into four scalars, two divergenceless vectors, and one traceless, divergenceless
rank-2 tensor. This decomposition is known as SVT (scalar, vector, tensor) decomposition,
and it is advantageous because the Einstein equations for scalars, vector, and tensors do
not mix at linear order, and then we can treat them as separate equations. Note that we
are working with the conformal time τ , and from now, we will omit the spacetime (τ, ~x)
dependence in the metric and all the perturbed quantities.

To illustrate the STV decomposition we are going to write the matrix form of eq. (2.1)
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for the case of an FLRW flat background spacetime

gµν = a2

(
−(1 + 2Ψ) −Bi

−Bj (1 + 2Φ)δij + hij

)
, (2.2)

which defines a line element given by

ds2 = a2
(
− (1 + 2Ψ) dτ 2 − 2Bidx

idτ + ((1 + 2Φ) δij + hij) dxidxj
)
. (2.3)

In eq. (2.2) we have implicitly defined the first two scalar quantities Ψ and Φ with a factor 2
for convenience. We also define a 3-vector Bi and a traceless 3-tensor hij. From Helmholtz’s
theorem, we can split any 3-vector into the gradient of a scalar B and a pure divergenceless
vector B̂i

Bi = ∂iB + B̂i , (2.4)

with ∂iB̂i = 0. In the same way, any traceless 3-tensor can be written as

hij = 2

(
∂i∂j −

1

3
δij∇2

)
E +

(
∂iÊj + ∂jÊi

)
+ 2Êij . (2.5)

Then we have defined the last scalar quantity E, the other divergenceless vector Êi with
∂iÊi = 0 and the traceless and divergenceless tensor Êij with Êi

i = 0 and ∂iÊij = 0.

The problem with the last decomposition is that the metric perturbations are not uniquely
defined because they depend on our choice of coordinates called the gauge choice. For example
if we consider the coordinate transformation Xµ 7−→ X̃µ ≡ Xµ + ξµ (τ, ~x) where ξ0 ≡ T and
ξi ≡ ∂iL + L̂i with ∂iL̂i = 0, the metric in eq. (2.2) will change. To avoid this, we can take
two ways; the first is to write the metric using gauge-invariant quantities, which are special
combinations of metric perturbations that do not transform under a change of coordinates, an
example of these quantities are the Bardeen variables. The second way is to take advantage
of the freedom in the gauge functions T and L to set up to four degrees of freedom in the
equations.

The vector modes are not of much interest since if they are initially zero, they remain
zero, and if they are present initially, they decrease as a−1. The tensor modes are of interest,
especially in inflation theories, but since their metric perturbations are gauge invariant, we
will not focus on its dynamics. Finally, the scalar modes are of particular interest since they
are present in many of the observables that we are going to seek; for that reason, we will
focus on them.

2.1.1 Gauge-Invariant Perturbations

To avoid the gauge problem, we will detail the first way that we talked about in the last
section. Considering the infinitesimal coordinate transformation

xµ 7−→ x̃µ ≡ xµ + ξµ (τ, ~x) , (2.6)

ξ0 ≡ T (τ, ~x) , (2.7)

ξi ≡ Li = ∂iL (τ, ~x) + L̂i (τ, ~x) , (2.8)
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where we applied SVT decomposition in the vector Li, then L̂i is a divergenceless vector
∂iL̂i = 0. From now we are going to omit the spacetime (τ, ~x) dependency in the variables
of coordinate change. If we want to find gauge-invariant quantities we first need to know
how the perturbed variables change under that, for that we exploit the invariance of the line
element ds2 = gµνdx

µdxν = g̃αβdx̃αdx̃β, where we used a different set of dummy variables
(α, β) to make clearest the next relation between metrics

gµν =
∂x̃α

∂xµ
∂x̃β

∂xν
g̃αβ . (2.9)

Therefore we can find how the perturbed variables in eq. (2.2) change under the coordinate
change in eq. (2.6) component by component using the equations provided by eq. (2.9).

Before developing eq. (2.9) we need to take care about ã (τ̃) = a (τ + T ) ' a+ a′T , which
up to first order can be used in ã2 ' a2 (1 + 2HT ). Thus the perturbed variables of eq. (2.2)
change like

Ψ 7−→ Ψ̃ = Ψ− T ′ −HT , (2.10)

Φ 7−→ Φ̃ = Φ−HT − 1

3
∇2L , (2.11)

Bi 7−→ B̃i = Bi − ∂iT + L′i , (2.12)

hij 7−→ h̃ij = hij − (∂iLj + ∂jLi) , (2.13)

where the eqs. (2.12) and (2.13) can be transform using eqs. (2.4), (2.5) and (2.8) to equations
in the variables B, B̂i, E, Êi, Êij

B 7−→ B̃ = B − T + L′ , (2.14)

B̂i 7−→ ˆ̃Bi = B̂i + L̂′i , (2.15)

E 7−→ Ẽ = E − L , (2.16)

Êi 7−→ ˆ̃Ei = Êi − L̂i , (2.17)

Êij 7−→ ˆ̃Eij = Êij . (2.18)

By inspection and a bit of imagination, we can find gauge-invariant variables using the
eqs. (2.10) to (2.18), where the main idea is to eliminate the variables of the coordinate
change (eqs. (2.7) and (2.8)). The most trivial is Êij since it does not change under the
change of coordinates, and with a little more effort, we can see that the quantity Ê ′i + B̂i is
also invariant. Bardeen (1980 [28]) identifies two among others, that are called the Bardeen
potentials

ΦA ≡ Ψ−H (B + E ′)− (B + E ′)
′
, (2.19)

ΦH ≡ −Φ +H (B + E ′) +
1

3
∇2E . (2.20)

Note that we can construct other gauge-invariant quantities through linear combinations of
the known ones.
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2.1.2 The Gauge Fixing

We are going to take the second way of the last section for the gauge problem. For that,
we present two gauges; the first is the Synchronous gauge, and the second is the Newtonian
gauge in which we are going to work most of the time.

The Synchronous Gauge

In this gauge, the components δg00 and δg0i are zero by definition; then, this is equivalent to
fix the scalar metric perturbations Ψ, B to zero and also the vector metric perturbation Bi,
which completes the four degrees of freedom available. Then the line element is given by

ds2 = a2
(
−dτ 2 + (δij + h̃ij)dx

idxj
)
. (2.21)

Note that Φ is absorbed into h̃ij, which is now not traceless anymore. Nevertheless, there
are serious disadvantages associated with the synchronous gauge detailed in [160].

The Newtonian Gauge

The Newtonian gauge, also called longitudinal gauge since it is specially used to track scalar
modes, is defined by fixing the scalar metric perturbations B,E to zero, which set two of
the four degrees of freedom available. In this gauge, we do not worry about the vector and
tensor modes, even though we can generalize it to consider them because, as we mentioned,
the Einstein equations for scalars, vector, and tensors do not mix at linear order and then
they can be treated separately. Thus the line element for the scalar part is given by

ds2 = a2
(
−(1 + 2Ψ)dτ 2 + (1 + 2Φ)δijdx

idxj
)
. (2.22)

One advantage of this gauge is that the metric tensor gµν is diagonal, which simplifies the
calculations. Furthermore, Ψ plays the role of the gravitational potential in the Newtonian
limit.

The Spatially Flat Gauge

In this gauge, we will set the scalar perturbations in the spatial part to zero i.e. Φ = E = 0,
using two of the four degrees of freedom. For the moment, we are not concern about vector
and tensor perturbations. Thus the line element for the scalar part is given by

ds2 = a2
(
− (1 + 2Ψ) dτ 2 − 2∂iBdxidτ + δijdx

idxj
)
. (2.23)

2.2 The Perturbed Energy-Momentum Tensor

In chapter 1, we saw that an essential part of Einstein equations is the energy-momentum
tensor, then if we want to make perturbation theory, we need a perturbed expression for it.
Since we are considering small perturbations, we would like to write the energy-momentum
tensor as

T µν = T̄ µν + δT µν , (2.24)

22



where T̄ µν is the unperturbed energy-momentum tensor which for a perfect fluid in a homo-
geneous and isotropic Universe is given by eq. (1.11) and δT µν is the perturbed part that for
a perfect fluid can be obtained differentiating eq. (1.11)

δT µν = (δρ+ δP ) ūµūν +
(
ρ̄+ P̄

)
(δuµūν + ūµδuν) + δPδµν + Πµ

ν . (2.25)

Now the energy-momentum tensor receives off-diagonal contributions contained in the per-
turbed four-velocity δuµ and the anisotropic stress Πµ

ν which is specially added to take
account of these off-diagonal terms in the spatial part and also possible deviations from a
perfect fluid at the perturbation level, since in a true perfect fluid it vanishes. Its spatial part
trace can always be absorbed into a redefinition of the pressure P , then we can choose the
anisotropic stress to be traceless i.e. Πi

i = 0. We can also choose the tensor Πµ
ν orthogonal

to uµ, i.e. uµΠµν = 0 and so without loss of generality we can set Π0
0 = Π0

i = 0.

The perturbations in the four-velocity can induce non-vanishing energy flux T 0
j and

momentum density T i0 . To find these contributions, we need to compute the perturbed
four-velocity in the perturbed metric of eq. (2.3). Since uµ = ūµ + δuµ, gµνuµuν = −1,
ḡµν ū

µūν = −1 and ignoring non-linear terms, we have

δgµν ū
µūν + 2ūµδu

µ = 0 . (2.26)

Since in a homogeneous and isotropic universe the relative four-velocity between the fluid
and the observer is that for a comoving observer, we have ūµ = a−1 (1, 0, 0, 0) and ūµ =
a (1, 0, 0, 0). Then by eq. (2.26) we can find the temporal part of the perturbed four-velocity
δu0 = −a−1Ψ but not the spatial part, which leads us to define δui ≡ vi/a. Finally, the
four-velocity is written as

uµ = a−1
(
1−Ψ, vi

)
, (2.27)

uµ = a (− (1 + Ψ) , vi −Bi) . (2.28)

Using the eqs. (2.27) and (2.28) into eqs. (2.24) and (2.25) together with the considerations
about the anisotropic stress Πµ

ν , we find up to linear order

T 0
0 = − (ρ̄+ δρ) , (2.29)

T i0 = −
(
ρ̄+ P̄

)
vi , (2.30)

T 0
i =

(
ρ̄+ P̄

)
(vi −Bi) , (2.31)

T ij =
(
P̄ + δP

)
δij + Πi

j . (2.32)

We can use SVT decomposition in the perturbed quantities that arise as in section 2.1. Since
δρ and δP are already scalar, we are left with

vi = ∂iv + v̂i , (2.33)

Πij =

(
∂i∂j −

1

3
δij∇2

)
Π +

1

2

(
∂iΠ̂j + ∂jΠ̂i

)
+ Π̂ij , (2.34)

with ∂iv̂i = 0 and ∂iΠ̂i = 0 since they are divergenceless pure vectors and ∂iΠ̂ij = 0 because
it is a divergenceless tensor.
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Under the coordinate transformation of eq. (2.6), the energy-momentum also changes. We
can see how its components change using the same trick that eq. (2.9), but now with the
raised indices

T µν =
∂xµ

∂x̃α
∂x̃β

∂xν
T̃αβ , (2.35)

therefore the perturbed quantities in the energy-momentum tensor change as

δρ 7−→ δρ̃ = δρ− ρ̄′T , (2.36)

δP 7−→ δP̃ = δP − P̄ ′T , (2.37)

vi 7−→ ṽi = vi + L′i , (2.38)

Πij 7−→ Π̃ij = Πij , (2.39)

where we approximated the background quantities as ˜̄ρ and ˜̄P using ˜̄ρ ' ρ̄ + ρ̄′T at first
order. Using the SVT decomposition we also can find that the variables of vi (eq. (2.33))
transform as

v 7−→ ṽ = v + L′ , (2.40)

v̂i 7−→ ˆ̃vi = v̂i + L̂′i , (2.41)

from which we can find another Bardeen or gauge-invariant variables, using eqs. (2.16), (2.36),
(2.37) and (2.40)

vs ≡ v + E ′ , (2.42)

δPnad ≡ δP − P̄ ′

ρ̄′
δρ . (2.43)

As we mentioned before we can construct gauge-invariant variables as a linear combination
of others, in this case, we present the comoving curvature perturbation which is defined using
eqs. (2.20) and (2.42) as

R ≡ Hvs − ΦH

= Φ +H (v −B)− 1

3
∇2E .

(2.44)

2.3 The Perturbed Einstein Tensor
The Einstein tensor Gµν , that governs the geometry of spacetime in Einstein equations, de-
pends on the Ricci tensor Rµν , which also depends on the connection coefficients or Christoffel
symbols Γαµν and these are defined through the metric gµν as we saw in chapter 1. Then
if we want the perturbed Einstein tensor, we first need to compute the Christoffel symbols
using a perturbed spacetime. From now on we will work only with scalar quantities and in
Newtonian gauge with the metric defined in eq. (2.22), and given by

gµν = a2

(
−(1 + 2Ψ) 0

0 (1 + 2Φ)δij

)
. (2.45)

The connection coefficients that are defined in eq. (1.8) also require the inverse of the metric
gµν . Since the metric in eq. (2.45) is diagonal and considering that (1 + x)−1 ' 1 − x for
x� 1, we have

gµν = a−2

(
−(1− 2Ψ) 0

0 (1− 2Φ)δij

)
. (2.46)
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Substituting eqs. (2.45) and (2.46) into eq. (1.8), gives the perturbed Christoffel symbols for
convenient indexes

Γ0
00 = H + Ψ′ , (2.47)

Γ0
0i = Γ0

i0 = ∂iΨ , (2.48)

Γi00 = ∂iΨ , (2.49)

Γ0
ij = Hδij + (2H{Φ−Ψ}+ Φ′) δij , (2.50)

Γij0 = Γi0j = (H + Φ′) δij , (2.51)

Γijk = ∂jΦδ
i
k + ∂kΦδ

i
j − ∂iΦδjk . (2.52)

Once the connection coefficient are calculated, we have to replace eqs. (2.47) to (2.52) into
eq. (1.7) to obtain the Ricci tensor for the desire indexes

R00 = −3H′ +∇2Ψ− 3Φ′′ + 3H (Ψ′ − Φ′) , (2.53)

R0i = −2∂iΦ
′ + 2H∂iΨ , (2.54)

Rij =
{
H′ + 2H2 + 2

(
H′ + 2H2

)
[Φ−Ψ] + 5HΦ′ −HΨ′ + Φ′′ −∇2Φ

}
δij

− ∂i∂j (Φ + Ψ) .
(2.55)

We can compute the Ricci scalar R using R = gµνRµν and the eqs. (2.46) and (2.53) to (2.55):

a2R = 6
(
H′ +H2

)
− 12

(
H′ +H2

)
Ψ + 6H (3Φ′ −Ψ′) + 6Φ′′ − 2∇2Ψ− 4∇2Φ . (2.56)

Finally we can obtain the Einstein tensor Gµν replacing eqs. (2.45) and (2.53) to (2.56) into
eq. (1.5) for the same indexes of the Ricci tensor

G00 = 3H2 + 6HΦ′ − 2∇2Φ , (2.57)

G0i = 2∂i (HΨ− Φ′) , (2.58)

Gij =
{
− 2H′ −H2 + 2

(
2H′ +H2

)
[Ψ− Φ]− 4HΦ′ + 2HΨ′ − 2Φ′′

+∇2 (Φ + Ψ)
}
δij − ∂i∂j (Φ + Ψ) .

(2.59)

2.4 The Perturbed Einstein Equations
To obtain the first order Einstein equations in our perturbed description we first have to lower
the index of eqs. (2.29) to (2.32) through Tµν = gµαT

α
ν and then use them into eq. (1.5),

which for the general perturbed metric of eq. (2.2) gives

G00 = 8πGa2 (ρ̄+ δρ+ 2ρ̄Ψ) , (2.60)

G0i = Gi0 = −8πGa2
{(
ρ̄+ P̄

)
vi − ρ̄Bi

}
, (2.61)

Gij = 8πGa2
{(
P̄ + δP + 2P̄Φ

)
δij + P̄ hij + Πij

}
, (2.62)

Since we are focused on tracking scalar quantities we are going to set vi = ∂iv, Bi = ∂iB,
hij = 2

(
∂i∂j − 1

3
δij∇2

)
E and Πij = (∂i∂j − δij/3∇2) Π following the eqs. (2.4), (2.5), (2.33)

and (2.34) in eqs. (2.60) to (2.62). However B = E = 0 because we are going to work in
Newtonian gauge.
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To manipulate better the final Einstein equations, we are going to define some quantities:

δ ≡ δρ

ρ̄
, (2.63)

θ ≡ ∂iv
i = ∇2v , (2.64)

c2
s ≡

δP

δρ
=
Ṗ

ρ̇
, (2.65)

which are respectively the density contrast, the velocity divergence, and the sound speed.
The last one is specially defined for barotropic fluids in which P , even when it is perturbed,
depends only on ρ. Also, the last equality in the definition of eq. (2.65) is valid only in the
FLRWmetric because everything at the background level depends only on time. Since cs, just
as w in eq. (1.66), depends at first-order only on backgrounds quantities, the perturbations
equations do not introduce any new free function. However, the pressure can depend on
the internal degrees of freedom of the fluid, like the entropy s. Then, we need to redefine
eq. (2.65) as

c2
s =

∂P (ρ, s)

∂ρ
=
∂P

∂ρ
+
∂P

∂s

∂s

∂ρ

= c2
s(a) + c2

s(na) ,

(2.66)

c2
s(a) ≡

Ṗ

ρ̇
, (2.67)

c2
s(na) ≡

∂P

∂s

∂s

∂ρ
, (2.68)

where cs(a) is known as the adiabatic sound speed and cs(na) as the non-adiabatic sound speed.

Matching the parts of the Einstein tensor from eqs. (2.57) to (2.59) those in eqs. (2.60)
to (2.62), we find the perturbed Einstein equations. We start for the (00) component

3H2 + 6HΦ′ − 2∇2Φ = 8πGa2ρ̄ (1 + δ + 2Ψ) , (2.69)

where we can identify a zeroth-order part given by

H2 =
8πG

3
a2ρ̄ , (2.70)

which is the first Friedman equation, already obtained in eq. (1.31). The first-order part of
eq. (2.69) is going to give us the perturbed Einstein equation for this component and after
using eq. (2.70) it gives

∇2Φ + 3H (HΨ− Φ′) = −4πGa2ρ̄δ . (2.71)

The (0i) component has not zeroth-order part since at background it is zero, then its per-
turbed equation is given by

∂i (HΨ− Φ′) = −4πGa2
(
ρ̄+ P̄

)
∂iv , (2.72)

where we can leave it in that way or we can integrate it, assuming that all the perturbed
quantities decay at infinity, to obtain

HΨ− Φ′ = −4πGa2
(
ρ̄+ P̄

)
v , (2.73)
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but also we can use the operator ∂i into eq. (2.72) and the definition of eq. (2.64) to obtain

∇2 (HΨ− Φ′) = −4πGa2
(
ρ̄+ P̄

)
θ . (2.74)

The reason why we take this procedure will become more clear when we work the equations
on Fourier space. Now, we can continue with the (ij) component, and for that we will first
take its trace Gi

i = giµGµi, using eq. (2.59) gives

Gi
i = a−2

{
3
(
−2H−H2

)
+ 6

(
2H +H2

)
Ψ− 12HΦ′ + 6HΨ′

− 6Φ′′ + 2∇2 (Φ + Ψ)
}
,

(2.75)

which is equal to Gi
i = 8πGT ii = 8πG

(
3
[
P̄ + δP

])
according to eq. (2.32) and since Πi

i = 0.
Then the final equations is

−H′− 1

2
H2 +

(
2H′ +H2

)
Ψ−2HΦ′+HΨ′−Φ′′+

1

3
∇2 (Φ + Ψ) = 4πGa2

(
P̄ + δP

)
, (2.76)

where, as before, we can identify a zeroth-order part given by

2H′ +H2 = −8πGa2P̄ , (2.77)

that is the second Friedman equation of eq. (1.32). After of using it together with the
definitions of eqs. (2.63) and (2.65), the first-order part of eq. (2.76) is

Φ′′ − 1

3
∇2 (Φ + Ψ) + 2HΦ′ −HΨ′ −

(
2H′ +H2

)
Ψ = −4πGa2ρ̄c2

sδ . (2.78)

Finally, we deal with the off-diagonal terms (i 6= j) which have not zeroth-order part, then
the perturbed one is given by

− ∂i∂j (Φ + Ψ) = 8πGa2

(
∂i∂j −

1

3
δij∇2

)
Π , (2.79)

since i 6= j and assuming that all the perturbed quantities decay at infinity we can integrate
the eq. (2.79) twice

Φ + Ψ = −8πGa2Π , (2.80)

which is valid up to a constant that we set to zero since the perturbed quantities have a zero
mean by definition.

2.5 The Perturbed Energy-Momentum Conservation
The conservation of energy-momentum tensor is also valid in a perturbed Universe since it is
a consequence of the Einstein equations, as we saw in chapter 1. Then we can obtain another
set of perturbed equations from eq. (1.38): ∇µT

µ
ν = 0, starting for ν = 0

∇µT
µ
0 = ∂µT

µ
0 + ΓµµαT

α
0 − Γαµ0T

µ
α = 0 , (2.81)

where after of using eqs. (2.29) to (2.32) in Newtonian gauge together with eqs. (2.47) to (2.52)
gives the next relation

(ρ̄+ δρ)′ +
(
ρ̄+ P̄

)
∂iv

i + 3
(
ρ̄+ P̄

)
[H + Φ′] + 3H (δρ+ δP ) = 0 , (2.82)
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which has a zeroth-order part given by

ρ̄′ = −3H
(
ρ̄+ P̄

)
, (2.83)

that is equivalence with eq. (1.39) or also known as continuity equation. The first-order part
is then given by

δρ′ = −
(
ρ̄+ P̄

) [
∂iv

i + 3Φ′
]

+ 3H (δρ+ δP ) . (2.84)

After using the definitions of eqs. (1.66), (2.63) and (2.65) into eq. (2.84), together with
eq. (2.83) by noting that δρ′ = (ρ̄δ)′ = ρ̄′δ + ρ̄δ′, we obtain

δ′ + 3H
(
c2
s − w

)
δ + (1 + w)

[
∂iv

i + 3Φ′
]

= 0 , (2.85)

which, as we are interested in scalar quantities, is equivalent due eq. (2.33) to

δ′ + 3H
(
c2
s − w

)
δ + (1 + w)

[
∇2v + 3Φ′

]
= 0 , (2.86)

which is also equivalent, after the definition of eq. (2.64), to

δ′ + 3H
(
c2
s − w

)
δ + (1 + w) [θ + 3Φ′] = 0 . (2.87)

All these equations (eqs. (2.84) to (2.87)), depending of your favorite variable choice, are
the relativistic version of the continuity equation. The classic version of fluid dynamics can
be recovered by taking the limit P � ρ and neglecting the Φ′ term which is the relativistic
correction due to the perturbation to the rate of expansion of space.

Now we can proceed with the component ν = i in eq. (1.38)

∇µT
µ
i = ∂µT

µ
i + ΓµµαT

α
i − ΓαµiT

µ
α = 0 , (2.88)

which after setting the Newtonian gauge and using eqs. (2.29) to (2.32), (2.47) to (2.52)
and (2.83), we find

v′i +H
(

1− 3
P̄ ′

ρ̄′

)
vi +

∂iδP

ρ̄+ P̄
+
∂jΠ

j
i

ρ̄+ P̄
+ ∂iΨ = 0 , (2.89)

and writing it with the scalar quantities is

∇v′ +H
(

1− 3
P̄ ′

ρ̄′

)
∇v +

∇δP
ρ̄+ P̄

+
2

3

∇ (∇2Π)

ρ̄+ P̄
+∇Ψ = 0 , (2.90)

which, after applying the operator ∂i to eq. (2.89), is equivalent due eq. (2.64) to

θ′ +H
(

1− 3
P̄ ′

ρ̄′

)
θ +
∇2δP

ρ̄+ P̄
+

2

3

∇2 (∇2Π)

ρ̄+ P̄
+∇2Ψ = 0 . (2.91)

The eqs. (2.89) to (2.91) are different forms of the relativistic version of Euler equation for
a viscous fluid. This equation includes the redshift effect due peculiar velocities in the term
Hvi, a small correction for relativistic fluids in the term P̄ ′/ρ̄′ and other for anisotropic fluids
in ∂jΠj

i. We can recover the classic version in the limit P � ρ and ignoring the anisotropic
stress.

The eqs. (2.71), (2.74), (2.78), (2.80), (2.87) and (2.91) form a redundant set of equations
because the Bianchi identity, but they are consistent and then we can use whichever subsets
of our convenience to solve a problem.
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2.6 The Perturbed Equations In Fourier Space
The equations found in sections 2.4 and 2.5 are a complex system of partial differential
equations (PDEs), and a way to broach them is going to the Fourier space. This means that
all the perturbation quantities will be Fourier expanded, turning the system of PDEs into
one of ODEs. Since the perturbed Einstein equations and the perturbed energy-momentum
tensor conservation equations are linear in the perturbation variables, each plane wave or
mode of the expansion will obey the same equation but with a different wavenumber k. The
last one is going to define the physical scale of the perturbation λp which is defined as

λp ≡
2π

k
a . (2.92)

We have to remember that if the perturbation enters into a non-linear regime, this treatment
breaks down since it has been developed until first-order perturbations in Einstein equations,
where the last ones are still linear.

To go to the Fourier space, we are going to define the Fourier quantities expanding the
previous perturbed variables Φ,Ψ, δ and θ or v

Φ (τ, ~x) =

∫
d3k

(2π)3
ei
~k·~xφ

(
τ,~k
)
, (2.93)

Ψ (τ, ~x) =

∫
d3k

(2π)3
ei
~k·~xψ

(
τ,~k
)
, (2.94)

δ (τ, ~x) =

∫
d3k

(2π)3
ei
~k·~xδ
(
τ,~k
)
, (2.95)

θ (τ, ~x) =

∫
d3k

(2π)3
ei
~k·~xθ
(
τ,~k
)
, (2.96)

v (τ, ~x) =

∫
d3k

(2π)3
ei
~k·~xv
(
τ,~k
)
. (2.97)

We have to note that in Fourier space the potentials Φ and Ψ will be written in lowercase φ
and ψ, while the perturbed variables δ and θ or v will remain the same and will be identified
with a k like δk if it is necessary. For the anisotropic stress Π we can do the same expansion

Π (τ, ~x) =

∫
d3k

(2π)3
ei
~k·~xΠ

(
τ,~k
)
, (2.98)

but in Fourier space, another variable is usually used and known as σ, also called anisotropic
stress and defined by (

ρ̄+ P̄
)
σ
(
τ,~k
)
≡ −

(
k̂ik̂j −

1

3
δij

)
Πi

j

(
τ,~k
)
, (2.99)

noting that we do not remove the Fourier space dependence ~k since the definition was made in
that space. Then Πi

j in eq. (2.99) is actually the Fourier counterpart of our Πi
j in eq. (2.34).

Finally, the relation between Π and σ in Fourier space is given by

Π =
3

2

ρ̄+ P̄

k2
σ . (2.100)
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Expanding eqs. (2.71), (2.73), (2.74), (2.78) and (2.80) to Fourier space through eqs. (2.93)
to (2.99) and using eq. (2.100) make that the perturbed Einstein equations now are respec-
tively

k2φ+ 3H (φ′ −Hψ) = 4πGa2ρ̄δ , (2.101)

φ′ −Hψ = 4πGa2
(
ρ̄+ P̄

)
v , (2.102)

k2 (Hψ − φ′) = 4πGa2
(
ρ̄+ P̄

)
θ , (2.103)

φ′′ +
k2

3
(φ+ ψ) +H (2φ′ − ψ′)−

(
2H′ +H2

)
ψ = −4πGa2ρc2

sδ , (2.104)

k2 (φ+ ψ) = −12πGa2
(
ρ̄+ P̄

)
σ . (2.105)

Noting that we drop out the Fourier modes ei
~k·~x because, like the perturbed Einstein equations

are linear, then they decouple between different k-modes.

We continue expanding eqs. (2.87), (2.90) and (2.91) to obtain the perturbed energy-
momentum tensor conservation equations in Fourier space

δ′ + 3H
(
c2
s − w

)
δ + (1 + w) [θ + 3φ′] = 0 , (2.106)

i~k

{
v′ +H

(
1− 3

P̄ ′

ρ̄′

)
v +

δP

ρ̄+ P̄
+ σ + ψ

}
= 0 , (2.107)

θ′ +H
(

1− 3
P̄ ′

ρ̄′

)
θ − k2 δP

ρ̄+ P̄
− k2σ − k2ψ = 0 , (2.108)

where the last two equations (eqs. (2.107) and (2.108)) can be rewritten using the relation
in eqs. (1.66) and (2.65)

i~k

{
v′ +H

(
1− 3c2

s

)
v +

c2
s

1 + w
δ + σ + ψ

}
= 0 , (2.109)

θ′ +H
(
1− 3c2

s

)
θ − k2c2

s

1 + w
δ − k2σ − k2ψ = 0 . (2.110)

The final equations to seek are the zeroth-order eqs. (2.70), (2.77) and (2.83), but since they
depend only on background quantities, they remain the same in Fourier space.

2.7 Single Perfect Fluid
All the treatments that we made in this chapter have been developed considering only one
available source in the energy-momentum tensor; then, if we want to study more that one
fluid, we need to modify a bit the equations. However, as the energy-momentum tensor
is an additive quantity, we can treat many non-interacting fluids by just sum some of the
perturbed variables, as we will see in the next sections. First we are going to try to solve the
equations found for only one perfect fluid, so as we mentioned in section 2.2 the anisotropic
stress vanishes Π = σ = 0 and this implies by eq. (2.105) that ψ = −φ. Then, and working
with the velocity variable θ, the perturbation equations eqs. (2.101), (2.103), (2.104), (2.106)
and (2.110) now are

k2φ+ 3Hφ′ + 3H2φ = 4πGa2ρ̄δ , (2.111)
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k2 (φ′ +Hφ) = −4πGa2
(
ρ̄+ P̄

)
θ , (2.112)

φ′′ + 3Hφ′ +
(
2H′ +H2

)
φ = −4πGa2c2

sρ̄δ , (2.113)

δ′ + 3H
(
c2
s − w

)
δ + (1 + w) [θ + 3φ′] = 0 , (2.114)

θ′ +H
(
1− 3c2

s

)
θ − k2c2

s

1 + w
δ + k2φ = 0 . (2.115)

We can mix eqs. (2.111) and (2.113) to get an equation only for φ

φ′′ + 3H
(
1 + c2

s

)
φ′ +

{
H2
(
1 + 3c2

s

)
+ 2H′ + c2

sk
2
}
φ = 0 , (2.116)

then by eqs. (2.111) and (2.112) we can recover the values for δ and θ. We can also decouple
the eqs. (2.114) and (2.115) in the variables δ and θ by deriving them and obtaining second
order ODEs but they would still have the φ term that can be replace using a combination of
eqs. (2.111) and (2.112).

Using the zeroth-order eqs. (2.70) and (2.77) with the definition in eq. (1.66) we find the
next relation

H′ = −H
2

2
(1 + 3w) , (2.117)

then the eq. (2.116) now can be written as

φ′′ + 3H
(
1 + c2

s

)
φ′ +

{
3H2

(
c2
s − w

)
+ c2

sk
2
}
φ = 0 . (2.118)

If the pressure depends only on the density (barotropic fluids) we have dP = wdρ+ ρdw by
eq. (1.66) and using eq. (2.83) we obtain

dP =

(
w − w′

3H (1 + w)

)
dρ , (2.119)

then for a constant equation of state parameter we have c2
s = w due eq. (2.65), which is valid

for both matter and radiation. For this case eq. (2.118) becomes

φ′′ + 3H (1 + w)φ′ + wk2φ = 0 . (2.120)

2.7.1 Super-Horizon Scales

For large scales k << H, also known as super-horizon scales or super-horizon limit, the
physical wavelength λp of perturbations in eq. (2.92) is much larger than the Hubble radius
H−1. Then we can approximate the term k2 to zero in eq. (2.120) and obtain an equation
for φ due a fluid with constant w

φ′′ + 3H (1 + w)φ′ = 0 , (2.121)

in which φ′ = 0 is a solution and then φ = constant. But as eq. (2.121) is a second-order
ODE we must have another solution given by

φ = φ0

∫ τ

τ0

(
a(τ ′)

a0

)−3(1+w)

dτ ′ . (2.122)
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Since we are tracking growing modes and the solution in eq. (2.122) is a decaying one, at
least for w > −1, we can ignore it. Then the dominating solution is φ = cte, φ′ = 0 and after
of replacing it in eq. (2.111) and using eq. (2.70) we find

δ =
2

3

k2

H2
φ+ 2φ , (2.123)

where the first term vanishes since we are working in the super-horizon limit, implying that
also δ = 2φ = constant on large scales.

2.7.2 Sub-Horizon Scales

In contrast, we have the sub-horizon limit or small scales in which k >> H, i.e. scales deep
inside the Hubble radius. Then, for a fluid with constant w, we have to work with eq. (2.120),
without any approximation yet. We are going to make a change of variables between the
conformal time and the number of e-folds N , through

N ≡ ln a , (2.124)

d

dτ
= H d

dN
, (2.125)

d2

dτ 2
=
(
H2 +H′

) d

dN
+H2 d2

dN2
. (2.126)

Then eq. (2.120) transforms, with the help of eq. (2.117), into

d2φ

dN2
+

1

2
(3w + 7)

dφ

dN
+
c2
sk

2

H2
φ = 0 , (2.127)

which is the equation for an oscillator with a damped term but with variable frequency, so
the growing mode is more difficult to track by a general way. We also can find an equation
for δ in this regime, since by eq. (2.112) φ′+Hφ = −4πGa2

(
ρ̄+ P̄

)
θ/k2 → 0, we can replace

it into eq. (2.111) and obtain the equation

k2φ ' 4πGa2ρ̄δ , (2.128)

which, by eq. (2.70) becomes in

k2φ =
3

2
H2δ . (2.129)

Then we can replace φ into eq. (2.120) and using both eq. (2.117) and its derivative

H′′ = H
3

2
(1 + 3w)2 , (2.130)

we find the equation for δ

δ′′ +H (1− 3w) δ′ +

[
3

2
H2 (w − 1) (1 + 3w) + wk2

]
δ = 0 . (2.131)

Note that while eq. (2.117) is valid for any function w, in the derivation of eq. (2.130) we
assumed that w is constant. Now, if we study eq. (2.131) taking the Minkowski limit H → 0,
then the equation reduces to the classical fluid wave equation δ′′ + wk2δ = 0. To obtain
growing modes we require that the factor of δ in eq. (2.131) be zero or negative.
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2.7.3 Perturbations During RDE

During the radiation domination era, we have w = 1/3, as we saw in section 1.4.1. We are
going to use the eq. (2.117), which have the exact solution

H =
2

(1 + 3w) τ
, (2.132)

under the right initial conditions. Then, in RDE we have H = 1/τ and eq. (2.120) now is

φ′′ +
4

τ
φ′ +

k2

3
φ = 0 , (2.133)

which has the following exact solution

φ (τ, k) = Ak
j1(x)

x
+Bk

n1(x)

x
, (2.134)

where x ≡ kτ/
√

3, j1(x) and n1(x) are the spherical Bessel and Neumann functions of order 1,
respectively. The constants Ak and Bk can depend on k since the amplitude can be different
for each mode. Anyway we set Bk = 0 because the spherical Neumann function n1(x) blows
up for small x (early times). We can also replace the spherical Bessel function using its form
with sinusoidal functions

φ (τ, k) = Ak

(
sinx− x cosx

x3

)
. (2.135)

For super-horizon scales x � 1, the solution in eq. (2.135) approaches to φ =constant (see
fig. 2.1) while on sub-horizon scales x� 1 we get

φ (τ, k) ' Ak
cosx

x2
, (2.136)

meaning that in RDE the sub-horizon modes of φ oscillate with frequency k/
√

3 and their
amplitudes decay as τ−2 (see fig. 2.1).

2.7.4 Perturbations During MDE

In the matter domination era we have w ' 0, and then by eq. (2.132) H = 2/τ . The
eq. (2.120) now is

φ′′ +
6

τ
φ′ = 0 , (2.137)

which is an Euler-Cauchy equation with an exact solution given by

φ (τ, k) = Ak +Bkτ
−5 . (2.138)

Then in MDE φ has a very quickly decreasing mode and a growing mode, this last one ensures
that the potential is frozen on all scales during MDE (see fig. 2.1).
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Figure 2.1: The evolution of the potentials φ and ψ for four scales computed using the
software CLASS [46], which follow the behavior of eqs. (2.135), (2.136) and (2.138). We also
plot the time of densities equality to determinate RDE and MDE, and the recombination time
(see section 3.4.3). These potentials differ at the beginning because the neutrino decoupling
(see section 3.4), but they get close to each other quickly, considering that the x−axis is
logarithm.

2.8 Multiple Fluids
We know that our Universe is not as simple as we have tried to explain i.e. with only one
fluid, but it seems that it helps during some phases and conditions. Our Universe is a complex
mix of components that can also interact; then, if we want to have a better description at the
perturbation level, we should consider how the number of fluids changes the equations found
in this chapter. We are going to start with the perturbed Einstein equations and, as we saw,
the energy-momentum tensor sources them; then, when we have more that one contribution
the total energy-momentum tensor, due to its additivity, is just

T (total)
µν =

∑
I

T (I)
µν , (2.139)

which is valid for I independent components. At the background level, the quantities are
additive

ρ̄(total) =
∑
I

ρ̄(I) (2.140)

P̄ (total) =
∑
I

P̄ (I) =
∑
I

wI ρ̄
(I) (2.141)

then we can have the total perturbed quantities searching component by component in the
energy-momentum tensor and using eqs. (2.29) to (2.32) and (2.100). For the scalar variables
we get

δρ(total) =
∑
I

δρ(I) (2.142)
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δP (total) =
∑
I

δP (I) (2.143)

(
ρ̄(total) + P̄ (total)

)
v(total) =

∑
I

(
ρ̄(I) + P̄ (I)

)
v(I) (2.144)

(
ρ̄(total) + P̄ (total)

)
θ(total) =

∑
I

(
ρ̄(I) + P̄ (I)

)
θ(I) (2.145)

Π(total) =
∑
I

Π(I) (2.146)

(
ρ̄(total) + P̄ (total)

)
σ(total) =

∑
I

(
ρ̄(I) + P̄ (I)

)
σ(I) . (2.147)

The eqs. (2.71), (2.73), (2.74), (2.78) and (2.80) in real space and the eqs. (2.101) to (2.105)
in Fourier space, now are sourced by the total variables defined in eqs. (2.142) to (2.147).
The equations obtained from the energy-momentum conservation can be split into several
equations, one for each component, since the eq. (1.38) has to be valid for each contribution
as along as they do not interact like we mentioned. Then eqs. (2.87), (2.90) and (2.91) in real
space or eqs. (2.106), (2.109) and (2.110) in Fourier space, form a system with 2N equations,
where N is the number of components.

For the total variable δ we need to take some considerations, by eqs. (2.140) and (2.142)
we find

δ(total) =
δρ(total)

ρ̄(total)
=

∑
I δρ

(I)∑
I ρ̄

(I)

=
8πG

3H2Ω(total)

∑
I

δρ(I)

=
1

Ω(total)

∑
I

8πG

3H2
δρ(I)

=

∑
I Ω(I)δ(I)

Ω(total)
,

(2.148)

where we used the definition in eq. (1.35), then

Ω(total)δ(total) =
∑
I

Ω(I)δ(I) , (2.149)

which since Ω(total) = 1 by eq. (1.34), we have

δ(total) =
∑
I

Ω(I)δ(I) . (2.150)

Doing the same procedure used in eqs. (2.148) to (2.150) we can find an expression for the
total w, also called the effective equation of state weff ≡ P̄ (total)/ρ̄(total)

weff =
∑
I

Ω(I)w(I) , (2.151)

which can be used into eq. (2.145) to obtain

θ(total) =

∑
I

(
1 + w(I)

)
Ω(I)θ(I)

1 + weff

. (2.152)
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Adiabatic Fluctuations

The principal idea in the definition of adiabatic fluctuations is that the perturbed local state,
determined by its energy density and pressure at some spacetime point (τ, ~x) is the same as
in the background universe but at some slightly different time τ + δτ (~x). We can see this
as some parts in the Universe are late, and others ahead respect to the cosmic evolution
or background. If the Universe has multiple fluids, the adiabatic perturbations condition
implies that the perturbations are induced by a common and local shift in time (δτ). We
can seek this behavior in the density contrast by

δρ(I) (τ, ~x) = ρ(I) (τ, ~x)− ρ̄(I) (τ)

= ρ̄(I) (τ + δτ (τ, ~x))− ρ̄(I) (τ)

= ρ̄′(I)δτ (~x) ,

(2.153)

where in the second line, we used the definition of adiabatic perturbations, and in the third
line, we used a Taylor expansion assuming a small δτ . Like δτ is the same for all species, we
have

δτ =
δρ(I)

ρ̄′(I)
=
δρ(J)

ρ̄′(J)
, (2.154)

which after of use eq. (2.83) for each component, because we assumed that there is no energy
transfer between those fluids, we obtain

δ(I)

1 + w(I)
=

δ(J)

1 + w(J)
. (2.155)

Isocurvature Fluctuations

The isocurvature fluctuations are defined as the complement of adiabatic fluctuations. Then,
the isocurvature perturbations correspond to those in which the energy density variations
for one component do not necessarily correspond with the energy density variations in other
components. We can define

SIJ ≡
δ(I)

1 + w(I)
− δ(J)

1 + w(J)
, (2.156)

which for adiabatic perturbations SIJ = 0 for all species I and J .

2.8.1 Two Fluids: Matter And Radiation

We are going to study a more realistic case in which two fluids are present, these are going
to be matter and radiation. The solution for two fluids problems are in general complicated
but under certain assumptions we can make it simpler. For that we are going to introduce
the matter perturbation variables δm, θm (wm = c2

sm = 0) and the radiation perturbation
variables δr, θr (wr = c2

sr = 1/3). We also are going to assume that there is no interaction
between these species (which is true since z ≈ 1000) and that they behave like perfect fluids
which implies that the energy-momentum tensor has not anisotropic shear, then σm = σr = 0.
Finally we obtain, in Fourier space, a set of gravitationally coupled eqs. (2.101) to (2.106),
(2.109) and (2.110) using the indications of section 2.8

δ′m + θm + 3φ′ = 0 , (2.157)
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δ′r +
4

3
θr + 4φ′ = 0 , (2.158)

θ′m +Hθm + k2φ = 0 , (2.159)

θ′r −
k2

4
δr + k2φ = 0 , (2.160)

k2φ+ 3H (φ′ +Hφ) = 4πGa2 (ρ̄m + ρ̄r) δ
(total) , (2.161)

k2 (φ′ +Hφ) = −4πGa2 (1 + weff ) (ρ̄m + ρ̄r) θ
(total) , (2.162)

φ′′ + 3Hφ′ +
(
2H′ +H2

)
φ = −4πGa2δP (total) , (2.163)

where the total perturbation variables, according to eqs. (2.143) and (2.150) to (2.152), are

δ(total) = Ωmδm + Ωrδr , (2.164)

δP (total) = δPr + δPm

= c2
s,rδρr + c2

s,mδρm

=
1

3
ρ̄rδr ,

(2.165)

θ(total) =
(1 + wm) Ωmθm + (1 + wr) Ωrθr

1 + weff

=
4/3Ωrθr + Ωmθm

1 + weff

,

(2.166)

weff = Ωrwr + Ωmwm

=
1

3
Ωr .

(2.167)

In the super-horizon limit, the eq. (2.160) reduces to θ′r = 0 and then θr =constant. Also
eq. (2.159) becomes in θ′m + Hθ = 0, where we can find a simpler solution after using the
definition of H in eq. (1.4)

θm = θm,0e−
∫
Hdτ

=
θm,0
a

.
(2.168)

While in the sub-horizon limit eq. (2.162) can be approximated as φ′+Hφ = 0, which result
is already known

φ =
φ0

a
, (2.169)

then we can replace eq. (2.169) into eq. (2.159), integrate it and obtain θm. Using the same
technique, we can replace φ and θm into eq. (2.157), integrate it and obtain a solution for
δm. For δr, we find in this regime due eq. (2.160) that δr ' 4φ and by eq. (2.158) we can find
directly a solution for θr ' 6φ′.

During RDE we have Ωm ∼ 0 and Ωr ∼ 1, then δ(total) ∼ δr,weff ∼ 1/3 and θ(total) ∼ θr due
eqs. (2.164), (2.166) and (2.167). The potential φ is sourced only by radiation perturbations,
so it is already known from eq. (2.135). Thus the equations for δr, θr, φ form a closed system
and the equations for δm, θm are independent but forced by φ, which implies that the matter
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perturbations are forced by radiation perturbations. The real behavior during this epoch is
more complicated since now we are not considering that a fraction of the matter is interacting
strongly with the radiation.

For MDE, we have the opposite behavior since now the potential is sourced mostly by
matter perturbations. Then, it is constant due to the solution in eq. (2.138). Now the
radiation perturbations are forced by the matter perturbations.

2.9 Interacting Fluids
In the last sections, we consider the equations that govern our Universe until first-order
perturbations, but always assuming one or more fluids with null anisotropic shear Πi

j = 0,
which is true for species that do not interact, except gravitationally. For the late Universe and
on cosmological scales, we can assume that the species are coupled purely with the metric and
ignore the anisotropic stress in the Einstein general relativity framework. Nevertheless, our
Universe was more complicated, and we know that there were phases where its components
had interactions, such as the process of creation/annihilation and particle collision in the
early Universe. These processes need a better description that takes us away from the ideal
fluids that we have characterized, mainly because components like photons and neutrinos
develop anisotropic shear under certain circumstances. Then, if we want to seek those effects
we need a more general form of the energy-momentum tensor (eq. (1.11)) or its first-order
expansion (eq. (2.24)), which for a fluid in the full general relativistic framework is

T µν = gi

∫
dP1dP2dP3

(2π)3
√−g

P µPν
P 0

f (Pj, ~x, t) , (2.170)

where P µ ≡ dxµ/dλ is the four-momentum and λ the parameter that characterizes the parti-
cle path. While f (Pj, ~x, t) is the distribution function which is going to take in consideration
all the interactions, also it is a scalar quantity, invariant under canonical transformations
and phase space-dependent, but it only depends in the spacial part of the four-momentum
Pj since the mass constraint P 2 ≡ P µPµ = −m2. Finally, gi is the number of spin states
available for each specie and g ≡ det gαβ is the determinant of the metric, which we will work
in Newtonian gauge (eq. (2.22)) but using cosmic time instead conformal time

ds2 = − (1 + 2Ψ) dt2 + a2 (1 + 2Φ) δijdx
idxj , (2.171)

noting that for the moment, we are working in real space.

