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RESUMEN DE LA TESIS PARA OPTAR AL GRADO DE
Doctor en Ciencias de la Ingeniería, Mención Modelación
Matemática
POR: Alexis Fuentes Pezoa
FECHA: 21 ENERO 2021
PROFESOR GUÍA: Raúl Gouet

RESULTADOS DISTRIBUCIONALES Y ASINTOTICOS DE CHAIN
MAXIMA PARA VECTORES ALEATORIOS INDEPENDIENTES

Esta tesis tiene como objetivo principal el estudio de la sucesión (Mn), de los llamados
“chain-maxima” (máximos en cadena), bajo la hipótesis de observaciones independientes e
idénticamente distribuidas (iid), con valores en Rd. Se trata de un nuevo tipo de máximo
multidimensional, que se define recursivamente, a partir de un orden parcial en Rd. Los
chain-maxima son usados como base para definir otros procesos como los chain-records (Rn),
los cuales han sido previamente estudiados en [25] y [41].

Este trabajo se divide en tres partes. En la primera se dan las definiciones de los procesos
de chain-maxima, chain-records y variables asociadas, para los cuales se obtienen resultados
estructurales y asintóticos, en el marco general de datos iid. En la segunda y tercera parte
se estudian, respectivamente, dos modelos particulares, a saber el de observaciones iid uni-
formes en [0, 1]d y el de observaciones iid uniformes en el simplex d-dimensional ∆d. En el
Capítulo 1 se presentan brevemente temas clásicos de récords unidimensionales así como una
introducción a los récords multidimensionales, seguida de una discusión de la bibliografía. En
el Capítulo 2 se dan las definiciones básicas y un estudio general de propiedades de los chain-
maxima y chain-records, bajo supuestos probabilísticos razonables. Se exponen propiedades
de la estructura Markoviana y resultados asintóticos, que pueden ser vistos como exten-
siones naturales aunque no triviales, de resultados unidimensionales similares, obtenidos en
[40, 52, 53]. Asimismo, se presentan y se exploran brevemente las ideas de chain-maxima
y chain-records asociados a órdenes estrictos y órdenes de conos. En el Capítulo 3 se estu-
dia el modelo con datos iid uniformes en [0, 1]d y, entre otros, se derivan resultados para el
proceso (Rn): independencia de sus componentes, probabilidades de transición, densidades
marginales, representación como solución de una equación de diferencias, etc. Asimismo, se
realiza un estudio exacto y asintótico de los “record-heights” Hn (probabilidad condicional de
un chain-record). Mediante el uso de técnicas de análisis de polos, de Flajolet y Sedgewick
[22], se obtiene una descripción fina de los momentos E(Hk

n), así como de los momentos cruza-
dos. Finalmente, con dichos resultados se establecen convergencias para los record-heights y
para el proceso de conteo de chain-records. En el Capítulo 4 se considera el modelo uniforme
en el d-simplex ∆d y se estudian resultados similares a los del Capítulo 3, teniendo presente la
dificultad adicional que implica la dependencia entre las componentes de las observaciones.
En particular, el análisis de singularidades presenta una complejidad muy superior al del
caso [0, 1]d. Además se destaca el estudio asintótico de (Rn), mediante una representación
como perpetuidad y la caracterización de la ley límite como probabilidad estacionaria de
una cadena de Markov. Finalmente el Capítulo 5 trata temas en desarrollo, con avances
parciales, especialmente enfocados en la convergencia en distribución de (Mn), tema de in-
esperada complejidad. Este problema se ha relacionado con los números de Delannoy, y con
un modelo de tiempo continuo, denominado “board-breaking”.
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FECHA: 21 ENERO 2021
PROFESOR GUÍA: Raúl Gouet

DISTRIBUTIONAL AND ASYMPTOTIC RESULTS OF CHAIN MAXIMA
FROM INDEPENDENT RANDOM VECTORS

The main goal of this thesis is the study of the sequence (Mn), the so-called “chain-
maxima”, under the assumption of independent and identically distributed, Rd-valued ob-
servations. It is a new kind of multivariate maximum, which is defined recursively from a
partial order on Rd. Chain-maxima are used as a base process for defining chain-records,
which have been studied previously in [25] and [41].

This work is divided into three main parts. In the first, definitions of chain-maxima, chain-
records and related variables are given. Structural and asymptotic results for these processes
are obtained in the general framework of iid observations. In the second and third parts,
two particular models are studied, namely iid observations uniformly distributed on en [0, 1]d

and iid uniform observations on the d-dimensional simplex ∆d, respectively. In Chapter 1 a
few classical results of record theory are reviewed, followed by some elements of the multidi-
mensional case and a bibliographical discussion. In Chapter 2 the definitions and a general
study of chain-maxima and chain-records are presented, under reasonable probabilistic as-
sumptions. Their Markovian structure is analyzed and several asymptotic results are given.
Such results can be seen as natural, though nontrivial, extensions of one-dimensional results,
first published in [40, 52, 53]. Moreover, the concepts of chain-maxima and chain-records,
related to strict orders or cone-orders, are defined and briefly explored. Chapter 3 is devoted
to study chain-maxima and chain-records of iid observations, uniformly distributed on [0, 1]d.
Results for (Rn) include, among others, the independence of the components, the derivation
of transition functions and marginal densities, a distributional representation by means of a
difference equation, etc. Furthermore, a detailed analysis of “record-heights” Hn (conditional
probability of chain-records) is carried out. Using tools of singularity analysis, developed by
Flajolet and Sedgewick [22], a precise asymptotic description of moments E(Hk

n) is given, and
the same is done with mixed moments. From these results, convergence theorems for record
heights and for the counting process of records are established. The model with uniform iid
observations in the d-simplex is presented in Chapter 4. Results similar to those of Chapter
3 are obtained, under the extra technical difficulty implied by the dependence of the com-
ponents of observations. In particular, the singularity analysis becomes significantly more
complicated than in [0, 1]d. Also, the chapter contains an asymptotic study of (Rn) using a
perpetuity representation, which allows to characterize the distribution of limRn as a sta-
tionary probability of a Markov chain. Finally, Chapter 5 is devoted to topics in progress, for
future research, especially focused on the weak convergence of (Mn), which turned out to be
a problem of unexpected complexity. This problem has been connected with objects such as
Delannoy’s numbers and a continuous-time model of fragmentation, named “board-breaking”
model.
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Chapter 1

Introduction

A record, as it is understood in Extreme Value Theory (EVT), is an extraordinary value of a
variable, which surpasses all of its kind. Probably everyone has heard and become interested
on records, in some context. For instance, in sports a great challenge for the elite athletes is
to break the current best mark. In finance there are many phenomena of this type as well,
such as record values of stocks or commodities. In climatology, especially when related to
global warming, record temperatures or record rainfall are of great public interest.

Records are rare events and we can formulate, from a stochastic modeling point of view,
some questions such as how often they appear or how long do we have to wait until the next
record and what its value will be, etc. From a statistical perspective, we can wonder if a
given model fits the athletic or climatological record data or if it can be used to predict future
records and prevent disasters.

The mathematical theory of records, based on the assumption of real-valued, independent
and identically distributed (iid) observations, is very well developed. There is an abundant
literature on distributional and asymptotic aspects of records and related objects, as can be
seen, for example, in [1], [4], [44]. More recent results on records from discrete or general
discontinuous distributions, can be found in [30] and [32].

Records are part of EVT, which deals with the behavior of extremes (maxima, minima,
records) of random processes. This theory has become increasingly popular in recent years,
due to many applications in fields such as finance and insurance; see, for example, [20]. EVT
has been developed mainly under the assumption of iid observations and its most famous
result is, by far, the so called Gnedenko’s trinity theorem. This result is a kind of Central
Limit Theorem for the sequence of partial maxima where the Gaussian limit is replaced by
three possible limit laws, dependent of the distribution tails of the observations. See [14] and
[49].

The classical theory of extremes, for real-valued, iid random variables, has been greatly
generalized and is now well established for stationary mixing sequences and other processes.
Also, the multivariate theory of extremes for iid random vectors, began to emerge in the late
70’s and is also fairly complete in terms of the possible limit laws and domains of attraction.
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On the other hand, multivariate (componentwise) records did not have a parallel development
because, unfortunately for asymptotics, there are, almost surely, a finite number of records
in the whole sequence of iid (vector-valued) observations. However, see [16] and [28] for an
interesting result about multivariate records approaching a curve, conditional on there being
many records.

Other definitions of multivariate records, which are natural and amenable to asymptotic
analysis, have been proposed in the literature. For instance, chain-records and Pareto-records,
studied in some detail in [25] and [41]. This thesis is devoted to the analysis of chain-records
and related processes.

1.1 One-dimensional records

Let (Xn) be a sequence of real-valued random variables defined on a common probability
space (Ω,F ,P). By convention we declare X1 to be a record and, for n ≥ 2, Xn is said to
be a (upper) record if it is greater than all previous observations, that is, if Xn > Mn−1 (or
Mn > Mn−1), where Mn = max{X1, . . . , Xn}. Clearly, records correspond to observations
where the sequence of partial maxima (Mn) jumps.

The number of records, say Nn, among the first n observations can be written in terms
of record indicators as Nn =

∑n
i=1 Ii, where I1 = 1 and In = 1{Xn>Mn−1}, for n ≥ 2. Record

times Ln are the jump times of the sequence (Mn). That is, L1 = 1 by convention and
Ln+1 := min{k > Ln : Xk > XLn}, for n ≥ 1. Observe that Nn is equal to the number of
elements of the set {k ≥ 1 : Lk ≤ n}.

Finally, record values Rn are defined as the values of partial maxima at jump times, that
is, Rn = XLn = MLn , n ≥ 1. The theory of records has focused on studying the sequences
defined above. We recall below a few well-known results about one-dimensional records; the
interested reader can consult [4] and references therein, for proofs and additional information.

If the observations Xn are iid, with common continuous underlying distribution F , then it
is clear that record times Ln and indicators In are distribution free. For instance, a famous
result discovered by A. Renyi states that indicators In are independent Bernoulli variables,
with E(In) = 1/n and so, one can immediately see that E(Nn) = log n + O(1) and that
V ar(Nn) = log n+O(1). Furthermore, the probability generating function of Nn is given by

E(sNn) =
n∏
j=1

(s− 1

j
+ 1
)

=
n∑
k=0

[
n

k

]
sk

n!
,

where the
[
n
k

]
’s are the Stirling numbers of the first kind. From the above it follows that

P(Nn = k) =
1

n!

[
n

k

]
,

for k ≥ 1, n ≥ 1. Asymptotic results for Nn also follow at once from Renyi’s result. One can
easily prove a strong law of large number and asymptotic normality. Namely, Nn/ log n→ 1

2



almost surely and (Nn − log n)/
√

log n converges weakly to the standard Gaussian distribu-
tion.

The sequence (Ln) of record times Ln (which are closely related to record counts Nn

because Nn < k ⇔ Lk > n) is easily seen to be a Markov chain. More precisely, P(L2 = k) =
1

k(k−1)
, for k ≥ 2, and

P(Ln = k|Ln−1 = j) =
j

k(k − 1)
,

for k > j ≥ n − 1 ≥ 2. The formula above reveals that the waiting times for records
can be very long, since E(L2) = ∞. Also, it can be shown that the random variables
Kn := dLn/Ln−1e, n ≥ 2, are iid with P(Kn = k) = 1

k(k−1)
, k ≥ 2. This fact gives additional

information on how fast record times grow because, from the Borel-Cantelli lemma, we have
that P(Kn > n i.o.) = 1 but P(Kn > n(log n)2 i.o.) = 0.

Concerning the record values it is worth mentioning that the sequence (Rn) behaves as
the arrival times of a non-homogeneous Poisson process on the line, with intensity measure
given by H(dx) = F (dx)/(1−F (x)); see [53]. This implies that (Rn) is a Markov chain with
transition measure

P(Rn ∈ A|Rn−1 = x) = H(A) =

∫
A

F (dx)

1− F (x)
.

In particular, for exponential observations (Xn), we get a homogeneous Poisson process
and this means that Rn is distributed a sum of iid exponential random variables. This
representation yields asymptotic results for Rn at once.

In all results above, the continuity of F is crucial. If F is allowed to have discontinu-
ities, the situation gets considerably more complicated. For example, record indicators are
no longer independent and their expectations depend on F . This means that asymptotic
results for Nn are not easily obtained and more sophisticated tools are required. Vervaat [57]
was the first to obtain asymptotic normality for Nn, assuming iid geometrically distributed
observations; see also [5]. Later, martingale techniques were used in [29] and [30] to obtain
strong and weak convergence results for Nn, assuming iid observations, distributed according
to a variety of discrete models.

With respect to record values, the situation also changes significantly when F is discon-
tinuous. In the general case, the sequence (Rn) is characterized as superposition of two
independent point processes: a non-homogeneous Poisson process (the continuous compo-
nent) and a Bernoulli process (the discrete component) on the atoms of F , with probabilities
given by the so-called hazard rates. This process is known in the literature as Shorrock’s
process and was used in [32] to obtain asymptotic normality for Nn, when the iid observations
have a general (possibly discontinuous) distribution F .

Finally, we can consider studying records from dependent and/or non-identically dis-
tributed observations. It could be expected, for example, that in the case of stationary mix-
ing case, the fairly complete asymptotic theory for normalized maxima had a corresponding
theory for records, but this is not the case. For independent, non-identically distributed ob-
servations, some interesting asymptotic results are related to the so-called Nevzorov’s power
model and observations with trend. For recent developments in this topic, see [34].

3



1.2 Multidimensional record

Assume that observations are random elements Xn = (X
(1)
n , . . . , X

(d)
n ) taking values in

Rd, d ≥ 2. The classical multivariate EVT is based on the definition of component-wise
maxima Mn, n ≥ 1, where Mn = (M

(1)
n , . . . ,M

(d)
n ), with M

(j)
n = max{X(j)

1 , . . . , X
(j)
n }, for

j = 1, . . . , d. The asymptotic theory of multivariate extremes is connected with interesting
concepts, such as max-infinite divisibility and max-stable distributions; for more information,
see [49].

Although the component wise definition of maxima seems natural and is useful in appli-
cations, a corresponding (natural) notion of multivariate record is not obvious. There are
several plausible definitions to consider, some of them being more amenable to asymptotic
study than others. The first and most common is that of strong record, defined as follows:
Xn is a strong record observation if X(j)

n ≥ M
(j)
n−1, for 1 ≤ j ≤ d, with at least one strict

inequality. This definition can be written more compactly in terms of the dominance re-
lation, as follows: let xi = (x

(1)
i , . . . , x

(d)
i ) ∈ Rd, i = 1, 2, then x1 � x2 if x1 6= x2 and

x
(j)
1 ≥ x

(j)
2 , j = 1, . . . , d. So, Xn is a strong record if Xn �Mn−1.

The problem with strong records is their scarceness. For example, if the observations are
iid vectors with independent components, their total number is finite. In general, the number
of records in a region of Rd depends on the hazard measure of the region; see [27].

The concept of chain-record was introduced by Gnedin in [25], as a natural and tractable al-
ternative to strong records. It turns out that their behavior is close to that of one-dimensional
records. An observation Xn is a chain-record if it dominates, in the sense of �, the current
chain-record. As in other types of record, the first observation X1 is conventionally a chain-
record; rigorous definitions are given in Chapter 2.

For completeness, we mention here the interesting notion of Pareto record, which we
do not investigate in this thesis. An observation Xn is a Pareto record if Xi 6� Xn, for
i = 1, . . . , n − 1. In other words, a Pareto record is not dominated by any of the previous
observations.

It is easy to see that Pareto records are more abundant than chain records, which in turn
are more abundant than strong records. See Figure 1.1 for an illustrative example.

1.3 Review of the literature on multidimensional records

In the late 80’s Goldie and Resnick [27] develop a theory of records for iid sequences of
random elements, with values in a partially ordered set. In particular, they analyze several
notions of multivariate records and they show, among other results, that the total number
of records in a region A is finite if and only if its hazard measure H(A) is finite. The
same authors [28] focus in iid R2-valued random vectors, and study the behavior of record
sequences in a fixed rectangle A, conditionally on there being n records in A, as n → ∞.
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(a) Strong records. (b) Chain records. (c) Pareto records.

Figure 1.1: Strong, chain and weak records from ten point in the unit square. Records are
highlighted using colored circles.

They show, under suitable conditions, that the random set of record points converges in
probability to a deterministic parameterized curve, which solves a variational problem. See
also [16], for further results and a connection of this phenomenon with the problem of the
longest increasing subsequence.

Later, Gnedin [24] studies the asymptotic behavior of the probability that Xn is a strong
record, for iid multivariate Gaussian observations, showing that their total number is finite,
unless the correlations between components are +1.

In [25] Gnedin introduces chain records and studies mainly the associated counting process.
Using random partitions techniques, he shows that the number of chain records up to time
n is asymptotically Gaussian, as n→∞. He also establishes a strong law of large numbers.

Pareto and chain records are extensively studied in [41]. The authors derive expressions
for the mean and variance of the number of records, for iid observations uniformly distributed
in the hypercube [0, 1]d and the d-simplex, from which they obtain the uniform convergence
to the Gaussian distribution.

The most recent contributions in the domain of strong and Pareto records, up to the
author’s knowledge, can be found in [10], [18], [21]. In particular, the distribution of the
total (finite) number of records and the distribution of the last record, from iid observation
with independent components, is investigated in [21]. Another type of multivariate record,
known as north-east records, is studied in [7].

1.4 Outline of the thesis

Chapter 1 contains a brief introduction to the mathematical theory of record observations.
Chapter 2 is devoted to the general theory of chain-maxima (Mn) and chain-records (Rn).
The dominance relation is defined, followed by the introduction of the new concept of chain-
maxima, in Definition 2.1.2. The study of chain-maxima and related processes, is the main
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goal of this thesis. Chain-records are then defined from (Mn) in a (equivalent) way that
differs from Gnedin’s original definition but we believe more natural. Chain-record times are
also defined and they are shown to be stopping times for the natural filtration of the data.
Then, the Markovian property of chain-maxima, of inter-record times and of chain-records
are established. It is also shown that, as in the classical one-dimensional case, inter-record
times are conditionally distributed as geometric random variables. A useful formula for the
expectation E(g(Mn)) is given, which allows among other applications, to obtain a recursion
for the distribution function Fn(x) ofMn. The idea of terminal atom of the distribution of
X (a generic observation) is introduced, in order to initiate the study of the counting process
(Nn) of chain-records. Conditions are given to ensure that the total number of chain-records,
from an iid sequence of random vectors, is infinite, almost surely. Once the question of in-
finiteness of chain-records is settled, the asymptotic study is initiated. A series of limiting
results are exhibited and a martingale is defined to derive a strong law of large numbers
for Nn. A result is proven about the logarithmic closeness of inter-record times ∆n and
F̄(Rn). This allows to generalize some well-known results that Holmes and Strawderman
[40] obtained for one-dimensional records. The chapter also contains results about the point
process of chain-record values, the particular but important case of observations with inde-
pendent components, the definition of cone-chain-records and strict chain-records. Some of
these topics are only briefly studied and a good deal remains to be done.

The uniform model on the hypercube [0, 1]d is studied en Chapter 3. Some results of
Chapter 1 are restated for this particular model. Record heights Hn are introduced and
studied and a detailed analysis of moments is carried out. First, we prove that moments
solve a recursion and that the general form of such solution is a so-called alternating sum,
also known as Euler transform. Then we use some very nice tools from complex analysis, such
as the Nörlund-Rice representation and the singularity analysis of Flajolet and Sedgewick.
The asymptotic study turns out to be laborious, because of the technical necessity of con-
structing a sequence of growing circles, avoiding the poles of a complex function, which is
the meromorphic extension of the coefficients in the alternating sum related to the moments.
From the computation of residues, we are able to give very precises convergence rates for
the moments and, as a by-product, to obtain weak convergence for record heights. Mixed
moments are also studied using the same tools and results are applied to the convergence of
the counting process (Nn).

Chapter 4 is devoted to the uniform model on the d-simplex ∆d (nonnegative coordinates
adding to less than or equal to 1), i.e. the observations Xn are iid uniform on ∆d and
this implies that components of Xn are dependent random variables, unlike the case of
[0, 1]d. The Markovian nature of chain-records is explored and recursions are obtained for
the distribution and the density of Rn. Then, a representation in distribution for (Rn), as
a stochastic recurrence is obtained. The solution of the recurrence is found and convergence
of Rn to a limit R∞, is established. Then, in order to characterize the distribution of R∞,
we obtain a perpetuity representation of R∞. From the above analysis and using a result of
Grincevičius [37], we conclude that the distribution ofR∞ is absolutely continuous or singular
and continuous; it can’t be neither discrete nor degenerate. Finally, for d = 2 we are able to
prove that R∞ has a Dirichlet distribution, by showing that the law of R∞ is the invariant
distribution of a certain Markov chain. The study of record-heights is carried out following
the same strategy of the previous chapter but the calculations get very messy. Nonetheless,
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the analysis of residues leads to precise rates for the moments and, as a by-product, to weak
convergence for record heights and the counting process of chain-records. There remain many
unanswered questions about this model and its variants, for future research.

Chapter 5 is about work in progress. It contains many more questions than answers. It
was decided to include this chapter in the thesis because it reflects many hours of discussion
and calculations about ideas that could prove interesting in the future. A serious effort was
made to obtain a limiting distributions for Mn, similar to those existing in classical EVT,
for usual maxima. We fell short of our goal but managed to obtain partial answers revealing
an intriguing behavior. When considering the recurrence satisfied by the density of Mn,
we found a structure of certain coefficients that was close to Delannoy’s numbers. We also
dedicated some effort to the analysis of a continuous-time fragmentation model, inspired from
a work by Brennan and Durrett. The model was called the board-breaking model and can be
considered a continuous time analog of chain-maxima, mimicking the one-dimensional stick-
breaking process of Brennan and Durrett. We were interested in the asymptotic behavior
of a tagged fragment (rectangle), whose dimensions (and consequently its area) obviously
tend to zero. Knowing that the area can be normalized so that a limiting distribution exists,
we asked if it is possible to find limiting distributions for the sides. It turns out that the
solution of this problem is linked to the convergence of two dependent renewal processes.
The problem is also linked to semi-stable Markov processes.
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Chapter 2

General theory of chain-maxima and
chain-records

In this chapter, we introduce the concepts of chain-maxima and chain-records. We formulate
the probabilistic hypotheses to be used throughout this work and obtain distributional and
asymptotic results.

2.1 Preliminaries

We introduce below the dominance relations between vectors in Rd, which allow to define
different notions of record more compactly.

Definition 2.1.1 Let x,y ∈ Rd, with respective components x(j), y(j), j = 1, . . . , d.

1. x � y or y ≺ x if x 6= y and x(j) ≥ y(j), for j = 1, . . . , d (x dominates y).
2. x � y or y � x if x(j) ≥ y(j), for j = 1, . . . , d.
3. x �s y or y ≺s x if x(j) > y(j), for j = 1, . . . , d (x strictly dominates y).

Let (Xn) be a sequence of iid Rd-valued random vectors, defined on a common probability
space (Ω,F ,P), d ≥ 1. We begin by defining the sequence (Mn) of chain-maxima, using the
dominance relation of Definition 2.1.1. The notation 1A stands for the indicator function of
event A.

Definition 2.1.2 The sequence (Mn) of chain-maxima associated to (Xn) is defined by
M1 = X1 and

Mn = Xn1{Xn�Mn−1} +Mn−11{Xn 6�Mn−1}, n ≥ 2. (2.1.1)

Remark 2.1.1 Note that chain-maxima (Mn) bear some resemblance with componentwise
maxima (Mn), such as being monotone, that is,Mn−1 �Mn, for n ≥ 2. A major difference
is that chain-maxima are observed vectors, in the sense that {Mn : n ≥ 1} ⊂ {Xn : n ≥ 1},
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while componentwise maxima are not.

It is also clear that, while M (j)
n depends only on X(j)

1 , . . . , X
(j)
n ,M(j)

n (the j-th component
ofMn) depends on all coordinates of X1, . . . ,Xn, not just the j-th, a fact which complicates
the analysis of chain-maxima. Another distinctive feature is their sensitivity to the labeling
of observations. That is, Mn is not permutation invariant because it depends on the order
in which the observations X1, . . . ,Xn are considered (d > 1).

Observe also that for d = 1,Mn = Mn = max{X1, . . . Xn}. In fact, equation (2.1.1) is a
d-dimensional extension of the well-known formula Mn = Xn1{Xn>Mn−1} + Mn−11{Xn 6>Mn−1},
for real random variables Xn. Of course, relation (2.1.1) does not hold for componentwise
maxima (Mn).

Chain-records are defined below using the concept of chain-maxima. We believe that
this definition is simpler and more natural than Gnedin’s [25], which requires the previous
introduction of record times. For completeness and comparison, we also define strong records.

Definition 2.1.3 By convention X1 is a chain-record and, for n ≥ 2, Xn is a chain-record if
Mn �Mn−1.

Definition 2.1.4 By convention X1 is a strong record and, for n ≥ 2, Xn is a strong record
if Xn �s Mn−1 or, equivalently, if Xn �s Xi, for i = 1, . . . , n− 1.

Associated to chain records, we define below the sequences of chain-record times, chain-
inter-record times, chain- record-values, etc. For simplicity, since we only deal with chain-
extremes in this and subsequent chapters, we drop the prefix “chain” from these objects. So,
chain-records become records, etc.

Definition 2.1.5 (i) Record times (Tn) are defined by T1 = 1 and

Tn = min{j > Tn−1 :Mj �Mj−1}, n ≥ 2, (2.1.2)

where Tm =∞, for all m ≥ n, ifMj 6� Mj−1, for j > Tn−1.
(ii) Inter record times (∆n) are defined by ∆n = Tn+1 − Tn, if Tn+1 < ∞; ∆n = ∞ if
Tn+1 =∞, Tn <∞ and ∆n = � otherwise, where � is a cemetery value.

(i) Record values (vectors) (Rn) are defined by Rn = MTn , if Tn < ∞, and Rn = �
otherwise.

(iii) The number of records among the first n observations is defined by

Nn = #{k : Tk ≤ n} =
n∑

i=1

Ii,

where # denotes cardinality, I1 = 1 and In = 1{Mn�Mn−1} = 1{Xn is a record}, n ≥ 2, is
the indicator of Xn being a record.

Note, from Definitions 2.1.3, 2.1.5, that Mj � Mj−1 if and only if Xj � Mj−1. Also,
MTn �MTn−1, so that XTn �MTn−1 and, from equation (2.1.1), we haveMTn = XTn .
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Remark 2.1.2 The previous definitions correspond to upper chain extremes. It is also
possible to define minima and lower records, simply by inverting the dominance relation. For
example, minima, denoted µm, are obtained from the recurrence

µn = Xn1{Xn≺µn−1} + µn−11{Xn 6≺µn−1}. (2.1.3)

Other variables such as lower record values, lower record times, etc. are defined similarly.

We begin the presentation of results for the processes defined above. Of course, we require
some notation and distributional hypotheses on the sequence (Xn), which are stated below.

Let C be any collection of random variables defined on (Ω,F ,P) and let σ(C) denote the
sub-σ-algebra of F generated by C. Let Fn = σ(X1, . . . ,Xn) be the σ-algebra generated
by the first n observations. A filtration is an increasing family of σ-algebras. We have the
following generalization of the corresponding one-dimensional result.

Proposition 2.1.1 Record times Tk, k ≥ 1, are stopping times for the filtration (Fn).

Proof. Recall that T is a stopping time for (Fn) if {T = n} ∈ Fn, for all n ≥ 1. To prove
the result we proceed inductively. First note that T1 is obviously a stopping time. Now, let
k > 1 and suppose that T2, . . . , Tk−1 are stopping times. Then

{Tk = n} =
⋂

Tk−1<j<n

{Xj 6� XTk−1
,Xn � XTk−1

}

=
⋃
m<n

⋂
m<j<n

{Xj 6� Xm,Xn � Xm, Tk−1 = m} ∈ Fn,

which proves that Tk is a stopping time for (Fn).

2.2 The Markov property

We now consider the Markovian nature of maxima, records and record times, which is a
well-known characteristic in dimension d = 1. Henceforth we assume that (Xn) is an iid
sequence, with common distribution function F, that is, F(x) = P(X1 � x),x ∈ Rd. Also,
let F̄(x) = P(X1 � x) and F(A) =

∫
A
F(dx), for any Borel subset A of Rd. Note that the

components X(j)
n , j = 1, . . . , d, need not be independent.

Proposition 2.2.1 The sequence of maxima (Mn) is a Markov chain with transition mea-
sure

P(Mn+1 � x|Mn) = F((Mn,x]) + (1− F̄(Mn))1{Mn�x}, (2.2.1)
where (Mn,x] = {y ∈ Rd :Mn ≺ y � x}.

Proof. The Markovian property is direct from (2.1.1). For simplicity, let P(· | Mn) := Pn(·),
then

Pn(Mn+1 � x) = Pn(Mn+1 � x,Xn+1 �Mn) + Pn(Mn+1 � x,Xn+1 �Mn)

= Pn(Mn ≺ Xn+1 � x) + Pn(Xn+1 �Mn)1{Mn�x}.
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So,(2.2.1) follows noting that Xn+1 is independent ofMn.

Remark 2.2.1 Note that the inter record times ∆n are just the holding times of the Markov
chain (Mn).

The following results show that the behavior of records, in the case d > 1, is very close to
that of usual records (d = 1); see [53].

Proposition 2.2.2 For n ≥ 1, k ≥ 1,

P(Rk+1 � x,∆k = n | Rk) = (1− F̄(Rk))
n−1F((Rk,x])1{Rk 6=�} (2.2.2)

and
P(Rk+1 � x | Rk) =

F((Rk,x])

F̄(Rk)
1{Rk 6=�}. (2.2.3)

Proof. For (2.2.2) note that, if the inter record time after Rk is n, then n−1 iid observations
do not dominate Rk, with (conditional) probability (1− F̄(Rk))

n−1. Then the next observa-
tion must dominate Rk and stay � x. Such event has probability F((Rk,x]). For (2.2.3) it
suffices to sum over n in the first equation. Finally, the cemetery state is absorbing, that is,
P(Rk+1 = � | Rk = �) = 1.

