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En esta tesis se estudia una serie de problemas en combinatoria extremal y probabilista
relacionados a arboles y palabras. En la primera parte de este trabajo se estudian qué
condiciones debe cumplir un grafo para que contenga a todos los arboles de cierto tamano.
Se prueban una serie de resultados que combinan condiciones de grado minimo y maximo
para contener a todos los arboles de cierto tamafio y grado acotado. También se logra un
avance en la conjetura de Erdds-Sés [42] para arboles de grado acotado. Finalmente, se
estudia el problema de contenimiento de arboles en el grafo aleatorio G(n,p). Se prueba
que incluso después de borrar una fraccion de las aristas de G/(n, p) el grafo resultante sigue
conteniendo arboles grandes con grado acotado.

En la segunda parte de esta tesis se estudian problemas extremales para palabras. Se
determina el largo minimo que debe tener una palabra para contener cada palabra de largo
k € N. Ademas, se determina el umbral n = n(k) de modo que, con alta probabilidad,
una palabra aleatoria de largo (1 + £)n contenga una copia de cada palabra de largo k.
Finalmente, se estudia una nocion de cuasi-aleatoriedad para palabras y se muestra una serie
de propiedades equivalentes. Basados en esta nociéon de cuasi-aleatoriedad, se desarrolla una
teoria limite para palabras finitas en el espiritu de lo que se ha hecho para grafos [82].

In this thesis, we study several problems in extremal and probabilistic combinatorics
regarding trees and words. In the first part of this work we study which conditions a graph
has to satisfy in order to contain every tree of certain size. We obtain a series of results
regarding a combination of minimum and maximum degree that ensures the containment of
every tree of certain size and bounded degree. We also make progress towards the Erdos—
S6s conjecture [42] for trees with bounded maximum degree. Finally, we study the tree
containment problem in the random graph G(n,p) showing that even after a deletion of a
fraction of the edges of G(n,p) the resulting subgraph still contains large trees of bounded
degree.

In the second part of this thesis we study extremal problems for words. We determine
the minimum length of a word containing every word of length k£ € N, and the threshold
n = n(k) so that, with high probability, a random word of length (1 + €)n contains a copy
of every word of length k. Finally, we study a notion of quasi-randomness for words and we
show a series of equivalent properties. Based on this quasi-random notion, we develop a limit
theory for finite words in the spirit of what has been done for graphs [82].
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Part 1

Tree embeddings and degree
conditions



Chapter 1

Introduction

A central problem in graph theory consists of determining which conditions a graph G has
to satisfy in order to ensure it contains a given substructure. For instance, one of the most
important questions in extremal graph theory is the Turdan problem, which asks for global
degree conditions to force the containment of a graph or, more generally, a family of graphs.
The extremal number of a graph H, denoted by ex(n, H), is defined as the maximum number
of edges in a graph G on n vertices which does not contain H as a subgraph. Another
important problem is to determine local degree conditions that force the containment of
certain graphs. For instance, Dirac’s theorem states that every graph on n > 3 vertices with
minimum degree at least 7 contains a Hamilton cycle, that is, a cycle that uses each vertex
on the graph exactly once. For a general overview of this area, we refer to the recent survey
of Simonovits and Szemerédi [103].

In this thesis, we will be interested in the class of graphs called trees. A tree is a connected
graph without cycles. In this part of the thesis, we will focus on degree conditions that ensure
the containment of all trees of a given size satisfying some condition on the maximum degree.

Let us start with an easy observation. Let k£ € N, let G’ be a graph with minimum degree
at least k, and let T" be a tree with k edges rooted at some vertex r € V(7). We claim
that T' embeds into G. Indeed, starting from any vertex v € V(G), we may map r to v and
then greedily embed the children of r into unoccupied neighbours of v. We then repeat this
argument with the children of r» and so on until 7" is completely embedded. It is important
to note that the minimum degree of G is at least as large as the remaining vertices of T'
at each step, which ensure that we can run this argument until 7" is completely embedded.
Although this minimum degree condition is rather strong, we note that it is actually tight.
Indeed, one can consider the union of several disjoint copies of K}, which does not contain
any tree with k edges.



1.1 Average degree

Arguably, the most important problem regarding tree containment and degree conditions is
a famous conjecture of Erdds and Soés from 1964, which suggests that it is possible to replace
the minimum degree condition, that we discussed before, with a bound on the average degree.

Conjecture 1.1.1 (Erd6s and S6s [42]). Let k € N and let G be a graph with average degree
greater than k — 1. Then G contains a copy of every tree with k edges as a subgraph.

We observe that this conjecture is tight for every k£ € N, which can be seen by considering
(again) the complete graph on k vertices. This graph has average degree exactly k — 1 but it
is too small to contain any tree with k£ edges. A structurally different example is the balanced
complete bipartite graph on 2k — 2 vertices (where by balanced we mean that the bipartition
classes have equal sizes). This graph has average degree k — 1 but does not contain the star
with k£ edges. In order to obtain examples of larger order, one can consider the disjoint union
of copies of the two extremal graphs we just described.

To illustrate the importance of the Erd6s—Sés conjecture in extremal graph theory, let us
quickly consider the Turan problem for trees. We first note that for any fixed tree T with
k edges, the minimum degree condition discussed before implies that ex(n,T) < (k — 1)n.
Indeed, one can prove that any graph G on n vertices such that e(G) > (k — 1)n contains
a subgraph of minimum degree at least k, and therefore contains a copy of T. On the
other hand, the Erd6s-Sés conjecture greatly improves this bound by a factor of %, that is,

Conjecture would imply
(k—1)

2

The Erd6s-Sos conjecture has further consequences in Ramsey theory for trees (see Sec-

tion [4.5).

Let us now give some evidence for Conjecture [I.1.1] It is easy to see that the Erd6s—Sés
conjecture is true for stars and double stars (the latter are graphs obtained by joining the
centres of two stars with an edge). A classical result of Erdés and Gallai [43] implies that it
also holds for paths. In the early 90s, Ajtai, Komlds, Simonovits and Szemerédi announced
a proof of the Erdos—Sos conjecture for large k. Nevertheless, many particular cases have
been settled since then. For instance, Brandt and Dobson [28] proved that the Erdés—So6s
conjecture is true for graphs with girth at least 5, and Saclé and Wozniak [I00] proved it for
Cy-free graphs. Goerlich and Zak [54] proved the Erd6s—So6s conjecture for graphs of order
n = k + ¢, where ¢ is a given constant and k is sufficiently large depending on c¢. More
recently, Rozhon [99] gave an approximate version of the Erd6s—Sés conjecture for trees with
linearly bounded maximum degree and dense host graph. In this thesis, we will show that
Conjecture holds for trees with maximum degree bounded by any given constant and
dense host graph. Namely, we prove the following theorem.

ex(n,T) < n. (1.1)

Theorem 1.1.2 (Besomi, P., and Stein [18]). For all 6 > 0 and A € N, there exists ng € N
such that for each n,k € N with n = ng and n > k > dn the following holds. Let G be a

graph on n vertices such that d(G) > k — 1. Then G contains a copy of every tree T with k
edges such that A(T) < A.



1.2 Spanning trees and minimum degree

In his classical book of extremal graph theory, Bollobas [24] conjectured that for any 6 > 0
and A € N| there is ng € N such that every graph on n > ny vertices and minimum degree
at least (% + §)n would contain every spanning tree with maximum degree bounded by A.
This conjecture was proved by Komlds, Sarkozy and Szemerédi [72] in 1995, and its proof
strategy was a prototype version of what is now known as the “blow-up lemma”. In 2001,
the same authors [73] improved their earlier result in a different direction, showing that one

can actually embed spanning trees with maximum degree of order O(&).

Theorem 1.2.1 (Komlds, Sarkozy and Szemerédi [73]). For all § > 0, there are positive
constants ng and C such that for all n > ngy the following holds. Let G be a graph on n
vertices such that 6(G) > (% + 0)n. Then G contains a copy of every tree T on n vertices

such that A(T) < C2%-

logn*

They also show that the bound on the maximum degree is essentially best possible.
Indeed, for a sufficiently large constant C' > 0, let T" be the tree consisting of a vertex r

connected to &7 vertices such that each child of 7 has C @ children. Note that T has a

c
dominating set of size k’%. Let us consider the binomial random graph G = G(n,p) with

p = 0.9. It is easy to see that, with high probability, G has minimum degree greater than
0.8n and has no dominating set of size larger than log”. Thus, with high probability, G does
not contain 7" as a subgraph.

For trees with maximum degree bounded by a constant, Csaba, Levitt, Nagy-Gyorgy,
and Szemerédi [39] showed in 2010 that actually a minimum degree of at least T + Q(logn)
suffices.

Theorem 1.2.2 (Csaba, Levitt, Nagy-Gyorgy, and Szemerédi [39]). For all A > 2, there
exist ¢ > 0 and ng € N such that for all n > ng the following holds. Let G be a graph on n

vertices and 0(G) > § + clogn. Then G contains a copy of every tree T' on n vertices such
that A(T) < A.

Moreover, they proved that there exists a graph G with 6(G) > § + 1°1g7” such that G does
not contain the complete ternary tree. A very interesting question is to understand what
happens if the minimum degree is between 7 + clogn and § + dn. The following problem

was asked by Rob Morris [90].

Problem 1.2.3. Let f : N — N be a function such that there exist positive constants ¢ and
C' such that clogn < f(n) < Cn for all n € N. Determine a function g : N — N so that for
all large n, every graph G on n wvertices with minimum degree 6(G) = § + f(n) contains a
copy of every tree on n vertices with mazimum degree bounded by g(n).

In view of Theorems [1.2.1] and [1.2.2] it is tempting to make the following conjecture.

Conjecture 1.2.4. Let ¢ and C be positive constants and let f : N — N be a function
satisfying clogn < f(n) < Cn. Then there exist K > 0 and ng € N such that for all n > nyg
the following holds. Let G be a graph on n vertices and minimum degree 5(G) = 5 + f(n).

Then G contains a copy of every tree T on n vertices such that A(T) < Kf;(g.

4



1.3 Maximum and minimum degree

A new angle in the tree containment problem was introduced in 2016 by Havet, Reed, Stein,
and Wood [61], who impose bounds on both the minimum and the maximum degree to
force the containment of every tree of fixed size. More precisely, they suggest the following
conjecture, which we call the %wonjecture.

Conjecture 1.3.1 (gfconjecture; Havet, Reed, Stein, and Wood [61]). Let k € N and let
G be a graph with mazimum degree at least k and minimum degree at least L%j Then G
contains a copy of every tree with k edges as a subgraph.

The following example shows that Conjecture [1.3.1]is essentially tight. Let k be divisible
by 3 and consider a graph G consisting of two disjoint copies of K 2%y and an additional
vertex v which is adjacent to every other vertex in G. Let T" be the tree consisting of three
paths, each of length g, sharing a common end point. It is easy to see that 7' cannot be
embedded into G, since at least two of those paths must be embedded into one of the copies

Of K237k72.

Conjecture is obviously true for stars and double stars. The following argument
shows that it also holds for paths. If the host graph G has a 2-connected component of size
at least £ + 1, then by a variantﬂ of Dirac’s theorem, this component contains a cycle of
length at least k, and thus also a k-edge path (possibly using one edge that leaves the cycle).
Otherwise, we can embed a vertex from the middle of the path into any cutvertex z of G,
and then greedily embed the remainder of the path into two components of G — x, using the
minimum degree of G. In [61], Havet, Reed, Stein, and Wood proved the following partial
results towards Conjecture [I.3.1]

Theorem 1.3.2 (Havet, Reed, Stein, and Wood [61]). There exist a function f : N — N
and a small constant v > 0 such that if a graph G satisfies either

1. A(G) = f(k) and 6(G) = | %], or
>k

2. A(G) and §(G) = (1 — )k,

then G contains a copy of every tree with k edges.

