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A DECISION-MAKING SYSTEM FOR MANAGING ELECTRIC VEHICLE FLEETS
SUBJECT TO MULTIPLE OPERATIONAL CONSTRAINTS

Electric Vehicles (EVs) are attractive candidates to reduce transportation’s environmental
impact. Nonetheless, their low driving ranges, high recharging times, and the poor recharging
infrastructure prevent their entire deployment. In this thesis work, we develop a strategy
to manage EV fleets for delivery purposes efficiently. The main objective is to find and
update the least-cost routes, charging plans, and departure times that allow an EV fleet to
visit all destinations, subject to several operational constraints and real-world conditions, a
problem known as the Electric Vehicle Routing Problem (E-VRP). The strategy consists of
splitting the operation into two stages: pre-operation and online operation. We calculate
initial routes in the pre-operation by solving an offline E-VRP (Off-EVRP). In the online
stage, the dispatcher updates the routes based on traffic state realizations and EVs’ state
measurements by solving an online E-VRP (On-E-VRP). We solve both E-VRP variants
with Genetic Algorithms (GA) using a novel encoding for each case. The overall strategy is
tested with two experiments. Results show that solving the Off-E-VRP provides good initial
route candidates, whereas solving the On-E-VRP can improve the operation and service
quality. Finally, the developed decision-making system enables the fleet to fulfill the delivery
purpose efficiently.
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A DECISION-MAKING SYSTEM FOR MANAGING ELECTRIC VEHICLE FLEETS
SUBJECT TO MULTIPLE OPERATIONAL CONSTRAINTS

Los vehículos eléctricos (EVs) son candidatos atractivos para reducir el impacto ambiental
del transporte. Sin embargo, sus reducidos rangos de conducción, altos tiempos de recarga,
y la pobre infraestructura de recarga hace difícil adoptarlos. En esta tesis, se desarrolla una
estrategia para operar EVs en despacho eficientemente. El objetivo es encontrar y actualizar
sus rutas de mínimo costo, planes de recarga, y tiempos de partida para visitar todos los
destinos cumpliendo restricciones de operación en condiciones del mundo real. Tal problema
se llama Electric Vehicle Routing Problem (E-VRP). La estrategia consiste en dividir la op-
eración en pre-operación y operación online. En pre-operación, se calculan las rutas iniciales
resolviendo un E-VRP offline (Off-EVRP). En operación online, se actualizan las rutas según
realizaciones del tráfico y mediciones del estado de los EV resolviendo un E-VRP online (On-
E-VRP). Ambas variantes del E-VRP son resueltas con algoritmos genéticos (GA) usando
una codificación novedosa para cada problema. La estrategia completa es probada con dos
experimentos. Los resultados muestran que resolver el Off-E-VRP permite obtener buenas
rutas iniciales, mientras que resolver el On-E-VRP mejora la operación y calidad del servicio.
Finalmente, el sistema de decisión permite satisfacer los requerimientos eficientemente.
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Chapter 1

Introduction

1.1 Context and motivation
In the last decade, Electric Vehicles (EVs) have experienced enormous sales growth. The main
reason is that EVs are one of the most promising alternatives to replace Internal Combustion
Engine Vehicles (ICEVs), which highly depend on the oil market and significantly contribute
to Greenhouse Gases (GHG) emissions [1]. Furthermore, the transportation sector is among
the most contaminant sectors: it is responsible for nearly 28% of the total GHG emissions
in developed countries [2]. As a result, numerous governments have implemented strategies
to penalize excessive pollution due to misuse of conventional means of transport and benefit
sustainable projects. In that context, fleet owners are considering more and more the adoption
of EV fleets.

Different types of EVs include Plug-in Hybrid Electric Vehicles (PHEVs), Fuel Cell Electric
Vehicles (FCEV), and Battery Electric Vehicles (BEVs) [3]. All of them possess multiple
benefits to lower GHG emissions but add several drawbacks that cannot be ignored. For
instance, let us briefly examine the benefits of BEVs, which are the EV type considered in
this thesis work. BEVs propel themselves using an electric motor. As a result, they do
not emit GHG locally [3]. The motor is powered by a large battery, which can be recharged
using renewable energies. The latter is a desirable feature because a complete free-of-emission
power grid could allow fleet owners to lower their GHG emissions substantially. Besides, BEVs
for delivery purposes usually come in small sizes and produce an almost noiseless operation
[4]. That is of great interest in urban areas, where the space usage and social impact of
transportation is significant.

On the other hand, an entire adoption of BEV fleets is still not possible due to their high
purchasing costs and the lack of efficient management systems. The battery is the main
responsible for high EV prices [4][5]. Although battery prices have lowered considerably in
the last decade, they have not reached the costs to make EVs fully competitive. Besides,
their capacity is still not enough to make EVs achieve similar driving ranges to ICEVs [2][6].
Therefore, EVs must frequently restore the driving range by recharging their battery. The
latter implies that EVs regularly divert to Charging Stations (CS) to make a recharging
operation. This operation can take a substantial time, whereas the relationship between
this time and the recharging amount is nonlinear [7]. Such different behavior makes most
conventional routing techniques very difficult to adapt, if not impossible, in an EV fleet
context [3][8].

Vehicle routing is a well-researched subject in the Operations Research (OR) field. This
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subject has its foundations on the well-known Vehicle Routing Problem (VRP). This problem
aims to find the least cost routes each vehicle in a fleet can follow to serve a finite number
of customers, considering several operational constraints [9]. Due to the vast diversity of
operational scenarios, a great variety of VRP variants exists. For example, a widely studied
variant is the Capacitated VRP (CVRP) [10], where vehicles can carry up to a maximum
weight. Another widely studied variant is the VRP with Time Windows (VRPTW) [11],
where vehicles can only serve customers at certain times of the day. Of course, in some cases,
one may require addressing both variants simultaneously: the Capacitated VRP with Time
Windows (CVRPTW) [12].

The VRP plays a crucial role in the last mile of the supply chain. The distribution
process is one of the most determinant elements of the whole delivery process: direct contact
with customers. Enabling vehicles to provide a high-quality operation offers an immediate
improvement in the business marketing and the attraction of new customers [13]. Besides,
an efficient handling of the fleet during the operational stage leads to lower operational
costs and externalities vastly. Fleet owners should address these last two elements because
transportation is the most expensive component in a logistics system [13].

Nonetheless, solving the VRP is a challenging task. The VRP belongs to the family of
NP-Hard problems, which implies that it cannot be solved in polynomial time [14]. As a
result, exact algorithms, i.e., algorithms that ensure finding the optimum, increment their
computational time exponentially as the problem size grows. Such exponential growth of
computational time introduces a significant obstacle in practical applications. Fleet owners
frequently require to solve the VRP in short periods considering large fleets. Therefore,
several exact methods become impractical in real-world scenarios.

To solve large VRP instances in short periods, researchers develop heuristics. A heuristic is
a practical method that approximates the optimum in much less time than an exact algorithm
[15][16]. In most cases, researchers tackle a particular VRP variant and develop a specialized
heuristic to solve it. However, these heuristics could be impossible to apply in other VRP
variants that introduce new elements. The latter reason motivates the use of metaheuristics.

A metaheuristic is a special kind of heuristic that intends to solve difficult optimization
problems [16]. Metaheuristics are not designed for a particular optimization problem, making
them easy to adapt to new VRP variants. Besides, metaheuristics are commonly designed to
explore the search space and prevent them from getting stuck in local solutions. The latter
makes them suitable for problems with high nonlinear behavior. Among the most famous
metaheuristics to solve the VRP we find Evolutionary Algorithms (EA) [17], Tabu Search
(TS) [18], Variable Neighborhood Search (VNS) [19], Simulated Annealing (SA) [20], and
Ant Colony Optimization (ACO) [21].

The significant research devoted to solve the VRP has provided, without doubt, excellent
solution methods for it. Nonetheless, standard VRP formulations only consider ICEVs, which
have long driving ranges. Restoring this driving range is easy because refueling is very fast,
and refueling stations are available almost everywhere [2]. That is not the case for EVs.
As mentioned before, these vehicles have a short driving range, which makes them require
restoring their driving range more regularly than ICEVs. The latter is achieved by recharging
the battery at a CS, equivalent to refueling an ICEV. However, the battery recharging process
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is nonlinear and can take a long time. [2][4].

When addressing EV fleets, the problem is called the Electric Vehicle Routing Problem
(E-VRP) [22][23]. This VRP variant addresses typical VRP constraints, but it incorporates
the new constraints EVs introduce. The main difference between the classical VRP and the
E-VRP is that the E-VRP should allow EVs to detour to CSs to recharge their battery if not
enough energy is available. This behavior is similar to a refueling process, with the difference
that the battery recharging process heavily affects the operation due to its long duration.
As a result, most classical VRP variants and their corresponding solution methods are not
suitable in an EV context [23][8].

In most recent E-VRP works, authors agree that considering nonlinear charging functions
[7][24], realistic EV energy consumption models [25], and traffic networks’ realistic behavior
[26] provide better solutions for efficiency and robustness in real-world applications. How-
ever, most E-VRP works only address a few limitations. For example, back in 2014, [22]
considers time windows and partial recharging, but assuming a linear charging function and
constant energy consumption. One year later, [27] extends the previous work considering a
realistic energy consumption model but maintaining the linear charging function. Later, in
2017, [7] addresses the nonlinear behavior of the charging function. However, the authors
dropped several constraints, such as time windows, EVs capacity, and realistic energy con-
sumption models. Just recently, in 2019, [28] couples the nonlinear charging function with
time windows.

Despite the recent E-VRP research achievements, it is still necessary to explore new so-
lutions methods and improve formulations to address more realistic elements. According to
the survey conducted in [23], most E-VRP works only tackle a small set of limitations. Fur-
thermore, there is still required to investigate more case studies, dynamic traffic conditions,
uncertainty in travel times, integration of nonlinear charging functions, accurate estimation
of energy consumption, adaptive routing techniques, and CS capacities.

This thesis work attempts to design, implement, and test with a simulation environment
a strategy to manage EV fleets efficiently for delivery purposes. The approach consists
of splitting the operation into two stages: pre-operation and online. In the pre-operation
stage, the system calculates the initial routes of EVs. Then, in the online stage, the system
recalculates the routes according to measurements from the traffic network and EV’s states.
For each stage, we develop an E-VRP variant and solve it with GA. These E-VRP variants
incorporate several real-world elements, realistic EV features, and constrained recharging
infrastructure in the same problem.

The first variant is an offline version of the E-VRP (Off-E-VRP), which intends to assign
customers and calculate the initial routes of each EV efficiently. We design two GAs to
solve this problem: αGA and βGA. αGA determines the customers each EV will serve and
calculates the initial routes, whereas βGA only works when customers have already been
assigned. Therefore, both GAs can be used together to solve the Off-E-VRP. First, use
αGA, and then improve the solution with βGA.

The second variant is an online version of the E-VRP (On-E-VRP). This variant aims to
update the routes of EVs during operation according to their state and the traffic network
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state. As a result, the On-E-VRP provides a closed-loop method to manage the fleet, where
control actions are the new routes of EVs. To solve the problem, we develop onGA, a GA
capable of updating the routes based on measurements from the traffic network and EVs’
state.

To test the Off-E-VRP case, we generate several artificial instances of the problem and
solve them with αGA and βGA. The instances vary in size; thus, they allow us to know how
well GAs perform in different complexity scenarios. Using measurements from one of Santiago
de Chile’s most congested areas, we develop a real-world instance to test both Off-E-VRP
and On-E-VRP over realistic scenarios. In our case, we only use the real-world instances to
test the On-E-VRP because they provide statistics of travel times and energy consumption
between nodes. The latter allows us to simulate a dynamic and stochastic traffic network,
one of the key reasons to adopt an online methodology.

1.2 Hypotheses
According to the previous discussion, the following hypotheses will be tested:

1. Solving a properly formulated Offline Electric Vehicle Routing Problem
(Off-E-VRP) enables the fleet to serve all customers efficiently. A proper
formulation of the Off-E-VRP must formally define the operation of EVs, i.e., the se-
quences of nodes, the charging plan, and the departure time from the depot. We can use
those decision variables to calculate an operational cost and check constraints achieve-
ment. Due to the high complexity of the problem, we assume the optimal operation
is hard to find. Therefore, we will say that properly solving the Off-E-VRP implies
finding a solution such that its cost is low compared to other solution candidates, and
it satisfies all operational constraints.

2. An adequately designed Genetic Algorithm can solve the Off-E-VRP. The
GA design includes developing an encoding that stores the operation of all EVs in
the fleet, genetic operations, and a proper GA workflow. Genetic operations must be
suitable to explore for new solution using the proposed encoding. Finally, the GA will
provide the following decision variables: the sequence of nodes, the charging plan, and
the departure time of all EVs. These decision variables are such that they properly
solve the Off-E-VRP.

3. It is possible to develop an online method that updates routes in-operation
to improve the operational performance and service quality of the fleet
operation. In this hypothesis, we assume that EVs operate in a dynamic and stochastic
traffic network. Therefore, the routes obtained after solving the Off-E-VRP may end up
having a different performance according to traffic realizations. Developing an online
method to update routes consists of properly formulating an Online Electric Vehicle
Routing Problem (On-E-VRP) that considers these new traffic realizations. The On-E-
VRP will use measurements from the traffic network and EVs to continuously calculate
new routes with the same criteria used by the Off-E-VRP. If EVs follow those routes,
we will obtain lower costs (performance improvement) and satisfy a higher number of
constraints (service quality improvement).
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4. An adequately designed GA can solve the On-E-VRP. In this case, EVs are
operating; thus, fleet size may vary as some EVs finish their operation. Therefore, the
GA design must account for a proper encoding that stores the operation of remaining
EVs, their genetic operations, and the GA workflow. The decoding mechanism will
receive the initial positions and states of EVs, and it will use them to produce the new
routes. The result the GA gives are new routes with equal or better performance than
the original routes.

1.3 Objectives

1.3.1 Main Objective
The main objective of this thesis work is to design, implement, and test a strategy to manage
EV fleets efficiently. This strategy will split the operation into pre-operation and online
operation. In the pre-operation stage, the system will generate initial routes for each EV. In
the online stage, the system will update the routes and provide a closed-loop control of the
fleet.

1.3.2 Specific Objectives
To achieve the main objective, the following specific objectives are considered:

1. To formulate a new offline variant of the E-VRP (Off-E-VRP) that meets the delivery
requirements while incorporating decisive real-world elements and EV limitations.

2. To design, develop, and test a solution method to solve the Off-E-VRP.

3. To formulate an online variant of the E-VRP (On-E-VRP) that allows the dispatcher to
update the routes according to real-time measurements while accomplishing the same
delivery requirements as the Off-E-VRP.

4. To design, develop, and test a solution method that solves the On-E-VRP.

5. To test the performance of the decision-making system in both operational stages.

1.4 Thesis outline
The thesis structure is as follows. Chapter 2 provides an insight into EVs and the VRP.
Both lead to a proper definition of the E-VRP. Chapter 3 reviews GAs and their applications
to the VRP. Chapter 4 states both the offline and online E-VRP addressed in this work.
Several other critical elements are defined, such as the methodology to prevent exceeding CS
capacities, the EV energy consumption model, and the EV state-space model used by the
optimization model. Chapter 5 introduces the solution framework. That is, the main GA
algorithms in charge of solving both offline and online problems. Chapter 6 describes the
online system. Chapter 7 conducts a simulation test in two kinds of instances: a real-world
instance and artificially-generated instances. Finally, Chapter 8 concludes about the work
and prospective research.
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Chapter 2

Electric Vehicles and the Vehicle Routing
Problem

2.1 Introduction
This chapter provides a review of key elements regarding EVs and the VRP. For EVs, we re-
view several aspects that make them attractive for fleet owners, and the important drawbacks
that are still blocking their complete adoption. As batteries are presumably the components
that impose these limitations, an entire section is dedicated to review them. We also provide
a review of the Shortest Path Problem (SPP) and the classical VRP. These two problems are
highly related. Finally, a review of several E-VRP variants and solution methods is provided,
which intends to guide the reader in the comprehension of the problem.

2.2 Electric Vehicles
According to [29], it is common to consider three EV categories: Fuel Cell Electric Vehicles
(FCEVs), Plug-in Hybrid Electric Vehicles (PHEVs), and Battery Electric Vehicles (BEVs).
A brief review of these three categories is presented in the following subsections. More
emphasis is put into BEVs, as they are the EV type addressed in this thesis work.

2.2.1 Fuel Cell Electric Vehicles
A FCEV uses a fuel cell to generate electricity with hydrogen. This energy is used to either
propel the vehicle, or recharge a battery. These vehicles have a battery which can store
energy from regenerative braking or assist the fuel cell when it cannot handle great load
variations. In comparison with BEVs and PHEVs, they can be recharged very fast. However,
they are less efficient than BEVs and PHEVs, and have high purchasing costs[29].

2.2.2 Plug-in Hybrid Electric Vehicles
A PHEV have both an electric motor and a internal combustion engine motor. They can
choose which motor to use to propel themselves and, in comparison to BEV, the driving range
a PHEV can reach with the electric battery is much less. However, they accomplish longer
driving ranges thanks to the combustion engine motor. PHEVs are considered transition
vehicles, as battery technology development is still ongoing[30][29].
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2.2.3 Battery Electric Vehicles
A BEV obtains the energy from a large battery. This battery provides energy to power
an electric motor, which propels the vehicle. In addition, the battery supplies energy to
all external components of the vehicle. BEVs possess plenty of attractive features. For
example, BEVs are highly power efficient, they do not produce local Greenhouse Gasses
(GHG) emissions, and their battery can be recharged from renewable sources. Nonetheless,
BEVs face several challenges which prevent them to become a commercial standard.

Several works agree that the short driving range of BEVs is their largest entry barrier
[4][2][29]. Their driving range oscillates among 160 to 240 km, which is almost a quarter
the driving range of Internal Combustion Engine Vehicles (ICEVs) [23]. To achieve higher
distances, BEVs can recharge their battery during operation in a Charging Station (CS).
However, this process introduces several new challenges. A significant issue is the time it
takes to recharge the BEV battery. According to [2], recharging a BEV battery could take
from 20 min up to several hours. This high time requirements lead to less time to accomplish
operational requirements.

Another issue arises from the available recharging infrastructure. Currently, several highly
populated areas around the world do not have a proper public recharging infrastructure.
Therefore, fleet owners must decide wether or not to invest in new recharging infrastructure.

Batteries are a critical to enable the adoption of EVs. In recent years, there has been a
substantial increment on the production of Li-Ion batteries thanks to a reduction in their
price, and an increment of their capacity. Nevertheless, Li-Ion-based EVs are not capable of
reaching ICEVs driving ranges.

2.3 Batteries: Basic Concepts and Definitions

2.3.1 Techonology Types and Applications
The most common battery technology for passenger and delivery purposes is Lithium Ion
(Li-Ion) [4]. Compared to lead acid and nickel metal hydride batteries, Li-Ion batteries
posses higher energy density, higher power density, longer lifespan, and low memory effect
[29]. Figure 2.1 shows a comparison among several battery technologies. Regarding current
battery developments, it is expected that new battery technologies such as Lithium-Sulfure
(Li-S) and Lithium-Air (Li-Air) increase the current energy density of Li-Ion batteries up to
three times. Nonetheless, there are still major improvements to overcome in order to make
these technologies commercially feasible.

2.3.2 State of Charge (SOC)
The State of Charge (SOC) is a percentage representation of the current available energy in
the battery [31]. Let us consider that the total EV battery capacity is Q, and that the EV
battery can deliver energy up to Eptq at instant t. Thus, the SOC is defined as
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Figure 2.1: Expected developments in battery technology (adapted from [4] c©2013 CE Delft)

SOCptq “
Eptq

Q
(2.1)

Good estimation and forecasting of the SOC is crucial to enable high-quality decision-
making in path planning of EVs[29]. Nonetheless, the SOC is not directly observable. Thus,
it can be inferred from other observable measurements. However, because many sensing
systems are in the presence of noise, and there is a non-linear relationship among the battery
parameters, real-time filtering is usually used to estimate the SOC [31].

2.3.3 Battery Degradation: Factors and Operation Recommendations
The battery is the most expensive single component of an EV. Therefore, replacing it should
be studied carefully. The replacement of the battery is a direct result of its degradation. The
latter represents a reduction of the total energy the battery can store, which occurs by the
formation of a Solid Electrolyte Interface (SEI) on the anode’s surface and the consumption of
lithium ions through the reaction. These effects cause power and capacity fade, respectively
[3].

To lower battery degradation, one can apply policies that diminish the impact of the
sources that produce degradation. Table 2.1, extracted from [3], presents a summary of
cause and effect sources of battery aging. There, it can be noticed that some actions enhance
the effect of degradation. In particular, high and low SOC levels are factors that influence
battery degradation in many cases.

Several studies have shown that operating batteries in levels near empty or near full leads
to quicker battery aging. In [32], the authors study degradation considering different SOC
policies in Multi-Service Portfolios. A SOC policy consists of constraining the SOC to operate
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Table 2.1: Overview of Li-Ion battery anode aging mechanisms. Reprinted from Journal of
Power Sources, Vol. 147, Vetter et al., Ageing mechanisms in lithium-ion batteries, 269-281,
c©(2005), with permission from Elsevier.

between ranges narrower than zero to one, e.g., from 0.2 to 0.8. Their results, shown in Figure
2.2, show that some policies last longer than others. Besides, the policy 0 to 1 is not the best
policy because the battery degrades faster than other policies and, according to the economic
study they conduct, long-term costs are higher than other policies.

[30] provides several recommendations to assess battery management in the context of
EVs. Among these recommendations, they define the ideal SOC working range in Figure 2.3,
where they conclude that 20% to 90% is an ideal policy. A similar result is obtained by [3],
where they use a battery degradation model to study the impact of several variables.

2.4 The Shortest Path Problem
Navigation systems attempt at determining a path to travel from one location to another
location[33]. In real life, there are numerous alternatives to do that. Yet, it is quite straight-
forward that some of these alternatives are better than others. The cost of a path is a measure
of the effort one must put to travel from the start to the destination. For example, the path
cost might refer to the travel time, energy consumption, distance, or any other cost indicator
between start and destination.

The problem of finding a path that minimizes its cost is called the Shortest Path Problem
(SPP). There are several SPP variants; however, this section focuses on the SPP from a
specified vertex to another vertex. To provide a more rigorous understanding of this problem,
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Figure 2.2: Energy capacity degradation
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Figure 2.3: Ideal SOC range (adapted
from [30] c©2018 IEEE)

we present a classical formulation extracted from [34] (Chap. 11). Consider the weighted
directed graph (digraph) D “ pV,Aq, where V is the vertex set, and A is the arc set. In a
road network, vertices denote road intersections, whereas arcs denote the links among those
intersections.

The digraph is described by an n by n cost matrix C “ rcijs, where each cij is the cost of
traveling from vertex i to vertex j. If i “ j, then cij “ 0. And, if there is no link between
i and j, then cij “ `8. A path P is a sequence of adjacent arcs; thus, the total cost of P ,
CP , is the sum of all arc costs in P . Consider the start vertex s and the terminal vertex t.
The problem is determining a path P ˚ such that its cost CP˚ is minimum.

In most cases, the arc costs do not satisfy the triangle inequality. That is, cik ` ckj is
not necessarily greater than cij for any i, j, k P V . This assumption implies that the optimal
path among two adjacent vertices may not be the direct link between them. In real road
networks, this is equivalent to deviate from the main road to reach the destination.