Corollary 2.2.1 (Rk+1,∆k)k≥1 and (Rk)k≥1 are Markov chains with transition probabilities
given by (2.2.2) and (2.2.3), respectively.

Proof. Let Ak = σ{(Ri+1,∆i), 1 ≤ i ≤ k}, k ≥ 1, then

P(Rk+1 � x,∆k = n | Ak−1) = P(Rk+1 � x,∆k = n | Rk),

which shows that (Rk+1,∆k)k≥1 is a Markov chain. The Markovian property of (Rk) follows
from the formula above, after adding over n.

Proposition 2.2.3 Let G = σ{Rk, k ≥ 1}. Then the inter record times ∆n are independent
and geometrically distributed, conditionally on G, provided that P(Rk = �) = 0 for all k,
with

P(∆k = n|G) = P(∆k = n|Rk) = (1− F̄(Rk))
n−1F̄(Rk)1{Rk 6=�}, k ≥ 1, n ≥ 1. (2.2.4)

Proof. Same argument as in Proposition 2.2.2.

We now obtain a recurrence for the distribution and the expected value of a function of
Mn .

Lemma 2.2.1 Let (Mn) be the sequence of maxima and let g : Rd → R+ measurable. Then

E(g(Mn+1)) =

∫
g(y)F−n (y)F(dy) +

∫
g(y)(1− F̄(y))Fn(dy), (2.2.5)
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where Fn(x) = P(Mn � x) and F−n (x) = P(Mn ≺ x), n ≥ 1. In particular, with g(y) =
1{y�x}, for x ∈ Rd, we have

Fn+1(x) =

∫
y�x

F−n (y)F(dy) +

∫
y�x

(1− F̄(y))Fn(dy), n ≥ 1. (2.2.6)

Proof. From (2.1.1) we have

g(Mn+1) = g(Xn+1)1{Xn+1�Mn} + g(Mn)1{Xn+1 6�Mn}.

Taking conditional expectations we get

E(g(Mn+1)|Mn) =

∫
g(x)1{x�Mn}F(dx) + g(Mn)(1− F̄(Mn)). (2.2.7)

Then, taking expectations in (2.2.7), formula (2.2.5) follows.

Remark 2.2.2 Observe that, as expected, with x = (x(1), . . . , x(d)),

lim
x(j)→∞
j=1,...,d

Fn+1(x) =

∫
F−n (y)F(dy) +

∫
(1− F̄(y))Fn(dy)

= P(Mn ≺ Xn+1) + P(Xn+1 6� Mn) = 1.

Proposition 2.2.4 Let F be absolutely continuous (with respect to the Lebesgue measure
on Rd), with density f . Then Fn, given in equation (2.2.6), is also absolutely continuous,
with density fn satisfying

fn+1(x) = Fn(x)f(x) + (1− F̄(x))fn(x). (2.2.8)

Proof. The result follows from induction and equation (2.2.6). Indeed, assuming that
F1, . . . ,Fn are a.c., with densities f1, . . . , fn, Fn+1 is obtained by integrating formula (2.2.8).

Example 2.2.1 We solve recurrence (2.2.6) for d = 1 (with F is replaced by F ). Noting
that 1− F̄ (y) = F (y), we have

Fn+1(x) =

∫ x

−∞
F−n (y)F (dy) +

∫ x

−∞
F (y)Fn(dy),

with solution Fn(x) = F n(x), obtained by induction and the integration by parts formula;
see [51].

2.3 Asymptotic results

2.3.1 On the total number of records

The counting process of records (Nn) is central in our study of chain extremes. As mentioned
before, the problem with strong records is their finiteness, if the observations (Xn) are iid
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with independent components; see, for example, [24] and [28]. Chain records are supposed
to be more convenient than strong records, in terms of asymptotic analysis, because they do
not have such problem. But in fact, N∞ can also be finite, even if d = 1. For example, if
d = 1 and the distribution F has a terminal atom, then N∞ <∞ a.s.

Note first that, for one dimensional observations, with general distribution function F ,
N∞ =∞ a.s. if and only if there is no terminal atom, which is also equivalent to saying that
the right end-point of F , defined by ωF = sup{x ∈ R : F (x) < 1}, is not an atom. In fact, if
ωF is an atom, then P(N∞ =∞) = 0. For d > 1 the situation is quite different.

Definition 2.3.1 Let X have distribution F. Then x ∈ Rd is a terminal atom of X (or F),
if P(X = x) > 0 and P(X � x) = 0.

If F has a terminal atom then it may happen that 0 < P(N∞ =∞) < 1. Also, even is F
has no atoms we may have N∞ < ∞, with positive probability. For example, let F be the
uniform probability on the segment {(x, y) ∈ [0, 1]2 : x+ y = 1} ⊂ R2, then the only (chain)
record is the first observation.

We consider the following assumption, ensuring the existence of infinitely many records
in the whole sequence (Xn).

Assumption 1 There exists a Borel subset A of Rd such that F(A) = 1 and F̄(x) > 0, for
all x ∈ A.

For example, if d = 1 and F is continuous, with support [a, b], then A can be chosen as
[a, b[.

Proposition 2.3.1 N∞ =∞ a.s. under Assumption 1.

Proof. The proof consists in showing inductively that Rk 6= �, for all k ≥ 1, which is clearly
equivalent to N∞ =∞. So let k ≥ 1, such that P(Rk 6= �) = 1, then P(Rk ∈ A) = 1, where
A is the set from Assumption 1. Hence F̄(Rk) > 0 a.s. and so, from (2.2.4), P(∆k <∞) = 1,
that is, P(Rk+1 6= �) = 1 and this yields the conclusion by induction, since R1 = X1.

In order to avoid unnecessary complexity, we require the sequence (Xn) to have an infinite
number of records a.s., that is, P(N∞ = ∞) = 1. Hereafter we work with distributions F
satisfying Assumption 1.

2.3.2 Limiting results for maxima and records

We begin the study of asymptotic properties of the sequences (Mn) and (Rn). Limits are
written without subscript (save if necessary to avoid confusion), and are understood as the
appropriate index increases to ∞.

Proposition 2.3.2 The sequences of maxima (Mn) and records (Rn) are increasing, in the
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sense that, for all k ≥ 1, Mk � Mk+1 and Rk ≺ Rk+1. Also, both sequences converge a.s.
to the same, possibly random, limit in R̄d = [−∞,∞]d. Furthermore, F̄(Mn) and F̄(Rn)
converge a.s. to the same limit in [0, 1].

Proof. Monotonicity is direct from the definitions. Also, because records are a subsequence
of maxima, the limits, if they exist, must be the same, a.s. Since the one-dimensional
component sequences of (Mn) and (Rn) are increasing, they necessarily converge or diverge
to ∞. On the other hand, since F̄(Mn), F̄(Rn) are nonnegative decreasing sequences, they
converge to the same limit.

Proposition 2.3.3 Let R∞ = limRn. Then P(R∞ � x) = 0, for any x ∈ Rd, such that
F̄(x) > 0.

Proof. Clearly, R∞ � x implies Rk � x, for all k ≥ 1. It also implies that Xn � x, for all
n ≥ 1. But P(Xn � x, n ≥ 1) = 0 because the Xn are iid and P(X1 � x) = F̄(x) > 0.

Corollary 2.3.1 F̄(R∞) = 0 a.s.

Proof. Let F∞(x) = P(R∞ � x), for x ∈ Rd, then

P(F̄(R∞) > 0) =

∫
{x:F̄(x)>0}

F∞(dx) ≤
∫
{x:F∞(x)=0}

F∞(dx) = 0,

where the inequality follows from Proposition 2.3.3.

Corollary 2.3.2 Let AF be the set of atoms of F then P(R∞ ∈ AF) = 0.

Proof. Let x ∈ AF then, by Assumption 1, F̄(x) > 0. Further, from Proposition 2.3.3 we
have P(R∞ = x) ≤ P(R∞ � x) = 0, which yields the conclusion because AF is countable.

Lemma 2.3.1 Let A be the set specified in Assumption 1 and let (rn) be a strictly increasing
sequence in A, with lim rn = r∞ ∈ R̄d

+, such that F̄(r∞)+F({r∞}) = 0. Then lim F̄(rn) = 0.

Proof. Let X have distribution F and note that
⋂
n≥1{X � rn} = {X � r∞} ∪ {X = r∞}.

Then lim F̄(rn) = limP(X � rn) = F̄(r∞) + F({r∞}) = 0.

Corollary 2.3.3 lim F̄(Rn) = 0. a.s.

Proof. By Proposition 2.3.2 and Corollaries 2.3.1, 2.3.2, we have that (Rn) a.s. satisfies the
hypotheses of the sequence (rn) in Lemma 2.3.1., so the conclusion follows.

Remark 2.3.1 Note, from Corollary 2.3.1, that R∞ 6∈ A a.s. and that, as shown in Example
2.5.1, R∞ is not necessarily a point of continuity of F.
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2.3.3 A martingale and laws of large numbers

Proposition 2.3.4 The sequence (Sn)n≥1, defined by

Sn =
n∑
k=1

(∆kF̄(Rk)− 1), n ≥ 1, (2.3.1)

is a square-integrable (Ak)-martingale, with Ak = σ{(Ri+1,∆i), 1 ≤ i ≤ k}, k ≥ 1.

Proof. Note first that, conditionally on Ak−1, ∆k is geometric (starting at 1), with param-
eter F̄(Rk), and that ∆kF̄(Rk) is Ak-measurable. Also, by (2.2.4), E(∆kF̄(Rk)|Ak−1) = 1.
Finally, for square integrability observe, from the formula of the variance of a geometric
random variable, that

E((∆kF̄(Rk)− 1)2|Ak−1) = 1− F̄(Rk) ≤ 1,

and the conclusion follows.

From well-known results for square integrable martingales, we have the following law of
large numbers.

Proposition 2.3.5
1

n

n∑
k=1

∆kF̄(Rk)→ 1 a.s. (2.3.2)

Proof. Let Sn be as defined in (2.3.1) and let 〈Sn〉 =
∑n

k=1 E((∆kF̄(Rk) − 1)2|Ak−1) =∑n
k=1(1 − F̄(Rk)). By Corollary 2.3.3, we have 〈Sn〉 /n → 1 a.s. Also, recalling that

Sn/ 〈Sn〉 → 0 a.s. (this is the well known convergence of a martingale Sn, normalized by
its associated increasing process 〈Sn〉, related to Doob’s decomposition of the submartingale
S2
n; see Proposition VII-2-4 in [43] or [38]), the conclusion follows.

Recall that In = 1{Mn�Mn−1} = 1{Xn�Mn−1} is the indicator that Xn is a (chain) record
and Nn =

∑n
i=1 Ii is the number of records up to the n-th observation. Some simple identities

and relations involving Nn are shown below.

Lemma 2.3.2 For n, k ≥ 1 and g : Rd → R+ measurable, we have

(i) P(Nn < k) = P(Tk > n),

(ii) E(In) = E(F̄(Mn−1)),
(iii) TNn ≤ n < TNn+1, NTn = n,
(iv) RNn =Mn, MTn = Rn,
(v)

∑n
k=1 g(Mk) =

∑Nn
k=1 ∆kg(Rk)− (TNn+1 − n)g(RNn).

Corollary 2.3.4
Nn∑n

k=1 F̄(Mk)
→ 1 a.s. (2.3.3)
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Proof. Consider (v) of Lemma 2.3.2, with g = F̄. Then, the result follows from the strong
LLN of Proposition 2.3.5, if we show that (TNn+1 − n)F̄(RNn)/Nn → 0 a.s. But, since
Nn →∞ and (TNn+1 − n) ≤ ∆Nn , it suffices to show that ∆nF̄(Rn)/n→ 0 a.s.

From the proof of Proposition 2.3.4, we have E((∆kF̄(Rk))
2|Ak−1) = 2 − F̄(Rk) and so,

E((∆kF̄(Rk))
2) ≤ 2. Finally, for any ε > 0, we have

P
(∆nF̄(Rn)

n
> ε
)
≤ E(∆nF̄(Rn))2

ε2n2
≤ 2

ε2n2
,

and the conclusion follows from the Borel-Cantelli lemma.

A natural martingale related to Nn is shown below.

Proposition 2.3.6 Let Fk = σ(X1, . . . ,Xk), k ≥ 1. Then

Tn = Nn −
n∑
k=1

F̄(Mk−1), n ≥ 1, (2.3.4)

is a (Fk)-martingale, with bounded increments, where F̄(M0) = 1, conventionally.

Proof. The result is obtained by noting that E(Ik|Fk−1) = P(Xk �Mk−1|Fk−1) = F̄(Mk−1).

Remark 2.3.2 The LLN of Corollary 2.3.4 can also be obtained from Proposition 2.3.6
above. Note that 〈Tn〉 :=

∑n
k=1 E((Ik − F̄(Mk−1))2|Fk−1) =

∑n
k=1(1 − F̄(Mk−1))F̄(Mk−1),

then (2.3.3) follows from Tn/ 〈Tn〉 → 0 a.s.

The following result is a generalization of theorem 3 of [52], to chain records from a general
distribution F, under Assumption 1. In this version we only consider the upper bound of the
limsup, which is enough to derive asymptotic results for the inter record times ∆k.

Theorem 2.3.1

lim sup

∣∣∣∣ log(∆nF̄(Rn))

log n

∣∣∣∣ ≤ 1, a.s. (2.3.5)

Proof. Recall from Proposition 2.2.3 that, conditionally on G = σ{Rk, k ≥ 1}, the random
variables ∆k are independent, geometrically distributed, with P(∆k > n|G) = (1− F̄(Rk))

n.

Let Zk = log(∆kF̄(Rk))/ log k, k ≥ 2, and the events C = {F̄(Rk) → 0} and L =
{lim supk |Zk| ≤ 1}. Then, by Corollary 2.3.3, P(C) = 1. We have to prove that P(L) = 1,
which is equivalent to P(L∩C) = 1 but, in order to take full advantage of the distributional
properties of the ∆k, we must deal with P(L ∩ C|G) = P(L|G)1C .

Observe that L is equivalent to {|Zk| > 1 + ε, f.o.}, for any ε > 0, where f.o. stands for
“finitely often”. By Borel-Cantelli lemma it suffices to show that

∞∑
k=1

P(|Zk| > 1 + ε|G)1C <∞ (2.3.6)
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to obtain P(L|G)1C = 1 a.s., which, after taking expectation, yields the conclusion. In the
following expressions the convergence F̄(Rk) → 0 holds but, for simplicity, we omit the
indicator 1C . Note that

P(|Zk| > 1 + ε|G) ≤ P(Zk > 1 + ε|G) + P(Zk ≤ −(1 + ε)|G) (2.3.7)

Also, from Proposition 2.2.3, we have

P(Zk > 1 + ε|G) = (1− F̄(Rk))

⌊
k1+ε

F̄(Rk)

⌋
. (2.3.8)

and

P(Zk ≤ −(1 + ε)|G) = 1− (1− F̄(Rk))

⌊
k−(1+ε)

F̄(Rk)

⌋
. (2.3.9)

Furthermore, because F̄(Rk)→ 0 a.s., it holds

(1− F̄(Rk))
1

F̄(Rk) → e−1,

a.s. Hence, for sufficiently large k, there exist a, b ∈ (0, 1), such that a < (1−F̄(Rk))
1

F̄(Rk) < b
and so, from (2.3.8) and (2.3.9), we have

P(Zk > 1 + ε|G) ≤ b
F̄(Rk)

⌊
k1+ε

F̄(Rk)

⌋
≤ bk

1+ε

,

and
P(Zk ≤ −(1 + ε)|G) ≤ 1− ak−(1+ε)

= O

(
1

k1+ε

)
,

for sufficiently large k. Hence, from (2.3.7) we see that (2.3.6) holds, and the conclusion is
obtained.

Remark 2.3.3 The result of Theorem 2.3.1 shows that the sequences (∆k) and (F̄(Rk)) are
close in a “logarithmic” sense. Note also that we make no assumption about the speed of
convergence of F̄(Rk) to 0. In [52] (lemma 2, theorem 3) it is required that

∑∞
k=1 F̄(Rk) <∞.

Corollary 2.3.5 Let c ∈ (0, 1), then

log F̄(Rk)

k
→ log c a.s. ⇐⇒ log ∆k

k
→ − log c a.s. (2.3.10)

Proof. Observe that∣∣∣∣∣∣∣∣ log ∆k

k
+ log c

∣∣∣∣− ∣∣∣∣ log F̄(Rk)

k
− log c

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣ log(∆kF̄(Rk))

log k

∣∣∣∣ log k

k
.

Then, from Theorem 2.3.1, we see that either convergence in (2.3.10) implies the other.

The result above is well-known for one dimensional records, from a continuous parent
distribution F , and was obtained by Holmes and Strawderman [40]. In such case it can
be shown that − log F̄ (Rk) behaves as a sum of iid exponential random variables, so that
F̄ (Rk)

1
k → e−1, by the SLLN, and thus log ∆k

k
→ 1 a.s.

Another result than can be derived from Theorem 2.3.1 is the following CLT for log ∆k.
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Corollary 2.3.6 Let a ∈ R, then

log F̄(Rk) + ak√
k

D→ N(0, σ2) ⇐⇒ log ∆k − ak√
k

D→ N(0, σ2).

Proof. The result follows from the identity

log ∆k − ak√
k

=
log ∆k + log F̄(Rk)√

k
− log F̄(Rk) + ak√

k

and Theorem 2.3.1.

2.4 On the point process of chain record values

The behavior of chain record values is well understood. We know from Proposition 2.2.2
that (Rk) is a Markov chain with initial probability F and transition probabilities given by
(2.2.3). We have the following

Proposition 2.4.1 Suppose the iid observations Xn have common probability density func-
tion f . Then the joint density of the first k records R1, . . . ,Rk is given by

fR1,...,Rk(r1, . . . , rk) = f(r1)
f(r2)

F̄(r1)
· · · f(rk)

F̄(rk−1)
, r1 ≺ . . . ≺ rk. (2.4.1)

Proof. Density (2.4.1) follows from the densities fRk+1|Rk(rk+1|rk) = f(rk+1)/F̄(rk), obtained
from (2.2.3).

It is interesting to describe the set of record values as a point process in Rd. The idea comes
from a result found in [53] (theorem 1), where standard records (d = 1) are characterized
as arrival times of a point process on the line, with independent increments. This process is
the superposition of two independent point processes: a non-homogeneous Poisson process,
with intensity − log(1 − Fc(x)) and a Bernoulli process on the atoms of F , where Fc is the
continuous part of F .

For d > 1 it makes little sense to consider the Rk values as arrival times and even the
concept of independent increments does not have an obvious meaning. Nonetheless, it may
be rewarding to describe records using the language of point processes, as presented, for
example, in [42]. For simplicity, we restrict attention to continuous distributions F on Rd.

A point process in Rd can be described as a countable set of randomly distributed points
(Zk) on Rd. It can also be seen as an integer-valued, atomic random measure M , with
M(A) = #{k : Zk ∈ A}, for any Borel set A ⊆ Rd, where # indicates cardinality.

Definition 2.4.1 The multivariate counting process of records {ξ(r), r ∈ Rd} is defined by

ξ(r) = #{k ≥ 1 : Rk � r}. (2.4.2)
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The marginal counting processes ξ(j)(r) of ξ(r), for r ∈ R and j = 1, . . . , d, are defined by

ξ(j)(r) = #{k ≥ 1 : R(j)
k ≤ r}. (2.4.3)

Lemma 2.4.1 Let r = (r(1), . . . , r(d)), τj = min{k : R(j)
k > r(j)}, for j = 1, . . . , d, τ =

min{k : Rk � r} and τ̃ = min{k : Rk 6� r}. Then

ξ(r) = min{ξ(j)(r(j)) : 1 ≤ j ≤ d}, (2.4.4)

τ = max
1≤j≤d

τj ≤ ∞ and τ̃ = min
1≤j≤d

τj ≤ ∞. (2.4.5)

Proof. The conclusions follows from the definitions.

2.4.1 Independent continuous components

We consider below the analysis of maxima and records under the additional assumption that
the iid observations Xn have independent continuous components. This hypothesis makes
some calculations simpler and allows to illustrate the results of Corollaries 2.3.5 and 2.3.6.
We investigate also the eventual independence of components of maxima and records.

Assumption 2 The observation vectors Xn have independent components X(j)
n , j = 1, . . . , d

with respective continuous marginal distributions F (j), j = 1, . . . , d.

Note that Assumption 2 implies N∞ =∞ a.s. See the discussion in Section 2.3.1.

Remark 2.4.1 It is intuitively clear that the componentsM(j)
n ofMn are not independent,

even under Assumption 2. For example, if d = 2 and the Xn are uniform in [0, 1]2, then the
joint density ofM(1)

2 ,M(2)
2 is f2(x, y) = (x+ y)1[0,1]2(x, y), showing thatM(1)

2 andM(2)
2 are

dependent; see Chapter 3. However, as shown in the next proposition, the components R(j)
n

of records Rn are independent.

Proposition 2.4.2 Let (Rn) be the sequence of records, with Rn = (R(1)
n , . . . ,R(d)

n ). Then,
under Assumption 2, the sequences (R(j)

n ), j = 1, . . . , d, are independent Markov chains on
R, with initial state R(j)

n = X
(j)
1 and transition probabilities

P(R(j)
k+1 ≤ x(j)|R(j)

k ) =
F (j)(x(j))− F (j)(R(j)

k )

1− F (j)(R(j)
k )

1{R(j)
k ≤x(j)}. (2.4.6)

Proof. Observe that, by Assumption 2, F̄(x) =
∏d

j=1 F̄
(j)(x(j)) =

∏d
j=1(1−F (j)(x(j))) (con-

tinuity of F is crucial). From Proposition 2.2.2,

P(Rk+1 � x|Rk) =

∏d
j=1(F (j)(x(j))− F (j)(R(j)

k ))∏d
j=1(1− F (j)(R(j)

k ))
1{Rk�x}.
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Then

P(R(j)
k+1 ≤ x(j)|Rk) = lim

x(l)→∞,l 6=j
P(Rk+1 � x|Rk) =

F (j)(x(j))− F (j)(R(j)
k )

1− F (j)(R(j)
k )

1{R(j)
k ≤x(j)}

and so, P(R(j)
k+1 ≤ x(j)|R(j)

k ) = E(P(R(j)
k+1 ≤ x(j)|Rk)|R(j)

k ) yields (2.4.6). Finally, for the
independence of the Markov chains (R(j)

n ), j = 1, . . . , d, we argue inductively and consider,
for simplicity, only two coordinates. Suppose that R(j)

k ,R(l)
k are independent, then

P(R(j)
k+1 ≤ x(j),R(j)

k+1 ≤ x(l)) = E(P(R(j)
k+1 ≤ x(j),R(l)

k+1 ≤ x(l)|Rk))

= E(P(R(j)
k+1 ≤ x(j)|R(j)

k )P(R(l)
k+1 ≤ x(l)|R(l)

k ))

= E(P(R(j)
k+1 ≤ x(j)|R(j)

k ))E(P(R(l)
k+1 ≤ x(l)|R(l)

k ))

= P(R(j)
k+1 ≤ x(j))P(R(j)

k+1 ≤ x(l)).

Hence, R(j)
k+1,R

(l)
k+1 are independent.

Remark 2.4.2 The result of Proposition 2.4.2 above says that, under the assumption of
independence and continuity of components of Xn, the marginal processes of chain records
(R(j)

n ), j = 1, . . . , d behave as independent ordinary record processes, from continuous distri-
butions F (j), j = 1, . . . , d. One may be tempted to conclude that chain records behave exactly
as d-dimensional strong records. Such conclusion is erroneous because the sequence of chain
records (XTk) is distributed as the Markov chain (Rk), with transitions (2.2.3), whereas the
sequence of strong record values is not; see Definition 2.1.4.

Corollary 2.4.1 Under Assumption 2, the point process ξ of records, in Definition 2.4.1,
is distributed as the minimum of d independent, non-homogeneous Poisson processes, with
respective intensities − log F̄ (j), j = 1, . . . , d.

Proof. From theorem 1 in [53], it follows that the marginal record value process (R(j)
k ) is

a non-homogeneous Poisson processes, with intensity − log F̄ (j). The conclusion is derived
from Lemma 2.4.1.

Proposition 2.4.3 Under Assumption 2, the sequence (− log F̄(Rk))k is distributed as
(
∑d

j=1

∑k
i=1 Yij)k, where the Yij are iid, exponentially distributed random variables, with

parameter 1.

Proof. (− log F̄ (j)(R(j)
k ))k is distributed as the sequence of records, from the exponential

distribution with parameter 1. From theorem 1 in [53] we know that exponential records are
distributed as arrival times of the homogeneous Poisson process, with parameter 1, hence, as
partial sums (

∑k
i=1 Yij) of iid random variables Yij, exponentially distributed, with parameter

1. Then, since F̄(x) =
∏d

j=1 F̄
(j)(x(j)), we conclude that (− log F̄(Rk)) is distributed as

(
∑d

j=1

∑k
i=1 Yij).

Corollary 2.4.2 Under Assumption 2,
log ∆k

k
→ d a.s. and

log ∆k − kd√
k

D→ N(0, d). (2.4.7)
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Proof. The first convergence follows from Corollary 2.3.5, Proposition 2.4.3 and the Strong
Law of Large Numbers. The second follows from Corollary 2.3.6, Proposition 2.4.3 and the
Central Limit Theorem.

Proposition 2.4.4 Under Assumption 2, the number of records among the first n observa-
tions Nn, the k-th record time Tk and the k-th inter-record time ∆k, are distribution free.
That is, their distributions do not depend on F.

Proof. Xn = (X
(1)
n , . . . , X

(d)
n ) is a record if and only if (F (1)(X

(1)
n ), . . . , F (d)(X

(d)
n )) is a record.

Therefore, Nn, Tk,∆k, defined either on (Xn) or (F (1)(X
(1)
n ), . . . , F (d)(X

(d)
n )), are the same.

Finally note that F (j)(X
(j)
n ), j = 1, . . . , d, are iid, uniform in [0, 1].

For illustration, we compute below the probability distribution of T2, for d = 2.

Example 2.4.1 Let d = 2 and F with independent uniform marginals in [0, 1]. Then,
conditionally on X1 = (x, y), T2 − 1 is geometrically distributed (starting at 1), with success
parameter (1−x)(1−y). Hence P(T2 = k|X1 = (x, y)) = (1−(1−x)(1−y))k−2(1−x)(1−y),
and, from the binomial formula,

P(T2 = k) =

∫ 1

0

∫ 1

0

(1− uv)k−2uvdudv

=
k−2∑
j=0

(
k − 2

j

)
(−1)j

(j + 2)2
, k ≥ 2.

Note that E(T2|X1 = (x, y)) = ((1− x)(1− y))−1, so E(T2) =∞.

Remark 2.4.3 The behavior of the number of chain records Nn, which is a distribution-
free variable in the sense of Proposition 2.4.4, is studied in Chapter 3, in the context of
observations Xn uniformly distributed in [0, 1]d.

Proposition 2.4.5 Under Assumption 2, the sequences (R(j)
k ), j = 1, . . . , d, are independent,

R-valued and increasing Markov chains, such that R(j)
k → ωF (j) a.s., where we denote as

ωF (j) = sup{x ∈ R : F (j)(x) < 1} the right-end point of distribution F (j).

Proof. For d = 1, the convergence of record values to the right-end point of the distribution,
is a well known result of record theory.

Remark 2.4.4 Asymptotic laws for Rk can also be obtained. Each marginal process (R(j)
k ),

with appropriate centering and scaling sequences, can be shown to converge to a limiting
distribution, which depends on the domain of attraction for maxima of F (j); see [49]. On the
other hand, as stated in Proposition 2.3.2, records and (chain) maxima have the same limits,
therefore, under Assumption 2,M(j)

k → ωF (j) a.s. It would also be interesting to investigate
limiting distributions forMk.
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2.5 Cone induced order and strict dominance

In what follows we briefly consider extensions of previous results. The first idea is to replace
the dominance relation � by the partial order induced by a cone in Rd. Then we explore a
new definition of chain extreme based on strict dominance.

2.5.1 Cone records

For completeness we recall some well-known concepts of convex geometry. A subset K of Rd

is a cone if x ∈ K implies λx ∈ K, for all λ > 0. When K is a closed and convex set, K is
said to be a closed convex cone. A closed convex cone K is pointed if it contains no line or,
equivalently, K is not pointed if there exists x ∈ K, x 6= 0, such that −x ∈ K. A cone K
is solid if it contains d linearly independent vectors. Finally, a closed, convex, pointed and
solid cone is called a proper cone.

It is easy to verify that a proper cone induces a partial order in Rd. For x,y ∈ Rd and
a proper cone K we have x �K y if y − x ∈ K. For example, the dominance relation of
Definition 2.1.1 is a cone-induced order with K = {x ∈ Rd : x(j) ≥ 0, 1 ≤ j ≤ d}, the positive
orthant.

Maxima and records can now be defined with respect to any order �K related to a proper
cone K. If, additionally, K is assumed to be contained in the positive orthant of Rd, then it
is clear that x �K y implies x � y. However, this does not mean that if Xn is a record for
�K then it is also a record for � and so, the sequence of records for �K is not a subsequence
of records for �. Asymptotic results such as in Propositions 2.3.2 and 2.3.3 can be developed
in this new setting.

It may also be worth exploring records related to proper cones containing the positive
orthant such as, for example, K = {x = (x(1), x(2)) ∈ R2 : 10x(1) +x(2) ≥ 0, 10x(2) +x(1) ≥ 0}.
However, the asymptotic analysis is not simple because monotone sequences with respect to
�K can behave oddly. We shall not develop this topic further in this thesis.