Even if the degree conditions in Theorem [1.3.2] are no the same as in Conjecture [1.3.1}] it
proves that the idea combining a maximum and minimum degree condition is morally correct
for the tree containment problem. We remark that the function f(k) of Theorem is
super-exponential in &, and so any improvement on f(k) would be of great interest. Moreover,
Reed and Stein recently showed in [94, 05] that Conjecture holds for large k, in the
case of spanning trees (that is, if we additionally assume that |V (G)| = |[V(T)| = k + 1).
We prove an approximate version of Conjecture for trees with certain bound on the
maximum degree and dense host graph.

!This variant was already observed by Dirac [41]. It states that every 2-connected n-vertex graph G has
a cycle of length at least min{n, 20(G)}.



Theorem 1.3.3 (Besomi, P., and Stein [19]). For all § > 0, there exists ng € N such that
for each n,k € N with n > ng and n > k = on the following holds. Let G be a graph on n
vertices with minimum degree at least (1 + 5)% and maximum degree at least (14 0)k. Then

G contains a copy of every tree T with k edges such that A(T) < ks .

Another natural question is whether a version of Theorem holds for trees that are
not necessarily spanning. That is, one might ask if a graph G with minimum degree §(G) > g
contains a copy of every tree with k edges (or at least each such tree of bounded degree).
Clearly, this cannot work because of the examples showing the tightness of Conjecture [1.1.1
or Conjecture [1.3.1 However, as in Conjecture [1.3.1] we believe that if in addition to the
minimum degree condition, we require GG to have at least one vertex of large degree, then

every tree with k edges should be contained in (G. More precisely, we believe that the following
holds.

Conjecture 1.3.4 (2k-% conjecture; Besomi, P., and Stein [19]). Let k € N and let G be
a graph of minimum degree at least g and maximum degree at least 2k. Then G contains a
copy of every tree with k edges as a subgraph.

Let us give a quick example showing that Conjecture is essentially tight (an example
with better bounds will be given in Section . For ¢ > 0 and k € N, let G, be the graph
consisting of two disjoint copies of the complete bipartite graph, with parts of size (1 — ¢)k
and (1 — )%, and one vertex that is adjacent to every vertex in the parts of size (1 — e)k. It
is easy to see that G, does not contain the tree 7}, consisting of Vk stars of size vk whose
centers are adjacent to the central vertex of T}, provided that k is sufficiently large.

Similar as for the %—conjecture, one can see that Conjecture is true for stars, double
stars, and paths. As more evidence for Conjecture [1.3.4] we prove an approximate version
for trees of bounded degree and dense host graphs.

Theorem 1.3.5 (Besomi, P., and Stein [19]). For all § > 0, there exists ng € N such that
for each n,k € N with n > ng and n > k > dn the following holds. Let G be a graph on n
vertices with minimum degree at least (1 +5)§ and mazimum degree at least (1+0)2k. Then

G contains a copy of every tree T with k edges such that A(T') < k& as a subgraph.

Moreover, if we consider trees whose maximum degree is bounded by an absolute constant,
we can improve the bound on the maximum degree of the host graph given by Theorem
as follows.

Theorem 1.3.6 (Besomi, P., and Stein [19]). For all 6 > 0 and A > 2, there exists ng € N
such that for each n,k € N with n > ng and n > k > on the following holds. Let G be
a graph on n vertices with minimum degree at least (1 + 5)% and maximum degree at least
2(85L + 8)k. Then G contains a copy of every tree T with k edges such that A(T) < A.

Comparing the two variants of maximum/minimum degree conditions given by conjec-
tures [1.3.1] and [1.3.4] it seems natural to ask whether one can allow for a wider spectrum
of bounds for the maximum and the minimum degree of the host graph. We believe that it




is possible to weaken the bound on the maximum degree given by the Qk:fg conjecture, if

simultaneously, the bound on the minimum degree is increased. Quantitatively speaking, we
suggest the following.

Conjecture 1.3.7 (Intermediate range conjecture; Besomi, P., and Stein [17]). Let k € N
and let o € [0,1). Let G be a graph with 6(G) = (1+ )% and A(G) > (1 — a)2k. Then G
contains a copy of every tree with k edges as a subgraph.

Note that for o = 0, the bounds from Conjecture [1.3.7| coincide with the bounds from the
2k—§ conjecture. In contrast, the case a = % is not included in Conjecture as we believe
that the appropriate value for the maximum degree is k& and not 2& if the minimum degree
is %k (as suggested by the %—conjecture). We show in Section that Conjecture is

asymptotically best possible for infinitely many values of «.

Again, Conjecture holds for stars, for double stars, and for paths. In this thesis, we
provide further evidence for the correctness of Conjecture by proving an approximate
version for bounded degree trees and large dense host graphs.

Theorem 1.3.8 (Besomi, P., and Stein [I7]). For all § > 0, there exists ng € N such that
for each o € 0, %) and n,k € N with n > ng and n > k > on the following holds. Let G
be a graph on n vertices with minimum degree at least (1+ 8)(1+ «)% and mazimum degree
at least (1 4+ 0)(1 — «)2k. Then G contains a copy of every tree T with k edges such that
A(T) < ko7,

1.4 Trees in random graphs

The binomial random graph G(n,p) is a graph on n vertices where each of the possible (g)
edges appears, independently, with probability p. A graph property P is a family of graphs
closed under isomorphisms. Given a graph property P, the typical question in this area
is to determine the probability of the event that G(n,p) € P. For many properties, such
as monotone properties, this probability shows a phase transition as p grows from 0 to 1,
meaning that P[G(n,p) € P] changes abruptly from 0 to 1 as p passes some threshold. We
say that a graph property P has a threshold p* = p*(n) if

£ — o
lim BG(n,p) e P]= {0 LP=oW)
n—00 1 if p=w(p).

If lim, 0o P(G(n,p) € P) = 1 then we say that P holds with high probability. A classical
result due to Erdés and Rényi [40] states that the property of being connected has a sharp
threshold at p* = 10%. This means that for any fixed ¢ > 0, for p > (1 + 5)1"% the random
graph G(n,p) is connected with high probability, and for p < (1 — 5)10% the random graph
G(n,p) has an isolated vertex with high probability. In particular, this result states that if
p=(1+ 5)10% then, with high probability, G(n,p) contains a spanning tree. A reasonable
question is therefore to ask which spanning trees appear in G(n,p) at this probability. The

following conjecture was posed by Kahn.



Conjecture 1.4.1 (Kahn conjecture). For every A > 2 there exists a positive constant C
such that the following holds. For any tree T with n vertices and A(T) < A, the random
graph G(n, C*%5™) contains a copy of T with high probability.

n

This conjecture has received a lot of attention over the last 20 years and was recently
solved in a much stronger form. Indeed, in 2018 Montgomery [88] showed that G(n, C1%)
contains a copy of every spanning tree with bounded degree at the same time. Montgomery’s
proof relies on the absorption method for random graphs. A radically different proof was
recently found by Frankston, Kahn, Narayanan, and Park [50], who proved a fractional
version of the expectation-threshold conjecture of Kahn and Kalai [67] which, among many
other results, implies Conjecture [1.4.1]

Regarding almost spanning trees, Alon, Krivelevich, and Sudakov [5] proved that for any
a € (0,1) and A > 2, there exists a constant C' > 0 such that, with high probability, the
random graph G(n, £) contains a copy of every tree T' on (1 — a)n vertices and A(T) < A.
In 2014, Balogh, Csaba, and Samotij [I3] showed that even by deleting a (% — J)-fraction of
the edges incident to each vertex from G(n, %), the resulting subgraph still contains a copy
of every almost spanning tree of bounded degree.

Theorem 1.4.2 (Balogh, Csaba, and Samotij [13]). For every A > 2 and o, 6 € (0,1), there
exists C' > 0 such that if p > %, then G = G(n,p), with high probability, has the following
property. Let G' C G be a subgraph with 6(G") > (% +d)pn, then G' contains a copy of every
tree T on (1 — a)n vertices such that A(T) < A.

This result is best possible in some sense. For instance, the value of p is tight up to a
constant factor since for p = o(2) the size of the largest connected component of G(n,p) is
sublinear. The maximum degree condition is tight too, since for p = O(%) the degree of a
typical vertex of G(n, p) is roughly pn = O(1). Finally, the constant % is also sharp since one
can delete a (3 + d)-fraction of edges to every vertex in G(n, £) so that the largest connected

component of the resulting graph has about % vertices (see [L3] for details).

Let us note that Theorem is a random analogue of Komlés-Sarkozy—Szemerédi’s
theorem (Theorem for very sparse graphs. In this thesis we prove a global version of
Theorem [1.4.2], which may be seen as a sparse random analogue of the Erd6s—So6s conjecture.
Namely, we prove the following theorem.

Theorem 1.4.3 (Araujo, Moreira, and P. [10]). For every r,A > 2 and 6 € (0,1), there
exists C' > 0 such that if p > %, then G = G(n,p), with high probability, has the following

property. Let G' C G be a subgraph such that e(G') > (% + 5) p(g), then G' contains a copy
of every tree T' with  edges such that A(T) < A.

We point out that Theorem [1.4.3]is best possible in the same ways as Theorem [1.4.2] is
tight. Again, the value of p is tight up to a constant factor since for smaller values of p the
largest connected component has sublinear size, and one cannot hope to find trees of higher
degree for p = O(%) Moreover, the % factor cannot be improved. Indeed, one can partition
the vertex set in r+ 1 parts such that the smaller part has at most r vertices and the others r
parts have the same number of vertices, and thus fewer than . Then, with high probability,
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the graph G' C G(n,p) obtained by removing edges between parts has (% — 0(1))p(g) edges

but every connected component of ' has less than ” vertices.

We wonder if Theorem holds for smaller trees as well. It is tempting to conjecture
that, for a reasonable p and a tree T" with bounded degree, if G’ C G(n, p) is a subgraph with
e(G") = (14 0(1))p|T'|%, then G” contains a copy of T'. We observe that Theorem shows
that this conjecture holds for trees with linear size, however, we believe that for smaller trees
this problem might be quite hard. A more tractable question is the following.

Problem 1.4.4. Let f : N — N be a function such that f(n) = o(n), and let T be a
tree on f(n) vertices and maximum degree bounded by some fized constant A. Determine
p = p(n) and a constant C' > 0 so that, with high probability, every subgraph G' C G(n,p)
with e(G") = Cpf(n)n contains a copy of T.

When f(n) is a constant function, we believe that this problem follows by an application
of the hypergraph container method (see [15] for a survey). However, it is not clear what
happens if f(n) grows with n.



Chapter 2

Preliminaries

2.1 Basic notation

Given a positive integer ¢ € N, we write [¢(] = {1,...,¢}. Also, we will write a < b to
indicate that given b, we choose a significantly smaller than . The value for such a can be
explicitly calculated from the proofs, but sometimes we will prefer to omit it for clarity of
the presentation. For real numbers a, b, z, we write a = btz if a € [b—x,b+ z|. Given a set
S and an integer 0 < k < |S|, we denote by (‘2) the collection of all subsets of S of size k.