From eq. (2.170) we can note that the anitropic shear terms T ij come from

T ij ∝
P iPj

(P 0)2 = vivj , (2.172)

which is a second-order quantity for massive particles, and then it is excluded in our treat-
ment. Nevertheless, for massless particles or relativistic ones, we should consider it, which is
the case of photons and neutrinos. Then, we are going to study them and also their behavior
when processes of Compton scattering with electrons are present. For that, we need to take
account of them into the distribution function which obeys the Boltzmann equation

df

dt
= C[f ] , (2.173)
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where C[f ] is the called collision functional term.

2.9.1 Photons

The photons obey P 2 = 0 since they are massless particles and by definition we have P 2 =
g00 (P 0)

2
+ gijP

iP j = − (1 + 2Ψ) (P 0)
2

+ p2, where p2 ≡ gijP
iP j. Then we can find an

expression for P 0

P 0 =
p√

1 + 2Ψ

= p (1 + Ψ) ,
(2.174)

valid until first-order. We can also write the spatial part as P i = Ap̂i, where A is a propor-
tionally constant to determinate and p̂i is an unit vector with the same direction of the mo-
mentum. Thus we have the relation p2 = gij p̂

ip̂jA2 = a2 (1 + 2Φ) δij p̂
ip̂jA2 = a2 (1 + 2Φ)A2,

and then
A =

p

a
(1− Φ) . (2.175)

The final four-momentum for massless particles is

P µ =
(
p (1 + Ψ) ,

p

a
(1− Φ) p̂i

)
. (2.176)

As we saw, the four-momentum can be expressed only in terms of p and p̂i, then the l.h.s. of
eq. (2.173) is

df

dt
=
∂f

∂t
+
∂f

∂xi
· dxi

dt
+
∂f

∂p

dp

dt
+
∂f

∂p̂i
· dp̂i

dt
, (2.177)

where the last term is a second-order quantity since ∂f/∂p̂i and dp̂i/dt are of first-order, then
it does not contribute at first order in perturbation theory. The second term in eq. (2.177)
can be expressed using P i ≡ dxi/dλ, P 0 ≡ dt/dλ and eq. (2.176)

dxi

dt
=

dxi

dλ

dλ

dt

=
P i

P 0

=
p̂i

a
(1 + Ψ + Φ) ,

(2.178)

and since ∂f/∂xi is a first-order term, eq. (2.177) now can be written as

df

dt
=
∂f

∂t
+
p̂i

a
· ∂f
∂xi

+
∂f

∂p

dp

dt
. (2.179)

The last term in eq. (2.179) can be rewritten using the geodesic equation

dP µ

dλ
= −ΓµαβP

αP β , (2.180)

together with eqs. (1.8), (2.47), (2.48), (2.50) and (2.178) to obtain

dp

dt
= −p

[
H +

∂Φ

∂t
+
p̂i

a
· ∂Ψ

∂xi

]
, (2.181)
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then eq. (2.179) now is

df

dt
=
∂f

∂t
+
p̂i

a
· ∂f
∂xi
− p∂f

∂p

[
H + Φ̇ +

p̂i

a
· ∂Ψ

∂xi

]
. (2.182)

The first two terms in eq. (2.179) are familiar from hydrodynamics, given the continuity and
Euler equation for photons when they are integrated with no collision term (C[f ] = 0). The
third term says that photons lose energy in an expanding Universe, and the last two terms
encode how the overdense regions affect the photon distribution function.

Now we have to treat the distribution function of photons f (t, ~x, p, p̂), which its zero-order
part is given by the Bose-Einstein distribution since photons are bosons

f (0)(t, p) =
1

exp{(ε− µ)/T} − 1
, (2.183)

where µ is the chemical potential that we will not use µ = 0. Also as photons are massless
particles we have ε2 = p2. We are going to expand eq. (2.183) through the temperature,
since in a smooth Universe it is a function of time only, then to consider the inhomogeneities
and anisotropies we will write it as T (t, ~x, pp̂) = T̄ (t) + δT (t, ~x, pp̂) = T̄ (t) (1 + Θ (t, ~x, pp̂)),
where we have defined the temperature perturbation Θ as

Θ ≡ δT

T̄
. (2.184)

Expanding eq. (2.183) we have f ' f̄ + ∂f
∂T
δT , which is equal to

f ' f̄ − p∂f̄
∂p

Θ , (2.185)

since T ∂f̄
∂T

= −p∂f̄
∂p

and where f̄ is

f̄ ≡ 1

exp (p/T )− 1
. (2.186)

Computing the time derivative of the zeroth-order part of eq. (2.183) through eqs. (2.179)
and (2.186) we find

df

dt

∣∣∣∣
0th

=
∂f̄

∂t
−Hp∂f̄

∂p

=

(
−dT/dt

T
− da/dt

a

)
∂f̄

∂p
,

(2.187)

which for collisionless processes, it is zero since C[f ] = 0; then, in that case, the solution of
eq. (2.187) is

T =
a0

a
, (2.188)

as we expect in the smooth background Universe. Note that set C[f ] = 0 in the zeroth-
order part is not trivial, but as we will see, the collision term for the processes of interest is
proportional to Θ and other perturbed quantities, then it will not enter in the zeroth-order
equation.
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Now we are going to compute the time derivative of the first-order photon distribution
function. We will use the eq. (2.179)

df

dt

∣∣∣∣
1st

= −p∂f̄
∂p

(
Θ̇ +

p̂i

a
· ∂Θ

∂xi
+ Φ̇ +

p̂i

a
· ∂Ψ

∂xi

)
, (2.189)

where the first two terms take account for the "free streaming" of photons and the last two
for gravity effects.

One process of interest is the Compton scattering in which electrons scatter photons

e− (~q ) + γ (~p )↔ e− (~q ′) + γ (~p ′) , (2.190)

where ~q, ~p, ~q ′, ~p ′ are the momentum of each particle. Then if we are interested in the collision
term for the photon with momentum ~p we must sum over all other momenta. Schematically
it is given by

C [f (~p)] =
∑
~q,~q ′,~p ′

{
|M|2→fe (~q ′) f (~p ′) [1± f (~p )] [1± fe (~q )]

−|M|2←fe (~q ) f (~p ) [1± f (~p ′)] [1± fe (~q ′)]
}
,

(2.191)

where the [1 ± f ] terms represent the phenomena of Bose enhancement and Pauli blocking;
then for bosons, we must use the + sing and for fermions the − sign. However, in our
treatment, since we are doing first-order perturbation theory, we will consider the factor 1
only in those terms. The fe is the distribution function for electrons and as eq. (2.190) is
reversible, the amplitudes are equal |M|2→ = |M|2← = |M|2. Replacing the sum by integrals
in phase space, the collision term takes the form

C [f (~p)] =
1

p

∫
d3q

(2π)32εe(q)

∫
d3q′

(2π)32εe(q′)

∫
d3p′

(2π)32ε(p′)
|M|2(2π)4δ3 (~p+ ~q − ~p ′ − ~q ′)

δ (ε(p) + εe(q)− ε(p′)− εe(q
′)) [fe (~q ′) f (~p ′)− fe (~q ) f (~p )] .

(2.192)
To explain how the terms in eq. (2.192) appear, we are going to start with the (2π)3 factors
or (2π})3 with } = 1. These represent the volume of one unit in the phase space, and then
we want to sum over all such units. The factors 2ε or 2εe arise because we have to integrate
over a four-dimensional phase space due to our general relativity framework. However, these
dimensions are constrained on shell, making appear

∫
d3p

∫
dεδ(ε2 − p2 −m2) =

∫
d3p

∫
dε
δ
(
ε−

√
p2 +m2

)
2ε

. (2.193)

Also, due to the general relativity treatment, we should have to define the eq. (2.173) using
the path parameter λ instead of the cosmic time. Moreover, that change of variables makes
appear the factor 1/p at the beginning of the r.h.s. of eq. (2.192). Finally, the Dirac delta
functions enforce energy and momentum conservation, and the factor (2π)4 is the result of
moving from discrete Kronecker deltas to continuous Dirac deltas.

Computing the eq. (2.192) in the non-relativistic limit for electrons and considering that
under these assumptions the energy transferred between electrons and photons is little (both
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valid in the cosmological process involved), the integral of eq. (2.192) becomes in

C[f(~p )] =
π

4m2
ep

∫
d3q

fe(~q)

(2π)3

∫
d3p′

(2π)3p′
|M|2

{
δ(p− p′) +

(~p− ~p ′) · ~q
me

∂δ(p− p′)
∂p′

}
[f(~p ′)− f(~p )] ,

(2.194)

where me is the electron mass. We need the amplitude of the Compton scattering |M|2,
which can be computed using fundamental physics through Feynman rules [40]. Its value is
given by

|M|2 = 8πσTm
2
e , (2.195)

here σT is the Thomson cross-section. The expression in eq. (2.195) is not totally true because
the amplitude has both angular and polarization dependence and its real value is given by
|M|2 = 6πσTm

2
e (1 + cos2 (p̂ · p̂′)), but we are not interested in those effects now. Nevertheless

they have to be considered if we want to study anisotropies. Replacing eq. (2.195) into
eq. (2.194) and developing the integrals, up to first-order in energy transfer, gives us the final
collision term

C[f(~p )] = −p∂f̄
∂p
neσT (Θ0 −Θ(p̂) + p̂ · ~vb) , (2.196)

where ne is the electron density and ~vb is the velocity field of electrons defined as

ne ≡
∫

d3q

(2π)3
fe , (2.197)

~ve ≡
1

ne

∫
d3q

(2π)3

~q

εe

fe , (2.198)

noting that for non-relativistic electrons εe ' me. We also assumed that electrons have the
same velocity of baryons, and then we use the subscript b. Finally, Θ0 is the monopole part
of temperature perturbations, defined as

Θ0(~x, t) ≡ 1

4π

∫
dΩ′Θ(p̂ ′, ~x, t) . (2.199)

The monopole Θ0 does not depend on the direction vector p̂′, since we are integrating over
all the directions, but it has spacial dependence and then it is not a zero-order quantity. In
the absence of bulk velocity (vb = 0), eq. (2.196) tells us that the collision term serves to
drive Θ to Θ0, which for a very efficient Compton scattering means that only the monopole
survives. When electrons carry a bulk velocity, the photons will also have a dipole moment,
fixed by the electron velocity, but all higher moments will vanish. This is equivalent to saying
that the photons behave like a fluid. In conclusion, the strong scattering or tight coupling
produces that the photons and electrons behave as a single fluid.

Since eq. (2.196) contains only first-order quantities, we can link it with eq. (2.189) through
eq. (2.173) to obtain

Θ̇ +
p̂i

a
· ∂Θ

∂xi
+ Φ̇ +

p̂i

a
· ∂Ψ

∂xi
= neσT (Θ0 −Θ + p̂ · ~vb) , (2.200)
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or its counterpart using conformal time

Θ′ + p̂i · ∂Θ

∂xi
+ Φ′ + p̂i · ∂Ψ

∂xi
= neσTa (Θ0 −Θ + p̂ · ~vb) . (2.201)

Now we are going to pass to the Fourier space, and then we need the Fourier expansion of
the temperature perturbations

Θ (τ, ~x) =

∫
d3k

(2π)3
ei
~k·~xΘ

(
τ,~k

)
, (2.202)

while the perturbed quantities ~vb = vbv̂, Ψ and Φ have their Fourier expansion in eqs. (2.93),
(2.94) and (2.97) respectively. However, we must take care from now, because there could
be a confusion between the v → vnow = ||~v|| presented above and v → vbefore defined in
eq. (2.33), the relation between both in real and Fourier space is

~v = vnowv̂ = ∂ivbefore ⇔ ~vf = vnow;f v̂f = ikvbefore;f . (2.203)

We also define the cosine of the angle α between ~k and p̂ as

µ ≡
~k · p̂
k

, (2.204)

which for irrotational fluids, we can assume that is the same as the angle between the velocity
field ~vb and the direction of the photon momentum p̂, then ~vb ·p̂ = µvb. Finally, the eq. (2.201)
in Fourier space takes the form

Θ′ + ikµΘ + φ′ + ikµψ = −τ ′op (Θ0 −Θ + µvb) , (2.205)

where τop is defined as

τop ≡
∫ τ0

τ

neσTadτ ′ . (2.206)

The eq. (2.205) is not entirely correct, since we ignored the angular dependence of Compton
scattering and the polarization effects that also influence the anisotropies in the photon
distribution. If we had considered the first, eq. (2.205) would have a dependency on Θ2,
which is the quadrupole or the second moment. In general, we can define the lth multipole
moment of the temperature field as

Θl ≡ il
∫ 1

−1

dµ

2
Pl (µ) Θ , (2.207)

where Pl is the Legendre polynomial of order l and in contrast with eq. (2.199), we omitted
the spacetime variables in eq. (2.207) since it can be used in real or Fourier space. If we had
also incorporated the polarization effects, an equation for the strength of the polarization
ΘP would have appeared, which describes the change in the polarization field. Considering
those effects, the equations for the photon distribution are

Θ′ + ikµΘ + φ′ + ikµψ = −τ ′op
(

Θ0 −Θ + µvb −
1

2
P2(µ)Π

)
, (2.208)

Π = Θ2 + ΘP2 + ΘP0 , (2.209)

Θ′P + ikµΘP = −τ ′op
(
−ΘP +

1

2
[1− P2(µ)] Π

)
. (2.210)
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2.9.2 Baryons

The baryons also require a set of Boltzmann equations since, as we saw, the photons interact
with electrons. These last ones are not baryons (in fact, they are leptons), but in Cosmology,
they are often called using that nomenclature and grouped with protons.

In section 2.9.1, we studied a process in which the electrons are coupled with photons
because we will see that it is crucial at some epoch of our Universe. Nonetheless, we did
not mention that during that period the electrons were also coupled with the protons by
Coulomb scattering

e− (~q ) + p+
(
~Q
)
↔ e− (~q ′) + p+

(
~Q ′
)
, (2.211)

where ~Q, ~Q ′ are the momentum of the protons before and after the collision, respectively.
The rate in this process is much larger than the expansion rate, at least at the epoch of
interest [80]. This tight coupling forces that the electron and proton overdensities take a
common "baryon" value δb = δe = δp. The same happens with the velocities of these two
species ~vb = ~ve = ~vp, fact that we already used in section 2.9.1 when we called the electron
velocity field as ~vb.

Since baryons are massive particles they obey P 2 = −m2
l and ε2

l = p2
l +m2

l , where l = e, p
indicates if we are talking about a proton or an electron. We are going to drop out that
index for the moment but later we will recover it, specially in equations where the two
species mix. Now we have P 2 = g00 (P 0)

2
+ p2 = − (1 + 2Ψ) (P 0)

2
= −m2, which lead us

to P 0 = ε (1−Ψ). The spatial part of the four-momentum is the same as eq. (2.176) since
the treatment is independent of the relation P µPµ = −m2, so the final four-momentum for
baryons is

P µ =
(
ε (1−Ψ) ,

p

a
(1− Φ) p̂i

)
. (2.212)

Now, we are going to use ε as an independent variable. Thus, the total time derivative of
some baryon distribution (similar to eq. (2.177)) can be written as

df

dt
=
∂f

∂t
+
∂f

∂xi
· dxi

dt
+
∂f

∂ε

dε

dt
+
∂f

∂p̂i
· dp̂i

dt
, (2.213)

where once again, the last term vanishes since it is the product of two first-order terms.
Following the same procedure of eqs. (2.179) and (2.182), the eq. (2.213) becomes in

df

dt
=
∂f

∂t
+
p

ε

p̂i

a
· ∂f
∂xi
− p2

ε

∂f

∂ε

[
H + Φ̇ +

ε

p

p̂i

a
· ∂Ψ

∂xi

]
, (2.214)

which in the massless limit ε→ p we recover the eq. (2.182).

The eq. (2.214) is the l.h.s. of eq. (2.173), which is valid for both protons and electrons as
long as we change their masses. For protons, the next step is to compute the collision term
C[fp] of the Coulomb scattering. For the electrons, the collision term C[fe] now depends on
two processes: Coulomb scattering and Compton scattering. Since they are independent we
simply add them as C[fe] = Ce−p+ [fe] + Ce−γ[fe]. These assumptions are not trivial because
two reasons, the first is that in principle, we should take account of the scattering between
protons and photons in the collision term for protons, but in practice, the cross-section of
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that process is much smaller than for Compton scattering. The second reason is that we
should include ionization and recombination terms in both species, but we are going to treat
all electrons as ionized [80]. Thus the Boltzmann equations for protons and electrons are

dfp
dt

= Ce−p+ [fp] , (2.215)

dfe

dt
= Ce−p+ [fe] + Ce−γ[fe] . (2.216)

Considering the processes in eqs. (2.190) and (2.211), the collision terms in eqs. (2.215)
and (2.216) are given by (which are obtained in a similar way to the eq. (2.192))

Ce−γ [fe (~q)] =
1

q

∫
d3p

(2π)32ε(p)

∫
d3q′

(2π)32εe(q′)

∫
d3p′

(2π)32ε(p′)
|M|2(2π)4δ3 (~p+ ~q − ~p ′ − ~q ′)

δ (ε(p) + εe(q)− ε(p′)− εe(q
′)) [fe (~q ′) f (~p ′)− fe (~q ) f (~p )] ,

(2.217)

Ce−p+ [fe (~q)] =
1

q

∫
d3Q

(2π)32εp(Q)

∫
d3q′

(2π)32εe(q′)

∫
d3Q′

(2π)32εp(Q′)
|M|2e−p+(2π)4

δ3
(
~Q+ ~q − ~Q ′ − ~q ′

)
δ (εp(Q) + εe(q)− εp(Q′)− εe(q

′))[
fe (~q ′) fp

(
~Q ′
)
− fe (~q ) fp

(
~Q
)]

,

(2.218)

Ce−p+

[
fp

(
~Q
)]

=
1

Q

∫
d3q

(2π)32εe(q)

∫
d3q′

(2π)32εe(q′)

∫
d3Q′

(2π)32εp(Q′)
|M|2e−p+(2π)4

δ3
(
~Q+ ~q − ~Q ′ − ~q ′

)
δ (εp(Q) + εe(q)− εp(Q′)− εe(q

′))[
fe (~q ′) fp

(
~Q ′
)
− fe (~q ) fp

(
~Q
)]

,

(2.219)

where |M|2e−p+ is the amplitude of the Coulomb scattering.

Now, instead of give some form of the distribution function for electrons or protons, we
are going to integrate eq. (2.216) in the q−space. Then using eq. (2.214), the integrated l.h.s.
of eq. (2.216) after replace p by q is∫

d3q

(2π)3

dfe

dt
=
∂

∂t

∫
d3q

(2π)3
fe +

1

a

∂

∂xi
·
∫

d3q

(2π)3

qq̂i

εe

fe −
[
H + Φ̇

] ∫ d3q

(2π)3

q2

εe

∂fe

∂εe

− 1

a

∂Ψ

∂xi
·
∫

d3q

(2π)3
qq̂i

∂fe

∂εe

,

(2.220)

noting that the integral over q passes through H, Φ̇ and ∇Ψ, and the partial derivatives with
respect to xi and t since they are independent variables. The last term of eq. (2.220) vanishes
in first-order perturbation theory since the integral over the direction vector is nonzero only
for the perturbed part, then the integral is a first-order term, and it multiplies the first-order
variable ∇Ψ giving a second-order quantity. Thus eq. (2.220) becomes in∫

d3q

(2π)3

dfe

dt
=
∂ne

∂t
+

1

a

∂ (nev
i
e)

∂xi
+ 3

[
H + Φ̇

]
ne , (2.221)
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where ne and ve are defined in eqs. (2.197) and (2.198) respectively, and the last term was
computed using spherical coordinates together with the relation εedεe = qdq and integrating
by parts.

To construct the zeroth-order and first order-part of the perturbed equations we are going
to expand the density number n in its zeroth-order part n̄ (t) and its perturbed part δn (t, ~x)

n ≡ n̄+ δn

= n̄

[
1 +

δn

n̄

]
= n̄ [1 + δ] ,

(2.222)

where the last equality holds because ρ = mn, ρ̄ = mn̄ and using the definition of eq. (2.63).
Collecting the zeroth-order terms in eq. (2.221) and setting C[f ] = 0 at this order as we
argued in section 2.9.1, we find that the integrated zeroth-order part of eq. (2.216) is

∂n̄

∂t
+ 3Hn̄ = 0 , (2.223)

which solution is known n̄ = n̄0a
−3 because it is the same as ρ̄ in eq. (1.71) for matter.

Then the equation eq. (2.223) is also valid for protons and matter in general as along as the
collision term has not zeroth-order part.

Now collecting the terms up to first-order in eq. (2.221), we find∫
d3q

(2π)3

dfe

dt

∣∣∣∣
1st

= ˙̄nδ + n̄δ̇ +
n̄

a

∂vi

∂xi
+ 3n̄Φ̇ + 3Hn̄δ , (2.224)

where we can use the eq. (2.223) to replace ˙̄n and then obtain∫
d3q

(2π)3

df

dt

∣∣∣∣
1st

= n̄

(
δ̇ +

1

a

∂vi

∂xi
+ 3Φ̇

)
, (2.225)

where we omitted the index e since it can also be used for protons (l.h.s. of eq. (2.215)) using
the appropriate subscripts, this treatment is known as the extraction of the zeroth moment
of the Boltzmann equation.

Instead of treat the collision term to complete the eq. (2.225), we are going back to the
unintegrated eq. (2.214) and we will extract its first moment. For electrons, we multiply that
equation by ~q/me = qq̂j/me to later integrate it in the q−space∫

d3q

(2π)3

dfe

dt

~q

me

=
∂

∂t

∫
d3q

(2π)3
fe
qq̂j

me

+
1

a

∂

∂xi
·
∫

d3q

(2π)3

q2q̂iq̂j

meεe

fe −
[
H + Φ̇

] ∫ d3q

(2π)3

q3q̂j

meεe

∂fe

∂εe

− 1

a

∂Ψ

∂xi
·
∫

d3q

(2π)3

q2q̂iq̂j

me

∂fe

∂εe

.

(2.226)
Since electrons behaves as non-relativistic matter, we have that εe ' me, and also, this
allows us to neglect all the terms of order v2 = (q/εe)

2 and higher in first-order perturbation
theory. Thus the second term in the r.h.s. of eq. (2.226) vanishes since it has a term of
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order q2/(εeme) ∼ (q/εe)
2, while the first term is just the time derivative of nev

j
e as we saw

in section 2.9.1. The integral in the third term has to be done by parts, and after neglecting
some terms, its value is −4nev

j
e , thus the only term that multiplies H survives. Finally,

with the last term, we must do the same as with the third, obtaining −neδ
ij. So eq. (2.226)

becomes in ∫
d3q

(2π)3

dfe

dt

~q

me

=
∂(nev

j
e)

∂t
+ 4Hnev

j
e +

ne

a

∂Ψ

∂xj
, (2.227)

which has not zeroth-order part since it depends purely of first-order quantities. This also
implies that we need to replace ne by n̄e and ˙̄ne by eq. (2.223), which give us∫

d3q

(2π)3

df

dt

~q

m
= n̄

(
v̇j +Hvj +

1

a

∂Ψ

∂xj

)
, (2.228)

where once again, we omitted the index e as in eq. (2.225) since it can also be applied for
protons because they behave as non-relativistic particles too.

Using the conformal time, the eqs. (2.225) and (2.228) take the form∫
d3q

(2π)3

df

dτ

∣∣∣∣
1st

= n̄

(
δ′ +

∂vi

∂xi
+ 3Φ′

)
, (2.229)

∫
d3q

(2π)3

df

dτ

~q

m
= n̄

(
v′j +Hvj +

∂Ψ

∂xj

)
. (2.230)

In Fourier space the eqs. (2.229) and (2.230) are∫
d3q

(2π)3

df

dτ

∣∣∣∣
1st

= n̄ (δ′ + ikv + 3φ′) , (2.231)

∫
d3q

(2π)3

df

dτ

~q

m
= n̄ (v′ +Hv + ikψ) , (2.232)

with δ, v, φ, ψ defined in eqs. (2.93) to (2.95) and (2.97) respectively. Note that if we set the
collision term to zero in both eqs. (2.231) and (2.232), i.e. non-interacting matter, their l.h.s.
vanish and we recover the eqs. (2.106) and (2.109) for matter (w = cs = 0).

It is time to face the collision terms of eqs. (2.217) to (2.219), which need to be integrated
following the treatment that we made to the l.h.s. of eq. (2.214). We are going to start
integrating completely the eq. (2.216), for that we rewrite eq. (2.221) using the definition of
ne and the eqs. (2.217) and (2.218)

dne

dt
=
∂ne

∂t
+

1

a

∂ (nev
i
e)

∂xi
+ 3

[
H + Φ̇

]
ne = 〈Ce−p+〉~q + 〈Ce−γ〉~q , (2.233)

where 〈...〉~q indicates that the collision terms of eqs. (2.217) and (2.218) are being integrated
in q− space. Nevertheless, note that in eq. (2.233) both collision terms vanish, intuitively this
is because the processes that we are considering conserve the electron number and therefore
dne/dt must be zero. A more careful explanation lies in the fact that the integrated collision
terms are completely symmetric under momentum interchange, but their intergrands are
antisymmetric. Thus the l.h.s. of eqs. (2.225), (2.229) and (2.231) is zero, and the equation
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for electrons, protons or baryons, since they have the same density contrast and velocity, in
Fourier space is

δ′b + ikvb + 3φ′ = 0 . (2.234)

We can find another equation, which is obtained extracting the first moment, as we did in
eq. (2.228). For that, we are going to multiply by ~Q and ~p the eqs. (2.215) and (2.216)
respectively, then we are going to integrate them in the respective momentum space. Since
we multiply by the momentum instead of the momentum over the mass, we will obtain in
the l.h.s. the eq. (2.228) multiplied by the respective mass, thus the integrated eqs. (2.215)
and (2.216) are

mp
dnp
dt

= mpn̄p

(
v̇jp +Hvjp +

1

a

∂Ψ

∂xj

)
= 〈Ce−p+Qj〉 ~Q , (2.235)

me
dne

dt
= men̄e

(
v̇je +Hvje +

1

a

∂Ψ

∂xj

)
= 〈Ce−p+qj〉~q + 〈Ce−γq

j〉~q . (2.236)

We proceed to sum them considering that they have the same terms inside the parenthesis,
because the velocity is equal for electrons and protons. We also consider thatmn̄ = ρ̄ and that
the proton mass is predominant, then ρ̄p + ρ̄e ' ρ̄b. Finally, we can group the collision terms
for Coulomb scattering as 〈Ce−p+Qj〉 ~Q + 〈Ce−p+qj〉~q = 〈Ce−p+(qj +Qj)〉~q = 〈Ce−p+(qj +Qj)〉 ~Q
because they are terms integrated in all momenta. The sum of eqs. (2.235) and (2.236) is

ρb

(
v̇jb +Hvjb +

1

a

∂Ψ

∂xj

)
= 〈Ce−p+(qj +Qj)〉~q + 〈Ce−γq

j〉~q , (2.237)

where the first term of the r.h.s. vanishes due to momentum conservation since we are
doing an integral over all momenta. Then only the Compton scattering term survives and
eq. (2.237) can be written as

v̇jb +Hvjb +
1

a

∂Ψ

∂xj
=

1

ρb
〈Ce−γq

j〉~q . (2.238)

Using the same momentum conservation for the Compton scattering we have that 〈Ce−γ~p+
~q〉 = 0 and then 〈Ce−γ~q〉 = −〈Ce−γ~p〉, where we omitted the momentum subscript because it
loses its purpose since these quantities are being integrated in all momenta. Therefore, we
are going to write eq. (2.238) using the conformal time and the indication above

v′
j
b +Hvjb +

∂Ψ

∂xj
= − a

ρb
〈Ce−γp

j〉 , (2.239)

which in Fourier space is
~v′b +H~vb + i~kψ = − a

ρb
〈Ce−γ~p〉 , (2.240)

then we proceed to made the dot product by k̂ in both sides of the equation. In section 2.9.1
we saw that ~vb is in the same direction that k̂, so we will recover its modulus, while in the
r.h.s. we saw that ~p · k̂ = pµ. Then eq. (2.240) becomes in

v′b +Hvn + ikψ = − a
ρb
〈Ce−γpµ〉 . (2.241)
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We have already computed Ce−γ in eq. (2.196), thus the r.h.s. of eq. (2.241) is

− a
ρb
〈Ce−γpµ〉 = − a

ρb

[
−neσT

∫
d3p

(2π)3

∂f̄

∂p
p2µ (Θ0 −Θ(p̂) + p̂ · ~vb)

]
=
aneσT
ρb

∫ ∞
0

dp

2π2
p4∂f̄

∂p

∫ 1

−1

dµ

2
µ (Θ0 −Θ(p̂) + µvb)

= τ ′op
4ρ̄γ
ρ̄b

(iΘ1 + 3vb) ,

(2.242)

where in the second line, we used spherical coordinates and separated integrals for p and
µ. We have to remember that, besides spacetime coordinates, Θ0 does not depend on the
momentum, and Θ does not depend on the momentum modulus. Then the integral in p can
be done by parts which gives −

∫∞
0

dp
2π2 4p3f̄ = −

∫
d3p

(2π)3 4pf̄ and since for photons ε = p we
can recognize that its value is −4ρ̄γ, but its negative sign is used in the definition of τop in
eq. (2.206). Θ0 and vb are independent for the integral in µ, so its first term vanishes since it
is an even function in a symmetric interval, and the third term gives vb/3. Finally, we have
defined the first moment or dipole of the temperature perturbation as

Θ1 ≡ i

∫ 1

−1

dµ

2
µΘ(p̂) , (2.243)

and according to eq. (2.207), where we only made explicit the dependency in the momentum
direction since its definition can be used in both real and Fourier space. The eq. (2.241) then
is

v′b +Hvn + ikψ =
τ ′op
Rs

(3iΘ1 + vb) , (2.244)

in which we have defined the baryon-to-photon density ratio Rs as

Rs ≡
3ρ̄b
4ρ̄γ

. (2.245)

2.9.3 Cold Dark Matter

To consider the dark matter in the mix of baryons and photons, we just have to add the
equations for its perturbed quantities. Since the dark matter in principle only interacts
gravitationally, it has no collision term, at least one known, because its effects are encoded
in the potentials Φ and Ψ. Hence we can use the same equations for the matter (baryons)
without a collision term, which in Fourier space is equivalent to set eqs. (2.231) and (2.232)
to zero. But when we obtained those equations we dropped terms of order v2 ∼ (p/ε)2 and
higher, then to preserve the equations we have to assume the same for dark matter, which
is the reason why we called it as cold dark matter. Once done, the equations for cold dark
matter in Fourier space are

δ′cdm +−ikvcdm + 3φ′ = 0 , (2.246)

v′cdm +Hvcdm + ikψ = 0 , (2.247)

which are the same that we obtained for a general matter fluid (w = c2
s = σ = 0) using the

conservation of the energy-momentum tensor in eqs. (2.106) and (2.109).
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Figure 2.2: The absolute value of the density contrast (eq. (2.63)) as function of the conformal
time for two characteristic scales -super-horizon limit at the top and sub-horizon limit at the
bottom- and different components, computed using the software CLASS [46]. We consider
the effects of the interacting fluids studied in sections 2.9.1 to 2.9.4, which take place near
recombination. We also include the time of densities equality to determinate RDE and MDE,
and the recombination time (see section 3.4.3).
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2.9.4 Neutrinos

The neutrinos can be included in our treatment; in fact, as they interact only very weakly
with the other species, we can add them in the same way we did for cold dark matter.
Nevertheless, we are going to consider that they are massless or at least that they have
not appreciable mass, then we will directly take their temperature perturbations N instead
of the energy density perturbations δν . Thus neutrinos behaves like radiation ρν ∝ a−4

(w = 1/3 in eq. (1.71)) and due to eq. (2.188) ρν ∝ T 4, which after differentiating becomes
in dρν = 4ρνΘ⇒ δν = 4N0 where we integrated over the µ dependency which makes appear
the monopole. The same happens with photons, and therefore the total radiation energy
density perturbations can be written as

ρ̄rδr = 4 (ρ̄γΘ0 + ρ̄νN0)

= 4ρ̄r ([1− fν ] Θ0 + fνN0) ,
(2.248)

where we defined fν as
fν ≡

ρ̄ν + ρ̄γ
ρ̄r

. (2.249)

As neutrinos interact very weakly, we can use the same equation for photons (eq. (2.205) in
Fourier space) but without scattering terms coming from Compton scattering, which gives

N ′ + ikµN + φ′ + ikµψ = 0 . (2.250)

Nonetheless, we also can probe that other multipoles source the perturbed potentials. If
we apply the same operator of eq. (2.99) in Fourier space, but now on the general energy-
momentum tensor of eq. (2.170), we can note that its spatial part obeys(

k̂ik̂
j − 1

3
δji

)
T ij = g

∫
d3p

(2π)3

p2µ2 − 1
3
p2

ε(p)
f (~p, ~x, t) , (2.251)

where we used eq. (2.204), and the combination µ2− 1/3 suggests us that we should write it
as 2P2(µ)/3. Then, expanding up to first-order the distribution in eq. (2.251) according to
eq. (2.185) and after integrating by parts, we obtain(

k̂i + k̂j − 1

3
δji

)
T ij = −8

3
ρ̄Θ2 , (2.252)

in which we recognized the definition of quadrupole according to eq. (2.207). Thus, by
eq. (2.100), we can rewrite eq. (2.105) using eq. (2.252) as

k2 (φ+ ψ) = −32πGa2ρ̄Θ2 , (2.253)

meaning that the quadrupole causes a difference in the potentials. Since for non-relativistic
fluids, the quadrupole vanishes, they do not develop anisotropic stress, and then, the poten-
tials are opposite φ = −ψ. Like the energy-momentum is additive, we can rewrite eq. (2.253)
considering all relativistic particles i.e. photons and neutrinos, as

k2 (φ+ ψ) = −32πGa2 (ρ̄γΘ2 + ρ̄νN2) . (2.254)
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Figure 2.3: The fields δ(τ, k) and θ(τ, k) from eqs. (2.63) and (2.64), respectively, for photons
(upper panel), baryons (central panel) and cold dark matter (lower panel) computed using
the software CLASS [46]. We consider the interacting fluids effects from section 2.9. We also
show the time of densities equality to determinate RDE and MDE, the recombination time
(see section 3.4.3), the horizon k = aH which set the limit between sub-horizon and super-
horizon scales, the comoving sound horizon ks (see eq. (3.127)), and the comoving diffusion
scale kd that affects photons.
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Figure 2.4: The potentials fields φ(τ, k) (left) and ψ(τ, k) (right) computed using the soft-
ware CLASS [46]. We consider the effects of the interacting fluids studied in sections 2.9.1
to 2.9.4. We also include the time of densities equality to determinate RDE and MDE, the
recombination time (see section 3.4.3) and the horizon (blue dashed line).

53



Chapter 3

History Of The Universe

In the last chapters, we studied the equations that govern the background and perturbed
quantities, at least for scalar variables. Nonetheless, to solve them, we need initial conditions
and knowledge of the processes from the beginning until nowadays. The quest for initial
conditions led to physicians of the 20th century to propose the theory of Inflation, which
also explained some additional problems of the epoch. The expansion also forecasts that our
primordial Universe was small, where processes of high energy physics arise, explaining why
the early Universes was radiation, and latter matter, dominated. All these effects change
how we observe our Universe now, and then, to prepare the field for some observations, we
are going to make a quick summary of them, following [80, 31, 32, 212].

3.1 Inflation

One of the recurrent arguments that we used to describe our Universe is the cosmological
principle, but we have not described a mechanism that explains it. The fact that nowadays
we measure disjoint patches of sky with almost the same densities and temperatures is called
the horizon problem. Also, our Universe looks flat nowadays according to precise measures
[59], which does not have a straightforward explanation, forcing the called flatness problem.
Those problems together with the apparent lack of magnetic monopoles necessary in some
Grand Unified Theories [74] -the monopole problem- can be explained by a period early in
the history of the Universe, when the expansion was extremely accelerating called Inflation.

To explain the horizon problem, we first have to define the particle horizon, which is the
maximal comoving distance that light can travel between two times t1 and t2. Using eq. (1.52)
with c = 1, it is just

∆χ =

∫ t2

t1

dt

a(t)
= τ2 − τ1 , (3.1)

where we used the conformal time in eq. (1.3). Then, eq. (3.1) can be rewrite using again
eq. (1.52) as

∆χ =

∫ a2

a1

da

a

1

aH(a)
=

∫ ln a2

ln a1

d ln a
1

aH(a)
. (3.2)
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That means that the particle horizon is the logarithmic integral of the comoving Hubble
radius 1/aH(a). For an Universe dominated by a fluid with constant equation of state
parameter w we can write the Hubble radius using eqs. (1.71) and (1.72)

1

aH(a)
= H−1

0 a
1
2

(1+3w) , (3.3)

then the particle horizon χp(a) can be found inserting eq. (3.3) into eq. (3.2)

χp(a) =
2

H0(1 + 3w)

[
a

1
2

(1+3w) − a
1
2

(1+3w)

i

]
=

2

1 + 3w

[
(aH(a))−1 − (aiH(ai))

−1] , (3.4)

where, after using the correspondence of eq. (3.1), it is possible to write

τ(a) =
2a

1
2

(1+3w)

H0(1 + 3w)
. (3.5)

If our fluid has w > −1/3 like all familiar sources, we can note that τi ≡ τ(a → 0) → 0
and χp ∝ (aH)−1. These constraints mean that the comoving horizon of eq. (3.4) does not
depend on early times, and it is finite. How is possible then, that photons coming from two
opposite directions on the sky that were emitted at CMB epoch (that is sufficiently close to
the Big Bang singularity [80]) have almost the same temperature if they were never in causal
contact? A solution for this problem could be a phase of decreasing Hubble radius in the
early Universe,

d

dt
(aH)−1 < 0 . (3.6)

Under this assumption, the Hubble radius may have been large enough to communicate
different regions in the sky that we see similar nowadays. But eq. (3.3) says that a decreasing
Hubble radius requires that 1 + 3w < 0 and then τi ≡ τ(a → 0) → −∞ by eq. (3.5).
Therefore the Big Bang singularity is at a negative conformal time instead of zero like we
thought, meaning that there was more conformal time between the singularity and CMB.

To explain the flatness problem, we must take eq. (1.31) and divide it by H2,

1− Ω(t) = − K

(aH)2
, (3.7)

where we also use the definition of eq. (1.35). Setting t = tnow and therefore a = a0 = 1,
H = H0 and Ω = Ω0 we find 1 − Ω0 = −K/H2

0 . Replacing the last expression in order to
eliminate K from eq. (3.7), give us

1− Ω(t) = H2
0 (1− Ω0)

1

(aH)2
. (3.8)

Precise measures [59, 1] have constrained the value of |1−Ω0| = 0.001± 0.002, meaning that
our Universe noways is mostly flat. However, as we saw previously, the Hubble radius is an
increasing function of time and by eq. (3.8), 1− Ω too. Meaning that if our Universe is flat
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today, in the past, it was extremely flat, for example, |1−Ω(aGUT )| ≤ 10−55 [31]1. In classical
Cosmology, we have not explained how this happens, but taking the solution of eq. (3.6), we
can also resolve this problem because, during this period, the Hubble radius decreases and
then our Universe is driven towards flatness. We can demonstrate it using the derivative of
eq. (3.7) with respect to the logarithm scale factor

dΩ

d ln a
=

dΩ

da

da

d ln a

=
K(1 + 3w)

a3H2
a

= (Ω− 1) (1 + 3w) ,

(3.9)

where we used the Hubble radius definition of eq. (3.3). In eq. (3.9) we can see that Ω = 1
is an unstable fixed point if we have a classical fluid with w > −1/3, but it becomes in an
attractor for w < −1/3, which is the same condition required for the horizon problem.

Now we can explain why this period is called Inflation, for that, we have to take our
condition in eq. (3.6) and develop it

d

dt
(aH)−1 =

d

dt
(ȧ)−1

= − ä

(ȧ)2 ,
(3.10)

then to satisfy eq. (3.6), ä has to be positive. This constraint is why we call this phase as
Inflation and also as a period of accelerated expansion. We can also develop the derivative
in another way

d

dt
(aH)−1 = − ȧH + aḢ

(aH)2

= −1

a
(1− ε) ,

(3.11)

where we defined the first slow-roll parameter ε as

ε ≡ − Ḣ

H2
, (3.12)

and then ε < 1 in order to satisfy eq. (3.6). We also can write ε as

ε =
d lnH

dN
, (3.13)

with N = ln a as the number of e-folds of inflationary expansion, also defined in eq. (2.124).
Then, the condition in eq. (3.6) implies that the fractional change of the Hubble parameter
per e-folds is small. But to solve the cosmological problems, Inflation must hold between 40
to 60 e-folds [31], for that we introduce the second slow-roll parameter

η ≡ ε̇

Hε
=

d ln ε

dN
, (3.14)

1Grand Unified Theories.
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then to achieve that ε remains small for a large number of e-folds we have to demand that
|η| < 1.

For a perfect Inflation ε = 0 and then by the definition in eq. (3.12), H = constant. Thus,
the metric of eq. (1.9) becomes in de Sitter spacetime

ds2 = −dt2 + e2Htdxidxj , (3.15)

but we know that Inflation has to end, and then the spacetime can not be a perfect de Sitter
metric. However, for a small ε, the line element in eq. (3.15) is still a good approximation,
and that is why we can also refer to Inflation as the quasi-de Sitter period.

To explain the accelerated expansion at Inflation, we have to rewrite eq. (1.33) using
eq. (1.31) with K = 0 (because the flatness in this period) as

Ḣ +H2 = −4πG

3
(ρ+ 3P )

= −H
2

2

(
1 +

3P

ρ

)
,

(3.16)

then using eq. (3.16) in the definition of eq. (3.12), we can obtain ε

ε = − Ḣ

H2

=
3

2

(
1 +

P

ρ

)
≤ 1 ,

⇒ P

ρ
≤ −1

3
,

(3.17)

where we also used the condition on ε. Meaning that Inflation requires a negative pressure
or an EoS parameter w < −1/3, as we mentioned before. Now if we consider eq. (1.39) with
the value of ε given in eq. (3.17), we obtain

dρ

ρ
=− 3H

(
1 +

P

ρ

)
dt

d ln ρ =− 3H

(
1 +

P

ρ

)
d ln a

H
,

⇒d ln ρ

d ln a
=− 2ε ,

⇒
∣∣∣∣d ln ρ

d ln a

∣∣∣∣ =2ε .

(3.18)

The eq. (3.18) tells us that for a small ε, as the condition in eq. (3.6) claims it, also the
change of the logarithm density over e-folds is small. Then, the energy density is nearly
constant, but conventional matter sources dilute with expansion. Therefore this fluid has to
be something more unusual. Many theories have emerged [32] to try to explain this kind of
fluid, but we are going to explain the most common and simple in which a scalar field called
the inflaton drives Inflation. To begin, we are going to write the energy-momentum tensor
for a generically scalar field φ(~x, t)

T µν = gµα
∂φ

∂xα
∂φ

∂xν
− δµν

[
1

2
gαβ

∂φ

∂xα
∂φ

∂xβ
+ V (φ)

]
, (3.19)
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where V (φ) is the potential for the field. Take care of not confuse the scalar field with the
gravitational potential in Fourier space (eq. (2.93)). To preserve the symmetries of the FLRW
metric, we require that the value of the inflaton only depends on time, at least to zeroth-order

φ(~x, t) = φ̄(t) + δφ(~x, t) . (3.20)

For the background part of the field φ̄(t), only time derivatives are relevant in eq. (3.19).
We can find expressions for the energy density and pressure for the homogeneous part of the
field by taking eq. (1.11) and noting that T 0

0 = −ρφ and T ij = Pφδ
i
j, then

ρφ =
1

2
φ̇2 + V (φ) , (3.21)

Pφ =
1

2
φ̇2 − V (φ) , (3.22)

where we omitted the time dependence for simplicity, and also we wrote the background part
of the field just as φ. The expressions in eqs. (3.21) and (3.22) tell us that the condition in
eq. (3.17) is satisfied if the field has more potential energy than kinetic, this situation is called
slow-roll inflation and it is satisfied by the slow-roll parameters ε, η (eqs. (3.12) and (3.14)). It
is also possible to find an equation of movement for φ replacing those expressions in eqs. (1.31)
and (1.32) for K = 0

H2 =
8πG

3

(
1

2
φ̇2 + V

)
, (3.23)

Ḣ = −8πGP − 3H2

= −4πGφ̇2 ,
(3.24)

where we also replaced the eq. (3.23) into eq. (3.24). Using the eq. (3.24) into the definition
of eq. (3.12) we find that

ε = 4πG
φ̇2

H2
. (3.25)

Now we take the time derivative of eq. (3.23) and insert the result of eq. (3.24) that leads us
the Klein-Gordon evolution equation for the scalar field

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 , (3.26)

which tells us that in the inflationary period, the inflaton potential acts as a force, while the
expansion adds friction.