2.5.2 Strict records

Here we consider a new definition of chain maxima and records based on the strict domi-
nance relation �s; see Definition 2.1.1. The advantage of this definition is to allow a rather
simple analysis in the case of observations with independent components, having possibly
discontinuous marginal distributions. We explore aspects of this new type or multivariate
record, following the structure of the previous sections, omitting unnecessary details.

The relation �s is nothing but strict inequality over all components and clearly implies
�. Using �s we define strict chain maxima and records, which should not be confused with
strong maxima and records. As done before, the word chain is implicit in our definitions.
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Definition 2.5.1 The sequence (Ms
n)n≥1, of strict maxima from observations (Xn), is de-

fined byMs
1 = X1 and, for n ≥ 2,

Ms
n = Xn1{Xn�sMs

n−1} +Ms
n−11{Xn 6�sMs

n−1}. (2.5.1)

Observe that (Ms
n) and (Mn), obtained from the same sequence of iid observations (Xn),

coincide a.s if F is continuous. Also, since �s is stronger than �, the sequence of strict
records (Rs

k), defined below, is a subsequence of records (Rk). Moreover, this means that the
total numbers of strict records in the whole sequence (Xn) could be finite while records are
infinite. Finally note that, for d = 1, all definitions (strong, chain and strict chain) coincide,
regardless of the continuity of the distribution.

Definition 2.5.2 By convention X1 is a strict record and, for n ≥ 2, Xn is a strict record if
Ms

n �sMs
n−1.

The sequences of strict record times, inter record times, record values, record indicators
and the counting process of strict records can be defined exactly as done for records, in
Definition 2.1.5, by replacing � by �s. The notation for these random variables is the same,
except for the exponent s which stands for strict.

We consider the question of finiteness of N s
∞. Of course, if N∞ < ∞ then N s

∞ < ∞
because (Rs

k) is a subsequence of (Rk). But, is it true that N∞ =∞ implies N s
∞ =∞? The

following trivial counterexample shows that this implication does not hold. The distribution
F in the counterexample is, of course, discontinuous.

Example 2.5.1 For d = 2 let X = (X(1), 0), where X(1) is uniformly distributed on [0, 1].
Then, the bivariate distribution F of X is discontinuous along the positive x axis. The
sequence of records (Rk), from iid observations distributed as X, consists of pairs (Rk, 0),
where the Rk are standard records from the uniform distribution, and so N∞ = ∞, while
there is just one strict record.

Observe that F, in the example above, satisfies Assumption 1, which is known to be
sufficient for N∞ = ∞. We consider in Assumption 3, a similar condition for strict records,
based in a modified version of F̄, denoted F̄s. We state first the strict version of Proposition
2.2.2, followed by corollaries and other related results. Proofs are omitted when the same
arguments of classical chain records apply and a reference is made to the corresponding
non-strict result.

Proposition 2.5.1 For n ≥ 1, k ≥ 1,

P(Rs
k+1 � x,∆s

k = n|Rs
k) = (1− F̄s(Rs

k))
n−1F((Rs

k,x]s)1{Rsk 6=�} (2.5.2)

and
P(Rs

k+1 �s x|Rs
k) =

F((Rs
k,x]s)

F̄s(Rs
k)

1{Rsk 6=�}, (2.5.3)

where F̄s(x) := P(Xn �s x) and (Rs
n,x]s = {y ∈ Rd : Rs

n ≺s y � x}.

Proof. See Proposition 2.2.2.
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Corollary 2.5.1 (Rs
k+1,∆

s
k)k≥1 and (Rs

k)k≥1 are Markov chains with transition probabilities
given by (2.5.2) and (2.5.3), respectively.

Proof. See Corollary 2.2.1.

Proposition 2.5.2 Conditionally on Gs = σ{Rs
k, k ≥ 1}, the strict inter record times ∆s

n

are independent and geometrically distributed, provided that P(Rs
k = �) = 0, for all k, with

P(∆s
k = n|Gs) = P(∆s

k = n|Rs
k) = (1− F̄s(Rs

k))
n−1F̄s(Rs

k)1{Rsk 6=�}, (2.5.4)

for k ≥ 1, n ≥ 1.

Proof. See Proposition 2.2.3

Assumption 3 There exists a Borel subset A of Rd, such that F(A) = 1 and F̄s(x) > 0, for
all x ∈ A.

Observe that Assumption 3 implies Assumption 1, because F̄s(x) ≤ F̄(x). In the remain-
ing results of this section, F satisfies Assumption 3.

Proposition 2.5.3 N s
∞ =∞ a.s.

Proof. See Proposition 2.3.1.

Proposition 2.5.4 The sequences of strict maxima (Ms
n) and strict records (Rs

n) are in-
creasing, in the sense that, for all k ≥ 1,Ms

k �Ms
k+1 and Rs

k ≺s Rs
k+1. Also, both sequences

converge a.s. to the same, possibly random limit in R̄d = [−∞,∞]d. Furthermore, F̄s(Ms
n)

and F̄s(Rs
n) converge a.s. to the same limit in [0, 1].

Proof. See Proposition 2.3.2.

Proposition 2.5.5 Let Rs
∞ = limnRs

n. Then P(Rs
∞ � x) = 0, for any x ∈ Rd, such that

F̄(x) > 0.

Proof. See Proposition 2.3.3.

Remark 2.5.1 Recalling that Rs
∞ = R∞, since (Rs

n) is subsequence of (Rn), the result
of Proposition 2.5.5 does not look informative. Of course, it also holds under the stronger
condition F̄s(x) > 0. The same comment applies to the analogues of Corollaries 2.3.1 and
2.3.2, since it trivially holds that F̄s(Rs

∞) = 0 and P(Rs
∞ ∈ AF) = 0

Corollary 2.5.2 limn F̄
s(Rs

n) = 0. a.s.

Proof. From Corollary 2.3.3, and because (Rs
n) is a subsequence of (Rn),

lim
n

F̄s(Rs
n) = lim

n
F̄s(Rn) ≤ lim

n
F̄(Rn) = 0.
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We end this section about strict records, with the analogue of Proposition 2.3.1 and the
corresponding corollaries.

Proposition 2.5.6

lim sup
n→∞

∣∣∣∣ log(∆s
nF̄

s(Rs
n))

log n

∣∣∣∣ ≤ 1, a.s. (2.5.5)

Proof. See Proposition 2.3.1.

Corollary 2.5.3 Let c ∈ (0, 1), then

log F̄s(Rs
k)

k
→ log c a.s. if and only if

log ∆s
k

k
→ − log c a.s.

Proof. See Corollary 2.3.5.

Corollary 2.5.4 Let a ∈ R, then

log F̄s(Rs
k) + ak√
k

D→ N(0, σ2) if and only if
log ∆s

k − ak√
k

D→ N(0, σ2).

Proof. See Corollary 2.3.6.

2.5.3 Discrete observations with independent components

We study here strict maxima and record under the assumption that the iid observations Xn

have independent discrete components. We use strict maxima instead of non-strict, because
only the strict dominance guarantees independence of the marginal record processes. We
focus on Zd

+-valued observations Xn, for simplicity.

Assumption 4 The observation vectors Xn are iid and have independent components
X

(j)
n , j = 1, . . . , d, with respective discrete marginal distributions F (j). The support of F (j)

is contained in Z+ and ωF (j) = +∞, j = 1, . . . , d.

It is easy to see that, under Assumption 4, N∞ = ∞ a.s. In the following results, As-
sumption 4 holds.

Proposition 2.5.7 Let (Rs
n) be the process of strict records, with Rs

n = (Rs(1)
n , . . . ,Rs(d)

n ).
Then the sequences (Rs(j)

n ), j = 1, . . . , d, are independent Markov chains on Z+, with transi-
tion probabilities

P(Rs(j)
k+1 ≤ x(j)|Rs(j)

k ) =
F (j)(x(j))− F (j)(Rs(j)

k )

1− F (j)(Rs(j)
k )

1{Rs(j)k ≤x(j)}. (2.5.6)
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Proof. From Assumption 4, F̄s(x) =
∏d

j=1 F̄
(j)(x(j)) =

∏d
j=1(1− F (j)(x(j))). From Proposi-

tion 2.5.1,

P(Rs
k+1 � x|Rs

k) =

∏d
j=1(F (j)(x(j))− F (j)(Rs(j)

k ))∏d
j=1(1− F (j)(Rs(j)

k ))
1{Rsk�x}.

The rest of the proof is like that of Proposition 2.4.2.

Remark 2.5.2 It is easy to see that, in general, the non-strict dominance � does not yield
a multiplicative decomposition of F̄. Indeed, for d = 2 we have

F̄(x(1), x(2)) = P(X(1) > x(1), X(2) ≥ x(2)) + P(X(1) ≥ x(1), X(2) > x(2))

− P(X(1) > x(1), X(2) > x(2))

= F̄ (1)(x(1))F̄ (2)(x(2)−) + F̄ (1)(x(1)−)F̄ (2)(x(2))− F̄ (1)(x(1))F̄ (2)(x(2))

= F̄ (1)(x(1)−)F̄ (2)(x(2)−)− F (1)({x(1)})F (2)({x(2)}),

where F̄ (j)(x(j)−) = P(X(j) ≥ x(j)).

Corollary 2.5.5 The point process ξ of records of Definition 2.4.1 is distributed as the
minimum of d independent Bernoulli processes on Z+, with respective probabilities h(j)

k :=
P(X(j) = k)/P(X(j) ≥ k).

Proof. From theorem 1 in [53], it follows that the marginal record value process (R(j)
k ) is

a Bernoulli processes with probabilities equal to the hazard rates h(j)
k defined above. The

conclusion follows from Lemma 2.4.1.

The geometric distribution

Lemma 2.5.1 Let (Xn) be a sequence of iid geometric random variables, with parameter
p ∈ (0, 1), starting at 1. That is, P(Xn = k) = (1 − p)k−1p, k = 1, 2, . . .. Let (Rk) be the
sequence of record value from (Xn), then (Rk) is distributed as (

∑k
i=1 Yi), where the Yi are

iid geometric, with parameter p.

Proof. The result is a direct consequence of Shorrock’s theorem 1 in [53], which states that
the point process of record values, for discrete random variables, is a Bernoulli process, with
probabilities given by the hazard rates hk. In the case of the geometric distribution, hk = p,
for all k ≥ 1.

Proposition 2.5.8 Let Xn have geometric marginals of parameters pj ∈ (0, 1), j = 1, . . . , d.
Then the sequence (− log F̄s(Rs

k)) is distributed as the sequence (−
∑d

j=1 log(1−pj)
∑k

i=1 Yij),
where the random variables Yij, i ≥ 1, j = 1, . . . , d, are iid geometric, with parameter pj.

Proof. Observe that F̄ (j)(k) = (1−pj)k, k ≥ 1, j = 1, . . . , d. Then F̄s(k) =
∏d

j=1 F̄
(j)(k(j)) =∏d

j=1(1− pj)k
(j) , and log F̄s(Rs

k) =
∑d

j=1 log(1− pj)Rs(j)
k . From Lemma 2.5.1, the conclusion

follows.
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Corollary 2.5.6 Under the hypotheses of Proposition 2.5.8,

log ∆s
k

k
→ µ a.s. and

log ∆s
k − kµ√
k

D→ N(0, σ2), (2.5.7)

where µ = −
∑d

j=1
log(1−pj)

pj
and σ2 =

∑d
j=1(1− pj)

(
log(1−pj)

pj

)2

.

Proof. By Proposition 2.5.8 and the SLLN applied to the variables Zi =
∑d

j=1 log(1−pj)Yij,

we have − log F̄s(Rsk)

k
→ µ a.s. Then, the first convergence in (2.5.7) follows from Corollary

2.5.3. The second convergence in (2.5.7) follows from the CLT and Corollary 2.5.4, noting
that V ar(Zi) = σ2.

Observe that, from Lemma 2.5.1, we obtain a limiting distribution for record values of the
geometric model.

Proposition 2.5.9 Under the hypotheses of Proposition 2.5.8,

Rs(j)
k − k/pj√

k

D→ N(0, τ 2
j ), (2.5.8)

where τ 2
j = (1− pj)2/p2

j . Also

Rs
k − ku√
k

D→MN(0,Σ), (2.5.9)

where u = (1/p1, . . . , 1/pd), Σ is the diagonal matrix with elements τ 2
j andMN(0,Σ) denotes

the multivariate centered normal distribution, with covariance matrix Σ.

Proof. The convergence of each marginal record process follows from Lemma 2.5.1 and the
CLT. The multivariate limit follows from Proposition 2.5.7.

Remark 2.5.3 In Proposition 2.5.9 we show that records from the geometric model have
a limiting distribution, although the sequence of maxima does not. This is in contrast with
continuous distributions; see [49].
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Chapter 3

The uniform model on the hypercube

In this chapter we study chain maxima and records from observations Xn, distributed accord-
ing to the U[0, 1]d model, that is, the components X(j)

n are iid uniformly distributed in [0, 1].
This means that all results in Section 2.4.1 are valid here. We analyze this particular model
because this is the case considered in [25], and also because the analysis has a combinatorial
aspect that we consider interesting. As in Chapter 2, we omit the word chain from objects,
such as maxima or records, if no confusion arises. We consider Assumption 5 below to hold
in this chapter, unless stated otherwise. Observe that, under this assumption, N∞ =∞ a.s.
(see Section 2.4.1).

Assumption 5 Along this chapter, the observation vectors Xn are iid, uniformly distributed
on [0, 1]d. This is model U[0, 1]d.

3.1 Records

We restate some results of Section 2.4.1 in the context of Assumption 5.

Proposition 3.1.1 Let (Rn) = (R(1)
n , . . . ,R(d)

n ). Then the processes (R(j)
n ), j = 1, . . . , d, are

independent and identically distributed Markov chains on [0, 1], with initial statesR(j)
1 = X

(j)
1

and transition probabilities

P(R(j)
k+1 ≤ x(j)|R(j)

k ) =
x(j) −R(j)

k

1−R(j)
k

1{R(j)
k ≤x(j)}, x

(j) ∈ [0, 1]. (3.1.1)

Proof. Direct from Proposition 2.4.2.

Proposition 3.1.2 R(j)
k has density function given by

gk(x) =
(− log(1− x))k−1

(k − 1)!
1[0,1](x), k ≥ 1. (3.1.2)
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That is, − log(1−R(j)
k ) has Γ(1, k) distribution.

Proof. − log(1−X(j)
k ) has exponential distribution so, from Proposition 2.4.3, − log(1−R(j)

k )
is distributed as the k-th arrival time, of a homogeneous Poisson process of parameter 1.

Remark 3.1.1 The result of Proposition 3.1.2 can also be derived from a recurrence related
to the Markovian property of R(j)

k . If Gk(x) denotes the distribution function of R(j)
k , then,

from (3.1.1) we have

Gk+1(x) =

∫ x

0

x− s
1− s

Gk(ds),

which yields the distribution, with density gk in (3.1.2). It is also interesting to see that
log(1−R(j)

k )+k√
k

is asymptotically N(0, 1).

Proposition 3.1.3 Let (Un) be a sequence of iid random variables, uniformly distributed
on [0, 1] (U [0, 1] for short), and let (Vn) be defined by the recursion

Vn+1 = Vn + (1− Vn)Un+1, n ≥ 1, (3.1.3)

with V1 = U1. Then (Vn)
D
= (R(j)

n ), j = 1, . . . , d.

Proof. It suffices to show that (Vn) is a Markov chain, with initial state distributed as X(1)
1

and transitions given by (3.1.1). Clearly V1 and X(1)
1 are both U [0, 1]. Furthermore, (Vn) is

also clearly Markovian, with

P(Vn+1 ≤ v|Vn) = P
(
Un+1 ≤

v − Vn
1− Vn

∣∣∣Vn) =
v − Vn
1− Vn

1{Vn≤v}, v ∈ [0, 1]. (3.1.4)

We consider recurrence (3.1.3) as a stochastic difference equation (sde) and investigate its
solutions. Note that it can be equivalently written as

Vn+1 = Vn(1− Un+1) + Un+1, (3.1.5)

which has the structure of a sde studied in [58], namely Yn = AnYn−1 + Bn. In our case we
have An = 1 − Un and Bn = Un, with (Un) iid U [0, 1]. Such recursions appear in a variety
of models in finance, chemistry and biology, and are also related to random walks in random
environment. For more information and references, see [58].

Lemma 3.1.1 Let (Un) be an iid sequence of U [0, 1] random variables. Then, the sde in
(3.1.5), with initial condition V1 = U1, has (strong) solution

n∑
i=1

Ui

n∏
j=i+1

(1− Uj) = 1−
n∏

i=1

(1− Ui), n ≥ 1. (3.1.6)
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Proof. By a strong solution of (3.1.5) we mean a sequence, which solves the recurrence a.s.
The first formula in (3.1.6) is obtained by iterating (3.1.5). The second follows from the
recurrence 1 − Vn+1 = (1 − Vn)(1 − Un+1), equivalent to (3.1.3). As usual, sums (products)
over an empty set of indexes are given the value 0 (1).

Remark 3.1.2 From Lemma 3.1.1 we have a view of how fast records R(j)
k converge to 1.

Observe also that
n∑

i=1

Ui

n∏
j=i+1

(1− Uj) and
n∑

i=1

Ui

i−1∏
j=1

(1− Uj) are equally distributed sequences

but the second is not a strong solution although it can be seen as weak solution or solu-
tion in distribution. There exists abundant literature on the behavior of sums of the form
∞∑

i=1

Ui

i−1∏
j=1

(1 − Uj), which are commonly known as perpetuities, and are related to iterative

schemes such as (3.1.5). The interested reader can consult [17, 26, 39].

3.2 Record heights

In this section we study the so-called record heights, as defined in [25]. We start by obtain-
ing their moments and then derive weak convergence, with a suitable normalization. The
asymptotic results are obtained using tools from the theory of singularity analysis, developed
mainly by Ph. Flajolet.

Definition 3.2.1 Let the n-th record height be defined by

Hn = F̄(Mn), n ≥ 1.

Note that F̄(Mn) =
d∏
j=1

(1−M(j)
n ), for observations from the U([0, 1]d) model and that Hn

is the probability of Xn+1 being a record, conditional on the past observations X1, . . . ,Xn.
In the following proposition we exhibit a recurrence for the moments of Hn.

Proposition 3.2.1 Let µ(k)
n = E(Hk

n), for k ≥ 0, n ≥ 1 integers. Then the following recursion
holds

µ
(k)
n+1 = µ(k)

n −
(

1− µ(k)
1

)
µ(k+1)
n , (3.2.1)

where µ(k)
1 = 1

(k+1)d .
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Proof. From equation (2.2.5) in Lemma 2.2.1, with g(y) = F̄(y)k, we have

µ
(k)
n+1 = E

(∫
[0,1]d∩{y�Mn}

d∏
j=1

(1− y(j))kdy

)
+ E

(
d∏
j=1

(1−M(j)
n )k(1−Hn)

)

= E

(
d∏
j=1

∫ 1

M(j)
n

(1− y(j))kdy(j)

)
+ µ(k)

n − µ(k+1)
n

= E

(
d∏
j=1

(1−M(j)
n )k+1

k + 1

)
+ µ(k)

n − µ(k+1)
n

=
µ

(k+1)
n

(k + 1)d
+ µ(k)

n − µ(k+1)
n .

Proposition 3.2.2 The solution of the recurrence (3.2.1) has the form

µ
(k)
n+1 =

n∑
j=0

(
n

j

)
(−1)jµ

(k+j)
1

j−1∏
i=0

(
1− µ(k+i)

1

)
, n ≥ 0. (3.2.2)

Proof. Formula (3.2.2) is obtained by iterating (3.2.1) and can be checked by direct substi-
tution. Indeed, let b(k)

j = µ
(k+j)
1

∏j−1
i=0 (1 − µ

(k+i)
1 ) and observe that b(k)

j+1 = b
(k+1)
j (1 − µ

(k)
1 ).

Then

µ
(k)
n+1 − µ(k)

n =
n−1∑
j=1

[(
n

j

)
−
(
n− 1

j

)]
(−1)jb

(k)
j + (−1)nb(k)

n

=
n−1∑
j=1

(
n− 1

j − 1

)
(−1)jb

(k)
j + (−1)nb(k)

n

=
n−1∑
j=0

(
n− 1

j

)
(−1)j+1b

(k)
j+1

= −(1− µ(k)
1 )

n−1∑
j=0

(
n− 1

j

)
(−1)j+1b

(k)
j+1

= −
(

1− µ(k)
1

)
µ(k+1)
n .

In one and two dimensions we have closed-form expressions for µ(k)
n .

Lemma 3.2.1 (i) For d = 1,

µ(k)
n =

(
n+ k

k

)−1

. (3.2.3)

(ii) For d = 2,

µ(k)
n =

1

k + 1

(
n+ k

k

)−1

. (3.2.4)
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Proof. It suffices to iterate the recursion (3.2.1).

Remark 3.2.1 The result for d = 1 is well-known and corresponds to the k-th moment of the
minimum of n iid U [0, 1] random variables, which can be calculated as n

∫ 1

0
xk(1− x)n−1dx.

3.2.1 Asymptotic analysis of µ(k)n

We investigate the asymptotic behavior of moments µ(k)
n , as n → ∞. This information will

be used to establish convergence in distribution of record heights. We start with the special
cases d = 1, 2, which are relatively easy, since we have the explicit formulas. We use the
symbol ∼ to denote asymptotic equivalence of two sequences: an ∼ bn if an/bn → 1 as
n→∞.

Lemma 3.2.2 (i) For d=1
µ(k)
n ∼ k!n−k. (3.2.5)

(ii) For d=2

µ(k)
n ∼

k!

k + 1
n−k. (3.2.6)

Proof. From Stirling’s approximation n! ∼
√

2πn(n/e)n, we have(
n+ k

k

)−1

∼ k!
√

2πnnne−n√
2π(n+ k)(n+ k)n+ke−(n+k)

∼ k!n−k.

The results then follows from Lemma 3.2.1.

Euler transform and the Nörlund-Rice representation

Unlike the simple asymptotic results for µ(k)
n in dimensions d = 1, 2, the situation for d > 2 is

quite different. We have not been able to find a closed-form expression for µ(k)
n , such as those

in Lemma 3.2.1 and so we must deal directly with (3.2.2), which is a so-called alternating sum.
This type of expression appears frequently in the analysis of algorithms and data structures.
It is of some interest here to recall that a sum of the form

sn =
n∑
j=0

(
n

j

)
(−1)jaj (3.2.7)

defines the alternating binomial transform of the sequence (an), also called Euler transform
in [22]. This is an involutive linear transform on sequences of real numbers. In fact, it is just
the iterated forward-difference operator.

The asymptotic analysis of sums such as (3.2.7) was considered in the pioneering paper
of Flajolet and Sedgewick [22], where the authors state that the problem is delicate. The
difficulty, which prevents from using elementary techniques, is the phenomenon of exponential
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cancellation, which is often coupled with small periodic oscillations. The starting point of
this technique is the Nörlund-Rice integral representation, which allows to write (3.2.7) as a
complex integral of an analytical continuation a(z) of the function n→ an, in the sense that
a(z) is analytic in a suitable domain D ⊂ C and interpolates an, that is a(n) = an, for all
n ≥ 0. For completeness, we state the following result; for a proof, see lemma 1 in [22].

Lemma 3.2.3 Let a(z) be an analytic continuation of the sequence an in a domain containing
the interval [0,∞). Then

n∑
j=0

(
n

j

)
(−1)jaj =

(−1)nn!

2iπ

∫
C

a(z)

z(z − 1) . . . (z − n)
dz, (3.2.8)

where C is a positively oriented and closed curve, contained in the domain of analyticity of
a(s), which encircles the poles 0, 1, . . . , n and no others.

When the analytic continuation a(z) of an is a rational function, the Nörlund Rice repre-
sentation can be given in terms of residues, as indicated in theorem 1 of [22]. More generally,
if a(z) is meromorphic on C, we have the following.

Theorem 3.2.1 If a(z) is meromorphic in C and analytic in [0,∞)∪Ω, where Ω =
⋃
j≥1 γj

and the γj are concentric circles, positively oriented, with radii tending to infinity and if,
additionally, a(z) has at most polynomial growth on Ω then, for n large enough, then

n∑
j=0

(
n

j

)
(−1)jaj = −(−1)nn!

∑
z∈P

Res

[
a(z)

z(z − 1) . . . (z − n)

]
, (3.2.9)

where P is the set of poles of a(z)
z(z−1)...(z−n)

, not belonging to [0,∞).

Proof. See theorem 2 in [22].

Proposition 3.2.3 Let b(k)
j = µ

(k+j)
1

∏j−1
i=0 (1 − µ(k+i)

1 ), j ≥ 0, be the sequence in the alter-
nating sum (3.2.2) and let

Pd =
d⋃
l=1

{rl − k − 1, rl − k − 2, . . .} \ {−k − 1,−k − 2, . . .},

where rl := e2iπl/d, l = 1, . . . , d, are the d-th roots of unity. Let D = C \ Pd and Bk =∏
n≥k+1

(
1− 1

nd

)
. Then

ϕ(z) =
Bk

(k + 1 + z)d

∏
n≥k+1

(n+ z)d

(n+ z)d − 1
, z ∈ D, (3.2.10)

is the analytic continuation of the sequence (b
(k)
j )j≥0 to the domain D. Furthermore, the

singularities of ϕ are isolated poles, elements of the countable set Pd, while the integers
−k − 2,−k − 3, . . . are the zeros of ϕ.
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Proof. We check first that ϕ is analytic in D. To that end we observe that∏
n≥k+1

(n+ z)d

(n+ z)d − 1
= lim

m→∞

m∏
n=k+1

(n+ z)d

(n+ z)d − 1

exists and is analytic, if the series
∑

n≥k+1
1

|(n+z)d−1| converges locally uniformly. Let V be a
disk contained in D. Then, for any z ∈ V and sufficiently large n, we have |z+n| > n−C > 1,
where C is a positive constant, and so, |(n+ z)d − 1| > (n− C)d − 1, and we conclude that
ϕ is analytic in D.

Moreover, it is apparent from formula (3.2.10), that the only potential singularities of ϕ
are poles, given by −n + rl, n ≥ k + 1, l = 1, . . . , d. This set of potential poles include the
integers −k,−k − 1,−k − 2, . . . but, as we see below, only −k and −k − 1 are actual poles,
the rest being zeros of ϕ, due to cancellation. Indeed, for m ≥ k + 2,

(m+ z)d − 1 = (m− 1 + z)
[
(m+ z)d−1 + · · ·+ (m+ z) + 1

]
and so, (m− 1 + z) in the denominator of the m-th term of the product, also appears in the
numerator of the (n− 1)-term and they cancel out. To conclude, we verify that the function
ϕ interpolates the sequence b(k)

j . Observe that, for j ≥ 0,

ϕ(j) =
Bk

(k + 1 + j)d

∏
n≥k+1

(n+ j)d

(n+ j)d − 1

=
1

(k + 1 + j)d

∏
n≥k+1

nd − 1

nd

∏
n≥k+j+1

nd

nd − 1

= b
(k)
j .

We state some technical lemmas related to the problem of bounding |ϕ(z)| on circles, as
required in Theorem 3.2.1.

Lemma 3.2.4 Let m ∈ Z, such that m > k + 2 and let

Am = {n : n ≥ k + 1, |n−m| > 1}.

Then
Sm :=

∑
n∈Am

1

(n−m)2 − 1
≤ 3

2
. (3.2.11)

Proof. Observe that Am = {k + 1, . . . ,m− 2} ∪ {m+ 2, . . .}, so

Sm =
m−2∑
n=k+1

1

(n−m)2 − 1
+
∑

n≥m+2

1

(n−m)2 − 1

=
m−k−1∑
n=2

1

n2 − 1
+
∑
n≥2

1

n2 − 1
≤ 2

∑
n≥2

1

n2 − 1
=

3

2
.
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Lemma 3.2.5 Let m ∈ Z, such that m > k + 2, ε ∈ (0, 1) and let

Am,ε = {n : n ≥ k + 1, |n−m− ε| > 1}.

Then
Sm,ε :=

∑
n∈Am,ε

1

(n−m− ε)2 − 1
≤ 3

2
+

1

(1 + ε)2 − 1
+

1

(2− ε)2 − 1
.

Proof. Notice that Am,ε = {k + 1, . . . ,m− 1} ∪ {m+ 2, . . .}, so

Sm,ε =
m−1∑
n=k+1

1

(n−m− ε)2 − 1
+
∑

n≥m+2

1

(n−m− ε)2 − 1

=
m−k−1∑
n=1

1

(n+ ε)2 − 1
+
∑
n≥2

1

(n− ε)2 − 1

≤ 1

(1 + ε)2 − 1
+

m−k−1∑
n=2

1

n2 − 1
+

1

(2− ε)2 − 1
+
∑
n≥2

1

n2 − 1

and the conclusion follows from Lemma 3.2.4.

Lemma 3.2.6 Let
Rm,δ := {z ∈ C : −m− δ < <(z) < −m},

for m ≥ k + 1 and δ ∈ (0, 1). Then there exists δ, such that Rm,δ ∩ Pd = ∅.

Proof. The assertion is a simple consequence of the fact that poles of ϕ are d-th roots of
unity, around the negative integers −m ≤ −k − 1. A graphical analysis yields that δ can be
chosen equal to (or less than) the distance from the line <(z) = −m and the nearest pole,
with real part less than −m. See Figure 3.1.

Figure 3.1: The nearest poles to the band Rm,δ, are associated to l1 = 1 and l2 = bd/4c+ 1.
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Proposition 3.2.4 For m ≥ k + 2, let γm = {z ∈ C : |z| = m + ε} be the circle centered
at 0, with radius m + ε, where ε < δ/2 and δ satisfies the condition of Lemma 3.2.6. Then
there exists M0, such that |ϕ(z)| is bounded on the set Ω :=

⋃
m≥M0

γm, where ϕ is defined
in (3.2.10).