A graph is a pair G = (V, E), where V is the set of vertices of G and £ C (‘2/) is the set
of edges of G. If it is not specified, we write V(G) and E(G) for vertex set and edge set of
G, respectively. We say that a graph G is bipartite if there exists a partition V(G) = AU B
such that each edge e € F(G) has one endpoint in A and the other in B. If G is bipartite,
we will write G = (A, B) to refer that G has a bipartition V(G) = AU B.

Given a graph H, we write |H| = |V (H)| for its number of vertices and e(H) = |E(H)|
for the number of edges of H. We write 6(H), d(H), and A(H), for the minimum, average,
and maximum degree of H, respectively. As usual, deg,(z) denotes the degree of a vertex
r € V(H), and we write Ny(x) for the set of neighbours of z. Moreover, given a set
S CV(H), we write Ny (z,5) = Ng(x) NS for the neighbourhood of z in S and deg(x, S)
for the respective degree. For two disjoint sets X,Y C V(H), we write Fy(X,Y) for the set
of edges zy € E(H) such that z € X and y € Y, and we set ey(X,Y) := |Eg(X,Y)]. In all
of the above, we omit the subscript H if it is clear from the context.

Given a set U C V(H), we write H[U] for the graph induced in H by the set U, that is,
the vertex set of H[U] is U and the edge set corresponds to all edges having both endpoints
in U. For two disjoint sets X, Y C V(H), we write H[X,Y] for the bipartite graph induced
in H by X and Y. We say a vertex = sees a set U C V(H) if it sends at least one edge to U.

Given a collection of sets F, we write |J F for the union of all members of F. For instance,
it F={F,...,F,} then UF = F1U---UF,,. If G is a collection of graphs, then |JG denotes
the graph which is the union of all graphs in G.
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Given two graphs F' and G, a homomorphism from F to G is a function ¢ : V(F) — V(G)
which preserves adjacency, that is, if for every edge e € E(F') we have ¢(e) € E(G). An
embedding ¢ of F' into G is an injective homomorphism from F to G and we say that F
embeds into G if there exists an embedding ¢ : V(F') — V(G). Moreover, we say that I is a
subgraph of G if F' embeds into G.

2.2 Trees

Let us go through some notation for trees. We will write (7', r) for a tree T rooted at a vertex
r € V(T). Given a rooted tree (T, r) and vertices x,y € V(T'), we say that x is below y (resp.
y is above x) if x lies on the unique path from y to r (our trees grow from the top to the
bottom). If in addition xy € E(T), we say y is a child of z, and z is the parent of y. We
note that this defines a partial order on the vertex set of T. The tree induced by x, denoted
by T'(z), is the subtree of T" induced by all vertices above z. For i > 0, the i-th level of T,
denoted by L;, consists of all vertices at distance ¢ from 7.

We say that a vertex of a tree is a leaf if it has degree 1. A bare path in a tree is a path
all whose internal vertices have degree 2 in the tree. The next lemma has been extensively
used in the literature of tree embeddings, as it states that the structure of any given tree
satisfies a certain dichotomy. Namely, each tree contains either a large number of leaves or
a large number of bare paths of some fixed constant length (we refer to [76] 88| for a more
general statement and a proof, and note that here and elsewhere, the length of a path is its
number of edges).

Lemma 2.2.1 (Lemma 2.1 from [88]). Let ¢ > 2 and let T be a tree. Then either T has at
least |T'| /4L leaves or it has at least |T'|/4¢ vertex disjoint bare paths, each of length (.

Trees are bipartite graphs whose bipartition classes may be as imbalanced as possible.
For instance, a path of length k& has colour classes of size differing in at most 1, and a star
with £ edges has a colour class of size 1 and the other class of size k. Nevertheless, for trees
having maximum degree bounded by a constant one can guarantee that both colour classes
have linear size.

Fact 2.2.2. Let A > 2 and let T be a tree with bipartition V(T) = C' U D and mazimum
degree A(T) < A. Then min{|C|,|D|} > £.

2.2.1 Basic results on tree embedding

As we mentioned before, a greedy argument shows that every k-edge tree can be embedded
into any graph of minimum degree at least k. We now give two lemmas that generalise this
simple observation.

Lemma 2.2.3. Let A, h,k € N, let (T,r) be a tree with k — h edges and A(T) < A, and let
G be a graph satisfying
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(i) 6(G) > A+ h;

(i1) there are at most h vertices v € V(G) with deg(x) < k.
Then T can be embedded in G. Moreover, any vertex v € G can be chosen as the image of r.

Proof. We construct an embedding ¢ as follows. We set ¢(r) := v. Since deg(v) > A + h,
we can embed each neighbour of r into a neighbour of v that has degree at least k. Since T’
has k — h vertices, we can then embed the rest of T" levelwise using only vertices of degree at
least k£ at each step. O

Observe that for h = 0 Lemma [2.2.3| recovers the greedy procedure we mentioned above.
Moreover, if the host graph G is bipartite, one can relax the minimum degree condition
for one side of the bipartition of G. The proof of the following result is a straightforward
modification of the proof of Lemma [2.2.3]

Lemma 2.2.4. Let A, h, ki, ko € N, let (T,r) be a tree with colour classes C, D of sizes ky—h
and ky — h, respectively, and A(T) < A. Let G = (A, B) be a bipartite graph such that

(i) 0(G) = A+ h;
(ii) there are at most h vertices a € A with deg(x) < ko;

(1ii) there are at most h vertices b € B with deg(x) < k;.

Then T can be embedded into G with C' going to A and D going to B. Moreover, if r € C
(resp. D), then any vertex a € A (resp. b € B) can be chosen as the image of r.

2.2.2 Cutting trees

In this section, we present some results regarding how to cut a tree into small pieces. The
first two results allow us to find a cut vertex which split a tree into subtrees of controlled
sizes. On the other hand, the last result states that any large enough tree can be decomposed
into a bounded family of small subtrees.

Lemma 2.2.5. Let T be a tree on k+1 vertices, and let x be a leaf of T. Then T has a vertex
z such that every component of T'— z has at most L%J vertices, except the one containing x,
which has at most [£] vertices.

Proof. Let z be a maximal vertex, with respect to the order in (T, z), such that |T(z)| > | %].
Then every component of 7' — 2z has at most LgJ vertices: This is obvious (from the definition
of z) for the components not containing z, while the component that contains x only has
IT| —|T(2)] <k+1— (%] +1) = [£] vertices. O

The following lemma is a generalisation of Lemma [2.2.5] stating that one can control even
more the size of at least one of the components (see [61] for other variants).
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Lemma 2.2.6. For all0 < v < 1 and for all k > @, any given tree T with k edges has a
subtree (T*,t*) such that

(i) %k < |V(TH)| < vk; and

(ii) every component of T — T* is adjacent to t*.
Proof. Let r € V(T') be an arbitrary vertex and let t* € V(T') be a maximal vertex, with
respect to the order in (7',r), such that [T'(t*)| > %. Note that, by maximality of t*, every
child u of t* satisfies |T'(u)| < Z. Let U be a minimal subset of the children of #* such that

| Uuer T'(w)| = ~vk/2. Then the tree T* induced by t* and U,y T'(u) satisfies the desired
properties. ]

By iteratively applying Lemma [2.2.0] we can show that any tree can be decomposed into
a bounded family of arbitrary small subtrees. Versions of this result have already appeared
in earlier literature on tree embeddings, see for instance [2].

Proposition 2.2.7. Let 8 € (0,1) and let (T,r) be a rooted tree with k > 3~' edges. Then
there exists a set S C V(T) and a family P of disjoint rooted trees such that
1. res;

2. P consists of the components of T'— S, and each P € P is rooted at the verter closest
to the root of T';

3. |P| < Bk for each P € P; and
4. 18] < 5 +2.

The vertices from S will be called seeds, and the components from P will be called the pieces
of the decomposition.

Proof. We iteratively construct the set S, starting with 7° := T and S° := (). At step i + 1,
let s;41 be a maximal vertex of 7% (with respect to the order induced by r) such that

T (si41)| > Bk
Note that by the maximality of s;;1 the trees in T*(s;41) —s;11 each cover at most Sk vertices.
We obtain S by adding s;1; to S* and set Tt = T% — T'(s;,1). If at some step j there
is no vertex s;.1 with |T7(s;41)| > Bk, then |T7| < Bk and we end the process. We set

S := 57U {r} and let P be the set of connected components of T'— S. Note that Properties
(I)-(@) clearly hold. For ({)), we observe that |T"™| < |T%| — 8k and hence

0< [T <|T° =3 Bk,
which implies that |S|:j+1<|ﬂlk|—|—1<%+2, =
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2.3 The Regularity Lemma

The celebrated Szemerédi’s regularity lemma [105] is one of the most powerful tools in ex-
tremal graph theory. It states that the vertex set of every large enough graph can be par-
titioned into finitely many parts so that most of the pairs of these parts induces a bipartite
quasi-random graph. In order to state this result, let us begin with some definitions.

Let H = (A, B) be a bipartite graph with density

__e(A,B)
d(A, B) := AlB|

For a fixed ¢ > 0, the pair (A, B) is said to be e-regular if for any X C A and Y C B, with
| X| > ¢|A| and |Y| > ¢|B|, we have

d(X,Y) — d(A, B)| <.

Moreover, an e-regular pair (A, B) is called (e,n)-regular if d(A, B) > n. Given an e-regular
pair (A, B), we say that X C A is e-significant if | X| > €|A|, and similarly for subsets of B.
A vertex x € A is called e-typical to a significant set Y C B if deg(z,Y) > (d(A, B) —¢)|Y|.
We simply write regular, significant or typical if € is clear from the context.

It it well known that regular pairs behave, in many ways, like random bipartite graphs
with the same edge density. The next well known fact (see for instance [74]) states that in a
regular pair almost every vertex is typical to any given significant set, and also that regularity
is inherited by subpairs.

Fact 2.3.1. Let (A, B) be an e-reqular pair with density n. Then the following holds:

1. For any e-significant Y C B, all but at most €| A| vertices from A are e-typical to Y .

2. Let a € (0,1). For any subsets X C A and Y C B, with | X| > a|A| and |Y| > o|B|,
the pair (X,Y) is %—regular with density between n — e and n + €.

The regularity lemma of Szemerédi states that, for any given € > 0, the vertex set of any
large enough graph can be partitioned into a bounded number of sets, also called clusters,
such that the graph induced by almost any pair of these clusters is e-regular. We will make
use of the well known degree form of the regularity lemma (see for instance [77]). Call a
vertex partition V(G) = Vi U--- UV, an (e,n)-reqular partition if

L Vil = [Val = -+ = [V

2. V; is independent for all 7 € [¢]; and

3. for all 1 < i < j < £, the pair (V;,V]) is e-regular with density either d(V;,V;) > n or
d(Vi, ;) = 0.
Lemma 2.3.2 (Lemma 41 from [77]). For all e > 0 and mo € N there are Ny, My such that
the following holds for all p € [0,1] and n > Ny. Any n-vertex graph G has a subgraph G',
with |G| — |G'| < en and deg(z) > dega(z) — (n+ €)n for all x € V(G'), such that G’
admits an (g,n)-reqular partition V(G') = Vi U --- U Vp, with mo < £ < M.
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The (e, n)-reduced graph R corresponding to the (g, n)-regular partition given by Lemmal[2.3.2)
has vertex set V(R) = {V; : ¢ € [¢]} in which V;V} is an edge if and only if d(V;,V;) > n
Henceforth, we will use calligraphic letters to refer to the reduced graph, or to subsets of
its vertex set. Moreover, given € C V(R), we write |C| for the number of clusters in €. In
contrast, we write | |J €| for the number of vertices of the subgraph JC of G. Now we state
some useful facts about the reduced graph (see [74] for a proof).