Now we are going to describe the perturbed part of the inflaton field, for that, it is
convenient to write eq. (3.20) using the conformal time as

φ(~x, τ) = φ̄(τ) +
f(~x, τ)

a(τ)
, (3.27)

noting that we are now going to work over the function f instead δφ to simplify future
calculations. We begin writing the action for a generically scalar field

S =

∫
dτd3x

√−g
[

1

2
gµν∂µφ∂νφ− V (φ)

]
, (3.28)
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where g ≡ det(gαβ) and gαβ is the unperturbed FLRW metric of eq. (1.9) for flat cosmologies
in cartesian coordinates. Using eq. (3.27) into eq. (3.28) the action takes the form

S =

∫
dτd3x

[
−a

2

2

{
φ̄′ +

f ′

a
−Hf

a

}2

+
1

2
(∇f)2 − a4V

(
φ̄+

f

a

)]
. (3.29)

To work up to first-order, it is convenient to expand the potential until the second-order in
perturbations as

V

(
φ̄+

f

a

)
' V

(
φ̄
)

+
∂V

∂φ

f

a
+

1

2

∂2V

∂φ2

(
f

a

)2

, (3.30)

which we are going to replace into eq. (3.29). Using that expansion and developing the
parenthesis in the kinetic part of eq. (3.29) allow us to write the action as

S '
∫

dτd3x

[
− a2

2

(
φ̄′
)2 − 1

2
f ′2 − H

2

2
f 2 − aφ̄′f ′ + aHφ̄′f +Hf ′f

+
1

2
(∇f)2 − a4V

(
φ̄
)
− a3f

∂V

∂φ
− a2

2
f 2∂

2V

∂φ2

]
.

(3.31)

The action in eq. (3.31) can be separated into powers of the perturbed field f or its derivatives

S(0) =

∫
dτd3x

[
−a

2

2

(
φ̄′
)2 − a4V

(
φ̄
)]

, (3.32)

S(1) =

∫
dτd3x

[
−aφ̄′f ′ + aHφ̄′f − a3f

∂V

∂φ

]
, (3.33)

S(2) =

∫
dτd3x

[
−1

2
f ′2 − H

2

2
f 2 +Hf ′f +

1

2
(∇f)2 − a2

2
f 2∂

2V

∂φ2

]
. (3.34)

The eq. (3.32) does not give us information since their terms disappear after to demand the
least action principle δS = 0. While the first term of eq. (3.33) can be integrated by parts,
dropping the boundary term, which allows us to write eq. (3.33) as

S(1) =

∫
dτd3x

[
φ̄′′ + 2Hφ̄′ + a2∂V

∂φ

]
af , (3.35)

which after imposing S(1) = 0 for all f gives the same Klein-Gordon equation of eq. (3.26)
but now as a function of conformal time

φ′′ + 2Hφ′ + a2∂V

∂φ
= 0 . (3.36)

Finally writing the term Hf ′f = 1
2
H(f 2)′ in eq. (3.34) and integrating it by parts, dropping

again the boundary term, the quadratic action of eq. (3.34) can be written as

S(2) = −1

2

∫
dτd3x

[
f ′2 − (∇f)2 + f 2

{
H′ +H2 + a2∂

2V

∂φ2

}]
, (3.37)
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then and after of considering S(2) =
∫

dτd3xL, we can apply the Euler-Lagrange equation to
the quadratic action

∂L
∂f
− ∂µ

(
∂L

∂ (∂µf)

)
= 0 , (3.38)

which gives us the motion equation for the field f

f ′′ −∇2f − f
[
H′ +H2 + a2∂

2V

∂φ2

]
− 1

2
af 2∂

3V

∂φ3
= 0 , (3.39)

where we are going to drop the last term in eq. (3.39) since it is of second-order in f .
We will do the same with the second derivative of the potential since it is a first-order
perturbation variable multiplied by f , which gives a second-order quantity. Finally and
writing H′ +H2 = a′′/a, gives the Mukhanov-Sasaki equation

f ′′ −∇2f − a′′

a
f = 0 , (3.40)

which in Fourier space is2

f ′′k +

(
k2 − a′′

a

)
fk = 0 . (3.41)

Since in the Sitter spacetime a′′/a = 2(aH)2 = 2/τ 2, the Mukhanov-Sasaki equation also
takes the form

f ′′k +

(
k2 − 2

τ 2

)
fk = 0 , (3.42)

which exact solution is given by

fk(τ) = C1
e−ikτ√

2k

(
1− i

kτ

)
+ C2

eikτ√
2k

(
1 +

i

kτ

)
. (3.43)

To complete our results, we are going to make a quantum treatment of the inflaton fluc-
tuations f = aδφ. For that we define its momentum conjugate π(~x, τ) using the quadratic
action of eq. (3.37)

π(~x, τ) ≡ ∂L
∂f ′

= f ′ , (3.44)

then we proceed to promote the fields f(~x, τ) and π(~x, τ) to quantum operators f̂ and π̂,
which satisfy the standard equal time commutation relation[

f̂(~x, τ), π̂(~y, τ)
]

= iδ (~x− ~y) , (3.45)

which in Fourier space is [
f̂~k(τ), π̂~k′(τ)

]
= iδ

(
~k + ~k′

)
. (3.46)

Then we can expand the modes f̂~k through

f̂~k(τ) = fk(τ)â~k + f ∗k (τ)â†~k , (3.47)

2Taking the Fourier transform of f with the convention of eq. (2.93).
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where fk and its complex conjugate f ∗k are the solutions given by eq. (3.43). While â~k and
its Hermitian conjugate â†~k are time-independent operators that satisfy

[
â~k, â

†
~k′

]
= δ
(
~k + ~k′

)
, (3.48)

which is valid as long as the solutions in eq. (3.43) are normalized as they are. These operators
can be interpreted as the creation and annihilation operators, as in the quantum harmonic
oscillator. Hence

â~k|0〉 = 0 , (3.49)

|m~k1
〉 =

1√
m!

(
â†~k1

)m|0〉 , (3.50)

where |0〉 is the vacuum state. Nevertheless, for general time-dependent background, the
choice of this state can be ambiguous, and there is a preferred option for Inflation. In early
times (τ → −∞) all the modes of cosmological interest were deep inside the horizon, which
changes eq. (3.42) into

f ′′k + k2fk = 0 , (3.51)

which means that modes had time-independent frequencies in the remote past. Thus the
eq. (3.51) is the free field equation in Minkowski space, and their solutions are fk ∝ e±ikτ .
The factor 1/

√
m! in eq. (3.48) is because we set the Wronskian of the mode functions as

W [fk, f
∗
k ] ≡ 1, that also set the normalization in the solutions of eq. (3.43) and allows that

only the positive frequency modes fk ∝ e−ikτ can be the minimal excitation state. For that
reason, it is going to be chosen to define the vacuum state in Inflation, and therefore we are
going to resolve the Mukhanov-Sasaki equation in eq. (3.42) with initial conditions given by

lim
τ→−∞

fk(τ) =
1√
2k

e−ikτ . (3.52)

This state defines an unique physical vacuum called the Bunch-Davies vacuum, which sets
the constants C1 = 1 and C2 = 0 in the solution of eq. (3.43).

Finally we aim to compute the quantum statistics of the operator f̂ using eqs. (3.43)
and (3.47) with C1 = 1 and C2 = 0 because the above discussion. Thus the operator f̂ is

f̂(~x, τ) =

∫
d3k

(2π)3

[
fk(τ)â~k + f ∗k (τ)â†~k

]
ei
~k·~x

=

∫
d3k

(2π)3

[
e−ikτ√

2k

(
1− i

kτ

)
â~k +

eikτ√
2k

(
1 +

i

kτ

)
â†~k

]
ei
~k·~x ,

(3.53)

which we are going to use to compute its expectation value 〈f̂〉

〈f̂〉 ≡〈0|f̂ |0〉

=

∫
d3k

(2π)3

[
e−ikτ√

2k

(
1− i

kτ

)
〈0|â~k|0〉+

eikτ√
2k

(
1 +

i

kτ

)
〈0|â†~k|0〉

]
ei
~k·~x = 0 .

(3.54)
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where we use â~k|0〉 = 〈0|â†~k = 0 from eq. (3.49). As we expected the expectation value of the
perturbation vanishes, however its variance receive non-zero quantum fluctuations

〈|f̂ |2〉 ≡〈0|f̂ †(~x, τ)f̂(~x, τ)|0〉

=

∫
d3k

(2π)3

∫
d3k′

(2π)3

〈
0
∣∣∣(f ∗k (τ)â†~k + fk(τ)â~k

)(
fk′(τ)â~k′ + f ∗k′(τ)â†~k′

)∣∣∣ 0〉 ei~x·(
~k′−~k)

=

∫
d3k

(2π)3

∫
d3k′

(2π)3
fk(τ)f ∗k′(τ)δ

(
~k + ~k′

)
ei~x·(

~k′−~k)

=

∫
d3k

(2π)3
|fk(τ)|2

=

∫
dk

k

k3

2π2
|fk(τ)|2 ,

(3.55)
noting that in the last line we write the integral using spherical coordinates to define the
dimensionless power spectrum of fluctuations as

∆2
f (k, τ) ≡ k3

2π2
|fk(τ)|2

=

(
k

2π

)2(
1 +

1

(kτ)2

)
,

(3.56)

where we used the solutions of eq. (3.43) with the known initial conditions.

In super-horizon scales, the second term in eq. (3.56) predominates over the first, and the
k-dependence is lost for now. Using the de Sitter spacetime approximation τ−2 = (aH)2 the
power spectrum of inflaton perturbations at those scales is given by

∆2
δφ(k, τ) =a−2∆2

f (k, τ)

=

(
H

2π

)2

.
(3.57)

It seems that both mode and time dependencies were lost in eq. (3.57), but we have to
remember that H was assumed constant when we derived this result. More generally, we can
compute the power spectrum at a specific time by evaluating H when the mode of interest
leaves the horizon, and it implicitly extends the result for the pure de Sitter background to
a slowly time-evolving quasi-de Sitter space. With this, the time is set, and we recover the k
dependence at the horizon crossing k = aH in the power spectrum

∆2
δφ(k) =

(
H

2π

)2
∣∣∣∣∣
k=aH

, (3.58)

which also has the added benefit that the error caused by ignoring the metric fluctuations
does not accumulate over time.

If we had considered metric perturbations using the spatially flat gauge3 of eq. (2.23), the
3The same results can be obtained using the comoving gauge in which δφ = 0, for more details, consult

[32]
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eq. (3.41) would have changed to

f ′′k +

(
k2 − z′′

z

)
fk = 0 , (3.59)

z2 ≡ 2a2ε , (3.60)

where in the de Sitter space, we can still make the approximation z′′/z ' 2/τ 2 for super-
horizon perturbations and then obtain the same power spectrum of eq. (3.58). Also, there is
another approximation to first-order using the slow-roll parameters

z′′

z
' 1

τ 2

{
2 + 3

(
ε+

η

2

)}
=

1

τ 2

(
ν2 − 1

4

)
, (3.61)

ν ≡ 3

2
+ ε+

η

2
, (3.62)

which for a constant ν, it has an exact solution given by Hankel functions of the first and
second kind, but after imposing the Bunch-Davies vacuum condition (eq. (3.52)), only the
first kind remains.

In chapter 2, we computed the comoving curvature perturbation, which is a gauge-
invariant quantity given in eq. (2.44). Like it does not change from gauge to gauge, we
can track how the power spectrum of eq. (3.58) behaves after Inflation. We will compare it
in two different gauges, where the first is the spatially flat gauge where the power spectrum
was computed. Thus R in that gauge is

R = H (v −B) , (3.63)

because Φ = E = 0 for that choice (eq. (2.23)). Comparing it with the general form of the
component T 0

i in eq. (2.31), we note that in both appears the factor B − v since for scalar
quantities we have T 0

i =
(
ρ̄+ P̄

)
(vi −Bi) =

(
ρ̄+ P̄

)
∂i (v −B). Then, we are going to

compute that component for the inflaton field using the eq. (3.19) and obtaining

T 0
i = − φ̄

′

a2
∂iδφ , (3.64)

where we used the trick (1 + ε)−1 ' 1− ε for the inverse of the metric in that gauge. Using
again eq. (2.31) we make the direct relation −φ̄′δφ/a2 =

(
ρ̄+ P̄

)
(v −B), we also know that

φ̄′ = a ˙̄φ and ρ̄ + P̄ = ˙̄φ2 for the inflaton field according to eqs. (3.21) and (3.22). Therefore
v −B = −δφ/φ̄′ = −δφ/(a ˙̄φ), and the comoving curvature perturbation takes the form

R = −H
φ̄′
δφ = −H

˙̄φ
δφ . (3.65)

With the eq. (3.65) we can relate the inflaton perturbations directly with the comoving cur-
vature perturbation variable, and in Fourier space, we can also connect their power spectrum

∆2
R(k) =

(H
φ̄′

)2

∆2
δφ(k) =

(
H
˙̄φ

)2

∆2
δφ(k) , (3.66)
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then the power spectrum for R after using eqs. (3.25) and (3.58) is

∆2
R(k) =

4πG

ε

(
H

2π

)2
∣∣∣∣∣
k=aH

. (3.67)

The other gauge in which we will compute R is the Newtonian gauge (eq. (2.22)) since it was
where we mostly worked in chapter 2. The comoving curvature perturbation of eq. (2.44) in
that gauge takes the form

R = Φ +Hv , (3.68)

which after using eq. (2.73) becomes in

R = Φ +
H (Φ′ −HΨ)

4πGa2
(
ρ̄+ P̄

) , (3.69)

that only depends of the perturbed potentials. Taking the derivative of eq. (3.69) and using
the eqs. (1.66), (2.43), (2.67), (2.70), (2.71), (2.77), (2.78) and (2.83), we find

4πGa2
(
ρ̄+ P̄

)
R′ = −4πGa2HδPnad +Hc2

s(a)∇2Φ +
H
3
∇2 (Φ + Ψ) , (3.70)

in which we have δPnad = 0 for barotropic fluids and Φ + Ψ = 0 from eq. (2.80) for a fluid
with null anisotropic stress. Then, the r.h.s. of eq. (3.70) is proportional to H∇2Φ and in
Fourier space it is to Hk2φ. Meanwhile the l.h.s. of eq. (3.70) is proportional to H2R′ =
H3R (d lnR/d ln a). Also for super-horizon scales we saw that φ′ = 0 from eq. (2.121), thusR
is proportional to Φ by eq. (3.69). Finally, for that limit we can conclude that the logarithm
derivative of R scales as

d lnR
d ln a

∼
(
k

H

)2

→ 0 , (3.71)

which vanishes because we are seeking super-horizon scales, also it tells us that the comoving
curvature perturbation remains unaltered until a later time in this limit. Hence R is a gauge-
invariant and also constant in the super-horizon, turning it essential to track quantities from
Inflation to nowadays.

The spectrum in eqs. (3.58) and (3.67) can be only a purely function of k since it is
evaluated at k = aH, but as we saw it is a scale-free spectrum. Which it is bad because
a scale-free or Harrison-Zel’dovich-Peebles spectrum is what one might have expected even
without the Inflation theory. However, since H is a slow-varying function of time, we expect
that the power spectrum will deviate slightly from the scale-invariant form. In general, to
quantify those deviations for some power spectrum ∆2 we define the spectral index

n− 1 ≡ d ln ∆2

d ln k
, (3.72)

then the power spectrum can be written as

∆2 = A

(
k

k∗

)n−1

, (3.73)

where A is the amplitude set at some k∗. Once obtained, the power spectrum of eq. (3.73)
can be related with the one in eq. (3.67). Besides, for the power spectrum in eqs. (3.58)

64



and (3.67), the spectral index is called the scalar spectral index ns, which to first order in
the slow-roll parameters takes the value

ns − 1 = −2ε− η . (3.74)

Thus it shows that for de Sitter spacetime, the power spectrum is perfectly scale-invariant.
On the other hand, ns measures the deviations from the perfect de Sitter.

Finally, we can also compute the original power spectrum instead of the dimensionless
one. For that, we go back to eq. (3.56), defining

P (k) ≡ 2π2

k3
∆2(k) , (3.75)

which for the comoving curvature perturbation reads

PR(k) =
2π2

k3
A

(
k

k∗

)ns−1

, (3.76)

where we used eq. (3.73). We also are going to set k∗ at horizon crossing nowadays i.e.
k∗ = a0H0 = H0 for eq. (1.10), this also sets the amplitude as we argued before, where we
will named it as As. Therefore, the power spectrum of eq. (3.76) now is

PR(k) =
2π2

k3
As

(
k

H0

)ns−1

. (3.77)

3.2 Reheating
As we mentioned before, the inflationary epoch has to end to produce the Hot Big Bang
scenario and then the Universe that we observe. Nevertheless, at the end of Inflation, the
Universe is typically in a highly non-thermal state because the ability of Inflation to homog-
enize it, then our Universe is left at effectively zero temperature. That means that it has to
be reheated or defrosted to the high temperatures that we require for the standard Hot Big
Bang. This process is known as Reheating, and any successful theory of Inflation must also
explain it.

After Inflation, the inflaton field φ begins to oscillate at the bottom of the potential V (φ)
since it transforms the initial potential into kinetic energy. Near the minimum of V (φ), we
can approximate it as its quadratic form V (φ) = 1

2
m2φ2, where φ has to be assumed small

in amplitude. Replacing this approximation into eq. (3.26) gives

φ̈+ 3Hφ̇+m2φ = 0 , (3.78)

which for H ∼ cte, the eq. (3.78) is just the equation for a damped harmonic oscillator in
which if the damping coefficient (3H)−1 is much shorter than the frequencym, we can neglect
the friction term. Using the continuity eq. (1.39) for the inflaton field and its pressure in
eq. (3.22) we can describe its behavior as

ρ̇φ + 3Hρφ =− 3HPφ

=
3

2

(
m2φ− φ̇2

)
,

(3.79)
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where the term in parenthesis averages to zero over one oscillation period considering H−1 �
m−1, therefore the oscillating field behaves like pressureless matter.

The inflaton must decay into Standard Model fields to avoid that our Universe ends up
empty and to explain the components that we know. If the inflaton decays into bosons,
the process will be very rapid and will be far from thermal equilibrium, a process known as
preheating. But if the decay is slow, in which case the inflaton would decay into fermions,
the energy density behaves as

ρ̇φ + 3Hρφ = −Γφρφ , (3.80)
where Γφ is the inflaton decay rate. However, we need both bosons and fermions in our
Universe, and then the decay is more complicated that we explained here. Also, the particles
created will interact and create other particles, and this soup will eventually reach thermal
equilibrium at some temperature Trh in a process called thermalization, at least for the
particles whose interactions are not so weak. The energy density determines this reheating
temperature at the end of reheating, which necessarily has to be less than the inflaton energy
density at the end of Inflation, but if reheating takes a long time, the difference between the
two could be large and affect the value of Trh. In the end, the energy density of this soup
behaves like radiation as long as the momenta of the particles are much higher than their
masses, and finally, the Hot Big Bang era begins after the complete thermalization of at least
the baryons, photons, and neutrinos.

3.3 Initial Conditions
After preheating ends, we can start to use the system of equations studied in chapter 2, which
in order to find solutions need initial conditions. Since we are going to track eight variables
(Θ,N , δcdm, vcdm, δb, vb,Φ,Ψ) we need eight initial conditions, but due to the inflationary
epoch in practice we only need one because Inflation lefts our Universe in a very homogeneous
initial state, then all the variables are connected at the beginning with the potential Φ.

At very early times, we have kτ � 1, which implies that all the equations must be worked
in the super-horizon limit. Physically, this means that all the perturbations have wavelengths
much larger than the distance over which causal physics operates. Therefore, the eq. (2.250)
takes the form

N ′0 + φ′ = 0 , (3.81)
while for the eq. (2.208) we need to consider that τ ′op (eq. (2.206)) is extremely large at that
time, then the parenthesis that it multiplies must to be zero in order to preserve the order
of magnitude in eq. (2.208). Thus it takes the form

Θ′0 + φ′ = 0 , (3.82)

where only the monopole survives in both photons and neutrinos because the perturba-
tions have wavelengths much larger than the causal horizon, making higher multipoles much
smaller. Implying that for a hypothetical observer who, for example, sees only photons within
his causal horizon, will see a uniform sky. Hence the monopoles are directly connected with
the potential φ and the same happens with the density contrast for baryons and cold dark
matter, since eqs. (2.234) and (2.246) at early times become in

δ′b + 3φ′ = 0 , (3.83)
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δ′cdm + 3φ′ = 0 . (3.84)

Since in this period radiation dominates, we can use the Einstein equations considering only
it as a single fluid even when it is compound by photons and neutrinos. Therefore, we will go
back until the result that we discovered studying the equation of potential for super-horizon
scales (eq. (2.122)), which says us that in this regime φ′ = 0 and then all the quantities
in eqs. (3.81) to (3.84) also vanish. Taking the eq. (2.111) in the super-horizon limit and
replacing ρ̄δ = ρ̄rδr we have

φ′

H − ψ = 2 ([1− fν ] Θ0 + fνN0) , (3.85)

where we also used eqs. (2.70) and (2.249). In general, the anisotropic stress of radiation is
proportional to the quadrupole at the first order of neutrinos N2 and photons Θ2, but as we
are neglecting higher multipoles at the early time we can consider that they vanish and by
eq. (2.105) set that ψ = −φ, which implies that

φ = 2 ([1− fν ] Θ0 + fνN0) . (3.86)

We also know that both Θ0 and N0 are constant at early times, but also they are equal
in this regime because the models of structure formation do not predict differences in the
perturbations of photons and neutrinos. Therefore eq. (3.86) becomes in

φ = 2Θ0 = 2N0 . (3.87)

For the initial conditions of the density contrasts we need to make an assumption, since if we
integrate eqs. (3.83) and (3.84) we will obtain δb = 3Θ0 + cte, where we also used eq. (3.82)
before integrating. To determinate that constant, we are going to assume that the primordial
perturbations are adiabatic, then by eqs. (2.155) and (2.248) δb = δcdm = 3δr/4 = 3Θ0.
Thus primordial adiabatic fluctuations make that the constant vanishes and set the initial
conditions for the density contrast

δb = δcdm = 3Θ0 . (3.88)

Of course, we can reject that assumption and use its opposite, the isocurvature fluctuations;
however, the models based on that type of perturbations have not been very successful.

Finally, we need the initial conditions for the velocities, and we are going to start using
again the argument that the optical depth is huge at early times but now in eq. (2.244),
then the parenthesis that is being multiplied by τ ′op must vanishes to preserve the order of
magnitude in that equation, which lead to us

vb = vcdm = −3iΘ1 ; (3.89)

but, as we are considering that higher multipoles that the monopole are considerably small,
we also can neglect the initial conditions for the velocities.

3.4 Thermal History
Many events took place in the three minutes after the Hot Bing Bang starts, due principally
to the high temperatures of our primordial Universe. In this section, we will make a brief
description of those processes and how they shaped our Universe.
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In the first picosecond in the history of our Universe we talk about the very early Universe,
it was at the Planck epoch in which the currently understood laws of physics might not
apply. During this period, it is believed that a Grand Unified Theory (GUT) governs at
a temperature of 1027-1028eV, from which the four fundamental interactions emerged. The
first was the gravity approximately at 10−43s and then the electromagnetic, weak, and strong
interactions. It is also believed that Inflation started when the symmetry of GUT was
spontaneously broken, and the Universe had a temperature of 1022 − 1023eV; then, it is
cooled until the absolute zero by the ability of Inflation at the 10−33s. Finally, the reheating
process increased the temperature again until 1022-1023eV.

When the Big Bang scenario begins, we talk about the early Universe, in which the
expansion of our Universe also started to cool it. The key to understanding the processes of
the early Universe is to compare the rate of expansion given by the Hubble parameter H with
the rate of the interactions involved Γ. When Γ� H, the time scale of particle interactions
is much smaller than the time scale of expansion, hence we can say that local equilibrium
is reached before the effect of expansion becomes relevant. Nevertheless, when Γ ∼ H, the
particles decouple from the thermal bath, which happens at different times since they have
different interaction rates.

As the primordial temperatures were high, all known particles were ultra-relativistic. Also,
we can write their interaction rate as Γ = n2σv, where n2 in the number density of the other
particles involved in the bath, v is the average relative velocity, and σ is the interaction cross-
section which can be computed from the fundamental physics of the process. Therefore, as the
different particles start to decouple from the thermal bath, we have less and less relativistic
particles every time. Since radiation dominates (RDE), the Hubble parameter is proportional
to the squared temperature H ∼ T 2 (eqs. (1.69), (2.132) and (2.188))4; then, the decoupling
is characterized exclusively by the dependence of the cross-section on the temperature.

At approximately 20ps, the electroweak phase transition happens at 100GeV, from which
the gauge bosons of weak interactions W± and Z received their masses through the Higgs
mechanism. Then, it was followed by the QCD phase transition at 20µs and 150MeV, where
the interactions between quarks and gluons become important due to the strong force, forming
bound systems like baryons (three quarks) and mesons (quark-antiquark pairs). When the
temperature drops to 1MeV at 1s, the particles that interact only due to the weak force
decouple, for example, neutrinos. This causes that higher moments, that the dipole, describe
the neutrino distribution N , which makes that neutrinos develop anisotropic stress since
it is proportional to the quadrupole according to eq. (2.252). Therefore, by eqs. (2.253)
and (2.254), the potentials Φ and Ψ differ between each other after neutrino decoupling,
noting that the difference is proportional to the radiation density, which decreases on time.

When the temperature drops until 500KeV at 6s, electrons and positrons annihilate each
other; then, the energy of that process is transferred to photons due to electromagnetic
interactions such

e− + e+ ↔ γ + γ . (3.90)

This also means that the photons are heated relative to the neutrinos. Then, the last ones
did not receive any energy from this process because they were already decoupled. However,

4This is valid at least until the process of Big Bang nucleosynthesis.
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a small neutrino fraction was not decoupled at that time, and a bit of energy is transferred
to them. This changes the effective number of neutrinos from Neff = 3 to Neff = 3.046.
Nonetheless, precise measurements from Planck [59] have constrained its value toNeff = 3.36,
which is a problem to explain nowadays. Finally, when the Universe is cooled until 100keV
in the third minute, the light elements like Hydrogen and Helium were formed in a process
called Big Band Nucleosynthesis, which we are going to discuss in the next section.

The relativistic quantum field theory requires particles and anti-particles, but this poses a
slight puzzle because they annihilate each other like electrons with positrons. If the Universe
was filled with an equal abundance of matter and anti-matter, we expect that this lead to
a Universe dominated by radiation. However, we observe an overabundance of matter over
anti-matter in our Universe today. For electrons and positrons, we already saw that they
share the same abundance, but in the case of baryons, we need some mechanism to explain
the overabundance, known as Baryogenesis. There are many models of Baryogenesis that try
to explain this mystery through a dynamical mechanism or assuming a primordial matter-
antimatter asymmetry as an initial condition, but not of them have been already tested.

Another mystery is the time when Dark Matter decouples from the thermal bath. As we
know, Dark Matter is weakly interacting with ordinary matter, so we expect that it decouples
relatively early on. Candidates for Dark Matter particles are the WIMPs that are weakly
interacting massive particles, and it is expected that they freeze out around 1MeV.

3.4.1 Big Bang Nucleosynthesis

The end of this section is to determine how the baryons produced after the QCD phase
transition end up. We need to trace the baryonic matter, which is much fewer in number
than relativistic species. However, it obeys the baryon number conservation law, which says
that the total number of nucleons (protons and neutrons) stays constant. Then we need to
track them solving a Boltzmann equation similar to eq. (2.173), which for a process of type
1 + 2↔ 3 + 4 can be written as

a−3 d (n1a
3)

dt
=

∫
d3p1

(2π)3ε1

∫
d3p2

(2π)3ε2

∫
d3p3

(2π)3ε3

∫
d3p4

(2π)3ε4

(2π)4 δ3 (p1 + p2 − p3 − p4) δ (ε1 + ε2 − ε3 − ε4)

|M|2 {f3f4 [1± f1] [1± f2]− f1f2 [1± f3] [1± f4]} ,

(3.91)

which is the integrated form of eq. (2.173), and where its terms are explained in sections 2.9.1
and 2.9.2. For nucleosynthesis and other processes, we will typically be interested in tempera-
tures T � ε−µ, where µ is the chemical potential. This allows us to ignore the complications
of quantum statistics and just use the Boltzmann distribution f ∼ exp (−(ε− µ)/T ) instead
of the Bose-Einstein or Fermi-Dirac statistics. Besides, we can neglect the Pauli blocking or
the Bose enhancement factors in eq. (3.91) (those in square brackets). Finally, we have to
deal with

a−3 d (n1a
3)

dt
= neq

1 n
eq
2 〈σv〉

{
n3n4

neq
3 n

eq
4

− n1n2

neq
1 n

eq
2

}
, (3.92)
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in which the ni are defined in the same way that for electrons in eq. (2.197), but now
considering the Boltzmann distribution

ni = gie
µi/T

∫
d3p

(2π)3
e−εi/T , (3.93)

where gi is the degeneracy of the specie i, while 〈σv〉 is the thermally averaged cross-section
defined as

〈σv〉 ≡ 1

neq
1 n

eq
2

∫
d3p1

(2π)3ε1

∫
d3p2

(2π)3ε2

∫
d3p3

(2π)3ε3

∫
d3p4

(2π)3ε4

e−(ε1+ε2)/T

(2π)4 δ3 (p1 + p2 − p3 − p4) δ (ε1 + ε2 − ε3 − ε4) |M|2 ,
(3.94)

and the neq
i are the equilibrium number density5, which are given by

neq
i ≡ gi

∫
d3p

(2π)3
e−εi/T =

{
gi
(
miT
2π

)3/2
e−mi/T mi � T

gi
T 3

π2 mi � T
. (3.95)

We can note that the l.h.s. of eq. (3.91) if proportional to the expansion rate i.e. H, while
the r.h.s. is proportional to the rate of interactions Γ, which in the processes that we want
to seek is much larger than H because they happened before that species decoupled. Thus,
to preserve the order of magnitude in eq. (3.91) its r.h.s. parenthesis must vanishes, which
leads us with the Saha equation of chemical equilibrium

n3n4

neq
3 n

eq
4

=
n1n2

neq
1 n

eq
2

. (3.96)

Therefore we must solve eq. (3.96) for all the nuclei interactions, which gives us a broad set
of coupled ODEs. However, we can make two simplifications:

1. The first simplification is to consider elements that are not heavier than Helium, because
they are not produced at appreciable levels in the early Universe6. So the only nuclei
that we need to track are Hydrogen, Helium, and their stable isotopes (Deuterium,
Tritium, and 3He).

2. The second simplification is to solve the neutron/proton ratio first, since above 0.1MeV
only free protons and neutrons exits, while other light nuclei have not been formed yet.
Finally, we can use this ratio as input for the synthesis of Helium and the isotopes.

For the second simplification, we need first to determinate the relative abundance of
neutrons and protons, which in the early Universe are coupled by weak interactions like the
β-decay and inverse β-decay

n+ νe ↔ p+ + e− (3.97)

n+ e+ ↔ p+ + ν̄e . (3.98)

Assuming that the chemical potential for neutrinos and electrons are small compare to neu-
trons and protons we can make the approximation µn = µp, which used in eq. (3.96) gives(

nn
np

)
eq

=

(
mn

mp

)3/2

e−(mn−mp)/T ∝ e−Q/T , (3.99)

5We talk about chemical equilibrium.
6An exception is the Lithium, because its trace abundance may be observable today.
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whereQ ≡ mn−mp = 1.30MeV, concluding that for T � 1MeV there are as many neutrons as
protons. However, for T < 1MeV, the neutron fraction gets smaller, which would drop to zero
the neutron abundance for very efficiently weak interaction. Luckily, the weak interactions
are not so efficient, at least in this context.

We are going to consider the production of Deuterium (one proton and one neutron),
through the following reaction:

n+ p+ ↔ D + γ , (3.100)

where we have µn + µp = µD since µγ = 0. Using again the Saha equation (eq. (3.96)) and
the eq. (3.95) with gD = 3 for the Deuterium, we get the next ratio(

nD
nnnp

)
eq

=
3

4

(
2πmD

mnmpT

)3/2

e−(mD−mn−mp)/T

⇒
(
nD
np

)
eq

=
3

4
neq
n

(
2πmD

mnmpT

)3/2

eBD/T ,

(3.101)

in which BD ≡ mn + mp − mD = 2.22MeV. Nonetheless, the parenthesis in the r.h.s. of
eq. (3.101) is too small, and then the temperature has to drop enough T � BD if we
want that the exponential factor can compete. The same applies to all the other nuclei,
but at temperatures around 0.1meV, the exponential factor is competitive, starting with the
production of Deuterium and Helium. However, their reaction rates are too low even to think
to produce heavier elements.

Before the neutron freeze-out at T ∼ 0.8MeV, neutrons are in equilibrium with protons
due to weak interactions, which also ends at neutrino decoupling. After that, we must solve
the Boltzmann equation (eq. (3.91)) instead of the Saha equation (eq. (3.96)) to track the
neutron abundance. For that we first are going to define the neutron fraction as

Xn ≡
nn

nn + np
, (3.102)

which in equilibrium and following eq. (3.99), takes the form

Xeq
n (T ) =

e−Q/T

1 + e−Q/T
. (3.103)

At neutrino decoupling the neutron fraction is Xn(T = 0.8MeV) = 0.17, but we also need
to consider that the neutron decay exists because below 0.2MeV (t > 100s) it is τn = 806.7s
which is in the same order of magnitude. We can consider it easily, just multiplying the
freeze-out abundance by a damping exponential term

Xn(t) = X∞n e−t/τn , (3.104)

where X∞n ≡ Xn(Q/T → ∞) is a constant of the freeze-out neutron abundance that does
not change a lot in comparison with the value at T = 0.8MeV7.

Once we used the first simplification, we can consider the second to compute the produc-
tion of Helium. At this time, our Universe is mostly protons and neutrons, which could form

7The complete deduction with full of details can be found in [80, 31].
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Helium directly through reactions with three or four incoming nuclei, but the density is too
low, and the time available is too short for that type of process. Then, the heavier nuclei
have to be built sequentially from lighter nuclei in two-particles reactions, which are

n+ p+ ←→ D + γ , (3.105)

D + p+ ←→ He3 + γ , (3.106)

D + He3 ←→ He4 + p+ . (3.107)

The reactions in eqs. (3.106) and (3.107) happen only when the Deuterium produced by
eq. (3.105) is available. The Deuterium follows the equilibrium abundance of neutrons and
protons as long as enough free neutrons are available, but as we saw in eq. (3.101), the
Deuterium abundance becomes large rather late. Then, even that heavier nuclei have larger
equilibrium abundances since they have large binding energies, they can not be formed until
sufficient Deuterium has become available. This effect is known as the Deuterium bottleneck.

To estimate roughly the time of nucleosynthesis, we need first to determine the tempera-
ture when the Deuterium fraction of eq. (3.101) is of order one, which corresponds to 0.06MeV.
The time corresponding to that temperature is approximately 330s because the Hubble pa-
rameter scales as T 2, and it obeys H ∝ t−1 during RDE. Finally and by eq. (3.104), the
neutron fraction at that time is Xn(tNucleoSynth) ∼ 1/8.

Since the bending energy of Helium is larger than Deuterium, the Boltzmann factor eB/T

favors the first. Helium is produced almost immediately after Deuterium. Now, if we consider
that all the neutrons at t ∼ tNucleoSynth are processed into 4He, the final 4He abundance is
equal to half of the neutron abundance at tNucleoSynth, because there are two neutrons in one
4He atom. Finally, we get

nHe

nH
=
nHe

np
'

1
2
Xn(tNucleoSynth)

1−Xn(tNucleoSynth)
∼ 1

2
Xn(tNucleoSynth) =

1

16
. (3.108)

Forgetting all the approximations used in the result of eq. (3.108), we have to remark that
it is consistent with the exact solution and the observed Helium fraction in our Universe.
Nonetheless, we can not forget that this solution depends on several input parameters that
take account of the physics behind the process, so measuring the Helium fraction also could
tell us about possible new physics beyond the Standard Model.

Finally, to determine the abundance of the other light elements (as Lithium), the coupled
Boltzmann equations of eq. (3.91) have to be solved numerically, whose solutions have a
reasonably good quantitative agreement with observations, making a great triumph for the
Big Bang model. The elements that are heavier than Beryllium and its isotopes are not
produced in the early Universe, but they are in the core of stars only up to F e. The heaviest
ones are produced in the explosion of stars or labs, as long as we know.

3.4.2 Matter-Radiation Equality

In section 1.4, we saw that there are periods in which one of the different components of
our Universe dominates and dictates the behavior of the background quantities. The first
epoch is RDE since many of the components are relativistic, as we tracked in the last section.
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Nonetheless, the primordial plasma left by the early Universe suffers a transition from RDE
to MDE, which implies that it is no longer modeled by the relativistic degrees of freedom,
even when they are not completely decoupled. We can find the time when the transition
happens matching the energy density of radiation with that of matter

aeq =
1

1 + zeq

=
ρ0,r

ρm,0
=

Ω0,r

Ωm,0

, (3.109)

where we used eqs. (1.35), (1.48) and (1.68). Those values [59] are approximately aeq ≈
2, 9 × 10−4 and zeq ≈ 3411. Note that the compute made in eq. (3.109) is just a reference,
since we ignored the other species. Also the transition is not instantaneously and then we
also need to consider that for values near aeq there is not a domination of one component
from another.

One of the quantities that are affected by this transition is the potential Φ. To see this,
we are going to write the comoving curvature perturbation in Newtonian gauge (eq. (3.69))
at the super-horizon limit, in which Φ′ = 0, as we derived in section 2.7.1. Then, eq. (3.69)
can be written as

R =
5 + 3w

3 (1 + w)
Φ , (3.110)

where we used eq. (2.70) and Ψ = −Φ because none of the species involved has anisotropic
stress. SinceR remains constant on super-horizon scales due eq. (3.71), we have thatRRDE =
RMDE and then

3

2
ΦRDE =

5

3
ΦMDE ⇒ ΦMDE =

9

10
ΦRDE , (3.111)

meaning that the potential decreases 9/10 in the transition from RDE to MDE at super-
horizon scales.

We also noted that the decoupling of neutrinos causes a difference between Φ and Ψ during
RDE, but once entered in MDE, the radiation density becomes insignificant. Like matter
has not anisotropic stress; after matter-radiation equality, both potentials rapidly approach
each other.

3.4.3 Recombination

Before the temperature drops to 1eV, our Universe is still a coupled plasma of photons, free
electrons, and nuclei. The photons were tightly coupled to electrons via Compton scattering,
and the protons and electrons were strongly interacting via Coulomb scattering. There was
very little neutral Hydrogen produced by the reaction

e− + p+ ↔ H + γ , (3.112)

whose production is favored because its binding energy is 13.6eV, but the high photon to
baryon ratio ensures that any atom of Hydrogen produced will be ionized. As long as the
reaction in eq. (3.112) remains in equilibrium the eq. (3.96) ensures that(

nH
nenp

)
eq

=
gH
gegp

(
mH

memp

2π

T

)3/2

e−(mH−mp−me)/T , (3.113)
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since µγ = 0 and the mi > T . Also we can define BH ≡ mp + me −mH = 13.6eV and the
free electron fraction as

Xe ≡
ne

ne + nH
. (3.114)

We can make the approximations ne ∼ np and mH ∼ mp, where in the first we are assuming
that our Universe is neutral. Also the product gH/ge/gp in eq. (3.113) is 1, since the electron
and proton have degeneracy 2, while the neutral Hydrogen has degeneracy 4 (one singlet
state and one triplet state). Therefore and using eq. (3.114), the eq. (3.113) becomes in

X2
e

1−Xe

=
1

ne + nH

(
meT

2π

)3/2

e−BH/T , (3.115)

which is an excellent approximation until the temperature drops to the order of BH , because
at that temperature the r.h.s. is of order 1015 computed neglecting the number of Helium
atoms8. To keep the magnitude, the l.h.s. must have a very small denominator, which
implies that Xe is very close to 1 i.e. all Hydrogen is ionized. Therefore, we need that the
temperature drops far below BH to obtain neutral Hydrogen, a process which is known as
recombination. Nonetheless, as Xe falls, the recombination rate too, and the equilibrium
becomes more difficult to maintain, which discredits eq. (3.113). Thus, if we want to follow
the free electron fraction accurately, we need to solve the Boltzmann equation (eq. (3.91)).
However, eq. (3.115) predicts very well the temperature of recombination Trec ≈ 0.3eV, which
after using eqs. (1.48) and (2.188) says that it happens at redshift zrec ≈ 1320 implying that
recombination starts when we are already in MDE.

3.4.4 Photon Decoupling

The photons are most strongly coupled to the primordial plasma due to Compton scattering
(eq. (2.190)). Which has an interaction rate given by Γγ ' neσT = σTnbXe, then as we
know, the photons will decoupled when Γγ ∼ H. Therefore, we need to track the free
electron fraction using eq. (3.91), which gives a temperature of Tdec ≈ 0.27eV for the photon
decoupling. We have to note that this value is not far from Trec, which implies that a large
degree of neutrality is needed in our Universe to become transparent to photon propagation.
Using eq. (2.188), we also can know that the photon decoupling takes place at redshift
zdec ≈ 1100. These last photons released are known as the last scattering surface, which
nowadays are watched as the Cosmic Microwave Background (CMB).

The photon decoupling causes a similar effect in the potentials that neutrinos, but the Uni-
verse is already in MDE, and then this difference in potentials becomes insignificant rapidly.
Thus, higher multipoles than the dipole describe the photon distribution after decoupling
even when decreasing in magnitude. To track them, we will start studying the equations for
photon distribution in the tightly coupled limit before decoupling. Hence, we are going to use
the equations found in section 2.9, specifically for photon distribution but without consid-
ering polarization, i.e. eq. (2.205) instead eq. (2.208). We are going to multiply eq. (2.205)
by P0(µ) and P1(µ) and then, we will proceed to integrate them in the range µ ∈ [−1, 1] to
obtain

Θ′0 + kΘ1 + φ′ = 0 , (3.116)

8The denominator of eq. (3.115) is then ne + nH = nb, where nb is the total number density of baryons.
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Θ′1 −
k

3
Θ0 −

k

3
ψ = τ ′op

(
Θ1 −

i

3
vb

)
, (3.117)

which are complemented by the equation for baryon velocity in eq. (2.244), rewritten as

vb = −3iΘ1 +
Rs

τ ′op
(v′b +Hvb + ikψ) , (3.118)

where the second term in the r.h.s. is much smaller than the first since the ratio Rs/τ
′
op is

small before recombination. Then, to lowest order we have vb ' −3iΘ1, which we will replace
into eq. (3.118) to obtain

vb ' −3iΘ1 +
Rs

τ ′op
(−3iΘ′1 − 3iHΘ1 + ikψ) . (3.119)

Now we are going to replace eq. (3.119) into eq. (3.117)

Θ′1 +H Rs

1 +Rs

Θ1 −
k

3 ((1 +Rs)
Θ0 =

k

3
ψ , (3.120)

then, we are going to take the derivative of eq. (3.116), where later we will replace the Θ′1
term using eq. (3.120) and the Θ1 term using eq. (3.116), which gives

Θ′′0 + φ′′ +H Rs

1 +Rs

(Θ′0 + φ′) +
k2

3
ψ + k2c2

sΘ0 = 0 , (3.121)

where we defined the sound speed of the photon-baryon fluid as

c2
s ≡

1

3 (1 +Rs)
. (3.122)

We also can rewrite eq. (3.121) using that R′s = HRs due to eqs. (1.68) and (2.245), which
finally gives [

d2

dτ 2
+

R′s
1 +Rs

d

dτ
+ k2c2

s

]
(Θ0 + φ) =

k2

3

(
φ

1 +Rs

− ψ
)
, (3.123)

which is nothing more than the equation for a harmonic oscillator forced and damped. To
solve eq. (3.123), we can first find the solutions of the homogeneous equation, and we can
use the method of Green to find the full solution. The pressure term c2

sk
2 is much larger

than the damping term R′s/(1 + Rs) at least for modes inside the horizon or in the tight-
coupling regime (Rs � 1), we can neglect the second to find the homogeneous solutions. This
is equivalent to say that pressure induces oscillations with a period much shorter than the
damping induced by the expansion. Therefore, the homogeneous solution is a combination
of sinusoidal functions

(Θ0 + φ)(hom) (k, τ) = C1f1 (k, τ) + C2f2 (k, τ) , (3.124)

where C1, C2 are integration constants and f1, f2 are

f1 = sin (krs (τ)) , (3.125)

f2 = cos (krs (τ)) , (3.126)
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in which we defined the sound horizon as

rs ≡
∫ τ

0

cs (τ ′) dτ ′ , (3.127)

that is the comoving distance traveled by a sound wave by time τ . Thus, the full solution in
the tight-coupling regime is

Θ0 (k, τ) + φ (k, τ) = C1f1 (k, τ) + C2f2 (k, τ)

+
k2

3

∫ τ

0

dτ ′ [φ(τ ′)− ψ(τ ′)]
f1(τ ′)f2(τ)− f1(τ)f2(τ ′)

f1(τ ′)f ′2(τ ′)− f ′1(τ ′)f2(τ ′)
,

(3.128)

where we omitted the k−dependence in the terms inside the integral for simplicity. To set the
constants C1, C2 we have to review the initial condition when both Θ0 and φ are constants,
then C1 must vanishes and C2 = Θ0(0) + φ(0). Finally, in the limit that we are working, the
denominator of the integral reduces to −kcs(τ ′)→ −k/

√
3 and the numerator can be written

just as − sin (k [rs(τ)− rs(τ ′)]), so

Θ0 (k, τ) + φ (k, τ) = [Θ0(0) + φ(0)] cos (krs(τ))

+
k√
3

∫ τ

0

dτ ′ [φ(τ ′)− ψ(τ ′)] sin (k [rs(τ)− rs(τ ′)]) ,
(3.129)

which seems redundant since we are integrating over the potentials, but we must consider
that we are in MDE, and the potentials are sourced mostly by dark matter, which makes them
independent of photon distribution. The approximate result of eq. (3.129) also is important
for other stuff detailed in [80], where one of them is that it gives an accurate expression for
the frequency of oscillations called acoustic oscillations and therefore for the locations of the
acoustic peaks. Those are found in the limit when the first term in eq. (3.129) dominates,
then the peaks should appear at the extrema of cos (krs) given by

kp =
nπ

rs
n = 1, 2, ... . (3.130)

These oscillations are imprinted in the CMB temperature anisotropies even after photons
decouple, which makes it possible to observe nowadays and reveal much information about the
early Universe. An example is the comoving distance traveled by the sound waves until photon
decoupling, which is characterized by the sound horizon, and also behaves as a standard
yardstick.