Proof. For m ≥ k + 2, let Am,ε be as defined in Lemma 3.2.5. Recalling that the infinite
product defining ϕ converges absolutely, then, for any z ∈ D, we have

|ϕ(z)| = Bk

|k + 1 + z|d
∏

n≥k+1

|n+ z|d

|(n+ z)d − 1|

=
Bk

|k + 1 + z|d
∏

n 6∈Am,ε

|n+ z|d

|(n+ z)d − 1|
∏

n∈Am,ε

|n+ z|d

|(n+ z)d − 1|
.

Let z ∈ γm. Then, from the definition of Am,ε, |n + z| ≥ |n − |z|| = |n −m − ε| > 1. So,
|(n+ z)d − 1| > |n+ z|d − 1, which implies

∏
n∈Am,ε

|n+ z|d

|(n+ z)d − 1|
≤

∏
n∈Am,ε

|n+ z|d

|n+ z|d − 1
≤

∏
n∈Am,ε

(
1 +

1

|n−m− ε|d − 1

)
. (3.2.12)

Observe that, from the elementary inequality log(1 + x) ≤ x, x > −1, the rightmost term of
(3.2.12) can be bounded by

exp

 ∑
n∈Am,ε

1

|n−m− ε|d − 1

 ≤ exp

 ∑
n∈Am,ε

1

(n−m− ε)2 − 1


≤ exp

(
3

2
+

1

(1 + ε)2 − 1
+

1

(2− ε)2 − 1

)
,

by Lemma 3.2.5. Furthermore, for z ∈ γm, we have

Bk

|k + 1 + z|d
≤ |k + 1−m− ε|−d ≤ (1 + ε)−d.

Finally, we consider the remaining term of |ϕ(z)|, for z ∈ γm, that is,∏
n6∈Am,ε

|n+ z|d

|(n+ z)d − 1|
=

∣∣∣∣ (m+ z)d

(m+ z)d − 1

∣∣∣∣ ∣∣∣∣ (m+ 1 + z)d

(m+ 1 + z)d − 1

∣∣∣∣ , (3.2.13)

provided that z +m or z +m+ 1 are not d-th roots of unity. This is so if m is chosen such
that γm ∩ {z : |=(z)| ≤ 1} ⊂ Rm,δ, where Rm,δ is defined in Lemma 3.2.6. It is easy to see
that such value of m satisfies

√
(m+ ε)2 − 1 > m, which yields m > (1 − ε2)/(2ε). So it

suffices to take M0 > 1/(2ε).

We proceed to check that the function in (3.2.13) is bounded in γm, for m ≥M0. Observe
that

gm(z) :=

∣∣∣∣ (m+ z)d

(m+ z)d − 1

∣∣∣∣ =

∣∣∣∣1 +
1

(m+ z)d − 1

∣∣∣∣ ≤ 1 +
1

|(m+ z)d − 1|
,
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hence,

sup
z∈γm

gm(z) ≤ 1 +
1

infz∈γm |(m+ z)d − 1|
.

Note that |(m + z)d − 1| =
∏d−1

l=0 |z − zl|, where zl is such that (m + zl)
d = 1. Hence,

infz∈γm |(m + z)d − 1| ≥
∏d−1

l=0 infz∈γm |z − zl|. Finally observe, from elementary geometric
arguments (see Figure 3.2), that

inf
z∈γm
|z − zl| = |m+ ε− |zl||. (3.2.14)

If |zl| ≤ m+ ε, then |zl| ≤
√
m2 + 1 and

inf
z∈γm
|z − zl| = m+ ε− |zl| ≥ m+ ε−

√
m2 + 1 =

2mε+ ε2 − 1

m+ ε+
√
m2 + 1

→ ε,

as m → ∞. Then, for sufficiently large m, infz∈γm |z − zl| ≥ ε/2. On the other hand, if
|zl| > m+ ε, then |zl| ≥

√
(m+ δ)2 + 1− δ2 and

inf
z∈γm
|z−zl| = |zl|−(m+ε) ≥

√
(m+ δ)2 + 1− δ2−(m+ε) =

2m(δ − ε) + ε2 − 1

m+ ε+
√
m2 + 2δm+ 1

→ δ−ε,

as m→∞.

Then, for sufficiently large m, we have infz∈γm |z − zl| ≥ δ − 2ε. From the two cases
considered above, we conclude that supz∈γm gm(z) ≤ 1+Cd, where C = max{2/ε, 1/(δ−2ε)}.
The same argument is valid for gm+1 and we see that the function in (3.2.13) is bounded on
γm by a constant independent of m and so, is bounded on Ω. Last, we conclude from the
bounds above that |ϕ| is bounded on Ω.

Figure 3.2: Geometric point of view in (3.2.14).

Theorem 3.2.2 For sufficiently large n,

µ
(k)
n+1 = −(−1)n

∑
s∈Pd

Res
z=s

[
n!ϕ(z)

z(z − 1) . . . (z − n)

]
, (3.2.15)
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where for a ψ function Res
z=s

ψ(z) denotes the residue of ψ(z) at z = s, while the function ϕ
and set Pd are defined in Proposition 3.2.3.

Proof. The result follows from Propositions 3.2.3, 3.2.4 and Theorem 3.2.1.

Remark 3.2.2 The asymptotic analysis based on the Nörlund-Rice integral representation
has been widely used in combinatorics and theoretical computer science. However, up to our
knowledge, this is the first application of such techniques in Extreme Value Theory.

Computation of residues

We proceed to determine the residues in the right-hand side of (3.2.15).

Proposition 3.2.5 Let ψ(z) = n!ϕ(z)
z(z−1)...(z−n)

, then

Res
z=−k

ψ(z) =
(−1)n+1

kd

(
n+ k

k

)−1 k∏
j=2

( jd

jd − 1

)
, (3.2.16)

Res
z=−k−1

ψ(z) =
(−1)n+1

(n+ k + 1)d

(
n+ k

k

)−1 k∏
j=2

( jd

jd − 1

)
, (3.2.17)

Res
z=−m+r

ψ(z) =
n!∏m+n

j=m (r − j)
Bkr

d(1−m+ k + r)d

∏
j≥k+1
j 6=m

(j −m+ r)d

(j −m+ r)d − 1
, (3.2.18)

where r is a d-th root of 1, such that r 6∈ {±1, e±iπ/3, e±2iπ/3} and m ≥ k + 1.

If d is a multiple of 6, then the poles e±iπ/3, e±2iπ/3 are of order 2. In such case the residues
are given by

Res
z=−m+r

ψ(z) =
n!∏m+n

j=m (r − j)
Bkr(r + 1)

d2(1−m+ k + r)d

∏
j≥k+1

j 6=m,m+1

(j −m+ r)d

(j −m+ r)d − 1
, (3.2.19)

for r = e±iπ/3, and

Res
z=−m+r

ψ(z) =
n!∏m+n

j=m (r − j)
Bkr(r − 1)

d2(1−m+ k + r)d

∏
j≥k+1

j 6=m,m+1

(j −m+ r)d

(j −m+ r)d − 1
, (3.2.20)

for r = e±2iπ/3.

Proof. We compute residues by taking limits, as shown below; details are given for the pole
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−k. From (3.2.10) we have

Res
z=−k

ψ(z) = lim
s→−k

(s+ k)
n!

s(s− 1) · · · (s− n)

Bk

(k + s+ 1)d

∏
j≥k+1

(j + s)d

(j + s)d − 1

= lim
s→−k

Bkn!

s(s− 1) · · · (s− n)

(s+ k)

(k + s+ 1)d − 1

∏
j≥k+2

(j + s)d

(j + s)d − 1

=
(−1)n+1

kd

(
n+ k

k

)−1 k∏
j=2

( jd

jd − 1

)
.

We present below the asymptotic behavior of residues.

Lemma 3.2.7 As n→∞,

Res
z=−k

ψ(z) ∼ (−1)n+1 (k − 1)!

d

( k∏
j=2

jd

jd − 1

)
n−k (3.2.21)

Res
z=−k−1

ψ(z) ∼ (−1)n
k!

d

( k∏
j=2

jd

jd − 1

)
n−(k+1) (3.2.22)

Proof. From Stirling’s approximation, equations (3.2.16) and (3.2.17) yield (3.2.21) and
(3.2.22) respectively.

We turn our attention to the complex poles, which are distributed in unit circles around
the negative integers, starting from −k − 1. This means a denumerable number of residues
to be taken into account, so we study the asymptotic order (as n→∞) of the series

d−1∑
l=1

∑
m≥k+1

Res
z=−m+rl

ψ(z).

For technical reasons, we analyze separately the cases m = k + 1 and m ≥ k + 2.

Lemma 3.2.8 Let m ≥ k + 2 and let r be a d-th root of unity, such that r 6= ±1. Then∣∣∣∣ Res
z=−m+r

ψ(z)

∣∣∣∣ ≤ C(r)
1

n+ 1

(
n+m− 1

m− 2

)−1

, (3.2.23)

for sufficiently large n, where C(r) is a positive constant depending on r but not on n nor m.

Proof. We proceed to bound the terms in the rhs of (3.2.18) (the same idea applies to (3.2.19)
and (3.2.20)). Note first that |x − r| > |x − 1|, for all x 6= 0, since |r| = 1 and <(r) < 1, so
|x− r|2 = x2 + 1− 2x<(r) > (x− 1)2. Therefore

m+n∏
j=m

1

|j − r|
≤

m+n∏
j=m

1

|j − 1|
=

(m− 2)!

(m+ n− 1)!
.
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Also, it is easy to see that, for m ≥ k + 1, |1−m+ k + r| ≥ min{1, |1− r|}.

Additionally, for the infinite product in (3.2.18), we have∏
j≥k+1
j 6=m

∣∣∣∣ (j −m+ r)d

(j −m+ r)d − 1

∣∣∣∣ =
∏
j∈Am

∣∣∣∣ (j −m+ r)d

(j −m+ r)d − 1

∣∣∣∣ ∏
i∈{−1,1,2}

∣∣∣∣ (r − i)d

(r − i)d − 1

∣∣∣∣ ,
where Am = {k+1, . . . ,m−2}∪{m+3, . . .}. Now we proceed as in the proof of Proposition
3.2.4.

From the definition of Am, |j −m+ r| > 1 and so, |(j −m+ r)d − 1| > |j −m+ r|d − 1,
which implies∏
j∈Am

|j −m+ r|d

|(j −m+ r)d − 1|
≤
∏
j∈Am

|j −m+ r|d

|j −m+ r|d − 1
≤
∏
j∈Am

(
1 +

1

(j −m− 1)d − 1

)
. (3.2.24)

Finally, from the elementary inequality log(1 + x) ≤ x, the rightmost term of (3.2.24) is
bounded above by

exp

(∑
j∈Am

1

(j −m− 1)d − 1

)
≤ exp

(∑
j∈Am

1

(j −m− 1)2 − 1

)

= exp

(
m−k∑
n=3

1

n2 − 1
+
∑
n≥2

1

n2 − 1

)

≤ exp

(
2
∑
n≥2

1

n2 − 1

)
= e

3
2 .

Finally, collecting the bounds above, we get∣∣∣∣ Res
z=−m+r

ψ(z)

∣∣∣∣ ≤ C(r)
n!(m− 2)!

(n+m− 1)!
= C(r)

1

n+ 1

(
n+m− 1

m− 2

)−1

.

Corollary 3.2.1 As n→∞,

Zn :=

∣∣∣∣∣
d−1∑
l=1

∑
m≥k+2

Res
z=−m+rl

ψ(z)

∣∣∣∣∣ ≤ Cn−k−1, (3.2.25)

where C is a positive constant.

Proof. From Lemma 3.2.8,

Zn ≤
1

n+ 1

d−1∑
l=1

C(rl)
∑

m≥k+2

(
m+ n− 1

m− 2

)−1

=
n+ k + 1

n(n+ 1)

(
n+ k + 1

k

)−1 d−1∑
l=1

C(rl) ≤ Cn−k−1,

as n→∞.
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Lemma 3.2.9 Let r be a d-th root of 1, such that r 6= ±1. Then, as n→∞,∣∣∣∣ Res
z=−k−1+r

ψ(z)

∣∣∣∣ ≤ C(r)n−k−1|nr| ≤ C(r)n−k−1+cos(2π/d), (3.2.26)

where C(r) is a positive constant.

Proof. We consider the formula (3.2.18), with m = k + 1 and bound its modulus as in
the proof of Lemma 3.2.8, except for the bound of the product, which now is approximated
asymptotically as follows

k+1+n∏
j=k+1

1

|j − r|
=

|Γ(k + 1− r)|
|Γ(n+ k + 2− r)|

∼ |Γ(k + 1− r)|
(n− 1)!

nr−k−2.

The result is obtained by collecting constants. Finally, observe that, for l = 1, . . . , d − 1,
|nrl | = ncos(2πl/d) ≤ ncos(2π/d) = o(n).

Corollary 3.2.2 For k ≥ 1,

nkµ(k)
n =

(k − 1)!

d

k∏
j=2

(
1− 1

jd

)−1

+O(ncos(2π/d)−1), (3.2.27)

as n→∞.

Proof. The result follows from the formula in Theorem 3.2.2 and collecting the asymptotic
results of Lemma 3.2.7, Corollary 3.2.1 and Lemma 3.2.9.

3.2.2 Weak convergence of record heights

We now state a result of weak convergence for the sequence Hn. The proof is based on the
Frechet-Shohat theorem about convergence of moments. According to this well-known result,
if a sequence (Yn) of random variables has convergent moments E(Y k

n )→Mk <∞, then (Mk)

is the sequence of moments of a random variable Y and Yn
D−→ Y if the distribution of Y is

determined by its moments. The latter property is obtained from Carleman’s criterion.

Theorem 3.2.3 Let (Hn) be the sequence of record heights of Definition 3.2.1. Then

nHn
D−→ H,

where H is a random variable, with moments given by

ν
(d)
k :=

(k − 1)!

d

k∏
j=2

(
1− 1

jd

)−1

,

for k ≥ 1. In the case d = 2, H D
= UV , where U is U [0, 1], V is exponential with mean 1 and

U, V are independent.
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Proof. From Corollary 3.2.2 and noting that cos(2π/d) < 1, it holds that E(nHn)k =

nkµ
(k)
n → ν

(d)
k . We have convergence of moments and so, the result follows if we show

that the sequence (ν
(d)
k ) determines a distribution. We check Carleman’s condition, namely

that
∑

k≥1(ν
(d)
2k )−

1
2k =∞, see [2]. Note that ν(d)

k is decreasing in d, so

ν
(d)
k ≤ ν

(2)
k =

Γ(k)

2

2Γ(k + 1)2

Γ(k)Γ(k + 2)
=

k!

k + 1
.

Hence, (ν
(d)
k )−

1
k ≥ (ν

(2)
k )−

1
k ∼ e

k
, and the corresponding series diverges. For d = 2 we have

E(Uk) = 1
k+1

, E(V k) = k!, so ν(2)
k = E((UV )k).

For d = 2, H can be seen as having, conditionally on U , exponential density, with ex-
pectation U . For d > 2, it is not clear if H can be represented as a product UV , with U, V
independent, V unit exponential and U concentrated on [0, 1]. To that end, it would suffice to

prove that mk := 1
kd

k∏
j=2

(
1− 1

jd

)−1

, k ≥ 1, is the sequence of moments of a random variable,

with values in [0, 1]. A necessary and sufficient condition for such property is that

r∑
i=0

(
r

i

)
(−1)imn+i ≥ 0,

for all r, n ≥ 1; see E18.6 in [60]. Numerical evidence obtained with Maple R©, for some values
of d > 2, leads to conjecture that it holds. We do not pursue this investigation further.

3.3 Mixed moments of Mn

In this section we study the expectations of the random variables
d∏
j=1

(1−M(j)
n )kj , which we

call mixed moments ofMn, with k1, . . . , kd nonnegative integers. The idea is to gain insight
on the asymptotic behavior ofMn.

Proposition 3.3.1 Let µk1,...,kd
n = E

( d∏
j=1

(1−M(j)
n )ki

)
, with k1, . . . , kd nonnegative integers.

Then the following recursion holds

µk1,...,kd
n+1 = µk1,...,kd

n −

(
1−

d∏
i=1

(ki + 1)−1

)
µk1+1,...,kd+1
n , n ≥ 1, (3.3.1)

with µk1,...,kd
1 =

d∏
i=1

(ki + 1)−1.

Proof. We proceed as in the proof of Proposition 3.2.1. From equation (2.2.5) in Lemma
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2.2.1, recalling that Hn =
∏d

j=1(1−M(j)
n ), we have

µk1,...,kd
n+1 = E

(∫
[0,1]d∩{x�Mn}

d∏
j=1

(1− x(j))kjdx

)
+ E

(
d∏
j=1

(1−M(j)
n )kj(1−Hn)

)

= E

(
d∏
j=1

∫ 1

M(j)
n

(1− x(j))kjdx(j)

)
+ µk1,...,kd

n − µk1+1,...,kd+1
n

= E

(
d∏
j=1

(1−M(j)
n )kj+1

kj + 1

)
+ µk1,...,kd

n − µk1+1,...,kd+1
n

= µk1+1,...,kd+1
n

d∏
i=1

(ki + 1)−1 + µk1,...,kd
n − µk1+1,...,kd+1

n .

For simplicity, we only carry out detailed calculations for the particular case d = 2. Letting
k1 = k, k2 = l in (3.3.1), we get

µk,ln+1 = µk,ln −
(

1− 1

(k + 1)(l + 1)

)
µk+1,l+1
n , n ≥ 1. (3.3.2)

Proposition 3.3.2 The solution of the recurrence (3.3.2) has the form

µk,ln+1 =
n∑
j=0

(
n

j

)
(−1)jµk+1,j+1

1

j−1∏
i=0

(1− µk+i,l+i
1 )

=
n∑
j=0

(
n

j

)
(−1)j

(k + j + 1)(l + j + 1)

j∏
i=1

(
1− 1

(k + i)(l + i)

)
, n ≥ 0.

(3.3.3)

Proof. Similar to the proof of Proposition 3.2.2.

3.3.1 Asymptotic analysis of µk,ln

Note that (3.3.3) is the Euler’s transform (see (3.2.7)) of the sequence

bk,lj :=
1

(k + j + 1)(l + j + 1)

j∏
i=1

(
1− 1

(k + i)(l + i)

)
, j ≥ 0. (3.3.4)

We proceed, as before, by checking the conditions of Theorem 3.2.1 in order to obtain an
asymptotic expression for µk,ln .

Proposition 3.3.3 Let P := {z+
m, z

−
m : m ≥ 1}, where

z±m = −m− k + l

2
± rkl, (3.3.5)
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with rkl = 1
2

√
(k − l)2 + 4. Then

ϕ(z) =
Bk,l

(k + 1 + z)(l + 1 + z)− 1

∏
n≥2

(k + n+ z)(l + n+ z)

(k + n+ z)(l + n+ z)− 1
, z ∈ D, (3.3.6)

is the analytic continuation of the sequence bk,lj in (3.3.4) to the domain D = C \ P , where
Bk,l =

∏
n≥1

(
1− 1

(k+n)(l+n)

)
. Furthermore, the singularities of ϕ are isolated poles, elements

of the countable set P .

Proof. Clearly, the poles of ϕ are the roots of the quadratic equations (k+n+z)(l+n+z) = 1,
for n ≥ 1, and these roots (real and irrational if k 6= l) are precisely the elements of P , shown
in (3.3.5). We check next that ϕ is analytic on D. To that end, observe that∏

n≥2

(k + n+ z)(l + n+ z)

(k + n+ z)(l + n+ z)− 1
= lim

m→∞

m∏
n=2

(k + n+ z)(l + n+ z)

(k + n+ z)(l + n+ z)− 1

exists and is analytic if the series∑
n≥1

1

|(k + n+ z)(l + n+ z)− 1|
(3.3.7)

converges locally uniformly. Let V be a disk contained in D then, for any z ∈ V and n large
enough, |z+n+k| > n+k−C > 1, where C is a positive constant. Hence, (3.3.7) converges
locally uniformly and we conclude that ϕ is analytic in D. Finally, it can be easily verified
that ϕ interpolates the sequence bk,lj .

Proposition 3.3.4 Let γm = {z ∈ C : |z| = m}, for m ≥ 1. Then |ϕ(z)| is bounded on
Ω =

⋃
m≥M0

γm, for some M0 > 0, where ϕ is defined in (3.3.6).

Proof. We follow the proof of Proposition 3.2.4, recalling that k 6= l and, without loss of
generality, we assume that k < l. For convenience we also assume that m ≥ l + 3.

Let
Bm = {n ≥ 2 : |k + n−m||l + n−m| > 1}, m ≥ 1,

then

|ϕ(z)| = Bk,l

|(k + 1 + z)(l + 1 + z)− 1|
∏
n 6∈Bm

|k + n+ z||l + n+ z|
|(k + n+ z)(l + n+ z)− 1|

×
∏
n∈Bm

|k + n+ z||l + n+ z|
|(k + n+ z)(l + n+ z)− 1|

.

(3.3.8)

For z ∈ γm and from the definition of Bm we have

|k + n+ z||l + n+ z| ≥ |k + n− |z|||l + n− |z|| = |k + n−m||l + n−m| > 1.

Hence, ∏
n∈Bm

|k + n+ z||l + n+ z|
|(k + n+ z)(l + n+ z)− 1|

≤
∏
n∈Bm

|k + n−m||l + n−m|
|k + n−m||l + n−m| − 1

. (3.3.9)
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The infinite product on the right of the display above is bounded if and only if the series

Sm :=
∑
n∈Bm

1

|k + n−m||l + n−m| − 1
(3.3.10)

is bounded (by a constant not depending onm). To show that such is the case, we take a closer
look at Bm, noting that n 6∈ Bm if either |k+n−m||l+n−m| = 0 or |k+n−m||l+n−m| = 1.
The first equation has solutions n = m− k and n = m− l, while the second has no solution,
if l 6= k+ 2. But, if l = k+ 2 then the second equation has the unique solution n = m− l+ 1.

So, let us assume first that l 6= k + 2, in which case

Bm = {2, . . . ,m− l − 1} ∪ {m− l + 1, . . . ,m− k − 1} ∪ {m− k + 1, . . .}

and

Sm =
m−l−1∑
n=2

1

(m− k − n)(m− l − n)− 1
+

m−k−1∑
n=m−l+1

1

(m− k − n)(l + n−m)− 1

+
∑

n≥m−k+1

1

(k + n−m)(l + n−m)− 1
.

(3.3.11)

Moreover,
m−l−1∑
n=2

1

(m− k − n)(m− l − n)− 1
≤ 1

l − k
+

m−l−2∑
n=2

1

(m− l − n)2 − 1
<

1

l − k
+
∞∑
n=2

1

n2 − 1
.

Also, the second sum is finite and independent of m, since
m−k−1∑
n=m−l+1

1

(m− k − n)(l + n−m)− 1
=

l−k−1∑
i=1

1

i(l − k − i)− 1
.

Finally, ∑
n≥m−k+1

1

(k + n−m)(l + n−m)− 1
≤ 1

l − k
+

∑
n≥m−k+2

1

(k + n−m)2 − 1

≤ 1

l − k
+
∑
n≥2

1

n2 − 1
.

From the computations above we see that the product over Bm in (3.3.8) is bounded by a
constant independent of m, if l 6= k + 2. If l = k + 2

Bm = {2, . . . ,m− l − 1} ∪ {m− l + 3, . . .}

and

Sm =
m−l−1∑
n=2

1

(m− l − n+ 2)(m− l − n)− 1
+

∑
n≥m−l+3

1

(l − 2 + n−m)(l + n−m)− 1

≤ 1

2
+

m−l−2∑
n=2

1

(m− l − n)2 − 1
+

1

2
+

∑
n≥m−l+4

1

(l − 2 + n−m)2 − 1

< 1 + 2
∑
n≥2

1

n2 − 1
.
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Again we see that the product over Bm in (3.3.8) is bounded by a constant independent of
m, if l = k + 2. We now consider the product over n 6∈ Bm, assuming first that l 6= k + 2,
which is equal to

|m+ z||l − k +m+ z|
|(m+ z)(l − k +m+ z)− 1|

|k − l +m+ z||m+ z|
|(k − l +m+ z)(m+ z)− 1|

. (3.3.12)

Note that the first term in (3.3.12) can be written and bounded as∣∣∣∣1 +
1

(m+ z)(l − k +m+ z)− 1

∣∣∣∣ ≤ 1 +
1

|(m+ z)(l − k +m+ z)− 1|
,

so we must bound |(m+ z)(l − k +m+ z)− 1| from below, for z ∈ γm. But

|(m+ z)(l − k +m+ z)− 1| = |z − z+
m − k||z − z−m − k| ≥ ||z+

m + k| −m|||z−m + k| −m|.

If m is large enough, |z±m + k| = −k − z±m, which yields ||z±m + k| −m| = | l−k
2
∓ rkl|. So

|(m+ z)(l − k +m+ z)− 1| ≥
∣∣∣∣ l − k2

+ rkl

∣∣∣∣ ∣∣∣∣ l − k2
− rkl

∣∣∣∣ = 1

and the first term in (3.3.12) is bounded by 2. The analysis of the second term is similar and
is thus omitted. There remains to check the case l = k + 2. The product over n 6∈ Bm has
three terms and is given by

|m− 2 + z||m+ z|
|(m− 2 + z)(m+ z)− 1|

|m− 1 + z||m+ 1 + z|
|(m− 1 + z)(m+ 1 + z)− 1|

|m+ z||m+ 2 + z|
|(m+ z)(m+ 2 + z)− 1|

. (3.3.13)

We proceed as in the previous case, noting that the first term is written as∣∣∣∣1 +
1

(m+ z)(m− 2 + z)− 1

∣∣∣∣ ≤ 1 +
1

|(m+ z)(m− 2 + z)− 1|
,

so we bound |(m+ z)(m− 2 + z)− 1|, for z ∈ γm. We have, for m large enough,

|(m+ z)(m− 2 + z)− 1| = |r+ −m− z||r− −m− z|
≥ ||r+ −m| −m|||r− −m| −m|
= |r+r−| = 1,

where r± = 1 ±
√

2. Hence, the first term of (3.3.13) is bounded by 2. The analysis of the
remaining two terms is similar and is omitted.

Last, we have to bound the first term of (3.3.8), namely Bk,l
|(k+1+z)(l+1+z)−1| . It is easy to see

that, for m large enough, we have |(k + 1 + z)(l + 1 + z)− 1| ≥ (m− c)2, for some positive
constant c, and the conclusion follows.

Theorem 3.3.1 For sufficiently large n,

µk,ln+1 = −(−1)n
∑
s∈P

Res
z=s

[
n!ϕ(z)

z(z − 1) . . . (z − n)

]
, (3.3.14)

where Res
z=s

ψ(z) denotes the residue of a function ψ(z) at z = s, and ϕ, P are defined in
Proposition 3.3.3.

Proof. The result follows from Propositions 3.3.3, 3.3.4 and Theorem 3.2.1.
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Residues

We evaluate the residues in the right-hand side of (3.3.14).

Proposition 3.3.5 Let ψ(z) = n!ϕ(z)
z(z−1)...(z−n)

and

ϕm(z) =
Bk,l

(k + 1 + z)(l + 1 + z)

∏
n≥1,n 6=m

(k + n+ z)(l + n+ z)

(k + n+ z)(l + n+ z)− 1
, z ∈ D,m ≥ 1.

Then
Res
z=z±m

ψ(z) = ± n!

(z±m)n+1

ϕm(z±m)

2rkl
, (3.3.15)

where (s)n+1 = s(s− 1) · · · (s− n) is the falling factorial.

For the asymptotic behavior of residues we have

Lemma 3.3.1 As n→∞, for m ≥ 1,

Res
z=z±m

ψ(z) ∼ ±(−1)n+1nz
±
mΓ(−z±m)

ϕm(z±m)

2rkl
. (3.3.16)

Proof. The result follows from Stirling’s approximation, n!/(s)n+1 ∼ (−1)n+1Γ(−s)ns.

Lemma 3.3.2 For m ≥ 2 and n ≥ 1,

n!

|(z±m)n+1|
≤
(
m+ n+ a

n

)−1

,

where a = bcc and c = k+l
2
∓ rkl > 0.

Proof. Note that

n!

(z+
m)n+1

= (−1)n−1 n!∏n
i=0(i +m+ c)

= (−1)n−1 n!∏n+m
i=m (i + c)

.

Also,
n+m∏
i=m

(i + c) ≥
n+m∏
i=m

(i + a) = n!(m+ a)

(
m+ n+ a

n

)
,

and the conclusion follows.

Lemma 3.3.3 The sequence |ϕm(z±m)|,m ≥ 1, is bounded.
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Proof. From the definition of ϕm in Proposition 3.3.5, we have∣∣∣∣∣ ∏
n≥1,n6=m

(k + n+ z±m)(l + n+ z±m)

(k + n+ z±m)(l + n+ z±m)− 1

∣∣∣∣∣ =
∏

n≥1,n6=m

∣∣∣∣1 +
1

(k + n+ z±m)(l + n+ z±m)− 1

∣∣∣∣
≤

∏
n≥1,n6=m

(
1 +

1

|(k + n+ z±m)(l + n+ z±m)− 1|

)
=

∏
n≥1,n6=m

(
1 +

1

|(z±m − z+
n )(z±m − z−n )|

)
=

∏
n≥1,n6=m

(
1 +

1

|(n−m)(n−m± 2rkl)|

)

≤ exp

( ∑
n≥1,n6=m

1

|n−m||n−m± 2rkl|

)
≤ C,

where C is a constant independent of m. Finally, the conclusion is reached, noting that
Bk,l ≤ 1 and that |k + 1 + z±m||l + 1 + z±m| → ∞.