Fact 2.3.3. Let G be a graph on n vertices and let R be an (¢,n)-reduced graph of G. Then
the following holds.

(i) Given a cluster C € V(R) we have

R
deg, (C \C] Z deg(v ’ l

velC

In particular, summing over all clusters we have d(R) > d(G) - %

(i1) Let'Y be a collection of significant sets in G and let C' € V(R). Then
{Y €Y :v is typical to Y} = (1 — ve)[Y|

for all but at most \/|C| vertices v € C.

We close this section with a lemma that illustrates why regularity is useful for embedding
trees. It states that a tree will always fit into a regular pair, if the tree is small enough.

Lemma 2.3.4. Let0 < § < . Let (A, B) be a (e, 5\/¢)-regular pair with |A| = |B| =
andlet X CAY CB,Z C AUB be such that min{|X \ Z|,|[Y'\ Z|} > v/em. Then any tree
T on at most Bm vertices can be embedded into (X UY')\ Z. Moreover, for each v € V(T)
there are at least 2em vertices from (X UY') \ Z that can be chosen as the image of v.

Proof. We construct the embedding ¢ : V(T) — X UY levelwise, starting with the root,
which is embedded into a typical vertex of (X UY')\ Z. At each step i we ensure that all
vertices of level i are embedded into vertices of X \ Z (or Y\ Z) that are typical with respect
to the unoccupied vertices of Y\ Z (or X \ Z). This is possible, because at each step i, and
for each vertex v of level i, the degree of a typical vertex into the unoccupied vertices on
the other side is at least 4em, and there are at most em non typical vertices and at most
|T| < pm already occupied vertices. O]
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Chapter 3

Embedding trees with maximum and
minimum degree conditions

This chapter is based on joint work with Guido Besomi and Maya Stein [17, [19).

In this chapter, we will prove a series of results regarding maximum and minimum degree
conditions that ensure the containment of every tree with maximum degree bounded by
certain function. Namely, we will prove Theorems [1.3.5}|1.3.6] [1.3.3] and Most of our
results rely on our key embedding lemma (Lemma and thus let us start by describing
this lemma, which will be stated and proved in Section

Lemma m provides an embedding of any tree T' with maximum degree bounded by k%,
where 7 is a constant, into any host graph G of suitable minimum degree, as long as G contains
one of several favourable scenarios explicitly described in the statement of Lemma|[3.5.3] The
scenarios contemplated by the lemma cover the situation where, after applying the regularity
lemma to G, the corresponding reduced graph has a largeﬂ component, but also cover a
number of situations where there is no large component. In these latter situations, we will
have to use a maximum degree vertex x of GG, as well as a suitable cut vertex z of T, and
embed the components of T'— z into components of G — x. Several possible shapes and sizes
of components possibly seen by x are taken into account in Lemma [3.5.3]

Once we have Lemma [3.5.3] the proof of Theorems [1.3.5] [1.3.6[ and [1.3.3| will be fairly
easy. We only need to regularise the host graph G and then show that we are in one of the
situations as described in Lemma [3.5.3] This is done in Section [3.6

Let us now sketch the proof of our key embedding lemma. There are two crucial ingredi-
ents for the proof of Lemma [3.5.3] One of these ingredients is some work that we accomplish
in Section [3.2] In that section, we prove some useful results on cutting trees, the most im-
portant ones being Lemma and Proposition [3.2.5] These two auxiliary results allow us
to cut a tree at some convenient cut vertex z and then group the components of T' — z into
two or three groups (as necessary), so that the union of the components from these groups
form sets of convenient sizes. Moreover, we show that it is possible to 2-colour the vertices

IThat is, large enough to accommodate 7.
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of T'— z in a way that the resulting colour classes are not too unbalanced. This will be very
important when, in the context of Lemma [3.5.3, we wish to embed several components of
T — z into a single bipartite component of the reduced graph of G — x.

The other crucial ingredient for the proof of Lemma [3.5.3]is the preparatory work accom-
plished in Sections and There we show how to embed a tree into a host graph that,
after an application of the regularity lemma, has a reduced graph with a large connected
component. For this, we cut the tree into tiny subtrees and few connecting vertices, and
then embed these trees into suitable edges of the reduced graph. This approach has been
used earlier in the literature, see for instance [2]. The only remaining problem is how to make
the connections between the tiny trees.

For these connections, we use paths in the reduced graph. For this argument to work, we
have to bound the maximum degree of the tree we wish to embed in terms of the diameter of
the reduced graph of G (another argument will allow us to relax the bound later, see below).
Also, we have to distinguish two cases, namely whether the large component of the reduced
graph is bipartite or not. If it is bipartite, we embed the larger colour class of the tree into
the larger side of the component and, since the smaller colour class of the tree is smaller than
the minimum degree of GG, each tiny tree can be embedded into an unsaturated edge. If the
component is non-bipartite, we can find a large connected matching (see Lemma that
can be filled, in a balanced way, with tiny trees.

The two cases will be treated in Propositions|3.3.1{and [3.3.9} respectively. In the remain-
der of Section [3.3] we deduce some corollaries from these propositions, which will come in
handy later when, in the proof of Lemma [3.5.3] we need to embed parts of the tree into parts
of the host graph that correspond to different components of its reduced graph.

In Section [3.4] we unify and improve the results from Section [3.3] Namely, in Proposi-
tion [3.4.3| we provide an embedding result for trees into large connected components of the
reduced graph of GG, where the bound on the maximum degree of the tree no longer depends
on the diameter of the reduced graph of the host graph, but instead is k%, where r is an
absolute constant. The idea for the proof of this result is that we first try to follow the
embedding scheme from the previous section, but only using paths of bounded length for the
connections. If this fails, then the only possible reason is that we could not reach suitable
free space at a bounded distance from the cluster C' we were currently embedding into. In
this case, we abort our mission, and we are able to prove that it is possible to embed the tree
into a ball of appropriate radius centered at C.

Finally, in Section we prove Theorem [1.3.8, The proof of Theorem is more
involved and does not directly follows from Lemma |3.5.3. The proof is based on a structural
result for graphs with minimum degree above % and maximum degree above % avoiding some

3
tree with &k edges and bounded degree (Theorem 3.7.2)).
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3.1 Sharpness of Conjecture [1.3.
This section is devoted to show the asymptotical tightness of our conjecture for infinitely
many values of a. Namely, we will prove the following result.

Proposition 3.1.1. For all odd ¢ € N with ¢ > 3, and for all v > 0 there are k € N, a
k-edge tree T, and a graph G with 6(G) = (1+ § — )% and A(G) > 2(1 — 1 — )k such that
T does not embed in G.

In order to be able to prove Proposition [3.1.1], let us consider the following example.

7

,45\\?/4‘\7/

'.)\/0‘ DO 1'\/‘
RN
DIREPERAS
Ve

Figure 3.1: The graph Hj 4. from Example [3.1.2]

Example 3.1.2. Let (,k,c € N with 1 < ¢ < ﬁ such that ¢ > 3 is odd and divides k.
For i € {1,2}, we define H; = (A;, B;) to be the complete bipartite graph with

|A;| = (€ —1) (’Z—1> and |BZ-|:]2€+(C_1>2(£+1)—1.

We obtain Hyyg. by adding a new vertex x to Hy U Hy, and adding all edges between x and

Ay U Ay, Observe that

: k' (c—=1)({+1
(Hiee) = minf| A |Bi] 41} = |Bi] 41 = & 4 DD

and

k
A(Hyype) = |AL U Ayl =2(€—1) <£ _ 1) _

Let Ty, ¢ be the tree formed by ¢ stars of order % and an additional vertex v connected to the
centres of the stars.
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We will use Example to prove Proposition [3.1.1, However, a similar proposition
(with slightly weaker bounds) could be obtained by replacing one of the graphs H; from
Example [3.1.2] with a small complete graph. See Example [3.1.5 near the end of this section.

Let us now show that the graph Hj, . from Example [3.1.7 does not contain the tree Ty .

Lemma 3.1.3. For all {,k,c € N with 1 < ¢ < ﬁ such that ¢ > 3 is odd and divides k,
the tree Ty, from Example does not embed in the graph Hyy..

Proof. Observe that we cannot embed 7}, in Hj . by mapping v into z, since then, one of
the sets B; would have to accommodate all leaves of at least “Tl of the stars of order % But
these are at least

+1

2 (k_gzk+1@—aﬂun>

14 2 2

DO | 7

+;(c—1)(€+1) > |B|

leaves in total, so they will not fit into B;.

Moreover, we cannot map v into one of the H;, because then we would have to embed at
least ¢ — 1 stars into H;. The leaves of these stars would have to go to the same side as v,
but together these are

k
M—D(E—Q+1>MA>BA
vertices (note that we count v), so this, too, is impossible. We conclude that the tree T},
does not embed in Hj 4. O

Before we prove Proposition [3.1.1], let us state a weaker result which, in particular, proves
the tightness of Conjecture [1.3.4]

Proposition 3.1.4. For all a € (0, %) there are k € N, a k-edge tree T', and a graph G with
6(G) =% and A(G) = 2(1 — &)k such that T does not embed in G.

Proof. Given a € (0,1), we set £ := 2[1] — 1. Then ¢ > 3 is odd, and we can consider the
tree T}, and the graph Hj . from Example [3.1.2] where we take k := (¢ + 1) and c¢:= 1.
By Lemma [3.1.3, we know that T}, does not embed in Hy .

Observe that 6(Hy ) = g and, by our choice of k we have
1 1 2
A(Hppe) =200 -1)(=— = k=2(1—-—= )k,
(Hise) = 2(¢ )<e Ic)k ( £+1)k
and therefore, A(Hy ) = 2(1 — a)k, which is as desired. O

Let us now prove Proposition [3.1.1] For this, we will let the constant ¢ go to infinity.

Proof of Proposition|3.1.1. Let ¢ and ~ be given. For any fixed integer ¢ > 1, set

k:=cl(l+1),
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and consider the tree T}, and the host graph Hj . from Example for parameters k, ¢
and c. Observe that

O(Hype) > <1+(C_1)k(£m)k - (1+ C;;)g - <1+2—;)§

and

14 k ¢l b

So, for any given v we can choose ¢ large enough such that

1 1
5(Hk,€,c) > (1 + z - ’7)5 and A(Hk,ﬁ,c) 2 2(1 — E — )k;’

which is as desired, since by Lemma [3.1.3], we know that 7}, , does not embed in Hyy., O

Let us now quickly discuss an alternative example, which gives worse bounds than the
ones given in Proposition [3.1.1} but might be interesting because of its different structure.

Example 3.1.5. Let k,{,c be as in Ezample [3.1.3. Let C be a complete graph of order
g + % Let G4 be obtained by taking C' and the bipartite graph Hy = (A1, By) from
Example and joining a new vertex x to all vertices from Ay and to all vertices in C.
Then §(Gree) = &+ D 4nd A(Gryee) = 252k + C2UED 9 and an analogue of

2 2
Lemma holds.