3.4.5 Drag Epoch

After the photon decoupling the baryons and photons do not evolve as a single fluid anymore.
Nonetheless, since there are more photons that baryons (ργ > ρb), the photons decouple before
that the baryons released from the Compton drag of photons. This epoch is known as drag
epoch, which happened not far from photon decoupling, at approximate redshift zdrag = 1020.
From then, all photons expand freely, and the baryons progressively fall into dark matter
potentials wells; and causally, dark matter also is attracted to baryon overdensities.

We can study the behavior of the potentials using eq. (2.101), where we have to specify its
sources: cold dark matter and radiation. Note that we are neglecting the baryons, which is a
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mistake that we will resolve later. For the dark matter we can use the eqs. (2.246) and (2.247)
and for radiation we can use the eqs. (3.116) and (3.117). However, we ignore the term with
τ ′op in eq. (3.117) for two reasons, the first is that for radiation we are considering both photons
and neutrinos, where the last does not contain that term in its equations (see eq. (2.250)).
The second reason is that we want to track the potentials that are sourced mostly by matter
since we are in MDE. We are tracking the matter distribution, and what photons are doing
after decoupling is irrelevant for our purpose, which allows us to neglect all the multipoles
higher that the dipole even when we know that they describe, in fact, the photon distribution
after photon decoupling. So, the equations to solve are

Θ′r,0 + kΘr,1 + φ′ = 0 , (3.131)

Θ′r,1 −
k

3
Θr,0 +

k

3
φ = 0 , (3.132)

δ′cdm + ikvcdm + 3φ′ = 0 , (3.133)

v′cdm +Hvcdm − ikφ = 0 , (3.134)

noting that the subscript r here refers to radiation, both neutrinos and photons, since they
obey the same equation in the limit of small baryon density and with the same initial condi-
tions (section 3.3). We also set the potentials ψ = −φ, which is valid in the limit that there
is no quadrupole moment (eq. (2.254)). Then, we only need one equation for the potential
(eqs. (2.101), (2.102) and (2.104)), where we choose the eq. (2.101)

k2φ+ 3H (φ′ +Hφ) = 4πGa2 (ρ̄cdmδcdm + 4ρ̄rΘr,0) , (3.135)

in which we already set ψ = −φ and where only the cold dark matter and the radiation are
sourcing the potential according to eqs. (2.140), (2.142) and (2.248).

As we saw in section 2.7.4, the potential is frozen during MDE at all scales, which helps to
solve eq. (3.135), but it still has a k-dependence. We are then tented to resolve the problem
for small and large scales, which would leave us with two solutions that need to be patched
for intermediate scales. Besides, the solutions in the sub-horizon limit need to be tracked
from RDE, where they decrease as τ−2 (see eq. (2.136)). Also, its initial conditions were
set by Inflation according to sections 3.1 and 3.3. Therefore, to solve those problems, it is
common to create a function that matches both, the entire solution for the potential and
that for large scales, which is called transfer function and it is defined as

T (k) ≡ φ (k, aT )

φLarge-Scale (k, aT )
, (3.136)

where aT is some arbitrary value for the scale factor during MDE where the potential is
constant, but noting that it can not be aeq from eq. (3.109) or a near value since matter does
not govern entirely yet. Typically it is chosen to be aT ∼ 0.03. We also need to remember
that the potential decreases in a factor 9/10 from RDE to MDE at large scales (eq. (3.111)),
which helps us to connect the primordial potential set by inflation φP with φLarge-Scale through

φLarge-Scale (k, aT ) =
9

10
φP (k, ai) (At Large Scales) . (3.137)
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Finally, we only need to connect the potential with that we observe nowadays, which we are
going to do in the next section.

Now, we need to solve the baryon problem, which means that we need to consider them in
the equations because they leave a fingerprint too in the matter distribution. We can start
taking the adiabatic condition δb = 3Θ0 from eq. (3.88) and insert it into eq. (3.123), which
gives

δ′′b +
Rs

1 +Rs

Hδ′b + k2c2
s = −k2ψ − 3Rs

1 +Rs

Hφ′ − 3φ′′ . (3.138)

We also need to take account of baryons in the potential, which can be done rewriting
eq. (3.135) as

k2φ+ 3H (φ′ −Hψ) = 4πGa2 (ρ̄mδm + 4ρ̄rΘr,0) , (3.139)

where now the subscript m refers to both baryons and cold dark matter. Note that we
recovered the difference between the potentials φ and ψ, which implies that we need another
equation. We could use eq. (2.253), but then we would need an equation for the dipole;
instead, we are going to use eq. (2.103) with θ = ikv, where v is the modulus of the velocity
field to avoid confusions. Finally, to close the set of equations, we can add the eqs. (3.131)
to (3.134) but recovering the potential ψ.

Like the fingerprint left in the CMB, the acoustic waves also left imprinted the baryon
distribution, which signature is characterized by the sound horizon at the drag epoch

rs (zdrag) =

∫ τdrag

0

cs(τ)dτ , (3.140)

that is the comoving distance traveled by the sound waves by time τdrag. It is computed in
the same way that eq. (3.127), but now at zdrag. Since zdec differs from zdrag, then the sound
horizons also are different.

3.5 Transition from MDE to DEDE
It is difficult to determine the precise beginning of the dark energy era for two reasons.
First, we know that nowadays, our Universe has an accelerated expansion, which only can be
possible given a source with an EoS w < −1/3. Then, many options surge to try to explain
that, but still, no method to confirm them directly. Nonetheless, there is a favorite, in which
the acceleration is driven by a cosmological constant in the Einstein equations, this is known
as ΛCDM9. Others suggest that the acceleration is, in fact, a sign that the Einstein gravity
is not accurate at certain scales, and we would need another theory to explain gravity at
those. The second reason is that whatever causes the acceleration, it has an energy density
whose value is in the same order that the whole matter nowadays. Meaning that DEDE
is not totally ruled by dark energy, and instead, it shares the domination with the matter.
Therefore, try to determinate an exact time when dark energy surpasses the matter density
is infeasible. Nonetheless and considering the ΛCDM model, we can find when both energy
densities are the same, which gives aeq ∼ 0.75 at zeq ∼ 0.3.

9The ΛCDM is the favorite model in the modern Cosmology, since the actual data favor it and then, it
is most likely. However, it has some unresolved problems, like the fine-tuning problem and the why now
problem.
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After the drag epoch, the baryons start to fall in the cold dark matter potential wells, but
also, the dark matter is attracted to the imprint left by baryon acoustic oscillations. Then,
before MDE ends, both matter distributions approach each other. During this time, the
evolution of matter perturbations is government mostly on small scales through eq. (2.131)
with w = cs = 0

δ′′ +Hδ′ − 3

2
H2δ = 0 , (3.141)

where we will make a change of variables to N from eq. (2.124) and following eqs. (2.117),
(2.125) and (2.126) to obtain

d2δ

dN2
+

1

2

dδ

dN
− 3

2
δ = 0 , (3.142)

which solution is
δ = c1e−3N/2 + c2eN

= c1a
−3/2 + c2a ,

(3.143)

where c1, c2 are integration constants. We can also recognize the growing mode δ+ = c1a,
which motives us to define the growth function as

D(a) ≡ δ+(a)

δ+(a0)
, (3.144)

with a0 = 1 because eq. (1.10). Then D(a) = a during MDE by eq. (3.143).

Once entered in DEDE, the potentials are still sourced only by matter at least in ΛCDM,
where by definition, the cosmological constant has no perturbations, but since the background
quantities change, it also makes that the potentials evolve differently. It is common to define
a function that patches the potential now with that during MDE, in the same way that we
did for the transfer function in eq. (3.136). This is going to be the same growth function
D(a) of eq. (3.144) for reasons that we will explain in section 4.2

D(a)

a
=

φ(a)

φ (aT )
(a > aT ) . (3.145)

Note that we normalized the function by a, since in ΛCDM, the growth is linear D(a) = a
during MDE as we saw, which keeps the potential unaltered. Thus, we can connect the
primordial potential from inflation with that we see nowadays using eqs. (3.136), (3.137)
and (3.145)

φ (k, a) =
9

10
φP (k)T (k)

D(a)

a
(a > aT ) . (3.146)
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Chapter 4

From Theory To Observations

All the theory presented in chapters 1 to 3 is structured to connect it with the observations of
our Universe. The reason is that historically, the latter were who droves the theory, but now
we are focusing on a deductive method. For that, we first need to prepare the observables
from the equations. Nonetheless, in a complex Universe like ours, that work is not easy,
and we will request a lot of mathematical techniques like perturbation theory, non-linear
evolution, statistics tools, and others.

4.1 Random Fields
We are going to study the statistics of random fields and its notation following mostly [200].
Therefore, a random field is a function G (~x) whose values are randoms variables for any point
~x, which does not belong exclusively to a 3D Euclidean space. The associated distribution
function is given by

F1,2,...,n (g1, g2, ..., gn) = F [G (~x1) < g1, G (~x2) < g2, ..., G (~xn) < gn] , (4.1)

where the G is the random field, which has value g among all the possible ones from the
ensemble at a certain point ~x. Then, the gi refers to the different points ~xi where G is
evaluated. The probability that G takes some value g1 at some point ~x1 is

p1 (g1) dg1 , (4.2)

thus, p1 is the probability distribution function

p1 (g1) =
dF1 (g1)

dg1

, (4.3)

which turns F1 into the cumulative probability function with F1 (−∞) = 0 and F1 (∞) = 1.

The expectation value for a random field is defined through an ensemble average, which
at some point ~x1 is

〈G (~x1)〉 ≡
∫

Ω

g1 p1 (g1) dg1 , (4.4)
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where Ω denotes the ensemble.

In general, for two points ~x1 and ~x2, we have that p1 (g1) 6= p2 (g2), which means that the
probability distribution functions of the values that G may assume in ~x1 and ~x2 are different.
When this does not happen, the probability of the realization is translationally invariant and
we say that G is a statistically homogeneous random field, whose ensemble average (eq. (4.4))
is just

〈G〉 =

∫
Ω

g p (g) dg . (4.5)

We also can ask for the probability that G takes the values g1 and g2 at ~x1 and ~x2 respectively,
which is given by

p12 (g1, g2) dg1dg2 , (4.6)

and can also be written as a derivative of the cumulative probability function F1,2. Usually we
have that p12 6= p1 (g1) p2 (g2), but for independent realizations it obeys p12 = p1 (g1) p2 (g2),
in which case the random process is called Poissonian. The two-dimensional probability
distribution used in eq. (4.6) allow us to define the two-point correlation function as

ξ (~x1, ~x2) ≡ 〈G (~x1)G (~x2)〉 ≡
∫

Ω

g1g2 p12 (g1, g2) dg1dg2 , (4.7)

which indicates the auto-correlation1 of the random field G at two points. In the same way,
we can extend the probability distribution for N points, where we can define the N -point
correlation function as

ξ(N) (~x1, ~x2, ..., ~xN) ≡ 〈G (~x1)G (~x2) ...G (~xN)〉

≡
∫

Ω

g1g2...gN p12...N (g1, g2, ..., gN) dNg ,
(4.8)

where we used the same ensemble Ω for each point. We must take care of the order in
the probability distribution function, because in general we have that p12...N (g1, g2, ..., gN) 6=
p21...N (g1, g2, ..., gN).

A random field is statistically isotropic if the probability of the realization is rotationally
invariant, which implies that for any rotation matrix R, the point ~xR1 = R~x1 with probability
distribution PR1 satisfies

p1 (g1) = PR1 (gR1) . (4.9)

If the random field is statistically homogeneous, the two-point correlation function depends
only in the difference between points

ξ (~x1, ~x2) = ξ (~x1 − ~x2) . (4.10)

Besides, if the random field is both statistically homogeneous and statistically isotropic, the
two-point correlation function depends only in the distance between points

ξ (~x1, ~x2) = ξ (~x1 − ~x2) = ξ (r1 2) , (4.11)

where r1 2 = |~x1 − ~x2|.
1For two different random fields we talk about cross-correlation.
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Using the standard definition of variance from statistics σ2 (X) = 〈X2〉 − 〈X〉2, we can
define the ensemble variance of the random field for two points as

σ2 (~x1, ~x2) ≡ 〈G (~x1)G (~x2)〉 − 〈G (~x1)〉〈G (~x2)〉
= ξ (~x1, ~x2)− 〈G (~x1)〉〈G (~x2)〉 , (4.12)

which for a statistically homogeneous and isotropic random field, it is just

σ2 (r1 2) = ξ (r1 2)− 〈G〉2 , (4.13)

remarking again that 〈G〉2 is independent for the position (see eq. (4.5)). We also note that
for a Poissonian random process we have that 〈G (~x1)G (~x2)〉 = 〈G (~x1)〉〈G (~x2)〉, then the
variance is zero and

ξ (r1 2) = 〈G〉2 . (4.14)

In some cases, we can compute just a spatial average of G since we only have one realization2.
Therefore, we take account of the spatial average for some volume V of the random field G,
which is

G ≡ 1

V

∫
V

dm xG (~x) , (4.15)

where m is the dimension of the space where ~x lives. To estimate the error of exchanging the
ensemble average with the spatial one, we are going to define

X ≡ G− 〈G〉 , (4.16)

which has a null expectation value

〈X〉 =
1

V

∫
V

dm x〈G (~x)〉 − 〈G〉 = 0 , (4.17)

and a variance given by

〈X2〉 =
1

V 2

∫
V

dmx1

∫
V

dm x2〈G (~x1)G (~x2)〉 − 〈G〉2 , (4.18)

which for a statistically homogeneous random field can be written as

〈X2〉 =
1

V 2

∫
V

dmx1

∫
V

dmx2 ξ (~x1 − ~x2)− 〈G〉2 , (4.19)

where we know that it vanishes for a Poissonian process from eqs. (4.12) and (4.14). For a
3D Euclidean space and after a variable change, the integral from eq. (4.19) reduces to

〈X2〉 =
1

V

∫
V

d3r ξ (~r)− 〈G〉2 , (4.20)

which goes to zero in the limit V →∞ since the ergodic theorem. However, in most realistic
cases, we have a finite volume, and then, a non zero variance3. Also assuming a statistically

2This is the case of observational Cosmology because we only have one Universe, ours.
3The variance 〈X2〉 in Cosmology is known as cosmic variance.
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isotropic random field and using spherical coordinates to describe the volume, we can write
eq. (4.20) as

〈X2〉 =
3

R3

∫ R

0

dr r2ξ(r)− 〈G〉2 . (4.21)

It is also useful to study the random fields in Fourier space since, in almost all the cases, we
can work in it as we did in the last chapters. We will work in a 3D Euclidean space from
now, and also, we will assume that the Fourier transform of a random field is also a random
field. Thus, for G the conventions to go and back from Fourier space are the same that before
(see chapters 2 and 3)

G (~x) =

∫
d3k

(2π)3
G̃
(
~k
)
ei
~k·~x , (4.22)

G̃
(
~k
)

=

∫
d3xG (~x) e−i

~k·~x , (4.23)

which, for a finite volume as a box of volume L3, take the form of Fourier series

G (~x) =
1

L3

∑
n

Gnei
~kn·~x , (4.24)

where the coefficients Gn are defined through

Gn =

∫
d3xG (~x) e−i

~kn·~x , (4.25)

and the wavenumbers ~kn are quantized, since the periodic boundary conditions, as

~kn =
2π

L
~n , (4.26)

with ~n a generic vector whose components are integers. Note that if L→∞, we recover the
usual convention from eq. (4.22).

If G (~x) is a real field, then G̃
(
−~k

)
= G̃∗

(
~k
)
with G̃∗

(
~k
)
the complex conjugate of G̃

(
~k
)
,

which is known as the reality condition. Now, we can compute the two-point correlation
function for the Fourier transform of the random field G̃, using the reality condition, as〈

G̃
(
~k
)
G̃∗
(
~k ′
)〉

=

∫
d3x

∫
d3x′ 〈G (~x)G (~x ′)〉 e−i~x·~k ei~x

′·~k ′ , (4.27)

which, after assuming homogeneity, becomes〈
G̃
(
~k
)
G̃∗
(
~k ′
)〉

=

∫
d3x

∫
d3x′ ξG (~x ′ − ~x) e−i~x·

~k ei~x
′·~k ′ , (4.28)

where ξG is just the two-point correlation function of eq. (4.7) with the subscript G to specify
the random field. Using the change of variables ~z = ~x ′ − ~x, eq. (4.28) becomes

〈
G̃
(
~k
)
G̃∗
(
~k ′
)〉

=

∫
d3x

∫
e−i
(
~k−~k ′

)
·~x d3z ξG (~z) ei

~k ′·~z

= (2π)3 δ
(
~k − ~k ′

)
PG
(
~k
)
,

(4.29)
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where we used the integral representation of the Dirac delta, and also we defined the power
spectrum as

PG
(
~k
)
≡
∫

d3x ξG (~x) e−i
~k·~x , (4.30)

which is the Fourier transform of the two-point correlation function. Assuming a statistical
isotropic random field and using spherical coordinates, the eq. (4.30) can be developed as

PG (k) = 2π

∫ ∞
0

dr r2ξG (r)

∫ 1

−1

du e−ikru

= 4π

∫ ∞
0

dr r2ξG (r)
sin (kr)

kr
,

(4.31)

where u = ~k · ~x is the cosine of the angle between those two vectors. We also can use
j0(kr) = sin (kr) / (kr) in eq. (4.31), where j0 is the spherical Bessel function of order zero.

In most cases, observations are going to provide a direct measurement of the two-point
correlation function. Then, we are going to invert the power spectrum, for that we will use
eqs. (4.7) and (4.22) and the reality condition for a statistical homogeneous and isotropic
random field

ξG (r) = 〈G (~x)G (~x+ ~r )〉

=

∫
d3k

(2π)3

∫
d3k′

(2π)3

〈
G̃
(
~k
)
G̃∗
(
~k ′)ei

~k·~x−i~k ′·(~x+~r )
〉
.

(4.32)

Note that we included the modes in the average to seek the differences between doing spatial
or ensemble average. For the latter, the average is only carried on the fields, then eq. (4.32)
becomes

ξG (r) =

∫
d3k

(2π)3

∫
d3k′ PG (k) δ

(
~k − ~k ′

)
ei
~k·~x−i~k ′·(~x+~r )

=

∫
d3k

(2π)3
PG (k) e−i

~k·~r ,

(4.33)

where in the first line we used eq. (4.29), and in the second line we just used the property
of the Dirac delta within an integral. Using spherical coordinates like in eq. (4.31), we can
develop the angular integral of eq. (4.33)

ξG (r) =

∫
dk

(2π)2
k2PG(k)

∫ 1

−1

du e−ikru

=

∫ ∞
0

dk

2π2
k2PG(k)

sin (kr)

kr

=

∫ ∞
0

dk

k
∆2
G(k)

sin (kr)

kr
,

(4.34)

where in the last line, we defined the dimensionless power spectrum as

∆2
G(k) ≡ k3PG(k)

2π2
, (4.35)

by customary, because the two-point correlation function ξG is dimensionless, which implies
that the power spectrum PG has dimension of volume.
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Now, for the spatial average of eq. (4.32) we are going to use the Fourier series of eq. (4.24)
and the spatial average definition of eq. (4.15). We also are going to write the spatial average
using ξ̂G instead of a bar

ξ̂G(r) =
1

V

∫
V

d3x
∑
n

∑
m

1

V 2
GnG

∗
mei

~kn·~x−i~km·(~x+~r ) , (4.36)

where Gn = G̃
(
~kn
)
by comparing eqs. (4.23) and (4.25), and the ~kn are defined in eq. (4.26).

Note that the sums in eq. (4.36) are understood as sums over the three components of ~n and
~m, then switching the integral with those sums gives the spatial integration

∫
V

d3xei(
~kn−~km) =

δnmV , and the correlation function reduces to

ξ̂G(r) =
∑
n

1

V 2
|Gn|2e−i

~kn·~r , (4.37)

from which we infer the power spectrum

Pn ≡ P
(
~kn
)

=
|Gn|2
V

. (4.38)

The signal to noise ratio for a Poissonian process is 1/
√
N , where N is the number of

independent realizations. Then, we can relate the cosmic variance with the power spectrum
for a Poissonian process as

σP (k)

P (k)
' 1√

Nk

, (4.39)

where Nk is the number of independent modes, which is Nk = 4πk2 (L/(2π))3 dk between k
and k + dk, and Nk = 4πk2 (L/(2π))2 inside a sphere with radius k. Therefore, the signal to
noise ration in the first case is

σP (k)

P (k)
' 1
√
rk (kL)3/2

, (4.40)

with rk ≡ dk/k. While, for the second case

σP (k)

P (k)
' 1

kL
, (4.41)

which tells us that the cosmic variance is negligible if the scale is much smaller than the
dimension L of the survey, kL� 1.

4.1.1 Gaussian Random Fields

We can define a Gaussian random field in several ways. If we use the Fourier transform, a
Gaussian random field has modes uncorrelated like in the second line of eq. (4.29), where
the Dirac delta appears. So, Gaussianity implies statistical homogeneity. Furthermore, a
Gaussian random field is characterized by the fact that all the correlators of odd order
vanish, for example 〈

G̃
(
~k
)〉

=
〈
G̃
(
~k1

)
G̃
(
~k2

)
G̃
(
~k3

)〉
= 0 . (4.42)
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Therefore, all the even order correlators can be written as a function of two-point correlators
as the power spectrum. For example, for the 4-point correlator〈

G̃
(
~k1

)
G̃
(
~k2

)
G̃
(
~k3

)
G̃
(
~k4

)〉
=
〈
G̃
(
~k1

)
G̃
(
~k2

)〉〈
G̃
(
~k3

)
G̃
(
~k4

)〉
+
〈
G̃
(
~k1

)
G̃
(
~k3

)〉〈
G̃
(
~k2

)
G̃
(
~k4

)〉
+
〈
G̃
(
~k1

)
G̃
(
~k4

)〉〈
G̃
(
~k2

)
G̃
(
~k3

)〉
,

(4.43)

Since all the Fourier modes are uncorrelated, their superposition is Gaussian distributed by
the central limit theorem, which is why they are known as Gaussian random fields. Thus,
the g values are distributed as a Gaussian, i.e.

p (g) =
1√

2πσ2
g

exp

(
− g2

2σ2
g

)
, (4.44)

where we assumed a vanishing expectation value and a variance given by eq. (4.12). Note
that in eq. (4.44) we used just g, because G is a statistical homogeneous random field.

4.2 Matter Power Spectrum
In section 3.1, we already computed the power spectrum for the comoving curvature pertur-
bations, but at that time, we did not know the statistic meaning yet. We can now connect it
with the potential and matter power spectra as in [80], using the equations found in chapters 2
and 3. We can recognize that R is a statistically homogeneous and isotropic random field
since its power spectrum in eq. (3.77) only depends on the wavenumber modulus. Besides, if
R is Gaussian, then its power spectrum contains all the statistical information, but most of
the inflationary scenes predict primordial non-Gaussianity, which is encoded in higher-order
correlation functions. We also want to know how are the statistics for other cosmological
randoms fields, like the potential perturbations φ(k) and the density contrast δ(k). For that,
we are going to start relating the potential perturbations after inflation with the comoving
curvature using eq. (3.110) wor w = 1/3 since we are in RDE, this gives

Φ =
2

3
R , (4.45)

which also remains in Fourier space. Then, the relation between the primordial power spec-
trum for Φ and the comoving curvature perturbation is

PΦ(k) =
4

9
PR(k)

=
8π2

9k3
As

(
k

H0

)ns−1

,

(4.46)

where we used eq. (3.77) in the second line. We can rewrite As in eq. (4.46) using the
amplitude of density perturbations at horizon crossing δH , which obeys δ2

H = (4/25)As
according to [153], thus the power spectrum for the potential after inflation is

PΦ(k) =
50π2

9k3
δ2
H

(
k

H0

)ns−1

. (4.47)
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Nonetheless, we know that the potential evolves and it is affected by early Universe processes,
summarized by eq. (3.146). Then, the final power spectrum for the potential i.e. the one
that we can measure at late Universe is

PΦ(k, a) ≡ |φ|2

=
81

100
T 2(k)

D2(a)

a2
PΦP (k)

=
9π2δ2

H

2a2k3
T 2(k)D2(a)

(
k

H0

)ns−1

.

(4.48)

For modes that cross the horizon at late times k � H, which is equivalent to the sub-
horizon limit, we can directly relate the density contrast with the potential at late times
using eq. (2.128). Where ρ̄δ = ρ̄mδm forMDE and DEDE since the radiation perturbations
are negligible and dark energy, if it is Λ, has not perturbations by definition4. Therefore, we
have that

δm =
k2

4πGρ̄ma2
φ

=
2k2a

3H2
0 Ωm,0

φ ,

(4.49)

where we used eq. (1.68) to compute ρ̄m = ρm,0a
−3 and eq. (1.35) to transform ρm,0 into

Ωm,0. Note that φ evolves as δ(k, a)/a, which is the true reason why we defined the growth
function of eq. (3.145) in that way. Then, the matter power spectrum at late times can be
computed using the potential power spectrum in eq. (4.48), as

Pm(k, a) ≡ |δm|2

=
4a2k4

9Ω2
m,0H

4
0

PΦ(k, a)

=
2π2δ2

H

Ω2
m,0H

3
0

T 2(k)D2(a)

(
k

H0

)ns
.

(4.50)

Some authors [80] redefine δ2
H to include the Ω2

m,0 factor in the denominator of eq. (4.50),
which makes disappear the normalized matter energy density parameter in the matter power
spectrum.

Due to all the constants carried in the final spectrum, it is common to define some normal-
ization for Pm(k). For that, we will use the variance of the mass density field smoothed on
some comoving scale R corresponding to a mass M = (4π/3) ρ̄R3, where ρ̄ is the background
mass density. This variance can be computed using the power spectrum through

σ2
R(a) =

∫
d3k

(2π)3
Pm(k, a)W (kR)

= D2(a)

∫
d3k

(2π)3
W (kR)

2π2δ2
H

Ω2
m,0H

3
0

T 2(k)

(
k

H0

)ns
,

(4.51)

4Indeed, for other types of dark energy, the perturbations are tiny and negligible compared to those of
matter.
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where we used eq. (4.50), andW (kR) is the window function corresponding to the smoothing
of the density field. In most of the cases, the mass functions are fitted assuming a spherical
top-hat smoothing, which corresponds to

W (x) = 3
j1(x)

x
, (4.52)

where j1(x) denotes the spherical Bessel function of order 1. Note that in the second line of
eq. (4.51), we put out the growth function from the integral. Thus, since D(a = 1) = 1, we
can write the variance of the mass density at redshift z = 0 or a = 1 as

σ2
R,0 ≡ σ2

R(a = 1) =

∫
d3k

(2π)3
W (kR)

2π2δ2
H

Ω2
m,0H

3
0

T 2(k)

(
k

H0

)ns
, (4.53)

and then we can write the variance of the mass density at any time just as

σR(a) = D(a)σR,0 , (4.54)

where we dropped out the squares. Since the original idea is to normalize the matter power
spectrum, we must agree with some scale R, which by convention is defined at R = 8h−1Mpc
because at that scale, the linear perturbation theory breaks. Finally, the normalized matter
power spectrum can be written as

Pm(k) =
Pm(k, a)

σ2
8(a)

, (4.55)

where Pm(k, a) comes from eq. (4.50). Note that even the both functions in the fraction of
eq. (4.55) depend on time, the quotient does not.

4.3 Correlation Function Estimators
In the section 4.1, we saw that the cosmic variance could not be avoided since we have
no access to different ensembles to make the correct average. Then, we only can reduce
it, considering a large volume to get a better approximation between volume and ensemble
averages. Nevertheless, we also have no random field; instead we have a collection of points
corresponding to galaxies with their coordinates. Therefore, we must reconstruct the random
field from the galaxies, but this introduces a new error: the cosmic bias. These galaxies can be
modeled as spatial point processes, where we will need to use all the framework of statistical
analysis to found the so-called estimators, for which we will follow the reviews in [203, 139].
First, we are going to introduce a first-order characteristic, such as the averaged number
density n̄ or also called intensity, which is

n̄ ≡ N

V
, (4.56)

where N is the total number of objects inside the volume V . Then, we are going to introduce
second-order characteristics, such as the correlation function ξ(r) and the pair correlation
function g(r), which satisfy

g(r) = 1 + ξ(r) , (4.57)
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where ξ(r) is defined in eq. (4.7) and for a statistically homogeneous and isotropic field in
eq. (4.11). A more practical definition for these measures is considering a infinitesimal ball B
of volume dV where the probability of having a point inside B is n̄dV . Now, if there are two
balls B1 and B2, of volumes dV1 and dV2, and intercenter distance r, then the probability to
have a point in each ball can be expressed as

dP = n̄2g(r)dV1dV2 = n̄2 [1 + ξ(r)] dV1dV2 . (4.58)

It is clear that in the case of complete randomness of the point distribution5, the factor of
proportionality g(r) = 1 + ξ(r) = 1. Thus, the correlation function ξ(r) is the excess of
probability, over a random point distribution, to find two galaxies separated by a distance r.

Now, we need a way to measure those characteristics considering that we only have a
catalog with galaxies positions. We will introduce some popular estimators in the literature,
which are not perfect because they have a certain grade of error due to cosmic bias or cosmic
variance. We are also going to see that, in most cases, it is better to have estimators with
low cosmic variance than cosmic bias. We start considering a catalog with the points {~xi}Ngi=1,
which, for the moment, are statistically homogeneous distributed. Also, Ng is the number of
galaxies, which are over a volume of Vc. Therefore, an estimator for the averaged number of
galaxies ˆ̄n is just

ˆ̄n = n̂g =
Ng

Vc
, (4.59)

which is an unbiased estimator of the number density. For the correlation function, we can
find a biased but straightforward estimator

ĝ0(r) = 1 + ξ̂0(r) =
1

Ng

Ng∑
i=1

n∆
i (r)

4πr2∆n̂g
, (4.60)

where ∆ is known as the bin width, which is finite since we are working with a finite number
of points, we can only have access to the correlation information in the interval [r, r + ∆] and
not to a certain r. To define n∆

i , we first need to introduce the number of points in a sphere
with radius r around a point ~xi

Ni(r) =
N∑

j=1;j 6=i

1[0,r] (|~xi − ~xj|) , (4.61)

where N is the total number of points i.e N = Ng, and 1A(x) is defined as

1A =

{
1 x ∈ A
0 x /∈ A , (4.62)

which denotes the indicator function of the set A. Thus, n∆
i is the number of points in the

shell with a radius between [r, r + ∆] around a point ~xi

n∆
i (r) =

N∑
j=1;j 6=i

1[r,r+∆] (|~xi − ~xj|)

= Ni (r + ∆)−Ni (r) .

(4.63)

5Complete randomness refers to that the measures in B1 and B2 are uncorrelated, which is the case for
points that are Poisson distributed.
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The estimator in eq. (4.60) considers equally all the points that are inside the sample geometry
D, but for the points ~xi near the boundary of D and for large radii r, the number Ni(r) is
underestimated and ξ̂0 is biased towards smaller values. However, there are more estimators
defined in the same way as eq. (4.60) that try to fix the problem of boundary points, which
can be found in [139].

We can have a property similar to unbiasedness if the expectation of an estimator converges
towards the real mean value of ξ(r) for ∆→ 0; this is called approximately unbiased. Also,
we can have ratio-unbiased estimators, which are defined as the quotient of two unbiased
quantities; this is the case for some of the estimates in [139], which are ratio–unbiased in the
limit ∆→ 0.

In the cosmological literature, the correlation function estimators are often constructed
using together another set of random points {~yi}Nri=1, which are Poisson distributed, but they
are inside the same sample geometry D that the original catalog with Ng galaxies. This
election is because we want to use the basic idea introduced before, that the correlation
function is the excess of probability over a random point distribution. For the real catalog,
we are going to count the number of data-data pairs as

DD(r) =
1

2

Ng∑
i=1

n∆
i (r) , (4.64)

where n∆
i (r) is defined in eq. (4.63). Note that the data-data pairs DD(r) are also settled

for a bin [r, r + ∆] like ξ̂0. Therefore, the sum in DD(r) counts all the distances between
galaxies that belong to the above bin, but since pairs are counted twice we introduced the
factor 1/2. We can do the same for the random catalog, introducing the random-random
pairs

RR(r) =
1

2

Nr∑
i=1

rr∆
i (r) , (4.65)

with rr∆
i (r) is defined equivalently as n∆

i (r) in eq. (4.63), but now for the random catalog

rr∆
i (r) =

Nr∑
j=1;j 6=i

1[r,r+∆] (|~yi − ~yj|) , (4.66)

which also is defined for a bin. The random-random pairs RR(r) count the distances between
the random points that belong to the bin [r, r + ∆]. Since It also counts twice, we introduced
again the factor 1/2 in eq. (4.65). Finally, we can consider the pairs between the data and
the random catalogs, for that, we are going to introduce the data-random pairs

DR(r) =

Ng∑
i=1

dr∆
i (r) , (4.67)

with

dr∆
i (r) =

Nr∑
j=1

1[r,r+∆] (|~xi − ~yj|) , (4.68)
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where both are also defined for a bin. In general, the data-random pairs are not equal to the
random-data pairs, which are defined in a similar way to the first but interchanging the points
and sums. However, for statistically homogeneous data and random catalogs, both are the
same and we can take advantage of it. Note that this time we did not introduce the 1/2 factor,
since the data-random pairs are not counted twice, this is because (|~xi − ~yj|) 6= (|~yi − ~xj|) in
eq. (4.68), where we also did not impose the restriction i 6= j for the same reason.

Before introducing the estimators based on pairs counted for the correlation function, we
have to note that if the data and random catalogs have a different number of element i.e.
Ng 6= Nr, we first need to normalize the pairs; otherwise, the signal can be canceled. For
that, we are going to normalize for the total number of pairs the counts in eqs. (4.64), (4.65)
and (4.67) as

DD(r)→ DD(r) =
DD(r)

1
2
Ng (Ng − 1)

, (4.69)

RR(r)→ RR(r) =
RR(r)

1
2
Nr (Nr − 1)

, (4.70)

DR(r)→ DR(r) =
DR(r)

NgNr

, (4.71)

because N(N − 1)/2 are all the distances between N objects. We have to note that the only
difference is for the DR pairs since they are the distances between two different catalogs.
Many authors use N(N − 1)/2 ' N2/2 because generally, the catalogs have a large number
of points to ensure a good statistic.

With eqs. (4.69) and (4.70), we can introduce the first estimator for the correlation function
that was proposed firstly by Peebles & Hauser (1974) [196]

ξ̂PH(r) = ĝPH(r)− 1 =
DD(r)

RR(r)
− 1 , (4.72)

following the idea of probability excess. This estimator is ratio-unbiased for ∆→ 0.

With eqs. (4.69) and (4.71), we can present the estimator proposed by Davis & Peebles
(1983) [69]

ξ̂DP (r) = ĝDP (r)− 1 =
DD(r)

DR(r)
− 1 . (4.73)

This estimator is biased [147], but whose bias is negligible on small scales. Nonetheless, on
large scales, the bias becomes essential, and ξ(r) may be overestimated by ξ̂DP (r) as it is
demonstrated in [139].

Before introducing the final two estimators, we are going to use eqs. (4.70) and (4.71) to
define

b̂(r) =
DR(r)

RR(r)
, (4.74)

which is not an estimator for the correlation function, but it will help us to quantify the bias.
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With eqs. (4.69) to (4.71), we can introduce the estimator proposed by Hamilton [117]

ξ̂H(r) = ĝH(r)− 1 =
DD(r)RR(r)[
DR(r)

]2 − 1 . (4.75)

Then, ĝH(r) = ĝDP (r)/b̂(r) according to eqs. (4.73) and (4.74). The Hamilton estimator is
unbiased only in the unlikely case where the biases from 1/b̂(r) and ĝDP (r) cancel [139].

Finally, with eqs. (4.69) to (4.71), we introduce the estimator proposed by Landy & Szalay
(1993) [147]

ξ̂LS(r) = ĝLS(r)− 1 =
DD(r)− 2DR +RR(r)

RR(r)

=
DD(r)

RR(r)
− 2

DR(r)

RR(r)
+ 1

= ξ̂PH − 2b̂+ 2 ,

(4.76)

where we also used the eqs. (4.72) and (4.74). Since the Peebles & Hauser estimator is
ratio-unbiased for ∆ → 0, ξ̂LS is approximately unbiased only if the expectation value of
b̂(r) is 1. The Landy & Szalay estimator was designed to minimize both the cosmic variance
and cosmic bias i.e. it is theoretically optimal with respect to both errors at least in the
weak correlation limit |ξ|, |ξ̄(L)| << 1, where L is the dimension of the survey as we saw in
eqs. (4.39) to (4.41). Thus, it is quite insensitive to edge effects6 and discreteness7. However,
it is still affected by finite-volume effects8, proportional to ξ̄(L), indeed the latter cannot be
reduced without prior assumptions about clustering at scales larger than those probed by
the survey [36].

In many cases, we do not face a catalog statistically homogeneous distributed. In fact, the
points near the catalog boundary are more likely to be surrounded by areas with a low density
number. This issue is accentuated in the direction of observation for far galaxies because we
are restricted to the instrument’s observational resolution. To fix that problem, it is crucial to
know the selection function Φ that encodes the catalog geometry and how the galaxies were
selected. Thus, Φ depends on the position but also in astrophysical parameters. Therefore, it
is common to weigh with wi every galaxy, which is going to try to homogenize the distribution
and improve the problems above. In the literature, the most common weights are those that
minimize the variance in the two-point estimator. This is the case of the Hamilton pair
weighting [117]

w1 2 =
1

(1 + n̄ΦJ)2 , (4.77)

where n̄ is the averaged number density, Φ the selection function to that pair and J '
∫ r

0
ξdV

is the volume integral of the correlation function until the pair separation r. However, it is
6They are related to the geometry of the catalog. In general, estimators give less weight to galaxies near

the edge than those far away from the boundaries.
7They are related to the fact that we assume that the observed galaxy distribution is a discrete represen-

tation of an underlying smooth field. The discreteness errors are proportional to 1/Ng at some power, and
they become negligible for large enough Ng.

8They are because we can have access to only a finite number of structures of a given size in surveys, in
particular, the mean density itself is not always well determined. These effects are roughly proportional to
the average of the two-point correlation function over the survey ξ̄(L).
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preferable to adopt separable weights because it is more efficient to compute the correlation
estimator. We can approximate eq. (4.77) to obtain an individual weighting

wi =
1

1 + n̄ΦiJ
, (4.78)

where Φi is the selection function at point i. Thus, we can obtain again the pair weighting
as w1 2 = w1w2. Note that J lost the argument of pair separation in eq. (4.78) and then, we
need to estimate it for some characteristic scale r before even know the correlation estimator.
This looks cyclic, but we are often concerned about studying the correlation for specific scales
because what we want is to get the best signal to noise for that scale since the Hamilton
weighting minimizes the variance.

Another weighting that minimizes the variance is the proposed by Feldman, Kaiser &
Peacock [96], which is analogous to the Hamilton weighting but for the power spectrum
instead of the correlation function9, nonetheless, it is mostly used also in two-point correlation
function analysis. The Feldman, Kaiser & Peacock weighting is given by

wi =
1

1 + n̄P (k)
, (4.79)

which depends on the power spectrum at some scale k. Again, this could look cyclic, but we
must focus on the scales where we want the best signal to noise for our analysis.

Note that n̄ is not anymore constant since our initial dilemma before introduce the weights.
However, we can consider that it depends only on the distance from us or r because in that
direction we have the large variation of concentration.

In a more detailed analysis, some other weights count for galaxies’ astrophysical properties,
like luminosity and mass. Therefore, the total weight for each galaxy can be modeled as the
multiplication of individual weights

wi =
∏
j

wij . (4.80)

To modify the pairs counts for the correlation estimators and include the weights, we only
need to multiply them inside the sum. For example, the data-data pairs now are

DD(r) =
1

2

Ng∑
i=1

win
∆
i (r) , (4.81)

with

n∆
i (r) =

N∑
j=1;j 6=i

wj1[r,r+∆] (|~xi − ~xj|) , (4.82)

where we just redefined eqs. (4.63) and (4.64). We can do the same for DR and RR from
eqs. (4.70) and (4.71), but the random catalog must have the same selection function that
data and also the same form of the number distribution in the line of sight direction.

9The power spectrum and the correlation function are Fourier counterparts, but its estimators in general,
not.
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4.4 Velocity Field And Redshift Space Distortions
So far, we have considered that the distribution of points is also static i.e. they do not
move, but we know that galaxies are moving because the expansion of the Universe or by
proper movements (eq. (1.1)). Obviously, to our scales, their movements do not change the
distribution that we directly observe, but there is still a velocity field associated that can be
measured and also reveal much cosmological information. To study them, we are going to
base most of our discussions in [118, 80, 23, 76]. Since we want to recover the velocity field,
we are going to use the continuity equation in Fourier space from eq. (2.106) for matter i.e.
w = cs = 0 and in the Newtonian limit φ′ → 010

δ′ + θ = 0 , (4.83)

where we can use θ = δiv
i → θ = ikiv

i (see eq. (2.64)). Besides, we know that for irrotational
fluids the velocity has the same direction of Fourier modes vi = vki, then θ = ikv with v the
velocity modulus. Replacing this into eq. (4.83) gives

v =
i

k
δ′ . (4.84)

Since we are interested in the growing modes of δ, because they remain until late times, we
can write δ = δ0D(a) and then δ′ = δD′(a)/D(a). This turns eq. (4.84) into

v =
i

k

D′(a)

D(a)
δ . (4.85)

It is common to define the logarithm growth rate of matter perturbations as

f ≡ d lnD(a)

d ln a

=
a

D(a)

dD(a)

da
,

=
1

H
D′(a)

D(a)
,

(4.86)

then we can replace the last line into eq. (4.85) to obtain

v =
iHfδ
k

=
iaHfδ

k
,

(4.87)

which gives us a direct relationship between the density field and the velocity field. Nonethe-
less, we have to remember two things; the first is that the velocity is a vector in the ~k
direction

~v = iaHfδ
~k

k2
. (4.88)

and the second is that the relation between the velocity and the density holds only in linear
theory. Therefore, we can compute two-point correlations between galaxies velocities, which
depend on the matter power spectrum and geometry in linear regimes.

10This is equivalent to the sub-horizon limit.
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One of the problems to compute correlations for galaxy velocities is that we can not
measure them directly. In fact, we obtain the velocities from the redshift, but we know
that the Hubble flow of eq. (1.1) contaminates it. On the other hand, we determinate the
position of a galaxy also by its redshift, but its proper movement contaminates the measure.
Therefore, what we really can observe is the redshift space, but not the real one, which makes
appear distortions in the direction of the line of sight called redshift space distortions (RSD).
Thus, the coherent motions of galaxies towards overdense regions, in the linear regime, induce
a squeezing effect on the correlation function observed. Besides, at small scales, the collapsing
and virialized regions of galaxy clusters give rise to the so-called fingers-of-god (FOG). To
these effects, we have to add that the proper movement of our galaxy, which resides in an
overdense region of the Universe, increases the distortions. Hopefully, we have knowledge of
most of these processes, which allows us to relate what we observe in redshift space with the
real one. For that, we first need to connect the coordinates in both spaces, which can be done
assuming that we are at a random point in our Universe in rest with respect to the CMB11.
Then, we start defining the line-of-sight component of the galaxy proper velocity ~vp, as

v‖ ≡ ~vp ·
~r

r
, (4.89)

where r = |~r| and ~r is the source position in our frame, which defines the line-of-sight
direction. Deriving again eq. (1.1), but now using the conformal time, we find ~v = H∆~r+~vp
for real space. In redshift space, we can not distinguish the proper velocity, then we have
just ~vs = H∆~s, where the subscript s indicates redshift coordinates as the position ~s in that
space. Nonetheless, both velocities ~v and ~vs must be the same in the line-of-sight direction,
since we observe them directly through the redshift. Then, we can relate both coordinates
systems using just the line-of-sight components of the positions ~r and ~s, because in that
direction the distortions are produced, which gives

~s = ~r +
~vp
H

= ~r +
v‖
aH

~r

r
,

(4.90)

noting that in the second line we used eqs. (1.4) and (4.89). The redshift-space density
field δs (~s ) can be obtained from the real-space one by requiring mass conservation i.e.
[1 + δs (~s )] d3s = [1 + δ (~r )] d3r, which gives

δs (~s ) = [1 + δ (~r )]

∣∣∣∣d3s

d3r

∣∣∣∣−1

− 1 , (4.91)

where the term in |.| is the Jacobian |J | given by the derivative of ~s in eq. (4.90) with respect
to ~r. Working in the plane-parallel approximation, the Jacobian can be written simply as

|J | =
∣∣∣∣d3s

d3r

∣∣∣∣ ' 1− f∂‖u , (4.92)

where ∂‖ indicates the derivative with respect to the line-of-sight direction in real space.
Also, u is defined as

u ≡ − v‖
faH

, (4.93)

11This is not true but helps us to start relating the redshift space with the real one. Obviously, we have to
take account of these effects at some point.
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and f the growth rate of eq. (4.86). Inserting eq. (4.92) into eq. (4.91), gives

δs (~s ) =
(
δ (~r ) + f∂‖u

) (
1− f∂‖u

)−1
. (4.94)

For irrotational velocity fields we can write u = ∂‖ (∇2)
−1
θ, where θ is the velocity divergence

defined in eq. (2.64) and (∇2)
−1 is the inverse of the Laplacian operator. Then, eq. (4.94)

can be recast
δs (~s ) =

(
δ (~r ) + f∂2

‖
(
∇2
)−1

θ
)(

1− f∂2
‖
(
∇2
)−1

θ
)−1

. (4.95)

We also know that in Fourier space, the direction of the irrotational velocity fields matches
the direction of Fourier modes. Thus, we can write the operator ∂2

‖ (∇2)
−1 in Fourier space

as
(
k‖/k

)2, which motivates us to define de cosine of the angle between the Fourier modes
and the line-of-sight direction as

µ ≡
~k · ~r
kr

=
k‖
k
,

(4.96)

noting that this definition rescues the spirit of the one made in eq. (2.204) but for another
direction. Therefore, the calculation becomes clearest in Fourier space, but we must take
care because now we have two Fourier spaces: one for the redshift and another for the real
space. Expanding eq. (4.95) in redshift Fourier space, gives modes of the form

δs
(
~k
)

=

∫
d3s e−i

~k·~sδs (~s )

=

∫
d3r e−i

~k·~r eikfµu
[
δ (~r ) + µ2fθ (~r )

]
,

(4.97)

where in the second line, we turned the redshift dependence into the real one using eq. (4.90),
which results in an extra exponential factor. Besides, the change of variables in the integral
makes appears a Jacobian, which cancels with that of eq. (4.95) in the plane-parallel approx-
imation.