As the solution of the SPP is nontrivial, a smart solution method is required. Among all
SPP solution algorithms, perhaps the most famous one is Dijkstra’s algorithm. The latter
gained popularity due to its high efficiency in solving the SPP with nonnegative arc costs.

Although the classical SPP applies to several practical problems, it neglects various real-
world elements. For example, if the cost cij is the travel time between two geographical
points i and j, it is expected that, at certain times of the day, cij increases due to traffic at
rush hours. Hence, the shortest path may differ at instants t0 and t1 if t0 ‰ t1. When cij
depends on time, the problem is known as Time-Dependent SPP (TDSPP). Another variant
is the Stochastic SPP (SSPP), where the arc costs are uncertain, i.e., they have a probability
density function (pdf). Both TDSPP and SSPP can be merged to create the Stochastic
Time-Dependent SPP (STDSPP).
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2.5 The Vehicle Routing Problem (VRP)
The Vehicle Routing Problem (VRP) is one of the most significant problems in the Operations
Research (OR) field. Essentially, the VRP aims at finding an optimal route scheduling for
a vehicle fleet to serve a finite set of geographically-scattered customers, subject to several
operational constraints [35][36][9]. Although the VRP is a widely-known problem, neither a
unique formulation nor a unique solution method exists. In reality, VRP formulations and
their solution methods depend on the nature of the problem to address.

Several surveys and studies [9][37][23] cite the 1959 article by Dantzig and Ramser, The
Truck Dispatching Problem [38], as the first VRP article. There, a fleet of trucks must
deliver gasoline from a central depot to several gas stations. Dantzig and Ramser modeled
the problem as an optimization problem and developed a method to solve it. In the following
years, several studies devoted to solving the VRP were conducted. These new solutions
methods provided better solutions and were more efficient than the original method developed
by Dantzig and Ramser.

In addition to enhanced solution methods, new variants of the problem were developed.
These variants arise as new cases where operational constraints differ from the original VRP,
and new cases with more realistic elements. Besides, improvements in computational capacity
and communications allowed researchers to explore more ambitious VRP formulations and
their corresponding solution methods. Currently, more than 60 years have passed since the
first VRP article, and more than a thousand studies where the VRP is the main topic have
been published[37][35].

To provide a better understanding of the problem, we present a classical VRP formulation.
This formulation is extracted from [9], which provides an extensive review of several classical
VRP formulations. Consider the complete graph G “ pV, Aq, where V “ t0, . . . , nu is
the vertex set and A “ tpi, jq : @i, j P V u is the arc set. The vertices, also called nodes,
are geographical points such that vertices i “ 1, . . . , n represent customers, and vertex 0
represents the depot. Each arc pi, jq P A is associated a nonnegative cost cij. This cost
represents the cost a vehicle spends when traveling from i to j. If G is a directed graph,
then cij ‰ cji, i.e, the cost matrix is asymmetric, and the problem is called asymmetric VRP.
Otherwise, the problem is called symmetric VRP. In most practical cases, the cost matrix
satisfies the triangle inequality,

cik ` ckj ě cij @i, j, k P V.

The latter requirement states that the arc pi, jq is always the most convenient way to travel
from i to j. Notice that, if the path from i to j is equal to the shortest path, the triangle
inequality holds for pi, jq. The same occurs when the cost is proportional to the Euclidian
distance between i and j. The latter also implies that the problem is symmetric.

Each customer i for each i “ 1, . . . , n requires a known nonnegative demand di, whereas
the depot has an imaginary demand d0 “ 0. In the depot, there is a set of m identical
vehicles. These vehicles deliver all requirements the customers demand. In most realistic
scenarios, vehicles have a maximum capacity C such that C ě di for each i “ 1, . . . , n.
When the latter constraint is considered, the VRP is also called Capacitated VRP (CVRP).
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Considering all the above, the VRP is defined as the problem of finding a collection of
exactly m routes (one for each vehicle) of minimum cost. The total route cost is the sum of
all arc costs in that route. Besides, the routes are such that each vehicle starts and ends at
the depot; each customer is visited exactly once by a vehicle; and the sum of all demands
each vehicle transports does not exceed capacity C.

The above VRP formulation can be extended by adding more operational constraints,
which produce a new VRP variant. For example, a popular VRP variant is the VRP with
Time Windows (VRPTW). In this variant, customers have a service time (in addition to its
demand), and a time interval where the operation can take place. Sometimes, the vehicle
arrives at a customer before its time window begins. In that case, the vehicle must wait until
the operation can take place.

In addition to more operational constraints, the VRP can include several real-world ele-
ments. For example, instead of a fixed arc cost, consider a time-dependent arc cost. This time
dependency allows the VRP to address evolving traffic networks where peaks hours occur
at certain times of the day. Other real-world elements can be addressed, such as road net-
work stochasticity, dynamic and stochastic customer demands, online route updates, among
many others. Including several real-world elements and online route updates may lead to a
reduction of operational costs and a vast improvement of service quality.

The VRP is simple to formulate, yet very difficult to solve. The simplest VRP version, the
CVRP, is a generalization of the well-known Travelling Salesman Problem (TSP). The latter
problem is NP-Hard. As a result, the CVRP and all variants that generalize it are NP-Hard
[14]. This property implies that the problem cannot be solved in polynomial time. In fact,
as the problem size increases, the required time to solve it grows exponentially. Therefore,
exact methods, i.e., methods that find the global optimum, can take an enormous amount
of time to solve large problem instances. Besides, when the VRP incorporates real-world
elements, the complexity grows even more.

Fleet owners may require to solve large VRP instances in short periods. This requirement
makes several exact methods unpractical. As a result, several heuristics to solve the VRP
have been introduced. A heuristic is an algorithm that approximates the optimum faster than
exact algorithms[39]. Therefore, they are usually employed to solve large VRP instances or
very complex real-world problems. However, the development of a heuristic usually aims at
solving a very particular problem. Consequently, the heuristic may not work with a new
problem variant.

We refer to [9] as an extensive review of exact solution methods for classical VRP for-
mulations. For a review of metaheuristics, we refer to [39]. In this thesis work, the solution
scheme employs a GA to solve the Electric VRP. Chapter 3 provides a review of GA to solve
the VRP, whereas following Section 2.6 introduces the so-called Electric VRP (E-VRP).
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2.6 The Electric VRP (E-VRP): Variants and Solution Ap-
proaches

2.6.1 What makes the E-VRP so different from the VRP?
As reviewed in the previous section, in the last 60 years, several VRP variants have been
addressed, and plenty of high-quality solution methods have been developed. Nonetheless,
the majority of these works consider ICEVs only. The latter have large driving ranges, and
a refueling them is quite fast and easy, as there are sufficient gas stations available almost
everywhere. On the other hand, the driving range of EVs is nearly a quarter of the driving
range of ICEVs.

To achieve longer driving ranges, EVs can recharge the battery in operation. Unfortu-
nately, the recharging infrastructure is not as spread as the refueling infrastructure, and the
recharging time of an EV battery could be substantial. As a result, a considerable portion of
the operation may be spent by recharging operations, whereas CS availability is not ensured
[8][23].

Because of the different operational behavior of EVs, most classical VRP formulations
and their respective solution methods are hard –if not impossible– to adapt in the context of
EV fleets. Consequently, the Electric Vehicle Routing Problem (E-VRP) emerges as a VRP
variant where all vehicles are electric. That is, the E-VRP must address all classical VRP
operational constraints plus all constraints introduced by EVs.

2.6.2 Variants and State of the Art
This section provides a brief review of some remarkable E-VRP variants and recent develop-
ments that concern this thesis work. For a detailed review of E-VRP variants and solution
approaches, we refer to the survey conducted in [23].

According to [8], the first E-VRP work was published in 2011 by [40]. In that study,
the authors introduce the Recharging Vehicle Routing Problem (RVRP), which considers
the operation of EVs as an extension of the distance-constrained VRP with time windows.
EVs can recharge their battery at customer locations using fast recharging and assuming a
constant recharging amount. Their results show that time windows are a critical constraint
when EVs have a maximum driving range and high recharging times.

As of 2012, the study in [41] makes another remarkable contribution. It introduces the
Green VRP (GVRP), a VRP variant that tackle Alternative Fuel Vehicle (AFV) fleets. This
variant is the first to consider vehicle detours to refuel them. However, it does not address
neither load capacities nor time windows. To solve the problem, the authors develop two
heuristics to exclusively solve the G-VRP: the Modified Clarke and Wright Savings (MCWS)
algorithm and the Density-Based Clustering Algorithm (DBCA). Their results show solutions
highly depend on travel distance and the refueling behavior. This study is regarded as a
milestone for the future development of more sophisticated VRP variants that tackle AFV
fleets, where one of the most prominent trends has been the development of the E-VRP.
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The study conducted in [22] in 2014 is the first one to introduce the E-VRPTW with
recharging times that depend on the SOC level entering a CS. In that case, EVs recharge
an enough amount to return to the depot. Recharging times are calculated using a linear
approximation. The authors develop a mixed-integer program, which is solved using Variable
Neighborhood Search (VNS) and Tabu Search (TS). Their solution method is capable of
solving up to 100-customer instances.

Mixed fleets of EVs and ICEVs have also been addressed. The case in [42] considers
that scenario in a Capacitated E-VRP with Time Windows (E-CVRPTW) variant. They
also tackle different charging technologies to prevent incompatibility between EVs and CS,
and constrain the SOC to operate within a safe zone. The latter policy aims at prolonging
the total lifespan of the EV battery. As other studies, a linear approximation estimates
recharging times. The authors develop a Charging Routing Heuristic (CRH) and a new
Inject-Eject Routine-Based Local Search (IELS) to solve the problem. The CRH generates
initial solutions, and IELS improves them. Their results are applied to instances with up to
500 nodes successfully.

In [27], they extend the work in [22] by assuming a mixed fleet and a realistic EV con-
sumption model. The latter allows the problem to estimate energy consumption accurately.
Recharging times are estimated with a linear function. The authors use an Adaptive Large
Neighborhood Search (ALNS) algorithm to solve the problem. Their results show that the
solution methods work with instances of up to 75 customers. They conclude that real-world
modeling of energy consumption and recharging times are crucial for future E-VRP develop-
ment. Besides, the vehicle load is relevant as it diminishes when

The work in [7] introduces a new level of realism to the E-VRP. The authors consider a
nonlinear charging function that allows the problem to estimate recharging times accurately.
This new problem variant is known as the E-VRP with Nonlinear charging function (E-
VRPNL). The authors consider three recharging technologies and the possibility of doing
partial recharging. On this occasion, the cost function also minimizes the recharging time,
allowing EVs to spend the least amount of time in CSs. To solve the problem, they split the
solution into sequencing (order of customers) and charging (inserting charging operations);
the latter has its own name: Fixed-Route Vehicle Charging Problem (FRVCP). Their results
show that up to 12% of vehicles recharge in the nonlinear zone, and most routes have multiple
recharging operations.

In [43], the authors tackle a practical E-VRP problem. Their variant considers the E-
CVRPTW, time-dependent travel times, and a real traffic network of Beijing, China. They
provide a Dynamic Dijkstra algorithm to calculate the shortest path, considering the time
dependency of travel times. They develop a 50-customer instance using the real data and
solve it with a Genetic Algorithm (GA). Their solution approach finds feasible solutions in
about three hours. The study is extended in [43], where the problem adds a realistic energy
consumption model. The problem is also solved with a GA. They show that the energy
consumption is highly dependent on traffic profiles.

In [44], the authors develop a routing system for an airport shuttle. Their system addresses
a charge scheduling at the depot, considering assigned routes. The same SOC constrain policy
as [42] is applied in this work. They assume that a set of charging operations can take place
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in a programming horizon. They also assume a closed-loop dispatcher that is capable of
deviating vehicles to public CS in case they do not have enough energy to come back to the
depot. To solve the problem, the authors use a Differential Evolution (DE) scheme. Their
implementation is applied to a 6-vehicle fleet successfully.

In all of the above-reviewed works, E-VRP formulations address multiple CS visits by
copying them. That is, if a set F represents a set with s CS, then another set F 1 contains
β ¨ s dummy CS, where β is the number of CS replicates. Most works do not explain how to
set the value of β. According to [7], choosing β is a nontrivial task, and its value affects the
complexity of the problem substantially. To address this latter issue, [7] develops a simple
iterative heuristic. It consists of starting with β “ 0, then increase β by one, and repeat until
a time limit is reached (they set a maximum time of 100 hours) or the cost function fp¨q is
such that fpsβq “ fpsβ´1q, where sβ are solution candidates assuming β.

The heuristic developed by [7] may be useful in several applications. However, as they did
not develop an exact algorithm, their solutions may differ sometimes; therefore, their optimal
β may vary as well. In most recent works, [28] and [24] aim at improving the formulation of
the E-VRPNL introduced by [7] by addressing the CS copies issue. [25] tackles the problem
with CS Paths (CSP). A CSP is a possible detour an EV may follow to visit a CS. That is,
given two non-CS nodes i and j, the corresponding charging path starts at i and finishes at
j, and it contains a sequence of CS. The latter sequence could be empty. Using CSPs, [24]
develops an arc-based formulation and adapts the FRVCP to that formulation. CSPs are
calculated before solving the actual problem. To solve the FRCVP (subproblem of the E-
VRPNL), the authors develop exact and heuristic algorithms. Their results show that the CS
copies approach may lead to suboptimal solutions because good candidates are eliminated, or
infeasible solutions are found. They also provide new BKS to the instances created by [7] in
less computational time. In [28], the authors develop a very similar concept, but considering
only one CS in the CSP and time windows. They adapt the instances created by Solomon
by introducing a proper charging function. Their results show that their solution is suitable.
Besides, their solution method is capable of finding current BKS.

Few studies have addressed the CS capacity problem. In particular, [25] studies the impact
of limiting the capacity of some instances provided by [7]. They develop three new E-VRPNL
models that are capable of tracking CS capacities. Two of them use dummy copies of CS,
while the third one uses a CSP approach. They develop a two-stage heuristic to solve the
problem. Their results show that the problem is incredibly challenging, even for small-size
instances. Besides, they found that limiting CS capacities to 1 turns nearly 50% of the
feasible solutions by [25] into infeasible solutions. That percentage drops to 11% and 2%
assuming capacities of 2 and 3, respectively.

The survey conducted in [23] reports 78 E-VRP works as of 2019. Regarding their solution
approaches, the authors found that 17 studies develop exact methods. The rest develop
heuristics, where the three most common are ANLS, GA, and LNS. In most realistic cases,
GA tends to be more used. Regarding this metaheuristic, the authors found that most
implementations are not efficient. However, some GAs have proven to be competitive with
other heuristics by finding BKS for the E-VRPTW developed by [22].
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2.7 Discussion
In this section, the most significant benefits and drawbacks of EVs have been reviewed.
The review shows that EVs are a highly promising alternative to ICEVs to enable green
transportation in the public and private sectors. Most drawbacks come from battery-related
issues. Until now, most EVs are propelled with LiIon batteries, which provide driving ranges
of nearly a quarter the driving range of ICEVs, and their recharging time is substantial. As
the recharging infrastructure is not well developed yet, the probability that a CS is available
to provide recharging is low. Besides, the nonlinear behavior of the recharging process and
the energy consumption makes it critical to develop proper estimation mechanisms.

The E-VRP is introduced as a VRP extension that addresses EV limitations. Since the
latter pose several capacity constraints and nonlinearities, most classical VRP formulations
and their solution methods are almost impossible to adapt in an E-VRP context. Therefore,
a new research trend emerges dedicated to formulating and solving new E-VRP variants.

Most problems formulate the E-VRP as a MILP and solve it with a two-step heuristic.
Regarding population-based solutions, GA is the most common approach. However, most of
the GA implementations are poorly realized. Still, some works have successfully implemented
efficient GAs and provide excellent solutions to some E-VRP variants. The latter suggests
that GAs are suitable to solve the E-VRP, but they should be designed carefully.

To conclude, the review shows that most works tend to address just a few limitations of
EVs. To the best of our knowledge, no study addresses the following constraints in a single
formulation:

• Time-dependent travel times

• Limited CS capacities

• Nonlinear charging function

• Realistic EV energy consumption model

• Time windows

• Load Capacity

• Constrained SOC policy to take care of battery health

• Routes update based on real-time measurements of traffic and vehicle states.

Several studies agree that the above constraints are crucial to providing excellent decision-
making for EV fleets.
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Chapter 3

Genetic Algorithms: A Brief Review and
its Applications in VRPs

3.1 Introduction
Several practical problems require lowering costs or improving the performance of systems.
This performance can be modeled as a cost function representing how well the system op-
erates, assuming a certain operational point. The optimization problem aims at finding the
optimal point that maximizes or minimizes the cost function.

In the past decades, metaheuristics have become a popular standard to solve difficult op-
timization problems. This popularity is due to metaheuristics abilities to provide estimations
of the global optimum very fast. This goal is achieved using several random guided tech-
niques. This method accounts for finding the global optimum where multiple local optima
are present, and preventing high execution times due to combinatorial explosion.

Genetic Algorithms (GAs) belong to the family of Evolutionary Algorithms (EA). The
latter is based on the biological concept of evolution, where several individuals in a population
strive to survive throughout generations. Individuals undergo three well-known operations:
selection, crossover, and mutation. These operations allow EAs to improve the quality of the
population, thus finding better results.

Several works utilize GA and EA indistinctly. However, in this work, EAs involve several
other techniques, such as Differential Evolution (DE), Genetic Programming (GP), among
others. As the main solution approach for the E-VRP is a GA, the only emphasis is put into
this kind of algorithm.

In this chapter, we introduce the concept of hard optimization and the main reasons to
use metaheuristics. Then, a summary of basic GA concepts is provided. Finally, a review of
some typical GA implementations to solve the VRP is made. The review includes some of
the most typical representations and their genetic operators.

3.2 Hard Optimization
According to the variables they manipulate, optimization problems can be classified into three
categories: discrete, continuous, and mixed. Discrete optimization tackles problems where
variables are discrete. A famous discrete optimization problem is the Traveling Salesperson
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Problem (TSP). In this problem, the problem intends to find the shortest route a salesperson
must follow to visit a finite collection of cities before returning to the departure city. On
the other hand, continuous optimization deals with continuous variables. Finally, a mixed
optimization problem considers both discrete and continuous variables. A quite trending
mixed optimization problem is Hyperparameter Optimization (HPO). This problem intends
to optimize the hyperparameters of a Machine Learning (ML) system. Solving this problem
reduces human effort while improving the performance of ML algorithms.

Hard optimization involves dealing with optimization problems that are very difficult
to solve. According to [16], two hard optimization problem families can be distinguished:
some discrete problems where there is not a knowledge of exact algorithms to solve them in
polynomial time. Some continuous problems where there are no known algorithms that can
find the global optimum with total confidence. The development of exact algorithms, i.e.,
algorithms that find the global optimum, is subject to its practical implementation. In hard
optimization, the required time to solve the problem increases dramatically when the problem
size grows. As a result, several exact algorithms are not suitable in real-life scenarios.

Metaheuristics arise as methods to approximate the global optimum of hard optimiza-
tion problems within less time than exact algorithms. These algorithms are usually based
on real-world concepts, including biology, physics, and social interactions. Therefore, their
implementation and workflow are not unique, allowing metaheuristic developers to create
innovative approaches. Some remarkable metaheuristics are: Simulated Annealing (SA),
Evolutionary Algorithms (EA), Tabu Search (TS), and Ant Colony Optimization (ACO).

3.3 Basic Concepts

3.3.1 Terminology
A GA is a population-based algorithm. That is, the algorithm does not provide a single
solution candidate, but a collection of solution candidates. In the GA context, a population
is a collection of several individuals. An individual encodes a candidate solution to the
optimization problem. That is, the individual is an indirect representation of the solution,
not the solution itself. Also, this representation is such that each individual encodes a solution
in the search space.

Undoubtedly, some individuals contain better solutions than others. When an individual
provides a better solution, its fitness is higher. In a GA approach, the fitness function
associates a fitness value to each individual. That fitness value indicates how likely it is that
the individual is selected to reproduce. Following the assumption of survival of the fittest,
the fitness value also represents how good is the solution the individual provides. Sometimes,
the fitness function is the cost function itself. However, it depends on the nature of the
problem. In reality, it is necessary to construct a fitness function that best fits the problem.

A generation represents a single iteration of the algorithm. At each generation, individuals
evolve due to three genetic operations: selection, crossover, and mutation. When a generation
starts, the GA selects some individuals according to their fitness. These individuals will be
used for reproduction; as a result, they are called parents. The mutation operator alters
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the content of a single parent. On the other hand, the crossover operation combines two or
more parents in a mating process. Thus, the resulting individuals are the children, which
constitute the so-called offspring. In the next generation, the children become the parents
of a new offspring, completing the generational loop. The GA finishes when a termination
criterion is reached, for example, a maximum number of generations.

In the big picture, the GA uses genetic operations to select the best individuals (thus,
the best solutions to the problem), whereas genetic operators provide diversity. The latter
allows the GA to broadly explore the search space and prevent it from getting stuck in local
minima.

3.3.2 Genetic Operators
Selection

Following the Darwinian concept of evolution, the fittest individuals will survive to generate
a new offspring. This process is repeated so that, at each generation, the average quality of
all individuals is better. This quality increase occurs because children are born from the best
parents. In a GA approach, this process is called selection.

The selection procedure determines which individuals will reproduce to generate the off-
spring. The probability an individual is selected depends on its fitness, and, in general,
individuals with higher fitness are more likely to be chosen. Thus, the selection procedure
aims to maintain fitter individuals to improve the average fitness of the population at each
generation.

Crossover

The crossover operation uses two ore more parents to generate one or more children. These
children may or may not inherit information from their parents. However, in most cases,
they do. The operator is stochastic, which implies that the children it produces may differ if
the operation is repeated using the same parents.

In most GA applications, just a portion of the parents mate via crossover operation. This
portion is determined by the crossover rate, which ranges from zero to one. The crossover
operation uses the crossover rate to pick the parents that will reproduce.

Mutation

The mutation process alters the structure of several individuals at random. By doing that,
the operator allows the GA to explore a zone around the individual it mutates. That is,
mutation operation provides a random local search. In comparison to crossover operation,
mutation operation can provide considerable solution improvement because new zones are
explored. That is crucial to find the global optimum when the problem has several local
minima. On the other hand, crossover operation may combine similar individuals that are
not well-fitted or recombine identical individuals. These issues lead to local optima.

The mutation rate states the portion of children that will undergo a mutation process.
This rate is highly problem-dependent. In some cases, the mutation rate is set very low to
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prevent deviating from good solutions. High mutation rates can be useful to lower selection
pressure because the fittest individuals are more likely to be altered. The special case where
the mutation rate is one implies that all individuals will experience mutation. Therefore, the
algorithm turns into a random search.

3.3.3 Generic GA
Algorithm 1 shows a generic GA structure.

Algorithm 1: Generic GA
k Ð 0;
P(k) Ð Initial population;
evaluate(P(k));
while notFinished() do

P0 Ð select(P(k));
P1 Ð crossover(P0);
mutate(P1);
evaluate(P1);
P pk ` 1q Ð newPopulationpP1, P pkqq;
k Ð k ` 1;

end
return bestIndividual(P(k))

3.4 Common Representations and Their Genetic Operations
In nature, an organism stores its genetic information in genes. The composition of several
genes form a chromosome, which, in turn, gives rise to the genotype when it is combined
with other chromosomes. In the GA scheme, an individual mimics a chromosome storing a
collection of genes. The process of representing a solution candidate as an individual is called
encoding. The inverse process, i.e., turning an individual into a solution candidate, is called
decoding. We denote ΨpIq as the decoding operation over individual I.