Moreover, in the same way as in the proof of Proposition|3.1.1, we can show that if k is
large enough in terms of (odd) ¢ > 3 and vy, then

3
5(Gk7g’c) > (1 + - — "}/)* and A(Gk7570) > 5(1 - = — "}/)k’

This example, as well as the examples underlying Propositions |3.1.4] and [3.1.1] illustrate
that requiring a maximum degree of at least ck, for any ¢ < 2, and a minimum degree of at
least g is not enough to guarantee that any graph obeying these conditions contains all k-edge
tree as subgraphs. Nevertheless, we could not come up with any radically different examples,
and it might be that graphs that look very much like the graph Hy ;. from Example or
the graph Gy ¢ from Example are the only obstructions for embedding all k-edge trees.

To finish this section, let us discuss about the values of & not covered in Proposition [3.1.1]
For any a € [0, %) and v > 0 small, we can construct examples of graphs with minimum

degree at least (1 4+ o — )% and maximum degree at least 2(1 — g(a) — )k, where g(a)

is a function which is bigger than «a but reasonably close to it. In particular, g(«) satisfies
la — g(a)| = O(a?), and, more explicitly, for any even ¢ > 3 we obtain g(3) = § + W%Q).
These examples are very similar to Example [3.1.2] The difference is that the small stars that

make up the tree may have different sizes (more precisely, one star is smaller than the other
ones). The host graph is the same, with slightly adjusted size of the sets A;.

20



3.2 Finding a good cut vertex

In this section, we prove a series of results regarding how to find a cut vertex z in a tree T’
and a 2-colouring of the vertices of T"— z such that both colour classes have controlled size.
This will be particularly useful when embedding trees into bipartite graphs.

We first prove an auxiliary lemma on partitioning sequences of integers. This lemma will
be used in the proofs of both Lemma [3.2.3] and Proposition and also in the proofs of
Theorems [[.3.5 and [L3.6]

Lemma 3.2.1. Let m,t € Ny and let {a;}", be a sequence of positive integers such that
0 <a; <[], for eachi € [m], and Y-7%  a; < t. Then

1. there is a partition {1y, I, Is} of [m] such that Ycq, a; < Yicp, i < Yier, i < [5] 5
and

2. there is a partition {Jy, J2} of [m] such that ¢, a; < Yiey, ai < 5t

Proof. We first pick a set I; C [m] with Y,c;, a; < [5] that maximises the sum. From
[m] \ I; we extract a second set I with > ,c;, a; < [%1 that maximises the sum. The choice
of I and I, ensures that for Iy := [m] \ (I; U L) it also holds that 3;c;, a; < [5], and that
Sier @i < Yier, @i Therefore, the sets Iy, I5, I3 fulfil the conditions in (i). (Notice that I3,

and possibly also I, may be empty.)

For (ii) we proceed as follows. If I3 = () we just set J; := I and Jy := I3, which clearly
satisfies (ii). If I3 # () we define J; as one of the sets I, U I3 and [, and Jy as the other
set, in a way that >,c;, a; < Y;cz a;. Observe that the second part of (i) implies that
Yicnur; @ < t. So again, (ii) is satisfied. O

Remark 3.2.2. Observe that the set Is from Lemma (i) has at most one element,
because otherwise, due to the mazximality of I, and I, there would exist j,k € I3 such that
aj+ Yien a; > [5] and ap, + Yicr, a; > [£], a contradiction to the fact that Y7 a; < t.

Lemma tells us that after using Lemma to cut a tree T at a vertex z, we can
group the components of T'— 2z in such a way that the total size of each group is conveniently
bounded. We would now like to say something about the balancedness of the resulting forest,
and for this we resort to the concept of vertex colouring.

For a proper 2-colouring ¢ : V(G) — {0, 1} of a graph G, with colours 0 and 1, we define
co:={veV(G) : ¢(v) =0} and ¢ :={veV(G) : c¢(v)=1}.

For better readability, throughout all proofs we will stick to the convention that |co| > |¢i]
(but this will be restated in each proof).

Lemma 3.2.3. Every tree T" with t edges has a cut vertex z such that T — z admits a proper
2-colouring ¢ : V(T — z) — {0, 1} with |co| < % and || < L.
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Proof. We apply Lemma to obtain a cut vertex z and a forest T' — z with components
{T;}7, such that |T;| < [£], for every i € [m]. We will now use Lemma in order to
group the components of T' — z. Setting a; := |T;|, the lemma yields three sets I, I and I3
such that the forests Fj := Uy, Ty, with j € {1,2,3}, cover at most [§] vertices each. Also,
the forest I covers at least % vertices.

~ For j € {1,2,3}, consider any proper 2-colouring ¢ of the forest Fj, with colour classes
¢y and cq, such that Fy and F each meet both colours (This is possible unless |F| and/or
|F3| is 1, and in that case we are done anyway). For each j, we assume that |c}| > |c]].

We split the remainder of the proof into two cases.

Case 1: |cj| > HBI=L,

In this case, we define the colouring ¢ by setting ¢ := U2 Uc} and ¢; := V(T —2)\ ¢y =
ci U3 U Then,

E: F
ol = lebl + 1]+ 1ef] < 13| — 1 2y 1
t+1 t
<0 gyl
! "3
3t —1
< ;
4
where the second inequality follows from the equality |Fi| — 1 + @ + % = @ -1+ |T;z|
Moreover,
3|7y — 1 t—1 3t 1
e <t —eb| = |2 <t — ‘14‘1 —1St-—— - 1<,

where the penultimate inequality comes from the fact that [Fy| > £. Hence, max{|co|,|c1]} <

Stle; renaming the colour classes if necessary we get the desired result.

Case 2: |ch| < HFA=L,

In this case, we define the colouring ¢ by setting ¢ := cfUc? Ucs and ¢; := V(T —2)\ ¢y =
ciUcdUcl. Then,

< Fi| =
< 5+ |Fy| + | Fo| + | F5] — 1
2 4
C3t—1
==
" 7y Bl _t |
3! Bt R 3t—1
LN o R I LA T |
R T R R
Again, we obtain max{|co|, |e1|} < 25, swapping the colour classes if necessary. O
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Let us remark that the bound %, given by Lemma , is best possible if we insist that
the cut vertex is as the given by Lemma [2.2.5] This is illustrated by the following example.

Let ¢ be divisible by four and consider the tree obtained by identifying the central vertex
t

of a star of order 5 with an end vertex of a path of order % + 2. Let z be the cut vertex
provided by Lemma . Then z leaves exactly two components: a path of order % and a
star of order 1 One of the colour classes of this forest necessarily Contalns — 1 vertices.
Nevertheless, it is possible to cut the tree at a different cut vertex so that the resulting
forest admits a significantly more balanced colouring than the one given by Lemma |3.2.3]
This is the purpose of Proposition below. Before we state this proposition, let us

introduce some useful notation.

Definition 3.2.4 (Colouring imbalance). Given a graph G and a proper 2-colouring of its
vertex set ¢ : V(G) — {0,1}, we define the imbalance of ¢ as

o(c) :==|co| — |-
For a tree T, we will use o(T) to denote the imbalance of its unique 2-colouring.

Proposition 3.2.5. Let T' be a tree with t edges. Then there exist z € V(T) and a proper
2-colouring ¢ : V(T — z) — {0,1} of T — z, with |c1| < |col, such that |co| < % and |c1| < %

Proof. We may assume that ¢ > 3. Assume the proposition does not hold, that is, for every
z e V(T) and every proper 2-colouring of 7' — z, the heavier colour class of T' — z contains

more than 2 ey t vertices.

Let zo € V(T) and ¢ : V(T — z) — {0,1} as given by Lemma [3.2.3] By our assumption
above, we know that ¢y, the heavier colour class induced by ¢, contains between 2 and 3t 1

vertices, while ¢;, the lighter colour class, contains between 1 and * 3 vertices.

3

Consider the set {T;};c; of all components of T'— z,. Let J C I be the set of all indices
J such that T} has more vertices in ¢y than in ¢;. So clearly,

3 o(T) <0 (3.1)

i€I\J

and

> o(Ty) > feol = fel > 5. 32

jeJ

Moreover, we claim that

for each J' C J either Y o(Tj) < E or Y o

jeJ jeJ

t
= 3.3
> (33)
Indeed, if this were not true for some J' C J, we could invert the colours in all trees in
{T;}jcr. This yields a colouring with both colour classes having at most % Vertlces because

co would have lost at least % vertices, and ¢; would have gained at most 5 vertices. This
contradicts our assumption, and thus proves (3.3).
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We say that a family J' C J is small if e 0(T;) < 35, and large otherwise (that is,

by B.3), if >jc 0 o(T;) > £). Note that (3.2) implies that J is large.

Because of ({3.3)), for any partition J = C'U D we have that either C' or D is large. So,
taking a minimal large subset of J we see that

there is a j* € J such that {j*} is large. (3.4)

Notice that if J \ {j*} was large we could switch the colour classes in each of the associated
trees and obtain a contradiction to the initial assumption. So,

J\{j*} is small, (3.5)
and therefore
t
>, oT)< X o)+ 3 o(T) <55 (3.6)
iel\{5*} ie\{5*} iel\J

Now, we apply Lemma to obtain z; € V(7)) such that every component of Tj« — z;

covers at most (%1 vertices. Let T, denote the component of 7' — z; that contains 2
and let {Cy}ser denote the set of all other components of T — z;. Further, let C,, denote the
unique component of Tj« — 2 that is contained in T, if such a component exists. Observe
that Lemma [2.2.5] allows us to assume that

—1J<V§1—1J<t—1. (3.7)

2

|75
Cl <

Next, we group the elements of {Cy}sc;, into two forests, F4 and FZ, satisfying

t+1
max{|FA|,|F2|} < 122 (3.8)

3
[Tj«|—1 2
2 ’§|Tj*

b,

which is possible by Lemma [3.2.1] (ii), and since max{

For i € {A, B}, consider the proper 2-colouring ¢* induced by T}« on F*. By symmetry,
we may assume that
o(c?) = o(cP). (3.9)

Observe that by (3.2), and by the choice of ¢!, we have that

t
3 <o(Tj) < 0., U{z} T a(cA) + o(cP),

where o¢, () denotes the imbalance that T} induces on C, U {z1}. Note that oc, y(z,) <
max{|C,,|, 1}, Therefore,

o(c*) + o (cB) > ; — max{|C,, |, 1}. (3.10)

Now we consider and separately treat two possible cases, according to the imbalance of the
canonical colouring of T},. For convenience, let A(T,,) denote the larger colour class of T,

24



in this colouring, and let B(T.,) denote the smaller colour class.
Case 1: ¢(T},) < &.

In this case, we deﬁne a new colouring ¢ by setting ¢ 1= A(T.,) Uct Ucf and ¢| =
(T —z)\ ¢ = B(TZO) Ucj UcP. Then, by (3.9),

o Tel | o(T) IFY o) PP o)t o(Ty) _ 2
= - X 5 < )
|6 5 + 5 + 7 5 + 5 + 7 5 + 7 3
and, moreover, by (3.8) we have
1| [}
-1,1 < ,
41 < & Ly B

and hence after possibly swapping the colours we found a colouring as desired for the propo-
sition (with z; in the role of z). This is a contradiction, since we assumed no such colouring
exists.

Case 2: o(T,) > £.