Now, we can compute the matter power spectrum in redshift space using section 4.4 and
following eq. (4.29)

〈
δs
(
~k
)
δ∗s
(
~k ′
)〉

=

∫
d3s

∫
d3s′ e−i

~k·~s ei
~k ′·~s ′ 〈

δs (~s ) δs
′
(~s ′)

〉
=

∫
d3r

∫
d3r′ e−i

~k·~r ei
~k ′·~r ′ 〈

eifkµu e−ifk
′µ′u′

[
δ (~r ) + µ2fθ (~r )

]
[
δ (~r ′) + (µ′)2fθ (~r ′)

] 〉
= (2π)3 δ

(
~k − ~k ′

)
Ps (k, µ) ,

(4.98)

where Ps (k, µ) is the anisotropic redshift-space power spectrum, which is defined, following
eq. (4.30), as

P (k, µ) =

∫
d3x e−i

~k·~x 〈e−ifkµ∆u
[
δ (~r ) + µ2fθ (~r )

] [
δ (~r ′) + µ2fθ (~r ′)

] 〉
, (4.99)
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where ∆u = u (~r ′) − u′ (~r). The power spectrum in eq. (4.99) is almost exact because the
only approximation made was the plane-parallel limit of eq. (4.92), which is valid for samples
with pairs covering angles lower than 10◦ [165]. Besides, eq. (4.99) captures all the different
regimes of distortions; for example, its square brackets describe the squeezing effect of Kaiser
effect [136], while the exponential prefactor is responsible for the FOG. We can use the ansatz
of [224], which assumes that the exponential prefactor and the term involving the density
and velocity fields can be separated in the ensemble average. Under this, eq. (4.99) becomes
in

Ps (k, µ) = e−(fkµσv)2 [
Pδδ(k) + 2µ2fPδθ + µ4f 2Pθθ(k)

]
, (4.100)

where Pδδ, Pδθ, Pθθ are the non-linear mass density-density, density-velocity divergence, and
velocity divergence-velocity divergence power spectrum respectively, which are defined in the
same way that eq. (4.30) but taking care of the random fields involved. The ensemble average
over the exponential prefactor makes appear the pairwise velocity dispersion, defined in [76]
as

σ2
v =

1

6π2

∫
Pθθ(k)dk . (4.101)

Note that in linear regime (eq. (4.83)), the different power spectrum are the same Pδδ =
Pδθ = Pθθ = Pm(k), where Pm is the matter power spectrum of eq. (4.50). Also, for kσz << 1
we can recover the original Kaiser formula in [136]

Ps (k, µ) =
[
1 + 2µ2f + µ4f 2

]
Pm (k) . (4.102)

The redshift-space anisotropic two-point correlation function can be obtained by Fourier-
transforming the anisotropic power spectrum of eq. (4.100) or eq. (4.102), through eq. (4.33).
This gives us the correlation function in the real redshift space, also called configuration
space, which is

ξ
(
r⊥, r‖

)
=

∫
d3k

(2π)3
ei
~k·~sPs (k, µ)

=
∑
l

ξsl (s)Pl (ν) ,
(4.103)

where ν is the cosine of the angle between the line-of-sight direction and the position ~s in
configuration space, and r⊥, r‖ are the distance perpendicular and parallel to the line-of-sight
direction, respectively, which satisfy

ν =
r‖
s
, (4.104)

r⊥ =
√
s2 − r2

‖ . (4.105)

Also, in the second line of eq. (4.103), we made a multipole expansion of the correlation
function, where the Pl are the already known Legendre polynomials and the ξsl are the
multipoles, defined as

ξsl (s) = il
∫

d3k

(2π)3
P s
l (k)jl(ks), (4.106)

where jl denotes the spherical Bessel functions of order l and the P s
l are the multipoles of

the anisotropic power spectrum, defined as

P s
l (k) =

2l + 1

2

∫ 1

−1

dµPs (k, µ)Pl (µ) . (4.107)
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Although the study of redshift space distortions helps us to better understand the distribution
of galaxies observed, we also must consider that those galaxies are just tracers of the matter
density field, and then, what we observe is biased with respect to the theoretical results.
Nonetheless, we can relate both densities fields by a bias factor, defined as

b ≡ δg
δ
, (4.108)

where δg is the galaxy density contrast. In the linear regime, we can assume that b is constant,
which means that it does not depend on k or r, neither time. Nevertheless, it depends on
the type of galaxy we are tracing and considering, and also, it can adopt estranger functional
forms. It is important to remark that even though the density contrast is biased, the velocity
field is not, which implies that galaxies violate the linear continuity equation (see eq. (4.83)).
However, do not be aware because this violation could be caused by some hydrodynamical
effects like galaxies appearing and disappearing, which breaks continuity. Therefore, the
power spectrum from galaxies Pg is related to the matter power spectrum Pm as

Pg = b2Pm . (4.109)

Nonetheless, we must take care of the anisotropies induced by RSD because the bias is only
applied for the components that carry δ, for example, the linear anisotropic power spectrum
in eq. (4.102) becomes in

Ps,g (k, µ) =
[
b2 + 2µ2fb+ µ4f 2

]
Pm (k)

= b2
[
1 + βµ2

]2
Pm (k) ,

(4.110)

where we defined the distortion parameter β as

β ≡ f

b
, (4.111)

which governments the strength of the anisotropy. We can obtain a direct measure of β taking
the ratio of the quadrupole to the monopole defined in eq. (4.107), which for the anisotropic
power spectrum of eq. (4.110) is

P s
2

P s
0

=
4
3
β + 4

7
β2

1 + 2
3
β + 1

5
β2
. (4.112)

4.5 Geometrical Distortions
As we mentioned, the clustering of galaxies can be studied by correlation estimators, which
only need point positions. A problem that we ignored is that we have access only to the
angular position of a galaxy in the sky and its redshift, where the latter introduces several
errors, as we saw in section 4.4. Although we can analyze angular correlations, the 3D corre-
lators contain more information, like anisotropies in the line-of-sight direction. Therefore, in
order to construct them we require the galaxy positions in comoving-Cartesian coordinates,
but the translation from angular and redshift separations to comoving separations depends
on DA(z) (eq. (1.64)) and H(z) (eq. (1.72)), respectively. Thus, we need to assume some
cosmological model and the values of its parameters, but the assumption of an incorrect
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cosmology leads to an apparent anisotropy of clustering statistics, which is similar to that
caused by RSD. The challenge to measure this effect is that redshift distortions are generally
larger than cosmological or geometrical distortions, so we also need appropriate treatment of
the first to obtain reliable measures of the latter. We are going to follow mostly the procedure
of [228, 23, 226, 122].

Imagine that we observe an object or event at mean redshift z but with sizes δθ and δz.
Then, its comoving sizes in the line-of-sight (r‖) and transverse (r⊥) directions are related to
δz and δθ, respectively as

r‖ =
cδz

H(z)
, (4.113)

r⊥ = (1 + z) dA(z)δθ , (4.114)

where in the first equation, we used eq. (1.53) for a small δz, which is why we recover the c
units. While, for the second equation, we used the definition of eq. (1.61), but since we are
seeking the comoving size, it is corrected by a scale factor (eq. (1.62)). For the transverse
direction, the combination r⊥/dA does not depend on the cosmology because (1 + z)δθ is
what we measure. Therefore, if we assume some cosmology to compute the distance to our
object, its real size is

r⊥ =
dA
dAr

r⊥r , (4.115)

where the subscript r refers to the reference cosmology. Similarly, form eq. (4.113) the
product r‖H remains constant in the line-of-sight direction under a change of cosmology;
thus we have the next relation

r‖ =
Hr

H
r‖r . (4.116)

Note that the measures r‖ and r⊥ change in a different way, which implies that if the two-
point correlation function or the power spectrum are isotropic in some cosmology, they will
become anisotropic for any other cosmology which is known as the Alcock-Paczynski effect
[18].

To study geometrical distortions, we need an object or event, which means that we are
going to use a standard ruler for our purposes, like in chapter 1. For that, we remember the
two length scales encoded in the matter power spectrum, which are the comoving Hubble
horizon size at the matter-radiation equality and the comoving sound horizon size at the drag
epoch at which baryons were released from photons, where the last one is also encoded in
the so-called BAO signature of the two-point correlation function. As observers and using
eqs. (4.113) and (4.114), we can measure four distance ratios described in [228], we will focus
on those of the BAO peak

δθs =
rs (zdrag)

(1 + z) dA(z)
, (4.117)

δzs =
rs (zdrag)H(z)

c
, (4.118)

noting that we used the same distance measure in the line-of-sight and transverse directions,
since we assumed that such process is isotropic12. Also, for eqs. (4.117) and (4.118) we will

12Then, the anisotropies that we observed nowadays were developed later by the redshift and geometrical
distortions, and the non-linear evolution.
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not have the same ratio as eqs. (4.115) and (4.116) to change of cosmology because now we
must consider that the sound horizon rs (eq. (3.127)) and zdrag also depend on cosmology.
Then for the BAO signature, we have to use the next relations to relate the real and reference
cosmology

r⊥ =
dArsr (zdragr)

dArrs (zdrag)
r⊥r = α⊥r⊥r , (4.119)

r‖ =
Hrrsr (zdragr)

Hrs (zdrag)
r‖r = α‖r‖r , (4.120)

where we defined the ratios α⊥ and α‖ as

α⊥ ≡
dArsr (zdragr)

dArrs (zdrag)
, (4.121)

α‖ ≡
Hrrsr (zdragr)

Hrs (zdrag)
. (4.122)

We can also define some related quantities, as the shift parameter α

α = α
1/3
‖ α

2/3
⊥ , (4.123)

and the warping parameter ε

1 + ε =

(
α‖
α⊥

)1/3

. (4.124)

This notation separates the isotropic deformations or dilation in α from anisotropic deforma-
tions or warping in ε [185]. In other words [211], α is the BAO measurement expected from
spherically averaged clustering measurements and ε the significance of the BAO feature in-
troduced into the quadrupole by the assumption of a wrong cosmology. Therefore, in surveys
that have not the power of constraining anisotropies, we can relate both cosmologies using
just the isotropic deformation as

DV (z) = α
rs
rsr
DVr(z) , (4.125)

where the sound horizons are evaluated at their respective drag redshifts and DV is the
volume-averaged distance, defined as

DV (z) ≡
[
cz (1 + z)2 d2

A(z)

H(z)

]1/3

. (4.126)

Finally, since we have complete knowledge of the reference or fiducial cosmology because we
use it to compute the galaxy distances, we also can constrain the true cosmology by the
equations found in this chapter using the parameters α, ε, α‖, α⊥.
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Chapter 5

Algorithms Insights

In chapter 4, we studied some estimators for the two-point correlation function, which just
are based on counting pairs to a certain distance. However, at the time to compute them,
we have limited resources; for example, if we have N galaxies, counting the DD pairs over
M bins takes the order of O(MN2), which increases a lot for N−point correlation functions.
This issue is an obvious problem for big surveys of galaxies because it requires hardware
and time-consuming. Also, we need to produce the catalog of random points with the same
geometry of the original data, but with another distribution in space, but not in redshift.
Then, we need to learn the redshift distribution from data to generate samples from the
randoms.

Furthermore, we have developed all the cosmological theory behind. Now we need to
contrast our estimators with physics formulas to recover essential parameters like the matter
density nowadays or for field reconstruction like the potential. This problem also requires a
lot of time-consuming if we want to present competent values. Luckily, we have developed
several techniques in data mining and machine learning that help us in this task, which we
are going to review in this chapter following mostly [164, 258, 195, 133, 22].

5.1 Calculations Of Pairwise Distances

To compute the two-point correlation function using some of the estimators in eqs. (4.72),
(4.73), (4.75) and (4.76), we need to count all the distances between points which takes
DD ∼ O(N2

1 ), DR ∼ O(N1N2), RR ∼ O(N2
2 ), where N1 and N2 are the numbers of points

in the data and random catalogs, respectively. Then, we need to group those distance into
the M bins, which increases the orders mentioned above by a factor M , and in the end, we
obtain a very inefficient algorithm. A more practical approach uses dual-trees, an efficient
class of divide-and-conquer algorithms based on the nearest-neighbor problem.

The nearest-neighbor problem consists in finding the nearest point1 to ~xi ∈ Rm 2 between

1For distance; we are going to refer to any metric measure, where the standard Euclidean distance is the
most common choice, especially for our purposes.

2We can work these algorithms in any metric space. However, in our case, we will work in the real space
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the points of a set X . The naive approach computes the
(
N
2

)
distances, with N the number

of points in X , but this takes O(N2) in time. However, a smart observation is to consider
first a subset of points called R, obviously, R ⊆ X , which can be closed into a "bounding
box" or a rectangular m−volume containing all the points in R. The advantage of this box
is that we can quickly compute two bounds: the closest distance that any point in R can
be to ~xi, which we will call dl (~xi,R), and the farthest possible pairwise distance, called
du (~xi,R). Furthermore, if we compute the distance between any test point in R and ~xi,
we can say that it is the smallest distance we have seen so, called d̂. Now, d̂ provides us
an upper bound on the distance between ~xi and the true nearest neighbor. Therefore, if
d̂ < dl (~xi,R), we know automatically that none of the points in R can be the true nearest
neighbor of ~xi, which could save us much time. In order to use this observation, we will
also employ a divide-and-conquer approach to make a fast algorithm, because if we iterate
through the pairs one-by-one, we would have a similar order of time that the naive method.
This can be done by a space-partitioning tree data structure, where we can recursively split
the computation into smaller subproblems.

We can use a K−dimensional tree (KD tree) for the aforementioned tree, which general-
izes the two-dimensional or Quad-trees and the 3-dimensional or Oct-trees to an arbitrary
number of dimensions. The KD tree is a binary tree structure which recursively partitions the
parameter space along the data axes, dividing it into nested orthotropic regions into which
data points are filed. Also, its construction is very fast because partitioning is performed only
along the data axes, and no distances need to be computed. Once constructed, the nearest-
neighbor of a query point can be determined with only O(log(N)) distance computations3.

Another option is the Ball trees, which were developed to address the inefficiencies of KD
Trees in higher dimensions. Instead of partition the data along Cartesian axes like KD tress,
the Ball trees partition data in a series of nesting hyper-spheres. The price to pay is that
the construction of a Ball tree is costlier than of the KD tree. However, the benefit, between
others, is obtaining a data structure that can be very efficient on highly structured data,
even in very high dimensions. A Ball tree recursively divides the data into nodes defined by
a point center ~ci and a radius r, such that each point in the node lies within the hyper-sphere
defined by r and ~ci. Besides, the number of candidate points for a neighbor search is reduced
using the triangle inequality |x+y| ≤ |x|+ |y|, which makes that a single distance calculation
between a test point and the point center is sufficient to determine a lower and upper bound
on the distance to all points within the node. Finally, another advantage of Ball trees is that
it is easy to compute the number of pairwise distances in a bin. For example, for all the
distances between R and R + dR, we only need to apply two queries (one for R and one for
R+dR). Then, we rest both to obtain the wanted, which makes this data structure excellent
for two-point correlation functions.

Finally, to improve the trees mentioned above, we can construct two trees, one on ref-
erences and one on queries (hence dual-tree algorithm). Then, the computations for the
queries are going to take just O(M log(N)), where M is the number of bins, but the trees
constructions will take O(MN log(N)).

with m = 3 dimensions.
3For low-dimensional (m < 20) neighbors searches, the KD tree is fast, but it becomes inefficient as m

grows very large: this is one manifestation of the so-called “curse of dimensionality”
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5.2 Kernel Density Estimation

One typical problem, for a set of points in a m−dimensional space, is to find the underlying
probability distribution function (PDF) -or just the density distribution- of those. It is
intuitive to construct its histogram for one-dimensional points, which can be generalized
to more dimensions. One trouble, among others, with histograms, is that they depend on
the bin width, which for a large size, makes that the probability distribution function looks
uniform. Also, if we want to take new samples from the probability distribution function,
we need to fit some analytic or parametric curve to the PDF. In contrast, the kernel density
estimation (KDE) is a method for estimating the probability distribution function of the
data, nonparametrically i.e. with virtually no assumptions on the functional form of the
PDF.

For a given set of N measurements ~xi, the kernel density estimator at an arbitrary position
~x is defined as

f̂ (~x) =
1

Nhm

N∑
i=1

K

(
d (~x, ~xi)

h

)
, (5.1)

where m is the dimension number of the parameter space, and h is known as the bandwidth,
which defines the size of the kernel K(x). Then, the local density is estimated as a weighted
mean of all points, where the weights are specified through the kernel and typically decrease
with distance d (~x, ~xi), which mostly is the standard Euclidean distance. Also, the kernel
function can be any function, that is positive at all points (K(x) ≥ 0), normalized to unity
(
∫
K(x)dx = 1), with a vanishing mean (

∫
xK(x)dx = 0) and with a variance greater than

zero (
∫
x2K(x)dx > 0). A kernel often used is the Gaussian kernel

K(x) =
1√

(2π)m
e−x

2/2 , (5.2)

but also, there are many kernels like the top-hat, epanechnikov, exponential, linear, between
others. Since the estimator in eq. (5.1) requires the computation of all distances, the naive
approach takes O (N2). However, in order to improve the scaling, approximations can be
made if the data is space-partitioning in a tree data structure -like a KD or a Ball trees- as
we saw in section 5.1, because the contribution for points with d (~x, ~xi)� h can be ignored,
but this could introduce errors in the estimator.

The bandwidth h in eqs. (5.1) and (5.2) acts as a smoothing parameter, controlling the
tradeoff between bias and variance in the result. A large h leads to a very smooth density
distribution with high bias; while, a small bandwidth leads to an unsmooth density distribu-
tion with high variance. For those reasons, it is essential to choose an optimal h, which can
be found using, for example, a cross-validation technique.

Another useful application of KDE is learning a non-parametric generative model from a
dataset to draw new samples efficiently. Therefore, the new data consist of linear combina-
tions of the input data, with weights probabilistically drawn given the KDE model. Further-
more, we will use this application to learn the PDF from the data redshift distribution, to
then apply the estimator to the random samples.
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5.3 Bayesian Statistical Inference
The study of statistics can be summarized into two frameworks: the classical or frequentist
statistics and the Bayesian inference. The tenets of the first are that probabilities refer
to relative frequencies of events that depend on parameters that are fixed and unknown
constants. Since they are not fluctuating, the probability statements about parameters are
meaningless. In contrast, we have that the probability describes the degree of subjective
belief for Bayesian inference, not the limiting frequency. Also, the probability can be made
about things other than data, including model parameters and models. Therefore, inferences
about parameters can be made by producing their probability distribution, which quantifies
the uncertainty of our knowledge about that parameter.

The Bayesian method has become popular over the last few decades because of the ma-
turing development of its philosophical and technical foundations and the ability to perform
the required computations. Besides, assuming that all of the supplied information is correct,
the Bayesian method yields optimal results. The frequentist versus Bayesian controversy sets
in when we apply the theorem of Bayes to the likelihood function f (D|M)

f (M |D) =
f (D|M) f (M)

f (D)
, (5.3)

where M,D stand for model and data, respectively. To be more precise, we are going to
make explicit acknowledge the presence of prior information I and the fact that models are
described by parameters ~θ that we want to estimate from data

f
(
M, ~θ

∣∣D, I ) =
f
(
D
∣∣M, ~θ , I

)
f
(
M, ~θ

∣∣I )
f
(
D
∣∣I ) . (5.4)

This quantifies the rule for "combining an initial belief with new data to arrive at an improved
belief" and says that the "improved belief" is proportional to the product of the "initial
belief" and the probability that the "initial belief" generates the observed data. Furthermore,
f
(
M, ~θ

∣∣D, I ) is called the posterior PDF for the model M with parameters ~θ, given a data
D and other prior information I. The term f

(
D
∣∣M, ~θ, I

)
is the likelihood of the data given

some model M and the fixed parameters ~θ that describe it. The term f
(
M, ~θ

∣∣I ) is the
priori joint probability -also called just prior- for the model M and its parameters ~θ in
the absence of any data. Finally, the term f

(
D
∣∣I ) is the probability of data, or the prior

predictive probability for D, which is not usually explicitly computed since it is also the
proper normalization for the posterior PDF.

5.4 Metropolis-Hastings
Sometimes the functions that enter in the likelihood or prior are challenging to handle an-
alytically, which forces us to obtain the Bayesian inference using computational resources.
However, the direct exploration of the posterior for a model with a large number of param-
eters is impractical and often impossible, even using a computer. For example, if we study
the parameter space using a lattice of N points for each parameter, the posterior would take
O(Nm), where m is the number of parameters. Therefore, we need some mechanism to avoid
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those computations, and here some algorithms based on generating Markov chains appear.
A Markov chain is a sequence of random variables in which a given value nontrivially de-
pends only on its preceding value, which means that given the present value θ, past θi−1 and
future θi+1 values are independent. While more samples we obtain from the chain, we make
a better integration of the parameter space as in a Monte Carlo integration. This is why
there are several algorithms based on Markov Chain Monte Carlo (MCMC), and one of the
most famous is the Metropolis-Hastings algorithm.

In order for a Markov chain to reach a stationary distribution proportional to p
(
θ
)
, the

probability of arriving at a point θi+1 must be proportional to p
(
θi+ 1

)
,

p
(
θi+1

)
=

∫
T
(
θi+1|θi

)
p
(
θi
)
dθi , (5.5)

where T (θi+1|θi) is the transition probability, also called the jump kernel or transition kernel,
which satisfies the detailed balance condition

T
(
θi+1|θi

)
p
(
θi
)

= T
(
θi|θi+1

)
p
(
θi+1

)
. (5.6)

Many of the MCMC algorithms differ in their choice of the transition kernel. The Metropolis-
Hastings algorithm adopts the kernel

T
(
θi+1|θi

)
= pacc

(
θi, θi+1

)
K
(
θi+1|θi

)
, (5.7)

where K
(
θi+1|θi

)
is an arbitrary density distribution, usually a Gaussian PDF, and pacc is

the accepted probability which we can compute using the above equations as

pacc
(
θi, θi+1

)
=
K
(
θi|θi+1

)
p
(
θi+1

)
K
(
θi+1|θi

)
p
(
θi
) . (5.8)

If pacc ≥ 1, the proposed point θi+1 is always accepted. But when θi+1 is rejected, θi is added
to the chain instead.

Nonetheless, we need to take care because when the posterior is multimodal, the simple
Metropolis-Hastings algorithm can become stuck in a local mode and not find the global best
minima within a reasonable running time. There are many better algorithms, such as Gibbs
sampling, parallel tempering, various genetic algorithms, and nested sampling.

5.5 Neural Networks
To understand neural networks, we first need to study a single neuron. This has a number
I of inputs xi and one output, which we will call y. Associated with each input we have
a weight wi with i = 1, ..., I, but there could be an additional parameter w0 of the neuron
called a bias, which we may view as being the weight associated with an input X0 that is set
to 1. With the inputs xi we can compute the activation of the neuron, defined as

a =
I∑
i

wixi , (5.9)
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where the sum is from i = 0 if there is a bias and from i = 1 otherwise. Then, the output y
is set as a function f(a) of the activation, but there are several possible activation functions,
which can be linear as

f(a) = a , (5.10)

sigmoid as the logistic function

f(a) =
1

1 + e−a
y ∈ (0, 1) , (5.11)

or the hyperbolic tangent function

f(a) = tanh(a) =
ea − e−a

ea + e−a
y ∈ (−1, 1) , (5.12)

between other deterministic activation functions, but also, there could be some that are
stochastic activation functions.

The single neuron can be seen as an extrapolation or regression problem in which we fit
some curve to the data to determine the weights and predict another output from unknown
inputs. To find these weights, it is common to minimize the difference between the known
outputs and the predicted ones through a loss function, which is a problem that we will board
after to introduce general neural networks.

To obtain a higher degree of complexity that is required in some problems, we can connect
multiple neurons, making the output of one neuron be the input to another and creating a
neural network. These can be divided into two classes based on their connectivity; the first
are feedforward networks in which all the connections are directed such that the network
forms a directed acyclic graph. And the second ones are those that are not feedforward
networks, also known as feedback networks.

The multilayer perceptron is an example of a feedforward network with input neurons,
hidden neurons, and output neurons, which are the layers. These multilayer networks are
also known as backpropagation networks in supervised learning. Besides, the hidden neurons
may be arranged in more layers; however, the most common multilayer perceptrons have a
single hidden layer and are known as two-layer networks because we do not include the inputs
in the counting. This kind of network defines a nonlinear parameterized mapping from the
inputs xi to the outputs yj. Both are connected by a continuous function that also depends
on the parameters or weights wk and the net’s architecture i.e. the functional form of the
mapping, denoted by A.

Imagine a network with only one hidden layer in a regression problem, with the following
architecture A: N inputs xi that are connected with D nodes in the hidden layer, finally
connected with the M outputs yj. The activation function for the first connection is going
to be f(a) for all the nodes; while, for the second connection, the activation function will be
h(a). Then, the mapping of the network has the next form for the hidden layer

ak =
N∑
i=0

w
(1)
ki xi ;hk = f (ak) , (5.13)
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and for the output layer

aj =
D∑
k=0

w
(2)
jk hk ; yj = h (aj) . (5.14)

5.6 Density-Estimation Likelihood-Free Inference

The density-estimation likelihood-free inference (DELFI) [48, 87, 188, 159, 20, 22] and the
approximate bayesian computation (ABC) [156, 52, 262], between others, belong to the
family of likelihood-free inference (LFI). They perform Bayesian inference under very complex
models, using only forward simulations. We will focus on studying DELFI, which aims to
train a flexible density estimator for the target of the posterior PDF from a set of simulated
data-parameters pairs. Also, it can yield high-fidelity posterior inference from orders-of-
magnitude fewer simulations than traditional ABC-based methods.

DELFI turns inference into a density estimation tack on set of simulated parameter-data
pairs

{
~θ,~t

}
. For this, there are principally three ways:

1. Fit a model to the joint density p
(
~θ,~t

)
, then obtain the posterior by evaluating the

joint density at the observed data ~tO, as p
(
~θ
∣∣~t ) ∝ p

(
~θ,~t = ~tO

)
[21].

2. Fit a model to the conditional density p
(
~θ
∣∣~t ), then obtain the posterior by evaluating

at the observed data ~tO [188, 158].

3. Fit a model to the conditional density p
(
~t
∣∣~θ ), obtain the likelihood by evaluating at

the observed data ~tO, and multiply by the prior to obtain the posterior p
(
~θ
∣∣~t ) ∝

p
(
~t
∣∣~θ )p(~θ ) [159, 190].

In our case, and given the advantages summarized in [22], we will use the third way. With
this choice made, DELFI can be broadly summarized as follows:

• Run simulations at different parameter values ~θ to obtain simulated parameters-data
pairs

{
~θ,~t
}
.

• Fit a parametric conditional density estimator p
(
~t
∣∣~θ ; ~w

)
to the simulations

{
~θ,~t
}
,

where ~w are the weights.
• Evaluate the estimated conditional density at the observed data ~tO to obtain the

(learned) likelihood function p
(
~tO
∣∣~θ ; ~w

)
.

Besides, some questions must be addressed in order to perform an efficient algorithm for
DELFI; they can be found in [22]. Within this matter and as a summarize, we use neural
density estimators (NDEs) as a flexible and efficient conditional density estimation framework
for DELFI [188, 190, 159]. For efficient acquisition of simulations, we use active learning,
allowing the NDEs to call the simulator to run new simulations on-the-fly based on the current
likelihood-surface approximation. Finally, it is important to review data compression schemes
for accelerating DELFI.

The NDEs provide a flexible framework to obtain parametric models for conditional prob-
ability densities p

(
~t
∣∣~θ ; ~w

)
, parameterized by neural networks with weights ~w, which can be
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trained on a set of simulated data-parameters pairs
{
~θ,~t
}
. We will use masked autoregres-

sive flows (MAFs) [189] as NDEs, but there are more classes as, for example, the mixture
density networks (MDNs) [39]. We use the chain rule to separate the probability density as
a product of one-dimensional conditionals

p
(
~t, ~θ
)

=
dim ~t∏
i=1

p
(
ti
∣∣~t1:i−1, ~θ

)
. (5.15)

Then, the neural autoregressive density estimators construct parametric densities for this
set of one-dimensional conditionals, where the parameters of each of the conditionals are
parameterized as a neural network [254]. As an example, we could model each conditional
p
(
ti
∣∣~t1:i−1, ~θ

)
as a Gaussian, where its mean and variance are free functions of

(
~t1:i−1, ~θ

)
,

parameterized by a neural network. This is the case for masked autoencoders for density
estimation (MADEs) [104], because the means and variances of each conditional density are
parameterized by the neural network, where its layers weights are masked in such a way
that the output nodes for p

(
ti
∣∣~t1:i−1, ~θ

)
only depends on

(
~t1:i−1, ~θ

)
i.e. the autoregressive

property is preserved. Besides, the hidden layers of the MADE have some non-linear ac-
tivation functions (see eqs. (5.11) and (5.12)), while the output nodes associated with the
conditional means have linear activation (see eq. (5.10)), and the output nodes associates
with the variance have exponential activation to ensure positivity.

By learning the means and variances of the autoregressive conditionals, a MADE can be
thought of as learning the transform of the random variable ~t back to the unit normal

~t
∣∣~θ → ~u

(
~t, ~θ ; ~w

)
∼ N (0, 1) , (5.16)

ti
∣∣~θ → ui =

ti − µi
(
~t1:i−1, ~θ ; ~w

)
σi
(
~t1:i−1, ~θ ; ~w

) , (5.17)

where ~w are the masked weights of the neural network. Therefore, the parametric density
estimator for a MADE is given by

p
(
~t
∣∣~θ ; ~w

)
=
∏
i

p
(
ti
∣∣~t1:i−1, ~θ ; ~w

)
= N

(
~u
(
~t, ~θ ; ~w

)∣∣∣0, 1) ∣∣∣∣∣∂~u
(
~t, ~θ ; ~w

)
∂~t

∣∣∣∣∣
= N

(
~u
(
~t, ~θ; ~w

)∣∣∣0, 1) dim ~t∏
i=1

σi
(
~t, ~θ ; ~w

)
.

(5.18)

Single MADEs have some limitations, like their sensitivity to factorization order in eq. (5.15)
and the assumption of simple conditionals may be overly restrictive. Nonetheless, masked
autoregressive flows (MAF) [189] address these limitations by constructing a stack of MADEs.
Then, the output of each MADE is taken as input for the next, with random reordering of
the chain rule factorization between each MADE. Then, MAFs define the following density
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estimator
p
(
~t
∣∣~θ ; ~w

)
=
∏
i

p
(
ti
∣∣~t1:i−1, ~θ ; ~w

)
= N

(
~u
(
~t, ~θ ; ~w

)∣∣∣0, 1)NMADEs∏
n=1

dim ~t∏
i=1

σni
(
~t, ~θ ; ~w

)
,

(5.19)

where ~u is the output from the final MADE.

In order to fit a neural density estimator to a set of simulated samples
{
~θ,~t
}
, we need to

find the weights of the neural network that minimize the Kullback-Leibler divergence

DKL (p∗|p) =

∫
p∗
(
~t
∣∣~θ ) ln

(
p
(
~t
∣∣~θ ; ~w

)
p∗
(
~t
∣∣~θ )

)
d~t , (5.20)

between the parametric density estimator p
(
~t
∣∣~θ ; ~w

)
and the target p∗

(
~t
∣∣~θ ). Since we have

not access to the target density, we use only the samples
{
~θ,~t
}

to take the -negative
logarithmic- loss function, as

− lnU
(
~w
∣∣∣{~θ,~t}) = −

Nsamples∑
i=1

ln p
(
~ti
∣∣~θi ; ~w) , (5.21)

which is a Monte Carlo estimation of the KL-divergence, and it is also equivalent to the
negative logarithmic-likelihood of the simulated data

{
~θ,~t
}

under the conditional density
estimator p

(
~t
∣∣~θ ; ~w

)
. For MAF conditional estimators, the loss is given by

− lnU
(
~w
∣∣∣{~θ,~t}) = −

∑
i

ln

N (~u(~ti, ~θi ; ~w)∣∣∣0, 1)+

NMADEs∑
n=1

dim ~t∑
m=1

lnσnm
(
~ti, ~θi ; ~w

) . (5.22)

Therefore, the neural density estimators are trained in the usual way by minimizing the
negative log-loss with respect to the network weights or inferring a posterior density over
the weights given the training data (and some network weight prior). The over-fitting can
be mitigated using the standard regularization methods used for neural networks, such as
early-stopping or dropout.

In some cases, perform the forward simulations is expensive. Then, the goal is to achieve
the highest fidelity posterior inference with the fewest simulations possible. Preferentially, we
would like to run simulations in the most exciting regions of the parameter space, which is not
known a priori. Active learning allows the neural density estimators to call the simulator in-
dependently during the training, automatically deciding on-the-fly where the best parameters
to run new simulations are, based on their current state of knowledge of the target posterior.
Some of the active learning approaches for adaptive acquisition of simulations for DELFI are
the sequential neural likelihood [190] and the Bayesian optimization style acquisition rules
[159].
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Chapter 6

The Correlation Function For The
NYU-VAGC

Laying the foundations of Cosmological theory, in chapters 1 to 3 we reviewed from the
basics, the principal’s quantities that make up the ΛCDM scenario. In chapter 4, we saw
the principal observable that we will seek in this thesis and how to obtain it through the
observation of galaxies distribution. We finalized, in chapter 5, by studying some of the smart
and new techniques in the last decades that help us to construct that observable and infer
cosmological information from it. In this chapter, we will apply those techniques to construct
the correlation function from the New York University Value-Added Galaxy Catalog (NYU-
VAGC) [7, 45, 186], which is a cross-matched collection of galaxy catalogs with spectroscopic
information.

6.1 NYU Value-Added Galaxy Catalog

The NYU-VAGC combine galaxies information from several catalogs, which include the Sloan
Digital Sky Survey (SDSS [268]), the Faint Images of the Radio Sky at Twenty-centimeters
survey (FIRST [33]), the Two-Micron All-Sky Survey (2MASS [230]), the Two-degree Field
Galaxy Redshift Survey (2dFGRS [61]), the Infrared Astronomical Satellite Point Source
Catalog Redshift (IRAS PSCz [220]) and the Third Reference Catalog of Galaxies (RC3
[78]). Together, they create a robust spectroscopic survey at low redshift (0.003 < z < 0.05)
with 559, 391 galaxies shown in figs. 6.1 and 6.2. Besides, the NYU-VAGC provides a random
mask that covers the same area that the galaxy catalog, which corresponds to j. This mask
is formed with 1, 905, 377 points and their sky coordinates, but without redshift information.
It is also shown in fig. 6.1.

6.2 Kernel Density Estimation For Random Mask

We proceed to estimate the redshift distribution from galaxies to apply it to the random
points. We use the kernel density estimation technique, explained in section 5.2, with a
Gaussian kernel from eq. (5.2). For the estimation of the hyper-parameter h, we used 10−fold
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Figure 6.1: Top. The NYU-VAGC galaxies showing its sky covering. Bottom. The mask of
random points Poisson distributed over the same geometry and area than NYU-VAGC.
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Figure 6.2: The NYU-VAGC sky covering using the Hammer projection.

cross-validation i.e. we cut randomly our dataset into 10 subsets. Thus, we take 9 subsets
that we call train set to obtain the redshift probability distribution function to finally compare
their samples in the remaining subset or test set. We do this procedure for several values of
h, and also iterate and change the test set over the 10 partitions of our dataset. We used a
grid of h−values that contain different magnitude orders, which is essential in this kind of
analysis. It is given by

hgrid = [0.00001, 0.00005, 0.00008, 0.001, 0.003, 0.005, 0.01, 0.05] . (6.1)

The best bandwidth, which minimizes the sampler and real redshift over the ten iterations,
is given by h = 0.001. Using it, we create the samples for the randoms points from with
the seed 51294. These are shown in fig. 6.3 with the NYU-VAGC redshift distribution. In
the same image, we can observe the KDE probability distribution function together with the
both samples, which also shows their agreement.

6.3 From Redshift To Comoving Distances
Once the redshift distribution for randoms is obtained, we can compute the comoving dis-
tance between the targets from catalogs using eq. (1.53). For that, we need to assume some
fiducial cosmology, which, in our case, is Planck 2018 cosmology [59]. We use the cosmolog-
ical parameters obtained by the constraining of the TT, TE,EE + lowE + lensing signals,
where we use the mean values given at the 68% confidence intervals. Besides, we measure
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Figure 6.3: Top. The histogram with a logarithm y−axis scale shows the number of galaxies
as a function of redshift for the NYU-VAGC (green) and the samples obtained from the KDE
technique for the random points (blue). Bottom. The normalized histogram with a linear
y−axis scale with the NYU-VAGC galaxy redshifts (green), the redshift samples obtained
from KDE for randoms (blue), and the KDE probability distribution function (orange).
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Figure 6.4: The distribution of galaxies in redshift-real space from the NYU-VAGC, assuming
Planck 2018 [59] as fiducial cosmology. The blue triangle indicates our position in the origin
of the coordinate reference system of eq. (6.3).

those distances in h−1Mpc, with h the dimensionless reduced Hubble parameter defined in
section 1.1. Therefore, assuming a flat ΛCDM scenario, we only need to fix the parameter
Ωm,0, which is

Ωm,0 = 0.31 , (6.2)

becauseH0 is encoded in h which is free, Ωr is negligible at low redshift, and ΩΛ,0 = 1−Ωm,0 by
eq. (1.34). Finally, we can construct a 3D map for the NYU-VAGC and the random catalog,
where the first is shown in fig. 6.4. For that, we take the next coordinate transformation

x = χ sin (δ) cos (α)

y = χ sin (δ) sin (α)

z = χ cos (δ) ,

(6.3)

where χ is the comoving distance, δ the declination, and α the right ascension.
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6.4 Weight Scheme

For the weight scheme discussed in section 4.3, we are going to use the FKP weights from
eq. (4.79). Then, we need the number density and the power spectrum at some interesting
scale. For the first, we split the NYU-VAGC into 224 redshift bins, where each one contains
approximately 2500 galaxies. In this way, we can obtain a better measurement of the number
density, in which we need to compute the volume occupied by each bin. Nonetheless, this
partition generates bins that are not linear, neither logarithmic.

To obtain the bin volume, we are going to use spherical coordinates. Then, the volume
differential is dV = χ2dχΩ, where Ω is the solid angle differential. For a bin between zi and
zi+1, the volume is

Vi = Ωsurvey
χ3 (zi+1)− χ3 (zi)

3
, (6.4)

with Ωsurvey = 2.44 as the solid angle occupied by the survey, which we assume is equal for
all bins because the partition is in redshift space but not in spherical angles. The comoving
bin limits are obtained, as before, using the fiducial cosmology. Thus, we can obtain the
number density as

n̄i =
ni
Vi
, (6.5)

where ni = 2500 for all bins except the last one, which contains n224 = 1891 galaxies.

Now, we need to assign a weight for each galaxy, but first, we have to know what is the
bin to each galaxy. This is not difficult, since we know the galaxy redshift and the bin limits
in redshift. For the randoms points, we use the same number density function that galaxies
because they have the same redshift distribution.

Finally, we need to set the power spectrum at some interesting scale. We use three values
P (k) = 10000, 15000, 20000 [Mpc3], obtaining three different weights. Note that we did
not use h−3Mpc3 as a unit because we do not want to deal with the h measurement in the
weights. Under the fiducial cosmology [59] at z = 0, the above power spectrums correspond
to the scales k = 0.1032, 0.0786, 0.0642 [Mpc−1], respectively. We will see the results for the
correlation function estimator in the next section, but it is important to remark that all the
scales aforementioned are close to BAO.

6.5 The NYU-VAGC Two-Point Correlation Function

With the comoving distances and weights at both catalogs, we have all the ingredients to
construct our two-point correlation function estimator, as we saw in section 4.3. We need
to compute the DD and RR pairwise distances in each catalog and the DR cross-pairwise
distance. Then, we group them by bins to obtain the estimator. We are going to use a ball
tree algorithm, explained in section 5.1, already implemented in Python by Jarvis, Bernstein,
& Jain (2004) [135] through a library called TreeCorr.

Once computed the pairwise distances, with the normalization explained in eqs. (4.69)
to (4.71), and the weight scheme from eq. (4.81), we need to group them in bins. We choose
two binning schemes: linear and logarithmic. For the first we take 20 bins between r = 20
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[h−1Mpc] to r = 160 [h−1Mpc], which makes the bin size ∆r = 7.5 [h−1Mpc]. For the second
we take 45 bins between r = 15 [h−1Mpc] to r = 180 [h−1Mpc], which makes the logarithm
bin size ∆ ln (r) = 0.024 [ln (h−1Mpc)].

The binning is not a trivial election, since, for most correlations functions, which tend to
be approximately power laws, the logarithmic binning is the most appropriate. Nevertheless,
for uses cases where the scales of interest span only a relatively small range of distances, it
may be convenient to use linear binning. This last choice is the preferred one for BAO when
we study it on large scales. Besides, there is a technical problem, due to the implementation
and search in ball trees, the logarithmic binning is faster than the linear. In TreeCorr,
the speed is also parameterized by the brute and the bin_slop arguments. The first is a
Boolean that, if it is false, the algorithm stops at non-leaf cells whenever the error in the
separation is compatible with the given bin_slop. But if it is true, we use the brute force
algorithm, which goes to the leaves. The second can be defined as how much slop allows in
the placement of pairs in the bins. Therefore, using the brute force algorithm takes more
time since the ball tree structure is no longer useful. Similarly, using a bin_slop equal or
close to 0 takes more time since we must perform a search tree in all the branches. For our
case, we use bin_slop= 0.1 for the logarithmic binning and bin_slop= 0.1 for the linear.

Finally, we construct the two-point correlation function using the Peebles & Hauser
(eq. (4.72)) and the Landy & Szalay (eq. (4.76)) estimators. Since the second also requires
cross-pairwise distances, it takes more computation time. The results are shown in fig. 6.5.
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Figure 6.5: The two-point correlation signal for the NYU-VAGC using three different power
spectrums in the weighting scheme, as we argued in section 6.4. We plot the r2ξ̂ signal to
better distinguish the expected BAO peak near 110 [h−1Mpc]. Finally, we show the signal
computed using the Landy & Szalay estimator ξ̂LS from eq. (4.76) (solid lines) and the Peebles
& Hauser estimator ξ̂PH from eq. (4.72) (dashed lines). For both cases, we display the linear
and logarithmic binning used and detailed in section 6.5.
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6.6 The Covariance Matrix For The NYU-VAGC
Our two-point correlation estimator also requires an uncertainty measurement to make Bayesian
inference in the next section. There are several ways to obtain it, but that does not mean
that all are useful. For example, we can consider that all the galaxies were taken correctly
in the survey, and then, their positions and redshifts have no uncertainty; also, there are no
other possible systematic errors like the induced by astrophysical processes. In that case, the
only source of uncertainty is the shot noise, which for the two-point estimator is the Poisson
error due to the counting of galaxies. It has the next form [94]

σ̂2
[
ξ̂(r)

]
=

(
1 + ξ̂(r)

)2

DD(r)
, (6.6)

which depends on the two-point correlation estimator and the galaxies’ pairwise distances for
a certain bin. It is shown in fig. 6.6 for the signal computed in the last section. Therefore,
with this method, the covariance matrix will be diagonal, and there is no way to estimate
the off-diagonal terms. However, this method is based on unrealistic assumptions, and it
underestimates the variance.

To take a better estimator of the covariance matrix, we perform a jackknife method. In
this case, we split the sky coverage of the survey into Npatch = 40 patches shown in fig. 6.7.
We will also estimate the two-point correlation function using the Landy & Szalay estimator,
the logarithmic binning detailed in the last section, and a weighting scheme based on the
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Figure 6.6: The shot noise for the NYU-VAGC computed by eq. (6.6), using only one weight
scheme with P (k) = 15000

[
Mpc3

]
since there is not a big difference between the three power

spectrum used. We show the error for the Landy & Szalay estimator ξ̂LS from eq. (4.76)
(solid lines) and for the Peebles & Hauser estimator ξ̂PH from eq. (4.72) (dashed lines). In
both cases, we display the linear and logarithmic binning used and detailed in section 6.5.
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Figure 6.7: The Npatch = 40 sky patches of the NYU-VAG that were used to compute the
variance of two-point correlation signal through the jackknife technique. They were obtained
using the k−means algorithm from scikit-learn.

power spectrum P (k) = 15000 [Mpc3]. These signals are shown in fig. 6.8. Then, we estimate
the covariance matrix based on the scatter in the measurement by excluding one patch at a
time. It is given by

Cij =
Npatch − 1

Npatch

Npatch∑
a=1

(
ξ̂a (ri)− ξ̄ (ri)

)(
ξ̂a (rj)− ξ̄ (rj)

)
, (6.7)

where ξ̄ is the mean two-point correlation function between all the patches.

Finally, we also propagate the shot noise into the covariance matrix (see fig. 6.9) obtained
from jackknife, which does not induce significant variance. Nonetheless, it is essential to
remark that the size of the sky patches and their number can considerably affect the deter-
mination of the uncertainty on scales of interest. However, they are restricted by the survey
volume and our incapability to compute ensemble averages, as we argued in section 4.1. We
can try to remedy that by using simulations that require initial conditions and modeling to
proportionate mock catalogs, from which we can compute ensemble averages. This method is
used mostly because it gives a better error estimation, but it requires a considerable number
of mocks, which is expensive, and good modeling on different scales that are likely affected by
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non-linear effects. Besides, those simulations are affected by cosmological and astrophysical
parameters in processes that are not clear yet, turning it into an active research field.
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Figure 6.8: The variability in the two-point correlation signal computed through jackknife
technique for Npatch = 40 sky patches of the NYU-VAGC coverage (see fig. 6.7) and detailed
in section 6.6. We plot the r2ξ̂ signal to better distinguish the expected BAO peak near
110 [h−1Mpc].
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Figure 6.9: The normalized covariance matrix obtained by jackknife technique (see sec-
tion 6.6) for Npatch = 40 sky patches of the NYU-VAGC coverage. The normalization is
computed as C(norm)
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CiiCjj, where Cij is obtained from eq. (6.7). Note that its
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Chapter 7

Cosmological Inference

Once constructed the two-point correlation function and its covariance matrix, we can proceed
to make a statistical analysis using the Bayesian inference framework of section 5.3. From it,
we can recover cosmological information encoded in the two-point correlation function using
the power spectrum from chapter 4, and considering in the model the distortions studied in
the same chapter. These are important for our catalog because it is likely to suffer redshift
space distortion since the proper velocities are comparable with the expansion rates at low
redshift. Besides, to compute the comoving distances, we assumed a fiducial cosmology,
which can differ from the encoded in the catalog, introducing geometrical distortions.