The fitness function usually depends on the cost function of the optimization problem.
As there are several ways to encode a solution, a proper decoding mechanism must also be
provided. After decoding the individual, the GA can evaluate the fitness function according
to its definition. Because fitness evaluation depends on more than one process, it is considered
a computationally expensive procedure. Thus, a proper GA implementation must define an
efficient decoding mechanism and an efficient evaluation procedure.

There are several encoding representations, which mainly depend on the nature of the
problem to solve. In the following sections, a review of commonly used encoding mechanisms
is provided.
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3.4.1 Binary Encoding
In a binary encoding, the individual stores a solution in a string that contains only ones and
zeros. This string has length L and does not change throughout the evolution. For example,
the strings

I1 “ r010110s I2 “ r110011s
can be two individual candidates with L “ 6.

The decoding process turns these binary strings into values in the search space. For
instance, a simple decoding method is to assume the string is an unsigned base-2 numeral.
That is, the string can be turned into a positive integer number, according to

ΨpIq “
n´1
ÿ

j“0
Irjs ¨ 2n´1´j,

where Irjs is the j-th bit value in the string, and n is the length of the string. Using this
method to decode I1 and I2, we obtain:

ΨpI1q “ 22, ΨpI2q “ 51.

Notice that, according to this method, the individual can store up to 2L different solutions.

If the problem is two-dimensional, L can be doubled to produce a two-gene individual as
follows:

I “ r010110
loomoon

x1

... 110011
loomoon

x2

s

ΨpIq “ p22, 51q.

This representation can also store signed integer numbers, decimal numbers (as binary
floating-points), or binary variables. Furthermore, one can create a custom decoding mech-
anism according to the problem requirements.

Crossover

Most classical crossover operations rely on merging parts of individuals. These operations
are known as n-point crossover and consist of choosing n random points of the individual and
swapping the content among these points. The most simple version, the 1-point crossover,
splits each individual into two pieces. Then, the operator exchange those pieces. A 2-point
crossover works similarly, but one must decide which parts to exchange.

Another typical crossover operator is the uniform crossover. Here, a random template
with the size of individuals is generated. Each of the template components is a one or a
zero. The operation consists of swapping values among individuals in the positions where
the template has a one.

Mutation

When using a binary encoding, the mutation operator turns ones into zeros, and vice-versa.
This process is known as bit-flip. The operator does a bit-flip after choosing several bits
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randomly. In most cases, the probability that a bit is selected is very low, intending to
prevent the destruction of good candidates.

3.4.2 Real Encoding
The real encoding approach considers that each individual is a vector containing real numbers.
That is, each individual Ij is such that Ij P Ω Ă Rn, where Ω is a bounded search space. This
search space may be equal to the optimization search space or not. Therefore, many methods
exist to decode this representation kind. FOr example, the following candidate represent a
real encoding:

I “ r1.5,´8.1, 101.2s

We refer to [45] for a detailed review of genetic operations for real encoding approaches.
In the following, a brief review of common operations is provided.

Crossover

In this case, the n-point operation is valid as well. That is, the individuals can be divided
into several pieces to produce a recombination of them.

Another type of crossover operations derive from arithmetic operations. A simple, yet
commonly used method is the Arithmetic Crossover (AMXO) operator, which combines two
parents xp1q “ rx

p1q
1 , x

p1q
2 , . . .s and xp2q “ rx

p2q
1 , x

p2q
2 , . . .s to create two children yp1q and yp2q

according to

y
p1q
i “ αix

p1q
i ` p1´ αiqxp2qi ,

y
p2q
i “ αix

p2q
i ` p1´ αiqxp1qi ,

where ypkqi is the i-th component of child k, and αi is a uniform random number.

Mutation

For real encoding, most mutation operators use a random function that alters some of the
values in the individual. For example, a uniform mutation selects a random position i in the
individual. The operator then converts the value in that position as follows:

Iris “ αi,

where αi is a random number sampled from a uniform distribution.

Another typical example is the Gaussian mutation. In this case, the operator generates a
random number βi from a normal distribution. The operator then adds the number to the
corresponding element in the individual:

Iris “ Iris ` βi.
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3.4.3 Integer Encoding
In this case, an individual is a collection of integer numbers. This encoding is useful in
combinatorial problems where the order of certain variables is relevant. As an example,
consider the Traveling Salesman Problem (stated in section 3.2). Here, the individual

I “ r5, 2, 3, 4, 1s

can represent the route the salesperson must follow, where each integer is a city label.

Crossover

In most cases, this encoding stores information regarding the order of numbers. Therefore, a
standard n-point crossover may be a destructive approach because some numbers may repeat
or disappear. Still, the operation behavior depends on the nature of the problem.

Mutation

Mutation aims at reordering the integers in an individual. In this case, two operations can
be distinguished. The first one is the 2-opt mutation. It consists of randomly selecting two
positions in the individual and reversing the integers delimited by these positions. Another
well-used yet straightforward operation is the swap mutatio, which merely swaps two integers
in the individual.

3.5 Applications of GA to the VRP
GAs have been successfully applied to solve several VRP variants. They do it by adequately
encoding routes and defining suitable genetic operations. Most works conclude that signifi-
cant effort should be put in designing proper genetic operations. The latter are responsible for
either allowing the GA to explore new routes and improving existing ones. In the following,
a review of some remarkable representations is presented.

There are several techniques to encode candidate routes in a chromosome. In most cases,
chromosomes encode routes with an integer representation, where integers can denote either
customers or vehicles. When integers describe customers, one can choose among an explicit
or an implicit representation. An explicit representation stores routes as is, i.e., each integer
is a customer, and the order of integers states the customer sequences. The chromosome
does not include the depot. Therefore, the decoding operation must insert the depot at the
start and the end of the routes. To distinguish among routes, the decoding operator requires
a delimiter that divides the routes. In most cases, this delimiter is a special character or a
particular number that is not assigned to any customer.

An example of explicit representation is given in [46]. The authors separate routes with
zeros. For example the individual

I “ r0, 1, 4, 2, 0, 5, 3s

represents two routes: t1, 4, 2u and t5, 3u. Notice that this encoding states that the number
of vehicles is fixed. As a result, the recombination of individuals may lead to the destruction
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of routes because customers may disappear or repeat. The latter usually occurs with simple
n-point crossover operations. To address this issue, the authors develop the Best Cost-
Best Route Crossover (BCBRC). This operator swaps the best routes among two parents,
reallocating customers into different routes to prevent destruction.

In an implicit representation, chromosomes do not use a delimiter to differentiate among
routes. Hence, they require an additional decoding mechanism. Although several decoding
methods for an implicit representation exist, no agreement or theory benefits a particular
one.

A relatively conventional implicit encoding is to store routes in an integer representation
of length N , where each integer represents one of the N customers in the network. As they do
not use any delimiter, they use a method to construct routes from individuals. For example,
in [47] (CVRP) and [48] (VRPTW), they use a Push Forward Insertion Heuristic (PFIH).
This heuristic iterates inserting customers until a constraint is not satisfied. When the latter
occurs, a new route is created, and the procedure begins again. The study in [49] (CVRPTW)
extends this procedure by adding a new phase that turns the last customer of a route into
the first customer of another route.

Results from [47] show that their GA is suitable for instances of up to 150 customers. Fur-
thermore, their GA was capable of finding the Best Known Solutions (BKS) of benchmark
instances at that time, and, in some cases, improving them. Similar results were obtained
by [48], where not only high-quality solutions were obtained, but high computational perfor-
mance. In the case of [49], their results also improved the BKS of some benchmark instances.

Another implicit representation is studied in [50] to solve the simple VRP. The GA encodes
the solution with an integer representation. Each integer is the label of a vehicle, whereas
the location of that integer represents a customer. That allows the operator to use n-point
crossover without additional problems. However, the encoding approach only assigns cus-
tomers. Hence, the node sequences must be calculated by solving the TSP for each vehicle,
using the assigned customers. Their solution approach is capable of solving instances with
up to 199 customers.

In the case of E-VRP, as of 2019, 10 out of 78 E-VRP implementations have used GA
as a solution approach [23]. That number of implementations turns GA as the second most
used heuristic, just after ALNS. In [43], they tackle the E-VRP with charging time and
variable travel time. The authors propose a GA with an explicit integer representation. The
delimiters are integers greater than all the other node identifiers. As a result, they obtain
routes where CSs always appear in the routes. Also, they assume a constant recharging time
of 30 minutes. Their results show that GA can find feasible solutions of real-data instances
with up to 50 customers in about three hours.

In [44], the authors tackle two problems: optimal routing and charging schedule of EV
fleets. The optimal routing aims at finding classical least cost routes, considering a realistic
EV consumption model. The charging scheduling addresses the problem of controlling the
charging of EVs at private CS and public CS. The latter only applies when the EV does
not have enough charge to return to the depot. To solve the problem, they use Differential
Evolution (DE), another kind of EA. The DE uses differences between individuals to provide

24



less stochastic results. Their implementation is tested in an airport shuttle with six stops,
obtaining satisfactory results. Another interesting result is that they test their implemen-
tation with a battery degradation model, finding that the SOC policy allows the battery to
last longer.

3.6 Discussion
In this chapter, a review of GAs and their applications to VRP has been presented. GAs
are useful to solve challenging optimization problems where finding the global optimum is
difficult, and where the combinatorial explosion occurs. To correctly design a GA, one should
carefully encode solutions and carefully design genetic operations. The latter are responsible
for providing local search and diversity to solutions, which are the most relevant GA aspects.

The applications of GAs to VRP had its boom in the first decade of the 2000s. Re-
searchers provided novel encodings to solve complex VRP variants with excellent results.
Overall, GAs (and metaheuristics in general) are used when the problem addresses realistic
elements. Most of their approaches consider implicit integer representations. To decode them,
they use iterative insertion based on capacity constraints. However, in the last decade, few
methods have been developed to solve the E-VRP. The major drawback is the exploitation
of partial recharging and proper GA implementation. None of them have included partial
recharging into the solution encoding. Most works use a second method to insert charging
operations, whereas others use recharging policies such as fixed recharging time, full recharg-
ing, or recharging up to a certain SOC level. Most works are also poorly implemented. That
is, the GA takes a lot of time to solve medium-size instances.

Finally, to the best of our knowledge, no E-VRP work where GA is the main solution
method has addressed capacitated CS. Only one of them [44] provides a charge scheduling
where routes are already assigned. However, this problem is very different from the proposed
in this thesis work, where it is aimed to develop a synchronization mechanism among all CS
and the fleet.
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Chapter 4

Problem Formulation

4.1 Introduction
In this chapter, we formulate two E-VRP variants, each of them focusing on a particular
stage. The first variant is called Offline E-VRP (Off-E-VRP), which intends to find EVs’
initial routes before they begin the operation. The second variant is the Online E-VRP
(On-E-VRP), which addresses the same criteria as the Off-E-VRP, but considering real-time
measurements from the state of EVs and the traffic network. Solving the On-E-VRP allows
the fleet management system to update the routes in-operation, thus providing a closed-loop
control strategy.

4.2 Problem Statement

4.2.1 Offline E-VRP
Consider a directed network D “ pt0u Y N Y F,Aq, where t0u is the depot, N “ t1, . . . , nu
contains n destinations that must be served, and F “ tn ` 1, . . . , n ` su contains s CS
where EVs can recharge their battery. The set V groups all the nodes in the network, i.e.
V “ N Y t0u YF . The set A contains all the arcs that connect non-identical network nodes,
i.e. A “ tpi, jq : @i, j P V, i ‰ ju.

Each customer j P N requires a demand Dj, which is delivered by an EV. It takes a known
time Tj to serve j. A time window rT´j , T`j s constrains this service, i.e., j is served after T´j
and before T`j . If the EV arrives too early, it must wait until the time window starts. Both
T´j and T`j belong to the set Ω Ă R`, which contains the times of the day. The time window
is such that its width is strictly larger than the service time, i.e., T`j ´ T´j ą Tj.

In order to serve all customers, a fleet M of m EVs is available. Each EV i PM has three
critical limitations: it can carry a mass up to D̄i, it has a maximum battery capacity of Q̄i,
and it has a maximum tour duration of T̄ ; the latter is the same for all EVs. If i reaches
a customer before its time window begins, it must wait until the time window begins. In
some cases, it may be convenient to wait at the previous customer because traffic may vary.
Therefore, one can choose to wait at the previous customer after serving it, or at the current
customer before serving it. The routes each EV follow must begin and finish at the depot.

In real traffic networks, it is usual to experience higher congestion at certain times of
the day. As reviewed in Section 2.5, including both time-dependent travel times and energy
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consumption is crucial to provide a high-quality service. From now on, consider the arc
pi, jq P A. This arc defines the travel time the EV must spend and the energy amount the
EV battery must provide. The travel time is tijpt0q and the energy consumption is Eijpw, t0q,
where t0 is the time of the day the EV departs from i towards j, and w is the weight the EV
carries across the arc. The calculation of both travel time and energy consumption among
nodes is further explained in Section 4.3.

As reviewed in Section 2.3.3, operating the EV battery near zero or one, and over large
Depth of Discharge (DOD) leads to a faster capacity and power fade. Therefore, we include
a SOC policy that constraints the SOC to operate among well-established boundaries. The
SOC policy is defined by the interval rα´, α`s, where α´, α` P r0, 100s% such that α` ą α´.

When an EV does not have enough energy to complete the tour, it can visit a CS to
recharge the battery. A CS j P F can do up to rj charging operations at the same time. A
single charging operation produces a SOC increment of q; that is, if an EV enters the CS
with SOC p, then, it leaves with SOC p` q. Such recharging operation takes a time ∆jpp, qq,
which is characterized by a concave nonlinear charging function. To calculate these charging
times, we use the method presented by [7], where a piece-wise function approximates the
charging function of a CS.

Three variables define the whole operation of EV i P M : the sequence of nodes Si, the
charging plan Li, and the departure time xi0. These three variables form the route of i. The
sequence of nodes is a vector that contains the nodes i will visit. The charging plan is a
vector that stores information about charging operations. This information allows the EV
to know when and how much to recharge. Finally, departure time xi0 defines the moment i
begins the operation. A detailed description of these three variables is presented in Section
4.4. From a fleet point of view, variables S, L, and x0 group the routes of all vehicles. That
is S “ rS1, S2, . . . , Sms, L “ rL1, L2, . . . , Lms, and x0 “ rx

1
0, x

2
0, . . . , x

m
0 s.

The problem is to find an optimal set of routes that allows the fleet to fulfill the operation
satisfying all operational constraints. The criteria to choose the routes is to minimize total
travel times, total energy consumption, total charging times, and total charging costs. A
solution to the problem must return: the optimal sequences of nodes (S˚), the optimal
charging plans (L˚), and the optimal departure times (x˚0). A feasible solution satisfies:

‚ all customers are visited precisely once,

‚ all EVs do not exceed their limitations,

‚ CS capacities are not surpassed,

‚ all EVs begin and end operation at the depot,

‚ all customers are visited within their time windows.
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4.2.2 Online E-VRP (On-E-VRP)
In the Off-E-VRP, travel times and energy consumptions among customers depend on the
time of the day. At peak hours, one can expect higher travel time and lower energy con-
sumption due to traffic. This behavior is a recurrent event because it similarly repeats every
day. Other events like accidents, weather change, or demonstrations cannot be accurately
predicted because their occurrence probability is very low. That is why they are called
nonrecurrent events.

As reviewed in Section 2.5, non-recurrent events can dramatically affect the operation of
the fleet. The latter occurs because EVs might undergo unexpected circumstances, leading to
scenarios where travel times and energy consumptions are different from those considered in
the Off-E-VRP. Besides, real EV speeds are non-deterministic; therefore, the real operation
may differ from what was originally planned.

In the Online E-VRP (On-E-VRP), the dispatcher can recalculate the routes based on
real-time measurements. These measurements provide information about the current state
of the traffic network and the EVs. As a result, the system can react to sudden traffic
fluctuations and prevent EVs from following infeasible or sub-optimal routes. Such ability to
updates routes based on measurements provides a closed-loop control operation of the EV
fleet.

Let k˚ be a discrete counter representing the instant when the dispatcher receives mea-
surements from the fleet and the traffic network. Each time the dispatcher collects a new set
of measurements, k˚ increases by one. At instant k˚, the network is redefined as a directed
graph

Dpk˚q “ rt0u Y F YNpk˚q, Apk˚qs ,
where t0u is the depot, F is the set containing all available CSs, and Npk˚q is the set contain-
ing all non-served customers at instant k˚. The set Apk˚q contains all the arcs connecting
the network nodes at instant k˚, i.e.

Apk˚q “ tpi, jq : @i, j P V pk˚q, i ‰ ju,

where V pk˚q “ Npk˚qY t0uYF . The initial instant k˚ “ 0 is the moment when the first EV
departs from the depot.

Each customer j P Npk˚q has the same properties stated in the Off-E-VRP. These proper-
ties are: a demandDj, a service time Tj, and a time window rT´j , T`j s such that T`j ´T´j ą Tj.
The total number of customers in Npk˚q can vary from k˚ to k˚`1 because EVs are currently
traveling; thus, they can serve some customers between k˚ and k˚ ` 1.

The fleetMpk˚q containsmpk˚q EVs at instant k˚. Each EV i PMpk˚q must visit a known
set of customers N ipk˚q, which have been previously assigned. The customers in N ipk˚q are
such that the EV never carries more weight than its weight limitation D̄i. The maximum
tour duration is now referred as maximum remaining time, and it is recalculated as

T̄ pk˚q “ T̄ ` ti0 ´ tk˚ ,

where T̄ is the maximum tour duration, t0 is the time of day EV i departs from the depot,
and tk˚ is the time of the day at the moment of collecting measurements for the k˚-th time.
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The fleet size mpk˚q might vary from instant k˚ to instant k˚ ` 1 because some EVs finish
their operation.

EVs do not necessarily depart from the depot. Their initial conditions may vary from
instant k˚ to k˚ ` 1 because they move forward as they are operating. At instant k˚ ` 1,
the node where EV i PMpk˚ ` 1q departs from is called the critical node of i, denoted Sicrit.
The critical node must be such that the EV reaches it after the optimization at k˚ finishes;
otherwise, the EV will not receive the route update in time. The dispatcher determines which
node in the route at k˚ is the critical node at k˚ ` 1. It also determines the EV state when
it starts the service there, which is called critical state. This state is used to calculate the
initial conditions according to the operation that occurs at the critical node: if Scrit is a CS,
the dispatcher must recalculate the SOC increment the charging operation makes. Section
6.3.1 provides a detailed explanation on how to calculate critical nodes and initial conditions.

Travel times and energy consumptions may vary from instant k˚ to k˚ ` 1 as well. The
dispatcher can update the values of tijpt0q and Eijpw, t0q for every pi, jq P Apk˚q at each
instant k˚.

The problem is to find a new set of optimal routes each EV in the fleet will follow. These
routes will begin at the critical nodes and have the following properties. At instant k˚, the
new routes are defined by the new node sequences S˚pk˚q, the new charging plan L˚pk˚q, and
new initial conditions x˚0 . The criteria to choose the new routes hold: minimize travel times,
total energy consumption, total charging times, total charging costs, and total waiting times.
A feasible solution satisfies the same conditions stated in the Off-E-VRP, except that:

• each EV begins its operation at the critical node Sicrit,

• all EVs finish the operation at the depot.

4.3 Travel Times and Energy Consumption Between Nodes
To address the dynamic behavior of velocity due to traffic, we consider that the travel time
and energy consumption across arc pi, jq P A depends on the time of the day the EV departs
from i towards j. We denote this time of the day as t0. The travel time is denoted tijpt0q
and the energy consumption Eijpw, t0q, where w is the payload the EV carries across pi, jq.
The values tijpt0q and Eijpw, t0q are referred to as travel time profile and energy consumption
profile of arc pi, jq, respectively.

In this section, we develop two methods to estimate both tijpt0q and Eijpw, t0q throughout
the day using numerical data sets. The first method in Section 4.3.1 allows us to calculate
travel time and energy consumption using the Euclidean distance between two nodes. The
second method in Section 4.3.2 is developed to calculate travel time and energy consumption
from shortest paths. In both methodologies, we divide the day into several equally-spaced
periods. Then, we assign a known value to travel time and energy consumption at the
beginning of each period. We then use interpolation to calculate the values within the
beginning of two periods. This procedure allows us to estimate travel time and energy
consumption throughout the day.
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For energy consumption, we develop an additional two-stage procedure. First, we calculate
the energy the EV consumes by traveling from start to destination, carrying no payload. The
latter is known as no-cargo energy consumption, denoted Eijp0, t0q. Second, we address the
problem of including more mass using a realistic EV energy consumption model.

4.3.1 Travel Time and Energy Consumption in Straight Line Arcs
In this section, we develop a method to calculate travel times and energy consumption for
straight line arcs. The aim is to estimate tijpt0q and Eijpw, t0q for any valid time t0 and
payload w, and any arc pi, jq P A.

We start by dividing the times of the day into h equally-spaced periods, each of them
of length ∆T . We assume that, at the beginning of each period, there are travel time and
no-cargo energy consumption measurements available, i.e., for the travel time, we know the
values

ttijp0q, tijp∆T q, . . . , tijpph´ 1q∆T qu ,

and for the no-cargo energy consumption, we know the values

tEijp0, 0q, tijp0,∆T q, . . . , tijp0, ph´ 1q∆T qu .

To calculate the values between the beginning of two periods, we use interpolation. Therefore,
we are capable of estimating the travel time and no-cargo energy consumption at any time
of the day.

To include more payload mass, we use the following equation

Eijpw, t0q “ Eijp0, t0q ¨
„

1` w

wEV



´
w

wEV
¨ β, (4.1)

where Eijp0, t0q is the no-cargo energy consumption, wEV is the EV plus driver mass, w is
the payload, and β is value that depends on the travel time at t0 and the arc length. See
Appendix A for a detailed development of Eq. (4.1).

Considering the above, it is crucial to calculate travel times and no-cargo energy con-
sumption at the beginning of each period. In our case, we obtain those values as follows.
We use real traffic data from one of Santiago de Chile’s most congested areas. That data
is used to develop a complete network with several origins and destinations. We solve the
DS-SPP using [33] between all nodes in the previous network. This procedure allows us to
obtain several travel times and no-cargo energy consumption values between all nodes, at
different times of the day. We scale those profiles to match a straight one-kilometer arc profile
using the distance between nodes. All one-kilometer arc profiles are then averaged to obtain
two one-kilometer arc profiles: one for travel time and one for no-cargo energy consumption.
We then use these one-kilometer arc profiles to calculate travel time and no-cargo energy
consumption of straight arcs of any length. Such procedure is explained in the following
paragraph.

Let t1kmpt0q and E1kmp0, t0q be the travel time and no-cargo energy consumption profiles
for the one-kilometer arc, respectively. These profiles are known. To calculate the travel

30



time across arc pi, jq P A, we use the distance dij between the two nodes. Then, we make
the following assumption: at time t0, the velocity in all network arcs is the same and has the
value vpt0q. Then, we simply obtain the travel time in arc pi, jq as

tijpt0q “ dij ¨ t1kmpt0q.