This time we define ¢ by setting ¢ := A(T.,) Uc! UcP and ¢} := B(T,,) Ucy UcB. Let
0., U{z) denote the imbalance that 7., induces on C,, U {2} and note that by (3.7), we have

-1
0C, U{z0} S < max{|C,[,1} < T

Recalling (3.6 and (3.10]), we obtain

o(T:y) — (o(c?) +0(c?))
2
dlie\ {5} o(Ti) + 0. U{z0} + max{|C,[, 1} — é

2
t

ol =

/N
_l’_

t
+ oY + max{|C,,|, 1} —

/N

c.o\g\'gl\"\”l\l’\“ l\D\N
: +

Furthermore, by (3.8]) we have
T, o(Ty)

]
<y 9 5

and we thus again obtain a contradiction. O]

+’0|+|CO|

3.3 Embedding trees in robust components

In this section, we discuss the embedding of trees into a large robust component of some
host graph, by which we mean we embed into graphs whose corresponding reduced graph
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has a large connected component. The arguments depend on whether the reduced graph is
bipartite or not, and hence we deal with these situations separately.

The main results from this section are Propositions [3.3.1] and [3.3.9] and their corollaries.
They will be used in the proof of Proposition [3.4.3] our main embedding result for robust
components. Moreover, they will be one of the tools in the proof of our key embedding lemma
(Lemma on which most of our main results rely.

3.3.1 The bipartite case

As we mentioned in the introduction, any tree with k edges greedily embeds in any graph of
minimum degree at least k. In a bipartite graph H = (X,Y’) the minimum degree condition
can be relaxed: If the tree T" has bipartition classes of sizes k; and ks, then it is clearly
enough to require the vertices from X to have degree at least k; and the vertices from Y to
have degree at least k». In particular, if deg(z) > |%] for all z € X, and deg(y) > k for all
y € Y, then each tree with k£ edges embeds in H.

If the tree we wish to embed has bounded degree, and the host graph has an (e, n)-reduced
graph which is bipartite and connected, for some ¢ and 7, one can do even better: We will

now show that in this case it is enough to require a minimum degree of roughly % for the
vertices in only one of the bipartition classes, as long as this class is not too small.

Proposition 3.3.1. For all e € (0,1078) and for all d, My € N, there is ko such that for all
n,k = ko the following holds. Let G be an n-vertex graph, with (g, 5+/€)-reduced graph R that
satisfies |R| < My, such that

(i) R = (A,B) is bipartite and connected;
(7i) diam(R) < d;
®
(iti) deg(C) > (14 100,/2)% - %, for all C € A; and

(iv) |A| = (1+100y/2)k - 2.,
Then G contains every tree T with k edges and A(T) < k:é as a subgraph.
Proof. Given e,d and M, as in the Theorem, we set

ko = <8i\gg>d.

Let G be a graph as in Proposition[3.3.1, and let A = X ;U---UX;and UB = Y U- - -UY;
be the (e, 5/¢)-regular partition of G corresponding to the reduced graph R (in particular
s+t < My). Set m := |X;| = |Y;| (for any ¢, j).
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For each ¢ € [s], we arbitrarily partition X; into three sets X; g, X; 1, X;¢; and for each
jJ € [t] we arbitrarily partition Y; into three sets Yj g, Y 1, Y ¢, such that

[ Xis| = 1 Xiol = [Yis| = Yo = [10v/Em].

The letters S, L and C stand for seeds, links and clusters, respectively (sets X; ¢ and Yj ¢
contain the bulk of the clusters). We also call these subsets the L-, S- or C-slice of the
corresponding cluster.

Note that, by Fact for every (X;,Y;) with positive density, each of the pairs
(Xik, Y, k), with K, K" € {S,L,C}, is %—regular with density greater than 4,/c.

Root T at any vertex r € V(T). By Proposition with parameters [ = 5 we
obtain a decomposition of (7', ) into a collection of pieces P, each of order at most Sk, and
a family of seeds S of size at most % Order the elements from S U P in a way that the first
element is r, and the parent of each element is either an earlier seed or belongs to an earlier
piece. (Note that the parent of a seed or piece is a vertex, so it either is a seed or belongs to

a piece.)

Our plan is to embed the elements from S U P in this order. Seeds will go to S-slices of
appropriate clusters X; ¢ or Y g, with r going to cluster X; if (1) belongs to the heavier bi-
partition class of T, and going to Y; otherwise. Pieces from P will go into C-slices (X, ¢, Yj.¢)
of appropriate pairs (X;,Y;), and into L-slices of other clusters.

More precisely, for each piece P € P we will find a pair (X;,Y;) such that there is
enough space left in (X, ¢, Y ) to accommodate P. At this point, the parent of P is already
embedded into some cluster Z, so we need to embed part of P into a path ZZ1Z,75... 7,
that connects Z with the pair (X;,Y;). Because of the bounded degree of T, and since the
diameter of G is also bounded, this path can be chosen short enough to ensure that the levels
of P that are embedded into this path only contain relatively few vertices. So we can use
the L-slices of the clusters Z, for these levels. The remaining levels of P will be embedded
into the free space of (X, ¢, Y] ).

Let us make this sketch more precise. During the embedding procedure, we will write
X;c and Y] for the set of unoccupied vertices of X;c and Yj ¢ respectively. We will say
that a pair (X;,Y}) is good if d(X;,Y;) > 0 and min{|Xj o[, [Y]c|} = 5y/em. Hence we will
be able to apply Lemma to any good pair and any piece belonging to P.

The embedding ¢ : V(T') — V(G) will be constructed iteratively, following the embedding
order of S'UP chosen above. Employing the strategy explained above, we make sure that at
every step, the following conditions will be satisfied:

1. Each vertex is embedded into a neighbour of the image of its already embedded parent;

2. each s € S is embedded into the S-slice of some cluster;

3. for each P € P, the first (up to d — 1) levels are embedded into the L-slices of some
clusters, and the rest goes into the C-slices; and
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4. every v € V(T) is mapped into a vertex that is typical towards both the S-slice and
the L-slice of some adjacent cluster.

Since the set S has constant size, and since we do not particularly care into which cluster a
seed goes, as long as it goes to the S-slice, it is clearly possible to embed a seed s, when its
time comes, satisfying conditions , and .

So assume we are about to embed a piece P € P. The parent of the root r(P) of P is
already embedded into some vertex that is typical with respect to the L-slice of some cluster
Zy. In order to be able to embed P according to our plan, it suffices to ensure that

1. there exists some good pair (X;,Y));
2. there is a path Z, 2573 ... Z;, of length h < d from Z; to X;;

3. the union of the first A — 1 levels of P is small enough to fit into the free space in the
L-slices of {Zl, Zg, Zg, ey Zh—l}-

If we can assure these properties, we can repeatedly apply Lemma [2.3.4] to embed the first
levels of P into the L-slices of the clusters Z;, and the remaining levels of P into (X; o, Y/ )

in a way that . . and . hold.

So, let us prove ([I)). We first note that there exists some cluster X; such that [¢~' (X, ¢)| <
| X:.c| — by/em. Indeed, otherwise we have used at least

(1 —25y2)|UA| —5vE|UA| = (1 = 30E)(1 + 100y/2)k > (1 +2yE)k > k+ 1

vertices from (JA already, a contradiction, since |T| = k + 1.

Next, we claim there exists some cluster Y; such that (X;,Y;) is good. If this was not the
case, then we have used at least
k: +1

(1= 30V3) N6(X,)| > (1= 80vE)(L+ 100V2)E > (1 +2vE)% > 12

vertices of |J B already, a contradiction, as we placed the root r of T in a way that guaranteed
we would embed the smaller bipartition class of T" into B.

Observe that implies (2)), because of condition of Proposition (3.3.1L So it only
remains to prove .

Using for already embedded pieces P’, and using the fact that, for any such piece
P', the number of vertices in their first d — 1 levels is bounded by 2(A(T) — 1)?~2 (except if
A(T) < 2, in which case this number is bounded by d — 1), we have that the total number
of occupied vertices in L-slices is at most

4 a1 4 M, k
S|-A(T)-2A(T) — 1) 2 < = kT <=2k <e—r <
|1S]- A(T) - 2(A(T) — 1) 5k . T o S
for k > ko. In particular, each L-slice of a cluster Z, has at least [94/em] unused vertices.
This is enough to ensure that the first h — 1 levels of P fit into the L-slices of the clusters
Z, Ly, L3, ..., Z_1. This proves . O
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Remark 3.3.2. It is easy to see that instead of conditions and from Proposition
we could use the weaker requirement that there is a set C of clusters in A such that deg(C) >

(1+100v2)5 - B for all C € C, and |C| > (1 + 100y/€)k - B,

Remark 3.3.3. Observe that Proposition |3.5.1 remains true with the following additional
conditions. Let U C V(G) such that

o U +|T|<k+1;
e [UNV(UA)|+ co(T) < k; and
« [UNVUB)| +a(T) <t

where co(T) and c1(T) are the two colour classes of T. Then T can be embedded into G
avoiding U, that is, we can embed T in such a way ¢(V(T)) CV(G)\ U.

Moreover, observe that by repeatedly applying Proposition [3.3.] together with Re-
mark we can actually embed a forest instead of a tree. We say that a forest F|,
with colour classes C and Cy, is a (ky, ks, t)-forest if

1. |Cy] < k; for i € {1,2}, and

2. A(F) < (k1 + ko)™

Corollary 3.3.4. For all € € (0,107%) and for all d, My € N there is ko such that for all
n, ki, ks = ko the following holds. Let G be an n-vertex graph having a (e,5+/)-reduced graph
R that satisfies |R| < My, such that

(i) R = (A,B) is connected and bipartite;

(77) diam(R) < d;
(iit) deg(C) = (1 + 100+/2)ks - %, for all C € A; and
(iv) |A] = (1+100y/E)k; - 2.

Then any (ki, ks, é)-forest F, with colour classes C7 and Cy, can be embedded into G, with
Cy going to V(UA) and Cy going to V(U B).

X
be mapped to any prescribed set of size at least 2e|JA| in UA, and the images of the roots
going to V(UB) can be mapped to any prescribed set of size at least 2| U B| in JB.

Moreover, if F' has at mos roots, then the images of the roots going to V(UA) can

Remark 3.3.5. An analogue of Remark|[3.3.3 holds for the situation of Corollary[3.5.4)

It is easy to see that we can bound the balancedness of trees whose maximum degree is
bounded by some constant A. So, it comes as no surprise that for the class of all constant
degree trees, it is possible to show the following improvement of Proposition [3.3.1
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Corollary 3.3.6. For allc € (0,107%), d, My € N and A > 2 there is a ko such that for all
n,k = ko the following holds. Let G be an n-vertex graph that has an (g, 5+/¢)-reduced graph
R that satisfies |R| < My, such that

1. R=(A,B) is connected and bipartite;
2. diam(R) < d;

3. deg(C) = (1 +100y/2)% - % for all C € A;

A—
4. Al = (14 1004/E) @k B

n

Then G contains every tree T with k edges and A(T) < A as a subgraph.

3.3.2 The nonbipartite case

In this section we treat tree embeddings into graphs with large nonbipartite components in
the reduced graph. The proof of the corresponding proposition, Proposition below, is
very similar to the proof of Proposition For convenience, we will now work with a
matching in the reduced graph.

For a graph G with an (e,n)-regular partition, we say that M is a cluster matching if
it is a matching in the corresponding (g, n)-reduced graph. We begin our treatment of the
nonbipartite case by showing that we can always find a large cluster matching in graphs with
large minimum degree that admit an (g, n)-regular partition, for some ¢, € (0,1). To do so,
we first need the following result.