In this chapter, we will review the classic and new techniques explained in chapter 5 to
constrain cosmological information. Since we already have the correlation function and its
covariance matrix from chapter 6, we only need to specify the model. We are going to review
some of the most used in the literature. Finally, we are going to compare the inference
obtained from the different algorithms.

7.1 Models For ξ(r)

It is important to remark that the inference over cosmological parameters is restricted to
a model that we need to specify. It is important to take into account the physical model
and always consider the possible distortions in the measurement. We start using the power
spectrum from eq. (4.50), which gives us information on all scales in the late Universe.
However, that power spectrum is not always valid since we constructed it using linear theory,
and we know that the model fails on small scales because of the non-linearities. Besides, we
will see that those non-linear effects have a small contribution to large scales. From eq. (4.50),
we can recover the correlation function by eq. (4.34) without considering anisotropies. This
integration is performed numerically in logarithmic space to avoid the loss of information
from BAO wiggles. Thus, we do the next change of variables u = log(kr) ⇒ du = dk/k,
which transforms the integral into

ξ(r) =

∫ ∞
−∞

du

2π2
e2uP (u)

r3
sin (eu) . (7.1)
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This change preserves the cancellation of units between k and r required to obtain a di-
mensionless two-point correlation function. Then, those variables must have the same units.
This issue can be looked trivial, but it is necessary to work with the explicit variable h in the
units because it encodes cosmological information that can enter a systematic error. Since
the power spectrum decays to zero for k → 0 and k → ∞, we do not need to perform the
integral for all the domain, which is difficult because we are doing a numerical integration.
Thus, we need to determinate some limits of integration, which can be found studying where
k2P (k)/r ∼ 1, because it gives us the scales k that do not contribute considerably to the
integral beyond the peak for any r. Once obtained these limits k− and k+, we can perform
the numerical integration in logarithm space of eq. (7.1) as

ξ(r) =

∫ log(k+r)

log(k−r)

du

2π2
e2uP (u)

r3
sin (eu) , (7.2)

noting that we included the r value in the limits because of the change of variables. Also,
the units of volume of the power spectrum are canceled by those in r3, which is why they
must have the same measurement units.

7.1.1 Purely Cosmological Model

Using eq. (7.2), we can start to make inference using the data constructed in chapter 6. Since
the model for ξ(r) depends on one power spectrum, which is produced by the cosmological
parameters Ωb,Ωcdm, As, ns, h, τop, Neff and the eq. (4.50), we can move on that parameter
space. However, this introduces two big problems, which the first is that this has not much
sense because we constructed the estimator using a fiducial cosmology [59], where we set
the Ωm parameter. Therefore, the inference that we could make in the parameter-space
above is biased even if we model the geometrical distortions well. The second problem is
that the movement in that parameter space requires, at each step, the computation of one
power spectrum, which requires the solving of several coupled perturbed equations studied
in chapters 2 and 3. This problem makes it extremely expensive even for algorithms based
on Markov Chain Monte Carlo (MCMC).

7.1.2 Geometrical Model With Shift Parameter

In section 4.5, we studied how to take account of the differences between the fiducial and
real cosmology. We saw that the principal effects are the distortions induced, which can be
solved by the shift parameter α of eq. (4.123), and the warping ε. Under this model, we can
compare the two-point correlation function constructed from data using the estimator with
the theoretical one, which is produced using the power spectrum at the fiducial cosmology
[59], as long as we consider the dilation by introducing the shift parameter in the model.

To face the problems of the last section, the biasing and the expensive computations, we
can compare the estimator from chapter 6 with a geometrical model, which is constructed
using the two-point correlation function through the power spectrum (see eq. (7.2)) at the
fiducial cosmology [59]. By the moment, this would give us a framework from which we can
not extract cosmological information, and also it preserves a biased inference. Nevertheless,
since we know how to take account of the geometrical distortions influenced by cosmology,
we can recover some of the cosmological parameters. Then, these kinds of models are called
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geometrical because we use the fact that a wrong assumption on the cosmological parameters
affects the geometrical distribution of galaxies, which is observable in their two-point corre-
lation function. To take account of the differences between the fiducial and real cosmology,
we introduced the shift parameter α (see eq. (10.18)) in the model, assuming ε = 0 at first
instance i.e. without considering anisotropies. Then, the model is

ξmodel(r, z = z ) = Bξth (αr, z, ~pr) , (7.3)

where ξth is the two-point correlation function obtained using the fiducial or reference cos-
mology [59] parameters ~pr at some redshift z, which in this case corresponds to the mean
galaxy redshift of the catalog z = 0.101; while, B takes account of possible differences in
the amplitude of the signal. These will be clear through the use of other models.

7.1.3 Geometrical Model With Nuisance Parameters

We also can take account of possible systematic errors by using nuisance parameters. These
enter the model as measurements of the different functions that can compete against the
theoretical model of the two-point correlation function. Since we expect that the signal
decreases as a power-law r−2, we will insert nuisance parameters until that order. Then, the
model is the sum of eq. (7.3) and the power-law functions

ξmodel(r, z = z ) = Bξth (αr, z, ~pr) + a0 +
a1

r
+
a2

r2
, (7.4)

where the ai are the nuisance parameters.

7.1.4 Geometrical Model Considering Non-Linearities

The non-linear structure formation can affect acoustic oscillations’ signature because the
motions that lead to the growth of correlations also change their shape. The mode-coupling
effect can also explain this in the power spectrum, which generates additional oscillations
out of phase with those in the linear spectrum. Then, when it is Fourier transformed, these
out of phase oscillations induce a percent-level shift in the acoustic peak of the two-point
correlation function [66, 244]. To take account of the non-linear suppression of the BAO
signal, we can introduce a damping term in the matter power spectrum

Pdamped(k, z) = Pm(k, z)e−(k/k∗)2

, (7.5)

where Pm is the spectrum from eq. (4.50) and k∗ is the damping scale, which can also be
written as

Pdamped(k, z) = Pm(k, z)e−(σvk)2

, (7.6)

with σv = 1/k∗ as the pairwise velocity dispersion, which was also defined in eq. (4.101)
because it encodes the same effect. It also depends on redshift, and it is important to
consider the mean galaxy redshift of the catalog if we want to set/constrain it. Then, the
damped two-point correlation function is obtained through eq. (4.34), which is denoted as

ξdamped(r, z) = ξL(r, z)⊗G(r) , (7.7)
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where ⊗ term denotes convolution, ξL(r, z) is the two-point correlation function obtained
from the linear matter power spectrum and G(r) is the Fourier transform of G̃(k) or damped
function, which was implicitly defined before as

G̃(k) = e−(σvk)2

= e−(k/k∗)2

. (7.8)

Then, for the convolution, we just multiply the power spectrum and the damped function in
Fourier space to obtain the damped two-point correlation function through eq. (4.101).

Also, to take account of non-linearities to second-order caused by the mode-coupling of
different Fourier modes, we can include an additional term to the model

ξNL(r, z) = ξL(r, z)⊗G(r) + AMCξ
(1)(r, z)

∂ξL(r, z)

∂r
, (7.9)

where the first term damps the baryonic acoustic feature in the linear two-point correlation
function ξL, as we saw, AMC is the k−mode coupling (MC) parameter, and ξ(1) is

ξ(1)(r, z) = r̂ · ∇−1ξL(r, z) =

∫ ∞
0

k

2π2
Pm(k, z)j1(kr)dk , (7.10)

where Pm(k, z) comes from eq. (4.34) and j1(kr) is the spherical Bessel function of first order.

In most of the surveys, the parameter k∗ or σv is constrained, even when we can determi-
nate it by eq. (4.101). On the other hand, the parameter AMC has a low power of constraining
because at high redshift, the mode coupling effect is small, and at low redshift, it is negligible
compared to RSD. Therefore, in most of the analyses done, it is set to AMC = 0 or AMC = 1.

The inclusion of the damped scale affects the small-scale clustering amplitude, but we
know that it should affect only the BAO amplitude. This can be solved adding a term that
includes a wiggle-free power spectrum Pdw(k, z) [244], which possesses the same shape as
Pm(k, z) but with the baryon oscillation component deleted, through

Pdamped(k, z) = G̃(k)Pm(k, z) +
[
1− G̃(k)

]
Pdw(k, z)

= [Pm(k, z)− Pdw(k, z)] exp

(
−1

2
k2Σ2

NL

)
+ Pdw(k, z) ,

(7.11)

where in the second line we reordered the terms introducing the same damped function but
now with the variable ΣNL, which is just

Σ2
NL = 2σ2

v =
2

k2
∗
, (7.12)

because it is most used in this kind of analysis.

Finally, the model considering the shift, nuisance parameters, and non-linearities is

ξmodel(r, z = z ) = BξNL (αr, z, ~pr|ΣNL, AMC) + a0 +
a1

r
+
a2

r2
, (7.13)

with ξNL from eq. (7.9) or the obtained after Fourier transforming one of the damped power
spectrum from eqs. (7.5), (7.6) and (7.11).
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7.1.5 Geometrical Model With Redshift Space Distortions

In the last models, we grouped all the effects that could change the amplitude of the signal
in the B parameter. Since we already know that the RSD have an impact on the amplitude
from section 4.4, we are going to model them using the multipoles. We will use the monopole
because it requires the same integration that the isotropic two-point correlation function.
Inserting the Kaiser formula from eq. (4.110), because we are going to consider also the bias,
into eq. (4.107) for l = 0, we obtain

P s
0 (k, z) =

(
b2 +

2

3
fb+

1

5
f 2

)
Pm(k, z) . (7.14)

Before computing the monopole, we will normalize the power spectrum, as we did in eq. (4.55).

P s
0 (k, z) =

(
(σ8b)

2 +
2

3
(σ8f)(σ8b) +

1

5
(σ8f)2

)
Pm(k) , (7.15)

noting that we introduced the variance of the mass density at 8h−1Mpc together the b and
f parameters. Besides, the z dependence is lost in the power spectrum. Therefore, the
monopole is

ξs0(r) =

(
(σ8b)

2 +
2

3
(σ8f)(σ8b) +

1

5
(σ8f)2

)
Ξ(r) , (7.16)

where Ξ(r) is the normalized two-point correlation function i.e. the obtained after the inte-
gration of the k− dependence only power spectrum.

We can combine this model with the previous, obtaining

ξmodel(r, z = z ) =

(
(σ8b)

2 +
2

3
(σ8f)(σ8b) +

1

5
(σ8f)2

)
Ξ (αr, ~pr|ΣNL, AMC)

+ a0 +
a1

r
+
a2

r2
,

(7.17)

where we can normalize the damped power spectrum or the mode-coupling effect in the
correlation function from eqs. (7.5), (7.6), (7.9) and (7.11) by the fiducial σ2

8 at the mean
galaxy redshift of the catalog to then obtain the normalized two-point correlation function.

It is common to constrain fσ8 and bσ8 in this kind of analysis instead σ8, f , and b directly.
Because that would generate a correlation between the three parameters. Nonetheless, the
combined parameters are independent between each other, making them a robust measure-
ment because a dependence of the bias is dangerous in galaxy catalogs that are, for example,
considering different types of galaxies or tracers.

It is also important to remark that the measurements obtained for fσ8 and bσ8 depend on
the fiducial cosmology chosen to construct the correlation function. We need to take account
of the bias generated on these measurements due to geometrical distortions before using
them in other analyses. The principal change is generated in the volume, which generates
an anisotropy in the power spectrum described by the Alcock-Paczynski effect in [18] as we
saw in section 4.5. This issue can be corrected by considering how the two-point correlation
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function transforms under a change of cosmology, which is treated in [16]. From which we
start relating both power spectrum amplitudes

σ2
8b

2
[
1 + βµ2

]2
=
Hr(z)d2

A(z)2

H(z)d2
Ar

(z)
σ2

8rb
2
r

[
1 + βrµ

2
r

]2 C , (7.18)

where r indicates that the variables are obtained using the fiducial cosmology, and C is a
constant that relates the two power spectrum. Following the procedure of [16] to eliminate
the line-of-sight direction variable µ and the bias b through approximations, we obtain the
next relation

fσ8 = (fσ8)r C

(
H(z)d2

Ar
(z)

Hr(z)d2
A(z)

) 3
2
(
σ8

σ8r

)2

, (7.19)

with C explicitly given as

C =

∫ k2

k1

dk

√
Pr(k)

P (k′)
, (7.20)

where k1 and k2 are the limits of the scales that we are interested in for the power spectrum
data or the correlation function. The scale k′ denotes the modes in the underlying cosmology
and it obeys k′ = k/α, with α the shift parameter from eq. (4.123). However, C is close to 1
in most of the surveys, which allows us to ignore it.

Another way to take account of that effect is by merely rescaling the fσ8 measurements
with H(z)dA(z) ratios from the cosmology used to that of the fiducial one as in [161]. Then,
the measurements need to be corrected by

fσ8 = (fσ8)r
Hr(z)dAr(z)

H(z)dA(z)
. (7.21)

Although, it is most common to correct the model because, in that case, we have not to
change the possible covariance matrix that relates the measurements when we make Bayesian
inference. Therefore, for the model, the correction is

(fσ8)mc = (fσ8)m
H(z)dA(z)

Hr(z)dAr(z)
, (7.22)

where mc indicates model-corrected, and m is the model value obtained through the evalua-
tion at some point in the parameter space. It also determines the values of H(z) and dA(z).
It is important to note that the value H(z)dA(z) is independent of H0, which is another
reason to use this method.

7.1.6 Empirical Model

We also can construct an empirical model for the two-point correlation function, since we
know a priori that it evolves as a power-law with a peak at BAO scales that can be modeled
as a Gaussian function. We consider this kind of model from [245, 255] with the form

ξmodel(r) = B +

(
r

r0

)−γ
+

N√
2πσ2

exp

(
−(r − rm)2

2σ2

)
, (7.23)
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where the parameters r0 and γ model the shape of the correlation at small scales and its
power-law behavior, B takes into account a possible negative correlation at large scales, and
rm, σ and N are the parameters of the Gaussian function used to model the BAO feature.
It is important to remark, that according to [255], the correct BAO peak position is shifted
to smaller scales with respect to the Gaussian median value rm.

The model in eq. (7.23) can be used to detect the BAO peak position accurately, but we
can not extract directly any additional cosmological information.

7.2 Results I

To find the optimal parameter values, we use a Monte Carlo Markov Chain (MCMC) based
on a Metropolis-Hastings algorithm (see section 5.3), which is developed in the Python library
emcee [100]. We assume a likelihood function with the form

L =
exp
(
−1

2
χ2
(
~θ
))√

(2π)k det
(
Ĉ
) ∝ exp

(
−χ

2
(
~θ
)

2

)
, (7.24)

where Ĉ is the covariance matrix estimator, k is its dimension, and also, we will use the
second proportionality because the covariance matrix does not depend on the parameters
~θ.The χ2 statistic is computed as

χ2
(
~θ
)

=
[
~ξmodel

(
~θ
)
− ~ξobs

]T
Ψ̂
[
~ξmodel

(
~θ
)
− ~ξobs

]
. (7.25)

In the equation above, ~ξmodel is the model that depends on the parameters ~θ; while, ~ξobs is
the observed one. Both are grouped in a vector at each position r. Finally, Ψ̂ is the precision
matrix, which is the inverse of the covariance matrix. Nonetheless, it is important to remark
that taking the inverse of the data covariance matrix, which is an estimator, induces an error
that must be propagated. This issue is why the estimator for the precision matrix is not
necessarily equal to the inverse estimator of the data covariance matrix. For our purposes,
we will assume that Ψ̂ = Ĉ−1, but considering that this can induce a bias in our parameters
to constrain. A better handle of this effect can be found in chapters 9 and 10.

Parameter Flat Priors Parameter Constraints
B [−5, 5] −0.0012± 0.0004
γ [0, 10] 2.9+0.257

−0.249

r0 [h−1Mpc] [0, 200] 12.904+1.495
−1.548

rm [h−1Mpc] [0, 200] 107.535+1.194
−1.434

N [h−1Mpc] [0, 100] 0.175± 0.02
σ [h−1Mpc] [0, 100] 13.016+1.407

−1.188

Table 7.1: The flat prior intervals and parameter constraints derived from the Metropolis-
Hastings algorithm to the empirical model described in section 7.1.6.
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In order to focus our analysis in the BAO peak, we will take the two-point correlation
estimator from section 6.5 between 46.6 [h−1Mpc] and 157 [h−1Mpc]. We also will take the
covariance matrix from section 6.6 between the same bins. Then, we are going to use several
of the model described in the last section.
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Figure 7.1: The contour plot for the empirical model, which shows the posterior probability
distribution function, obtained from the Metropolis-Hastings algorithm, for all the parameters
involved.

Model 0

We start using the empirical model from section 7.1.6, which we call model-0, from it we
constrain the parameters

~θmodel−0 = {B, γ, r0, rm, N, σ} . (7.26)
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We use flat priors in the analysis, which are detailed in table 7.1. The results are shown as
mean values and their 68% confidence intervals in table 7.1 and fig. 7.1.

Model 1

Now, we are going to use the geometrical model from section 7.1.2, which we call model-1,
from it we constrain the parameters

~θmodel−1 = {B,α} . (7.27)

We use flat priors in the analysis, which are detailed in table 7.2. The results are shown as
mean values and their 68% confidence intervals in table 7.2 and fig. 7.2.

Model 2

We add the nuisance parameters to the last model, which is detailed in section 7.1.3. We
name this model as model-2, from it we constrain the parameters

~θmodel−2 = {B,α, a0, a1, a2} . (7.28)

We use flat priors in the analysis, which are detailed in table 7.2. The results are shown as
mean values and their 68% confidence intervals in table 7.2 and figs. 7.2 and 7.4.

Model 3

Now, we consider non-linearities (see section 7.1.4) using the damped power spectrum from
eq. (7.11). For this model, we also require the wiggle-free power spectrum, which can be
computed using the formula from [83]. In our case, we use a Savgol filter1 to delete the
baryon oscillation component. We name this model as model-3, from it we constrain the
parameters

~θmodel−3 = {B,α, a0, a1, a2,ΣNL} . (7.29)

We use flat priors in the analysis, which are detailed in table 7.2. The results are shown as
mean values and their 68% confidence intervals in table 7.2 and fig. 7.2.

Model 4

We add the effect of redshift space distortions using the monopole, as we detailed in sec-
tion 7.1.5, to the model in the last section. We call this model as model-4, from it we
constrain the parameters

~θmodel−4 = {bσ8, fσ8, α, a0, a1, a2,ΣNL} . (7.30)

We use flat priors over these parameters in the analysis, which are detailed in table 7.2. The
results are shown as mean values and their 68% confidence intervals in table 7.2 and fig. 7.3.

Since the parameter fσ8 seems not constrained, we also consider in this analysis scales
between 26.8 [h−1Mpc] and 165.8 [h−1Mpc], because the RSD effect should be most notorious

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html
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Parameter Flat Priors Model-1 Model-2 Model-3 Model-4 Model-4B Model-4C Model-5 Model-6 Model-7

bσ8 [0, 5] - - - 1.58+0.15
−0.14 1.85+0.09

−0.11 1.22± 0.05 - - -
fσ8 [0, 1] - - - 0.51+0.32

−0.34 0.65+0.19
−0.23 0.47+0.14

−0.15 - - -
B [0, 10] 2.46± 0.09 3.73+0.25

−0.26 4.91+0.64
−0.53 - - - 2.45± 0.10 2.45± 0.10 4.20+0.51

−0.44

α [0, 2] 0.94± 0.01 0.94± 0.01 0.95± 0.01 0.95± 0.01 1.15± 0.01 - 0.94± 0.01 0.94± 0.01 0.94± 0.01
ΣNL [Mpc] [0, 100] - - 12.8± 3.0 13.0± 3.0 17.0+1.7

−3.2 - - - -
k∗
[
Mpc−1

]
[0, 1] - - - - - - 0.42+0.37

−0.19 0.42+0.35
−0.19 0.17+0.33

−0.05

AMC [0, 10] - - - - - - - 4.7+3.6
−3.2 5.2+3.2

−3.6

a0 [−10, 10] - −0.010± 0.001 −0.010± 0.001 −0.010± 0.001 −0.0133+0.0003
−0.0005 −3.99× 103 ± 2.50× 10−05 - - −0.010± 0.001

a1 [h−1Mpc] [−10, 10] - 2.56± 0.27 2.88+0.33
−0.32 2.93+0.26

−0.25 2.82+0.17
−0.07 0.88± 0.01 - - 2.78+0.40

−0.32

a2

[
h−2Mpc2

]
[−500, 100] - −136.1± 16 −176.2+22.9

−26.5 −180.7+21.2
−23.0 −128.3+4.1

−14.0 −38.5+0.5
−0.8 - - −160.0+24.3

−31.9

Table 7.2: The flat prior intervals and parameter constraints derived from Metropolis-
Hastings algorithm to the models 1, 2, 3, 4, 4B, 4C, 5, 6 and 7 (see section 7.2).

at smaller scales. We call this model as model-4B, which has the same parameters from
eq. (7.30).

We also add another model because, from fig. 7.3, we can see that adding smaller scales
shifts the α parameter. Therefore, we use another model with the same parameters from
eq. (7.30), but fixing α and ΣNL to those obtained with the model at large scales i.e. model-
4. Besides, we consider scales between 15.4 [h−1Mpc] and 165.8 [h−1Mpc] and we call this
model as model-4C. Finally, the results for both models 4B and 4C are also shown in
table 7.2 and fig. 7.3.

Model 5

Now, we are going to test the other models for non-linearities (see section 7.1.4). We construct
this model using as a base the geometrical model from section 7.1.2, with the damped power
spectrum from eq. (7.5). Finally, we call this model as model-5, from it we constrain the
parameters

~θmodel−5 = {B,α, k∗} . (7.31)
We use flat priors in the analysis, which are detailed in table 7.2. The results are shown as
mean values and their 68% confidence intervals in table 7.2 and fig. 7.4.

Model 6

We add, to the model of the last section, the effect of mode-coupling using the eq. (7.9).
We use the damped power spectrum from eq. (7.5) and we call this model as model-6, from
which we are going to constrain the parameters

~θmodel−6 = {B,α, k∗, AMC} . (7.32)

We use flat priors in the analysis, which are detailed in table 7.2. The results are shown as
mean values and their 68% confidence intervals in table 7.2 and fig. 7.4.

Model 7

Finally, we add the nuisance parameters to the model of the last section. We call this model
as model-7, from it we constrain the parameters

~θmodel−7 = {B,α, k∗, AMC , a0, a1, a2} . (7.33)

We use flat priors in the analysis, which are detailed in table 7.2. The results are shown as
mean values and their 68% confidence intervals in table 7.2 and fig. 7.4.
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Figure 7.2: The contour plot for the models-1, 2, 3, which shows the posterior probability
distribution function, obtained from the Metropolis-Hastings algorithm, for all the parameters
involved. The numerical results are presented in table 7.2.
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Figure 7.3: The contour plot for the models-4, 4B, 4C, which shows the posterior probability
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7.3 Results II

We also constrain the parameters using likelihood-free inference through DELFI (see sec-
tion 5.6). We use the model-0 and model-3, because they were fully constrained through
the Metropolis-Hastings algorithm in the last section. For DELFI, we use a Python library
called pydelfi2, where its methods are fully explained in [22]. As before, we will take the
two-point correlation estimator from section 6.5 between 46.6 [h−1Mpc] and 157 [h−1Mpc].
We also will take the covariance matrix from section 6.6 between the same bins.

For both models, we use the same architecture for the NDE, which consists in 5 MAFs,
each one with 5 MADEs. These have two hidden layers with [40, 40], [40, 40], [50, 50], [60, 60]
and [60, 60] neurons, and their activation functions between hidden layers are sigmoid (see
eq. (5.11)), tanh (see eq. (5.12)), sigmoid, sigmoid, tanh, respectively.

Besides, to ensure the convergence of the algorithm and to find the correct weights, we
run 8000 simulations to minimize the negative log-loss, which is defined in eq. (5.22). The
convergence is made by splitting the simulations into a train set (90%) and a validation set
(10%). The results are shown in fig. 7.5.

Model 0

We use the same parameters and model from eqs. (7.23) and (7.26), respectively. We use flat
priors in the analysis, which are detailed in table 7.1. The results are shown as mean values
and their 68% confidence intervals in table 7.3 and fig. 7.6, where we also show the comparison,
in the contour plot, between the results obtained from Metropolis-Hastings algorithm and
from DELFI.

Model 3

We use the same parameters and model from section 7.1.3 and eq. (7.29), respectively. We
use flat priors in the analysis, which are detailed in table 7.2. The results are shown as

2https://pydelfi.readthedocs.io/en/latest/index.html

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Simulations, nsims

5.0

5.5

6.0

6.5

7.0

N
eg

a
ti
v
e

L
og

L
os

s,
−

ln
U

Training Loss

Validation Loss

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Simulations, nsims

3.2

3.4

3.6

3.8

4.0

4.2

4.4

N
eg

a
ti
v
e

L
og

L
os

s,
−

ln
U

Training Loss

Validation Loss

Figure 7.5: The negative log-loss from eq. (5.22) as function of the number of simulations for
DELFI in the model-0 (left) and the model-3 (right).
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Parameter Parameter Constraints

B −0.0013+0.0004
−0.0003

γ 2.855+0.248
−0.259

r0 [h−1Mpc] 12.666+1.454
−1.606

rm [h−1Mpc] 107.624+1.089
−1.184

N [h−1Mpc] 0.174+0.017
−0.015

σ [h−1Mpc] 12.973+1.094
−0.974

Parameter Parameter Constraints

B 5.03± 0.50
α 0.94± 0.01
a0 −0.010± 0.001

a1 [h−1Mpc] 2.95+0.34
−0.32

a2

[
h−2Mpc2

]
−184.1+24.4

−25.8

ΣNL [Mpc] 12.9+2.2
−2.4

Table 7.3: The parameter constraints derived from DELFI to the empirical model (left)
described in section 7.1.6 and for the geometrical analysis (right) described in eq. (7.13).

mean values and their 68% confidence intervals in table 7.3 and fig. 7.7, where we also show
the comparison, in the contour plot, between the results obtained from Metropolis-Hastings
algorithm and from DELFI.

7.4 Discussion
In section 7.2, we use several models to constrain the shift parameter α, which shows an
excellent concordance between them, except for model-4B. However, this parameter has
only 1% of uncertainty (see table 7.2), which is low compared with analysis in almost the
same sky patch [210] and redshift [38] that predict a 4% of uncertainty. Several errors in the
data production can cause this difference because the models were taken from those works.
Then, we highlight the likest next

1. In the covariance matrix production, we only used 40 sky patches, but 45 bins to
construct the correlation function. This partition can induce several problems since
the number of jackknife cuts must be greater than the number of bins, as we will
see in chapter 10. Also, how many patches are necessary to estimate the covariance
better, depends on the scale. For example, in an ideal case, we could take one point
off to compute the covariance matrix, but because the correlation function depends on
hundreds of thousands of points, the different computations would be the same, and
then the covariance would be zero, at least in the scales of interest. Therefore, for each
scale, there are a number of partitions that maximize the covariance, but it is difficult
to determine precisely. In chapter 9, we use 200 jackknife resamplings and 20 bins for
the same survey, and in chapter 10, we delve more into this topic.

2. The error generated by the estimation of the precision matrix as the inverse of the
covariance matrix estimator. As we explained in section 7.2, this assumption could
induce a bias in the parameter to constrain. This also explains the tension between
our measurement and those in [210, 38]. The correct estimation needs the Hartlap and
tapering corrections (see chapters 9 and 10 for a better handle of this effect).

3. Both results from [210, 38], were obtained through a covariance matrix produced by
mock catalogs. This fact could induce a difference, mostly due to the cosmic variance
present because we replacement ensemble averages by volume ones, as we mentioned
in sections 4.1 and 6.6. In chapter 10, we compare the differences between jackknifes
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and log-normal realizations in the estimation of the α parameter.

4. Finally, in [210], they made a data reconstruction algorithm in which the positions of
the galaxies are displaced to correct the RSD due to their proper movements before
constructing the two-point correlation estimator. Also, this algorithm helps to increase
the power of constraining and bias determination, especially in data sets at low redshift.

Besides, since most of the results from different models are statistically consistent, makes
us think that effectively the discrepancies with [210, 38] are due to the issues in the data
production mentioned above, and not due to model differences.

The addition of the ΣNL parameter shifts a bit the α parameter (see the results from
model-3 versus models-1, 2). This is expected since the physical problem is preserved, even
with an underestimated covariance matrix. For the models-5, 6, 7, the k∗ parameter, which is
analogous to ΣNL, seems not completely constrained for models-5, 6, but we can distinguish
a peak on its distribution. Nonetheless, adding the nuisance parameters, the constrain of k∗
improves and it takes a value statistically consistent with ΣNL (see eq. (7.12)). On the other
hand, the addition of the mode-coupling parameter AMC does not improve the constraining
(see the results from model-6 versus model-5), because it is not constrained as we can see in
its probability distribution function that is still flat like the prior.

For models that consider the RSD (see the results from models-4, 4B, 4C), we can see at
first instance that by working in the same scales that the rest of the models, we can not
constrain the fσ8 parameter since the probability distribution function for model-4 is still
flat, like the prior. We obtain better results considering the scales of model-4B, but they also
shift the α parameter considerably. Since its constrain depends on the BAO peak, we can
ensure that the results with model-4B scales are completely biased. For those reasons, we
also add the model-4C, which fixes the α and ΣNL parameters. This model also considers a
few more small scales, and in this analysis, we obtain a well constrain of the fσ8 parameter.
However, there is a great dependence on the bσ8 parameter, as we can see in their contour plot.
The exclusion of the two aforementioned parameters also reduces the uncertainties, which
is most notorious for the nuisance parameters that seem extremely constrained compared to
those from models-4, 4B. Also, the results for fσ8 and bσ8 from model-4C are compared to
those in [127], which shares the same data from [210] but with a focused analysis in RSD.
We obtain consistent constraints to those results, but the uncertainties differ because of the
same reasons for the data production highlighted before.

For the empirical model, we obtained well-constrained results recovering the BAO peak
from the rm parameter (see table 7.1). Also, from fig. 7.1, we can observe a high correlation
between the γ and r0 parameters, which is due to the functional form of the model in
eq. (7.23).

In section 7.3, we take two models that are well constrained from section 7.2 to compare
this inference technique with the previous. Then, we can see from tables 7.1 and 7.3 that
the results between both inference methods agree because they are statistically consistent.
Their probability distribution functions for the parameters of model-0 are quite similar, as
we can observe in the contour plot from fig. 7.6. The log-loss (see fig. 7.5) converges for this
model, between the validation and training sets. This indicates that we are not falling into
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overfitting or underfitting. Therefore, we can claim that DELFI works well for this model,
given its results, even when we used an underestimated covariance matrix.

For the model-3 we also obtain statistically consistent results (see tables 7.2 and 7.3) and
probability distribution functions quite similar for most of the parameters as we can see from
fig. 7.7. However, the α parameter seems slightly shifted using this method, which requires
more research in the field since it could be due to the architecture of the neural network or its
hyper-parameters. Nonetheless, as for model-0, the log-loss from fig. 7.5 converges between
validation and training sets, which indicates that we are not into overfitting or underfitting,
but it is more noisy compare to the log-loss from model-0.

Finally, the principal hypothesis of section 7.3 is to determinate if DELFI is good enough
to constrain this kind of experiments, and given the results from both models, we can claim
that it is true, even when the existing problems in the determination of the covariance matrix
that we highlighted at the beginning of this section. Thus, we can add these likelihoods to
the DELFI list, which in cosmology includes Supernovae, Weak Lensing, and Lyman-α, as is
shown in [22].
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Figure 7.6: The contour plot for the model-0, which shows the comparison of the posterior
probability distribution function obtained from the Metropolis-Hastings versus DELFI. The
numerical results are presented in tables 7.1 and 7.3.
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Chapter 8

Comparing Dark Energy models with
Hubble versus Growth Rate data

This chapter presents a research work which corresponds to [213]. This work is a team effort
with aid from Bryan Sagredo and Dr. Domenico Sapone, both affiliated by that time to
the Cosmology and Theoretical Astrophysics group at the Facultad de Ciencias Físicas y
Matemáticas of the Universidad de Chile in Chile.

Abstract
In this work we perform an analysis on the recently proposed conjoined cosmic growth and
cosmic expansion diagram [155] to compare several dark energy models using the Figure
of Merit showed in [29], which consists in the inverse of the 1σ confidence region in the
fσ8(z)−H(z) plot. Our analysis also consists of comparing the models by performing different
statistical criteria: Bayes factor [249], the Bayesian Information Criteria [223] and the Akaike
Information Criterion [243]. We also developed a 3-dimensional Figure of Merit to account
simultaneously for the errors on the growth rate and the Hubble parameter. The main idea
is to consider several cosmological models and compare them with the different statistical
criteria in order to highlight the differences and the accuracies of each single criterion.

Keywords: cosmology, dark energy, model comparison.

8.1 Introduction
Recent observations [208, 197] pointed out that the Universe seems to be in a phase of
accelerated expansion. These evidences have led cosmologists to revise the theory of the
expansion of the Universe either by introducing a new component called dark energy [218]
or by modifying directly the theory of gravity [251].

Within the framework of Friedmann-Lemaître-Robertson-Walker (FLRW) cosmologies,
such accelerated expansion can be generated by adding up a simple cosmological constant Λ
to the total budget of the Universe. Even though the latter gives rise to severe coincidence and
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fine-tuning problems, observations still confirm such an explanation [37, 6, 2]. Over the years
a series of dark energy models have been considered in order to solve, or at least alleviate,
the theoretical problems related to dark energy. However, none of these explanations seem
to be convincing.

Alternative theories of gravity came naturally as a consequence of the incapability of
having a self-consistent model of dark energy. This class of models intends to modify General
Relativity (GR) and to explain the observed acceleration of the Universe as a pure weakening
of gravity at very large scales.

The important question here is whether the two scenarios can be distinguished. It is well
known that any Hubble expansion can be generated by choosing an appropriate equation of
state for the dark energy, see [49]. However, over the years there have been claims that it
is possible to distinguish alternative theories of gravity from dark energy models by using
growth data; the last assumption is not always true unless the expansion history is fixed, [144].
Nonetheless, recent works have proposed to study the cosmic growth versus cosmic expansion
history conjoined diagram, the fσ8 − H plot, to put constraints on the parameter space of
cosmological models, or to compare different models directly [155]. Model comparison using
this approach has already been investigated in [176, 29]. The advantage of the fσ8 − H
plot over other probes relies on the degeneracy break of the history curves when comparing
different models or the parameter space, since it contrasts a geometrical observable, given by
H(z), to a pure gravitational effect, given by fσ8(z).

Using this approach, dark energy models were compared using the fσ8 − H plot [29]
through the FoM defined as the inverse area of the 1σ confidence region in the conjoined
diagram. In this work, we follow a similar approach and we also compare the models using
different statistical tools: the standard Bayesian evidence [249], the Bayesian Information
Criteria [223] (BIC), the Akaike Information Criterion [14] (AIC) and the FoM. Furthermore,
we considered an extension to the FoM which we define 3-FoM, which considers both errors
on fσ8(z) and H(z).

Anticipating the results, we find that the FoM is a fairly good estimator of the errors,
however, its extension, the 3-FoM, captures simultaneously the growth of matter and the
expansion history making it more stable over different models. The criteria BIC and AICc

penalize substantially models with extra parameters.

The paper is structured as follows: in Section 8.2 we report the basic equations that
will be used in our work, whereas in Section 8.3 we list the cosmological models that will
be compared, and the link between H and fσ8 measurements. In Section 8.4 we show the
datasets used in the analysis and the statistical methodology is reported in Section 8.5. In
Section 8.6 we report the results of our analysis.

8.2 Basic equations

The evolution of a general fluid can be expressed in terms of its present energy density
parameter Ω0 and its equation of state parameter (EoS) w(a) = p(a)/ρ(a), where p and ρ are
the pressure and energy density of the fluid, respectively, and a is the scale factor, normalized
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to 1 today. The EoS is the key quantity that fully characterizes the fluid at the background
level.

Using a general formalism the Hubble parameter in a non-flat cosmology is given by

H2 = H2
0

[
Ωm0a

−3 + Ωk0a
−2 + Ωde0a

−3(1+ŵ)
]
, (8.1)

where H0 is the Hubble constant, Ωm0 , Ωk0 , Ωde0 are the present-day values of matter, curva-
ture and dark energy densities, respectively. Furthermore, the parameters satisfy the relation
Ωm0 + Ωk0 + Ωde0 = 1. The total matter density is:

Ωm(a) =

(
1 +

1− Ωm0

Ωm0

a−3ŵ

)−1

. (8.2)

The quantity ŵ in Eqs. (8.1) and (8.2) is the effective EoS parameter accounting for the time
dependence, given by

ŵ(a) =
1

ln a

a∫
1

w(x)

x
dx .

The angular diameter distance is defined as

dA(z) =
cH−1

0

(1 + z)
√
−Ωk0

sin

√−Ωk0

z∫
0

H0

H(y)
dy

 ,

which reduces to

dA(z) =
c

H0

1

1 + z

z∫
0

H0

H(y)
dy ,

if the curvature is set to zero.

By gravitational collapse, matter forms structures in the universe, which are called per-
turbations δρ(a, k), where k represents the scale in Fourier space. These perturbations grow
over time according to the characteristics of the fluid: EoS, pressure perturbation δp and
anisotropic stress σ.

The growth of perturbations for a general fluid is governed, assuming homogeneity and
isotropy, by the differential equations [160]

δ′ = 3 (1 + w)φ′ − V

H a2
− 3

a

(
δp

ρ
− wδ

)
, (8.3)

V ′ = − (1− 3w)
V

a
+

k2

H a2

δp

ρ
+ (1 + w)

k2

H a2
ψ

− (1 + w)
k2

H a2
σ , (8.4)

where the primes denote derivatives with respect to the scale factor a, δ = δρ(a, k)/ρ(a) is
the density contrast, V = i kjT

j
0 /ρ(a) is the scalar velocity perturbation. The quantities ψ
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and φ are the gravitational potentials in the Newtonian gauge. These potentials follow

k2φ = −4πGa2
∑
j

ρj

(
δj +

3aH

k2
Vj

)
, (8.5)

k2 (φ− ψ) = 12πGa2
∑
j

(ρj + pj)σj , (8.6)

where the sum runs over all the species in the Universe. We will then have sets of equations of
the form of Eqs. (8.3) and (8.4) depending on the number of species present in the Universe.
For non-relativistic particles, i.e. cold dark matter and baryons, we just need to set w =
δp = σ = 0. However, in this paper we consider general dark energy models as well. There is
no unique way to parametrize these quantities as they depend directly on the specific model
considered.

For simplicity, in this work, we consider only two components, and they are pressureless
dark matter and a dark energy fluid, because we are more interested on how the different
criteria reacts to a particular model. In the next section, we describe the different dark
energy models.

Since we want to test our models with observations, we need to obtain a measurable
quantity; the real observable is fσ8(a), defined as the product of the growth rate of matter
perturbations f(a) = d ln δm(a)/d ln a and the root mean square (RMS) of matter density
perturbations measured in a sphere of 8h−1Mpc, defined as σ8(a) = σ8,0δm(a)/δm(a = 1).
We then have:

fσ8(a) = σ8,0 a
δ′m(a)

δ(a = 1)
, (8.7)

where σ8,0 is the RMS measured today. This quantity is more reliable than f(a) alone due
its independancy of the bias b, which is the ratio of baryon perturbations to total matter
perturbations, i.e. δb = b δm.

8.3 Models
Here we list the models considered in the analysis. Throughout this paper, we assume that
all the dark models have zero anisotropic stress, σ = 0. Consequently, the two gravitational
potentials are equal φ = ψ.

ΛCDM

This corresponds to the simplest and most accepted cosmological model. It assumes a con-
stant EoS parameter exactly equal to −1. We consider two different cases in the ΛCDM
scenario.

ΛCDM: this model refers to flat ΛCDM (without spatial curvature) where we set the
curvature parameter Ωk0 = 0, hence the Hubble parameter in Eq. (8.1) reads

H2 = H2
0

[
Ωm0a

−3 + (1− Ωm0)
]
.
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Furthermore, the cosmological constant Λ has zero perturbations, hence the system of equa-
tions simplifies and the gravitational potentials only depend on pressureless matter. For
small scales, Eqs. (8.3) - (8.6) reduce to a single second-order differential equation for matter
density contrast to which an analytical solution1 can be found, see Appendix 8.7 for more
details.

Consequently, we will have one model with two variants: ΛCDM and ΛCDM-a, using the
numerical and analytic solution, respectively. However, for consistency reasons, we decided
to use the full set of differential equations Eqs. (8.3) - (8.6), leaving to the appendix the
results obtained by using the analytical solutions as a further test.

Finally, the parameters of both models are:

θΛCDM = (Ωm0 , H0, σ8,0) . (8.8)

ΛCDM-nf: this model corresponds to a non-flat (to which we use the label ‘-nf’) ΛCDM
where we allow for the curvature parameter to vary. Then, the Hubble parameter takes the
form:

H2 = H2
0

[
Ωm0a

−3 + (1− Ωm0 − Ωde0)a−2 + Ωde0

]
.

The cosmological constant still has zero perturbations, however the differential equation
for matter perturbations does not have an analytical solution, hence we solve numerically
Eqs. (8.3) - (8.6).

The parameters of the model are:

θΛCDM-nf = (Ωm0 , Ωde0 , H0, σ8,0) . (8.9)

wCDM

This model is an extension of the ΛCDM model in which a constant EoS w is set as a free
parameter. If the EoS parameter of dark energy is no longer constant and equal to −1, then
dark energy may have perturbations and its growth will be fully characterized by the values
of w and cs2. Clearly, if dark energy has perturbations, these will affect the growth of matter
perturbations through the gravitational potential Eqs. (8.5) - (8.6). We identify four different
cases.

wCDM: this model corresponds to flat wCDM where perturbations in the dark energy
sector have been switched off; the Hubble parameter reads:

H2 = H2
0

[
Ωm0a

−3 + (1− Ωm0)a−3(1+w)
]
. (8.10)

If we decide to ignore a priori the dark energy perturbations, then the growth of matter
density is still governed by a second order differential equation, and it is still possible to find
an analytical solution to the matter density contrast, see Appendix 8.7 for more details. As
a consequence we have the wCDM and wCDM-a solutions to this model. As for the ΛCDM

1We denote analytically-solved models by using the label ‘a’.
2We remind the reader that we assume the anisotropic stress of any dark energy model to be zero.
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case, we also consider the full numerical solutions from Eqs. (8.3) - (8.6) and leaving the
results from the analytical solution to the appendix.

Finally, the parameters of both models are

θwCDM = (Ωm0 , w, H0, σ8,0) . (8.11)

wCDM-nf: this model corresponds to a non-flat wCDM; the Hubble parameter reads

H2 = H2
0

[
Ωm0a

−3 + (1− Ωm0 − Ωde0)a−2 +

Ωde0a
−3(1+w)

]
. (8.12)

Here we set dark energy perturbations to zero. However, due to the complexity of the
Hubble parameter, analytical solutions for the matter density contrast do not exist and we
solve numerically the system of Eqs. (8.3) - (8.6).

We have the following free parameters for the model:

θwCDM-nf = (Ωm0 , Ωde0 , w, H0, σ8,0) . (8.13)

wCDM-p: this model is a flat wCDM for which we allow perturbations (this addition is
symbolized by ‘-p’) in the dark energy sector. The Hubble parameter is given by Eq. (8.10).
However, we now have two sets of equations (8.3) - (8.4), for pressureless matter and for
the dark energy fluid. Analytical solutions can also be found in some special limits, see
Appendix 8.7. However, as for the other cases, we also use the full numerical solutions from
the equation of perturbations.

As mentioned earlier, the growth of the perturbations of one species depends on the
characteristics of the fluid, which are given by w, δp and σ. For pure pressureless matter,
w = δp = σ = 0. For a dark energy fluid, we assume zero anisotropic stress σ = 0, and the
pressure perturbation to be given by [143]:

δp = c2
sρδ +

3aH(c2
s − c2

a)

k2
ρV , (8.14)

where c2
a ≡ ṗ/ρ̇ is the adiabatic sound speed of the fluid that can be expressed as

c2
a = w − ẇ

3H(1 + w)
= w − w′

3(1 + w)
, (8.15)

and for a constant EoS, the adiabatic sound speed becomes c2
a = w.

The free parameters of the models (wCDM-p and wCDM-p-a) are

θwCDM-p = (Ωm0 , w, c
2
s, H0, σ8,0) . (8.16)

wCDM-nf-p: this model corresponds to a non-flat wCDM for which we allow perturba-
tions in the dark energy sector; the Hubble parameter takes the form in Eq. (8.12) and
the perturbations will be solved numerically for both matter and dark energy. Thus, the
parameter set of the model is

θwCDM-nf-p = (Ωm0 , Ωde0 , w, c
2
s, H0, σ8,0) . (8.17)
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Chevallier-Polarski-Linder (CPL)

This class of models [53, 154] can be considered an extension to wCDM models in which the
equation of state depends on the scale factor. The simplest extension is a Taylor expansion
around the present time a = 1, giving

w(a) = w0 + wa(1− a) . (8.18)

Hence, giving two extra parameters: w0, which is the present time EoS parameter and wa
which represents the variation over time of w(a). We identify four different models using this
parametrization.