For the energy consumption, we do the exact same procedure. From Appendix A, we
see that, in Eq. (A.4), the energy consumption has a linear relationship with the distance.
Therefore, we obtain that

Eijp0, t0q “ dij ¨ E1kmp0, t0q

In reality, travel time and energy consumption are not linearly related to distance; this
assumption is just an approximation. To include more accurate values, one must solve the
DS-SPP in the target network. However, this is a computationally expensive procedure. In
the next section, we develop a methodology to address such cases and incorporate better
approximations of travel time and energy consumption from shortest paths.

4.3.2 Travel Time and Energy Consumption from Shortest Paths
In real life, the travel time and the energy consumption an EV spends depends on the path
it follows and the traffic state. In this case, a path refers to a road-level route the EV goes
through. As explained in Section 2.4, solving the Shortest Path Problem (SPP) allows an EV
to travel from start to destination spending the least cost. However, the length of shortest
path the EV follows may differ from the Euclidean distance. Therefore, the procedures
to calculate travel time and energy consumption in the previous section may lead to poor
estimations.

In this work, we solve the Dynamic and Stochastic Shortest Path Problem (DS-SPP) for
several destinations. We use the procedure proposed by [33] which considers a prognosis-
based decision-making strategy to solve the DS-SPP. It consists on a multi-stage strategy
that begins by solving the deterministic K-SPP. Then, the shortest paths are disturbed to
obtain significant differences among them. Finally, the paths are evaluated in detail using a
particle-filtering approach. The latter returns a set of particles and weights, which allows us to
estimate the probability density functions (pdf) of both travel time and energy consumption.

The algorithm proposed by [33] returns the shortest path, and the pdf of the travel time
and energy consumption for a single arc of our problem considering a specific departure time
and mass. Therefore, if we only consider the EV mass, we must solve the problem at least
hn ¨ pn ´ 1q times, where h is the number of periods in a day and n ¨ pn ´ 1q the number of
arcs in the network. Such high number of cases makes solving the DS-SPP computationally
impractical. Furthermore, we must address the problem of considering different mass values
because the EVs deliver packages; thus, the payload they carry decreases while they operate.

To address the issue of solving the DS-SPP too many times and different mass values across
arcs, we make two assumptions. First, late in the night and early in the morning, traffic does
not vary considerably; therefore, one can expect very little variations of the travel time and
energy consumption pdfs at that hours. Thus, we calculate the pdfs that represent the travel
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time and energy consumption in that interval and assign them for the periods that cover
that interval. Second, we address the problem of different mass by solving the DS-SPP only
considering the EV mass; that is, we calculate the no-cargo energy consumption. Then, we
use the methodology explained in Section 4.3.1 to incorporate more mass using the realistic
energy consumption model.

Now, we provide an insight on how to calculate travel times and energy consumption from
a road-level path using the solution the algorithm in [33] returns. An arc pi, jq P A in our
E-VRP (both offline and online) is, in reality, the concatenation of several road intersections,
each of them joined by a road. That is, the path from start i to destination j can be
represented as Aij “ ta0, a1, ..., anu, where each ak is a road intersection (equivalent to a
node in the road-level network). Let tk`1 be the travel time from ak to ak`1. We assume
that the EV leaves each ak instantly. As a result, the total travel time from i to j is the sum
of the expected travel time across each road:

tijpt0q “
n´1
ÿ

k“0
Etk`1|tkrtk`1s,

where Etk`1|tkr¨s indicates the expected value of the arrival time at ak`1 given that the EV
leaves ak at tk. The energy consumption follows the same kind of behavior. Is we assume a
mass w and a departure time t0, then:

Eijpw, t0q “
n´1
ÿ

k“0
Etk`1|tkrEk`1pwqs

where Ek`1pwq is the energy consumption traveling from ak to ak`1 carrying a payload w.

Calculating the above expected values can be challenging because the non-linear behavior
of the system makes it difficult to obtain the travel time and energy consumption pdfs. To
address this issue, we use the method from [33]. The author develops a prognosis-based
method to solve the DS-SPP for EVs using a particle filter approach. Such a method fits our
problem, as it returns the estimation of travel time and no-cargo energy consumption pdfs.
An additional advantage of estimating the pdfs of travel time and energy consumption using
[33] is that we can use them to emulate real traffic conditions. In the simulation framework
detailed in Section 6.3.2, we assume that both costs follow normal distributions and their
expected value and variance are known. Those values come from solving the DS-SPP using
[33].

Including more mass into the EV may lead to path changes to reduce energy consump-
tion. Therefore, it is ideal for solving the DS-SPP according to the current payload the EV
carries. Nonetheless, the high number of scenarios increases the complexity of the problem
considerably. To address the latter issue, we fix the path the EV follows from i to j and
modify the energy consumption using Eq. (4.1). A detailed explanation on how to obtain
the latter equation is explained in Appendix A. The following steps summarize this process:

1. Consider the EV leaves i towards j at time t0.

2. Solve the DS-SPP to find the expected values of tijpt0q and Eijp0, t0q with their pdf
estimations.
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3. Use Eq. (4.1) to find the expected value of Eijpw, t0q, i.e. adjust the energy consumption
according to the current payload the EV carries.

4.4 Electric Vehicle State Space Model
In this section, we introduce an event-based EV state-space model. This model tracks three
variables: the time of the day and SOC each EV has, and the payload each EV carries when
it starts a service. A service refers to either serve a customer or recharge the battery in a
CS. Before defining the state-space model, let us formally introduce the variables that define
the routes of EVs and other auxiliary variables.

The sequence of nodes EV i PM will follow is defined by the vector

Si “ rSi0, . . . , S
i
si´1s

T ,

where si is the length of Si, and each Sik is the k-th node the EV visits. The length si depends
on the number of customers and the charging operations in the route. The vector

Li “ rLi0, . . . , L
i
si´1s

T

has the same length of Si and defines the charging plan, where each Lik represents the SOC
increment at the k-th stop. Thus, if Sik is a customer, then Lik “ 0. On the other hand, if Sik
is a CS, a SOC increment must occur, i.e., Lik ą 0.

Notice that we have used the sub-index k to mark the k-th stop. The value k is a discrete
counter that tracks the model events. Each event indicates that EV i P M is at stop k in
Si, that is, at node Sik. Therefore, if the vehicle moves forward to the next stop, the counter
increases by one, and the EV arrives at node Sik`1. As the sequence of nodes is made up of
si nodes, k ranges from 0 to si ´ 1. We denote this range of values as Ki “ t0, 1, ..., si ´ 1u
for vehicle i. As each EV has its counter we refer to k as a local counter.

If an EV arrives at a customer node before its time window begins, the EV must wait until
it starts. However, as reviewed in Section 4.3, energy consumption between two nodes vary
throughout the day. Therefore, if the EV waits a certain amount of time before traversing
the arc, it may occur that the energy consumption is lower than not waiting at all. Hence,
two waiting time options are available:

• ŵ0pkq is the waiting time before starting the time window at Sik. If the EV already
satisfies the time window, or Sik is a CS or the depot, then ŵ0pkq “ 0.

• ŵ1pkq is the waiting time after finishing the operation at Sik. This waiting time allows
the EV to accomplish the time window at the next stop, i.e. the time window of node
Sik`1. If the EV already satisfies that time window, or Sik`1 is a CS or the depot, then
ŵ1pkq “ 0.

The above implies that there are two possibilities to allow the EV to accomplish the time
window of node Sik:

• waiting ŵ0pkq time units at Sik right before serving Sik, or
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• waiting ŵ1pk ´ 1q time units at Sik´1 right after serving Sik´1.

We choose the option that minimizes the energy consumption across Sik´1 and Sik. To do
that, assume that the EV goes through arc pSik´1, Sikq. If the EV waits ŵ1pk ´ 1q at Sik´1,
it then consumes an energy E1. On the other hand, if it waits ŵ0pkq at Sik, it consumes an
energy E0. Therefore, the real waiting times are w0pkq and w1pk ´ 1q, which depend on E0

and E1 as follows:

w0
pkq “

"

0 if E0 ą E1

ŵ0
pkq otherwise.

(4.2)

w1
pk ´ 1q “

"

0 if E1 ą E0

ŵ1
pk ´ 1q otherwise.

(4.3)

The time an EV stays in a node is referred to as stop time, which includes two elements:
how long it takes the operation at that node, and how much to wait before and after the
operation. The operation time at the k-th stop is denoted Toppkq, which depends on the node
type of Sik. If Sik is a customer, then Toppkq is the service time of Sik. If Sik is a CS, then
Toppkq is the time it takes to perform the charging operation. Finally, if Sik is the depot, then
Toppkq is zero. These cases are summarized as

Toppkq “

$

’

&

’

%

TSi
k

if Sik P N

∆Si
k

`

x2pkq, L
i
k

˘

if Sik P F

0 if Sik “ 0
(4.4)

The requirement at node Sik also depends on its type. If Sik is a customer, the requirement
is known. Otherwise, the requirement is zero:

Dpkq “

"

DSi
k

if Sik P N
0 if Sik P F Y t0u

(4.5)

The state-space model considers three variables for a single EV at the moment it begins
an operation at a node: the time, the battery SOC, and the payload. These variables evolve
according to the local counter k. Thus, they are defined as follows:

• xi1pkq is the time of the day i begins the operation at Sik. At the next stop Sik`1, the
time xi1pk ` 1q is the sum of five elements: the starting operation time at Sik (xi1pkq);
the operation time at Sik; the waiting time at Sik after finishing the operation there;
the travel time between Sik and Sik`1 when departing from Sik; and the waiting time at
Sik`1 before starting the operation there. The initial condition xi1p0q is the time the EV
departs from the first node in Si.

• xi2pkq is the battery SOC when the vehicle begins the operation at Sik. At the next
stop Sik`1, the SOC xi2pk ` 1q is the sum of three elements: the SOC when the EV
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starts the operation at Sik (xi2pkq); the SOC increment at stop Sik; and minus the
energy consumption between Sik and Sik`1 when departing from Sik and subtracting the
requirement at Sik. The initial condition xi2p0q is the battery SOC when the vehicle
departs from the first node in Si.

• xi3pkq is the payload when the EV begins the operation at Sik. At the next stop Sik`1,
the payload xi3pk ` 1q is the sum of two elements: the payload when the EV starts the
operation at Sik (xi3pkq), and minus the requirement at Sik. The initial condition xi3p0q
is the sum of all customer requirements in Si.

Equations (4.6) to (4.8) define state equations of EV i:

xi1pk ` 1q “ xi1pkq ` Toppkq ` w
1
pkq ` tSi

k
Si
k`1

`

xi1pkq ` Toppkq ` w
1
pkq

˘

` w0
pk ` 1q(4.6)

xi2pk ` 1q “ xi2pkq ´ eSikSik`1

`

xi3pkq ´Dpkq, x
i
1pkq ` Toppkq ` w

1
pkq

˘

` Lik (4.7)

xi3pk ` 1q “ xi3pkq ´Dpkq (4.8)

To simplify notation, equations (4.6) to (4.8) are reduced into state vector equation (4.9):

»

—

–

xi1pk ` 1q
xi2pk ` 1q
xi3pk ` 1q

fi

ffi

fl

“

»

—

–

F1
`

xipkq, Sik, S
i
k`1, L

i
k

˘

F2
`

xipkq, Sik, S
i
k`1, L

i
k

˘

F3
`

xipkq, Sik, S
i
k`1, L

i
k

˘

fi

ffi

fl

(4.9)

4.4.1 Initial Conditions in the On-E-VRP
In the On-E-VRP, EV i P Mpk˚q does not begin the operation at the depot, but at the
critical node Sicrit. As stated by the EV model, initial conditions are defined at the moment
i departs from the first node in its route. This node can be the depot (if the EV has not
begin the operation yet), a customer, or a CS. Thus, we consider the following cases:

1. if Sicrit is the depot, then we allow the dispatcher to adjust the departure time,

2. if Sicrit is a customer, we allow the dispatcher to alter the waiting time (if any) or add
a waiting time after finishing the service,

3. if Sicrit is a CS, we allow the dispatcher to alter the recharging amount.

Considering the above three cases, it is necessary to formally define a relationship between
the state when the EV arrives at the critical node, the node type of the critical node, and the
initial conditions that will be passed to the On-E-VRP. To do that, the dispatcher receives
the following information:

• The type of Sicrit.

• The SOC increase at Sicrit, known as Licrit. This SOC increase is zero if Sicrit is a
customer or the depot. Otherwise, if Sicrit is a CS, Licrit is a known positive value. The
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latter is obtained from the charging plan of previous solutions of the On-E-VRP, or
from the Off-E-VRP.

• A triplet X i
crit “ rx

i
1crit, x

i
2crit, x

i
3crits

T known as critical state, which indicates the time
of the day, battery SOC, and payload EV i has when it begins the service at Sicrit. If
the latter is the depot, then the triplet is the departure state.

The critical state and the node type are used to calculate initial conditions. If Sicrit is
a customer or the depot, then we only modify departure times using an auxiliary variable
xi1off . This variable is directly added to the departure time to alter its value. Notice that
xi1off is free when the EV is at the depot. However, when the EV is at a customer, xi1off
must be such that the departure time at the customer is equal or greater than the time the
EV finishes the service. The SOC xi2crit and payload xi3crit remain the same. On the other
hand, if Sicrit is a CS, then we only modify the recharging amount using the auxiliary variable
Lioff . That value is directly added to Licrit to alter its value. Notice that this also affects
the departure time. Finally, in all cases, we must add the waiting time after service at Sicrit,
denoted w1

crit.

Now, we can define the initial conditions using the offset values defined above:

Si0 “ Sicrit

Li0 “

"0 if Sicrit P N Y t0u
Licrit ` L

i
off if Sicrit P F

xi1p0q “
"

xi1crit ` TSicrit ` x
i
1off ` w

1
crit if Sicrit P N Y t0u

xi1crit `∆pxi2crit, Li0q ` w1
crit if Sicrit P F

xi2p0q “ xi2crit ` L
i
0

xi3p0q “ xi3crit ´DSicrit

4.5 Counting the number of vehicles at each node
The operation of different EVs is coupled by the constraint of CS capacity because the
presence EVs in a CS reduces the capacity for remaining EVs. In this section, we develop
a synchronization method to count the number of EVs at each node and impose the CS
capacity constraints. This method uses the start-of-service times from the state-space model
defined in Section 4.4 to detect when and where EVs arrive and leave.

We start by defining a global counter k̄. This counter is initialized as zero and increases
by one when any of the two following events occur: an EV arrives at a node, or an EV
departs from a node. Consider the vector θpk̄q P R|V |. At instant k̄, the j-th component of
θpk̄q contains the number of EVs at node j when the k̄-th event occurs. For example, if at
instant k̄ two vehicles are visiting node 5, then θ5pk̄q “ 2. If an EV leaves node 5, the event
k̄ ` 1 “leaving a node” is triggered and θ5pk̄ ` 1q “ 1.

The latter example suggests that vector θpk̄q evolves dynamically. This dynamic behavior
makes the j-th element of θpk̄q to increase or decrease by one if the event at k̄ is an EV
arrives to j, or an EV departs from j, respectively. The latter is summarized by the following
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equation:

θpk̄ ` 1q “ θpk̄q ` δpk̄qγpk̄q (4.10)

where δpk̄q is a scalar value such that

δpk̄q “

"

`1 if at instant k̄, a vehicle arrives to a node
´1 if at instant k̄, a vehicle leaves a node, (4.11)

and γpk̄q P R|V | is a vector such that its j-th component satisfies

γjpk̄q “

"

1 if at instant k̄, event occurs at node j
0 otherwise. (4.12)

The value δpk̄q tracks the kind of event, whereas the vector γpk̄q tracks the node where
the event happens. The initial condition of θpk̄q depends on the problem to solve. In the
Off-E-VRP, θp0q “ rm, 0, . . . , 0sT , since all m EVs depart from the depot at the beginning
of the operation. On the other hand, in the On-E-VRP, θp0q “ rθ˚0 , θ˚1 , . . . , θ˚N sT where θ˚j is
the number of EVs at node j at the moment of gathering all measurements.

4.6 Formulation as Non-linear Program

4.6.1 Cost Function and Decision Variables
In this section, we formulate the Off-E-VRP and the On-EVRP as non-linear programs. In
the Off-E-VRP, decision variables are node sequences Si, charging plan Li, and departure
times xi0 of each EV i P M . In the On-E-VRP, decision variables are node sequences Si,
charging plan Li, and initial condition offsets: tioff if critical node is a customer, or Lioff if
critical node is a CS, for each EV i PMpk˚q.

In both Off-E-VRP and On-E-VRP, the cost has the same definition. Equation (4.13)
summarizes it as the weighted sum of four elements: total travel times among nodes, total
charging times, total charging costs, and total energy consumption:
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JpS, L, x0q “ ω1

m
ÿ

i“1

si´1
ÿ

k“0
tSi
k
Si
k`1

´

xi1pkq ` TSik ` w
1
pkq

¯

looooooooooooooooooooooomooooooooooooooooooooooon

J1 (total travel time)

` ω2

m
ÿ

i“1

ÿ

SikPF

kPKi

∆Si
k

`

xi2pkq, L
i
k

˘

looooooooooooooomooooooooooooooon

J2 (total charging time)

` ω3

m
ÿ

i“1

ÿ

SikPF

kPKi

ξSi
k
Lik

loooooooomoooooooon

J3 (total charging cost)

` ω4

m
ÿ

i“1

si´1
ÿ

k“0
eSi

k
Si
k`1

´

xi3pkq ´Dpkq, x
i
1pkq ` TSik ` w

1
pkq

¯

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

J4 (total energy consumption)

JpS, L, x0q “ ω1J1 ` ω2J2 ` ω3J3 ` ω4J4 (4.13)

where S “ rS1, . . . , Sms L “ rL1, . . . , Lms, and x0 “ rx0
0, . . . , x

m
0 s group decision variables

of each EV. If Sik is a CS, ξSi
k
is the kWh price. The weights ω1, ω2, ω3, and ω4 tune the

importance of the variables they multiply.

Minimization of travel times allows EVs to visit more customers in less time; thus, in-
creasing incomes. Minimization of charging times lowers the impact of charging operations
as they reduce the total maximum tour time available. Minimization of charging costs allows
the optimization to differentiate among CS technologies. Finally, minimization of the energy
consumption allows EVs to travel further, as battery capacity is limited. In the following
sections, the constraints of both the Off-E-VRP and the On-E-VRP are defined.

4.6.2 Off-E-VRP Constraints
The following constraints are initial conditions. Constraint (4.14) forces all EVs to start at the
depot; constraint (4.15) indicates that EVs do not recharge when they begin the operation;
constraint (4.16) is time of the day the EVs begin operation; constraint (4.17) states that all
EVs begin with a SOC equal to the upper SOH policy bound; constraint (4.18) states that
each EV carries a weight equal to the sum of all customer requirements in its route.
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Si0 “ 0 @i PM (vehicles start from the depot) (4.14)
Li0 “ 0 @i PM (vehicles do not recharge at the depot) (4.15)

xi1p0q “ xi0 @i PM (starting time of service) (4.16)
xi2p0q “ α` @i PM (SOC leaving depot) (4.17)
xi3p0q “

ÿ

Si
k
PN

DSi
k
@i PM
@k P Ki

(Weight freight leaving depot) (4.18)

The following constraints are terminal conditions. Constraint (4.19) forces all EVs to end
at the depot; constraint (4.20) prevents EVs to exceed the maximum tour time duration.

Sisi´1 “ 0 @i PM (vehicles end at depot) (4.19)
xi1psi ´ 1q ď T̄ ` xi1p0q @i PM (maximum service time) (4.20)

Constraint (4.21) prevents EVs from carrying more weight than their maximum weight
limitation.

ÿ

Si
k
PN

DSi
k
ď D̄i @i PM

@k P Ki

(vehicles end at depot) (4.21)

Constraints (4.22) and (4.23) define time windows.

T´
Si
k
ď xi1pkq @i PM,

@k P Ki,
Sik P N

(time window lower bound) (4.22)

xi1pkq ď T`
Si
k
´ Toppkq @i PM,

@k P Ki,
Sik P N

(time window upper bound) (4.23)

Constraint (4.24) defines the state vector equation.
»

—

–

xi1pk ` 1q
xi2pk ` 1q
xi3pk ` 1q

fi

ffi

fl

“

»

—

–

F1
`

xipkq, Sik, S
i
k`1, L

i
k

˘

F2
`

xipkq, Sik, S
i
k`1, L

i
k

˘

F3
`

xipkq, Sik, S
i
k`1, L

i
k

˘

fi

ffi

fl

@i PM
@k P Ki

(State equation) (4.24)

The following constraints are SOH policies. Constraint (4.25) bounds the SOC when the
EV arrives at a node, while constraint (4.26) bounds the SOC when the EV departs.

α´ ď xi2pkq ď α` @i PM
@k P Ki

(SOH policy 1: SOC
boundsq

(4.25)

α´ ď xi2pkq ` L
i
k ď α` @i PM

@k P Ki

(SOH policy 1: SOC
boundsq

(4.26)
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Constraint (4.27) are the dynamics of the counting vector and constraint (4.28) the ini-
tial value of the counting vector. Constraint (4.29) limit the maximum parallel charging
operations at CSs.

θpk̄ ` 1q “ θpk̄q ` δpk̄qγ̂pk̄q @k̄ P K̄ (counting vector dynamics) (4.27)
θp0q “ rm, 0, . . . , 0sT (initial counting vector) (4.28)
θjpk̄q ď rj @j P F,

@k̄ P K̄

(limit on parallel charging
operations)

(4.29)

Finally, the following constraints define decision variables domains.
Sik P N Y F Lik P R`0 xi0 P Ω @i PM,

@k P Ki

(Decision variables domain) (4.30)

4.6.3 On-E-VRP Constraints
Initial conditions must be modified to include the critical point. Constraint (4.31) forces all
EVs to start at the critical node; constraint (4.32) defines the SOC increase at the critical
node; constraint (4.33) states the time of the day each EV departs from the critical node;
constraint (4.17) states the SOC of each EV when it departs from the critical node; constraint
(4.18) states that each EV departs carrying a weight equal to the sum of all its assigned
customer requirements.

Si0 “ Sicrit @i PM˚ (init. node) (4.31)

Li0 “

"0 if Sicrit P N Y t0u
Licrit ` L

i
off if Sicrit P F

@i PM˚
(init. SOC
increae)

(4.32)

xi1p0q “
"

xi1crit ` TSicrit ` x
i
1off ` w

1
crit if Sicrit P N Y t0u

xi1crit `∆pxi2crit, Li0q ` w1
crit if Sicrit P F

@i PM˚ (init. time) (4.33)

xi2p0q “ xi2crit ` L
i
0 @i PM˚ (init. SOC) (4.34)

xi3p0q “ xi3crit ´DSicrit
@i PM˚ (init. weight)(4.35)

End condition constraint (4.19) holds, as EVs must return to the depot. Constraint (4.36)
updates the maximum remaining tour time.

xi1psi ´ 1q ď T̄ ˚ ` xi1p0q @i PM (maximum service time) (4.36)

Constraint (4.21) is discarded because the offline problem has already assigned customers.
Thus, this constraints will always be satisfied.

Constraints (4.37) and (4.38) define time windows just on customers each EV must visit.
T´
Si
k
ď xi1pkq @i PM,

@k P Ki,
@Sik P N

i

(time window lower bound) (4.37)

xi1pkq ď T`
Si
k
´ Toppkq @i PM,

@k P Ki,
@Sik P N

i

(time window upper bound) (4.38)
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State vector dynamics remain the same; thus, constraint (4.24) holds.

SOH policy constraints (4.25) and (4.26) remains the same.