Corollary 3.3.1 As n→∞, ∣∣∣∣∣∑
m≥2

Res
z=z±m

ψ(z)

∣∣∣∣∣ ≤ Cn−(a+2), (3.3.17)

where C is a positive constant and a > 0 is defined in Lemma 3.3.2.

Proof. From Lemmas 3.3.2 and 3.3.3 we get∣∣∣∣∣∑
m≥2

Res
z=z±m

ψ(z)

∣∣∣∣∣ ≤ C1

∑
m≥2

(
m+ n+ a

n

)−1

≤ C2

(
n+ 2 + a

n

)−1

≤ Cn−a−2.

Corollary 3.3.2 As n→∞,

n−z
+
1 µk,ln = Γ(−z+

1 )
ϕ1(z+

1 )

2rkl
+ o(1). (3.3.18)

Proof. Note from (3.3.16) that n−z
+
1 Res
z=z−1

ψ(z) = O(nz
−
1 −z

+
1 ) = O(n−2rkl) = o(1). Also, from

(3.3.17),

n−z
+
1

∣∣∣∣∣∑
m≥2

Res
z=z±m

ψ(z)

∣∣∣∣∣ ≤ Cn−a−2−z+
1 = o(1),

because a+ 2 + z+
1 = 1 + bk+l

2
∓ rklc − k+l

2
− rkl > 0. The result follows from (3.3.16) .
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Theorem 3.3.2 As n→∞,

nα(1−M(j)
n )→ 0, j = 1, 2,

in Lk, if α < α∗k := 1/k −
√
k2 + 4/(2k) + 1/2. In particular, convergence holds in L1, for all

α < α∗1 := (3−
√

5)/2 ≈ 0.38. Furthermore, the sequence (nα
∗
1(1−M(j)

n ))n is tight.

Proof. From (3.3.18), with l = 0, we have

E(nα(1−M(j)
n ))k = nkαµk,0n

= Cnkα−1−k/2+rk0 + o(1)

= Cn(α−1/2)k+
√
k2+4/2−1 + o(1)→ 0,

if α < α∗k. For l = 0, k = 1, nαE(1 −M(j)
n ) ∼ Cnα+(

√
5−3)/2 → 0 if α < α∗1. Tightness is a

consequence of Markov’s inequality.

Remark 3.3.1 Note that, for α ∈ (α∗1, 1/2), we have n2αE(1 −M(1)
n )(1 −M(2)

n ) → 0, but
nαE(1−M(j)

n )→∞, for j = 1, 2.

3.4 On the counting process of records

This section is dedicated to the study of the total number of chain-records among the first n
observations. We recall that this variable was defined in Chapter 2, as

Nn =
n∑

i=1

Ii,

where In = 1{Mn�Mn−1} = 1{Xn is a record} is the indicator of Xn being a record. Observe that
Nn also represent the number of jumps of maximaMk up to n.

Our objective is to find a sequence of real numbers (an) such that Nn
an
→ 1 as n→∞, in

some sense, such a.s., in probability or in Lp. We only consider the particular case d = 2 and
start with some preliminaries results.

Lemma 3.4.1 E(Nn) = 1
2
Hn ∼ 1

2
log n, where Hn =

∑n
j=1 1/j is the n-th harmonic number.

Proof. Note, from Definition 3.2.1, that E(In|Fn−1) = Hn−1 for n ≥ 1, where Fn =
σ(X1, . . . ,Xn) and F0 = {Ω, ∅}. Then by 3.2.4, we have

E(In) = E(Hn−1) = µ
(1)
n−1 =

1

2n
.

Note that the expectation above is also in (ii) of Lemma 2.3.2. The result then follows.
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Lemma 3.4.2 It holds
n∑

i=1

Var(Ii) = O(log n),

∑
1≤i<j≤n

E(Ii)E(Ij) =
1

8
log2 n+O(log n),

(3.4.1)

as n→∞.

Proof. First, note that Var(Ii) = E
(
Ii − 1

2i

)2
= 1

2i

(
1− 1

2i

)
, then

n∑
I=1

1

2i

(
1− 1

2i

)
=

1

2
Hn −

1

4

n∑
i=1

1

i2
= O(log n).

Also, ∑
1≤i<j≤n

E(Ii)E(Ij) =
n−1∑
i=1

n∑
j=i+1

1

4ij
=

1

4
HnHn−1 −

1

4

n−1∑
i=1

Hi

i
.

Finally, from [[3], Eq. (3.62)] we have
∑n

j=1
Hj
j

= 1
2
(H2

n+H
(2)
n ), where H(s)

n =
∑n

j=1
1
js
, s ∈ C,

is the generalized harmonic number of order s (see [35]). Then∑
1≤i<j≤n

E(Ii)E(Ij) =
1

8
log2 n+O(log n).

Remark 3.4.1 Lemma 3.4.2 suggests the study the L2 norm of 2
logn
Nn−1. To that end, we

could proceed, for example, as in [36], hoping that
∑

1≤i<j≤n
E(IiIj) contributes with the term

1
8

log2 n, to cancel the dominant term in the last expression but, unfortunately, we do not
have a manageable expression for E(IiIj).

3.4.1 Convergence in L2

To avoid the inconvenience mentioned in Remark 3.4.1, we can apply Corollary 2.3.4, which

states, essentially, that Nn and
n∑

i=1

Hi are asymptotically equivalent. So, in what follows we

concentrate on the latter sum.
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Lemma 3.4.3 We have
n∑

i=1

E(Hi) ∼
1

2
log n,

E(Nn) ∼ 1

2
log n,

n∑
i=1

Var(Hi) = O(1),

∑
1≤i<j≤n

E(Hi)E(Hj) =
1

8
H2
n +O(log n).

(3.4.2)

Proof. The first expression in (3.4.2) follows from E(Hi) = µ
(1)
i = 1

i+1
, due to (3.2.4). The

second follows from E(Ii | Fi−1) = Hi−1, which implies E(Ii) = E(Hi−1), so E(Nn) = 1
2
Hn ∼

1
2

log n. Moreover, since

Var(Hi) = µ
(2)
i −

(
µ

(1)
i

)2
=

2

3

1

(i + 2)(i + 1)
− 1

4

1

(i + 1)2
,

the third assertion is proved. Finally, for the last one, using [[3], Eq. (3.62)], we obtain

∑
1≤i<j≤n

E(Hi)E(Hj) =
1

4

n−1∑
i=1

n−i∑
k=1

1

(i + 1)(i + k + 1)

=
1

4

n−1∑
k=1

1

i + 1
(Hn+1 −Hi+1)

=
1

4
(Hn +

1

n+ 1
)(Hn − 1)− 1

4

[
1

2
(H2

n +H(2)
n )− 1

]
=

1

8
H2
n −

1

4
Hn

(
1− 1

n+ 1

)
− 1

4(n+ 1)
− 1

8
H(2)
n +

1

4

=
1

8
H2
n +O(log n).

Proposition 3.4.1 Let ν(l)
k (n) = E(HnHl

n+k), for integers l ≥ 0, k ≥ 1, n ≥ 1, then the
following recurrence holds

ν
(l)
k (n) = ν

(l)
k−1(n)− al+1ν

(l+1)
k−1 (n), where al = 1− 1

l2
. (3.4.3)

Proof. Let g(x, y) = (1 − x)l(1 − y)l, for x, y ∈ [0, 1], so g(Mn+k) = Hl
n+k. Let also
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S = {(x, y) ∈ [0, 1] : (x, y) �Mn+k−1}, then, from equation (2.2.7) in Lemma 2.2.1, we have

E(Hl
n+k|Mn+k−1) =

∫
S

(1− x)l(1− y)ldxdy +Hl
n+k−1(1−Hn+k−1)

=

∫ 1

M(1)
n+k−1

(1− x)ldx

∫ 1

M(2)
n+k−1

(1− y)ldy +Hl
n+k−1 −Hl+1

n+k−1

=
Hl+1
n+k−1

(l + 1)2
+Hl

n+k−1 −Hl+1
n+k−1

= Hl
n+k−1 − al+1Hl+1

n+k−1.

Finally, multiplying by Hn and taking expectation, the result is obtained.

Remark 3.4.2 Note that recurrence (3.4.3), in any dimension d, has the same form, with al
given by al = 1− 1/ld. Also, by checking some boundary conditions we recover some known
cases, such as

ν
(0)
k (n) = E(Hn) =

1

2

(
n+ 1

1

)−1

=
1

2(n+ 1)
,

ν
(l)
0 (n) = E(Hl

n) =
1

l + 2

(
n+ l + 1

l + 1

)−1

.

In addition, after comparing (3.4.3) to (3.2.1), we realize that both recurrences are struc-
turally identical.

Proposition 3.4.2 For n, k ≥ 1

E(HnHn+k) =
1

2

k−1∑
j=0

(
n− 1

j

)
(−1)j

[
j+2

(j+1)(j+3)

(
n+ j + 2

j + 2

)−1

− j+3
(j+2)(j+4)

(
n+ j + 3

j + 3

)−1
]

(3.4.4)

Proof. The solution of (3.4.3) has the form

ν
(l)
k (n) =

k−1∑
j=0

(
k − 1

j

)
(−1)jbj(l)ν

(l+j)
1 (n).

From (3.4.3) and Remark 3.4.2, we have

ν
(l+j)
1 (n) = ν

(l+j)
0 (n)− al+j+1ν

(l+j+1)
0 (n), ν

(k)
0 (n) =

1

k + 2

(
n+ k + 1

k + 1

)−1

= µ(k+1)
n ,

so we can rewrite ν(l)
k (n) as

ν
(l)
k (n) =

k−1∑
j=0

(
k − 1

j

)
(−1)jbj(l)µ

(l+j+1)
n −

k−1∑
j=0

(
k − 1

j

)
(−1)jbj(l)al+j+1µ

(l+j+2)
n .
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Also, noting that bj(l)al+j+1 = bj+1(l), and letting l = 1, we obtain

E(HnHn+k) =
k−1∑
j=0

(
k − 1

j

)
(−1)jbj(1)µ(j+2)

n −
k−1∑
j=0

(
k − 1

j

)
(−1)jbj+1(1)µ(j+3)

n ,

Finally, (3.4.4) follows after replacing bj(1) by its value
∏j

i=1 a1+i = 1
2
j+2
j+1

and by using formula
(3.2.4) for µ(k)

n .

We recall here the definitions of the binomial and the Euler transform (also known as
alternating binomial transform) and show a couple of elementary properties. The Euler
transform was introduced in Section 3.2.1, in the context of singularity analysis; see (3.2.7).

Definition 3.4.1 Let (ak)k denote the sequence of real numbers ak, k ≥ 0.

(i) The sequence bn =
n∑
k=0

(
n
k

)
ak, n ≥ 0, is called the binomial transform of (ak)k.

(ii) The sequence cn =
n∑
k=0

(
n
k

)
(−1)kak, n ≥ 0, is called the Euler transform of (ak)k.

Lemma 3.4.4 Let (ak)k be a sequence and bn =
n∑
k=0

(
n
k

)
ak, n ≥ 0. Then bn+1 − bn =

n∑
k=0

(
n
k

)
ak+1, n ≥ 0. Also, let cn =

n∑
k=0

(
n
k

)
(−1)kak, then cn+1−cn = −

n∑
k=0

(
n
k

)
(−1)kak+1, n ≥ 0.

Proof. Direct computation; see [54].

Lemma 3.4.5 For k, i ≥ 1, let

p1(i, k) = 1
4

k−1∑
j=0

(
k−1
j

) (−1)j

j+1

(
i+j+2
j+2

)−1
, p2(i, k) = 1

4

k−1∑
j=0

(
k−1
j

) (−1)j

j+3

(
i+j+2
j+2

)−1
, (3.4.5)

p3(i, k) = 1
4

k−1∑
j=0

(
k−1
j

) (−1)j

j+2

(
i+j+3
j+3

)−1
, p4(i, k) = 1

4

k−1∑
j=0

(
k−1
j

) (−1)j

j+4

(
i+j+3
j+3

)−1
. (3.4.6)

Then
p3(i, k) = p1(i, k)− p1(i, k + 1), p4(i, k) = p2(i, k)− p2(i, k + 1) (3.4.7)

and
E(HiHi+k) = [p1 − p3 + p2 − p4](i, k). (3.4.8)

Proof. For (3.4.7) observe that (p1(i, k))k is the Euler transform of (aj)j, where aj =
1

4(j+1)

(
i+j+2
j+2

)−1 and that (p3(i, k))k is the Euler transform of (aj+1)j. The conclusion is then
derived from Lemma 3.4.4. The argument for the identity involving p2, p4 is analogous.
Formula (3.4.8) follows from using partial fraction decomposition in (3.4.4)

Lemma 3.4.6 p2(i, k) and p4(i, k) are positive for every i, k ≥ 1.
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Proof. Observe that

p2(i, k) =
1

4

k−1∑
j=0

(
k − 1

j

)
(−1)jE(Hj+2

i )

=
1

4
E

[
H2

i

k−1∑
j=0

(
k − 1

j

)
(−Hi)

j

]

=
1

4
E
(
H2

i (1−Hi)
k−1
)
> 0.

Analogously, it can be shown that p4(i, k) = 1
4
E
(
H3

i (1−Hi)
k−1
)
> 0.

Lemma 3.4.7 Let p1(i, k) be as in (3.4.5). Then

p1(i, k) =
1

4

2i + k + 1

(i + 1)(i + k)(i + k + 1)

and
n−1∑
i=1

n−i∑
k=1

p1(i, k) =
1

8
H2
n +O(1). (3.4.9)

Proof. Consider the identity
(
k−1
j

)
1
j+1

= 1
k(k+1)

(
k+1
j+2

)
(j + 2). Then, from (3.4.5), we get

p1(i, k) =
1

4k(k + 1)

[
k+1∑
j=1

(
k + 1

j

)
(−1)jj

(
i + j

j

)−1

+
k + 1

i + 1

]
.

Sury and Purkait in [47], provide a variety of results about sums involving the reciprocal
of binomial coefficients. Among them, we apply the second formula of their lemma 1.1, to
obtain

p1(i, k) =
1

4k(k + 1)

[
− (k + 1)i

(k + i + 1)(k + 1)
+
k + 1

i + 1

]
=

1

4

2i + k + 1

(i + 1)(i + k)(i + k + 1)
.

For the double sum we have
n−1∑
i=1

n−i∑
k=1

p1(i, k) =
n∑
l=2

l−1∑
k=1

p1(l − k, k)

=
n∑
l=2

l−1∑
k=1

1

4

2l − k + 1

l(l + 1)(l − k + 1)

=
n∑
l=2

l−1∑
k=1

1

4

[
1

(l + 1)(l − k + 1)
+

1

l(l + 1)

]

=
n∑
l=2

l−1∑
k=1

1

4

[
Hl − 1

l + 1
+

l − 1

l(l + 1)

]

=
1

4

n−1∑
l=1

Hl

l + 2
.
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Sums involving harmonic numbers have been intensively studied and many results are avail-
able. From formula (1.32) in [13], we have

n−1∑
l=1

Hl

l + 2
=

1

2

(
H2
n+1 −H

(2)
n+1

)
+

1

n+ 1
− 1

and so, (3.4.9) follows.

Lemma 3.4.8 Let p3(i, k) be as in (3.4.6). Then

n−1∑
i=1

n−i∑
k=1

p3(i, k) = O(1). (3.4.10)

Proof. By Lemma 3.4.5, we have p3(i, k) = p1(i, k) − p1(i, k + 1), so by the telescoping
property and the expression for p1(i, k) in Lemma 3.4.7, we get

n−i∑
k=1

p3(i, k) = p1(i, 1)− p1(i, n− i + 1)

=
1

2

(
1

i + 1
− 1

i + 2

)
− 1

4

(
1

(n+ 1)(n+ 2)
+

1

(i + 1)(n+ 2)

)
.

Then
n−1∑
i=1

n−i∑
k=1

p3(i, k) =
1

2

(
1

2
− 1

n+ 1

)
− 1

4

(
n− 1

(n+ 1)(n+ 2)
+
Hn − 1

n+ 2

)
= O(1).

Lemma 3.4.9 Let p2(i, k) be as in (3.4.5). Then

n−1∑
i=1

n−i∑
k=1

p2(i, k) ≤ Hn

8
. (3.4.11)

Proof. Let

p0(i, k) =
1

4

k−1∑
j=0

(
k − 1

j

)
(−1)j

j + 2

(
i + j + 1

j + 1

)−1

=
1

4
E
(
Hi(1−Hi)

k−1
)
> 0

and observe that the sequence (p0(i, k))k is the Euler transform of
(

1
4(j+2)

(
i+j+1
j+1

)−1
)
j
and

(p2(i, k))k is the Euler transform of
(

1
4(j+3)

(
i+j+2
j+2

)−1
)
j
. Then, by Lemma 3.4.4, we have

p2(i, k) = p0(i, k)− p0(i, k + 1) > 0. So,

n−i∑
k=1

p2(i, k) = p0(i, 1)− p0(i, n− i + 1) ≤ p0(i, 1) =
1

8(i + 1)

and the conclusion follows.
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Lemma 3.4.10 ∑
1≤i<j≤n

Cov(Hi,Hj) = o(log2 n). (3.4.12)

Proof. We have ∑
1≤i<j≤n

Cov(Hi,Hj) =
∑

1≤i<j≤n

E(HiHj)−
∑

1≤i<j≤n

E(Hi)E(Hj).

From (3.4.2),
∑

1≤i<j≤n
E(Hi)E(Hj) = 1

8
H2
n+O(log n). Also, from Lemmas 3.4.5, 3.4.7 and 3.4.9,

we get ∑
1≤i<j≤n

E(Hi,Hj) =
n−1∑
i=1

n−i∑
k=1

(p1 − p3)(i, k) +
n−1∑
i=1

n−i∑
k=1

(p2 − p4)(i, k)

=
n−1∑
i=1

n−i∑
k=1

p1(i, k + 1) +
n−1∑
i=1

n−i∑
k=1

p2(i, k + 1)

=
1

8
H2
n +O(log n).

Hence,
∑

1≤i<j≤n
Cov(Hi,Hj) is at most O(log n) and the conclusion follows.

Now we state a law of large numbers for the sum of record heights, which is the main
result of this section, and a law of large numbers for Nn as corollary.

Theorem 3.4.1 The record heights Hi, for the uniform model on [0, 1]2 satisfy the following
law of large numbers,

1

log n

n∑
i=1

Hi
L2−→ 1

2
. (3.4.13)

Furthermore
Nn

log n

P−→ 1

2
. (3.4.14)

Proof. Note that

E

(
1

log n

n∑
i=1

Hi −
1

2

)2

= Var

(
1

log n

n∑
i=1

Hi

)
+

(
1

log n

n∑
i=1

E(Hi)−
1

2

)2

.

The second term in the rhs of the decomposition above goes to 0 because of (3.4.2). Fur-
thermore,

Var

(
1

log n

n∑
i=1

Hi

)
=

1

log2 n

n∑
i=1

Var(Hi) +
2

log2 n

∑
1≤i<j≤n

Cov(Hi,Hj)→ 0,

because of (3.4.2) and (3.4.12), hence (3.4.13) holds. For (3.4.14), we have from (2.3.3) that
Nn∑n
i=1Hi

→ 1,

a.s. Then, (3.4.14) follows at once from (3.4.13).
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We conclude our asymptotic analysis of Nn with a central limit theorem for the martingale
obtained by compensating Nn. Recall that E(In|Fn−1) = Hn−1, where Fn is the σ-algebra
generated by X1, . . . ,Xn. Then,

∑n−1
k=1Hk is the predictable compensator of Nn and so,

Nn −
∑n−1

k=1Hk is a martingale with bounded increments. We can apply a central limit
theorem for martingales, such as the following

Theorem 3.4.2 Let (ξn) be a sequence of square-integrable random variables, adapted to
the filtration (Fn), such that E(ξn | Fn−1) = 0, for all n ≥ 1. Let (bn) be a sequence of real
numbers such that bn ↗∞ and suppose that the following conditions hold

(1)
1

b2
n

n∑
i=1

E(ξ2
i | Fi−1)

P−→ σ2 > 0,

(2)
1

b2
n

n∑
i=1

E(ξ2
i 1{|ξi|>εbn} | Fi−1)

P−→ 0, for all ε > 0.

Then 1
bn

n∑
i=1

ξi
D−→ N(0, σ2).

Theorem 3.4.3
Nn −

∑n
i=1Hi−1√

log n

D−→ N(0, 1
2
) (3.4.15)

Proof. Condition (1) of Theorem 3.4.2 is satisfied with b2
n = log n and σ2 = 1/2, since

E(ξ2
i |Fi−1) = Hi−1(1 − Hi−1), with H0 := 1. Moreover, condition (2) is trivially satisfied

since the martingale has bounded increments.
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Chapter 4

The uniform model on the d-simplex

In this chapter we study chain maxima and records from observations Xn, distributed ac-
cording to the uniform model on the d-simplex. That is, (Xn) is an iid sequence of random
vectors, uniformly distributed on

∆d = {x = (x(1), . . . , x(d)) ∈ Rd
+ :

d∑
i=1

x(i) ≤ 1}.

Observe that the components X(j)
n of Xn are not independent and that N∞ = ∞ a.s., since

Assumption 3 is satisfied with A equal to the interior of ∆d. We consider the assumption
below to hold in this chapter, unless stated otherwise.

Assumption 6 The observation vectors Xn are iid, uniformly distributed in ∆d. This is the
U(∆d) model.

By definition, Xn has density function given by

f(x) = d!1∆d(x).

Also, for x ∈ ∆d,

F̄(x) =
(

1−
d∑
j=1

x(j)
)d

. (4.0.1)

As commented above, the components X(j)
n are dependent, identically distributed random

variables, with common Beta(1, d) density, given by f(x) = d(1− x)d−1, x ∈ [0, 1].

4.1 Records

In this section we focus on the study of Rn = (R(1)
n , . . . ,R(d)

n ). We start by deriving a
recurrence for the density function of Rn and then establish a perpetuity representation
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which, in the case d = 2, allows us to study the asymptotic behavior and identify an associated
limit in distribution.

Proposition 4.1.1 The process (Rk) is a Markov chain with transition probabilities

P(Rk+1 � x|Rk) =

d!
d∏
j=1

(x(j) −R(j)
k )(

1−
d∑

i=1

R(i)
k

)d
1{Rk�x}, x ∈ ∆d. (4.1.1)

In addition, Rk has probability density function gk satisfying the recurrence

gk+1(x) = 1∆d(x)

∫
[0,x]

d!gk(u)(
1−

d∑
i=1

u(i)
)d

du, k ≥ 1. (4.1.2)

where g1(u) = f(u) = d!1∆d(u) and [0,x] = {y ∈ Rd : 0 � y � x}.

Proof. Formula (4.1.1) follows directly from (2.2.3). Also, if Gk denotes the distribution
function of Rk then, taking expectation in (4.1.1), we have

Gk+1(x) =

∫
[0,x]

d!
d∏
j=1

(x(j)−u(j))(
1−

d∑
i=1

u(i)

)d Gk(du). (4.1.3)

It can be shown, by induction, that the density gk exists for any k. Then (4.1.2) is obtained
by differentiating in (4.1.3).

Remark 4.1.1 For d = 2, we can compute a few terms of the recurrence in (4.1.2):

g1(x, y) = 21∆2(x, y),

g2(x, y) = 4 log

(
(1− x)(1− y)

1− x− y

)
1∆2(x, y),

g3(x, y) = 8

[
log

(
1− x− y

(1− x)(1− y)

)
− Li2

(
xy − x− y − 1

1− x− y

)]
1∆2(x, y),

where Li2(z) = −
∫ z

0
log(1−t)

t
dt, z ∈ C, is Spence’s function, also known as dilogarithm. We

observe that higher order terms in the sequence involve intractable expressions. So, given
the complexity of the sequence gk, we have to consider a different strategy to analyze the
asymptotic behavior of chain records in ∆d.

Conditionally on Rk, the random variable Rk+1 is uniformly distributed on a region ∆k,
which is the d-simplex ∆d, after appropriate translation and change of scale, namely, ∆k is
given by

∆k = Rk +
(

1−
d∑
j=1

R
(j)
k

)
∆d.
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In other words, if X is U(∆d), then

Rk+1
D
= Rk + (1−

d∑
j=1

R
(j)
k )X, (4.1.4)

conditionally on Rk, and the density of Rk+1, conditional on Rk, is given by

fRk+1|Rk(x) = d!

1−
∑d
j=1 R

(j)
k

1∆d

(
x−Rk

1−
∑d
j=1 R

(j)
k

)
.

Moreover, for x ∈ ∆d,

P(Rk+1 � x|Rk) = F̄
(

x−Rk
1−
∑d
j=1 R

(j)
k

)
=
(

1−
∑d
j=1 x

(j)

1−
∑d
j=1 R

(j)
k

)d

.

Also, setting all coordinates to 0, except one, we get the conditional marginals, for j =
1, . . . , d, as

P(R(j)
k+1 > x|Rk) =

(
1−x

1−
∑d
j=1R

(j)
k

)d

.

Thanks to (4.1.4), we have the following analog of Proposition 3.1.3.

Proposition 4.1.2 Let (Un) be a sequence of iid U(∆d) random vectors and let (Vn) be
defined by V1 = U1 and

Vn+1 = Vn +
(

1−
d∑

i=1

V (i)
n

)
Un+1, (4.1.5)

for n ≥ 1. Then (Vn)
D
= (Rn).

Proof. (Vn) is clearly a Markov chain, with initial state distributed as U1 and transitions
given by (4.1.1). Hence, the conclusion follows.

Our objective is to investigate (4.1.5) as a stochastic difference equation. In particular
we are interested in convergence and characterization of the distributions of its solutions. A
solution is meant in the strong sense.

Lemma 4.1.1 Recurrence (4.1.5) has solution

Vn =
n∑

i=1

Ui

i−1∏
k=1

(
1−

d∑
j=1

U
(j)
k

)
, (4.1.6)

where (Un) is a sequence of iid U(∆d) vectors.

Proof. We proceed by induction. The case n = 1 is evident. Assume that (4.1.6) holds for
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n > 1, then, adding by coordinates in (4.1.6), we have

d∑
l=1

V (l)
n =

n∑
i=1

d∑
l=1

U
(l)
i

i−1∏
k=1

(1−
d∑
j=1

U
(j)
k )

=
n∑

i=1

(
1−

(
1−

d∑
l=1

U
(l)
i

)) i−1∏
k=1

(1−
d∑
j=1

U
(j)
k )

=
n∑

i=1

( i−1∏
k=1

(
1−

d∑
j=1

U
(j)
k

)
−

i∏
k=1

(
1−

d∑
j=1

U
(j)
k

))
= 1−

n∏
k=1

(
1−

d∑
j=1

U
(j)
k

)
.

Now, replacing in (4.1.5) the expression obtained above for
∑d

l=1 V
(l)
n , we get

Vn+1 = Vn +
n∏
k=1

(
1−

d∑
j=1

U
(j)
k

)
Un+1

=
n+1∑
i=1

Ui

i−1∏
k=1

(
1−

d∑
j=1

U
(j)
k

)
.

4.1.1 Convergence of Rn

Proposition 4.1.3 The sequence of records (Rn) converges a.s. to a random variable R∞,
satisfying

R∞
D
=
∞∑

i=1

Ui

i−1∏
k=1

(
1−

d∑
j=1

U
(j)
k

)
, (4.1.7)

where (Un) is a sequence of iid U(∆d) vectors.

Proof. The a.s. convergence of (Rn) is immediate because the marginal sequences (R(j)
n ), j =

1, . . . , d, are increasing and bounded. The series representation (4.1.7) follows from Proposi-
tion 4.1.2. Moreover, it can be shown that, independently of the relationship between records
and the random vectors Vn, the series in the rhs of (4.1.7) is well defined. To that end we
can apply the root test for convergence by components. Note that, for j = 1, . . . , d,

− log
(
U (j)
n

n−1∏
k=1

(1−
d∑
j=1

U
(j)
k )
)1/n

= − logU
(j)
n

n
− 1

n

n−1∑
k=1

log
(

1−
d∑
j=1

U
(j)
k

)
. (4.1.8)

From (4.0.1) we have P(U
(j)
n > u) = (1− u)d, and so P(− logU

(j)
n > nε) = 1− (1− e−nε)d ≤

de−nε, for ε > 0 and sufficiently large n. Hence, by the Borel-Cantelli lemma, we conclude
that − logU

(j)
n

n
→ 0 a.s.
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For the second term in the rhs of (4.1.8), we have a.s. convergence to the expectation
E
(
− log

(
1−

∑d
j=1 U

(j)
k

))
<∞, thanks to the SLLN.

Remark 4.1.2 Observe that S∞ :=
∑d

j=1R
(j)
∞ = 1 a.s. This follows directly from the rhs

of (4.1.7), by summing through coordinates. Also, S∞ = 1 implies that R∞ does not have
a density with respect to the Lebesgue measure on Rd

+, and also that E(R(j)
∞ ) = 1/d, j =

1, . . . , d, since the coordinates R(j)
∞ are equally distributed.

4.1.2 Perpetuity representation of R∞

We are interested in the distribution of R∞ but the series representation (4.1.7) does not
look simple to analyze. That is why we turn our attention to the so-called perpetuity repre-
sentation of R∞. To that end we use some ideas related to perpetuities, that we take from
[39].

Let (Rn) be a sequence of real random variables, satisfying the recursion

Rn = Qn +MnRn−1, (4.1.9)

for n ≥ 1, with arbitrary R0, where (Qn,Mn) are iid copies of random pairs (Q,M), inde-
pendent of Rn−1. Then, iterating (4.1.9) we get

Rn = Qn +MnQn−1 +MnMn−1Qn−2 + · · ·+Mn · · ·M2Q1 +Mn · · ·M1R0

= R0

n∏
j=1

Mj +
n∑
k=1

Qk

n∏
j=k+1

Mj.
(4.1.10)

Now, renumbering the (Qn,Mn) pairs in the opposite direction, from (4.1.10) we obtain

R̃n := R0

n∏
j=1

Mj +
n∑
k=1

Qk

k−1∏
j=1

Mj. (4.1.11)

Note that, because the random pairs (Qn,Mn) are iid, we have that R̃n
D
= Rn but it is not

true that R̃n = Rn and, in general, it is not even true that (R̃n)
D
= (Rn). However weak

this relation might seem, it can be useful, for example, when the sequence (Rn) converges
in distribution and the partial sums defining R̃n, converge. For further information, see [39]
and references therein.