CPL: this corresponds to the simplest scenario where the Hubble parameter does not de-
pend on curvature and we set dark energy perturbations to zero. Then, the Hubble parameter
reads

H2 = H2
0

[
Ωm0a

−3 + (1− Ωm0)a−3(1+ŵ(a))
]
. (8.19)

There is no exact analytic expression for the matter density contrast when the EoS parameter
takes the form of Eq. (8.18) but only approximated analytical solutions, [51]. Here we solve
numerically Eqs. (8.3) - (8.6). This way, the parameters of are

θCPL = (Ωm0 , w0, wa, H0, σ8,0) . (8.20)

CPL-nf: in this model we allow the curvature parameter to vary. Then, Hubble parameter
becomes

H2 = H2
0

[
Ωm0a

−3 + (1− Ωm0 − Ωde0)a−2+

Ωde0a
−3(1+ŵ(a))

]
. (8.21)

We set dark energy perturbations to zero and solve numerically the Eqs. (8.3) - (8.6) for pure
pressureless matter only. The free parameters of the model are:

θCPL-nf = (Ωm0 , Ωde0 , w0, wa, H0, σ8,0) . (8.22)

CPL-p: the Hubble parameter is given by Eq. (8.19), the equation of perturbations will be
solved numerically by using Eqs. (8.3) - (8.6). The characteristics of the dark energy fluid
are given by Eq. (8.14), with the further assumption that the adiabatic sound speed c2

a = w;
the former is somehow required in order to stabilize the growth of dark energy perturbations
when it crosses the phantom regime [143]. Thus, the parameters of the model are

θCPL-p = (Ωm0 , w0, wa, c
2
s, H0, σ8,0) . (8.23)

CPL-nf-p: the Hubble parameter takes the form in Eq. (8.21). We solve numerically
Eqs. (8.3) - (8.6) for pressureless matter and dark energy. The characteristic of the dark
energy fluid are given by Eq. (8.14), with the further assumption of c2

a = w and w′ = 0 at
crossing.
The parameter set for the model is

θCPL-nf-p = (Ωm0 , Ωde0 , w0, wa, c
2
s, H0, σ8,0) . (8.24)
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8.4 Data
The Hubble parameter data for the analysis are the cosmic chronometers compilation used
in [163], which consists in 31 independent measurements of H(z), obtained from evolving
galaxies at different redshifts [177].

z H(z) σH(z) Ref. z H(z) σH(z) Ref.
0.07 69.0 19.6 [273] 0.4783 80.9 9.0 [177]
0.09 69.0 12.0 [229] 0.48 97.0 62.0 [239]
0.12 68.6 26.2 [273] 0.593 104.0 13.0 [174]
0.17 83.0 8.0 [229] 0.68 92.0 8.0 [174]
0.179 75.0 4.0 [174] 0.781 105.0 12.0 [174]
0.199 75.0 5.0 [174] 0.875 125.0 17.0 [174]
0.2 72.9 29.6 [273] 0.88 90.0 40.0 [239]
0.27 77.0 14.0 [229] 0.9 117.0 23.0 [229]
0.28 88.8 36.6 [273] 1.037 154.0 20.0 [174]
0.352 83.0 14.0 [174] 1.3 168.0 17.0 [229]
0.3802 83.0 13.5 [177] 1.363 160.0 33.6 [175]
0.4 95.0 17.0 [229] 1.43 177.0 18.0 [229]

0.4004 77.0 10.2 [177] 1.53 140.0 14.0 [229]
0.4247 87.1 11.2 [177] 1.75 202.0 40.0 [229]
0.4497 92.8 12.9 [177] 1.965 186.5 50.4 [175]
0.47 89.0 49.6 [206]

Table 8.1: The 31 cosmic chronometer data points used in this analysis along with their
related references. The H(z) and σH(z) data are in units of km s−1 Mpc−1.

The growth rate dataset is based on the compilation used in [214], which is an updated
version of the ‘Gold-2017’ dataset from [181]. The dataset consists of 22 independent mea-
surements of fσ8(z), obtained through baryon acoustic oscillations and weak lensing surveys.
Among these surveys, it is important to note that the three WiggleZ [42] and the four SDSS-
IV [274] measurements are correlated, and their covariance matrices are

CWiggleZ = 10−3

6.400 2.570 0.000
2.570 3.969 2.540
0.000 2.540 5.184

 , (8.25)

CSDSS-IV = 10−2


3.098 0.892 0.329 −0.021
0.892 0.980 0.436 0.076
0.329 0.436 0.490 0.350
−0.021 0.076 0.350 1.124

 . (8.26)

8.5 Methodology
To perform the analysis, both datasets are assumed to have Gaussian likelihood distributions,
this is the probability of the data given a set of parameters. The datasets are assumed to be
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independent, thus their conjoined likelihood is the product of each dataset’s likelihood. In
terms of the traditional chi-squared, defined by χ2 ≡ −2 logL, where L is the likelihood of
the current model, it is simply given by the sum of each dataset’s chi-squared, or

χ2 = χ2
H + χ2

fσ8
(8.27)

Where the subscripts ‘fσ8’ and ‘H’ indicate growth and expansion contributions, respectively.

z fσ8(z) σfσ8(z) Ωref
m0

Ref.
0.02 0.428 0.0465 0.3 [131]
0.02 0.398 0.065 0.3 [253],[130]
0.02 0.314 0.048 0.266 [70],[130]
0.10 0.370 0.130 0.3 [95]
0.15 0.490 0.145 0.31 [127]
0.17 0.510 0.060 0.3 [235]
0.18 0.360 0.090 0.27 [43]
0.38 0.440 0.060 0.27 [43]
0.25 0.3512 0.0583 0.25 [215]
0.37 0.4602 0.0378 0.25 [215]
0.32 0.384 0.095 0.274 [217]
0.59 0.488 0.060 0.307115 [56]
0.44 0.413 0.080 0.27 [42]
0.60 0.390 0.063 0.27 [42]
0.73 0.437 0.072 0.27 [42]
0.60 0.550 0.120 0.3 [198]
0.86 0.400 0.110 0.3 [198]
1.40 0.482 0.116 0.27 [184]
0.978 0.379 0.176 0.31 [274]
1.23 0.385 0.099 0.31 [274]
1.526 0.342 0.070 0.31 [274]
1.944 0.364 0.106 0.31 [274]

Table 8.2: Compilation of the cosmic growth fσ8(z) measurements used in this analysis
along with the reference matter density parameter Ωm0 (needed for the redshift correction)
and associated references.

Let us suppose that there are n measurements of H or fσ8, so we represent the observed
data in different redshifts as m = (m(z1), . . . ,m(zn)) and its theoretical prediction as µ(θ) =
(µ(z1), . . . , µ(zn)), which depend on the cosmological model and parameters. We define the
data vector as

xs = ms − µs , (8.28)

with the subscript ‘s’ denoting the data source: H or fσ8. However, in the case of growth mea-
surements, we need to take into account a redshift correction, which is featured in Ref. [181].
This correction consists in the following factor

fac(zi) =
H(zi)dA(zi)

Href,i(zi)d
ref,i
A (zi)

(8.29)
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where the superscript ‘ref, i’ indicates that the reference cosmology is taken on the corre-
sponding data point at redshift zi. With this procedure, we arrive at the corrected growth
theoretical prediction:

µic =
µifσ8

fac(zi)
. (8.30)

For all the datapoints, the reference model used is ΛCDM, and one can note that the product
H(z)dA(z) is independant ofH0 and σ8,0 for all models considered. We list the reference values
for Ωm0 of each datapoint in Table 8.2. Using the corrected prediction, the data vector for
fσ8 is

xfσ8 = mfσ8 − µc . (8.31)

Therefore, the chi-squared are constructed through

χ2
s = xTs C−1

s xs , (8.32)

where C−1
s the inverse of the covariance matrix of the dataset. In the case of cosmic expansion,

the covariance matrix is diagonal and equal to each datapoint’s variance. The total cosmic
growth covariance matrix is given by a diagonal matrix with the measurements’ variance,
with the insertion of the WiggleZ matrix and SDSS-IV matrices, given by Eqs. (8.25) and
(8.26).

Parameter Flat prior limits
Ωm0 [0, 1]
Ωde0 [0, 1.7]
w0 [−3.5,−1/3]
wa [−2.5,−1/3− w0]
c2
s [0, 1]

H0 [Mpc/km/s] [35, 110]
σ8,0 [0.3, 1.5]

Table 8.3: Ranges of the flat priors used for each parameter. Note that wa depends on the
value of w0 to define its upper bound. This is to ensure that w(a) < −1/3 in order to have
acceleration on the expansion of the Universe.

We now proceed to present the methods used to compare different dark energy models.
We use five methods in total.

Evidence. The first method is the standard Bayesian model comparison via evidence com-
putation log(E) [249], where the evidence is defined via

E(m|M) =

∫
L(m|θM ,M) π(θM |M) dθM . (8.33)

The former quantity determines the probability of a given modelM to be true, given the data
m. As already mentioned, the likelihood function L(m|θM ,M) is Gaussian on the data m,
and the prior probability for the parameters, π(θM |M). If we assume the prior probabilities
π(M) to be the same for each model, then the Evidence completely defines the ranking of
the cosmological models.
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All throughout the analysis, and specifically for the evidence computation, we adopted
standard flat priors for all the parameters, with boundaries reported in Table 8.3. Despite
that, the only special treatment was made on wa, for which we used an upper bound that
depends on the value of w0 in order to guarantee a phase of accelerated expansion [53].
Furthermore, we use the same priors for all models that have the free parameter, as we are
more concerned about the statistical methods used.

The computation is performed using the package Nestle [27], a Python implementation of
the MultiNest algorithm [227, 98]. This algorithm is an efficient and robust way of computing
the evidence integral, a numeric task that becomes too large to be grid-integrated. MultiNest
also produces a Markov chain that can be reused as the MCMC-sample for the next method
below.

Figure of Merit. With this method, the models are ranked by their FoM’s defined in [29],
which corresponds to the inverse of the 1σ confidence region area in the conjoined fσ8 −H
plot given a redshift range. The likelihood is used to MCMC-sample in the parameter space
of each model, and this parameter chain is used to get the 1σ range of fσ8(zi) for i ∈ 1, ..., n.
If there are sufficient zi points, a spline can be constructed to connect the points in the
fσ8 − H plane, keeping H(zi) fixed to its mean value. This method is viable because fσ8

is much less constrained than H in all the models tested, and H(z) increases monotonically
with z for each model. The redshift range is, in principle, defined between z = 0 to zmax = 2,
to include the whole redshift data range. We will also show how the FoM varies when zmax
changes.

3-FoM. Here, we propose an extension of the previous method, in which we now consider
the 1σ range of H(zi) (as opposed as in the last method where it was omitted). For a zi
point we obtain the values plus the associated confidence levels of the Hubble parameter and
the growth rate, i.e.

H(zi)
+σH(zi)+

−σH(zi)−
and fσ8(zi)

+σfσ8(zi)+

−σfσ8(zi)−
.

With these values we compute the ellipsoidal area on each redshift point zi, as an approxi-
mation for the 2-dimensional confidence region in the fσ8(zi), H(zi) space.

Ae(zi) =
π

4

(
σH(zi)+ + σH(zi)−

)(
σfσ8(zi)+ + σfσ8(zi)−

)
.

The 3-FoM is defined as the inverse of the ellipsoidal volume quantity in the fσ8, H, σH space,
being

Ve =

∫
Ae(z)dH(z)

= −
∫ z=2

z=0

Ae(z)
H ′(z)

(1 + z)2
dz

' −
∑
i

Ae(zi)
H ′(zi)

(1 + zi)2
∆z . (8.34)

If there are many equispaced zi points, the previous quantity corresponds to the volume
enclosed in Fig. 8.1.
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Figure 8.1: 3-FoM plot.

BIC. The fourth method is the Bayesian Information Criterion [223, 152] which is given
by:

BIC = 2 ln(Ndata)npars − 2 lnLmax . (8.35)

This method still considers the maximum likelihood Lmax, however it tends to penalize models
with several parameters through the direct dependence of npars . Its formulation aims at
approximating the evidence (specifically, −2 log(E)) of the model to be tested, hence the
favored model is the one with the lowest BIC value.

AICc. The last statistical method is the corrected Akaike Information Criterion (AICc)
[243]. This method is similar to the BIC method because it still penalizes models with
several parameters, however the penalisation is weighted with the number of data. Contrary
to the BIC test, the AICc tends to favor one model if the data set is large enough. The
criterion is given by:

AICc = 2npars − 2 lnLmax +
npars(npars + 1)

Ndata − npars − 1
. (8.36)

This equation, derived in [243], accounts for a correction term when the number of data is
small, unlike the original Akaike Information Criterion [14]. As before, the test should also
be similar to the value of −2 log(E), which means that the lower AICc is, the more favored
is the model.
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8.6 Results and Discussion

In this section, we discuss the results found for each model and we compare the values of
the criteria used. As mentioned previously the goal of the paper is to accurately test the
common criteria found in literature and to highlight their differences.

In general, we are not interested in the specific value of the criterion found for a particular
model but rather their difference between two models. This difference will tell us which is
the model that is able to better reproduce the data.

For the first criterion, i.e. the evidence E, we use Jeffrey’s scale which is defined as the
difference of the logarithmic evidences for two particular models, we report it in Tab. 8.6 for
completeness.

The other two criteria, i.e. BIC and AICc, are directly connected to the likelihood of the
models and hence they can be used as model selection tests. Since they come from a Taylor
expansion around the maximum likelihood estimator of the likelihood function, they can be
connected to Jeffrey’s scale, however, this interpretation must be taken with care, see [179] for
a detailed discussion. Generally, we can still consider the difference |∆BIC| = |BIC2 − BIC1|,
where the index 2 refers to the model with the higher value of BIC and the index 1 to the
one with the lower, as a good model selection test. Specifically, if |∆BIC| ≤ 2, then there is
no evidence in support of a model, if 2 < |∆BIC| ≤ 6, then there is a positive evidence in
favor of the model with the smaller value, whereas if |∆BIC| > 6, the evidence is considered
to be strong. The same discussion applies to the AICc criterion, where in this case we have:
if the difference is less than 2, then both models are able to reproduce the data with the
same accuracy, if |∆AIC| is between 2 and 4, then there is a positive evidence for the model
with the lower AICc, instead if |∆AIC| > 10, then the model with the larger AICc is strongly
disfavored, see [204].

The last two criteria considered in this work are the FoM, defined as the inverse of the
enclosed area at 1σ level for fσ8(z), and the 3-FoM defined as the inverse of the enclosed
volume at 1σ level in both fσ8(z) and H(z). It is clear the FoM and its extension (3-FoM)
are not criteria able to favor/disfavor a model, but rather they give an estimation on the
sensitivity of the parameters according to the data used. In practice, a larger FoM and/or
3-FoM means that the model is better constrained by the data.

Fig. 8.2a shows the reconstruction of the H(z)−fσ8(z) assuming flat and non-flat ΛCDM
as the cosmological model. The shaded areas are obtained directly from the 1σ errors of
the parameters given by the MCMC samples. The best fit of the parameters are reported
in Tab. 8.7. For this particular model the addition of an extra parameter, Ωde0 , alters the
results and the two shaded areas differ, specially at high redshift where the lower limit of
the errors are larger for not flat ΛCDM: as a consequence the FoM and 3-FoM decrease of
about 35% and 125%, respectively. The BIC and AICc criteria used in this analysis increase
of about 13% and 5% when the curvature parameter is considered, see Tab. 8.4.

As for the model comparison, the evidence gives inconclusive results, the AICc criterion
favors positively the flat ΛCDM over the non-flat ΛCDM model, the BIC criterion instead
shows a strong evidence in favor of ΛCDM.
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(c) wCDM-p with wCDM-nf-p.
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(d) CPL with CPL-nf.
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Figure 8.2: The conjoined plots of the cosmic growth fσ8(z) versus the cosmic expansion
H(z) for differents models described in the text. Also the 1σ error regions (shaded areas)
and the real binned data (gray points) are shown.
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Model log(E) FoM 3-FoM BIC AICc Hmax

ΛCDM -21.87 0.192 0.027 51.35 34.02 201.71
ΛCDM-nf -22.09 0.145 0.012 58.84 35.91 210.06
wCDM -23.50 0.124 0.013 59.31 36.39 204.89
wCDM-p -23.01 0.124 0.014 67.21 38.78 204.47
wCDM-nf -23.33 0.125 0.010 66.57 38.14 207.54
wCDM-nf-p -23.29 0.122 0.010 74.80 40.99 207.36
CPL -24.16 0.129 0.014 67.18 38.75 208.97
CPL-p -24.14 0.127 0.014 74.87 41.05 208.69
CPL-nf -24.53 0.119 0.010 74.51 40.69 204.65
CPL-nf-p -24.53 0.120 0.010 82.62 43.52 204.33

Table 8.4: Results of the different methods for each model. We also show Hmax = H(z = 2)
to compare the extension of the integration in the H-dimension for the FoM and 3-FoM
methods.

Model log(E) FoM 3-FoM BIC AICc Hmax

ΛCDM -8.21 0.192 0.026 23.88 6.55 202.76
ΛCDM-nf -8.61 0.151 0.015 31.84 8.91 204.05
wCDM -9.43 0.138 0.016 31.81 8.88 204.67
wCDM-p -9.61 0.140 0.017 39.80 11.38 204.48
wCDM-nf -9.76 0.130 0.013 40.06 11.64 201.14
wCDM-nf-p -9.91 0.127 0.012 47.80 13.99 200.95
CPL -10.63 0.134 0.015 39.85 11.42 208.74
CPL-p -10.67 0.129 0.015 47.83 14.02 208.57
CPL-nf -10.69 0.131 0.015 48.05 14.23 199.57
CPL-nf-p -10.85 0.134 0.014 55.90 16.80 199.75

Table 8.5: Results of the different methods for each model using the Mock Catalogue. We
also show Hmax = H(z = 2) to compare the extension of the integration in the H-dimension
for the FoM and 3-FoM methods.

|∆ log(E)| Probability Evidence
0 ≤ |∆ log(E)| < 1.0 0 ≤ P1 < 0.75 Inconclusive

1.0 ≤ |∆ log(E)| < 2.5 0.75 ≤ P1 < 0.923 Weak
2.5 ≤ |∆ log(E)| < 5.0 0.923 ≤ P1 < 0.993 Moderate

5.0 ≤ |∆ log(E)| 0.993 ≤ P1 Strong

Table 8.6: Jeffrey’s Scale as in Ref. [250], which compares the logarithmic Evidence difference
between the two models. The different levels represent different degrees of belief in that one
is the true theory.
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In Fig. 8.2b are shown the reconstruction of the H(z)− fσ8(z) assuming flat and non-flat
wCDM. These models have one parameter more with respect to the corresponding ΛCDM
models discussed above. The addition of w as a free parameter increases the confidence
regions substantially, as it can be seen from the figures and also reported in Tab. 8.4, where
the FoM decreases compared to previous cases. Here the variation is due to the parameter
itself rather than the addition of an extra parameter; in fact, if we consider the non-flat
ΛCDM model, which has the same number of parameters as wCDM model, the FoM reduces
from 0.145 to 0.124 which corresponds to almost 15%. However, the 3-FoM manifests an
opposite behavior, it increases of about 8%. The reason is that fσ8(z) is sensitive to the
variation of the parameters almost at any redshift, whereas the Hubble parameter is more
sensitive at high redshifts (fixing one value of H0, the variation on H(z) can only appear
when the z is increased). For the non-flat ΛCDM model the area enclosed by fσ8(z) is
smaller than the era enclosed for the wCDM model, hence giving a lager FoM. However, the
maximum value of the Hubble parameter is larger for non-flat ΛCDM model, 210.06 against
204.89 for the wCDM model. This effect is taken into account in the 3-FoM, where the errors
on H(z) are considered. The two effects are counterbalanced, giving almost the same value
in the 3-FoM.

The evidence is weakly in support of the non-flat ΛCDM model over wCDM and the same
is found for the BIC and AICc criteria. Adding curvature to the wCDM model makes the
FoM increase of about 1% meaning that the 1σ errors are almost the same, however, their
best-fits differ. The 3-FoM decreases for the non-flat model showing that their errors are less
constrained. The BIC and AICc supports the flat model but the evidence is inconclusive.

In Fig. 8.2c we show the reconstruction of the H(z) − fσ8(z) assuming flat and non-flat
wCDM with the further addition of perturbations in the dark energy sector parameterized
with c2

s as an extra free parameter. If we compare the latest results with the former case we
realize that the FoM does not change from wCDM to wCDM-p, whereas it decreases of about
2.4% from wCDM-nf to wCDM-nf-p . These negligible variations are repeated for the 3-FoM
that does not change from wCDM-nf to wCDM-nf-p and it increases of about 7.1% from flat
wCDM to wCDM-p. As expected, dark energy perturbations are weakly constrained with the
data available (dark energy perturbations affect only the growth of matter). This is shown
in Tab. 8.7 where the best fits of the models with and without dark energy perturbations are
basically the same. This behavior is shown in all the criteria used in this work, except for the
BIC criterion which indeed favors the model without dark energy perturbations. However,
this is a pure mathematical effect as the BIC criterion always penalizes the model with extra
parameters.

In Fig. 8.2d are shown the reconstructions of the H − fσ8(z) assuming flat and non-
flat CPL. If we look at Tab. 8.4, we realized that the FoM constrains better CPL over
wCDM which might sound peculiar because one would naively expect that a model with
more parameters has larger 1σ errors. Here, the difference in the FoM comes from the
asymmetric values of the errors on wa; this asymmetry is due to the choice of the prior for
wa, for which we chose to bind it to w0 in order to guarantee an accelerated expansion. This
asymmetry led to a smaller area in the upper part, reducing the enclosed 1σ area of fσ8(z).
The 3-FoM is more stable and this is again due to the value of the Hubble parameter at high
redshifts: for the wCDM model H(z = 2) = 204.89, whereas for CPL model is 208.97. This
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2% difference is accounted in the final 3-FoM which decreases with respect to its companion.
The evidence gives inconclusive results, manifesting the negligible effects of wa on the two
observables; the same conclusion is obtained with the AICc criterion. However, the BIC
criterion strongly penalizes CPL just because of the extra parameter in the model.

The CPL, wCDM-nf, and wCDM-nf models have the same number of parameters, thus
BIC and AICc criteria change less than 1% between them, showing again that they depend
strongly on the number of parameters. The FoM and 3-FoM show that CPL is better con-
strained but, as mentioned, this is due to the priors on wa used. The evidence weakly favors
the wCDM-p model over CPL but it is inconclusive with respect of wCDM-nf.

The non-flat CPL have the same number of parameters as wCDM-nf-p, but the FoM
shows that CPL is better constrained by the data whereas the 3-FoM does not change. The
BIC and AICc change less than 1% and the evidence weakly favors wCDM-nf-p model.

In Fig. 8.2e we show the reconstruction of the H−fσ8(z) assuming flat and non-flat CPL-
p models. The behavior is similar to the previous case (CPL versus CPL-nf). By adding the
curvature parameter the evidence is inconclusive and the other indicators favor the flat model
because it has one parameter less. When we take into account dark energy perturbations
into the CPL models, we obtain a similar behavior as seen for the wCDM models. Again,
with the available data we are not able to constrain c2

s, hence all the criteria are insensitive
to the variation of the sound speed. The only exceptions are BIC and AICc criteria, which
penalize the addition of the sound speed into the analysis.

For completeness we also performed our analysis using the analytical solutions for the
growth rate of matter, the models are ΛCDM, wCDM and wCDM with dark energy pertur-
bations. The results are reported in the Appendix 8.7 and the results are shown in Tab. 8.9,
whereas the best fit of these three models can be found in Tab. 8.10. All the three analytical
models give results in excellent agreement with the full numerical analysis, demonstrating
that the analytical solutions found in the literature are consistent and they can be safely
used.
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Figure 8.3: These figures show the percentage difference of FoM (upper panel) or 3-FoM
(lower panel) between a model and ΛCDM.We only present the models without perturbations
in the dark sector. Here, ∆FoM = FoMΛCDM − FoMmodel and likewise for the 3-FoM.
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Model Ωm0 Ωde0 w0 wa c2
s H0 σ8

ΛCDM 0.286+0.032
−0.038 1−Ωm0 - - - 69.7± 2.3 0.779± 0.039

ΛCDM-nf 0.37± 0.16 0.83+0.29
−0.24 - - - 70.4± 3.1 0.762+0.044

−0.084

wCDM 0.280+0.045
−0.039 1−Ωm0 −1.11+0.38

−0.30 - - 70.6+4.2
−4.7 0.782+0.045

−0.11

wCDM-p 0.278+0.044
−0.037 1−Ωm0 −1.09+0.38

−0.30 - 0.50± 0.29 70.5± 4.4 0.788+0.045
−0.11

wCDM-nf 0.34+0.18
−0.22 0.86+0.34

−0.41 −1.08+0.49
−0.18 - - 69.7± 4.2 0.790+0.045

−0.11

wCDM-nf-p 0.34+0.18
−0.22 0.85+0.34

−0.42 −1.07+0.50
−0.16 - 0.51± 0.29 69.6+3.7

−4.7 0.795+0.048
−0.11

CPL 0.294+0.047
−0.041 1−Ωm0 −1.20± 0.34 −0.50+0.99

−0.46 - 71.9± 4.5 0.747+0.026
−0.099

CPL-p 0.293+0.046
−0.041 1−Ωm0 −1.17± 0.33 −0.50+1.0

−0.49 0.50± 0.29 71.7± 4.4 0.751+0.030
−0.10

CPL-nf 0.27+0.12
−0.24 0.72+0.21

−0.45 −1.27+0.63
−0.27 −0.42+1.0

−0.47 - 70.5+4.0
−4.6 0.778+0.048

−0.11

CPL-nf-p 0.27+0.11
−0.26 0.72+0.23

−0.45 −1.28+0.65
−0.27 −0.38+0.98

−0.45 0.50± 0.29 70.4+3.9
−4.5 0.778+0.054

−0.10

Table 8.7: Parameter constraints derived from Nested Sampling to each (non-analytical)
model described in the text.

8.7 Conclusions

In our work we implemented the conjoined H(z)− fσ8(z) method in order to test an entire
family of ten dark energy models; we started with the simplest model, ΛCDM which is
described by three parameters only, and we systematically increased the level of complexity of
the model by adding extra parameters, being the non-flat CPL with dark energy perturbation
the most complex model (with seven parameters).

For each model, we first found the best fit using MCMC analysis by combining the most
recent cosmic chronometer and growth data available. Subsequently, we compared the dark
energy models with five different statistical criteria, aiming at highlighting the potentiality
and the weakness of each criterion.

As expected, we found that the evidence is the most accurate statistical test to compare
different models as it takes into account the information of the entire likelihood of the pa-
rameters and it does not always penalize a model with extra parameters. The 3-FoM better
characterizes the sensitivity of the parameters according to the data used. This criterion
takes into account simultaneously the errors from both fσ8(z) and H(z); in particular, we
showed that the errors of the Hubble parameter increase with redshift and this has an im-
portant effect on the constraining power of the test. The FoM instead is limited only to
fσ8(z), hence neglecting the information from H(z), which might be crucial if the analysis is
extended at high redshift. As a complementary test, we performed the same analysis in the
same redshift range as in [29] and we found consistent results.

For the last two criteria, BIC and AICc, we showed that they always penalize the addition
of extra parameters; in fact, if we consider the two extreme models, i.e. ΛCDMwith only three
parameters and non-flat CPL with dark energy perturbations, which has seven parameters,
we find that ∆BIC ∼ 40 manifesting a very strong evidence in favor of the ΛCDM model.
Similarly, but less decisive is ∆AICc for which we find a value of ∼ 10, which still favors
strongly ΛCDM but more moderately than BIC.

To demonstrate the power of the 3-FoM, we compute the FoM and 3-FoM at different
redshifts starting from z = 0 up to the zmax. These results are shown in Fig. 8.3 where
we plotted the relative difference of the FoM (top panel) and the 3-FoM (lower panel) for
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each model with respect to ΛCDM. It is interesting to notice that at low redshifts the FoM
for wCDM, wCDM-nf, CPL, and CPL-nf is larger than ΛCDM, meaning that the former is
better constrained than the latter. This effect is not manifested in the 3-FoM which is always
larger for the ΛCDM model.

Redshift bin H(z) [km s−1 Mpc−1] fσ8(z)
0 < z ≤ 0.4 76.8 ± 5.8 0.410 ± 0.025
0.4 < z ≤ 0.8 92.0 ± 8.6 0.456 ± 0.037
0.8 < z ≤ 0.12 121.5 ± 13.3 0.390 ± 0.104
0.12 < z ≤ 0.16 161.2 ± 11.0 0.404 ± 0.056
1.16 < z ≤ 1.2 194.2 ± 32.2 0.364 ± 0.106

Table 8.8: Binned measurements of H(z) and fσ8(z) with equispaced redshifts points and
its uncertainties. These are the gray points shown in Fig. 8.2.
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Appendix

Comparison with analytical solutions

The second order differential equation for the matter density contrast at small scales, without
dark energy perturbations is given by, [51]

a2δ′′m + (3− ε(a)) aδ′m −
3

2
Ωm(a)δm(a) = 0 ,

with ε(a) = −d logH(a)/d log a. As we are describing late time solutions we will always take
the growing mode solution given by [51]

δ(a) = a2F1

(
w − 1

2w
, − 1

3w
, 1− 5

6w
, 1− Ω−1

m (a)

)
,

where we omitted the integration constant because it will cancel out when we evaluate f(a).
The result to ΛCDM is given by setting w = −1.

There exist analytical solution for the matter density contrast when dark energy pertur-
bations are included, see [180] for mode details. The joint solution for the density contrast
is given by

δ(a) = a2F1

(
1

4
− 5

12w
+B,

1

4
− 5

12w
−B,

1 − 5

6w
, 1− Ω−1

m (a)

)
,
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where B is used as Bjoint in [180], which corresponds to:

B =
1

12w

√
(1− 3w)2 + 24

1 + w

1− 3w + 2
3

k2c2s
H2

0Ωm0

. (8.37)

Model log(E) FoM 3FoM BIC AICc Hmax

ΛCDM-a -22.07 0.192 0.027 51.34 34.01 202.05
wCDM-a -23.28 0.125 0.014 59.32 36.39 204.80
wCDM-p-a -23.23 0.126 0.014 67.22 38.79 204.66

Table 8.9: Results of the different methods for each analytic model. These are almost equal
to their numerical versions.

ΛCDM-a wCDM-a wCDM-p-a
Ωm0 0.286+0.033

−0.038 0.281+0.044
−0.039 0.281± 0.044

w0 - −1.10+0.36
−0.31 −1.10+0.36

−0.30

c2
s - - 0.50± 0.29
H0 69.8± 2.4 70.4± 4.4 70.5+4.1

−4.7

σ8 0.780± 0.040 0.784+0.042
−0.11 0.784+0.044

−0.11

Table 8.10: Parameter constraints derived from Nested Sampling to each analytical model
described in the text.
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Chapter 9

Cosmological constraints from galaxy
multi-tracers in the nearby Universe

This chapter presents a research work which corresponds to [92]. This work is a team effort
with aid from Dr. Ginevra Favole affiliated by that time to the Institute of Cosmology &
Gravitation at the University of Portsmouth in UK, and Dr. Domenico Sapone affiliated
to the Cosmology and Theoretical Astrophysics group at the Facultad de Ciencias Fśicas y
Matemáticas of the Universidad de Chile in Chile.

Abstract

The Baryon Acoustic Oscillation (BAO) scale in the clustering of galaxies is a powerful
standard ruler to measure cosmological distances and determine the geometry of the Universe.
Past surveys have detected the BAO feature in the clustering of different galaxy samples, most
of them composed of redder, quiescent galaxies and bluer, star-forming ones out to redshift
z ∼ 1. Besides these targets, new upcoming surveys will observe high-redshift galaxies with
bright nebular emission lines out to z ∼ 2, quasars and Lyman-α quasars at z > 2. All these
different galaxy targets will be used as multi-tracers of the same underlying dark matter
field. By combining them over wide cosmological volumes, we will be able to beat cosmic
variance and measure the growth of structure with unprecedented accuracy. In this work,
we measure the BAO scale in the two-point auto- and cross-correlation functions of three
independent populations of multi-tracers extracted from the SDSS DR7 Main galaxy sample
at redshift 0.02 < z < 0.22. Combining their covariances, we find accurate constraints on
the shift parameter α = 1.00± 0.04 and DV(z = 0.1)/rs = 2.92± 0.12.

9.1 Introduction

During the last decades, observations have led to the general acceptance that the Universe is
in a phase of accelerated expansion. In a homogeneous and isotropic Universe, the simplest
way to account for such expansion is to introduce a constant term in the Einstein equations,
dubbed as cosmological constant (Λ). Based on recent observations [10, 86, 41] and on the
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simplicity of the model, the cosmological constant is still the most accepted dark energy
candidate responsible for the acceleration of the Universe. Despite of its simplicity, such
a scenario has raised several theoretical issues, which have led cosmologists to invoke more
sophisticated dark energy models without succeeding on the task, see [218]. An alternative
approach suggests that we would need to modify the laws of gravity and make it weaker at
larger scales to mimic, phenomenologically, the observed expansion [144, 251].

The fundamental observables that trace the dynamics of the Universe are the Hubble
parameter H(z) and the angular diameter distance DA(z), which are directly connected to
the properties of matter and quantify the overall expansion of the Universe. Observational
exploration is necessary to provide an indication about the dynamics of the Universe. One
way of understanding this is to measure distances at different epochs. Modern cosmology has
been revolutionised when the definition of standard ruler [226] was introduced: a distance
scale in the Universe whose size and evolution with redshift are known. An ideal candidate
is the Baryon Acoustic Oscillation scale (BAO; [86]) observed at the last scattering surface
in the Cosmic Microwave Background (CMB) radiation. This feature represents the width
of the primordial density fluctuations that propagate as acoustic waves in the early baryon-
photon fluid. Such a distance can be decomposed into a radial, H(z), and a transverse,
DA(z), direction, which allow us to measure the expansion history of the Universe [109]. If
the standard cosmological model, i.e. the structures that we see today, have been generated
by gravitational collapse of the primordial seeds in an expanding, homogeneous and isotropic
Universe, then we should see an excess of baryonic matter in the distribution of galaxies
at the same comoving scale. This excess of baryonic matter is visible as a prominent peak
around 110h−1Mpc in the galaxy two-point correlation function. The first detection of the
BAO peak happened in SDSS [86] and was then confirmed by 2dFGRS [57], BOSS [72] and
WiggleZ Dark Energy Survey [41], VIPERS [75] and eBOSS [73].

New upcoming surveys, such as the Dark Energy Spectroscopic Instrument (DESI) [9, 8],
Euclid [149, 24], Subaru Prime Focus Spectrograph (PFS) [242, 232], the Large Synoptic
Survey Telescope (LSST) [4], or the Wide Field Infrared Survey Telescope (WFIRST) [109,
236], will observe tens of hundreds of millions of galaxies positions and spectra covering
enormous cosmological volumes and extend the observations at very high redshifts (z ∼ 2−3).
These observations will map the late time dynamics of the Universe with unprecedented
precision (few percents on the final cosmological parameters [44]). It is therefore imperative
to gain as much information as possible from these data sets.

One statistical limitation of measuring the cosmological parameters is due to the cosmic
variance effects in the survey volume. Recently, it was shown [5, 173] that by cross-correlating
different dark matter tracers over wide cosmological volumes it is possible to beat cosmic
variance, dramatically reducing the uncertainties on the observables. In fact, while the
effective volume still remains a limitation, the relative information between different species
is not. In this Letter, we show that using a multi-tracer approach we can lower the errors on
the scale distortion parameter α. In particular, we use luminous red galaxies and emission
line galaxies as tracers to map the dynamics of the Universe at z ∼ 0.1. Throughout this
work, We adopt a Planck cosmology [6] with Ωm = 0.3071, ΩΛ = 0.6929, h = 0.6777, n = 0.96
and σ8 = 0.8228.
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9.2 Data
We analyse three independent galaxy populations selected from the SDSS DR7 Main galaxy
sample [241], each one composed of a different tracer, and all of them covering the redshift
range 0.02 < z < 0.22. Specifically, these samples are: two selections of emission line galaxies
(ELGs), one of [O ii] [91] and another one of Hα emitters [89], plus a selection of luminous
red galaxies (LRGs) [85]. These are the only galaxy multi-tracers currently available in
the nearby Universe. The SDSS Main parent sample, which is brighter than r = 17.77,
and covers and effective area of 7300 deg2 [114], was extracted from the NYU-Value Added
Galaxy Catalogue1 [45] and it was spectroscopically matched (i.e. matching the redshifts) to
the MPA-JHU2 DR7 release of spectral measurements to assign emission line properties.

We consider only ELGs with well measured spectra, i.e. those with the flag ZWARNING = 0,
and with good signal-to-noise, i.e. S/N > 5. Both [O ii] and Hα ELG samples have specific
star formation rate of

log
(
sSFR/M�yr−1

)
> −11 ,

and line equivalent width of
EW > 10 Å ,

to guarantee that we are selecting only very star-forming galaxies. In addition, they are both
limited in flux at 2×10−16erg cm−2 s−1 to match the Euclid nominal expected depth and flux
limit [166] at higher redshift. The LRG sample includes only galaxies with

log
(
sSFR/M�yr−1

)
< −11 ,

which are all quiescent.

The observed (i.e. attenuated by dust) [O ii] and Hα ELG luminosities are computed from
the corresponding flux densities F as

L [erg s−1] = 4πD2
L10−0.4(rp−rfib)F ,

where DL is the luminosity distance as a function of cosmology and the exponent is the SDSS
fibre aperture correction written in terms of the r-band petrosian and fibre magnitudes. For
further details on the luminosity calculations, we refer the reader to [91, 89].

Fig. 9.1 shows the galaxy number density of the SDSS Hα, [O ii] and LRG samples as
a function of redshift. Compared to the SDSS Main sample in [210], our galaxy selections
cover a larger area (we consider both North and South Galactic Caps) and span a slightly
different redshift range. Therefore, it is not surprising that our galaxy number densities
differ from [210]. In particular, our n(z) values are large enough to ensure that the SDSS
Hα, [O ii] and LRG samples are limited by cosmic variance (i.e., n(z)P (k) > 1) at z < 0.22
for k < 0.095, 0.093, 0.071hMpc−1, respectively.

9.3 Measurements
In Large Scale Structure (LSS) analysis, galaxies can be thought as point-like objects in
space-time that move along with the expansion of the Universe, forming bounded structures

1http://cosmo.nyu.edu/blanton/vagc/
2http://www.mppg.de/SDSS/DR7/
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Figure 9.1: Galaxy number density, as a function of redshift, of the SDSS Hα, [O ii] and
LRG samples at 0.02 < z < 0.22.

due to their gravitational interaction. By analysing their positions, we can gain information
on the underlying theory of gravity. One method consists in quantifying how many objects
are present in a given cosmological volume. This method relies on the two-point correla-
tion function (2PCF), which is the excess probability over randoms of finding two galaxies
separated by a distance s in redshift-space.

We measure the two-point auto- and cross-correlation functions of the three galaxy tracers
defined in Sec. 9.2 using the Landy and Szalay estimator:

ξµν(s) =
DµDν(s)−DµRν(s)−DνRµ(s)

RµRν(s)
+ 1 ,

where s =
√
π2 + r2

p represents the redshift-space distance as a function of the parallel
(π) and perpendicular (rp) components to the line of sight, while µ and ν are the tracers.
The DD, DR and RR terms are the normalised and weighted data-data, data-random and
random-random pair counts formed from the observed galaxies and the synthetic randoms.
We use the equal surface density randoms from the NYU-VAGC. The weighting scheme
adopted for the pair counts is w = wfcwangwFKP for data and w = wFKP for randoms. The
wfc term represents the fibre collision weight (in SDSS fibres cannot be placed closer than
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55"). The angular weight, wang = 1/fgot, accounts for the angular sector completeness, and
the FKP weight [96], wFKP = 1/(1 + n̄(z)P0), corrects for any fluctuation in the number
density of tracers. Here, n̄(z) is the expected number density of a galaxy at redshift z and
we set P0 = 16000h−3Mpc3, which is close to the amplitude of the SDSS power spectrum at
k = 0.1hMpc−1 [210].

We estimate the uncertainties on the SDSS clustering measurements via 200 jackknife
resamplings [167, 183, 182, 115, 90] containing about the same number of data (randoms)
each. The area of the individual jackknife region is A = 36.5 deg2, meaning that its comoving
size at z=0.1 in Planck cosmology [6] is SJK ∼ 28h−1Mpc. As demonstrated by [93], it is
not necessary to design jackknife cells larger than the maximum 2PCF scale that we measure
to have accurate covariance estimates. Instead, it is better to prioritise a high number of
resamplings to reduce the noise in the covariances.

The jackknife covariance matrix for each SDSS galaxy clustering measurement is calculated
as [82, 183, 90]:

Ĉij =
Nres − 1

Nres

Nres∑
a=1

(ξai − ξ̄ai )(ξaj − ξ̄aj ) , (9.1)

where the pre-factor takes into account that in every resampling Nres − 2 sub-volumes are
the same [182], and ξ̄i is the mean jackknife correlation function in the ith bin:

ξ̄i =
Nres∑
a=1

ξai /Nres .

The full covariance matrix for all the tracers is built by combining the individual ones in
Eq. (9.1) as:

Ĉ =

 ĈHα−Hα ĈHα−[OII] ĈHα−LRG

Ĉ[OII]−Hα Ĉ[OII]−[OII] Ĉ[OII]−LRG

ĈLRG−Hα ĈLRG−[OII] ĈLRG−LRG

 . (9.2)

The inverse of the covariance matrix, the so-called “precision matrix" Ψ̂ ≡ Ĉ−1, requires
some corrections. In fact, Eq. (9.2) is obtained from a limited set of resamplings, Nres, and
it has an associated error which propagates into the precision matrix. Following [192], we
implement two corrections to obtain an unbiased estimate of the precision matrix and to
reduce the noise in its off-diagonal terms. The bias correction consists in multiplying Ĉ−1

by the Hartlap factor [119], which accounts for the limited number of resamplings and the
number of bins nb in our measurements of ξ, i.e Ψ̂ = [1− (nb + 1)/(Nres − 1)] Ĉ−1.

The noise correction, also known as “covariance tapering" [138], can be applied to both
covariance and precision matrices. The idea of this method is to neglect the correlation
between data pairs far apart through a kernel function of the Matérn class. Such a correction
relies on the tapering matrix Tij ≡ K (||si − sj||), which is defined as a monoparametric
Kernel function [192, 260, 261] depending on the physical scale of the tracers that we are
correlating. This kernel also includes a tapering parameter Tp, which identifies the interval
where K(x) takes non-zero values, guaranteeing a vanishing correlation between pairs for
larger distances. The final corrected precision matrix is:

Ψ̂ =

(
1− nb + 1

Nres − 1

)(
Ĉ ◦ T

)−1

◦ T , (9.3)
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Figure 9.2: Normalised covariance matrix obtained from the monopole auto- and cross-
correlation functions of the three SDSS galaxy tracers.

where the ◦ symbol indicates the Hadamard product. In our analysis we assume a tapering pa-
rameter Tp = 50h−1Mpc to ensure that the entire covariance matrix is positive semi-definite.
In Fig. 9.2, we present the normalised covariance matrix obtained from the monopole auto-
and cross-correlation functions of the SDSS Hα, [O ii] and LRG tracers. The normalisation
is computed as Cnorm

ij = Cij/
√
Cii Cjj, where Cij is given by Eq. 9.1.

9.4 Methodology

The real-space two-point correlation function ξ(r) is the spatially isotropic Fourier transform
of the matter power spectrum P (k) defined as:

ξ(r) =
1

2π2

∫
P (k)

sin(kr)

kr
k2dk . (9.4)
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The position of the BAO peak inferred from Eq. (9.4) is expected to appear around
110h−1Mpc, which is well beyond the scales of virialised objects. This implies that the
non-linear gravitational effects can be safely ignored. For the power spectrum we use the
template [185]:

P (k) = [Plin(k)− Pdw(k)] e−k
2Σ2

nl/2 + Pdw(k) , (9.5)

where Plin(k) is the linear matter power spectrum calculated using the Boltzmann code
CLASS [151], and Pdw(k) is the de-wiggled power spectrum [83], both using Planck 2015 [6]
fiducial cosmology. The Σnl parameter accounts for the smoothing of the BAO peak due to
non-linear effects [65].

We compute the theoretical correlation functions needed to fit the SDSS multi-tracer
measurements by applying Eq. (9.4) with the power spectrum given in Eq. (9.5). We model
the BAO signal as [266]:

ξmodel(s) = Bξ(αs) + a0 +
a1

s
+
a2

s2
, (9.6)

where a1, a2, a3 are linear nuisance parameters and B accounts for all possible effects on the
clustering amplitude, such as the linear bias, the normalisation of the power spectrum, σ8,
and the redshift space distortions [266]. In addition, we introduce the shift parameter α
which takes into account the distortion between distances measured in the data due to the
fiducial cosmology chosen to build the estimator. This is defined as [185]:

α =
DV

rs

rfid
s

Dfid
V

, (9.7)

where rs represents the sound-horizon [128, 83] and DV is the volume-averaged distance
defined as [86]:

DV(z) =
[
cz(1 + z)2D2

A(z)H−1(z)
]1/3

,

where DA(z) and H(z) are the angular diameter distance and the Hubble parameter at
redshift z, respectively.

We use a Monte Carlo Markov Chain (MCMC) based on a Metropolis-Hastings algorithm3

to find the optimal parameter values. We assume a likelihood function of the form L ∝
exp(−χ2/2), where the χ2 is computed as χ2(α,B) = (~ξmodel − ~ξobs)

T Ψ̂(~ξmodel − ~ξobs): In the
equation above, ~ξmodel is the theoretical correlation function given in Eq. (9.6), ~ξobs is the
observed one, both grouped in a vector at each position, and Ψ̂ is the precision matrix given
in Eq. (9.3).

9.5 Results and discussions
In this analysis, we have considered different model scenarios with an increasing level of
complexity. Our main results are summarised in Tab. 9.1 and shown in Fig. 9.3, together
with previous results from literature. First, we use the model given in Eq. (9.6), which has 5
parameters (5p) common to all the targets: (B, α, a0, a1, a2). This is equivalent to assume
that all the targets respond in the same way to the gravitational interaction and expansion.