The initial condition of the counting vector (4.28) is replaced by constraint (4.39), which
contains the number of vehicles at each node at the moment of beginning the new operation.

θp0q “ rθ˚0 , θ˚1 , . . . , θ˚n`ssT (initial counting vector) (4.39)

Decision variables domains are replaced as:

Sik P N
i
Y F

Lik P R`0

xi1off P

"

t0u if Sicrit P F
r ´ w1

crit,8q if Sicrit P N Y t0u

Lioff P

"

t0u if Sicrit P N Y t0u
r ´ Lcrit,8q if Sicrit P F

@i PMpk˚q
@k P Ki

(Decision variables
domain)

(4.40)

4.7 Discussion
In this chapter, two new E-VRP variants have been introduced. The first one is the Off-E-
VRP, which determines the routes each EV will follow before starting the operation. The
second one is the On-E-VRP, which intends to update the routes according to measurements
of the traffic network and EVs’ current state. The problems are modeled as nonlinear pro-
grams, which are quite different from many common VRP variants modeled as linear mixed
programs. The main reason to model a nonlinear program is to drop the dependency of CS
copies, which increment the complexity of the problem.
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Chapter 5

Solution Scheme for the Off-E-VRP and
the On-E-VRP

5.1 Introduction
In chapter 4, two E-VRP variants have been presented: the Off-E-VRP and the On-E-VRP.
The Off-E-VRP aims to find the optimal routes before starting the operation. These routes
are constructed using historical data of travel time and energy consumption among nodes.
The On-E-VRP closes the control loop by updating the routes when real-time measurements
of the traffic and vehicle state are available. The significant differences among both problems
require two different solution methods that adjust to each problem’s nature.

For the Off-E-VRP, the solution is obtained before EVs begin their operation. Thus, it
is assumed that there is enough time to solve the problem. For the On-E-VRP, new routes
must be found in a small amount of time while EVs are serving customers. However, the
exploration space is smaller because customers are already assigned, and the routes previously
calculated are good initial candidates.

In this chapter, three Genetic Algorithms (GA) are introduced. The first two GAs, αGA
and βGA, aim to solve the Off-E-VRP. αGA has the property of assigning customers to
each EVs. βGA only works when customers have already been assigned, that is, it can
be used to improve the routes αGA finds. The third GA, onGA, aims to solve the online
problem. Hence, this algorithm must be fast in comparison to αGA and βGA. To solve it
fast, individuals use a different encoding scheme to find solutions in fewer generations, and
the fitness evaluation procedure does not evaluate all constraints.

All GAs evaluate fitness and handle constraints following the same procedure. This pro-
cedure is detailed in Section 5.2. αGA is explained in Section 5.5, βGA in Section 5.6, and
onGA is explained in section 5.7.

5.2 Fitness Evaluation and Constraint Handling
Any GA in charge of solving any of the problems in Chapter 4 will decode individuals into
S (routing plan), L (charging plan), and x0 (initial conditions). These variables are used
to evaluate all constraints in the problem. Therefore, the fitness evaluation procedure and
constraint handling schemes are the same for any GA that solves the problems described in
Chapter 4.
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Let ΓpIjq be the fitness of individual Ij. In this work, it is defined as:

ΓpIjq “ ´J pΨpIjqq ´ ΠpIj,K1q, (5.1)

where Jp¨q is the cost function in Eq. (4.13), ΨpIjq decodes Ij into decision variables S, L,
and x0, K1 is a large positive number, and Πp¨q is a penalization function that only affects
infeasible individuals.

Using a penalization function is one of several other methods to handle constraints [51].
This scheme has been chosen because of its simplicity and efficacy to handle continuous
variables. The penalization method makes individuals that store infeasible solutions less
fitted when they are far from the feasible search space: the more the infeasible, the less the
fitness. In the following, we introduce a formal definition of the penalization function.

Consider that the problem has p inequality constraints and, to evaluate them, it requires
q variables. The optimization vector x̄j P Rq, obtained from individual Ij, contains all this
necessary variables, whereas matrix A P Rpˆq and vector b P Rp are such that all inequality
constraints in the problem can be written as

Ax̄j ď b.

To measure how infeasible an individual is, we use a quadratic penalization distance function
DipIjq, defined as:

DipIjq “

"

wi pAix̄j ´ biq
2 if not Aix̄j ď bi

0 otherwise, (5.2)

where Ai is the i-th row in A, bi is the i-th element in b, and wi is a weight greater than
zero. The latter weight tunes the importance of constraints, that is, one can state that some
constraints are more important than others. Using the distance function and allowing certain
infeasible routes to be accepted, the penalization of individual Ij is the weighted sum of a
cumulative distance and the large constant value:

ΠpIj,K1q “

$

&

%

p
ÿ

i“1
DipIjq `K1 if a constraint is violated

0 if no constraint is violated.
, (5.3)

where K1 P R` is a large constant. Notice that, using this penalization method, a feasible
individual will always be better than an infeasible individual.

In our case, equality constraints are hard constraints; thus, they will always be achieved.
These constraints originate from the EV dynamic model and the θ vector model. The algo-
rithm evaluates these models using decision variables. Therefore, no further methodologies
are required to tackle these kinds of constraints.

To calculate the fitness of Ij, the algorithm follows the next steps. First, decode Ij into
S, L, and x0 using ΨpIjq. Second, decision variables are passed as inputs to the EV dynamic
model to calculate the state variables and the vector θ throughout the operation (see Section
4.4 and Section 4.5). This procedure results in an optimization vector x̄j, which contains
all variables of the problem, i.e., it is a candidate solution. Third, once x̄j is calculated,
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the algorithm checks its feasibility. Fourth, if the solution is infeasible, the algorithm must
calculate the penalization. Fifth, the algorithm calculates the cost function. Sixth, the
algorithm calculates fitness.

In practical E-VRP implementations, construct x̄j, A, and b is quite inefficient. The
insertion of CS alters the length of the routes, which alters the length of the optimization
vector as well. One cannot a-priori know the number of charging operations the EVs require.
Therefore, if we want to implement the matrix comparison, we must construct x̄j, A, and b
for each individual in the population, for each generation. This is severely impractical.

To address the latter issue, we do not use a matrix comparison. On the other hand, we
make use of data structures such as dictionaries and tuples in Python, which have an average
time complexity Op1q when requesting an item. That allows us to store the values from the
optimization and compare constraints directly.

5.3 Encoding Partial Recharging Operations
As reviewed in Section 3.4, GAs require encoding the solutions in a precise manner. In the
case of E-VRPs, most previous works on GAs use an integer representation that stores routes.
However, none of them tackle a case where continuous variables are present in the problem.
As a result, no encoding mechanism to represent partial recharging exists.

This section introduces two novel encoding mechanisms that allow GAs to search for
optimal partial recharging operations. Both mechanisms rely on the concept of charging
paths (see Section 2.6.2). A charging path connects two non-CS nodes (i.e., the depot or
customers) including one or more CS between them. Therefore, these representations allow
GAs to insert CS in the sequence between two non-CS nodes. These representations receive
the names of Charging Path Blocks (CPBs). The notion block is because, as explained in the
next sections, they are a portion of the individual, not the individual itself.

5.3.1 Charging Path Block: Type 1
A CPB Type 1 (CPB-1) stores n˚ charging operations, where n˚ is an hyper-parameter of
the algorithm. A CPB-1 has the following structure:

ra1
1, a

1
2, a

1
3

looomooon

a1

, a2
1, a

2
2, a

2
3

looomooon

a2

, . . . , an
˚

1 , an
˚

2 , an
˚

3
loooooomoooooon

an˚

s,

where each aj is a vector of size three that represents a charging operation. These charging
operations are defined as follows. Let aj be any charging operation, that is:

aj “ raj1, a
j
2, a

j
3s,

where aj1 P N Y t´1, 0u, aj2 P F , and aj3 P R`. The interpretation of aj is the following.
After visiting node aj1, the EV will recharge at CS aj2 the amount aj3. After that charging
operation, the EV will continue its original path. However, if aj1 is -1, then the recharging
operation does not take place at all. In that case, aj2 and aj3 have no relevance.
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For example, consider two EVs: EV 1 and EV 2. Their sequences of customers are
r5, 2, 4, 7s for EV 1, and r3, 1, 9, 8, 6s for EV 2. Still, we want to obtain the following routes
and charging plans:

S1
“ r0, 5, 2, 4,11, 7, 0s S2

“ r0, 3, 1, 9,12, 8, 6, 0s
L1
“ r0, 0, 0, 0,25.2, 0, 0s L2

“ r0, 0, 0, 0,33.5, 0, 0, 0s,

where the bold text indicates a charging operation. The following CPB-1 with n˚ “ 3 can
insert the charging operations in those sequence of customers:

r9, 12, 33.5
loooomoooon

a1

,´1, 11, 50.5
looooomooooon

a2

, 4, 11, 25.2
loooomoooon

a3

s.

This CPB-1 alters both sequence of customers by doing the following. The operation a1

states that the EV that visits customer 9 (EV 2 in this example) will visit, just after serving
that customer, CS 12 and increase the SOC level by 33.5%. Similarly, operation a3 state that
the EV that visits customer 4 (EV 1 in this example) will visit CS 11 and recharge 24.2%
right after serving that customer. Operation a2 does not have relevance because it has a ´1
in the first position. Therefore, values 11 and 50.5 do not have any effect.

Notice that some CPB-1 may repeat some customers. For example, the charging opera-
tions a1 “ r3, 11, 20.5s and a2 “ r3, 12, 22.5s affect customer 3. In that case, the charging
operations are inserted in the order they appear. That is, CS 11 is inserted right after cus-
tomer 3. Then, CS 12 follows the same directions, and it is inserted right after customer 3
as well. This method leads to the sequence 3-12-11.

5.3.2 Charging Path Block: Type 2
A CPB Type 2 (CPB-2) stores ni charging operations, where ni is the number of customers
EV i P M must visit. Therefore, this encoding method only works when EVs have assigned
customers. Consider that EV i has the following sequence of customers

rb1, b2, . . . , bnis.

The CPB-2 is a vector of size 2ni with the following structure

r c1
1, c

1
2

loomoon

c1

, c2
1, c

2
2

loomoon

c2

, . . . , cni1 , c
ni
2

loomoon

cni

s,

where cj1 P F Y t´1u and cj2 P R` for any j P t1, 2, . . . , niu. The interpretation is as follows.
After visiting customer bj, the EV will visit CS cj1 and recharge the amount cj2, for any
j P t1, 2, . . . , niu. If cj1 is -1, then the charging operation does not occur at all.

Let us consider the same example from the previous section. That is, the sequences of
customers are r5, 2, 4, 7s for EV 1, and r3, 1, 9, 8, 6s for EV 2. The desired routes and charging
plans are:

S1
“ r0, 5, 2, 4,11, 7, 0s S2

“ r0, 3, 1, 9,12, 8, 6, 0s
L1
“ r0, 0, 0, 0,25.2, 0, 0s L2

“ r0, 0, 0, 0,33.5, 0, 0, 0s,
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Therefore, two CPB-2 are required: one for EV1, and one for EV2. The following two CPB-2
candidates will produce the desired routes:

pCPB ´ 2q1 “ r´1, 35.7
looomooon

c1

,´1, 11.5
looomooon

c2

,11,25.2
looomooon

c3

,´1, 22.7
looomooon

c4

s

pCPB ´ 2q2 “ r´1, 15.8
looomooon

c1

,´1, 14.8
looomooon

c2

,12,33.5
looomooon

c3

,´1, 52.1
looomooon

c4

,´1, 5.2
loomoon

c5

s

pCPB ´ 2q1 states that, after serving the third customer in its sequence, EV 1 will visit
CS 11 and recharge 25.2%, i.e. after customer 4. Similarly, pCPB ´ 2q2 states that, after
serving the third customer in its sequence, EV 2 will visit CS 12 and recharge 33.5%, i.e.
after customer 9.

5.4 Considerations for Genetic Operations
Selection operation does not depend on the structure of individuals, but on their fitness.
Therefore, we allow all GAs to use the same selection method. All GAs implement a de-
terministic tournament selection of size Υ. To prevent losing the best individual, all GAs
implement elitism. Elitism is done by keeping the best κ individuals of generation k, and
appending them into generation k ` 1. The worst κ individuals of generation k ` 1 are
dismissed.

Regarding mutation and crossover operations, we allow them to choose which procedure
they perform from a pool of operations. That allows the algorithm to perform local search
with high probability, and global search with high probability. Due to the enormous number
of probability combinations one could set, we fix the probability of occurrence of operations.
This probability is detailed with the description of the operation.

5.5 αGA

5.5.1 Encoding
Each individual is the concatenation of three blocks: a customers’ block, a charging oper-
ations’ block, and a departure times’ block. The customers’ block stores the sequence of
customers using a direct integer representation. That is, the integer in position k is the k-th
customer the EV will visit in its sequence. The delimiter is the symbol ‘|’, which indicates the
end of a customer sequence. The charging operations’ block is a CPB-1 (see Section 5.3.1)
that inserts charging operations between the customers defined in the customers’ block. The
departure times’ block encodes departure times in minutes using a real representation.

The length of the individual is

L “ N ` 3m` 3n˚,

where N is the number of customers in the network, m is the fleet size, and n˚ is the number
of charging operations the CPB-1 stores. Therefore, allowing more charging operations will
increase the complexity of the algorithm. As this is the first time an encoding of this type
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is used, it is hard to determine an exact value for n˚. In this work, we use the following
heuristic

n˚ “ 2m.

Let us illustrate this encoding with an example. Consider a fleet of sizem “ 2, a maximum
number of allowed charging operations n˚ “ 3 (the heuristic is not used here), and the
following routes, charging plans, and departure times for each EV:

S1
“ r0, 5, 2, 4, 11, 7, 0s S2

“ r0, 3, 1, 9, 12, 8, 6, 0s
L1
“ r0, 0, 0, 0, 25.2, 0, 0s L2

“ r0, 0, 0, 0, 33.5, 0, 0, 0s
x1

1p0q “ 510.0 (8:30 AM) x2
1p0q “ 540.0 (9:00 AM).

These decision variables can be encoded using the following individual candidate:

r

Route 1
hkkkkikkkkj

5, 2, 4, 7, |,
Route 2

hkkkkkikkkkkj

3, 1, 9, 8, 6, |
looooooooooooomooooooooooooon

Customers’ block

,

a1
hkkkkikkkkj

9, 12, 33.5,
a2

hkkkkkkikkkkkkj

´ 1, 11, 50.5,
a3

hkkkkikkkkj

4, 11, 25.2
looooooooooooooooooooomooooooooooooooooooooon

Charging operations’ block (CPB-1)

,

Dep. time 1
hkkikkj

510.0 ,

Dep. time 2
hkkikkj

540.0
loooooooooomoooooooooon

Departure times’ block

s

5.5.2 Initial Population
The GA creates an initial population in three steps using the procedures described in ap-
pendix B.1:

i. The algorithm receives a candidate individual constructed with a heuristic (see Section
6.2).

ii. Create new individuals by mutating the individual from the previous step. Repeat until
one-third of the population is filled.

iii. Fill the population with random individuals.

5.5.3 Mutation and Crossover Operations
To perform any of the two operations, the GA selects one of the three blocks in the individual
with the same probability. Then, it performs mutation or crossover according to the block
type they modify. We allow the operator to perform several operations, each of them with a
different probability of occurrence. Of course, if only one operation can occur, it receives a
probability of one.

Customers’ block

• Mutation

– Chooses a customer sequence randomly. Then, the operator swaps two customers
in that sequence. (Probability: 0.4)

– Swaps two random values in the block, without considering the last "|" symbol.
The latter must always remain there. (Probability: 0.4)
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– Chooses a random customer in a customer sequence. Then, the operator removes
that customer from the sequence and inserts it into another sequence randomly.
(Probability: 0.4)

• Crossover

– The operator combines two randomly selected customer sequences doing the fol-
lowing. First, notice that some customers may repeat among sequences. Thus,
the operator finds these repeated customers. Second, the operator removes re-
peated customers from the individual. Third, the repeated customers are inserted
in other customer sequences in a random position. Fourth, the original sequences
are swapped among individuals. (Probability: 1).

Charging operations’ block

• Mutation

– First, randomly selects a charging operation aj. Second, samples three values: a˚
from NYt´1u, b˚ from F , and c˚ from Up´10, 10q. Third, the charging operation
is modified as follows:

aj “ raj1 ` a
˚, aj2 ` b

˚, |aj3 ` c
˚
|s.

(Probability: 0.8)

– First, randomly selects a charging operation aj. Second, samples three values: a˚
from N Y t´1u, b˚ from F , and c˚ from Up20, 30q. Third, the charging operation
is modified as follows:

aj “ ra˚, b˚, c˚s.

(Probability: 0.2)

• Crossover

– Permutes two charging operation in the same positions among two individuals.
(Probability: 1.0)

Departure times’ block

• Mutation

‚ Picks a random index i in the range of the block’s length. Consider that the block
contains the value di. The operator replaces di by |di ` a˚|, where a˚ is sampled
from Up´60, 60q. (Probability: 1)

• Crossover

– Permutes two values in a random selected position. (Probability: 1).
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5.5.4 Algorithm Overview
Algorithm 2 summarizes all procedures αGA performs.

Algorithm 2: αGA
Input : Network DpV,Aq; Fleet M ; Hyper-parameters pHq; constructed candidate

individual (I0)
Output: Optimal node sequences, charging plan, and departure times pS˚, L˚, x˚0q
initialization;
P Ð rs;
Append I0 to P ;
Fill P up to HrpopSizes{3 with mutations of I0;
Fill the rest of P with random individuals;
loop;

for generationÐ 1 to HrmaxGenerationss do
eliteIndividualsÐClone the best Hrκs individual in P ; /* Save κ best
individuals */
P̂ ÐTournamentSelectionpP , HrΥsq;

for child in P̂ with probability HrMUTPBs do /* Mutate */
childÐMutate-Apchild, Hq;

end

for pchild1, child2q in P̂ with probability HrCXPBs do /* Mate */
pchild1, child2q ÐCrossover-Apchild1, child2, Hq;

end
Insert eliteIndividuals in P̂ ; /* Elitism */
Remove the Hrκs individuals with lowest fitness from P̂ ;
P Ð P̂ ; /* Update population */

end
bestIndividualÐ Individual in P with the highest fitness.;
pS˚, L˚, x˚0q Ð ΨαpbestIndividualq;
return S˚, L˚, x˚0

5.6 βGA

5.6.1 Encoding
This GA intends to solve the problem when each EV has been assigned to a set of customers.
Therefore, we opt for a different simplistic encoding that will allow the algorithm to explore
the search space with new genetic operations. In this work, βGA will be used to improve
the routes αGA finds.

The operation of a single EV is stored in a sub-individual. A sub-individual is the con-
catenation of three blocks: a customers’ block, a charging operations’ block, and a departure
times’ block. Do not confuse with the blocks of αGA. In the latter, the blocks form the
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individual. In this algorithm, the blocks form a sub-individual.

Consider EV i P M . The customers’ block stores the sequence of customers i will visit
using a direct representation. No delimiter is required because the number of customers is
known. Right after the customers’ block comes the charging operations’ block. In this case,
the sub-individual uses a CPB-2 (see Section 5.3.2), which uses the customers’ block to create
the charging paths. The departure times’ block represents the departure time from the depot
using a single real number.

The whole individual is the concatenation of all the sub-individuals that state the routes
of each EV:

rI1, I2, . . . , Ims,

where I i is the sub-individual of EV i, and m is the fleet size.

As an example, let us represent the same example from Section 5.5.1 using this encoding.
Remember the routes, charging plans, and departure times are:

S1
“ r0, 5, 2, 4, 11, 7, 0s S2

“ r0, 3, 1, 9, 12, 8, 6, 0s
L1
“ r0, 0, 0, 0, 25.2, 0, 0s L2

“ r0, 0, 0, 0, 33.5, 0, 0, 0s
x1

1p0q “ 510.0 (8:30 AM) x2
1p0q “ 540.0 (9:00 AM).

The two following sub-individual candidates I1 and I2 store the routes and departure times
of EV 1 and EV 2, respectively:

I1
“ r 5, 2, 4, 7

looomooon

Custs. block 1

, ´ 1, 11.2,´1, 27.8, 11, 25.2,´1, 24.9
loooooooooooooooooooooomoooooooooooooooooooooon

Charg. ops. block 1 (CPB-2)

, 510.0
loomoon

Dep. time block 1

s

I2
“ r3, 1, 9, 8, 6

loooomoooon

Custs. block 2

, ´ 1, 37.0,´1, 18.9, 12, 33.5,´1, 9.1,´1, 39.6
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

Charg. ops. block 2 (CPB-2)

, 540.0
loomoon

Dep. time block 2

s

As a result, the full individual is the concatenation of both sub-individuals:

I “ rI1, I2
s.

The result from αGA may have a charging path with multiple CS between two non-CS
nodes. As βGA uses the solution from αGA as an initial point and the CPB-2 only allows
charging paths with a single CS, we must turn the charging path with multiple CS visits into
a one with a single visit. To do that, we just simply take the last charging operation in the
path. We allow this behavior as a different exploration method.

5.6.2 Initial Population
This GA constructs an initial population in two steps, using the methods detailed in appendix
B.2:

i. Turn the best individual found by αGA into an individual with a βGA encoding,
using ConstructIndividual-B (algorithm 9). The encoding βGA uses does not allow
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charging paths with more than one CS. However, αGA does. Therefore, if there are
routes with more than one CS in the charging path, ConstructIndividual-B will only
consider the last CS. We discuss this issue at the final discussion of this chapter.

ii. Fill the population with random individuals.

5.6.3 Mutation and Crossover Operations
The GA perform mutation and crossover over sub-individuals. Hence, the first step is to
choose any sub-individual randomly, with equal probability. After that, the GA does any
of the following operations. As with αGA, this GA is allowed to choose among a pool of
operations with a certain probability.

Customers’ Block

• Mutation

– Permutes two values randomly. (Probability: 0.55)

– Splits the block into two pieces A and B. Then, it swaps the pieces to produce a
block BA. (Probability: 0.4)

– Replaces the whole block by a new randomly-generated block. This new random
block is a permutation of customers the EV must visit. (Probability: 0.05)

• Crossover

– Permutes the entire block among sub-individuals. (Probability: 1.0)

Charging Operations’ Block

• Mutation

– Alters a single charging operation. First, it samples a random index i in the
length of the customers’ block. Thus, the charging operation is located in the
index i0` 2 ¨ i, where i0 is the position where the CPB-2 begins in the individual.
Second, remember that a charging operation in a CPB-2 has a structure tci1, ci2u.
The operator changes ci1 by a number sampled from F Yt´1u, and ci2 by |ci2` c˚|,
where c˚ is a value sampled from Up´10, 10q. (Probability: 1.0)

• Crossover

– Permutes the entire block among individuals (Probability: 0.5).

– Performs a left-1-point crossover among the two blocks (Probability: 0.5).