We will use the same trick of renumbering iid random variables in recurrences related to
records, in order to obtain equations in distribution involving R∞.

Let us recall the expression (4.1.6), written for simplicity as

Vn =
n∑

i=1

Ui

i−1∏
k=1

δ(Uk)

= U1 + U2δ(U1) + · · ·+ Unδ(U1) · · · δ(Un−1),
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where δ(Uk) = 1−
∑d

j=1 U
(j)
k . Then, by circularly permuting the vectors Uk, in such a way

that U1 becomes Un, U2 becomes U1 and so on, we get the following equation in distribution

Vn
D
= Un + δ(Un)(U1 + · · ·+ Un−1δ(U1) · · · δ(Un−2))

= Un + δ(Un)
n−1∑
i=1

Ui

i−1∏
k=1

δ(Uk)

= Un + δ(Un)Vn−1.

(4.1.12)

Remark 4.1.3 Note that, since Vn depends only on U1, . . . ,Un (see Lemma 4.1.1), it holds
that Vn−1 is independent of Un and δ(Un), because the Un are iid.

Proposition 4.1.4 Let (Un),U be iid U(∆d) random vectors, independent of (Rn),R∞.
Then, for n ≥ 1,

Rn+1
D
= Un+1 + δ(Un+1)Rn (4.1.13)

and
R∞

D
= U + δ(U)R∞. (4.1.14)

Proof. By Proposition (4.1.2) we know that (Vn)
D
= (Rn). So, from (4.1.12) and Remark

4.1.3, we obtain (4.1.13). For (4.1.14) we have that Rn → R∞ a.s, by Proposition 4.1.3,
and that Un+1

D
= U, so the rhs of (4.1.13) converges in distribution to U + δ(U)R∞, and

the conclusion follows. Observe that the hypothesis of independence between Un,U and the
Rn,R∞ are crucial.

Concerning the distribution of R∞, we have the following result.

Proposition 4.1.5 The distribution of R(j)
∞ , for j = 1, . . . , d, is absolutely continuous or

singular and continuous.

Proof. We quote, without proof, the following result, due to Grincevičius [37]; see also
Vervaat [58], theorem 3.2. Let A,B, Y be real random variables such that A 6= 0 a.s. and Y
is independent of (A,B). If

Y
D
= AY +B,

then the distribution of Y is either absolutely continuous, singular continuous or degenerate.

Observe that (4.1.14) is a vectorial recurrence, which yields for each coordinate j =
1, . . . , d, the following relation

R(j)
∞
D
= U (j) + δ(U)R(j)

∞ . (4.1.15)

We identify A with δ(U) > 0 a.s. and B with U (j), in Grincevičius’ theorem, and the
conclusion follows, if we prove that R(j)

∞ is not degenerate. We know, from Remark 4.1.2,
that E(R(j)

∞ ) = 1/d, so, if R(j)
∞ is degenerate, we must have P(R(j)

∞ = 1/d) = 1. But this
is impossible since, by definition of chain-record, R(j)

∞ ≥ X
(j)
1 a.s. and P(X

(j)
1 > 1/d) =

(1− 1/d)d. So, P(R(j)
∞ > 1/d) > 0.
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We have obtained some valuable information about the distribution of R(j)
∞ but still, far

from being satisfactory. We consider below a rewriting of the recursion for R∞, as a convex
combination. Observe that (4.1.14) can be written as

R∞
D
= (1− δ(U))

U

1− δ(U)
+ δ(U)R∞. (4.1.16)

Note that 1 − δ(U) =
∑d

j=1 U
(j) ∈ [0, 1], so the coordinates of U

1−δ(U)
(and those of R∞)

add up to 1. Hence, the expression in the rhs of (4.1.16) is a convex combination of vectors
U

1−δ(U)
and R∞, both taking values in Dd = {x = (x(1), . . . , x(d)) ∈ Rd

+ :
d∑

i=1

x(i) = 1} ⊂ ∆d.

We have the following elementary result.

Lemma 4.1.2 Let U be a U(∆d) random vector. Then U
1−δ(U)

is uniformly distributed in
Dd. Furthermore, 1− δ(U) and U

1−δ(U)
are independent.

Proof. Let ν be the Lebesgue’s measure (or volume) on Dd and A a Borel subset of Dd,
such that ν(A) > 0. Let φ : ∆d → Dd be the function defined by φ(u) = u

1−δ(u)
. Then,

the preimage φ−1(A) is a cone in ∆d, with tip at 0 (but not included), base A and height
h, equal to the distance from 0 to Dd, that is, h = 1/

√
d. Then the volume of φ−1(A)

(Lebesgue’s measure on Rd
+) is

h
d
ν(A) and so, P(φ(U) ∈ A) = (d−1)!√

d
ν(A), which means that

φ(U) is uniformly distributed on Dd. Finally, noting that {1− δ(U) ≤ s} = {U ∈ s∆d}, for
s ∈ (0, 1], we have

p : = P(φ(U) ∈ A, 1− δ(U) ≤ s)

= P(φ(U) ∈ A,U ∈ s∆d)

= P(U ∈ φ−1(A) ∩ (s∆d)).

Observe also that φ−1(A)∩(s∆d) is a cone contained in s∆d, with tip at 0 (but not included),
base sA and height h = s√

d
. So, its volume is

1

d

s√
d
ν(sA) =

sd

d
√

d
ν(A).

Hence,

p = d!
sd

d
√

d
ν(A) =

(d− 1)!√
d

ν(A)sd = P(φ(U) ∈ A)P(U ∈ s∆d)

and the claim of independence is thus proven.

Remark 4.1.4 Note that φ(U) in the previous lemma has Dirichlet distribution, with pa-
rameters α1 = · · · = αd = 1, also known as flat Dirichlet distribution.

We now have the following representation for R∞, as a random convex combination.

Proposition 4.1.6 Let W be a U(Dd) random vector (uniformly distributed on Dd) and
Λ a random variable with density fΛ(λ) = dλd−11[0,1](λ), such that W,Λ and R∞ are inde-
pendent. Then

R∞
D
= ΛW + (1− Λ)R∞. (4.1.17)
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Proof. The result is a direct consequence of (4.1.16) and Lemma 4.1.2. The density of Λ is
that of the sum of components of a U(∆d) random vector.

Remark 4.1.5 Recall that (Rn) is a Markov chain, with state space ∆d, converging a.s. to
R∞, taking values in Dd and we may think that the law of R∞ is a stationary distribution
of the chain. Indeed, the law of R∞ is stationary but the chain (Rn), starting with such
initial distribution, never moves away from the initial point, because every point in Dd is
terminal, in the sense that F̄(x) = 0, for all x ∈ Dd. In fact, any distribution concentrated
on Dd is stationary for the chain (Rn), just like the distribution of R∞, and there are no
other stationary distributions.

The result of Proposition 4.1.6 is a kind of invariance principle for the distribution of R∞,
by the transformation in the rhs of (4.1.17). The question is if such invariance characterizes
the distribution of R∞ or not. In order to explore this possibility, we define below a Markov
chain on Dd, following the dynamics suggested by equation (4.1.16).

Definition 4.1.1 Let (Wn), (Λn) be independent iid copies of W and Λ respectively, with
distributions as in Proposition 4.1.6. Let the sequence (Tn)n≥0 be defined as follows: T0 has
a certain initial distribution on Dd and, for n ≥ 1,

Tn = ΛnWn + (1− Λn)Tn−1.

Proposition 4.1.7 Let A be a Borel subset of Dd and s ∈ Dd. The sequence (Tn) from
Definition 4.1.1 is a Markov chain with state space Dd and transition kernel K, given by

K(s, A) = P(Tn ∈ A|Tn−1 = s) = P(ΛW + (1− Λ)s ∈ A).

Proof. By construction, (Tn) is a Markov chain, with characteristics as described.

Remark 4.1.6 Note that, from Propositions 4.1.6 and 4.1.7, the distribution of R∞ is the
invariant distribution of the chain (Tn).

For illustration we consider the case d = 2 in detail. In this situation Λ has density
Λ(λ) = 2λ1[0,1](λ) and W is a U(D2) random vector. Of course, since D2 is one-dimensional,
we can work with W by means of its projection W on ∆1 = [0, 1]. Clearly, W is U [0, 1].

The transition kernel K(s, dy) of Proposition 4.1.7 is the distribution of ΛW + (1− Λ)s,
given by

K(s, dy) = 2
(
y
s
1[0,s](y) +

(
1−y
1−s

)
1[s,1](y)

)
dy, s ∈ [0, 1].

The formula above is obtained from the change of variable (W,Λ) → g(W,Λ) = ((W −
s)Λ + s,Λ). We end this example by showing that (Tn) has invariant distribution Beta(2, 2).
Indeed, the Beta(2, 2) density is given by 6s(1− s)1[0,1](s) and we have∫

K(ds, dy)6s(1− s)ds = 12ydy

∫ 1

y

(1− s)ds+ 12(1− y)dy

∫ y

0

sds

= 6y(1− y)2dy + 6y2(1− y)dy

= 6y(1− y)dy.
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Hence, by Remark 4.1.6, we conclude that R∞ has distribution Beta(2, 2). We now turn our
attention to the general case d > 2, where calculations are more involved. In higher dimen-
sions we consider the Dirichlet distribution as generalization of the Beta distribution. The
Dirichlet distribution on Dd, with positive parameters α1, . . . , αd, is denoted Dir(α1, . . . , αd)
and has density (with respect to Lebesgue’s measure on Rd−1) given by

Γ(
∑d

i=1 αi)∏d
i=1 Γ(αi)

xα1
1 · · ·x

αd−1

d−1

(
1−

d−1∑
j=1

xj

)αd

, (x1, . . . , xd−1) ∈ ∆d−1.

For simplicity we can write xd = 1−
∑d−1

j=1 xj. With such notation we have (x1, . . . , xd) ∈ Dd.
The U(Dd) model is a particular instance of the Dirichlet distribution, with parameters
α1 = · · · = αd = 1, also known as flat Dirichlet distribution.

For fixed s ∈ Dd, we define Y = ΛW + (1 − Λ)s = Λ(W − s) + s or, equivalently,
W = Y−s

Λ
+ s, which is a linear change of variable on Dd. In order to write the density of Y

we must project on ∆d−1, as we did for d = 2. But, to keep the notation simple, we do not
use a different symbol for the projections of Y, s or W on ∆d−1.

First we easily see that the density of Y, conditional on Λ, denoted fY|Λ(y|λ), is given by

fY|Λ(y|λ) = 1∆d−1

(
y − s

λ
+ s

)
(d− 1)!

λd−1
1∆d−1(y).

Then, the marginal density of Y is

fY(y) = 1∆d−1(y)

∫ 1

0

1∆d−1

(
y − s

λ
+ s

)
(d− 1)!

λd−1
fΛ(λ)dλ

= d!1∆d−1(y)

∫ 1

0

1∆d−1

(
y − s

λ
+ s

)
dλ.

(4.1.18)

We analyze the indicator within the integral above, as a function of λ. We have the following
conditions:

y(j) − s(j)

λ
+ s(j) ≥ 0, j = 1, . . . , d− 1,

equivalent to

λ ≥ max
j=1,...,d−1

(
1− y(j)

s(j)

)
, (4.1.19)

and, additionally,
d−1∑
j=1

(y(j) − s(j)

λ
+ s(j)

)
≤ 1. (4.1.20)

We can consider vectors x ∈ ∆d−1 as projections from Sd, defining a d-th coordinate of x as
x(d) = 1−

∑d−1
j=1 x

(j). With such notation, condition (4.1.20) is equivalent to

y(d) − s(d)

λ
+ s(d) ≥ 0.
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So (4.1.19) and (4.1.20) can be summarized in the single condition

λ ≥M(y, s) := max
j=1,...,d

(
1− y(j)

s(j)

)
, (4.1.21)

which is necessary and sufficient for y−s
λ

+ s to be in ∆d−1. From (4.1.18) and (4.1.21) we
finally have

k(s,y) = d!(1−M(y, s))1∆d−1(y),

which is the density of the transition kernel K(s, dy).

Based on the result of the case d = 2, we would conjecture that the general invariant
distribution for the above kernel is Dirichlet Dir(2, . . . , 2), but have no evidence beyond the
case d = 2. Calculations for d = 3 can be done with the help of a computer algebra system
such as Maple R©, but preliminary results do not seem to support the conjecture.

Another idea, that works well only for d = 2, is to differentiate the invariance integral
equation and solve the resulting ODE. Suppose g is the invariant density, then

g(y) = 2y

∫ 1

y

g(s)

s
ds+ 2(1− y)

∫ y

0

g(s)

1− s
ds

and so,

g′(y) = 2

∫ 1

y

g(s)

s
ds− 2

∫ y

0

g(s)

1− s
ds,

which yields

g′′(y) +
2

y(1− y)
g(y) = 0.

The ODE above has as general solution

f(y) = a1y(1− y) + a2y(1− y)
( 1

1− y
− 2 log(1− y)− 1

y
+ 2 log(y)

)
,

with a1, a2 ∈ R. But, since we are looking for a pdf with respect to the Lebesgue measure in
[0, 1], we choose a2 = 0 and a1 = 6. So the stationary distribution has density 6r(1−r)1[0,1](r),
that is, Beta(2, 2).

4.2 Record heights

In this section we analyze record heights, as given in Definition 3.2.1, noting, from (4.0.1),

that in the context of the U(∆d) model, we have F̄(Mn) =
(

1 −
d∑

i=1

M(i)
n

)d

, for n ≥ 1. We

proceed as in the previous chapter by first computing their moments. Then we study their
asymptotic behavior and derive a weak convergence result, with suitable normalization.
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Lemma 4.2.1 Let d ≥ 1, l ≥ 0 and a > 0, then∫
a∆d

(
a−

d∑
i=1

u(i)
)l

du = al+d

d∏
i=1

(l + i)−1,

where a∆d := {ax : x ∈ ∆d}.

Proof. We proceed by induction on d, the base case d = 1 is true since
∫
a∆d

(a−u)ldu = al+1

l+1
.

Writing the corresponding integral and using the induction hypothesis∫
a∆d+1

(
a−

d+1∑
i=1

u(i)
)l

du =

∫ a

0

(∫
(a−u)∆d

(
a− u−

d∑
i=1

u(i)
)l

du

)
du

=
d∏

i=1

(l + i)−1

∫ a

0

(a− u)l+ddu

= al+d+1

d+1∏
i=1

(l + i)−1.

Proposition 4.2.1 Let λ(k)
n = E(Hk

n), for k, n positive integers. Then the following recursion
holds

λ
(k)
n+1 = λ(k)

n −
(

1− λ(k)
1

)
λ(k+1)
n , (4.2.1)

with λ(k)
1 = d!

d∏
i=1

(dk + i)−1.

Proof. From (2.2.7), with g(x) = F̄(x)k, and taking expectation, we have

λ
(k)
n+1 = E

(∫
∆d∩{x�Mn}

d!
(

1−
d∑
j=1

x(j)
)dk

dx
)

+ E
(
Hk
n(1−Hn)

)
. (4.2.2)

Note that

∆d ∩ {x �Mn} =
(

1−
d∑

i=1

M(i)
n

)
∆d +Mn = H1/d

n ∆d +Mn.

Hence, after a change of variable and by Lemma 4.2.1, we have∫
∆d∩{x�Mn}

d!
(

1−
d∑
j=1

x(j)
)dk

dx =

∫
H1/d
n ∆d

d!
(
H1/d
n −

d∑
i=1

u(i)
)dk

du

= d!
d∏

i=1

(dk + i)−1
(
H1/d
n

)dk+d

= d!
d∏

i=1

(dk + i)−1Hk+1
n .
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Replacing in equation (4.2.2) yields

λ
(k)
n+1 = E

(
d!

d∏
i=1

(dk + i)−1Hk+1
n

)
+ λ(k)

n − λ(k+1)
n

= d!
d∏

i=1

(dk + i)−1λ(k+1)
n + λ(k)

n − λ(k+1)
n .

Finally, again by Lemma 4.2.1, we have λ(k)
1 = d!

d∏
i=1

(dk + i)−1.

Note that recurrence (4.2.1) has the same structure as (3.2.1).

Proposition 4.2.2 The solution of recurrence (4.2.1) has the form

λ
(k)
n+1 =

n∑
j=0

(
n

j

)
(−1)jλ

(k+j)
1

j−1∏
i=0

(
1− λ(k+i)

1

)
, (4.2.3)

for n ≥ 0.

Proof. Identical to the proof of Proposition 3.2.2. Formula (4.2.3) is derived from (4.2.1) by
iteration.

In one and two dimensions we have closed-form expressions for λ(k)
n .

Lemma 4.2.2 (i) For d = 1,

λ(k)
n =

(
n+ k

k

)−1

. (4.2.4)

(ii) For d = 2,

λ(k)
n =

1

2k + 1

(
n+ k

k

)−1

. (4.2.5)

Proof. It suffices to iterate the recursion (4.2.1).

4.2.1 Asymptotic analysis of λ(k)n

Observe, from (4.2.3), that the k-the moment of Hn+1 is the Euler’s transform (see (3.2.7))
of

b
(k)
j := d!

d∏
i=1

(d(k + j) + i)−1
[ j∏

i=1

(
1− d!

d∏
m=1

(d(k + i− 1) +m)−1
)]
, (4.2.6)

for j = 0, . . . , n. Therefore, for the asymptotic analysis of λ(k)
n , we apply the same technique

used for moments and mixed moments in Chapter 3. That is, we check the conditions of
Theorem 3.2.1 in order to obtain an asymptotic expression for λ(k)

n .
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Definition 4.2.1 Let p(z) =
d∏

i=1

(z + i)− d!, for z ∈ C, R(p) = {λ1, . . . , λd} the set of roots

of p and R= = {λ ∈ R(p) : =(λ) 6= 0}. For k ≥ 1, let

P∆d =
⋃
λ∈R=

{λ
d
− k, λ

d
− k − 1, . . .} ∪ {−k,−k − 1}. (4.2.7)

Lemma 4.2.3 Let q(z) = p(z) + d! =
d∏

i=1

(z + i), for z ∈ C.

(i) If d is odd, 0 is the only real root of p. If d is even then p has two real roots, given by
0 and −d− 1.

(ii) The derivative q′ of q =
d∏

i=1

(z + i) has d− 1 real roots (critical points of q), denoted rj,

such that rj ∈ (−1− j,−j), for j = 1, . . . , d− 1. In addition, r1 ≤ −1− 1/d.

Proof. For (i) note that, clearly, p has no positive root and that 0 is a root, for any d. It is
also clear that −d− 1 is a root, if d is even. Let us check that no other real roots exist.

Note that the roots of q are −d, · · · ,−1 and, since q(0) = d!, it is clear that q′(−1) > 0,
so q is increasing in (−1, 0]. Hence, the only solution of q(z) = d! (i.e. p(z) = 0) in [−1, 0] is
0. Moreover, the sign of q′(−j), for j = 1, . . . , d, alternates, which means that, if d is odd,
q′(−d) > 0 while, if d is even, q′(−d) < 0. Thus, for odd d, q is increasing on (−∞,−d) so
there is no solution of q(z) = d! in (−∞,−d]; for even d, q is decreasing in (−∞,−d), and
−d− 1 is the only solution of q(z) = d! in (−∞,−d].

Finally, we show that q(z) = d! has no solution in (−d,−1), by proving that |q(z)| < d!
in that interval. Let z = −k − ξ, with k ∈ {1, . . . , d − 1}, 0 < ξ < 1. We consider the case
k = 1 and k > 1 separately: For k = 1 we have

|q(z)| = ξ(1− ξ)
d∏

i=3

(i− 1− ξ) ≤
d∏

i=3

i < d!,

and, for k > 1,

|q(z)| ≤
d∏

i=1

(| − k + i|+ 1)

=
k∏

i=1

(k − i + 1)
d∏

i=k+1

(i− k + 1)

= k!2 · · · (d− k + 1)

< k!(k + 1) · · · d = d!.

For (ii) we can consider q as a real polynomial and it follows, from Rolle’s theorem, that the
roots of q′ are real numbers rj, with multiplicity one and locations rj ∈ (−j − 1,−j), for
j = 1, . . . , d− 1. Moreover, the derivative of q is given by

q′(z) = q(z)
d∑

i=1

1

z + i
.
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Let η ∈ (0, 1), then q(−1− η) < 0 and so, q′(−1− η) > 0 if

d∑
i=1

1

−1− η + i
= −1

η
+

d−1∑
j=1

1

j − η
≤ −1

η
+

d− 1

1− η
< 0.

That is, if η < 1/d. Then, for the critical point r1 we have r1 ≤ −1− 1/d.

From the above lemma it follows that R= = {λ ∈ R(p) : λ 6∈ {0,−d− 1}}.

Proposition 4.2.3 For d ≥ 2, k ≥ 1 and n > k, let fn(z) =
d∏
j=1

((z + n− 1)d + j). Let also

Bk =
∏

n≥k+1

(
1− d!

fn(0)

)
, and

ϕ(z) =
d!Bk

fk+1(z)

∏
n≥k+1

fn(z)

fn(z)− d!
, z ∈ D, (4.2.8)

where D = C\P∆d . Then ϕ is the analytic continuation of the sequence b(k)
j in (4.2.6) to the

domain D. Furthermore, the singularities of ϕ are isolated poles, elements of the countable
set P∆d .

Proof. First we show that ϕ is well defined and is analytic in D. Note that fn(0) = (dn)!
(d(n−1))!

,
then Bk <∞ if and only if the series

∑
n≥k

1
(dn+1)···(dn+d)

<∞, which holds because d ≥ 2.

We now check that ϕ is analytic on D. To that end it we observe that

∏
n≥k+1

fn(z)

fn(z)− d!
= lim

m→∞

m∏
n=k+1

fn(z)

fn(z)− d!
= lim

m→∞

m∏
n=k+1

(
1 +

d!

fn(z)− d!

)
,

where the limit on the rhs of the expression above exists and is analytic if the series
∑

n≥k+1

1
|fn(z)−d!|

converges uniformly on compact sets contained in D. So, let V be a disk of radius R con-
tained in D. Choose n0 such that n0 > 1 + R + (d − 1)!, then, for n ≥ n0, we have
|fn(z)− d!| > (d(n− 1) + 1− dR)d − 1 and we conclude that ϕ is analytic on D.

Furthermore, from formula (4.2.8) we can see that the zeros of fn(z)−d! are the potential
singularities of ϕ, for n ≥ k + 1, but not all of them are poles. First, we observe that
fn(−n+ 1) = d!, so {−k,−k− 1,−k− 2 . . .} is a set of potential poles. However, noting that

fn−1(−n + 1) =
d∏

i=1

(i − d) = 0 we have that only −k and −k − 1 are actual poles, the rest

are not, because of cancellation.

We illustrate this with −k − 2, noting that in the expression of ϕ we have

fk+2(z) = (z + k + 2)d
d−1∏
j=1

((z + k + 1)d + j) = 0
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in the numerator and

fk+3(z)− d! = (z + k + 2)
∏

λ 6=−k−2

(z − λ) = 0

in the denominator. So, we apparently have a ratio of type 0/0 if z = −k − 2 but in fact,
it is well defined because of the cancellation of ((z + k + 1)d + j). The same idea applies to
−k − 3,−k − 4, etc.

Additionally, observe that fn(−d−1 − n) = (−1)dd! and so, if d is even, we see that this
is another potential pole, but the same cancellation noted above also takes place in this
case. Moreover, all these candidates cancel out. To see this, observe that fn+1(− 1

d
− n) =

d∏
i=1

(i − 1) = 0, for n ≥ k + 1. Finally if λ is a not real root of p(z), then λ/d + 1 − n is a

complex zero of fn(z)− d!. There are d− 1 or d− 2 such zeros, depending on the parity of
d and there is no cancellation in this case. So P∆d is the set of poles of ϕ, as stated, and ϕ
is analytic in C \ P∆d .

To conclude, we verify that ϕ interpolates the sequence b(k)
j . Indeed, for j ≥ 0, we have

ϕ(j) =
d!Bk

d∏
i=1

(d(j + k) + i)

∏
n≥k+1

fn(z)

fn(z)− d!

=
d!

d∏
i=1

(d(j + k) + i)

k+j∏
n=k+1

(
1− d!

d∏
i=1

(d(n− 1) + i)−1
)

= b
(k)
j .

We continue our brief study of the roots of polynomial p(z), of Definition 4.2.1. This
analysis will provide elements to check the conditions of Theorem 3.2.1. The analytic theory
of zeros and critical points of polynomials is a well known and extensively developed topic.
For additional information, the interested reader can consult the references [9, 46, 48]. To
avoid trivialities, we assume in the rest of this chapter that d ≥ 2. Before stating the next
lemma, we need a general property due to Grace-Heawood, that establishes a connection
between the roots of a polynomial and their critical points. We quote the version of the
result that appears in [6]; see also [59].

Theorem 4.2.1 (Grace-Heawood) Let z1 6= z2 be zeros of a polynomial of degree d ≥ 2.
Then the polynomial has a critical point in the region{

z ∈ C :
∣∣z − z1+z2

2

∣∣ ≤ 1
2
|z1 − z2| cot

(
π
d

)}
.

Proof. See theorem 4.3.1 in page 126 of [48].

Now we provide some facts about the roots of p of Definition 4.2.1. and a localization
property related to r1 of Lemma 4.2.3.
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Lemma 4.2.4 With the notation of Definition 4.2.1 and Lemma 4.2.3, the following prop-
erties hold.

(i) |λ| ≤ d + 1, <(λ) ≤ 0 and |=(λ)| ≤ (d!)1/d, for λ ∈ R(p),
(ii) |< (λ) | ≥ αd(r1), for λ ∈ R(p), λ 6= 0,

where

αd(r1) = 2|r1|+ d cot2
(
π
d

)
−
√(

2|r1|+ d cot2
(
π
d

))2

− 4r2
1. (4.2.9)

Proof. We reason by contradiction. In (i) we show that if any of the statements does not
hold, for some λ0 ∈ R(p), then |q(λ0)| > d!. Indeed, if |λ0| > d + 1 then

|q(λ0)| =
d∏
j=1

|λ0 + j| ≥
d∏
j=1

(|λ0| − j) >
d∏
j=1

(d + 1− j) = d!.

If <(λ0) > 0 then |q(λ0)| =
∏d

j=1 |<(λ0) + j| >
∏d

j=1 j = d!. Finally, if |=(λ0)| > (d!)1/d, then
|q(λ0)| =

∏d
j=1 |=(λ0)| >

∏d
j=1(d!)1/d = d!.

For (ii) we assume first d > 2. Suppose that |< (λ0) | < αd(r1), for some λ0 ∈ R(p), λ0 6= 0.
Then |< (λ0) | < 2|r1|. From Lemma 4.2.3 and Theorem 4.2.1, with z1 = 0 and z2 = λ0, there
exists a critical point of p (hence, of q), say r ∈ R (possibly r 6= r1), such that∣∣∣∣r − λ0

2

∣∣∣∣ ≤ 1

2
|λ0| cot

(π
d

)
. (4.2.10)

A geometrical analysis, illustrated in Figure 4.1, yields the inequalities

0 < |r1| −
|<(λ0)|

2
≤
∣∣∣∣r1 −

λ0

2

∣∣∣∣ ≤ ∣∣∣∣r − λ0

2

∣∣∣∣ ≤ 1

2
|λ0| cot

(π
d

)
. (4.2.11)

Figure 4.1: Geometric visualization of inequalities in (4.2.11).

Moreover, noting that

|q(λ0)| =
d∏
k=1

(k2 + 2k<(λ0) + |λ0|2)1/2 ≥
d∏
k=1

(k2 − 2d|<(λ0)|+ |λ0|2)1/2,
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from (4.2.11) we have, since cot2(π/d) > 0 for d > 2,

−2d|<(λ0)|+ |λ0|2 ≥ −2d|<(λ0)|+ (2|r1| − |<(λ0)|)2

cot2(π/d)

=
4|r1|2 − |<(λ0)|(4|r1|+ 2d cot2(π/d)) + |<(λ0)|2

cot2(π/d)
> 0.

(4.2.12)

so |q(λ0)| > d! and we are done. For the positivity in (4.2.12) we can argue by considering
the numerator in the second line, as the quadratic polynomial R(x) := x2 − bx + c, with
x = |<(λ0)|, b = 4|r1| + 2d cot2(π/d) and c = 4|r1|2. Also, R has real roots x1, x2, with
x1 = (b−

√
b2 − 4c)/2 = αd(r1) < x2, since clearly, b2 > 4c. Moreover, R(x) > 0, for x < x1,

that is, for |<(λ0)| < αd(r1), which is our assumption. If d = 2, we have R(p) = {−3, 0},
cot(π/d) = 0, λ = −3, r1 = −3/2 and αd(r1) = 2|r1| = 3. So, as stated, |<(λ)| = αd(r1).

Remark 4.2.1 The interest of Lemmas 4.2.3 and 4.2.4 is to allow a precise estimation of ε0

in Proposition 4.2.4 below. As pointed out in [41], the polynomial p(z) appears in a variety of
problems in combinatorial analysis. For example, in the study of random increasing k trees
or packing problems, see additional references in [41]. Furthermore, a graphical analysis of
the distribution of zeros of p(z) is also given in [41]. This study suggests, as d increases, the
roots approach the implicit curve |z−z(1 + z)1+z| = 1. This can be interesting in order to
complement and to expand our study of zeros and critical points, shown in Lemmas 4.2.3
and 4.2.4, if d is large. We illustrate the situation in Figure 4.2 below

(a) Roots of p, d = 2, . . . , 10. (b) Zeros for d = 2, . . . , 60.