3https://emcee.readthedocs.io/en/stable/
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Figure 9.3: Shift parameter α as a function of redshift from different BAO measurements:
6DFGs [38], MGS [210], DES [3], WiggleZ [41], Lowz-BOSS [105], CMASS-BOSS [266] and
Lyα-BOSS [79].

The second model we test is a modification of Eq. (9.6), with 13 independent parameters
(13p): α, common to all the targets, plus three different sets of (B, a0, a1, a2). The last
model used is again a modification of Eq. (9.6), with three different sets of (B, α, a0, a1, a2)
i.e., 15 parameters (15p) in total. As a test, we also report the analysis performed using only
LRG target. In the 5p scenario, we find a shift parameter of α = 1.00 ± 0.04, while in the
13p model α = 1.01 ± 0.04. In the 15p scenario, we find α = 1.02 ± 0.04 for both Hα and
[O ii], and α = 0.97 ± 0.05 for LRGs. The latter is consistent with α = 0.96 ± 0.07 found
using only LRGs, which is directly comparable to the results at z ∼ 0.15 by [210] and at
z ∼ 0.35 by [54].

Models: 5p 13p 15p LRG

αHα - - 1.020.04
0.03 -

αOII - - 1.020.04
0.04 -

αLRG - - 0.970.05
0.05 0.960.07

0.06

α 1.000.04
0.04 1.010.04

0.04 - -

Table 9.1: Best-fit constraints from our models.
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For our fiducial cosmology, we find a volume-averaged distance of Dfid
V (z = 0.1) =

429.90Mpc, and Dfid
V (z = 0.1)/rfid

s = 2.92. By combining Eq. (9.7) with the constraints ob-
tained on α, we find that the 1σ uncertainty on DV/rs is ∼ 0.12. Assuming rs = 147.41Mpc
[6], we find DV = (435.07± 17.14)Mpc.

Our study relies on the jackknife covariance matrices from SDSS data, corrected from bias
and noise (see Sec. 9.3), whereas [210] use covariances from synthetic mock catalogues. As
shown by [183] and [199], jackknife returns reliable covariance estimates only on large scales,
that are the scales of interest in our cosmological analysis. Hence, we do not expect our
results to change substantially if covariance matrices from mocks were used.

Another difference between our analysis and [210] is the fact that we do not reconstruct the
density field. The main idea of BAO reconstruction [84, 187] is to smooth the linear matter
density field and to sharpen the acoustic peak in the correlation function. This method has
the advantage of accurately constraining the non-linear parameter Σnl. In our analysis we
find Σnl ∼ 20 Mpch−1, while [210] find Σnl ∼ 5 Mpch−1. A lower value of Σnl provides a
better signal and tighter constraints on both B and α. Our results are fairly compared and
in agreement within 1σ with the pre-reconstruction value of α = 1.01 ± 0.09 from [210] for
LRGs only. The uncertainty we find on α using our multi-tracer analysis is 0.04, identical
to the post-reconstruction estimate by [210], and 44% smaller than their pre-reconstruction
value. Hence, we expect that by implementing reconstruction on mocks for galaxy multi-
tracers, we will be able to significantly reduce our current error. This result highlights the
great potentiality of combining different tracers to constrain more accurately the cosmological
parameters.

We remind the reader that for all the models used in this work we assumed flat priors,
differently from [210], where Gaussian priors are considered. Flat priors are less informative,
but they do not rule out any region of the parameter space.

We have performed a cosmological analysis on the LRG, Hα and [O ii] ELG multi-tracers
currently available at z ∼ 0.1. For the future, we plan to extend the multi-tracer methodology
tested here to the upcoming data sets from the new spectroscopic surveys, such as DESI or
Euclid. Our ultimate goal is to include synthetic mock catalogues for galaxy multi-tracers
testing the impact of BAO reconstruction on our results. This will enable us to improve the
multi-tracer covariance estimates on all scales, and hopefully we will be able to put tight
constraints on the non-linear redshift-space distortions.
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Chapter 10

Does jackknife scale really matter for
accurate large-scale structure
covariances?

This chapter presents a research work which corresponds to [93]. This work is a team effort
with aid from Dr. Ginevra Favole affiliated by that time to the Institute of Cosmology &
Gravitation at the University of Portsmouth in UK, Dr. Benjamin R. Granett affiliated
at the Università degli Studi di Milano in Italy, and Dr. Domenico Sapone affiliated to
the Cosmology and Theoretical Astrophysics group at the Facultad de Ciencias Fśicas y
Matemáticas of the Universidad de Chile in Chile.

Abstract

The jackknife method gives an internal covariance estimate for large-scale structure surveys
and allows model-independent errors on cosmological parameters. Using the SDSS-III BOSS
CMASS sample, we study how the jackknife size and number of resamplings impact the
precision of the covariance estimate on the correlation function multipoles and the error on
the inferred baryon acoustic scale. We compare the measurement with log-normal mock
galaxy catalogues with the same survey geometry. We build several jackknife configurations
that vary in size and number of resamplings. We find that it is useful to apply the tapering
scheme to estimate the precision matrix from a limited number of jackknife resamplings.
The results from CMASS and mock catalogues show that the error estimate of the baryon
acoustic scale does not depend on the jackknife scale. For the shift parameter α, we find an
average error of 1.6% and 1.2%, respectively from CMASS and mock jackknife covariances,
consistent with pre-reconstruction analyses. However, when relatively few resamplings are
used, the jackknife error estimate becomes unreliable. Future large-scale structure surveys
will map even greater volumes allowing percent-level estimation of the covariance matrix
using a jackknife approach.

Keywords: cosmology: large-scale structure of Universe; cosmological parameters; ob-
servations; theory – galaxies: statistics; haloes.
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10.1 Introduction

The most popular methods to estimate the uncertainties on the galaxy two-point correlation
function (2PCF) internally in a survey are bootstrap [81, 71, 183, 182] and jackknife [205, 168,
252, 183, 182, 199] resampling. Bootstrap resampling is carried out by randomly selecting
Nb sub-volumes, with replacement, from the original sample. Then the galaxy clustering
measurement is performed in each resampling, which is associated a constant weight equal
to the number of times that the sub-volume has been selected [183]. Similarly, the jackknife
method uses Njk regions in the survey footprint, each with approximately the same galaxy
number density. The correlation function is measured on the survey multiple times, each time
removing a different jackknife region [183]. The covariance matrix is finally inferred from the
2PCF measurements and the 1σ errors are derived as the square root of the diagonal elements.

Internal methods for error estimation are computationally inexpensive and are derived
directly from the measurements. Therefore, the analysis does not depend on an assumed cos-
mological model, which is an attractive feature when testing alternative models such as dark
energy or modified gravity. Indeed, jackknife resampling has been widely used to estimate the
uncertainties on the galaxy clustering measurements from large-volume spectroscopic surveys
[e.g. 270, 271, 272, 112, 209, 25, 113, 114, 90, 88, 108, 92].

Jackknife resampling has two main disadvantages: (i) it tends to overestimate the errors
due to the lack of independence between the NJK copies; and (ii) it is necessary to balance
the number and size of resamplings to be drawn in the survey footprint. The last issue is
driven by several factors. First of all, in order to have covariances with reduced noise in their
off-diagonal terms, we need a large number of jackknife resamplings. This limits the size of
the jackknife regions and also the maximum scales that can be probed in the galaxy clustering
observables. It is often assumed in the literature that the jackknife cell size SJK should embed
the maximum scale measured in the two-point correlation functions. At the same time, to
have an invertible (i.e. non-singular) covariance matrix, the number of resamplings should
be larger than the number of bins in the measured 2PCF. These conditions are difficult to
satisfy in galaxy samples with limited area [e.g. 38, 124]. Due to the finite size of any survey
footprint, the more resamplings we draw, the smaller their size and the variation between
one copy and the next one [183, 182].

The issues discussed above have discouraged some cosmologists to use jackknife resampling
in favour of estimating the galaxy clustering uncertainties from large sets of independent syn-
thetic galaxy catalogues. In the last years, the advent of efficient codes based on fast gravity
solvers has considerably reduced the computational time needed for massive mock produc-
tion, making available many different realisations of accurate, independent mocks for co-
variance estimates. Among these methods, PTHALOS [225, 162], PINOCCHIO [172, 170],
PATCHY [140] and HALOGEN [26] are all based on Lagrangian perturbation theory (LPT).
Others, such as QPM [263], FastPM [97] or PPM-GLAM [141], use a quick particle mesh
approach. Algorithms such as EZ-MOCKS [55] adopt the effective Zel’dovich approximation,
while COLA [247, 142], L-PICOLA [126] or ICE-COLA [134] combine LPT with N-body
solvers to speed up the computational time. Finally, high-fidelity mocks can also be obtained
from multiple realisations of a log-normal density field [58, 38, 124, 11, 157].

All these fast mocking approaches are extremely convenient compared to running a full
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N-body code, but they are generally limited to predicting the dark matter distribution.
On top of the dark matter field, it is necessary to model the galaxy distribution by properly
accounting for the different baryonic components and the complex physics of galaxy formation
and evolution [e.g. 169, 178].

Simulating baryons is a non-trivial task, which requires advanced computational tech-
niques and resources. Semi-analytic models of galaxy formation and evolution [SAMs;
264, 137, 30, 35, 34, 234, 62, 63, 67, 68, 102, 60] and hydrodynamical simulations [e.g.
267, 238, 269, 237, 256, 257, 103, 64, 221, 201] are now able, with different degrees of accuracy,
to incorporate the multitude of ingredients and physical processes that contribute to shape
the formation and evolution of galaxies within their host dark matter haloes. Some of these
processes are: gas accretion [116, 121, 123] and cooling [77, 171, 125], star formation [145],
stellar winds [146], stellar evolution Tonini et al. [248], Henriques et al. [120], Gonzalez-Perez
et al. [106], AGN feedback Bower et al. [50], Croton et al. [67] or environmental processes
Weinmann et al. [259], Font et al. [99], Stevens and Brown [240], Collacchioni et al. [60].

Analogously, one should also account for the effect of massive neutrinos on the growth
of cold dark matter perturbations, which are responsible of suppressing the matter power
spectrum at intermediate and small scales [19, 265, 191].

All of these assumptions and prescriptions have uncertainties which become significant on
non-linear scales and limit the accuracy of the covariance estimate.

Upcoming surveys, such as the Dark Energy Spectroscopic Instrument1 [DESI; 222], Eu-
clid2 [148, 219] and the Large Synoptic Survey Telescope3 [LSST; 132], will bring us to the
era of high precision cosmology. In order to prepare to this new phase, it is imperative to
improve and compare different methods to construct accurate covariances able to capture the
hidden physical process of gravitational collapse. These methods have to carefully optimise
the specific binning scheme adopted in order to minimise the noise in the measurements.

For the reasons above, in this work we aim to rehabilitate the use of jackknife resamplings
versus mocks for estimating covariances. We explore how varying the size (SJK) and number
(NJK) of jackknife regions impacts the precision in the error estimates of galaxy clustering
and on the baryon acoustic oscillation scale through the α shift parameter. In concrete, we
measure the monopole and quadrupole two-point correlation functions of the BOSS CMASS
DR12 galaxies and we compute their covariances using four different jackknife configurations,
coupled with two binning schemes. We compare these results with those obtained from 200
independent log-normal mock light-cones with the same volume of CMASS, and with the
covariance obtained by performing jackknife resampling on a single light-cone.

From these covariances, we build the precision matrices needed to estimate the α shift
parameter through a Monte Carlo Markov Chain (MCMC) algorithm. We reduce the noise
in their off-diagonal terms by applying the tapering correction [138]. We study the impact
of a variation in the tapering parameter, Tp, on the α results. These estimates of α will
be directly compared with the galaxy clustering pre-reconstruction results from the BOSS

1https://www.desi.lbl.gov
2https://www.euclid-ec.org
3https://www.lsst.org

171

https://www.desi.lbl.gov
https://www.euclid-ec.org
https://www.lsst.org


collaboration [211].

The paper is organised as follows: in Sec. 10.2, we introduce the observational galaxy
sample used in our analysis, SDSS-III/BOSS CMASS DR12; in Sec. 10.3, we present the
galaxy clustering measurements performed, together with the jackknife methodology and
schemes used to estimate their uncertainties. Sec. 10.4 describes the models used to analyse
the CMASS observations: the log-normal mock galaxy catalogues and light-cones (§ 10.4.1),
and the analytic models used in the Monte Carlo runs (§ 10.4.2). In Sec. 10.5, we explain the
Monte Carlo algorithm used to extract the α BAO parameter. Sec. 10.6 presents our main
results, which are discussed in Sec. 10.7 together with our conclusions.

Throughout the paper we adopt a Planck et al. [202] cosmology with Ωm = 0.307115,
ΩΛ = 0.692885, h = 0.6777, n = 0.96 and σ8 = 0.8228.

10.2 Observed galaxy sample: BOSS CMASS DR12

The SDSS-III BOSS survey observed about 1.2 million galaxies over an effective area of
9329 deg2 [17], using the 2.5m Sloan Telescope [111] at the Apache Point Observatory in
New Mexico. It used a drift-scanning mosaic CCD camera with five photometric bands,
ugriz [110, 101], and two spectrographs covering the wavelength range 3600− 10000

◦
A with

a resolving power of 1500 to 2600 [231]. Spectroscopic redshifts were measured using the
minimum-χ2 template-fitting procedure by [13], with templates from [47].

BOSS targeted galaxies into two main samples: LOWZ at z < 0.43 and CMASS at
0.43 < z < 0.7 [12]. For our analysis, we use the data from the BOSS CMASS DR12 sample
[15, 207, 17], which is defined through a number of magnitude and colour cuts aimed at
obtaining a selection of galaxies with approximately constant stellar mass. These cuts are:

17.5 < icmod < 19.9

rmod − imod < 2

ifib2 < 21.5

d⊥ > 0.55

icmod < 19.86 + 1.6 (d⊥ − 0.8),

(10.1)

where icmod represents the SDSS i-band cmodel magnitude, imod and rcmod are model mag-
nitudes, ifib2 is the fibre magnitude within 2" aperture, and d⊥ is the following colour com-
bination:

d⊥ = rmod − imod − (gmod − rmod)/8. (10.2)

In addition, the CMASS sample satisfies also the star-galaxy separation cuts:

ipsf − imod > 0.2 + 0.2 (20− imod)

zpsf − zmod > 9.125− 0.46zmod,
(10.3)

where the subscrit “psf” stands for PSF magnitude.
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10.3 Measurements

10.3.1 Two-point correlation functions

We measure the two-point correlation function, ξ(s, µ), of the galaxy sample described in
Sec. 10.2 using the code from Favole et al. [88]. This is based on the Landy-Szalay estimator
[147],

ξ(s, µ) =
DD(s, µ)− 2DR(s, µ) +RR(s, µ)

RR(s, µ)
, (10.4)

where s is the redshift-space distance and µ is the cosine of the angle between s and the line
of sight.

In the expression above, DD, DR and RR are respectively the data-data, data-random
and random-random pair counts that we can form between the galaxy and random cata-
logues. The latter is built to have the same angular footprint and radial distribution of the
CMASS observations. All the pairs above are properly normalised by the number of galaxies
(randoms) and weighted to correct from different systematic effects [see e.g. 216, 209, 90].
In particular, we weight the observed data for potential fibre collisions (wfc) and for redshift
failures (wzf). We also account for possible variation in the galaxy (random) number densities
assuming the FKP [96] weight:

wFKP =
1

1 + n(z)P0

, (10.5)

where n(z) is the galaxy (random) number density at redshift z and P0 is a constant quantity
that roughly corresponds to the amplitude of the CMASS power spectrum at k = 0.1hMpc−1.
We assume P0 = 20000h3Mpc−3 as in Anderson et al. [25].

From Eq. 10.4, we compute the multipoles of the CMASS correlation function as:

ξl(s) =
2l + 1

2

∫ 1

−1

ξ(s, µ)Pl(µ) dµ, (10.6)

where Pl(µ) are the Legendre polynomials. In this study, we focus only on the first two
even multipoles of the 2PCF, i.e. the monopole ξ0(s) and the quadrupole ξ2(s). We explore
two different binning schemes, both centered on the BAO distance scale, coupled with the
jackknife configurations defined in Sec. 10.3.2: (i) 20 linear bins in 24 < s < 184h−1Mpc and
120 linear bins in 0 < µ < 1; (ii) 10 linear bins in 24 < s < 184h−1Mpc and 120 linear bins
in 0 < µ < 1.

10.3.2 Jackknife configurations and covariances

We implement jackknife resampling in the BOSS CMASS DR12 galaxy sample adopting
four different configurations summarised in Table 10.1. We divide the survey footprint into
200, 100, 50 and 20 RA×DEC cells approximately containing the same number of galaxies
(randoms). The CMASS covariance matrix for NJK jackknife resamplings is [e.g. 209, 90]:

Cij =
NJK − 1

NJK

NJK∑
a=1

(ξai − ξ̄i)(ξ
a
j − ξ̄j), (10.7)
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NJK AJK [deg2] SJK [h−1Mpc]

200 46.6 110.7
100 93.3 156.6
50 186.6 221.4
20 932.9 495.1

Table 10.1: Jackknife configurations adopted in our analysis. For each of the four cases
implemented, we indicate the number of jackknife resamplings (NJK), the area (AJK) and
comoving size (SJK) of the individual cell computed in Planck et al. [202] cosmology at the
mean redshift of CMASS, z = 0.56.

where ξ̄i is the mean jackknife correlation function in the ith bin,

ξ̄i =

NJK∑
a=1

ξai /NJK. (10.8)

The overall factor in Eq. 10.7 corrects from the lack of independence between the NJK jack-
knife copies, which is the main limitation of the jackknife method. In fact, from one config-
uration to the next, NJK − 2 cells are the same [182].

10.4 Models

10.4.1 Log-normal mock galaxy catalogues and light-cones

We generated 200 log-normal mock galaxy catalogues for the BOSS CMASS sample at mean
redshift z ∼ 0.56. The target power spectrum was computed with the code CLASS 4 [46].
We applied a linear bias and the Halofit [246] prescription to model the non-linear galaxy
power spectrum: P (k) = b2Pm(k) with the value b = 2.1.

We present the Synmock code used to produce the log-normal catalogues in a public
repository5. The implementation follows the standard approach for generating log-normal
simulations [see also 38, 194]. For each realization, first we generated a Gaussian density
field δG(~x) on a cubic grid with dimension L = 4096h−1Mpc and step size h = 8h−1Mpc and
transformed it to derive the target log-normal field:

δ(~x) = exp
(
δG(~x)− σ2/2

)
− 1 , (10.9)

where σ2 is the variance of the Gaussian field. In order to match the target power spectrum
we made a Fourier transform of the power spectrum to compute the correlation function and
using the relationship [58]

ξG(|~x− ~x′|) = log (1 + ξ(|~x− ~x′|)) . (10.10)

The log-normal density field was used to build a discrete galaxy field by Poisson sampling
the number density n(~x) = n̄(1 + δ(~x)). We applied a uniform random offset to move the
mock galaxies away from the grid points.

4https://github.com/lesgourg/class_public
5https://github.com/bengranett/synmock
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The velocity field was computed on the same δ(x) grid using the linear continuity equation
in Fourier space:

~v
(
~k
)

= i
faH

b
δ
(
~k
) ~k
k2
, (10.11)

where f is the logarithmic growth rate. After a final Fourier transform, the velocity of each
galaxy was assigned using the value at the nearest grid point.

We built 200 BOSS CMASS light-cones (LCs) with 0.43 < z < 0.7 by cutting the BOSS
survey geometry in the log-normal simulation box above. The Cartesian galaxy coordinates
were transformed to the spherical coordinates right ascension, declination and radial distance
with the origin at the center of the simulation box. In order to transform to the redshift-
space coordinates, the line-of-sight peculiar velocity component was computed and applied
to the radial comoving distance: rs = r + ~r · ~v/ (aH|~r|). We constructed a coarse angular
mask using the Healpix [107] scheme at resolution nside = 64 and discarded galaxies outside
the mask. The catalog was further downsampled along the radial direction to match the
target redshift distribution. We generated an unclustered random catalogue with 10 times
the number density of the CMASS data that precisely corresponds to the mock construction
using the same angular mask and radial selection function.

After computing the correlation functions of the NLC = 200 log-normal light-cones, we
derive their covariance matrix as:

Cij =
1

NLC − 1

NLC∑
a=1

(ξai − ξ̄i)(ξ
a
j − ξ̄j), (10.12)

where ξ̄i is their mean 2PCF in the ith bin. The pre-factor properly accounts for the fact
that the mock realisations are independent.

10.4.2 Analytic models

Besides the log-normal mocks, we also model the multipoles of the BOSS CMASS two-point
correlation function using an analytic approach, which is required to run the Monte Carlo
analysis (see Sec. 10.5). The 2PCF can be obtained from the Fourier transform of the matter
power spectrum, P (k), for which we assume the template from [185]:

P (k) = [Plin(k)− Pdw(k)] e−k
2Σ2

nl/2 + Pdw(k) . (10.13)

In the equation above, Plin(k) is the linear matter power spectrum computed using the
Boltzmann code CLASS [151] assuming the Planck 2015 [6] fiducial cosmology. The Pdw(k)
term is the de-wiggled power spectrum [83], while the Σnl parameter encodes the smoothing
of the BAO peak due to non-linear effects [65]. The multipoles of the analytic 2PCF are
defined as:

ξl(s) =
il

2π2

∫ ∞
0

Pl(k)jl(ks)k
2dk , (10.14)

from which we recover the monopole (l = 0) and the quadrupole (l = 2). In Eq. 10.14,
jl(x) represents the spherical Bessel function of first kind and order l, while Pl(k) are the
multipoles of the power spectrum defined as:

Pl(k) =
2l + 1

2

∫ 1

−1

(
1 + fµ2

)2
P (k)Ll(µ)dµ , (10.15)
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where Ll(x) is the Legendre polynomial of order l and P (k) is the template given in Eq. 10.13.
By replacing Eq. 10.15 in Eq. 10.14, the analytic expressions for monopole (l = 0) and
quadrupole (l = 2) are respectively [266]:

ξ
(0)
model(s) = B0ξ0(αs) + a

(0)
0 +

a
(0)
1

s
+
a

(0)
2

s2
, (10.16)

ξ
(2)
model(s) = B2ξ2(αs) + a

(2)
0 +

a
(2)
1

s
+
a

(2)
2

s2
, (10.17)

where α is the shift parameter, while (a
(i)
1 , a

(i)
2 , a

(i)
3 ) are linear nuisance parameters.

The shift parameter α in Eqs. 10.16 and 10.17 is usually defined as [185]:

α =
DV

rs

rfid
s

Dfid
V

, (10.18)

where rs represents the sound horizon [128], and DV the volume-averaged distance given by
[86]:

DV(z) =
[
cz(1 + z)2D2

A(z)H−1(z)
]1/3

, (10.19)

with DA(z) being the angular diameter distance, and H(z) the Hubble parameter at red-
shift z. The α shift parameter accounts for the observed distortion between distances due
to the chosen fiducial cosmology, while the nuisance parameters (a

(i)
1 , a

(i)
2 , a

(i)
3 ) and B1, B2

incorporate those effects that are responsible of modulating the clustering amplitude, such
as redshift-space distortions [266], linear bias, and the power spectrum normalisation, σ8.

10.5 Shift parameter estimation
Following the methodology presented in Favole et al. [92], we analyse the BOSS CMASS
covariances, both computed from jackknife and 200 light-cones, using a Monte Carlo Markov
Chain based on a Metropolis-Hastings algorithm6. Our MCMC code is publicly available on
GitHub7.

In order to find the optimal parameter values, we assume a likelihood function L ∝
exp(−χ2/2), with

χ2 =
(
~ξmodel − ~ξobs

)T
Ψ̂
(
~ξmodel − ~ξobs

)
, (10.20)

where
~ξmodel ≡

(
~ξ

(0)
model,

~ξ
(2)
model

)
(10.21)

represents the theoretical correlation function whose components are given in Eqs. 10.16-
10.17, while ~ξobs corresponds to the observed monopole and quadrupole 2PCFs, both grouped
in a vector depending on the comoving distance. The Ψ term above is the precision matrix
defined as:

Ψ̂ =

(
1− nb + 1

Nres − 1

)(
Ĉ ◦ T

)−1

◦ T , (10.22)

6https://emcee.readthedocs.io/en/stable/
7https://github.com/javiersilvalafaurie/BTCosmo
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Figure 10.1: Monopole (top) and quadrupole (bottom) auto-correlation functions of the
BOSS CMASS galaxies (markers) computed using two different binning schemes (20 and 10
linear bins in s) coupled with the jackknife configurations given in Table 10.1 for the error
estimation (200, 100, 50, 20 resamplings). We overplot the mean ±σ values from the 200
log-normal light-cones (Sec. 10.4.1) as orange lines with the 1σ uncertainty as shaded area.
The analytic best-fit models to the CMASS measurements that we use to estimate the α shift
parameter (see Sec. 10.4.2) are shown as dashed purple curves.
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where Ĉ is the total assembled covariance matrix:

Ĉ =

Ĉξ0ξ0 Ĉξ0ξ2

ĈT
ξ0ξ2

Ĉξ2ξ2

 . (10.23)

The first term in parenthesis in Eq. 10.22 is the Hartlap factor [119], which corrects from
the bias introduced in the covariance matrix by the limited number of jackknife resamplings
and 2PCF bins. In Tab. 10.2, we report the values of the Hartlap factor as a function of the
number of jackknife resamplings and bins used in our analysis.

The quantity T in Eq. 10.22 is the tapering correction [138] that minimises the noise in the
off-diagonal terms of the covariance matrix; for further details see also [92]. In this work, we
assume a tapering parameter Tp = 500h−1Mpc to ensure that the entire covariance matrix
is positive semi-definite and the noise in the off-diagonal terms is minimised. In Sec. 10.6, we
test how a variation in the tapering parameter affects the results for α and its uncertainty.
Further details on the dependence of α on Tp are addressed also in Paz and Sánchez [192].

10.6 Results
In Fig. 10.1, we present the BOSS CMASS monopole and quadrupole two-point auto- corre-
lation functions compared to the mean predictions from the 200 log-normal light-cones. The
CMASS error bars are inferred from the jackknife covariances based on the four configura-
tions shown in Tab. 10.1 coupled with two different binning schemes (see Sec. 10.3.1). For
the LCs, we show the dispersion obtained from the 200 realisations without jackknife resam-
pling. The LCs reproduce the BAO peak well, but differ from the CMASS measurements
in the broadband shape. The LC monopole prediction tends to overestimate the observed
clustering amplitude at s . 60h−1Mpc and to underestimate it beyond BAO scales. The
systematic difference in shape will be accounted for by the nusiance parameters in the model
and so will not influence the analysis of the α shift parameter. We also overplot the analytic
2PCF model used in our MCMC algorithm to estimate the α BAO parameter (Sec. 10.5).
The best-fit analytic model is in good agreement with the CMASS multipole measurements
on all scales.

In Fig. 10.2 we display the normalised covariance of the monopole and quadrupole from the
200 log-normal light-cones, in 20 s bins, built in Sec. 10.4.1, without jackknife resamplings.
The matrix is normalised as Cnorm

ij = Cij/
√
Cii Cjj, with Cij given in Eq. 10.12.

nb NJK Hartlap factor

10 20 0.42105
20 50 0.57143
20 100 0.78788
20 200 0.89447

Table 10.2: Values of the Hartlap factor [119] as a function of the number of bins nb and
jackknife resamplings NJK used in our analysis.
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Figure 10.2: Normalised monopole and quadrupole auto- and cross-covariances obtained from
the 200 log-normal light-cones without jackknife resampling. The normalisation is computed
as Cnorm

ij = Cij/
√
Cii Cjj, where Cij is given in Eq. 10.12. The mean value and 1σ dispersion

of these mocks are shown in Fig. 10.1 as a solid line with the corresponding shaded region.

Fig. 10.3 compares the normalised covariances obtained by performing jackknife resam-
pling on a light-cone (upper triangles) versus BOSS CMASS data (lower triangles). From
top to bottom, we present the 20, 50, 100 and 200 jackknife configurations listed in Tab. 10.1,
respectively coupled with 10, 20, 20, 20 linear bins in s (see Sec. 10.3). The normalisation
is calculated as described in Fig. 10.2, with Cij given by Eq. 10.7 for CMASS data and by
Eq. 10.12 for the light-cone covariance estimate without jackknife resampling. It is evident
that the noise in the covariance estimate is reduced as the number of resamplings is increased.
The covariances from 200 jackknife resamplings with 20 bins on a light-cone and on CMASS
observations are consistent with the result from the 200 LCs without jackknife shown in
Fig. 10.2. These covariances lead to consistent error bars on the galaxy clustering multipoles,
as shown in Fig. 10.1.

The top panel of Fig. 10.4 shows, as a function of the scale, the ratio of the uncertainties
obtained from CMASS jackknife covariances and from 200 light-cones without jackknife re-
sampling. The results for the monopole and the quadrupole are shown as solid and dashed
lines, respectively. We remind the reader that the 200, 100 and 50 JK configurations are
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Figure 10.3: Normalised covariances obtained from jackknife resampling performed on a
light-cone (upper triangles) and on BOSS CMASS data (lower triangles). We display the 20,
50, 100 and 200 jackknife configurations, respectively, coupled with two binning schemes.

measured in 20 s bins, while the 20 JK case in 10 bins. The combined action of the jackknife
size, number and binning is what determines the level of noise in the covariances. The 20 JK
bins scheme leads to the largest fluctuations in the σ estimate due to having relatively few
jackknife resamplings available. However, doing only 10 bins instead of 20 helps to partially
mitigate these fluctuations.

On small scales, the errors from CMASS resamplings shown in the top panel of Fig. 10.4 are
underestimated with respect to the LCs by up to ∼ 40% for both monopole and quadrupole.
Around 130h−1Mpc, the monopole errors from CMASS covariances are ∼ 10 − 50% larger
than those from 200 light-cones, and the discrepancy increases with the number of resam-
plings. Compared to the monopole, the quadrupole shows smaller fluctuations in the 1σ ratio
shown in the top panel of Fig. 10.4.

The amplitude of the quadrupole 20 JK result is ∼ 10 − 20% lower than the others on
scales below 150h−1Mpc, while the monopole is lower than the rest only beyond 100h−1Mpc.
As expected, the 20 and 50 jackknife schemes return the largest fluctuations. Although larger
jackknife regions with greater independence may give a more accurate covariance estimate,
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Figure 10.4: Left: Ratios of the 1σ uncertainties obtained from the CMASS jackknife co-
variances and the 200 LCs without JK. The solid (dashed) lines correspond to the monopole
(quadrupole) measurements. Right: Ratios of the 1σ errors obtained by applying jackknife
to one of the light-cones and those from 200 LCs without jackknife. For the 20 JK LC scheme
we show two different light-cone realisations (blue and turquoise lines). We remind the reader
that the 200, 100 and 50 JK configurations are coupled with 20 s bins, while the 20 JK case
with 10 bins. The horizontal dotted lines are shown to help the comparison.

the uncertainty on the covariance is large due to having few resamplings available. In the
20 JK scheme coupled with 10 s bins, the large fluctuations due to a limited number of
resamplings are partially mitigated by the smaller number of bins compared to the other
cases.

In the bottom panel of Fig. 10.4, we display the ratio of the uncertainties obtained by
performing jackknife resampling on one of the light-cones and those from 200 LCs without
jackknife. For the 20 JK case, we show the results from two different light-cone realisations
(blue and turquoise lines) to highlight the significant uncertainty in the covariance estimate,
which we expect to be high in this case. Compared to the ratio of CMASS jackknife to 200
LCs shown in the upper panel, overall here we find smaller fluctuations and a flatter trend.
Again, the 20 and 50 JK configurations are the ones exhibiting the largest fluctuations due
to the limited number of resamplings.

Out to BAO scales, the errors from jackknife resampling on the LC are overestimated by
up to ∼ 30% for both the monopole and quadrupole. Beyond 110h−1Mpc, the error estimates
fluctuate significantly, but tend to indicate overestimation by ∼ 50%. Those from 50 and
20 JK also maintain a growing trend, but with even larger fluctuations due to the smaller
number of resamplings. Beyond BAO scales, the quadrupole errors tend to decrease such that
the JK estimates agree with the covariance computed from 200 independent realizations.

Overall, we find strong consistency between the uncertainties based on covariances com-
puted either performing jackknife re-sampling on CMASS data, or on a light-cone with the
same volume of CMASS, or from 200 LC realisations without jackknife. In general, with re-
spect to the 200 LCs without jackknife, which represent the “ideal” case, the monopole errors
from CMASS JK are underestimated on small scales and overestimated beyond ∼ 80h−1Mpc,
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while those from jackknife on a light-cone are overestimated on all scales. For the quadrupole,
the CMASS JK errors are overall underestimated compared to 200 LCs, while those from
jackknife resampling on a LC are overestimated. All these discrepancies remain within 30%
in most cases.

We next consider how the covariance of the correlation function propagates to the error
on the α shift parameter. Fig. 10.5 compares the values of the α shift parameter and cor-
responding uncertainties inferred from (i) the BOSS CMASS jackkife covariances, (ii) the
log-normal light-cone jackknife covariances, and (iii) the covariance from 200 LCs without
jackknife. The specific values are reported in Tab. 10.3. All these results assume a tapering
parameter Tp = 500 which we found to be optimal. For the 20 JK/10 bins scheme applied
to the light-cone we show two different LC realisations to highlight the fluctuations that
the α uncertainty can suffer due to the small number of resamplings. Overall, we find good
agreement between the results based on covariances from jackknife, both applied to CMASS
observations and LCs. For the LC results, we use the same realisation for all the jackknife
configurations except the second 20 JK case, indicated with a star symbol, in which we test a
different realisation. The 200 LC result without jackknife is consistent with the JK outcomes,
despite the difference in the pre-factor of their covariances (Eqs. 10.7,10.12) and the lower
level of noise in their off-diagonal terms (see Fig. 10.2).

The uncertainties on α are all in agreement with each other, independently from the
number/size of jackknife resamplings adopted. The average errors obtained from 200, 100
and 50 JK resamplings (i.e. the most robust ones) performed on CMASS data and a light-cone
are ∼ 1.6% and ∼ 1.2%, respectively. That from the 200 LC covariances without jackknife

α
BOSS CMASS log-normal LC

200 JK, 20 bins: 0.974+0.022
−0.020 0.974+0.016

−0.014

100 JK, 20 bins: 0.978+0.017
−0.017 0.973+0.011

−0.011

50 JK, 20 bins: 0.973+0.011
−0.011 0.966+0.010

−0.010

20 JK, 10 bins: 0.980+0.019
−0.018 0.996+0.021

−0.016

20 JK, 10 bins*: 0.985+0.013
−0.013

200 LCs w/o JK, 20 bins: 0.992+0.010
−0.009

Table 10.3: Estimates of the α shift parameter and its uncertainty obtained from the four
jackknife configurations coupled with two binning schemes applied to both CMASS data and
a log-normal lightcone. The last row shows the result obtained from the covariances of the
200 LCs without performing jackknife resampling. All these results here assume an optimal
tapering parameter of Tp = 500. These results are shown in Fig. 10.5.
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Figure 10.5: Summary of the α shift parameters obtained from the covariances calculated
using the jackknife configurations and binning schemes reported in Table 10.3. The points
are color-coded as in Fig. 10.1, where each colour corresponds to a different jackknife/binning
scheme. The results from CMASS are represented by dots, those from LCs by squares. The
vertical line shows the value α = 1 to help the comparison. For the 20 JK case applied to a LC,
we show two different LC realisations, one of them indicated with a star symbol (turquoise),
to highlight how the 1σ error can fluctuate due to the small number of resamplings. All these
results are calculated assuming a tapering parameter Tp = 500.

is ∼ 0.95%. This latter case is “ideal” since the 200 LCs are all independent (but we do not
expect the log-normal catalogs to capture the full covariance of the CMASS galaxy sample).
The 50 and 20 JK schemes are the ones returning the largest fluctuations in the covariances,
which can result in errors on α as large as ∼ 2.1%. In order to precisely estimate the effect
of the fluctuations in the 20 JK case, one should repeat the resamplings on many different
LC realisations, but this goes beyond the scope of our analysis.

Despite the large fluctuations observed in the 20 JK configurations, the constraints on
α in some cases show that the error bars tend to reduce when the jackknife size increases.
However, the trend depends on the tapering scheme and further trials on mocks are required
to determine if this trend is real or not.

Fig. 10.6 shows the dependence of α and its uncertainty on the tapering parameter, Tp.
In the top panel, we show the results from the 200 light-cones and from jackknife applied to
one of the LCs; in the bottom panel we show the CMASS jackknife outcomes. In both cases,
we have run the MCMC chains assuming Tp = [50, 100, 300, 500, 700]. In the plots we offset
the tapering values by a multiplicative factor to avoid crowding (see caption of Fig. 10.6).
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Figure 10.6: Shift parameter α and its uncertainty as a function of the tapering parameter
Tp. Top: results from covariances computed from 200 light-cones without jackknife and from
jackknife performed on a LC. We have offset the Tp values on the x-axis by multiplying
them, from left to right, by [0.75, 0.80, 0.85, 0.90, 0.95, 1.0]. Bottom: results from CMASS
jackknife resampling. The Tp values have been offset by multiplying them, from left to right,
by [0.80, 0.85, 0.90, 0.95, 1.0].

The optimal value, which provides errors on α of ∼ 1−2%, turns out to be Tp = 500. In this
way, our BOSS CMASS α estimates are comparable with previous results in the literature
[pre-reconstruction, e.g. 211, 193].

The 20 JK configuration shows the largest fluctuations due to the limited number of resam-
plings. We have further tested our MCMC code without including any tapering correction
and leaving only the Hartlap factor. In this case we find that the covariances from 20 JK
resamplings are no longer semi-positive definite, meaning that they are not invertible, hence
not useful for assembling the precision matrix needed to estimate α. Such a result confirms
that jackknife configurations with few cells tend to provide non robust covariance estimates.
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10.7 Discussion and summary

We have studied the impact of choosing different sizes and numbers of jackknife resamplings
on the accuracy of the covariance estimates and the α shift parameter. To this purpose, we
have measured the first two even multipoles of the BOSS CMASS DR12 galaxy sample at
0.43 < z < 0.7 and we have modelled the results both using a set of 200 log-normal light-cones
(Sec. 10.4.1) and an analytic approach (Sec. 10.4.2). We have computed their covariances
using 200, 100, 50 and 20 jackknife resamplings coupled with two binning schemes: 20 or 10
linear bins in 24 < s < 184h−1Mpc, with 120 linear bins in 0 < µ < 1 (see Sec. 10.3). We
have compared the results with the covariances obtained from the 200 log-normal light-cones
without jackknife. We have then applied the same jackknife configurations above on one of
the light-cones to derive LC JK covariances directly comparable with the CMASS ones.

From these different covariance matrices we have derived corresponding precision matrices
(Sec. 10.5), which we have used as inputs for our Monte Carlo Markov Chain to estimate the
baryon acoustic scale through the α shift parameter and its uncertainty. Our main findings
are summarised in what follows:

• We find good consistency between the covariances obtained from CMASS and LC jack-
knife resamplings, and from 200 LCs without jackknife resampling. This leads to consis-
tent error bars in both the galaxy clustering measurements and the α shift parameter.

• We find no evidence for a bias in the inferred value of α or its error when the jack-
knife cell size is smaller than the maximum 2PCF scale measured. However, with few
resamplings available the error estimate becomes unreliable.

• We have demonstrated that it is useful to apply the Hartlap factor and the taper-
ing scheme to estimate the precision matrix with jackknife resampling. The α shift
parameter estimated either from CMASS or LC jackknife covariances, or from 200
light-cones without jackknife, are all consistent between each other and with previous
BOSS CMASS DR12 results from galaxy clustering pre-reconstruction analysis [211].
We find uncertainties on α of 1-2%, depending on the jackknife size/ 2PCF binning
scheme adopted. This confirms that the jackknife methodology applied to both obser-
vations and mocks produces a comparable level of noise in the covariance estimates.
This noise is then reduced in the precision matrix by applying the tapering correction
(see Sec. 10.5).

• We have tested different values for the tapering parameter, in the range 50 ≤ Tp ≤
700, to maximise the accuracy in the α shift parameter estimation. We find that the
optimal value is Tp = 500. By lowering it, the noise in the precision matrix estimate is
suppressed but the error on α grows.

To summarise, performing jackknife resamplings either on BOSS CMASS DR12 data or
on a log-normal light-cone with the same CMASS volume provides covariances that are
consistent with those obtained from a set of 200 independent log-normal LCs and with
previous results in the literature [211]. These covariances lead to α estimates with 1-2%
uncertainties, depending on the jackknife size/2PCF binning scheme assumed.

The largest differences between covariance estimates from jackknife resampling and 200
log-normal light-cones without JK are visible in the off-diagonal terms. Here the jackknife
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results exhibit a higher level of noise. This difference is key for determining the accuracy of
the α shift parameter. The action of the tapering correction (Sec. 10.5) is to considerably
reduce this noise returning comparable uncertainties on α from all of the different covariance
estimates tested.

Although previous works limit the jackknife scale to larger than the measured 2PCF scale
[e.g. 38, 124], we find that this is not essential. In fact, when using jackknife to estimate
covariances, one should prioritise building a large number of resamplings rather than choosing
a jackknife size larger than the maximum galaxy clustering scale measured. In fact, especially
when studying BAO scales, by requiring SJK ≥ max(s), we are able to build only few wide
jackknife regions, which leads to large uncertainties in the error estimates. In our results we
do see a trend that the α error bars tend to reduce as the jackknife size increases, but it
is not seen in all tapering configurations and we do not have sufficient statistics to confirm
whether it is real or not.

The new generation of cosmological surveys, such as DESI, Euclid or LSST, will span
larger volumes compared to SDSS-III/BOSS. The precision in their covariance estimates
based on jackknife will be determined by the number of resamplings. We find that it is not
essential to use jackknife sizes larger than the BAO scale, and so it will be possible to achieve
N > 103 resamplings to reach percent level precision on the error of cosmological parameters
using the jackknife approach. In a followup work, we will address the feasibility of inferring
accurate covariance estimates for a survey such as Euclid using a large number of jackknife
resamplings.
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Conclusions

In the first chapters of this thesis, we made an extensive review of the principal equations
needed at the background and first-order level in the ΛCDM scenario. The idea was to
thoroughly understand the final result from eq. (4.50) without introducing a lot of theory
beyond general relativity or anything unknown for any physicist at the undergraduate level.
That result, together with those obtained in chapter 4, allows us to compare the framework
constructed with direct observation of galaxies.

We also review the technical part to recover the two-point signal in the New York Uni-
versity Value-Added Galaxy Catalog and some ways to obtain its uncertainty. Although the
main objective of this thesis was not to recover the covariance matrix, we regret not delving
further into it because we underestimated it, which is propagated into the inference of cos-
mological information as we saw. Nonetheless, for the works in chapters 9 and 10, we take
the right approach for the covariance matrix in their respective catalogs, which results are in
concordance with the associated literature.

We want to remark again on the importance of the techniques used in the analysis from the
construction of the signal until the information inference. For example, it was an enormous
effort to pass from approximately 560, 000 galaxies to just one number α. As we saw, this
requires a lot of computation time in data mining. Which motivates us to understand the
algorithms involved, but also look for others more efficient and faster. Therefore, we can
obtain our observables with a fair inference in the least time, and also we can find new ones.

Without counting the errors in the estimation of the covariance matrix for the New York
University Value-Added Galaxy Catalog, detailed and analyzed in section 7.4. We can agree
that the inference with a deep learning-based algorithm can give us competent results, which
is advantageous, especially for models that require a lot of computation power as simulations
or numerical integration, This opens a window for those who could not be tested entirely
with traditional inference algorithms. Nonetheless, the likelihood free inference is an open
research field, which needs to go deeper to recover many of the physical properties that give
us the traditional methods.

We take this as an invitation to research more techniques in the field that can help us with
the actual and new models, and that we do not only focus on the theory and how to test it
with data because it is a joint effort from several fields as we saw. Thus, we could obtain
new information that we ignored before, but also we can save a lot of time using efficient
methods, which is becoming important in the Big Data era.
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Also, it is essential to highlight the importance to combine data sets to make a better
inference. As we saw in chapter 8, the usage of the same geometrical observable fσ8 from
different surveys, combined with the evolution one H, can constrain and compare several
models of dark energy. Together with the right metrics of likeliness, like those used in that
chapter, it can help us to discard models or, in our case, to position the ΛCDM model as
the preferred. However, it is always important to test more metrics, especially in data where
production assumes some reference cosmology. And also, test with other combinations of
data.

We also note that we can split the information based on physical properties for the same
survey, as we did in chapter 9. Then, we could use those tracers to obtain a better constrain
of cosmological information. This is remarkable because it follows the line of making a
significant impact without spending new resources. In this case, it is complemented by the
physical background that carries the targets. Nonetheless, we need to test in other catalogs
and try with more tracers since their bias is fundamental to constrain some theories of
structure evolution. What a challenge because if the splitting is disjoint, we could decrease
the signal to noise ratio in our estimations. Besides, we need to take into account the
astrophysical effects in the model to better understand the constraints.

We also want to remark that better constrains in galaxies clustering require a reliable
estimation of the covariance matrix, which, as we highlighted in section 7.4 and chapter 10,
is not trivial. As observers inside our Universe, we can not compute precisely an ensemble
of Universes, but we can at least try the best possible. And it requires the consideration of
all the systematics, astrophysical effects, and cosmological properties to construct a feasible
estimation from simulations. On the other hand, we can at least try to build that estimator
accessing only to a volume average. Still, we need to go deeper in models that contemplate
the cosmic bias not only by galaxies as dark matter tracers but also the cosmic bias due to
our average election, as we argued in chapter 4. Therefore, it is crucial to pay attention to
the research in these fields as in new galactic formation theories and evolution.

Finally, although the methods and analysis of this thesis were applied to Galaxy Cluster-
ing, we can expand the same ideas to other observables and problems that are not related to
Cosmology or Astronomy. The techniques presented were mostly developed to use in different
fields, and they represent an insight that multidisciplinary is the key to this kind of analysis.
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