Departure Times’ Block

• Mutation
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– If the value in the block is a, the operator replaces it by |a ` a˚|, where a˚ is
sampled from Up´20, 20q. (Probability: 1.0)

• Crossover

– Permutes the values among individuals. (Probability: 1.0)

5.6.4 Algorithm Overview
Algorithm 3 summarizes βGA. Notice that this algorithm requires the routes found by αGA.

Algorithm 3: βGA
Input : Network DpV,Aq; Fleet M ; Routes found by αGA pS, L, x0q;

Hyper-parameters pHq
Output: Improved node sequences, charging plan, and departure times pS˚, L˚, x˚0q
initialization;
P Ð InitialPopulation-BpS, L, V,Mq;
loop;

for generationÐ 1 to HrmaxGenerationss do
eliteIndividualsÐ CloneBestpP, Hrκsq; /* Save κ best individuals */
P̂ ÐTournamentSelectionppop,HrΥsq;

for child in P̂ with probability HrMUTPBs do /* Mutate */
childÐMutate-Bpchild, Hq;

end

for pchild1, child2q in P̂ with probability HrCXPBs do /* Mate */
pchild1, child2q ÐCrossover-Bpchild1, child2, Hq;

end
Insert eliteIndividuals in offspring;
Remove the Hrκs individuals with lowest fitness from P̂ ;
popÐ P̂ ;

end
bestIndividualÐ Individual in P with the highest fitness.;
pS˚, L˚, x˚0q Ð ΨβpbestIndividualq;
return S˚, L˚, x˚0

5.7 onGA

5.7.1 Encoding scheme
This algorithm solves a problem equivalent to βGA: find routes when customers are already
assigned. The main difference is that the number of EVs and the customers they visit will
change throughout the operation due to the system’s online behavior. As a result, the
individual will change its size each time the optimization occurs. We remark that, to decode
this individual, the GA knows the critical node where the EV begins the operation (see

52



Section 4.2.2).

The representation is very similar to the one used by βGA. The whole individual is
the concatenation of m˚ sub-individuals, where m˚ is the fleet size at the moment of the
optimization. Each sub-individuals stores the information of a single EV in three blocks: a
customers’ block, a charging operations’ block, and an offset block. The customers’ block
stores the sequence of customers the EV will follow. As with βGA, no delimiter is required
because the number of assigned customers for each vehicle is known. However, the charging
operations’ block is a CPB-1, not a CPB-2. The number of charging operations the CPB-1
stores is n˚, a hyper-parameter of the algorithm. The offset block stores the offset that will
be applied to initial conditions.

Customers’ blocks do not contain the critical nodes because they are always inserted at the
beginning of the routes. Therefore, it does not make sense to store them in the individuals.
To allow EVs to visit CSs after the critical node, we allow charging operations to occur after
visiting them doing the following. Consider EV i PM , and remember that a single operation
aj is defined by three numbers (see Section 5.3.1):

aj “ raj1, a
j
2, a

j
3s.

In onGA, aj belongs to the set of customers the EV has not visited considering the critical
node, that is, aj1 P N iYtSicritu, which differs from αGA and βGA, where aj1 P N and aj1 P N i,
respectively.

Let us provide a visualization of this encoding, continuing with the example from Section
5.5.1. Consider that the optimal routes and charging plans given by any other optimizer
were:

S1
“ r0, 5, 2, 4, 11, 7, 0s, S2

“ r0, 3, 1, 9, 12, 8, 6, 0s
L1
“ r0, 0, 0, 0, 25.2, 0, 0s, L2

“ r0, 0, 0, 0, 33.5, 0, 0, 0s,
x2

1p0q “ 510.0, x2
1p0q “ 540.0.

If no customer has been visited yet and each EV is allowed to do at most n˚ “ 2 charging
operations, two sub-individuals candidates are:

I1
“ r 5, 2, 4, 7

looomooon

Custs. block 1

, ´ 1, 11, 23.7, 4, 11, 25.2
looooooooooooomooooooooooooon

Charg. ops. block 1 (CPB-1)

, 10.0
loomoon

Offset block 1

s

I2
“ r3, 1, 9, 8, 6

loooomoooon

Custs. block 2

, 9, 12, 33.5,´1, 11, 24.5
looooooooooooomooooooooooooon

Charg. ops. block 2 (CPB-1)

, ´ 5.0
loomoon

Offset block 2

s

Then, the full individual is the concatenation of both sub-individuals:

I “ rI1, I2
s.

As the operation of the vehicles has not started yet, the critical point is the depot. Hence, the
departure times are the ones stated by either αGA or βGA. To continue with the examples
from Section 5.5.1, consider that EV 1 departs at 510 min (8:30 AM), and EV 2 departs at
540 min (9:00 AM). As the offsets of EV 1 and EV 2 are 10.0 and -5.0, respectively, their
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departure times are modified to 520 min (8:40 AM) for EV 1, and 535 min (8:55 AM) for
EV 2.

For the sake of clarity, we provide two more examples considering that EVs have moved
forward following their original routes. The first example addresses a case where both critical
points are customers. Consider that, after measuring, the following will happen:

• EV 1 has visited customer 5 and it is currently at customer 2. It is estimated that,
when the EV departs from customer 2, the time will be 660, and the SOC will be 64%.

• EV 2 has visited customers 3 and 1, and it is currently at customer 9. It is estimated
that, when the EV departs from customer 9, the time will be 695, and the SOC will be
62%.

Now, consider the following two sub-individuals for each EV:

I1
“ r 7, 4

loomoon

Custs. block 1

, 7, 11, 22.7,´1, 11, 25.2
looooooooooooomooooooooooooon

Charg. ops. block 1 (CPB-1)

, 1.0
loomoon

Offset 1

s

I2
“ r 6, 8

loomoon

Custs. block 2

, 9, 12, 30.5,´1, 11, 24.5
looooooooooooomooooooooooooon

Charg. ops. block 2 (CPB-1)

, 0.0
loomoon

Offset 2

s

As a result, both individuals lead to the following two new decision variables:

S1
“ r2, 7, 11, 4, 0s, S2

“ r9, 12, 6, 8, 0s
L1
“ r0, 0, 22.7, 0, 0s, L2

“ r0, 30.5, 0, 0, 0s,
x2

1p0q “ 661.0, x2
1p0q “ 695.0.

In this second example, the critical point of EV 1 is a customer, but the critical point of
EV 2 is a CS. Consider that:

• EV 1 has visited customers 5 and 2, and it is currently at customer 4. It is estimated
that, when the EV departs from customer 4, the time will be 698, and the SOC will be
42%.

• EV 2 has visited customers 3, 1, and 9, and it is currently at CS 12. The EV arrives
at CS 12 at minute 715, with SOC 40%, and it is supposed to recharge 33.5 %.

Now, consider the following two sub-individuals for each EV:

I1
“ r 7

loomoon

Custs. block 1

, 4, 11, 28.7,´1, 11, 25.2
looooooooooooomooooooooooooon

Charg. ops. block 1 (CPB-1)

, 5.0
loomoon

Offset 1

s

I2
“ r 6, 8

loomoon

Custs. block 2

, ´ 1, 12, 31.5,´1, 11, 24.5
looooooooooooooomooooooooooooooon

Charg. ops. block 2 (CPB-1)

, ´ 8.0
loomoon

Offset 2

s
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In this case, both individuals lead to the following two new decision variables:

S1
“ r4, 11, 7, 0s, S2

“ r12, 8, 6, 0s
L1
“ r0, 25.2, 0, 0s, L2

“ r25.5, 0, 0, 0s,
x2

1p0q “ 703.0, x2
1p0q “ 712.0`∆12p0.4, 0.335´ 0.08q.

x2
2p0q “ 42.0%, x2

2p0q “ 0.4` 0.335´ 0.08.

5.7.2 Initial Population
Consider that the optimization occurs at instant k˚. We assume that the state of both traffic
and EVs might have changed due to uncertainty. However, we suppose that the optimal
routes found at instant k˚ ´ 1 are good initial candidates. The latter assumption is true
when no significant events happened between k˚ ´ 1 and k˚. As a result, we adapt the
old optimal routes in k˚ ´ 1 to be valid in k˚ and construct an individual. The rest of
the population is filled with random individuals. The procedure is done using the methods
detailed in appendix B.3:

i. Construct an individual with ConstructIndividual-O passing routes starting right
after the critical nodes (algorithm 10).

ii. Fill the rest of the population with random individuals.

5.7.3 Mutation and Crossover Operations
This GA also performs genetic operations over sub-individuals, like βGA. First, the GA ran-
domly chooses the sub-individual to alter with equal probability. Then, one of the following
pool of operations is done.

Customers’ Block

• Mutation

– Permutes two values randomly. (Probability: 0.85)

– Splits the block into two pieces A and B. Then, it swaps the pieces to produce a
block B-A. (Probability: 0.1)

– Replaces the whole block by a new randomly-generated block. This new random
block is a permutation of customers the EV has not visited yet, i.e., a permutation
of N i. (Probability: 0.05)

• Crossover

– Permutes the whole blocks among individuals. (Probability: 1.0)

Charging Operations’ Block

• Mutation

55



– Samples three values: a˚ from N i Y t´1u, b˚ from F , and c˚ from Up´10, 10q,
whereN i is the set of remaining customers EV imust visit. Then, in the sub-block,
a is replaced by a˚, b is replaced by b˚, and c is replaced by |c` c˚|. (Probability:
1.0)

• Crossover

– Swaps the whole CPB-1 among the two sub-individuals. (Probability: 1.0)

Offset Block

• Mutation

– Consider the value in the block is v, and an empty variable a. If the critical node
is a customer, a is assigned a value sampled from Up´8, 8q; otherwise, the value is
sampled from Up´5, 5q. Then, the operator samples b from Bp1, 0.8q. Finally, the
block value is replaced by b ¨ |v ` a|. The binary variable b allows the operator to
reset the offset to zero sometimes, as it might be a good candidate that got lost
after going through too many genetic operations. (Probability: 1.0)

• Crossover

– Permutes the values among both individuals. (Probability: 1.0)

5.7.4 Algorithm
The onGA procedure is shown in Algorithm 4.

5.8 Discussion
This chapter introduces three GAs. Two of them, αGA and βGA aim at solving the off-E-
VRP, whereas onGA aims at solving the on-E-VRP. To encode routes, three novel represen-
tations are introduced. These representations are capable of storing partial recharging, which
none of the reviewed works in GA to solve E-VRP have done before. Although the benefits
of these encoding operations are many, we remark some critical aspects of using them.

When using a CPB-1, one should pass the maximum number of allowed charging opera-
tions n˚. However, no method exists to correctly choose this value. Another drawback is that
the algorithm must search for the customers to insert the charging operation. That could be
computationally expensive. The main benefit of this representation is that it allows EVs to
visit several CS in a charging path. When using a CPB-2, one can improve the efficiency of
decoding operations. However, this representation does not allow multiple CS in a charging
path. We allow this encoding to explore the search space using different genetic operations.

Finally, we remark that we allow genetic operations to choose which action to perform from
a pool of operations. Some of them receive more probability than others. The operations with
less probability tend to be destructive, and that is the main reason to lower their probability.

56



Algorithm 4: onGA
Input : Updated network DpV pk˚q, Apk˚qq; Fleet Mpk˚q; Critical points pXcritq;

Hyper-parametes pHq; Max. execution time ptGAq
Output: New routes and initial conditions S˚, L˚, x˚0
initialization;
P Ð InitialPopulation-OpS, L,Xcritq;
timeÐ 0
loop;

while time ă tGA do /* Internal time, not by variable assignation */
eliteIndividualsÐ CloneBestpP, Hrκs); /* Save κ best individuals */
P̂ ÐTournamentSelectionpP , HrΥsq;

for child in P̂ with probability HrMUTPBs do /* Mutate */
childÐMutate-Opchild, Hq;

end

for pchild1, child2q in P̂ with probability HrCXPBs do /* Mate */
pchild1, child2q ÐCrossover-Opchild1, child2, Hq;

end
Insert eliteIndividuals in offspring;
Remove the Hrκs individuals with lowest fitness from P ;
P Ð P̂ ;

end
bestIndividualÐ Individual in P with the highest fitness.;
pS˚, L˚, x˚0q Ð ΨOnpbestIndividual,Xcritq;
return S˚, L˚, x˚0
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Chapter 6

Online Decision-Making System for the
E-VRP

6.1 Introduction
Every day, the dispatcher must solve the Off-E-VRP before starting the operation. This
procedure constructs the tentative routes each vehicle will follow. This stage is known as
pre-operation stage. The pre-operation stage ends when an EV begins its service tour. Imme-
diately after the first EV begins its service tour, the dispatcher begins solving the On-E-VRP.
This latter event initiates the online operation stage. In this stage, the dispatcher continu-
ously receives data from all EVs and the traffic network and uses it to solve the On-E-VRP.
After solving the latter problem, the dispatcher is capable of updating the routes of EVs.

The EVs operate in a very asynchronous manner. When measuring their state, some of
them are traveling across an arc, others are serving customers, others may not have begun
their operation trip yet, and others may have returned to the depot already. Instead of
tackling the asynchronous behavior directly, we develop a synchronization method. This
method estimates the future state of the vehicles, based on the current measurements. Using
these estimations, we select the nodes in the routes that are ahead of the current positions.
These nodes receive the name of critical nodes, and they will be the starting nodes of the
new routes the on-E-VRP will calculate.

The synchronization layer is responsible for performing the synchronization process. This
process allows the system to create a new On-E-VRP instance, which is solved with OnGA.
Both processes (synchronization and instance creation) are repeated in a loop until all vehicles
reach the depot. Once all vehicles reach the depot, the online operation ends, and the whole
day of operation is finished.

In Section 6.2, we detail the pre-operation stage to develop initial routes. In Section 6.3,
we detail the online stage. Here, the method to calculate critical nodes and critical states is
fully explained. Also, we include the simulation method to emulate real-traffic networks.
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6.2 Pre-operation Stage
The pre-operation stage is the first procedure the system performs in the day. We consider
the scenario where the dispatcher decides how many EVs to use employ. Therefore, the
pre-operation stage is responsible for making three decisions:

1. decide how many EVs to use,

2. assign each EV a set of customers to visit;

3. and generate initial routes for the EVs.

The first step is to solve αGA. The dispatcher uses Algorithm 7 from Appendix B.1 to
generate a candidate individual for αGA. The algorithm orders customers according to their
time window lower bound in increasing order. It then traverses the ordered customers, adds
them into a new route, and each time the requirements in the route surpass the weight limit
of EVs, a new route is started. As a result, Algorithm 7 generates a solution candidate and
the initial fleet size.

After the initial fleet size is calculated, the system solves αGA. When βGA finishes, the
system codes the routes from αGA into a βGA encoding. Then, βGA is executed. After
this process, the system verifies if any of the two algorithms returns a feasible solution. If
that is the case, the routes with the best optimization result, i.e., best fitness between αGA
and βGA, are selected as the initial routes. Otherwise, the system inserts a new vehicle into
the fleet, and, from now on, it develops initial solution candidates with Algorithm 8 from
Appendix B.2. The latter procedure creates route candidates with a fixed fleet size; that is,
it does not calculate how many EVs to use. Algorithm 5 summarizes the pre-operation stage
according to the previous steps.

If the fleet owner cannot modify the fleet size, i.e., cannot insert more EVs, then the only
option is to use Algorithm 8. In practical scenarios, one can develop a method to select
how many EVs to use each day using both methods. For example, if the system determines
that the operation can be fulfilled with 10 EVs, and there are 15 EVs available, we could
use Algorithm 8 to solve the problem with the 15 EVs anyways. Then, we can compare the
benefits and drawbacks of each strategy in terms of operational cost and externalities.

6.3 Online Stage
The online stage begins when an EV starts its operation. At that moment, the system begins
collecting measurements from the traffic network and the EVs. Also, we initialize the global
On-E-VRP counter k˚ to zero. Then, every tGA ` tsafe time units, a new measurement is
available, and k˚ increases by one. tGA is the maximum time the dispatcher gives OnGA
to find a new solution, i.e., OnGA iterates until its execution time reaches tGA or it reaches
the maximum number of generations. tsafe is a time frame that allows the dispatcher to
communicate the new routes to EVs, gather new measurements, and calculate critical nodes
and critical points safely. Then, after a measurement is collected, the dispatcher solves the
On-E-VRP using OnGA. The latter process repeats until all vehicles have finished their
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Algorithm 5: Pre-operation stage
Input: Traffic network pt0u YN Y F,Aq; description of a single EV pℵq; αGA

hyper-parameters pHαq; βGA hyper-parameters pHβq; maximum number of
EV insertions pδM̄q

I0, m0 Ð ConstructIndividual1-A(N , ℵ.maxPayload) (Algorithm 7) ;
mÐ m0;
feasibleÐ False;
while not feasible do

I˚α ÐαGAppV,Aq, Hα, m, I0q;
I˚αβ Ð Turn I˚α into βGA encoding;
I˚β ÐβGA

`

pV,Aq, Hβ, m, I˚αβ
˘

;
if ΠpI˚α, Hα.K1q ““ 0 or ΠpI˚β, Hβ.K1q ““ 0 then

/* Stop optimization */
feasibleÐ True;

else
/* Add new EV */
mÐ m` 1;
if m´m0 ą δM̄ then

I˚ Ð arg maxIPtI˚α,I˚βu ΓpIq;
return ΨpI˚q

end
I0 ÐConstructIndividual2-A(N) (Algorithm 8);

end
I˚ Ð arg maxIPtI˚α,I˚βu ΓpIq;
return ΨpI˚q

end

operation.

When collecting a measurement, some EVs may be traveling across an arc, others may
be serving customers, others may not have begun their operation trip yet, and others may
have already returned to the depot. Such asynchronous behavior requires a synchroniza-
tion method that allows the system to solve the On-E-VRP correctly. This synchronization
method consists of predicting the future state of EVs since the moment of observation. In
particular, we focus on predicting the moments each EV will arrive and begin the service at
the next nodes in its route, after the measurement.

By predicting the moment each EV will begin the service at future nodes, we can safely
choose a node so that there is enough time to execute OnGA and solve the On-E-VRP. That
is, choose a node such that the EV arrives after tGA ` tsafe since the moment of measuring.
The first nodes that ensure the latter condition are selected as the starting nodes of the
new routes. These nodes receive the name of critical nodes, which are explained in the next
section.

The online stage is summarized in Algorithm 6. In its essence, this stage solves the On-
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Algorithm 6: OnlineOperation
Input: Traffic network pV,Aq; Fleet M ; Initial Routes pS0, L0, x0

0q; onGA
hyperparameters pHonq; Max. OnGA time ptGAq; Safe time ptsafeq

doneÐ False;
while not done do
pV,Aq ÐUpdateNetwork();
Xmeas ÐGetVehiclesCurrentStates();
Scrit, Xcrit ÐCriticalNodesppV,Aq, Xmeas, tGA, tsafe, S

0, L0, x0
0q;

M ÐWhichVehiclesToRoutepScrit, Xcrit, pV,Aqq;
if M is not empty then
pS˚, L˚, x˚0q ÐonGAppV,Aq, M, Scrit, Xcrit, H

onqq;
S0, L0, x0

0 ÐUpdateRoutes(S˚, L˚, x˚0);
Send new routes to EVs;

else
doneÐ True;

end
end

E-VRP to adjust the portion of the routes that come after the critical points, according to
collected measurements. The steps to do that are:

1. Calculate critical nodes.

2. Develop an On-E-VRP instance according to measurements.

3. Execute OnGA to solve the On-E-VRP instance.

4. Send the new routes to all EVs.

5. Loop until all EVs reach the depot.

The solution given by onGAmay be equal or better than the old solution. The latter occurs
because onGA constructs an initial individual based on the current routes. Therefore, routes
are always updated, even if new routes are equal to previous routes. The latter procedure is
called UpdateRoutes, which receives the new node sequences S˚, the new charging plan L˚,
and the new initial conditions x˚0 from OnGA. Algorithm 6 summarizes the online method.

6.3.1 Synchronization Layer
In Section 4.2.2, the On-E-VRP is introduced as the problem of finding new routes for each
vehicle. The problem assumes that the vehicles start at well-defined nodes, and the initial
conditions at that node are known. As mentioned before, those starting points are the critical
nodes. In reality, EVs are not necessarily in the critical nodes. Therefore, we need a procedure
to make EV states appear like they start from the critical nodes in the On-E-VRP. This
procedure is called state synchronization, which is performed by the synchronization layer.

State synchronization consists of forecasting the future state of EVs based on their current
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position and traffic state. The method focuses on forecasting the time and SOC each EV has
by starting the service at the next nodes, assuming the current route (previous to updating
it with OnGA). Once every start-of-service time and SOC are calculated, the goal is to find
the first node such that the EV begins a service after tGA ` tsafe. The node that accomplish
such feature is the critical node. We label the start-of-service EV state at the critical node
as critical state. As a result, in the On-E-VRP, all EVs start at the critical nodes, i.e., we
synchronize the EV states to begin at them.

Before introducing the method to forecast EV states, we explain how critical nodes are
used. First, let k˚ be the global On-E-VRP counter, which tracks the measurement instant.
Therefore, at instant k˚, the fleet is Mpk˚q, which may vary its size from previous instants
because some EVs finish their operation. The old route, charging plan, and initial conditions
of EV i PMpk˚q are denoted Sipk˚ ´ 1q, Lipk˚ ´ 1q and x0pk

˚ ´ 1qi respectively. As EVs are
moving, some nodes in Sipk˚ ´ 1q might have been already visited.

We illustrate the latter with an example. Consider two EVs that, at certain measurement
instant k˚ ´ 1, are following the next sequence of nodes:

S1
“ r4, 2, 5,6, 13, 25, 12, 0s S2

“ r12,3, 11, 10, 8, 7, 0s.

At the next instant k˚, the synchronization layer calculates the critical nodes, denoted in
bold font. As a result, in the On-E-VRP, 6 and 3 will be fixed, and OnGA will update the
routes after them, without moving the last 0, which represents the depot:

S1
pk˚q “ r6, 13, 25, 12,

loooomoooon

Adjust

0s S2
pk˚q “ r3, 11, 10, 8, 7,

looooomooooon

Adjust

0s.

Notice that the previous example only addresses the sequence of nodes. However, the charging
plan may also be updated.

To estimate arrival EV states at future nodes, we must address two cases. At the moment
of measuring, the EV can be either traversing an arc or performing a service. The latter
includes serving a customer or recharging the battery. In both cases, we develop a different
forecasting mechanism that estimates the arrival time and SOC at the next node in the
current sequence. Then, the arrival times and SOC at future nodes are calculated. We then
include waiting times to calculate start-of-service instants and use EV state equations from
Section 4.4 to calculate the start-of-service states at future nodes.

In the first case, consider that, at measurement instant k˚, EV i P Mpk˚q is traveling
across arc pSij, Sij`1q P Apk

˚q. The synchronization layer receives the arc portion η that the
EV has traveled. Thus, the remaining portion is p1 ´ ηq, and we use this value to estimate
the time and SOC i has when arriving at Sj`1. To do that, consider that the current time
of the day is t˚, and the current weight the EV carries is w˚. Then, do the following:

1. arrival time at Sij`1 is estimated as t˚ ` p1´ ηq ¨ tSijSij`1
pt˚q;

2. arrival SOC at Sij`1 is estimated as e˚ ´ p1´ ηq ˆ ESijSij`1
pw˚, t˚q,
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where w˚ is the mass i carries across the arc, and tSijSij`1
p¨q and ESijSij`1

p¨q are the updated
travel time and energy consumption functions at instant k˚.

In the second case, at measurement instant k˚, EV i P Mpk˚q is performing a service at
node j P V pk˚q. The synchronization layer receives the time the EV departs from that node,
including the waiting time after that service. Then, the synchronization layer calculates the
arrival time at the next node.