Figure 4.2: Behavior of roots (red dots) of p as d increases. The limiting implicit curve
|z−z(1 + z)1+z| = 1 is in blue.

Proposition 4.2.4 With the notation of Definition 4.2.1, Proposition 4.2.3 and Lemmas
4.2.3, 4.2.4, let

γm = {z ∈ C : |z| = m+ ε},

for m ≥ 1, ε > 0. Then there exist m0 ≥ k + 1, ε0 > 0 such that γm ∩ P∆d = ∅, for all
m ≥ m0, ε ≤ ε0.

Proof. We show that, for sufficiently largem and sufficiently small ε, it holds that fn(z) 6= d!,
for all z ∈ γm, n ≥ 2.
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Setting z = (m+ ε)eiθ, with θ ∈ [0, 2π] and a = (n− 1)d + j, we have

|fn(z)| =
d∏
j=1

(|z|2d2 + 2ad<(z) + a2)
1
2

=
d∏
j=1

((m+ ε)2d2 + 2ad(m+ ε) cos θ + a2)
1
2

≥
d∏
j=1

|(m+ ε)d− a|

=
d∏
j=1

|(m− n+ 1 + ε)d− j|.

(4.2.13)

Depending on the relation between n and m, we separate the analysis into two cases. If
|m− n+ 1 + ε| ≥ 2, from (4.2.13) we have

|fn(z)| ≥ (|m− n+ 1 + ε|d− d)d ≥ dd > d!.

On the other hand, if ε < 1, the condition |m − n + 1 + ε| < 2 is equivalent to m − n ∈
{−3,−2,−1, 0}. If m− n = −3, then (4.2.13) yields

|fn(z)| ≥
d∏
j=1

|(ε− 2)d− j| =
d∏
j=1

|(2− ε)d + j| > d!.

If m − n = −2 the analysis is similar. In the two remaining cases (n = m + 1 and n = m),
inequality (4.2.13) is not useful so we prove directly that |fn(z)− d!| = |p((z+n− 1)d)| 6= 0.
That is, we have to show that (z+n−1)d = ((m+ε)eiθ+n−1)d is not a root of p. Recalling
that λj, j = 1, . . . , d are the roots of p and letting n = m+ 1 and u = (z +m)d, we have

|fn(z)− d!|2 = |p(u)|2 =
d∏
j=1

|u− λj|2.

Let Qj(θ) = |u− λj|2, for j = 1, . . . , d. Then, as a function of θ, Qj(θ) is continuous and so
reaches its minimum in [0, 2π]. For the boundary points we have the value

Qj(0) = Qj(2π) = |λj − (2m+ ε)d|2

= |λj|2 − 2(2m+ ε)d<(λj) + (2m+ ε)2d2

≥ (2m+ ε)2d2,

since, by 1 of Lemma 4.2.4, <(λj) ≤ 0.

If the minimum of Qj is reached at θ∗ ∈ (0, 2π), then θ∗ is a critical point of Qj and
we compute Q′j(θ) = ∂

dθ
|u − λj|2. Noting that <(u) = ((m + ε) cos θ + m)d and =(u) =

d(m+ ε) sin θ, and letting α := =(λj) and β := md−<(λj), we have

Qj(θ) = d2(m+ ε)2 + 2d(m+ ε)(β cos θ − α sin θ) + β2 + α2
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and, consequently,

Q′j(θ) = −2d(m+ ε)α cos θ − 2d(m+ ε)β sin θ.

Hence, Q′j(θ∗) = 0 is equivalent to β sin θ∗ = −α cos θ∗ (note that β > 0 because <(λj) ≤ 0).

Now, replacing θ by θ∗ in Qj(θ), we get

Qj(θ
∗) = d2(m+ ε)2 + 2d(m+ ε)

(
β +

α2

β

)
cos θ∗ + β2 + α2

= d2(m+ ε)2 ± 2d(m+ ε)
√
α2 + β2 + β2 + α2

=
(

d(m+ ε)±
√
α2 + β2

)2

.

In the expression above we clearly must pick the minus sign (that is, cos θ∗ ≥ 0), which yields
Qj(θ

∗) < Qj(0). Hence, for all θ ∈ [0, 2π],

Qj(θ) ≥ Qj(θ
∗) =

(
d(m+ ε)−

√
α2 + β2

)2

and there remains to check that Qj(θ
∗) > 0 for all j = 1, . . . , d, in order to reach the

conclusion |fn(z)− d!| > 0. To that end, we observe that

lim
m→∞

(
d(m+ ε)−

√
α2 + β2

)2

= (<(λj) + dε)2. (4.2.14)

The result above indicates that for m large enough and ε sufficiently small, we have Qj(θ
∗) >

0, for j = 1, . . . , d. Hence we have the conclusion in the case n = m + 1. Finally, the
remaining case n = m is dealt with in a similar fashion and details are thus omitted.

Proposition 4.2.5 There exists a positive constant c such that |ϕ(z)| < c, for all z ∈ γm,
for all m ≥ m0, where ϕ is defined in (4.2.8).

Proof. Let z = (m + ε)eiθ ∈ γm then, from inequality (4.2.13), with n = k + 1, and taking
m ≥ k + 1, we have

∣∣fk+1

(
(m+ ε)eiθ

)∣∣ =
d∏
j=1

∣∣∣d((m+ ε)eiθ + k) + j
∣∣∣

≥
d∏
j=1

∣∣∣d(m− k + ε)− j
∣∣∣ =

d∏
j=1

∣∣∣d(m− k)− j + dε)
∣∣∣ ≥ (dε)d.

(4.2.15)

Moreover, observe that∣∣∣∣∣ ∏
n≥k+1

fn(z)

fn(z)− d!

∣∣∣∣∣ =
∏

n≥k+1

∣∣∣∣1 +
d!

fn(z)− d!

∣∣∣∣ ≤ ∏
n≥k+1

(
1 +

d!

|fn(z)− d!|

)

= exp

( ∑
n≥k+1

log

(
1 +

d!

|fn(z)− d!|

))

≤ exp

(
d!
∑
n≥k+1

1

|fn(z)− d!|

)
.
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So, if we bound
∑

n≥k+1

1
|fn(z)−d!| uniformly on m, the result follows. We decompose the sum

for n = k + 1, . . . ,m− 1; then for n = m,n = m+ 1, n ≥ m+ 2 and bound all the terms.

Note from (4.2.13) that, if n ≤ m− 1, we have

|fn(z)| ≥
d∏
j=1

((m− n+ 1 + ε)d− j) ≥ (m− n+ ε)ddd

and so, |fn(z)− d!| ≥ (m− n+ ε)ddd − d!. Then, provided that m0 ≥ k + 2,
m−1∑
n=k+1

1

|fn(z)− d!|
≤

∞∑
j=1

1

(j + ε)ddd − d!
<∞. (4.2.16)

Now if n ≥ m+ 2 then, from (4.2.13),

|fn(z)| ≥
d∏
j=1

|(m− n+ 1 + ε)d− j|

=
d∏
j=1

((n−m− 1− ε)d + j)

≥ (n−m− 1− ε)ddd + d!.

Hence, |fn(z)− d!| ≥ dd(n−m− 1− ε)d and∑
n≥m+2

1

|fn(z)− d!|
≤ 1

dd

∞∑
j=2

1

(j − 1− ε)d
<∞. (4.2.17)

The cases n = m + 1 and n = m follow from the corresponding analysis in the proof of
Proposition 4.2.4. For example, if n = m+ 1, m large and ε small enough, from (4.2.14) we
have

|fm+1(z)− d!| ≥ 1

2

d∏
j=1

|<(λj) + dε| > 0, (4.2.18)

so |fm+1(z) − d!| is bounded by a positive constant independent of m. The case n = m is
analogous.

Summarizing, the conclusion follows from the bounds in (4.2.15), (4.2.16), (4.2.17) and
(4.2.18).

Theorem 4.2.2 For sufficiently large n,

λ
(k)
n+1 = −(−1)n

∑
s∈P

∆d

Res
z=s

[
n!ϕ(z)

z(z − 1) . . . (z − n)

]
, (4.2.19)

where Res
z=s

ψ(z) is the residue of ψ(z) at z = s, and ϕ, P∆d are defined in Proposition 4.2.3.

Proof. The result follows from Theorem 3.2.1, whose hypotheses are verified in Propositions
4.2.4 and 4.2.5.

77



Computation of residues

We proceed to evaluate the residues in the right-hand side of (4.2.19).

Proposition 4.2.6 Let Ψ(z) = n!ϕ(z)
z(z−1)...(z−n)

. Then, for the real poles the residues are

Res
z=−k

Ψ(z) =
(−1)n+1

kdHd

(
n+ k

k

)−1 k∏
j=2

fj(0)

fj(0)− d!
,

Res
z=−k−1

Ψ(z) =
(−1)n

(n+ k + 1)dHd

(
n+ k

k

)−1 k∏
j=2

fj(0)

fj(0)− d!
,

(4.2.20)

where Hd =
∑d

i=1
1
i
, and fj(0) =

∏d
i=1(d(j − 1) + i). On the other hand, in the case of

complex poles, we have, for λ ∈ R=, m ≥ k + 1,

Res
z=1−m+λ

d

Ψ(z) =
n!(−1)n−1

(1−m+ λ
d
)n+1

Bk

d!d
∑d

j=1
1

λ+j

1

fk+1(1−m+ λ
d
)

×
∏
j≥k+1
j 6=m

fj(1−m+ λ
d
)

fj(1−m+ λ
d
)− d!

,
(4.2.21)

where (s)n+1 = s(s− 1) · · · (s− n) denotes the falling factorial.

Proof. Usual computation of residues, as in the proof in Proposition 3.2.5.

The next step is to obtain the asymptotic behavior of residues in Proposition 4.2.6.

Lemma 4.2.5 As n→∞,

Res
z=−k

Ψ(z) ∼ (−1)n+1 (k − 1)!

dHd

(
k∏
j=2

fj(0)

fj(0)− d!

)
n−k

Res
z=−k−1

Ψ(z) ∼ (−1)n
k!

dHd

(
k∏
j=2

fj(0)

fj(0)− d!

)
n−(k+1)

(4.2.22)

Proof. The results follow from using Stirling’s approximation in equations (4.2.20).

We turn our attention to the complex poles of which, as we know, there are countable
many. So we study the asymptotic order (as n→∞) of the series∑

λ∈R=

∑
m≥k+1

Res
z=1−m+λ

d

Ψ(z). (4.2.23)

where R= is the set of roots of p(z) =
d∏

i=1

(z + i) − d! with =(λl) 6= 0, See Definition 4.2.1.

For technical reasons, we deal separately with the first term, namely m = k + 1.
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Lemma 4.2.6 As n→∞,

∑
λ∈R=

∣∣∣∣∣ Res
z=−k+λ

d

Ψ(z)

∣∣∣∣∣ ≤ Cn−(k+η(d)), (4.2.24)

where C is a positive constant and η(d) = min{|<(λ)| : λ ∈ R=} > 0.

Proof. We consider the formula (4.2.21), with m = k+1 and bound its modulus. First, note
that, by Stirling’s approximation, as n→∞,

n!(−1)n−1

(λ
d
− k)n+1

∼ Γ
(
k − λ

d

)
n
λ
d
−k,

where (s)n+1 = s(s − 1) · · · (s − n) is the falling factorial, for any s ∈ C. Furthermore, we

have that fk+1

(
λ
d
− k
)

=
d∏

i=1

(λ+ i) 6= 0 and noting that fj(λd − k) 6= d!, for j ≥ k + 2, then

Res
z=λ

d
−k

Ψ(z) ∼ Γ
(
k − λ

d

)
n
λ
d
−k

d!Bk

d∏
i=1

(λ+ i)−1

d
(
ψ(λd + d + 1)− ψ(λd)

) ∏
j≥k+2

fj(
λ
d
− k)

fj(
λ
d
− k)− d!

. (4.2.25)

Now observe that |nλ
d
−k| = n−k|nλ

d | = n−kn<(λ
d

). Hence, by taking modulus, collecting
constants and summing over λ, the result follows.

Now we estimate the contribution of poles with m ≥ k + 2 in (4.2.23).

Lemma 4.2.7 For m ≥ k + 2 and λ ∈ R=,∣∣∣∣∣ Res
z=1−m+λ

d

Ψ(z)

∣∣∣∣∣ ≤ C

(
n+m− 1

m− 1

)−1

, (4.2.26)

for sufficiently large n, where C is a positive constant not depending on n nor m.

Proof. We proceed to bound the terms in (4.2.21). First note that, since <(λ
d
) ≤ 0 (see

Lemma 4.2.4 ) it holds that |j − λ
d
|2 = j2 − 2j<(λ

d
) + |λ

d
|2 > j2, and hence,∣∣∣∣∣ n!(−1)n−1

(1−m+ λ
d
)n+1

∣∣∣∣∣ = n!
n+m−1∏
j=m−1

1∣∣j − λ
d

∣∣ ≤ n!
n+m∏
j=m

1

j − 1
≤
(
n+m− 1

m− 1

)−1

. (4.2.27)

Also, it is easy to see that, as m→∞,

∣∣∣fk+1(1−m+ λ
d
)
∣∣∣−1

=
d∏
j=1

((
d(1−m+ k) + j + <(λ)

)2
+ =(λ)2

)−1/2

→ 0. (4.2.28)
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On the other hand, for the infinite product in (4.2.25), we have

F (m) :=

∣∣∣∣∣ ∏
j≥k+1
j 6=m

fj(1−m+ λ
d
)

fj(1−m+ λ
d
)− d!

∣∣∣∣∣ ≤ ∏
j≥k+1
j 6=m

(
1 +

d!∣∣fj(1−m+ λ
d
)− d!

∣∣
)

≤ exp

(
d!
∑
j≥k+1
j 6=m

1∣∣fj(1−m+ λ
d
)− d!

∣∣
)
.

(4.2.29)

So, we need to bound the last term of (4.2.29). To that end, first note that any root zq of
q(z) =

∏d
i=1(z + i) belongs to {−d, . . . ,−2,−1} , so 0 < |zq| ≤ d. Then, every root zp of

p(z) = q(z)− d! satisfies |zp| ≤ d + (d!)1/d < 2d (see theorem 1.1 in [6] or [59]). This allows
one to write λ = ρeiθ with 0 < ρ ≤ d + (d!)1/d and θ ∈ [0, 2π], so

∣∣fj(1−m+ λ
d

)∣∣ =
d∏
l=1

((d(j −m) + l)2 + 2ρ cos(θ)(d(j −m) + l) + ρ2)1/2. (4.2.30)

Now we split the analysis into cases:

1. If j ≥ m+ 2 and noting that ρ < 2d, we have

∣∣fj(1−m+ λ
d

)∣∣ ≥ d∏
l=1

|d(j −m)− ρ+ l| ≥ (d(j −m)− ρ)d + d!.

Therefore∑
j≥m+2

1∣∣fj(1−m+ λ
d
)− d!

∣∣ ≤ 1

dd

∑
j≥m+2

1

(j −m− ρ/d)d

=
1

dd

(
1

(2− ρ/d)d
+
∑
n≥1

1

(n+ 2− ρ/d)d

)

≤ 1

dd

(
1

(2− ρ/d)d
+ ζ(d)

)
,

(4.2.31)

where ζ(d) =
∑

n≥1
1
nd .

2. If j ≤ m− 2 and since for any λ ∈ R= it holds <(λ) ≤ 0, we have

∣∣fj(1−m+ λ
d

)∣∣ =
d∏
l=1

((d(j −m) + l)2 + ρ2 + 2ρ cos(θ)(d(j −m) + l))1/2

≥
d∏
l=1

∣∣d(j −m) + l
∣∣ =

d∏
l=1

(
d(m− j)− l

)
=

d∏
l=1

(
d(m− j − 1) + d− l

)
≥ (dd − d!)(m− j − 1)d + d!.
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Hence, provided that m ≥ k + 3,
m−2∑
j=k+1

1∣∣fj(1−m+ λ
d
)− d!

∣∣ ≤ 1

dd − d!

m−2∑
j=k+1

1

(m− j − 1)d

=
1

dd − d!

m−k−2∑
n=1

1

nd

≤ 1

dd − d!
ζ(d).

(4.2.32)

3. Finally, for the cases j = m− 1, j = m+ 1, and observing that λ± d is not an integer,
we have

fm−1

(
1−m+ λ

d

)
=

d∏
l=1

(−d + λ+ l) = q(λ− d) 6= d!,

fm+1

(
1−m+ λ

d

)
=

d∏
l=1

(d + λ+ l) = q(λ+ d) 6= d!.

(4.2.33)

So, from (4.2.31), (4.2.32) and (4.2.33), we conclude that F (m), defined in (4.2.29), is
bounded as

F (m) ≤ exp
(

d!
[

1
dd

(
1

(2−ρ/d)d + ζ(d)
)

+ 1
dd−d!

ζ(d) + 1
|q(λ−d)−d!| + 1

|q(λ+d)−d!|

])
(4.2.34)

From (4.2.27), (4.2.28) and (4.2.34), the result follows.

Corollary 4.2.1 As n→∞,

Tn :=
∣∣∣ ∑
λ∈R=

∑
m≥k+2

Res
z=1−m+λ

d

Ψ(z)
∣∣∣ ≤ Cn−(k+1), (4.2.35)

where C is a positive constant.

Proof. Directly from Lemma 4.2.7 we obtain

Tn ≤
∑
λ∈R=

C(λ)
∑

m≥k+2

(
m+ n− 1

m− 1

)−1

=
k + 1

n− 1

(
n+ k

k

)−1 ∑
λ∈R=

C(λ) ≤ Cn−(k+1),

as n→∞.

Corollary 4.2.2 For k ≥ 1,

nkλ(k)
n =

(k − 1)!

dHd

k∏
j=2

fj(0)

fj(0)− d!
+O(n−η(d)), (4.2.36)

as n→∞.

Proof. The result follows from the formula in Theorem 4.2.2 and collecting the asymptotic
results of Lemmas 4.2.5, 4.2.6 and Corollary 4.2.1
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4.2.2 Weak convergence of record heights

Theorem 4.2.3 nHn
D−→ H, where H is a random variable with distribution characterized

by its moments

E(Hk) =
(k − 1)!

dHd

k∏
j=2

fj(0)

fj(0)− d!
, k ≥ 1.

In the case d = 2, H D
= U2V , where U is uniformly distributed in [0, 1], V is exponential with

mean 1 and U, V are independent.

Proof. Let ν(d)
k = (k−1)!

dHd

k∏
j=2

fj(0)

fj(0)−d!
. Then, from Corollary 4.2.2 and noting that −η(d) < 0,

E(nHn)k = nkλ
(k)
n → ν

(d)
k . We have convergence of moments and so, the result follows if we

show that the sequence (ν
(d)
k ) determines a distribution. To that end we check Carleman’s

condition, namely that
∑

k≥1(ν
(d)
2k )−

1
2k = ∞. Note that ν(d)

k is decreasing as a function of d,
so

ν
(d)
k ≤ ν

(2)
k =

(k − 1)!

2H2

k

2k + 1
=

k!

2k + 1
.

Hence (ν
(d)
k )−

1
k ≥ (ν

(2)
k )−

1
k ∼ ek−1, from the Stirling’s approximation of k!, and the series

diverges. For d = 2, if U is uniform in [0, 1] random and V is exponential, with parameter 1,
then E((U2)k) = 1

2k+1
, E(V k) = k!, so ν(2)

k = E((U2V )k).

4.3 Study of Nn

Recall that Nn is the number of chain records within the first n observations. The asymptotic
analysis of this object will be similar to the analysis in the case of [0, 1]2, in Chapter 3. The
recursion of moments in (4.2.1) and the relation between Nn and the sum of Hn are our main
tools in this section.

4.3.1 Preliminaries and previous results

Our goal is to prove that 3
logn

n∑
i=1

Hi
L2−→ 1. Under suitable modifications, we proceed as in

the case of the model U([0, 1]2).
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Lemma 4.3.1 The following asymptotic results hold
n∑

i=1

E(Hi) ∼
1

3
log n,

E(Nn) ∼ 1

3
log n,

n∑
i=1

Var(Hi) = O(1),

∑
1≤i<j≤n

E(Hi)E(Hj) =
1

18
H2
n +O(log n),

(4.3.1)

where Hn is the nth harmonic number.

Proof. The first expression in (4.3.1) follows from E(Hi) = λ
(1)
i = 1

3(i+1)
, due to (4.2.5). The

second follows from E(Ii | Fi−1) = Hi−1, which implies E(Ii) = E(Hi−1), so E(Nn) = 1
3
Hn ∼

1
3

log n. Moreover, since

Var(Hi) = λ
(2)
i −

(
λ

(1)
i

)2
=

2

5

1

(i + 2)(i + 1)
− 1

9

1

(i + 1)2
,

the third assertion is proved. Finally the last one follows by arguing as in the proof in Lemma
3.4.3.

Observe that the recurrences associated to the moments in [0, 1]2 and ∆2 are structurally
the same, so we can repeat the procedure of Proposition 3.4.2 to obtain

Proposition 4.3.1 For n, k ≥ 1, we have

E(HnHn+k) =
1

3

k−1∑
j=0

(
n− 1

j

)
(−1)j

[
2j + 3

(j + 1)(2j + 5)

(
n+ j + 2

j + 2

)−1

− 2j + 5

(j + 2)(2j + 7)

(
n+ j + 3

j + 3

)−1
]

(4.3.2)

Proof. See proof of Proposition 3.4.2.

Lemma 4.3.2 Let

q1(i, k) =
4

9

k−1∑
j=0

(
k − 1

j

)
(−1)j

2j + 5

(
i + j + 2

j + 2

)−1

, q2(i, k) =
1

9

k−1∑
j=0

(
k − 1

j

)
(−1)j

j + 1

(
i + j + 2

j + 2

)−1

, (4.3.3)

and

q3(i, k) =
4

9

k−1∑
j=0

(
k − 1

j

)
(−1)j

2j + 7

(
i + j + 3

j + 3

)−1

, q4(i, k) =
1

9

k−1∑
j=0

(
k − 1

j

)
(−1)j

j + 2

(
i + j + 3

j + 3

)−1

. (4.3.4)

Then
q3(i, k) = q1(i, k)− q1(i, k + 1), q4(i, k) = q2(i, k)− q2(i, k + 1) (4.3.5)

and q2(i, k) = 4
9
p1(i, k) and q4(i, k) = 4

9
p3(i, k), where p1, p3 as in (3.4.5) and (3.4.6). Moreover
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E(HiHi+k) = [q1 − q3 + q2 − q4](i, k). (4.3.6)

Proof. See proof of Lemma 3.4.5.

Lemma 4.3.3 The sums q1(i, k) and q3(i, k) are positive for every i, k ≥ 1.

Proof. Reasoning as in Lemma 3.4.6, we have q1(i, k) = 4
9
E
(
H2

i (1 − Hi)
k−1
)
and q3(i, k) =

4
9
E
(
H3

i (1−Hi)
k−1
)
, and the conclusion follows.

Lemma 4.3.4 Let q2 be as in (4.3.3), then

n−1∑
i=1

n−1∑
k=1

q2(i, k + 1) =
1

18
H2
n +O(1).

Proof. We proceed as in Lemma 3.4.7. Using the relation q2(i, k+1) = 4
9
p1(i, k+1), we have

4

9

n−1∑
i=1

n−i∑
k=1

p1(i, k + 1) =
4

9

n∑
l=2

l−1∑
k=1

p1(l − k, k + 1) =
1

9

n∑
l=2

l−1∑
k=1

2l − k + 2

(l + 1)(l + 2)(l − k + 1)

=
1

9

n∑
l=2

l−1∑
k=1

[
1

(l + 2)(l − k + 1)
+

1

(l + 1)(l + 2)

]
=

1

9

n∑
l=2

[
Hl

(l + 2)
− 2

(l + 1)(l + 2)

]
=

1

9

n∑
l=1

Hl

l + 2
− 1

9
+

2

9(n+ 2)

=
1

18

[
H2
n+1 −H

(2)
n+1

]
+

1

9(n+ 2)
− 2

9
+

2

9(n+ 2)
=

1

18
H2
n +O(1).

In the expression above we used a formula from [13], page 2223, and the identity Hn+1 =
Hn + 1

n+1
.

Lemma 4.3.5 Let q1 be as in (4.3.3), then
n−1∑
i=1

n−i∑
k=1

q1(i, k + 1) ≤ 4
27

(Hn − 1).

Proof. Recalling that q1(i, k) = 4
9

k−1∑
j=0

(
k−1
j

) (−1)j

2j+5

(
i+j+2
j+2

)−1, we define an auxiliary term in order

to derive a relationship between them. Let q0(i, k) = 4
9

k−1∑
j=0

(
k−1
j

) (−1)j

2j+3

(
i+j+1
j+1

)−1 and note that

q0(i, k) = 4
9
E
(
Hi(1−Hi)

k−1
)
> 0. Also, it is easy to see that (9

4
q0(i, k))k is the Euler transform

of the sequence (aj)j, with aj = 1
2j+3

(
i+j+1
j+1

)−1 and (9
4
q1(i, k))k is the Euler transform of the

sequence (aj+1)j. So, by Lemma 3.4.4, we have q1(i, k) = q0(i, k)− q0(i, k + 1). Then, taking
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into account that q0(i, k) is positive and is clearly decreasing in k, we get

n−i∑
k=1

q1(i, k + 1) = q0(i, 2)− q0(i, n− i + 2) ≤ q0(i, 2) ≤ q0(i, 1) =
4

27(i + 1)
,

and the conclusion follows.

Lemma 4.3.6 ∑
1≤i<j≤n

Cov(Hi,Hj) = o(log2 n). (4.3.7)

Proof. We have ∑
1≤i<j≤n

Cov(Hi,Hj) =
∑

1≤i<j≤n

E(HiHj)−
∑

1≤i<j≤n

E(Hi)E(Hj).

From (4.3.1),
∑

1≤i<j≤n
E(Hi)E(Hj) = 1

18
H2
n + O(log n). Moreover, from Lemmas 4.3.2, 4.3.4

and 4.3.5 , we get

∑
1≤i<j≤n

E(Hi,Hj) =
n−1∑
i=1

n−i∑
k=1

(q1 − q3)(i, k) +
n−1∑
i=1

n−i∑
k=1

(q2 − q4)(i, k)

=
n−1∑
i=1

n−i∑
k=1

q1(i, k + 1) +
n−1∑
i=1

n−i∑
k=1

q2(i, k + 1)

=
1

18
H2
n +O(log n).

Hence,
∑

1≤i<j≤n
Cov(Hi,Hj) is at most O(log n) and the conclusion follows.

4.3.2 Law of large numbers for Nn

As consequence of results in previous sections we have

Theorem 4.3.1 The record heights Hi, for the uniform model on ∆2 satisfy the following
law of large numbers,

1

log n

n∑
i=1

Hi
L2−→ 1

3
. (4.3.8)

Furthermore
Nn

log n

P−→ 1

3
. (4.3.9)

Proof. Note that

E

(
1

log n

n∑
i=1

Hi −
1

3

)2

= Var

(
1

log n

n∑
i=1

Hi

)
+

(
1

log n

n∑
i=1

E(Hi)−
1

3

)2

.
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The second term in the rhs of the decomposition above goes to 0 because of (4.3.1). Fur-
thermore,

Var

(
1

log n

n∑
i=1

Hi

)
=

1

log2 n

n∑
i=1

Var(Hi) +
2

log2 n

∑
1≤i<j≤n

Cov(Hi,Hj)→ 0,

because of (4.3.1) and (4.3.7), hence (4.3.8) holds. For (4.3.9), we have from (2.3.3) that

Nn∑n
i=1Hi

→ 1,

a.s. Then, (4.3.9) follows at once from (4.3.8).

4.3.3 Asymptotic normality for Nn

As in Chapter 3, we verify the conditions of Theorem 3.4.2.

Theorem 4.3.2 The following convergence to the normal distribution holds.

Nn −
∑n

i=1Hi√
1
3

log n

D−→ N(0, 1). (4.3.10)

Proof. Consider the sequence (ξi) defined by ξi = Ii −Hi−1, for i ≥ 1, with H0 := 1. Note
that E(Ii | Fi−1) = Hi−1, so E(ξi | Fi−1) = 0 and that E(ξ2

i | Fi−1) = Hi−1 −H2
i−1.

We conclude by checking the conditions (1) and (2) in Theorem 3.4.2, with bn =
√

1
3

log n.
For (1) we have

1

b2
n

n∑
i=1

E(ξ2
i | Fi−1) =

3

log n

n∑
i=1

Hi−1 −
3

log n

n∑
i=1

H2
i−1

P−→ 1,

by (4.3.8) and because, for any ε > 0 we get

P
( 1

b2
n

n∑
i=1

H2
i−1 > ε

)
≤ 3

ε log n

n∑
i=1

2

5i(i + 1)
→ 0. (4.3.11)

Condition (2) is direct because the ξi are bounded. Hence, (4.3.10) follows.
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Chapter 5

Work in progress

In this chapter we consider some preliminary ideas, partial results and conjectures about the
convergence in distribution of chain-maximaMn, for iid observations, uniformly distributed
on [0, 1]2.

5.1 Convergence of Mn

From Proposition 2.4.5 we know thatMn converges a.s. to (1, 1) and we would like to know
how fast this convergence takes place. In this perspective we conjecture the existence of a
real and deterministic sequence An ↑ ∞ such that

An(1−M(1)
n , 1−M(2)

n )
D−→ (X, Y ), (5.1.1)

where (X, Y ) is a nondegenerate random vector, concentrated on R2
+.