Lemma 3.3.7. Let H be any graph. Then there exists an independent set I, a matching M,
and a set of vertex disjoint triangles I' so that V(H) = I UV (M) U V(). Moreover, there
is a partition V(M) = V3 UV, of V(M) such that every edge of M has one vertex in Vi and
one vertezx in Vo, and N(z) C V; for allx € I.

Proof. Let us choose a matching M and a family I' of disjoint triangles, that are disjoint
from M, maximising |V (M)| + |V(T')|. Then the set I consisting of all vertices not covered
by M UT is independent.

Consider a vertex x € I. Note that because of our choice of M and I', we know that x is
not adjacent to any vertex from any triangle from I'. Also, note that for any edge uv in M,
vertex = sees at most one of u, v. Finally, if £ sees u, then no other vertex from I can see v.
This proves the statement. [

Lemma 3.3.8. Lete,n € (0,1), lett, ¢ € N, and let G be a graph onn > 2t + £ vertices with
d(G) = t + € which has an (g,n)-reqular partition into € parts. Then G has a subgraph G’
with |G'| = n—{ that admits a (5¢,n — €)-reqular partition with 20 parts whose corresponding

reduced graph R contains a matching M and an independent family of clusters J, disjoint
from M, such that
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(i) UV M) uV(UI) = V(G);
(i) |UV(M)| = 2t; and

(iii) there is a partition V(M) = V; UVy such that Nx(J) C Vy and every edge in M has one
endpoint in Vi and one endpoint in V.

Proof. Let R be the reduced graph corresponding to the (g,n)-regular partition of G. By
applying Lemma to R, we obtain an independent set J’', a matching M’ and a set of
disjoint triangles I', such that V(R) = JU V(M) U V(T'). If T is empty, we are done by
choosing J :=J" and M := M. So suppose I" # ().

We arbitrarily partition each cluster X € V(R) into X' U X? U X? so that | X = |X?|
and | X?| < 1. Let G' = G — V(Uxey g X*). Thanks to Fact 2.3.1]f2] the partition V(G') =
Uxevr X' UX? is (5e,1 — ¢)-regular and has 2 atoms. We set

M= | {(¢'DY),(*D)ru U {(XLY?). (Y1, 2%, (2", X*)}

cDew’ XY Zer
and
J:= (J{C"C*}
cey
Note that J and M inherit the properties of J and M/, respectively. Property follows
from Property and the minimum degree of G. O

We will apply Lemma to the reduced graph of a given host graph G. The lemma
then says that, after modifying the reduced graph (cutting its clusters in half), one can find
a cluster matching whose size depends on the minimum degree of G. In particular, given
0 > 0, if G has minimum degree at least (1 + 5)%, one can find a matching covering at least
(14 d)k vertices of G.

Now we are ready for Proposition [3.3.9 and its proof.

Proposition 3.3.9. For all ¢ € (0,1078) and d, My € N there exists ko such that for all
n,k = ko the following holds. Let G be an n-vertex graph that has an (g, 5+/¢)-reduced graph
R that satisfies |R| < My, such that

1. R is connected and nonbipartite;
2. diam(R) < d; and
3. R has a matching M with |V (M)| = (1 + 100/¢)k - %.

Then G contains every tree T with k edges and A(T) < k3 as a subgraph.

Proof. Given ¢,d and M, as in the Theorem, we set

8M2 3d+1
o

g2
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Now, let G be a graph as in Proposition let V(G) = V1U...UV, be the (g, 5/¢)-regular
partition of G corresponding to the reduced graph R (in particular ¢ < My). Set m = |V}
for any i € [/].

For each i € [(], we partition cluster V; into sets Vs, Vi1, Vic in the same way as
we did in Proposition B.3.1 Also, consider the decomposition of 7" into 7 and S given

by Proposmon 2.2.7, with 8 = 5. We order S U P in the same way as in the proof of
Proposition (3 .

The embedding ¢ : V(T) — V(G) will be constructed iteratively, following the order of
S UP. We make sure that at every step, the following conditions will be satisfied:

1. Each vertex is embedded into a neighbour of the image of its already embedded parent;

2. each s € S is embedded into the S-slice of some cluster;

3. for each P € P, the first 3d levels are embedded into the L-slices of some clusters, and
the remaining levels go to the C-slices;

4. every v € V(T) is mapped to a vertex that is typical with respect to both the S-slice
and the L-slice of some adjacent cluster; and

“(ﬁ Vo) — o1V, |‘ em for each pair (V;,V;) € M.

We already know that it is no problem to embed a seed s, when its time comes, satisfying
conditions , and . So we mainly have to worry about and .

Assume we are about to embed a piece P € P. The parent of the root 7(P) of P is already
embedded into some vertex that is typical with respect to the L-slice of some cluster Z;. In
order to be able to embed P so that the above conditions are satisfied, it suffices to ensure
that

1. there exists some good pair (V;,V;);
2. for either choice of Zsqy1 € {V;,V;} there is a walk 212, ... Z3411 in R;
3. the first 3d levels of P are small enough to fit into the free space in the L-slices of
{Zh ZQ ey Z3d}7
where a walk in a graph is a sequence 217, ... 7, such that each Z; is adjacent to Z;,; for
all 1 <7< h.

Before we prove (|1)—(3)), let us explain why these conditions are enough to ensure we can
embed T correctly. As before, we plan to repeatedly apply Lemma in order to embed
the first levels of P into the L-slices of the clusters 21, Zs, ..., Z34, and the later levels into
the C-slices of V;, V;, always avoiding all vertices used earlier.

Since our aim is to embed P in such a way that is fulfilled, we take care to choose
Zsar1 € {Vi, V;} in a way that the larger bipartition class of the tree P’ obtained from P by
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deleting itS first 3d levels goes to the less occupied slice from V; ¢, V; . That is, assuming
that ‘gb ’ ‘gb Vic ‘ (the other case is analogous), we proceed as follows. If the
levels of P’ that lie at even distance from the root of P in total contain more vertices than
those lying at odd distance, we choose Z3441 = V. Otherwise, we choose Z34,1 = V;. We
then embed P, making the first 3d levels go to L-slices, and embedding P’ into V; o UV ¢.

Let us now prove . Suppose there is no good pair in M. This together with implies
that the number of embedded vertices is at least

S (JAic| — 6vEm + |Bic| — 6vEm) > (1 — 33vE)(1 + 100y/2)k > k + 1,

ABEM
a contradiction, since |T'| = k + 1.

Next, we show . Assume we chose Z34,1 = V; (the other case is analogous). Let C' =
C1C;y ... C,Cy be a minimal odd cycle in the reduced graph. Since C' is minimally odd, the
shortest path between two clusters in C'is the shortest arc in the cycle, and hence p < 2d+1.
Let U := Z1U; ... U,C] be a shortest path from Z; to C; and let () := C’[g1Q1 ... Q:V; be a
shortest path from Cf%W to V;. As diam(R) < d, we have that s +¢ + 2 < 2d. So, by using
the appropriate one of the two C1—~Cfzy paths in €, we can extend U U @ to an odd walk
of length at most 2d + (d + 1) = 3d + 1, which connects Z; with V;. By going back- and
forwards on this walk, if necessary, we can obtain a walk of length exactly 3d + 1, which is
as desired. So, condition holds.

Finally, using the same reasoning as in Proposition [3.3.1] we can prove that the total
number of occupied vertices in L-slices is at most

WLA@y%A@}Jf*1<;?kﬁl<em

for k > ko. In particular, the L-slice of each cluster has at least [9y/em| unused vertices
and, therefore, we can embed each vertex of the first 3d levels of P into the L-slices of the
clusters from the walk Z1Z, ... Z34 without a problem. This proves . O

Remark 3.3.10. Ifd = 1 we can actually embed trees with maximum degree bounded by pk,
where p is a sufficiently small constant, without modifying our proof significantly, because we
can reach both V; and V; in one step from the image of the latest embedded seed.

Remark 3.3.11. Similarly to the bipartite case, we can add an extra hypothesis as in Re-
mark[3.3.3 Consider an arbitrary set U C V(G) such that |U| + |T| < k +1 and such that

|UﬂC!\UﬁD”<dCumeCDEW[TMnT

U is reasonably balanced in M, that is,
can be embedded into G avoiding U .

Repeatedly applying Proposition [3.3.9] together with Remark [3.3.11) we can embed a
forest instead of a tree.

Corollary 3.3.12. Let € € (0,107%) and let d, My € N. There exists ky € N such that for
all n,k > ko the following holds. Let G be a n-vertex graph with an (&, 5+/€)-reduced graph
R that satisfies |R| < My. Suppose that
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1. R is connected and nonbipartite;
2. diam(R) < d;

3. R has a matching M with [V (M) > (1 + 100y/2)k - 2

then any forest F' on at most k + 1 vertices that satisfies A(F') < k3 s a subgraph of G.
Moreover, if F has at most %" roots, then the images of the roots can be mapped into any
prescribed set of size at least 2en.

3.4 Improving the maximum degree bound

In the previous section, we proved that in graphs of minimum degree at least (1-+0)% having
a large connected component, after applying regularity and performing the usual cleaning-up,
all trees of maximum degree 0@ appear as subgraphs (see Propositions |3.3.1| and |3.3.9|).
The aim of the present section is to prove a similar statement as there, but with a significant
weakening in the bound on the maximum degree of the tree. More precisely, the exponent
in this bound will no longer depend on the diameter of the reduced graph.

We need a theorem from [45], which says that one can bound the diameter of any con-
nected graph in terms of its number of vertices and its minimum degree.

Theorem 3.4.1 (Erdds, Pach, Pollach and Tuza [45]). Let G be a connected graph on n
vertices with minimum degree at least 2. Then

diam(G) < | 5&] - 1.

We also need the following lemma. Given a graph G and a vertex v € V(G), let N;(v)
denote the i-th neighbourhood of v (i.e. the set of vertices of G at distance ¢ from v).
Lemma 3.4.2. Let ¢ € N and let G be a connected graph, and let v € V(G). Then
3q+1

U Ni(v)

1=0

> min{(q + 1)(3(G) + 1), [V(G)]}.

Proof. If N;(v) = () for some i € [3¢ + 1], then, as G is connected, V(G) C U'Z N;(v) and
thus |U?fgl N;(v)| = |[V(G)|. Therefore, we assume that N;(v) # 0 for every i € [3¢ + 1].

Now, for each j € [q], pick a vertex vs; € N3;(v). Observe that N(vs;) € N3j_1(v) U
Ns;(v) U N3jiq(v), and hence,

[ Naj—1(v) U N (v) U Naja (v)] 2 6(G) + 1.
We also know that |Ny(v) U Ny(v)| = |N(v)|+1 > 6(G) + 1. This proves the statement. [

34



The next result shows that we can make the exponent in Proposition and Proposi-
tion depending only on the minimum degree of GG. In order to prove the result, we will
first apply a strategy similar to the one used in Propositions [3.3.T] and [3.3.9] If this strategy
fails, we will have found a good structure in the host graph and then, forgetting about the
earlier attempt at an embedding of T, we make use of the structure to embed the tree in a
different way:.

Proposition 3.4.3. For all o € [%, 1), € € (0,107®) and My € N, there exists ko € N such
that for all n, k > ko the following holds.