After the arrival time at the next nodes are calculated for each EV, the state synchroniza-
tion process is done. We then calculate the start-of-service times in the remaining nodes in
the old route using the state equation from Section 4.4. For each EV i PMpk˚q, the system
then finds the first node where the start-of-service time is greater than t˚` tGA` tsafe, where
t˚ is the time of the day the measurement is collected. This node is fixed as the critical node,
denoted Sicrit. The critical state is denoted rxi1crit, xi2crit, xi3critsT . The latter is passed to the
On-E-VRP to calculate the initial conditions.

6.3.2 Simulation Framework
In this section, we detail the methodology to simulate a real traffic network. This simulation
involves two processes: updating the traffic network, and emulate the movement of EVs.
Updating the traffic network state refers to updating travel times and energy consumption
between nodes based on current traffic congestion. That is, redefine each tijpt0q, and each
Eijpw, t0q for each pi, jq P A. The latter procedure is referred as UpdateNetwork(), which is
latter used in the online stage. Emulate the movement of EVs requires making each EV follow
the routes calculated by the decision-making strategy, at the same time they go through the
new definitions of travel times and energy consumptions.

Developing a method to compute shortest paths from real traffic data and real-time mea-
surements is not among this thesis goals. A more in-depth study on real-time updates of
shortest paths can be found in [33]. There, the author provides an online methodology to solve
the Dynamic-Stochastic Shortest Path Problem (DSSP) and develops a PF-based method to
estimate the probability density functions (pdf) of travel times and energy consumption. We
use this method to find the best routes using real data because it provides the pdfs, which
are then used to simulate the traffic network’s realizations.

Also, modelling traffic congestion with realistic elements is a difficult problem by itself, and
it is not among this thesis goals. To emulate real-traffic networks, we simplify the problem by
using time travel and no-cargo energy consumption pdfs we obtain after solving the DS-SPP
using [33]. Then, we can calculate the expected value and the standard deviation for each arc
and each timestamp with these pdfs. Then, it is assumed that the distributions are normally
distributed. As a result, the simulation emulates a noisy network, where the expected values
are known, and traffic realizations are generated using the expected values with an additive
white Gaussian noise. The latter simulation is valid as we intend to verify that OnGA is
capable of updating routes if traffic congestion varies.

Following the methodology from Section 4.3.2, we divide the times of the day in h periods
of equal length. For each period start, we store the expected travel time and no-cargo
energy consumption between nodes. In this simulation framework, we also store the standard
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deviation of the travel time and no-cargo energy consumption at each period start. We obtain
those statistics by solving the DS-SPP using [33].

The following procedure emulates the update of travel times and energy consumption.
Consider the arc pi, jq P Apk˚q, at measurement instant k˚. Its travel time follows a distribu-
tion Npµttijpt0q, σttijpt0qq, while the no-cargo energy consumption Npµecij pt0q, σecij pt0qq. Therefore,
each update is done as follows:

1. Do aÐ sample
`

N
`

0, σttijpt0q
˘˘

for each timestamp t0.

2. Do bÐ sample
`

N
`

0, σecij pt0q
˘˘

for each timestamp t0.

3. Update tijpt0q Ð rµttijpt0q ` a].

4. Update Ēijpt0q Ð rµecij pt0q ` bs.

To emulate the movement of EVs, we consider a sample time ∆T ˚. Then, each time the
network is updated, the simulator checks the route of each EV. Then, it makes each EV move
forward according to the route and the traffic network. We record the arrival and departure
states of EVs when they reach nodes. When they are traveling, we record the arc portion
the EV traverses when it travels a time ∆T ˚.

64



Chapter 7

Simulation Tests

7.1 Experimental Setup
We conduct two studies to test the overall decision-making system performance. In the first
study, we study the pre-operation stage by solving the Off-E-VRP over several artificially-
generated and two real-data based instances. The results emulate the initial routes each EV
will follow. In the second study, we use the traffic data from one of the two real-data based
instances to emulate a real traffic behavior, according to Section 6.3.2. Emulating a real
traffic behavior allows us to study the online stage by solving the On-E-VRP until all EVs
finish their operation.

In both experiments, we consider a homogeneous EV fleet consisting of several Nissan
Leaf vehicles. The real parameters and operational constraints of these EVs are detailed
in Table 7.1. CS technologies can be slow, normal, and fast. Those technologies have the
charging functions shown in Figure 7.1, which are extracted from [7] and scaled to match
the battery capacity of our experiments. The time breakpoints in those charging functions
remain unaltered.

7.1.1 Cost function weights
To set the cost functions weights, we use the following heuristic. As travel times and energy
consumption varies throughout the day, we pick their average value for the whole day. These
values are calculated in next Section 7.1.2 and shown in Figure 7.2. Then, we set the weight
for travel time and energy consumption as the quotient between a number within p0, 1s and
the average value. A similar procedure is applied for recharging time and recharging costs,
dividing by the average time it takes to fully recharge the battery and the average cost per
kWh, respectively. Table 7.2 shows the final weights used in this case. In this case, we give
more importance to energy consumption and recharging costs.

7.1.2 Artificially Generated Instances
We create two sets of instances with different areas: a 10 km by 10 km square, and a 20 km
by 20 km square. For each area, we consider 10, 25, 50, 75, and 100 customers; and for each
number of customers, we vary the number of CS two times. This procedure yields a total of
20 instances.

Customers demands are created by randomly sampling the following elements from uni-
form distributions. Time windows are defined within 9:00 and 15:00, with a width ranging

65



Table 7.1: Description of the EV energy consumption model parameters considering a Nissan
Leaf EV [52], and operational constraints

Description Parameter Value Unit
Mass (EV + driver + payload) m 1521 rkgs
Rolling resistance coefficients Cr 1.75 -

c1 4.575 -
c2 1.75 rs{ms

Air mass density ρair 1.2256 rkg{m3s

Frontal are of the EV Af 2.3316 rm2s

Gravitational acceleration g 9.8 rm{s2s

Aerodynamic EV drag coefficient CD 0.28 -
Driveline efficiency ηDriveline 0.92 -
Electric motor efficiency ηMotor 0.91 -
EV battery efficiency ηBattery 0.9 -

Regenerative braking efficiency ηRB

"

ep
´0.0411
|aptq| q if aptq ă 0

0 otherwise.
-

Battery capacity Q̄i 24 [kWh]
Maximum payload D̄i 1200 (santiago 22 and 6) [kg]

553(other instances) [kg]
Maximum tour time T̄ 360 [min]
SOC upper bound α` 95% -
SOC lower bound α´ 20% -

Table 7.2: Cost function weights

Weight Value it multiplies Value
ω1 Travel time 45.085e-3
ω2 Recharging time 1e-2
ω3 Recharging cost 2e-3
ω4 Energy consumption 2.291

from 2.5 hours up to 3.5 hours. Service times are within 8 to 15 minutes, whereas require-
ments within 10 kg to 80 kg. For each CS, we randomly pick with equal probability one of
the three charging technologies and assign it to the CS. In all cases, CS capacities are set to
three.

Each instance consists of a depot at the square’s center, and customers and CS randomly
positioned around it. We also consider, in all cases, a CS with normal technology at the
depot. Node positions are created by sampling two values from Up´l{2, l{2q, where l is the
side length of the square. Travel time and zero-cargo energy consumption between nodes are
generated using the average values from the profile in Figure 7.2. This profile is obtained by
averaging the real data in Section 7.1.3 and scaling the data into a 1-kilometer arc equivalent.
Then, we scale the profile values according to the euclidean distance between the instance
nodes.
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Figure 7.1: Definition of charging functions considered by the EV model, according to their
technology (adapted from [7] for a 24 [kWh] battery)

7.1.3 Instances Based on Real-data
To test the solution method’s performance over real-world scenarios, we develop two instances
using a database containing information of one of Santiago de Chile’s most congested areas.
The database contains a road network covering a portion of Santiago, Estación Central,
Providencia, and Las Condes districts. The database’s geographical distribution is shown
in Figure 7.3, which contains 326,637 nodes and 664,964 arcs definitions, representing road
intersections and road segments, respectively. The database also provides the average velocity
every 30 minutes, longitude, latitude, altitude, and miscellaneous elements such as road types
and street names.

Using the database described above, we develop a 6-node instance and a 22-node instance.
For the 6-node instance, we fix the depot and select five nodes around it, where four of them
are customers, and one is a CS with normal technology. For the 22-node instance, we fix the
depot and select 20 nodes around it, representing the customers. In both cases, nodes are
placed by hand, selecting reachable points in highly-demanded streets.

As explained in Section 4.3.2, we solve the DS-SPP between all nodes using the method
in [33]. The latter allows us to estimate the distribution of travel times and no-cargo energy
consumption throughout the day. We then use those distributions to emulate real traffic
conditions according to what is explained in Section 6.3.2. As solving the DS-SPP is a
computationally expensive procedure, we apply the method from Section 4.3.2 where we fix
time intervals where travel times and no-cargo energy consumption remain the same. In this
case, we only calculate the shortest paths within 6:00 and 22:00. From 00:00 to 6:00, we
assume the same shortest path calculated at 6:00, whereas from 22:00 to 00:00, we assume
the shortest path calculated at 22:00.

Similarly to artificially developed instances, customers demands are created by randomly
sampling the following elements from uniform distributions. Time windows are defined within
9:00 and 16:00, with a width ranging from 2 hours up to 3 hours. Service times are within 5
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Figure 7.2: Travel time and energy consumption profiles for a 1 [km] arc length using Santi-
ago’s database

to 10 minutes, whereas requirements within 50 kg to 150 kg. In all cases, CS capacities are
set to three.

Finally, we label the two instances as:

‚ santiago6: contains 1 depot, 4 customers, and 1 CS.

‚ santiago22: contains 1 depot, 20 customers, and 1 CS.

7.2 Study of the Pre-operation Stage
In this section, we study the performance of both αGA and βGA to solve the Off-E-VRP over
the 22 instances described in the previous sections (20 artificial + 2 real-world). As described
in Section 6.2, αGA is used first to assign the customers and calculate the first routes. Then,
βGA aims to improve those routes. If the result is infeasible, the dispatcher inserts a new EV,
according to Algorithm 5. Finally, the system registers the Off-E-VRP optimization results
from both αGA and βGA, after the last EV insertion. The latter represents the performance
of the initial routes before the EVs begin their operation. Such procedure emulates the
pre-operation stage.

In Algorithm 5, we set the maximum number of EV insertions as δM̄ “ 3. Tables 7.3
and 7.4 detail the hyper-parameters of αGA and βGA, respectively. These tables show the
heuristic criterion used to tune the population size, the maximum number of generations,
and the penalization constants to make them larger when the problem size increases.

Detailed results from αGA and βGA are shown in Tables 7.5 and 7.6, respectively. These
results show that the proposed solution method can find feasible solutions for most instances.
Feasible routes tend to exploit recharging operations to fulfill not only the SOC policy but
other constraints. For example, the SOC and time EVs have when they arrive at the latter
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Figure 7.3: Distribution of database’s nodes and arcs

Table 7.3: αGA hyper-parameters

Hyper-parameter Description Value
CXPB Crossover prob. 0.7
MUTPB Mutation prob. 0.9
µ Population size 1.5 ¨ pn` s` 1q ` 10m` 50
ρ Max. generations 3µ
κ Elite individuals 1
K1 Penalization constant 10 ¨ pn` s` 1q
Υ Tournament size 5
n˚ Sub-bocks in the CPB-1 2 ¨m

n: num. of customers, s: num of CS, m: fleet size

nodes can be altered by adjusting the recharging plan. Thus, one can consider recharging
operations as time delay events that allow EVs to accomplish time windows; hence, lowering
total waiting times at nodes. In practical situations, that is a crucial advantage because a
proper synergy between recharging times and waiting times could allow the fleet to visit more
customers.

Figure 7.4 shows the example of the operation of an EV that follows a feasible route. The
route is extracted from the βGA solution of instance santiago22. In this case, EV 0 satisfies
all operational constraints. Charging operations help the EV to maintain the SOC within
the SOC policy. Furthermore, they also act as time delay events, which allows the EV to
fulfill the time windows of the next customers. For example, the charging operation after
customer 20 is enough to increase the SOC level near 95% and reach customer 17 right after
its time window begins. Notice that, in this example, there is a situation where EV 0 waits
right after serving customer 17. The latter implies that it is more convenient to wait there,
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Table 7.4: βGA hyper-parameters

Hyper-parameter Description Value
CXPB Crossover prob. 0.7
MUTPB Mutation prob. 0.9
µ Population size 1.5 ¨ pn` s` 1q ` 10m` 50
ρ Max. generations 2µ
κ Elite individuals 1
K1 Penalization constant 10 ¨ pn` s` 1q
Υ Tournament size 5

n: num. of customers, s: num of CS, m: fleet size
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Figure 7.4: Feasible route example (from santiago22 instance)

right after serving the customer, instead of waiting before serving customer 13. This event
proves that, on some occasions, it may be better to wait at the previous node because the
energy consumption required to traverse the node is lower than the case where the EV waits
at the next node.

To analyze the behavior of violated constraints, we visualize in Figure 7.5 the route of
EV 0, extracted from one of the solutions of βGA for instance c50cs8_20x20km (not the
final result). In this case, αGA yields a result where the EV must carry a mass higher than
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Figure 7.5: A route that breaks several constraints (from c50cs8_20x20km)

70



Table 7.5: Detailed results from αGA

Instance Fitness Distance J1
[min]

J2
[min]

J3
[CLP$]

J4
[kWh]

Fleet
size

Execution
time (s)

c10cs1_10x10km 4.94 0 76.12 0 0 15.88 1 15.19
c10cs2_10x10km 4.36 0 66.78 0 0 14.15 1 16.59
c25cs3_10x10km 348.41 0 235.27 30.01 166426.49 48.8 2 67.98
c25cs4_10x10km 9.68 0 149.31 0 0 30.91 3 82.81
c50cs2_10x10km 1046.38 132.85 416.36 46.34 127945.66 88.09 5 241.94
c50cs5_10x10km 187.53 0 412.36 28.49 80228.81 85.92 5 273.95
c50cs8_10x10km 230.72 0 375.31 31.39 102952.84 79.42 4 294.17
c75cs10_10x10km 36.14 0 555.23 0 0 116.34 8 841.4
c75cs15_10x10km 242.07 0 541.89 54.6 103125.38 113.6 6 875.5
c100cs10_10x10km 153.4 0 754.25 9.03 52023.46 159.81 10 1626.8
c100cs20_10x10km 42.36 0 650.92 0 0 136.32 10 2051.61
c10cs1_20x20km 84.89 0 180.52 6.36 36594.38 36.7 2 22.61
c10cs2_20x20km 10.57 0 169.4 0 0 30.73 2 21.28
c25cs3_20x20km 712.44 74.72 350.94 38.89 122430.94 69.68 3 78.71
c25cs4_20x20km 669 0 405 60.22 321289.03 79.2 3 88.71
c50cs5_20x20km 1898.92 34.83 652.27 118.81 580094.15 139.4 5 455.78
c50cs8_20x20km 3167.75 590.05 782.66 117.15 917952.29 160.69 5 350.85
c75cs10_20x20km 2896.61 55.98 1089.29 174.18 889223.23 223.5 8 1380.16
c75cs15_20x20km 2731.17 66.57 1096.21 155.84 771198.36 222.3 9 1636.11
c100cs15_20x20km 3267.37 1218.38 1455.3 80.73 302295.83 293.13 14 2691.11
c100cs20_20x20km 4781.95 1166.64 1537.24 194.44 1067178.87 311.16 12 2481.3
santiago6 2.16 0 26.59 0 0 10.14 1 10.16
santiago22 300.06 0 233.25 75.81 141727.79 55.91 2 34.96

its limit. βGA will attempt its best to fulfill all constraints, but, as αGA gives a solution
where the EV capacity is surpassed, βGA will never achieve that constraint. Notice that
accomplishing the SOC policy is quite difficult as well. Here, the first customers have time
windows very low compared to latter customers; thus, the EV must attempt to visit them
first. However, visiting those customer draws a lot of energy from the EV battery. Therefore,
the algorithm must adjust the charging plan to prevent the SOC from operating outside the
SOC policy, while ensuring that the EV arrives at customers within their time windows.

The routes from the latter example are not necessarily definitive. The pre-operation stage
procedure lowers the impact of violated constraints by inserting more vehicles. That reduces
the number of customers each EV visits because we can now remove some customers from
the previous EVs and add them to the new ones. Although the latter procedure may be
beneficial, it is a drawback if the fleet size is fixed. That is, if the fleet owner cannot increase
the fleet size, the best route he or she can opt for is the one described in Figure 7.5.

In practical situations, one can tolerate the violation of constraints up to a certain degree.
Notice that, in the example in Figure 7.5, all customer time windows are accomplished.
Besides, the tour time duration does not exceed the limit. The only violated constraints
are the SOC policy and EV’s weight limit. Thus, one may permit this route if the latter
two constraints are not crucial. Nonetheless, the latter implies poor handling of the EV and
its battery. Furthermore, the EV reaches a near-discharge state by arriving at CS 21 for
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Table 7.6: Detailed results from βGA

Instance Fitness Distance J1
[min]

J2
[min]

J3
[CLP$]

J4
[kWh]

Fleet
size

Execution
time [s]

Fitness
Improv.

[%]
cc10cs1_10x10km 4.94 0 76.12 0 0 15.88 1 20.25 0
c10cs2_10x10km 4.36 0 66.78 0 0 14.15 1 22.23 0
c25cs3_10x10km 348.41 0 235.27 30.01 166426.49 48.8 2 80.07 0
c25cs4_10x10km 9.68 0 149.31 0 0 30.91 3 93.02 0
c50cs2_10x10km 868.27 0.75 408.89 55.66 105144.85 86.34 5 270.37 17.02
c50cs5_10x10km 176.77 0 405.63 27.6 75069.15 84.6 5 308.34 5.73
c50cs8_10x10km 230.65 0 374.24 31.39 102952.84 79.19 4 330.87 0.03
c75cs10_10x10km 35.61 0 547.21 0 0 114.64 8 888.17 1.46
c75cs15_10x10km 252.61 0 538.17 45 108529.42 113.57 6 955.18 -4.35
c100cs10_10x10km 135.88 0 749.05 7.54 43443.58 158.69 10 1718.68 11.42
c100cs20_10x10km 42.33 0 650.58 0 0 136.16 10 2205.09 0.07
c10cs1_20x20km 84.89 0 180.52 6.36 36594.38 36.7 2 24.61 0
c10cs2_20x20km 10.57 0 169.4 0 0 30.73 2 24.59 0
c25cs3_20x20km 712.88 78.63 350.93 38.59 120697.55 69.68 3 85.38 -0.06
c25cs4_20x20km 604.7 0 404.35 54.64 289184.84 79.19 3 93.37 9.61
c50cs5_20x20km 1807.08 33 647.83 121.44 535234.95 138.13 5 304.94 4.83
c50cs8_20x20km 2770.46 220.08 781.18 139.44 889237.3 160.25 5 317.65 12.54
c75cs10_20x20km 2792.59 44.42 1078.07 163.22 838388.57 221.62 8 843.48 3.59
c75cs15_20x20km 2494.26 29.64 1080.2 170.91 646640.32 219.26 9 938.17 8.67
c100cs15_20x20km 3090.71 1058.7 1453.4 83.45 303833.47 293.09 14 2442.72 5.4
c100cs20_20x20km 4311.26 845.95 1539.93 215.63 1042009.06 311.22 12 2486.22 9.84
santiago6 2.16 0 26.59 0 0 10.14 1 11.65 0
santiago22 297.12 0 232.27 79.35 140255.14 56.02 2 35.78 0.97

the second time; this can be very risky as the EV battery may discharge if the SOC is not
well estimated or degrade considerably. In reality, one should study the trade-off between
allowing such types of routes to be accepted or inserting a new EV into the fleet.

In Table 7.6, some βGA results have a negative fitness improvement. That is, βGA does
not improve the solution at all. In all those cases, a worse result occurs because the best
solution from αGA contains a charging path with more than one CS between two customers.
For example, Figure 7.6a shows a case from instance c75_cs15_10kmx10km where EV 1 visits
CS 85 and CS 86 right after serving customer 12. On the other hand, the representation in
βGA only allows charging paths with a single CS between two customers to be inserted. As
a result, the initial solution (constructed from the αGA result) is likely to be worse in terms
of fitness. After some generations, βGA can find individuals with greater fitness, but not as
good as the ones found by αGA. That is the case of the operation in Figure 7.6b, where EV
1 now only visits CS 76 right after customer 12.

The above behavior usually occurs when an EV visits a customer way far from the last
visited customer, and the battery still has a high SOC level. In such a case, the EV may
pass two CS with different technologies. The synergy between their prices and the charging
time the EV spends in them may be better than when the EV only visits a single CS in
two different charging paths. Such results are similar to the ones discussed by [24], where
the authors find that allowing multiple visits to CS between non-CS nodes can improve the
results of [7] for the E-VRP-NL. We remark that such behavior is typical but not always
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(a) EV 1 operation using αGA results (Fitness: 2239.1)
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(b) EV 1 operation using βGA results (Fitness: 2296.59)

Figure 7.6: A case comparison where βGA gives a worse results than αGA (from instance
c75_cs15_10kmx10km)

right. With the latter statement, we promote the usage of βGA to explore different kinds of
solutions by using βGA encoding. In fact, βGA improves the fitness of αGA results in 70%
of our instances.

For the 100rkm2s instances, nearly 54% of the solutions require charging operations,
whereas, for the 400rkm2s instances, that number rises up to 90%. The latter occurs because,
in the 400rkm2s instances, the distance EVs must travel between nodes is higher, which leads
to more energy consumption. As a result, EVs require recharging more frequently. The latter
indirectly increases the problem’s complexity because routes length tends to grow as more
charging operations are required. That explains why it is more difficult for GAs to solve the
400rkm2s instances fulfilling all operational constraints, especially the SOC policy.

Regarding CS capacities, Figure 7.7a shows a result from instance c75cs10_20x20km where
CS 84 reaches its maximum capacity by recharging three EVs at the same time. We test
the formulation and solution approach’s ability to adjust the routes when CS capacities are
lower. We re-run the optimization procedure again but with a maximum CS capacity of two.
The new result is shown in Figure 7.7b. There, we highlight that none of the CS capacities
are surpassed. Only CS 80 reaches a maximum capacity of two. Such a result verifies that, if
the recharging infrastructure is not enough, the formulation should account for CS capacities.
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(a) Max. CS capacity of 3

(b) Max. CS capacity of 2

Figure 7.7: Effect of varying maximum CS capacities in instance c75cs10_20x20km. The
optimization procedure is capable of adjusting the routes so that CS capacities are never
exceeded

The placement of CS is also very important. There are cases when some CSs are never
visited. After analyzing several cases, we notice that there are two main scenarios that could
lead to avoiding visiting a CS:

1. it is close to another CS that is cheaper,

2. it is too far away from all nodes.

We highlight instance c25_cs4_20x20km, where CS 26 is very close to CS 27, as shown in
Figure 7.8. CS 27 implements fast technology whereas CS 26 normal technology. However,
as the GAs find a solution using CSs with normal technology only, EVs never visit CS 27.

Regarding the computational demand of GAs, we highlight that executions times are very
short compared to other GAs in the literature. For the 100 customer instances, our solution
method takes around 40 minutes to run. According to the E-VRP survey in [23], the GA
method studied by [53] reports execution times up to 10 minutes for 100-customer instances,
which is considered among the shortest ones. However, their implementation neglects most of
the realistic components addressed in this work. A fair comparable case is presented by [43],
where they also use a GA to solve the problem considering several realistic elements. However,
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Figure 7.8: Routes of EVs from instance c25_cs4_20x20km. Here, no EV visits CS 27
although it implements fast technology

their implementation reports execution times up to 3 hours for 50-customer instances.