We use the fact that nHn = n(1 −M(1)
n )(1 −M(2)

n )
D−→ Z, where Z is distributed as

UV , with U uniform in [0, 1] and V is exponential with parameter 1, mutually independent
(Theorem 3.2.3, with d = 2). The first easy conclusion of (5.1.1), due to symmetry, is that
X
D
= Y . Another simple conclusion, based on the continuous mapping theorem (see e.g [11]),

is that A2
n(1−M(1)

n )(1−M(2)
n )

D−→ XY that we compare with Z.

Proposition 5.1.1 (i) If (5.1.1) holds then the distribution of (X, Y ) cannot concentrate
on any (nondegenerate) hyperbola. In other words, P(XY = c) < 1, for any constant c > 0.

(ii) If P(XY = 0) = 1 , then An = o(
√
n).

Proof. (i) Suppose XY = c > 0 a.s., then A2
n(1−M(1)

n )(1−M(2)
n )→ c in probability. Hence,

by Slutsky’s theorem and knowing that Z is nondegenerate, we have the contradiction

n

A2
n

=
n(1−M(1)

n )(1−M(2)
n )

A2
n(1−M(1)

n )(1−M(2)
n )

D−→ Z

c
.
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(ii)

A2
n

n
[n(1−M(1)

n )(1−M(2)
n )]2 = A2

n(1−M(1)
n )(1−M(2)

n )n(1−M(1)
n )(1−M(2)

n )→ 0,

so An/n2 → 0 because [n(1−M(1)
n )(1−M(2)

n )]2
D−→ Z2.

From the above results we can say that convergence in distribution to a probability con-
centrated on the axes is still possible but in such case, the normalizing sequence An is o(

√
n).

So √
n(1−M(1)

n , 1−M(2)
n ) 6 D−→ (X, Y ),

if P(XY = 0) = 1. If all the mass is drifting to the axes, then we have no proper convergence
in distribution on the axes and possibly, the mass is escaping to +∞.

We ask if we can have convergence in distribution to non degenerate random vectors in
both cases, that is, with An = o(

√
n), assuming XY = 0, and with

√
n. This cannot happen,

as seen below.

The knowledge about the asymptotic behavior of moments is informative about the possi-
ble normalizing sequence An. In Chapter 3, we give a general treatment for mixed moments.
From Corollary 3.3.2 we have

µk,ln = E
[
(1−M(1)

n )k(1−M(2)
n )l

]
∼ Cnz

+
1 = Cn−

k+l
2

+rkl−1,

where rkl = 1
2

√
(k − l)2 + 4 and C is a constant. We show that sequences An = nα, with

α < 1/2 are not admissible for convergence in distribution to a nondegenerate random vector.

Observe that E(nα(1 − M(1)
n ))k ∼ Cn−k( 1

2
−α)+

√
k2+4/2−1. We consider the existence of

k such that the exponent of n is negative. Let α = 1/2 − ε, with 0 < ε < 1/2, and let
sε(k) =

√
k2 + 4/2− kε− 1.

Proposition 5.1.2 (i)
√
n(1−M(1)

n , 1−M(2)
n ) and An(1−M(1)

n , 1−M(2)
n ), with An = o(

√
n),

cannot converge simultaneously, in distribution, to nondegenerate random vectors.

(ii) For any ε ∈ (0, 1/2) there exists kε > 0 such that sε(kε) < 0.

Proof. (i) If
√
n(1 −M(1)

n , 1 −M(2)
n )

D−→ (X, Y ) and An(1 −M(1)
n , 1 −M(2)

n )
D−→ (X ′, Y ′)

then, for some α, β, we have α
√
n(1−M(1)

n ) +β
√
n(1−M(2)

n )
D−→ αX +βY non degenerate

and αAn(1−M(1)
n )+βAn(1−M(2)

n )→ αX ′+βY ′ nondegenerate. Then, by the convergence
of types theorem, we have An/

√
n→ A > 0, which is a contradiction.

(ii) Note that sε(k) is continuous and that sε(0) = 0. Also, its derivative s′ε(k) = k
2
√
k2+4
−ε

yields s′ε(0) < 0 and so, sε(k) is negative on some interval (0, k∗ε). In fact, k∗ε is solution of
sε(k) = 0, given by k∗ε = 8ε

1−4ε2
> 0. We can choose kε ∈ (0, k∗ε) arbitrarily.

Corollary 5.1.1 Let ε ∈ (0, 1/2), α = 1/2−ε and kε ∈ (0, k∗ε). Then there exists a constant
C such that
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(i) E(nα(1−M(1)
n ))kε ∼ Cnsε(kε) → 0.

(ii) nα(1−M(1)
n , 1−M(2)

n )→ (0, 0) in probability.

Proof. The first assertion follows from Proposition 5.1.2 (ii); the second, from Markov’s
inequality.

Observe that, for ε = 0 (that is nα = n1/2), we have s0(k) > 0 for all k > 0, so this implies
E(nk/2(1−M(1)

n )k)→∞. We now consider the density.

Proposition 5.1.3 Let Zn = nα(1−M(1)
n , 1−M(2)

n ) and hαn(x, y) its density function. Then
hαn(x, y)→ 0, for all (x, y) ∈ R2

+, 0 < α < 1/2.

Proof. Let x, y, h ∈ R+. If hαn(x, y) 6→ 0 then, for some δ > 0, hαn′(x, y) > δ along a
subsequence (n′). More over, since hαn is decreasing in both coordinates, we have hαn′(s, t) > δ,
for all s ≤ x, t ≤ y. This implies that Zn′ 6→ (0, 0) in probability, which contradicts (ii) of
Corollary 5.1.1.

If An grows faster than
√
n we see, not surprisingly, mass escaping to infinity in some

sense. Let then An ↑ ∞ such that n/A2
n → 0. We have A2

n(1 −M(1)
n )(1 −M(2)

n ) → ∞ in
probability, i.e. P(A2

n(1−M(1)
n )(1−M(2)

n ) ≤ c)→ 0 for all c > 0. So, for any finite rectangle
R ⊂ R2

+, P(An(1−M(1)
n , 1−M(2)

n ) ∈ R)→ 0, that is, the joint df is converging to 0.

We come back to an arbitrarily slow sequence An = o(
√
n). In this case we necessarily

have A2
n(1−M(1)

n )(1−M(2)
n )→ 0 in probability because n(1−M(1)

n )(1−M(2)
n )

D−→ Z. This
means that all the mass is going to the axes, but we do not know if An(1−M(1)

n , 1−M(2)
n )

is converging or not in distribution; it may well happen that part of the mass goes to ∞
along the axes. It is clear though that, for any finite rectangle R with edges away from both
axes, P(An(1−M(1)

n , 1−M(2)
n ) ∈ R)→ 0, which is the same conclusion obtained above, for

sequences growing faster than
√
n. We can argue as in the proof of Proposition 5.1.3 to prove

that, for general sequences (not just powers of n) An growing faster or slower than
√
n, the

density of An(1−M(1)
n , 1−M(2)

n ) goes to 0 (excluding the axes in the slow case).

5.2 Solving the recurrence for fn

Here we provide an analysis of the recurrence satisfied by fn, the density ofMn. From (2.2.8)
we have f1(x, y) = 1[0,1]2(x, y) and, for n ≥ 1,

fn+1(x, y) = (1− (1− x)(1− y))fn(x, y) + Fn(x, y)1[0,1]2(x, y), n ≥ 1, (5.2.1)
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Recurrence (5.2.1) can be solved for small values of n. For example, using the software
wxMaxima we obtain

f2(x, y) = x+ y,

f3(x, y) =
1

2
(x+ y)(2(x+ y)− xy),

f4(x, y) = (x+ y)3 +
xy

12

[
5xy(x+ y)− 14(x+ y)2 − 2xy

]
.

We list below some elementary properties of fn.

Proposition 5.2.1 The solution fn of recurrence (5.2.1) satisfies

1. fn is non-negative and integrates 1 in [0, 1]2.
2. fn is increasing in both x and y.
3. fn(0, 0) = 0, fn(1, 1) = n.
4. fn is a polynomial function only of xy and x+ y, with no constant coefficient.
5. The (sum) degree of fn is 2n− 3 and the lowest degree of a monomial is n− 1.
6. Let fn be written as

fn(x, y) =
∑
i,j≥0

anijx
iyj.

Then the coefficients anij, i, j ≥ 0, n ≥ 1, are symmetrical, in the sense that anji = anij,
and satisfy the recurrence

anij = an−1
i−1,j + an−1

i,j−1 − an−1
i−1,j−1Kij, (5.2.2)

for n ≥ 2, where Kij = 1− 1
ij
, if i, j > 0, and Kij = 0 otherwise. Further, a1

00 = 1 and
a1

ij = 0, if i 6= 0 or j 6= 0.
7. For n ≥ 2, anij = 0 if (i, j) 6∈ {(i, j) ∈ N2 : n− 1 ≤ i + j ≤ 2n− 3}.
8. Some particular cases of anij:

ann−1−i,i =

(
n− 1

i

)
,

for i = 0, . . . , n− 1.

ann−1,n−2 = (−1)nK12K23 · · ·Kn−2,n−1 = (−1)n
1

2

5

6

11

12
· · ·
(

1− 1

(n− 1)(n− 2)

)
.

5.3 Delannoy numbers

We observe that a similarity exists between the anij coefficients, which satisfy recurrence
(5.2.2), and Delannoy numbers d(m, k), which satisfy

d(m, k) = d(m− 1, k) + d(m, k − 1) + d(m− 1, k − 1). (5.3.1)

The value d(m, k) can be seen as the number of increasing paths from (0, 0) to (m, k) in Z2.
The movements along a path can be horizontal, vertical or diagonal. See Figure 5.1. The
boundary conditions are d(0, 0) = d(m, 0) = d(0, k) = 1.
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Figure 5.1: A Delannoy path from (0, 0) to (5, 3).

These numbers, first studied by Henri Delannoy [15], arise in many combinatorial prob-
lems, in particular the central Delannoy numbers (m = k) have been intensively studied; see
[8, 55, 56] for further information.

Observe that (5.2.2) suggests a generalization of the Delannoy numbers when one considers
attaching weights to the segments, which are added to define the weight of each path. See,
for example, [23, 45] and [19]. However, among the above cited works, none considers paths
with weights depending on the current state, which is our situation.

We define a directed graph G with vertices (i, j), i, j = 0, 1, . . . and edges (i, j)→ (i+1, j),
called E (for east), (i, j) → (i, j + 1), called N (for north) and (i, j) → (i + 1, j + 1), called
NE (for north-east); see Figure 5.2.

Figure 5.2: Possible movements in the graph.

The edges of graph G have weights as follows: all N and E edges have weight 1 and
the NE edge (i − 1, j − 1) → (i, j) has weight −Kij, i, j > 0. Let us consider two vertexes
with positive integer coordinates, (i, j) and (I, J) where i ≤ I, j ≤ J . A path from (i, j) to
(I, J) is defined as a collection of edges (ik, jk)→ (ik+1, jk+1), for k = 1, . . . , n− 1, such that
(i1, j1) = (i, j), (in, jn) = (I, J). The length of a path is defined as the number of its edges;
a path with length l is called l-path; the weight of a path is defined as the product of the
weights of all its edges.

Proposition 5.3.1 The value of anij is equal to the sum of weights of all Delannoy paths of
length n− 1, from (0, 0) to (i, j).

91



5.4 Stick- and board-breaking models

We consider a continuous-time model, based on ideas from Brennan and Durrett [12]. These
authors develop a stick-breaking model and pay attention (among other things) to the evo-
lution of a tagged interval, using tools from Renewal Theory. We propose a two-dimensional
extension of Brennan and Durrett’s model that we call the board-breaking model.

5.4.1 Stick-breaking

Consider a stick of length L which, after an exponential time of rate Lα, for α > 0, breaks
into two new sticks, without loss of mass. The resulting sticks have lengths that can be
represented by the random variables LU and L(1 − U), where U is a [0, 1]-valued random
variable with df F . The same procedure is applied to the new segments, using independent
copies of U , and so on.

Among other processes studied in [12], we are interested in the length at time t, denoted
Lt, of the left-most interval. We choose this particular interval because its evolution is
surprisingly similar to that of records in [0, 1].

We collect below some properties of the process (Lt), as presented in [12], with some
changes of notation. We assume that L0 = L = 1, for simplicity.

Note first that (Lt), for t ≥ 0, is a Markov jump process, with state space [0, 1]. At every
jump time, Lt gets multiplied by an independent copy of U , so that the successive values of Lt
are 1, U1, U1U2, . . . and the holding times are exponential random variables with parameters
1, Uα

1 , (U1U2)α, . . ., where U1, U2, . . . are independent copies of U .

The range of {− logLt : t ≥ 0} is given by 0 = S0 < S1 < · · · , where Sn = −
∑n

i=1 logUi,
for n ≥ 1, are the arrival epochs of renewal process, with interarrival times distributed as
− logU . More precisely,

P(Sn+1 − Sn ≤ x) = P(− logU ≤ x) = F̂ (x),

where F̂ (x) = 1−F (e−x−). Conditionally on S1, S2, . . ., the holding times of − logLt at each
Sn are independent, exponential random variables, with rates e−αSn .

Let My = sup{n ≥ 0 : Sn ≤ − log y}, for y ∈ (0, 1) and let (ξ′n)n≥0 be an independent
sequence of iid exponential random variables, with unit mean. Then

P(Lt < y) = P
( My∑
n=0

exp(αSn)ξ′n ≤ t
)
.

Note that
My∑
i=0

exp(αSi)ξ
′
i =

My∑
i=0

exp(αSMy−i)ξ
′
My−i. (5.4.1)
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Then, letting Tn(y) = − log y − SMy−n, we obtain

My∑
i=0

exp(−αTi(y)− α log y)ξ′My−i = y−α
My∑
i=0

exp(−αTi(y))ξ′My−i. (5.4.2)

Now we replace (ξ′My−i)i by new iid sequence (ξi)i of exponential random variables, with unit
mean, to obtain

P
( My∑

i=0

exp(αSi)ξ
′
i ≤ t

)
= P

( My∑
i=0

exp(−αTi(y))ξi ≤ yαt
)
. (5.4.3)

From Renewal Theory (see [50]), we know that, if F̂ has finite mean µ,

{Tn(y) : n ≥ 0} D−→ {Tn : n ≥ 0}, as y → 0+, (5.4.4)

where {Tn : n ≥ 0} is the equilibrium renewal process generated by F̂ . That is, T0 has
distribution 1

µ

∫ x
0

(1− F̂ (t))dt and the remaining random variables have distribution F̂ , where

µ :=
∞∫
0

(1− F̂ (s))ds <∞. With the change of variable y = xt−1/α in (5.4.3), we get

lim
t→∞

P
(
t1/αLt < x

)
= P

(∑
i≥0

exp(−αTi)ξi ≤ xα
)
.

Finally, letting Yα =
∑
i≥0

exp(−αTi)ξi, we conclude that, as t→∞,

t1/αLt
D−→ (Yα)1/α.

5.4.2 Board-breaking

We present here a two-dimensional analog of the process described in the previous section.
The process starts with an initial (unit) square board which breaks into four rectangles,
without loss of material, defined by the edges of the square and two orthogonal lines passing
through a point, randomly chosen within the square. Each of the four resulting rectangles is
then submitted to the same breaking process so that, after each iteration, there are four times
more fragments, which become obviously smaller and smaller. As in the one-dimensional
model, the breaks occur after exponentially distributed times. We are interested in the
evolution of a tagged rectangle, namely in how fast its dimensions (side length, area) converge
to 0.

Let (Un) and (Vn) be iid sequences of [0, 1]-valued random variables, independent of each
other. Let F denote the df of the U ’s and G that of the V ’s. We consider the bivariate
process {(LFt , LGt ) : t ≥ 0}, where LFt , LGt represent respectively, the lengths of the horizontal
and the vertical sides of a tagged rectangle, with LF0 = LG0 = 0. We choose the tagged
rectangle as the one located at the left-lower corner of [0, 1]2. In this manner, the tagged
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rectangle in the board-splitting process corresponds, by analogy, to the left-most interval in
the stick-breaking model.

After the first break we have four rectangles, with sides given by (U1, V1), (1 − U1, V1),
(1 − U1, 1 − V1) and (U1, 1 − V1). The dimensions of the tagged rectangle are U1, V1. See
Figure 5.3.

Figure 5.3: Evolution of a tagged rectangle in board breaking process.

For the breaking times we assume that the rectangle with dimensions LFt , LGt breaks after
an exponential time of parameter g(LFt , L

F
t ), where g(x, y) is a positive valued function such

as, for example, g(x, y) = (xy)α or g(x, y) = xαyβ, with α, β, suitable parameters.

Observe that the sides of the tagged rectangle evolve, respectively as the sequences
1, U1, U1U2, · · · and 1, V1, V1V2, · · · , which correspond to independent one-dimensional stick
breaking processes, as described in the previous section. So, the board breaking process
seems to have no theoretical interest, because its evolution is that of two independent stick
breaking processes. We will see below that the situation is not that simple when we take into
account the continuous-time evolution of (LFt , L

G
t ).

The continuous-time evolution of (LFt , L
G
t ) is Markovian. The holding times are exponen-

tial with rates that depend on LFt and LGt . Hence, in general, the marginal processes (LFt ),
(LGt ) are not independent stick-breaking processes, and not even Markovian.

As in the stick-breaking process, the range of {− logLFt : t ≥ 0} is given by 0 = SF0 <
SF1 < · · · , where SFn = −

∑n
i=1 logUi, for n ≥ 1, are the arrival epochs of renewal process,

with interarrival times distributed as − logU . More precisely,

P(SFn+1 − SFn ≤ x) = P(− logU ≤ x) = F̂ (x),

where F̂ (x) = 1 − F (e−x−). Analogously, the range of {− logLGt : t ≥ 0} is given by
0 = SG0 < SG1 < · · · , where SGn = −

∑n
i=1 log Vi, for n ≥ 1, are the arrival epochs of renewal
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process, with interarrival times distributed as − log V and

P(SGn+1 − SGn ≤ x) = P(− log V ≤ x) = Ĝ(x),

where Ĝ(x) = 1−G(e−x−). Conditionally on SF1 , SF2 , . . . and SG1 , SG2 , . . ., the holding times
of (− logLFt ,− logLGt ) at each (SFn , S

G
n ) are independent, exponential random variables, with

rates g(e−S
F
n , e−S

G
n ). For simplicity, we use g(x, y) = (xy)α hereon, with α > 0, so the

exponential holding times have parameters e−α(SFn +SGn ). We introduce the variables SHn =
−
∑n

i=1(logUi + log Vi) and we have

P(SHn+1 − SHn ≤ x) = P(− logU − log V ≤ x) = Ĥ(x),

where Ĥ = F̂ ? Ĝ (? denotes convolution). Now, the rates of the exponential holding times
can be written as e−αS

H
n .

Let also MF
y = sup{n ≥ 0 : SFn ≤ − log y} and MG

y = sup{n ≥ 0 : SGn ≤ − log y}, for
y ∈]0, 1[. In addition, we consider an iid sequence (ξ′i)i of exponential random variables, with
unit mean. So, for t > 0 and y1, y2 ∈]0, 1[, we have

P(LFt < y1, L
G
t < y2) = P

MF
y1∑

i=0

exp(αSHi )ξ′i ≤ t,

MG
y2∑

i=0

exp(αSHi )ξ′i ≤ t

 , (5.4.5)

noting that (ξ′i)i is the same for both coordinates. Then the probability above is equal to

P

MF
y1∑

i=0

exp(αSHMF
y1
−i)ξ

′
MF
y1
−i ≤ t,

MG
y2∑

i=0

exp(αSHMG
y2
−i)ξ

′
MG
y2
−i ≤ t

 .

Now, in the sums above we make the changes of variable THFi (y) := − log y − SHMF
y −i and

THGi (y) := − log y − SHMG
y −i , to obtain

P(LFt < y1, L
G
t < y2) = P

(MF
y1∑

i=0

exp(−αTHFi (y1))ξi ≤ tyα1 ,

MG
y2∑

i=0

exp(−αTHGi (y2))ξi ≤ tyα2

)
.

(5.4.6)
Now, as in the one-dimensional model, if (from Renewal Theory?)

{THFn (y) : n ≥ 0} D−→ {THFn : n ≥ 0}, {THGn (y) : n ≥ 0} D−→ {THGn : n ≥ 0}, as y → 0+,
(5.4.7)

where {THFn : n ≥ 0}, {THGn : n ≥ 0} are some kind of “equilibrium renewal processes”, and
setting y1 = x1t

−1/α and y2 = x2t
−1/α in (5.4.6), we obtain

lim
t→∞

P(t
1
αLFt < x1, t

1
αLGt < x2) = P

(∑
i≥0

exp(−αTHFi )ξi ≤ xα1 ,
∑
i≥0

exp(−αTHGi )ξi ≤ xα2

)
.

Finally, letting Y HF
α =

∑
i≥0

exp(−αTHFi )ξi, Y
HG
α =

∑
i≥0

exp(−αTHGi )ξi, we conclude that, as

t→∞,
t1/α(LFt , L

G
t )

D−→ ((Y HF
α )1/α, (Y HG

α )1/α).

The key of the reasoning above is precisely the conjectured convergence of THFn (y), THGn (y),
as y → 0. This is an open problem.
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Final comments

In this dissertation we study chain-maxima and related processes, from a sample of iid random
vectors. Chain-maximaMn are a new multidimensional type of maxima, whose definition is
based on the usual component-wise partial order in Rd. This notion preserves the recursive
structure that one-dimensional maxima have and, consequently, a Markovian structure and
similar properties naturally arise.

Chain-records (Rn) appear as a random subsequence of (Mn) and also as the points where
the sequence (Mn) jumps. Our research about these objects is centered into two main aspects,
namely distributional and asymptotic results. First, we develop a general theory where we
present properties of chain-maxima. Then we apply the general results to particular cases,
namely the hypercube [0, 1]d and the d-simplex ∆d. Finally, we present work in progress and
open questions. Some may serve as source for future work.

In Chapter 2 we derive, under reasonable assumptions, distributional results about (Mn)
and (Rn) in a general context. The recursive relation (2.1.1) yields the Markovian structure of
these objects. Other related Markov chains emerge as well. That is the case of chain-record-
times and chain-record-values (see e.g. Corollary 2.2.1 and Proposition 2.2.3). Interestingly,
many of these facts are extensions of one-dimensional results found, for example, in [53].
With respect to asymptotic results, we can mention a martingale related to inter record-
times, which leads to a useful connection between the number of chain-records and the sum
of record heights Hn, defined as the conditional probability that an observation X becomes
a record (X � Mn). In this direction, there is an important logarithmic growth result that
connects the sequences (∆n) and F(Rn). In this case, we also have a generalization of lemma
2 in [52], but in contrast to this result, we don’t need a condition on the speed of F(Rn)→ 0.
Furthermore, from this treatment, additional a.s. results about waiting times of chain-records
are obtained. They generalize results in [40].

It is quite natural to see chain-records values as a point process in Rd. So, we briefly
establish and discuss some notions, such as the multivariate counting process and the relation
with the corresponding marginal counting processes. We believe this can be an interesting
line of future research.

Under the additional assumption of continuity and independence of components of obser-
vations, we get the natural Markovian structure of the marginals of Rn and their transitions
probabilities, concluding that each one behaves as usual record values and that the multi-
variate point process of chain-records is distributed as the minimum of d independent non-
homogeneous Poisson processes. Another interesting feature is the distribution-free property
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of the counting process of chain-records Nn, chain-record times Tk and inter record-times.

Finally, Chapter 2 ends with a short discussion about generalizing chain-records by chang-
ing the dominance relation �. For example, we consider the partial order induced by a cone
K in Rd. Another extension is related to strict chain-records, based on a strict dominance
relation (2.5.2). We found that this definition allows a simplified analysis in the case of
observations with discrete independent components.

Chapter 3 is devoted to the study of chain-maxima and chain-records from the model
U([0, 1]d). The distribution of chain-record values is obtained from the general result for
independent components. Also, an explicit form of the marginal density is obtained. A useful
recursive iterative scheme as a form to generate chain records values in [0, 1]d is provided. It
is shown that Rn → (1, . . . , 1) ∈ [0, 1]d a.s., according to Proposition 2.4.5.

Record heights Hn are random variables related to the behavior of Mn. We develop a
full study of these variables, for observations from the U([0, 1]d) model. First, a recurrence
for the moments of Hn is derived and solved explicitly in dimension d = 2. In general, for
any dimension d, the solution is an alternating sum of a given sequence (bn). To study the
asymptotic behavior of this kind of sum, we apply a technique due to Flajolet and Sedgewick,
presented in [22]. The key idea is to study a sum of residues of an analytic continuation ϕ of
(bn), over its poles, where only the real ones are significant in the asymptotic analysis. In this
part we got involved in long computations in order to construct ϕ and to check its growth
and boundedness. This leads to establishing a weak convergence of Hn, suitably normalized.
We mention that this result was obtained by Gnedin [25] as well, using completely different
tools. We carry out a similar analysis to establish the asymptotic behavior of mixed moments
and thus provide more information aboutMn.

For the counting process of chain-records we obtain a law of large numbers in quadratic
mean, for d = 2. We take advantage of the a.s. equivalence between Nn and the sum of
record height proved in Lemma 2.3.2. This connection is useful because we have an expression
about the moments of Hn, hence the study of the asymptotic variance and covariances can
be done. In this study, we came across with sums involving harmonic numbers that required
careful treatment. Properties about alternating sums turned out to be very useful, as well.

In Chapter 4 we focus on the model U(∆d). We start with a distributional study chain-
records values (Rn), which are shown to be a Markov chain, with explicit transition probabil-
ities. From this fact we derive a recurrence for the corresponding density function, that can
be solved for small values of n and in dimension d = 2. We emphasize that observations from
this model do not have independent components. As in Chapter 3, we construct a recursive
scheme that allows us to analyze the asymptotic behavior of Rn. In this framework Rn satis-
fies a stochastic equation whose solution in distributional sense we investigate. As preliminary
result, we show that Rn converges a.s. to a random point R∞ ∈ {x ∈ Rd

+ :
∑d

i=1 x
(i) = 1}. A

perpetuity representation is also used to investigate further properties of R∞. Results from
[37] and [58] allow us to find that the solution is a non-degenerate random vector, whose
distribution is of pure type (singular continuous or absolutely continuous). Furthermore, if
d = 2, the problem is reduced to a one-dimensional stochastic equation, whose solution is the
density function of the stationary law of a Markov chain (after a suitable transformation).
The solution happens to be a well know probability density.
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Record heights Hn are analyzed using the same techniques of the uniform model on [0, 1]d.
A study of their moments leads to a recurrence whose solution has the form of an alternating
sum (or Euler’s transform) of a certain sequence bj. Again, the asymptotic analysis of this
expression is done by applying the methods of [22]. Nevertheless, this case is much more
complicated than the uniform U[0, 1]d. The roots of a polynomial related to the singularities
of ϕ (the meromorphic extension of (bj) cannot be given in explicit form, in general dimension
d. This fact motivates us to develop a deeper study of these zeros. In this sense, we apply
analytical tools about localization of zeros and critical points of polynomials. We derive
properties that allow to gain knowledge about the distribution of the poles and also to get
a controlled growth of ϕ, over a suitable set. These conditions are critical to apply Flajolet
and Segewick’s theorem. As a consequence we show weak convergence of record-heights Hn,
in any dimension d. The weak limit in d = 2 is characterized as product of two independent
random variables, with well-known distributions.

Chapter 4 ends with the asymptotic analysis of (Nn), the counting process of chain-records
in ∆d. We obtain an L2 convergence of this object, by means of non-trivial computations of
variances and covariances of Hn. The a.s. connection between the number of chain-records
and the sum of record heights is the main tool involved here.

In Chapter 5 we present some unfinished research topics. Some of them, are work in
progress and others lead to open questions that may serve as source for future work. The
problem of weak convergence ofMn is tackled from different points of view. Some of them
reveal interesting features of chain-maximaMn. First we concentrate on finding the sequence
(An) such that An((1, 1)−Mn) converges in distribution to a non-degenerated limit law. We
derive some results, using the symmetry of components and the fact that Hn is normalized by
n. We investigate the recurrence for the density function fn ofMn. From this we find that fn
is a two variable polynomial whose coefficients ai,j can be interpreted as a kind of Delannoy
numbers. Second, we propose a continuous-time stochastic model, motivated by results from
[12]. The board-breaking model arises as an analog in continuous-time of the evolution of
chain-record in dimension d = 2. We are interested in the evolution of the lengths of the sides
of a tagged rectangular fragment. We have an argument, based on tools from renewal theory,
which mimics the corresponding argument for the stick-breaking process. Unfortunately, it
is not clear whether convergence in distribution holds or not.

Ideas for future work

This dissertation leaves a number of unanswered questions and unsolved problems, which
may well become a natural source of material for future work in this topic and other related
ones, that may arise.

1. We plan to extend the result of Chapter 4, about the law of R∞, as the invariant
distribution of a Markov chain, to dimension d > 2.

2. It could be interesting to explore the chain records in other geometries such as, for
example, the unit circle {(x, y) ∈ R2

+ : x2 + y2 ≤ 1}.
3. The problem of normalizing the random vector (1, . . . , 1) −Mn in [0, 1]d is open. In-
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deed, we conjecture that the only candidate, due to symmetry and our experience in
dimension d = 2, is n1/d. The escape-of-mass phenomenon might also be present here.

4. Another interesting problem is to expand the brief study of Chapter 2, about the
multivariate point process generated by the chain record values. A first attempt could
be to obtain something similar to the decomposition of a one-dimensional Shorrock
process.

5. We plan to explore more chain-maxima and related processes generated by discrete
observations. It would be interesting to check if martingales are useful and compare
with results from one-dimensional, integer-valued random variables.

6. Another potentially interesting idea (briefly explored in Chapter 2) is to investigate
about chain-maxima and chain-records when the classical order is changed, for example,
by a cone-generated order.

7. It also looks promising to explore extensions of chain-records in the direction of near-
records. For example, we could introduce and study notions such as δ-chain records or
similar, see [31, 33].
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