7.3 Study of the Online Stage
In this section, we study the performance of onGA to solve the On-E-VRP, using instance
santiago22. We emulate the operational behavior of EVs using the simulation framework
described in Section 6.3.2, considering the initial routes from the pre-operational stage and
updating the routes with OnGA. As a result, this procedure allows us to test the online stage
of the system. Each EV begins with the routes obtained from the pre-operation stage. Right
after the first EV starts moving, the online stage begins, and the system initializes OnGA.

We run the simulation procedure 50 times to obtain realistic representations of the oper-
ation. Following the methodology from Section 6.3, we consider tGA “ 4rmins and tsafe “
0.5rmins. OnGA runs using the hyper-parameters detailed in Table 7.7. For each simulation,
we record the variable detailed in Table 7.8.

Figure 7.9 summarizes with boxplots the real costs obtained after simulating the online
stage 50 times. The median of the online method’s total cost is lower than the offline method.
The latter implies that, more than 50% of times, updating the routes by solving the On-E-
VRP leads to cost improvements. If we consider up to 75% of the data, we notice that
these values gather around a similar cost obtained by the Off-E-VRP. The rest of the data
indicates that solving the On-E-VRP leads to increasing the total cost in a less number of
cases. We also plot boxplots for each cost. Notice that there is a significant reduction in
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Figure 7.9: Boxplot comparison of real costs obtained after 50 simulations using both offline
and online strategies. The red dashed line indicates the average, whereas the red continuous
line the median.
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Figure 7.10: Visualization of costs histograms after 50 simulations using both methodologies
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energy consumption and smaller reductions in recharging times and recharging costs using
the online methodology. On the other hand, travel times tend to increase using the online
methodology.

We analyze the dispersion of costs using the online strategy by visualizing the cost his-
tograms in Figure 7.10. In the offline case, we notice that, in Figure 7.10.a, costs tend to
group around specific values. This result is expected as routes are fixed, and the real costs
only depend on traffic realizations, which vary around the average values considered in the
Off-E-VRP. In the online case, the consumed energy, recharging cost, and recharging time
tend to group in lower values, as shown in Figure 7.10.b. Such behavior occurs because of
the online optimization strategy. The travel time remains similar, as we did not give as much
importance as the other costs. However, we also observe that values tend to group in smaller
clusters in the online cost histograms. That occurs because the routes are updated according
to traffic realizations and, due to the combinatorial nature of the problem, the optimizer
will change the route to the best one according to that traffic realization. These updates
mostly consists of swapping customers and altering recharging operations. Hence, we expect
to obtain cost clusters around the costs of the bests routes in terms of fitness.

As mentioned in the previous section, αGA and βGA tend to adjust the recharging plan
to make EVs accomplish customer time windows while ensuring they also accomplish the
SOC policy. Nonetheless, there are cases where EVs reach customers just below their upper
time window bounds. For example, in Figure 7.4, EV 0 leaves customer 2 just before the
time window finishes. Besides, EVs tend to finish the operation or make mid-tour visits to
CS when their battery has a SOC close to the SOC policy’s lower bound. As a result, small
changes in travel times and energy consumption can make EVs violate such constraints.

The latter implies that analyzing the cost is not enough to conclude about the On-E-VRP
formulation and OnGA’s performance. That is, we must compare constraint violations by
using the offline and the online methodology. Table 7.9 summarizes the number and degree
of constraint violations using both methodologies throughout the 50 simulations. Notice
that the offline methodology violates a significant amount of constraints in comparison to
the online methodology. Furthermore, the maximum degree of constraint violations is, in all
cases, lower when using the online methodology. These results show that properly solving the

Table 7.7: OnGA hyper-parameters

Hyper-parameter Description Value
CXPB Crossover prob. 0.6
MUTPB Mutation prob. 0.9
µ Population size 80
ρ Max. generations 160
κ Elite individuals 1
K1 Penalization constant 100000
K2 Penalization constant 200000
Υ Tournament size 3
n˚ Sub-bocks in the CPB-1 2
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Table 7.8: Variables the system records per simulation

Level Variable Notes

Fleet variables

Total travel time [min]
Total recharging time [min]
Total recharging cost [$CLP]
Total consumed energy [kWh]
Violated constraints CS capacities

Single EV variables

Total travel time [min]
Total recharging time [min]
Total recharging cost [$CLP]
Total consumed energy [kWh]

Violated constraints
Time windows,
SOC policy,
max. tour time

Optimization variables Execution time [s]
Real routes

On-E-VRP leads to route adjustments that prevent EVs from breaking a significant amount
of constraints and, if breaking any, the degree of violation is small.

The two most non-accomplished constraints are the upper time windows and the lower
SOC policy. Those are the most challenging constraints to achieve because we cannot develop
policies to prevent EVs from violating them. They purely depend on the dynamics of the
EV and traffic realizations. Even though OnGA can predict that some constraints will not
be accomplished and recalculate the routes, it is impossible to know the traffic state a-priori.
The latter is the main reason why EVs still violate some constraints using the online method.

As OnGA recalculate routes attempting to prevent EVs from violating constraints under
new traffic realizations, routes may change considerably. That is, the customer sequence,
recharging plan, and departure times from nodes are significantly altered. Such changes ex-
plain results from Figure 7.9, where there are some cases where the operational cost is more
significant using the online methodology. In next Section 7.3.1, we verify the latter assump-
tion by studying the case without time windows. We obtain that the cost is considerably
lower when time windows are not considered.

We remark that OnGA reacts to traffic realizations. Therefore, the routes it calculates
are only optimal for that scenario. In our simulation framework, traffic realizations are
independent of previous traffic realizations. However, in reality, traffic evolves following
a stochastic and dynamic process. Furthermore, sudden traffic changes do not necessarily
involve more congestion because, in some cases, congestion may be less. A proper estimation
of future traffic congestion based on the current traffic state may considerably improve OnGA
performance as new routes would consider such states. The latter is an intricate problem
that is far from this thesis objectives.
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Table 7.9: Summary of constraint violations from simulations of both offline and online
strategies

Offline Offline + Online

Constraint Count Average
violation

Std.
violation

Min.
violation

Max.
violation Count Average

violation
Std.
violation

Min.
violation

Max.
violation

Lower TW 0 0 0 0 0 0 0 0 0 0
UpperTW 54 2.16 1.49 0.4 10.35 8 1.12 0.64 0.17 2.15
Upper SOC policy 2 1.65 1.21 0.43 2.86 0 0 0 0 0
Lower SOC policy 111 3.5 2.75 0.21 11.72 6 3.31 2.98 0.02 8.97
Max. tour time 0 0 0 0 0 0 0 0 0 0
CS capacity 0 0 0 0 0 0 0 0 0 0
Total 167 14
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Figure 7.11: Average execution time of OnGA throughout the operation

Regarding OnGA’s computational effort, we register the number of OnGA executions and
their execution time. The number of OnGA executions oscillates between 81 and 98 times per
simulation. Figure 7.11 shows OnGA execution time versus the measurement instant, until
execution 81 (the minimum OnGA execution number registered). The average execution time
decreases because the number of customers assigned to each EV diminishes as the operation
goes by. The latter is equivalent to reducing the problem’s complexity. Still, OnGA execution
time never surpasses tGA, which has been set to 4 minutes.

7.3.1 Effect of time windows in the final cost
In this section, we conduct an experiment to study the influence of time windows in the
operational cost. As reviewed in Chapter 2, most E-VRP variants do not consider time
windows. However, they usually tend to guide the route of vehicles. That occurs because
certain customers must be visited at certain hours, making it impossible for EVs to visit
them, even though it is convenient in terms of energy consumption.

As we have already analyzed the results considering time windows (in the previous section),
we now study the case without them. That is, customers can be visited at any time of the
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day. In this case, 50 simulations are run considering no time windows and the same hyper-
parameters from the original case.

Figure 7.12 shows the comparison of boxplots of costs after running the simulations. In
this case, all costs experiment a significant reduction, including the offline case. The latter
occurs because, in this particular case, EVs goes through scenarios where costs are lower in
average when they do not wait. From the individual costs, we notice that there is an outlier
case in the recharging cost of the offline operation. The latter occurs because one EV tries to
recharge above 100%. However, the CS limits that amount and the EV ends up recharging
less that the original value.

Table 7.10 summarizes the number and degree of constraint violations. Under this sce-
nario, both offline and online cases violate less constraints than the original case. In fact,
the only constraint violations come from the SOC policy. For the online case, we also notice
that the SOC policy is accomplished more times than the original case. These results show
that, again, using an online methodology leads to accomplishing more constraints.

The latter results allows us to conclude that adding more constraints into the E-VRP will
result in increasing costs. In particular, time windows positions will force EVs to visit them
at certain orders. Therefore, we cannot allow routes that are time or energy efficient if they
do not accomplish some constraints.

Table 7.10: Summary of constraint violations from simulations of both offline and online
strategies, dropping time windows

Offline Online

Constraint Count Average
violation

Std.
violation

Min.
violation

Max.
violation Count Average

violation
Std.
violation

Min.
violation

Max.
violation

Lower TW 0 0 0 0 0 0 0 0 0 0
UpperTW 0 0 0 0 0 0 0 0 0 0
Upper SOC policy 15 1.91 1.43 0.09 5 0 0 0 0 0
Lower SOC policy 107 4.68 3.56 0 18 3 0.33 0.21 0.16 0.63
Max. tour time 0 0 0 0 0 0 0 0 0 0
CS capacity 0 0 0 0 0 0 0 0 0 0
Total 122 3
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Figure 7.12: Boxplot comparison of real costs obtained after 50 simulation using both offline
and online strategies, dropping time windows. The red dashed line indicates the average,
whereas the red continuous line the median.
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Chapter 8

Conclusions and Future Work

In this thesis work, a strategy to manage EV fleets for delivery purposes efficiently has
been developed. The strategy consists of splitting the whole operation into two stages: pre-
operation and online operation. In the former, the system calculates the initial routes of the
EVs by solving the Off-E-VRP, whereas, in the second one, the system receives measurements
and updates the routes by solving the On-E-VRP. The measurements contain information
about the state of EVs and the traffic network. As a result, the second stage provides a
closed-loop decision-making method to manage the EV fleet. In the following paragraphs,
we review the fulfillment of specific objectives, which lead to achieving the main objective.

The Off-E-VRP is a new variant of the E-VRP that considers capacitated CS, a realistic
EV energy consumption model, time-dependent travel times, and a SOC policy that ensures
a longer battery lifespan. The problem is modeled as a nonlinear program, which formally
describes the optimization problem to solve. Solving the Off-E-VRP allows the fleet manager
to fulfill the delivery requirements, as it includes all operational constraints into the problem
statement.

To solve the Off-E-VRP, we develop two GAs: αGA and βGA. Both GAs implement a
novel encoding that allows them to search for optimal node sequences, recharging plans, and
departure times. αGA uses an encoding that enables it to assign the customers each EV
will visit. On the other hand, βGA only works when customers are already assigned. The
pre-operation stage consists of solving the Off-E-VRP with αGA first, and then using βGA
to find new solutions that may be better. Such a procedure defines the initial routes each
EV will follow.

The On-E-VRP is a new E-VRP variant that aims to update the routes according to traffic
network and EV state measurements. These route updates should allow EVs to fulfill the
operation with the same constraints as the Off-E-VRP. As a result, solving the On-E-VRP
allows the central dispatcher to act as a closed-loop management system of the EV fleet.
To solve the On-E-VRP, we develop OnGA. This GA uses an encoding similar to αGA and
βGA, which allows the algorithm to update the current routes and recharging plan.

Two case studies to test the performance of the system are conducted. The first study
examines the pre-operation stage by solving several instances of the Off-E-VRP with αGA
and then improving the solutions with βGA. Results show that the strategy can find feasible
solutions for most instances. The latter means that it is expected that EVs will achieve
all operational constraints before they begin the operation. Such operational constraints
include customer time windows, maximum tour time duration, weight limit, SOC policy, and
capacitated CS. The SOC policy will prevent the EV battery from degrading faster, whereas
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addressing capacitated CS will prevent too many EVs from visiting CS simultaneously and
exceeding their capacity limit. The solution method can also deal with several real-world
elements such as time-dependent travel times, realistic EV energy consumption models, and
nonlinear charging functions. The latter allows the system to accurately estimate the time
an EV will spend at a CS, which is crucial as charging operations can take plenty of time.

In the second study, we analyze the online stage by emulating a traffic network with data
collected from one of Santiago de Chile’s most congested areas. We consider the routes found
in the pre-operation stage as the initial routes of EVs. Those routes are then updated by
solving the On-E-VRP with OnGA according to measurements collected by the simulation.
Results show that updating routes can lower operational costs in more than 50% of cases.
Furthermore, continuously solving the On-E-VRP allows EVs to considerably accomplish
more operational constraints than by just following initial routes. The latter implies a better
service quality, as fleet owner can now provide service guarantees for customers, and a good
handling of EVs and their components.

From the results obtained in this work, it has become apparent that the following research
topics are interesting. αGA, βGA, and OnGA can be improved by modifying genetic oper-
ations and the encoding. For genetic operations, one can develop more strategies to explore
charging operations. For the encoding, one can investigate using customer blocks that do not
need delimiters and charging operations where charging paths were previously calculated.
The latter refers to a similar methodology developed in [24], where the authors calculate
charging paths before optimizing; thus, the search space is reduced. This method may allow
GAs to only focus on when and how much to recharge instead of when, how much and where.

Another remark is on the simulation framework. Although this thesis work develops a
simulation environment to test OnGA, several real-life events are not properly modeled. The
latter is because we consider independent realizations of the traffic, which implies that the
current state of traffic does not depend on the previous states. We, therefore, encourage fur-
ther research on properly simulating EVs under stochastic and dynamic traffic environments.
Finally, we remark that, as stochasticity exists in this problem, one can address a stochastic
version of the Off-E-VRP and the On-E-VRP. By addressing an stochastic Off-E-VRP, one
can ensure that the assignation of customers, initial routes, and departure times are such that
constraints are accomplished with more confidence. By addressing an stochastic On-E-VRP,
one can benefit from route updates while ensuring constraints’ fulfillment with certain degree
of confidence.
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Appendix A

Development of Mass-dependent Energy
Consumption Equations

The energy consumption when an EV departs from node i towards node j at time t0, carrying
a weight w, is denoted Eijpw, t0q. Calculating this value can be a very computationally
expensive procedure, specially using shortest paths, because we must calculate it for each
payload and for each time combination. Therefore, we develop a method to easily calculate
Eijpw, t0q for any valid payload w and time t0. This is a two-stage procedure that consists
of using known no-cargo energy consumption, and a realistic EV energy consumption model
to include more payload.

First, we divide the times of the day into h equally-spaced periods of length ∆T . Second,
we assume that, at the beginning of each period, the no-cargo energy consumption is available.
That is, we know the values

Eijp0, 0q, Eijp0,∆T q, . . . , Eijp0, ph´ 1q∆T q

There are two ways to obtain the no-cargo energy consumption values, which depend if
we consider linear arcs, or shortest paths. If the arc is a line connecting two nodes, we can
use the realistic EV energy consumption below and replace the distance by the Euclidean
distance. On the other hand, if using shortest paths, we use the methodology in Section 4.3.2
using the EV energy consumption model below. In both cases, we must consider the EV plus
driver mass only.

To include additional payload, we use the realistic energy consumption model from [52].
The model states that the wheels consume an instant power

P1ptq “ vptq ¨

„

maptq `mg ¨ cos pθptqq ¨ Cr
1000 pc1vptq ` c2q `

1
2ρairAfCDv

2
ptq `mg ¨ sinpθptqq



(A.1)
where t is the time, vptq is the EV velocity, aptq is the EV acceleration, and θptq is the road
grade. Table A.1 details all remaining model parameters.

When the EV accelerates, P1ptq is positive. In that case, the battery delivers power. If
the EV decelerates, P1ptq is negative, and the battery can recharge. Nonetheless, the real
delivered and recovered energies are limited by the EV efficiencies (summarized in Table
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Table A.1: Description of EV energy consumption model parameters

Description Parameter
Mass (EV + driver + payload) m
Rolling resistance coefficients Cr

c1
c2

Air mass density ρair
Frontal are of the EV Af
Gravitational acceleration g
Aerodynamic EV drag coefficient CD
Driveline efficiency ηDriveline
Electric motor efficiency ηMotor

EV battery efficiency ηBattery
Regenerative braking efficiency ηRB

A.1). Thus, the real power is

P ptq “

$

&

%

P1ptq

ηDriveline ¨ ηMotor ¨ ηBattery
if aptq ě 0

ηRB ¨ P1ptq aptq ă 0.
(A.2)

The total energy the battery delivers is the integral of the instant power since the EV
starts moving:

Eptq “

ż t

tstart

P pτqdτ (A.3)

In the real-world, the EV may accelerate, decelerate, and even stop when traveling through
an arc. Nonetheless, in our problem, we just worry about the time it departs from i and the
time it arrives at j. Therefore, we can assume that the EV travels from i towards j with a
constant velocity

vijpt0q “
dij

tijpt0q
,

where dij is the length of the arc between i and j, and tijpt0q the travel time at time of the
day t0. Thus, the acceleration is zero throughout the arc. We also consider that the road
grade is fixed, i.e. θptq is constant and has the value θ. Under this scenario, we can set the
velocity and keep it constant throughout the arc. The latter yields to a constant instant
power

Pijpt0q “ vijpt0q ¨

„

mg ¨ cospθq ¨ Cr
1000 pc1vijpt0q ` c2q `

1
2ρairAfCDv

2
ijpt0q `mg ¨ sinpθq



.

As the instant power is constant, the integral turns into the product between the travel
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time and the instant power:

Eijpt0q “ tijpt0q ¨ Pijpt0q

“ dij ¨

„

mg ¨ cospθq ¨ Cr
1000pc1vijpt0q ` c2q `

1
2ρairAfCDv

2
ijpt0q `mg ¨ sinpθq



“ m ¨ α ` β (A.4)

where

β “
1
2dijρairAfCDv

2
ijpt0q

α “ dijg ¨ cospθq ¨ Cr
1000pc1vijpt0q ` c2q ` dijg ¨ sinpθq

Notice that dij and v2
ijpt0q are known. Thus, we can calculate the value β. It may occur that

θ is not known; however, the below-explained method does not require knowing θ.

We decompose the total mass into EV mass and driver (wEV ), and the payload mass (w):

m “ wEV ` w.

Now, remember that the energy consumption that depends on the payload w is denoted
Eijpw, t0q, and the no-cargo energy consumption Eijp0, t0q is known. Therefore, we can use
(A.4) to write α as

α “
Eijp0, t0q ´ β

wEV
. (A.5)

Finally, to estimate the energy considering both the EV mass and the payload, replace
(A.5) into (A.4) to find a definition of the energy consumption that depends on the payload
and the no-cargo energy consumption:

Eijpw, t0q “ Eijp0, t0q ¨
„

1` w

wEV



´
w

wEV
¨ β (A.6)

When the battery delivers an energy Eijpw, t0q, the battery SOC reduces by

eijpw, t0q “
Eijpw, t0q

Q
, (A.7)

where Q is the battery capacity.
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Appendix B

Initial Population Algorithms

B.1 αGA
Algorithm 7 constructs an individual as follows. First, the algorithm orders customers ac-
cording to their time window lower bounds. Second, it traverses the ordered customers and
adds them to a vehicle’s route until the weight limit is surpassed. Third, the created route
is assigned to the vehicle, and a new one is created starting from the current customer. The
algorithm repeats the process until it sets all customers. Charging operations and departure
times are created randomly. The heuristic returns both a candidate individual and fleet size.

Algorithm 7: ConstructIndividual1-A
Input : Array with customers to visit pAq; maximum payload pD̄q
Output: An individual candidate I, fleet size m
A˚ Ð Customers in A sorted in increasing order according to their time window

lower bounds;
RÐ rs;
r Ð rs;
W Ð 0;
for i in A˚ do

dÐ Requirement at i;
if W ` d ď D̄ then

Append i to r;
W Ð W ` d

else
Append r to R;
r Ð rs;
Append i to r;
W Ð d

end
end
mÐ Routes in R;
C_block ÐCreate customer block with delimiters using routes from R;
CO_block ÐRandom CPB-1 block with 2m charging operations that will not occur;
DT_block ÐList of size m with the lower time window bound of the first customers
for each route in R;
I ÐConcatenate(C_block, CO_block, DT_block);
return I, m
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Algorithm 8 creates individual candidates by ordering customers according to their time
window lower bound. In contrast to Algorithm 7, Algorithm 8 receives the fleet size and
calculates how many customers each EV will receive. Thus, it does not check if the weight
limit is surpassed. Charging operations and departure times are created randomly.

Algorithm 8: ConstructIndividual2-A
Input : Array with customers to visit pAq; fleet size (m)
Output: An individual candidate I
A˚ Ð Customers in A sorted in increasing order according to their time window

lower bounds;
l ÐInteger(lenA{m)
C_block Ð rs;
for i in 1, . . . ,m do

if i ““ m then
Append the rest of A˚ to C_block;

else
customersÐ Pop l elements from A˚;
Append customers to C_block;
Append ‘|’ to C_block;

end
end
CO_block ÐRandom CPB-1 block with 2m charging operations that will not occur;
DT_block ÐList of size m with the lower time window bound of the first customers
for each route in R;
I ÐConcatenate(C_block, CO_block, DT_block);
return I, m

B.2 βGA
Algorithm 9 turns the best individual found by αGA into an individual using βGA encoding.
As the CPB-2 in the sub-individuals of βGA only permit a single CS between two nodes, we
turn a charging path with multiple visits to CS into a single CS visit by only allowing the
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EV to perform the last charging operation in the charging path with multiple visits.

Algorithm 9: ConstructIndividual-B
Input : Optimal individual αGA finds (I˚α)
Output: A random individual I
I Ð rs;
S, L, x0 Ð ΨαpI˚αq;
for Si, Li in S, L do

customer_block Ð rs;
CPB2 Ð rs;
g Ð 0;
for Sik, Lik in S, L do

if Lik ą 0 then
if g ą 0 then

CBP1r´2 :s “ rSik, Liks;
else

Append rSik, Liks to CBP2;
end
g Ð g ` Lik;

else
Append Sik to customer_block;
Append r´1,Up5, 20qs to CBP2;
g Ð 0;

end
end
Append Concatenate(customer_block, CPB2, 0) to I;

end
return I

B.3 OnGA
OnGA constructs a candidate individual using the routes from the previous OnGA execution.
Algorithm 10 does this procedure by creating the individual using old routes, starting from
the critical node. Then, it modifies the CPB-1 according to the old recharging plan. The
offset is always set to zero. We remark that this method assumes that the CPB-1 size is
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enough to store all charging operations in the old recharging plan.

Algorithm 10: ConstructIndividual-On
Input : Ahead routes, starting right after the critical node (S, L); CPB-1 size (n˚)
Output: A constructed individual I
I Ð rs;
for Si, Li in S, L do

CPB-1Ð rs;
Traverse Li to find each Lik representing a charging operation;
Turn the charging operations into CPB-1 sub-blocks;
Append the sub-blocks to CPB-1;
if The CPB-1 has less sub-blocks than n˚ then

Fill with charging operations that will not occur;
customer_block Ð Customers in Si in the order they appear;
Append Concatenatepcustomer_block,CPB-1, 0q to I;

end
return I
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