Let G be a n-vertex graph with §(G) > (1 + 100y/2)ak that has a connected (g,5+/¢)-
reduced graph R with |R| < My. If

1. R = (A, B) is bipartite and such that |A| = (1 + 100,/2)k - Bl or

n’

2. R is non-bipartite and n > (1 + 1004/2)k;
then G contains every k-edge tree of mazximum degree at most k%, where r = 18[%1 — 5.

Proof. Given a, we define

dy :=3[2] =2 and dy :=2(d; + 1),

and observe that
r = 3d2 + 1.

Given € and My, let ky be the maximum of the outputs of Proposition and Proposi-
tion |3.3.9] for input €, dy and 2M,.

Let G be as in Proposition [3.4.3l Note that if |V (G)| < (1+100+/2)2k, then Theorem
implies that diam(R) < |2] — 1 < dy. Therefore, we may apply either Proposition or
Proposition [3.3.9] together with Lemma([3.3.8] to conclude. Thus, from now on we will assume
that

V(G)] = (1 +100v/c)2k. (3.11)

Let T be a tree with k£ edges and A(T) < k+, and let us root T at any vertex. We
partition 7' using Proposition m, with 8 := &, obtaining a set S of seeds and a family
P of pieces. We first try to emulafe the embedding scheme used in the proof of Proposition

B.3.T

Consider the regular partition associated to the reduced graph R of G, and divide each
cluster X into three sets X¢, Xg, X1, with | Xg| = | X | = [104/¢|X|]. We are going to embed
T in |S| steps, letting ¢ denote the partial embedding defined so far.

At step j we consider a vertex s; € S not embedded yet, but whose parent u; is already
embedded (except in the step j = 1, in which case we embed the root of T into any cluster
of our choice). We know that ¢(u;) is typical towards the S-slice of some adjacent cluster ().
Embed s; in Qg, choosing ¢(s;) typical to Uy, and to Us, where U is any neighbour of Q.
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Now, suppose there is a good pair (W, Z), that is, an edge W Z such that both clusters
W and Z have free space of size at least 5,/¢|W|, and additionally, dist(U, W) < d;. Find a
shortest path from U to W, say XqX; ... X, 1X;, where Xqg = U and X; = W and, further,
t < d;.

Consider a piece P adjacent to s; that is not yet embedded. We map the root of P into
the neighbourhood of ¢(s;) in (Xy),. We then embed the first ¢ levels of P into the path
XoX1 ... X, 1X;, mapping the vertices from the i-th level of P into unoccupied vertices from
(X;)r that are typical towards (X, 1)z and to (X;41)s, for each i € {0, ..., t—1} respectively.
Finish the embedding of P, by mapping the remaining levels into the unoccupied vertices
of (We, Zc). For this, we use Lemma [2.3.4, mapping the vertices from the ¢-th level of
P into W¢ and picking all the images typical towards the L-slice and the S-slice of some
adjacent cluster. We repeat this procedure for every not yet embedded piece adjacent to s;
and then move on to the next seed.

If every step of this process is successful, then T is satisfactorily embedded into G. How-
ever, it might happen that the embedding cannot be completed, because at some step we
could not find a good pair (W, Z) at close distance. In that case, consider the seed s* where
the process stopped and let C* be the cluster to which s* was assigned. Let us define H
as the subgraph of R induced by all those clusters that lie at distance at most d; from C*.
Further, let S be the set of all those clusters C' € V(#) that have free space of size at least
5y/€|C|. Note that, since the embedding could not be finished,

S is an independent set. (3.12)

By applying Lemma with ¢ = [2] — 1, and since 6(R) > (1 + 100y/2)ak - %l and
by (3.11)), we deduce that
R
V)| > (1+ 100y/E)2k -
n

This is more than twice the space needed for embedding T'. So, since we have embedded at
most k vertices before we declared the embedding to have failed, we conclude that

S| > (14 200/2)k - |2§'. (3.13)

Let us define H’ as the subgraph of R induced by all clusters at distance at most d; + 1 from
C*. So, V(H') consists of V(H) together with the neighbours of H in R.

Forgetting about our previous attempt to embed 7', we are now going to embed T" with
the help of our earlier propositions. We distinguish two cases, depending on whether H’ is
bipartite or not.

Case 1: H’ is nonbipartite.

Let M be a matching in H covering a maximal number of clusters from §. We claim that
[V(M)| = (14 100y/2)k - ‘%'. Indeed, otherwise (3.13)) implies that there is a cluster X €
V(S) \ V(M). By our choice of M, and because of (3.12)), we know that X sees at most one
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end vertex of each edge from M, and no cluster outside V' (M). This contradicts the fact that
degyy (X) = (1+100y/2)% - &

n

Hence, as diam(#H') < 2(dy + 1) = ds, we can apply Proposition to H' and the
subgraph of G induced by the clusters of H’, and we are done.

Case 2: H' is bipartite.

Since |[V(H)| = (1 + 100/¢)2k - %', one of the bipartition classes of H’', say A, satisfies
ANH| > (14 100y/2)k - 2. Since degyy (X) = (1 +100y/2)% - B for each X € V(H), we
can apply Proposition together with Remark to obtain the embedding of 7. [J

3.5 The key embedding lemma

In the current section, we present and prove our key embedding lemma, namely Lemma [3.5.3
This lemma describes a series of configurations which, if they appear in a graph G, allow us
to embed any bounded degree tree of the right size into G.

Before stating the lemma we need two simple definitions.

Definition 3.5.1 (6-see). Let 6 € (0,1). A vertex x of a graph H 0-sees a set U C V(H) if
it has at least O|U| neighbours in U. Furthermore, if C is a component of some reduced graph
of H— x, we say that x 0-sees C if x has at least 0| C| neighbours in V(U C).

Definition 3.5.2 ((k, 0)-small and (k, 0)-large). Let k € N and let 0 € (0,1). A nonbipartite
graph G is said to be (k,0)-small if |V (G)| < (14 0)k. A bipartite graph H = (A, B) is said
to be (k,0)-small if max{|A|, |B|} < (14 0)k. If a graph is not (k,0)-small, we will say that
it is (k,0)-large.

We are now ready for the key lemma (for an illustration of the situation described in the
lemma, see Figure .

Lemma 3.5.3 (Key embedding lemma). For each a € [5,1), for each e € (0,107'%) and for
each My € N there is ng € N such that for all n,k > ng the following holds.

Let G be an n-vertex graph of minimum degree at least (1 + /e)ak and let T be a tree

with k edges whose mazimum degree is bounded by k+, where r = 18[2] — 5. Let z € V(G),
and let R be an (g, 5+/2)-reduced graph of G — x, with |R| < My, such that at least one of the
following conditions (I)-(1V) holds:

1. R has a (k- %', e)-large nonbipartite component; or

2. R has a (ky - %‘, Ve)-large bipartite component, where ky is the size of the larger bipar-
tition class of T'; or
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3. R has a (% : %, Ve)-large bipartite component such that x /e-sees both sides of the
bipartition; or

4. x +/e-sees two components C; and Cy of R in a way that one of the following holds:

(a) x sends at least one edge to a third component Cs3 of R;

(b) there is i € {1,2} such that C; is nonbipartite and (% - %, Ve)-large;

(c) there is i € {1,2} such that C; is bipartite and x sees both sides of the bipartition;

(d) thereisi € {1,2} such that C; is bipartite with parts A and B, such that min{|A|, |B|} >
(1+ %)% . % and x sees only one side of the bipartition;

(e) C1 and Cy are bipartite with parts Ay, By and Az, Bs, respectively, such that
min{|A;[,|Bs|} > (1 + ¢/2)% - % and x does not see By U Bs.

Then T embeds in G.

Proof. Let k| be the maximum of the outputs ky of Proposition [3.4.3] Corollary and
Corollary |3.3.12, for inputs €, d = g and 2My, and choose ng := k{, + 1 as the numerical
output of Lemma

Now assume we are given an n-vertex graph G with z € V(G), and let T be a k-edge tree
as in Lemma Let R be the (e,5/¢)-reduced graph of G — z. An easy computation
shows that

R R

6(R) = (14 3v/e)ak - —> (1+ 100y/€)ak - — (3.14)

where the last inequality follows since ¢ < 107!, Furthermore, note that R must fulfill
one of the conditions (I)-(IV) from Lemma m If R contains a (k - %, /e)-large non-

bipartite component or a (k; - %, \/e)-large bipartite component, then we can conclude by

Proposition [3.4.3

So we can discard scenarios and from Lemma m Therefore, by Theorem m
and by (3.14]), we can assume that every connected component € of R satisfies

3|l <3(1+3/§)2k-% 6

diam(C) < < < —+1, 3.15
©) 0C)+1 " (1+1ye)ak- B " a (319)

and thus
r > 3-diam(C) + 1. (3.16)

So, the maximum degree of 7" and the diameter of the components are in the right relation
to each other, meaning that we could apply Corollaries [3.3.4] and [3.3.12] to each connected
component of R (if the other conditions of these corollaries hold).

In order to embed 7" under scenarios and (), we use the results from Section [3.2]

Case 1 (scenario (3)): R has a (% - %, \/e)-large bipartite component € such that x /e-
sees both sides of the bipartition.
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Figure 3.2: The scenarios described in Lemma
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Applying Proposition to T', we obtain a cut-vertex zo € V(7T') and a proper 2-colouring
c: V(T — z) — {0,1} of T'— 2y such that

2k

le1] < o] < 3 and |ci| <

Do |

Let us note that, because of the bound on kg, the number of components of T'— z; is bounded
by
1 ek en

AT)<kr < g =0 3.17
M <k <5< (3.17)
Now, we map zg into z. Recalling (3.14)), (3.15)), (3.16]) and the fact that T'— zg is a (%, g, %)—

forest we can apply Corollary [3.3.4] to embed T' — z, into €, and by (3.17) we may choose the
images of the roots of T' — z; as neighbours of z.

Case 2 (scenario (4))): = \/z-sees two components €; and Cy of R.

Let z; € V(T') be the vertex given by Lemma applied to T', with any leaf v. Let T be
the set of connected components of T'— z;. Then T is a family of at most A(T) rooted trees
whose roots are neighbours of z; in 7', and |V(T")| < [%] for every T” € 7.

Apply Lemma m (i) to T to obtain a partition of T into three families of trees Fy, Fo
and F3, where F3 could be empty, such that

VUF) < [VUF) < [VUF)| < m | (3.18)

For later use, let us record here that

|Fi| + [ Fo| + | Fs] < A(T) < [ (3.19)
Furthermore, due to Remark [3.2.2] we know that
P3| < 1. (3.20)

Similarly, applying Lemma m (ii) to T we obtain a partition of T into two families of trees
J1 and J, such that

2k

and |V(Ud2)| < [V(Ud1)| < ER (3.21)

o |

V(Ud2)| <

and again, we know that
en

1] + 132 < A(T) < &

(3.22)

We split the remainder of the proof into five cases, according to which of the conditions

, , , or holds. Depending on the case we will make use of partition
{E}z’:l,z or {32‘}2‘:1,2,3.
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Case 2a (scenario ): x /e-sees two components €1, Gy and sends at least one edge to
a third component Cs.

We embed z; into z, and then proceed to embed the roots of the trees from JF; into the
neighbourhood of x in €;, for each i € {1,2,3}. This is possible since by (3.20)), there is at
most one root to embed into Cs. Furthermore, by (3.19)), there are at most A(7") < 7y roots

to be embedded into C;, for ¢ € {1,2}. Finally, because of the minimum degree in G, and
because of (3.18]), we can greedily embed the remaining vertices of each forest F; into C;.

Case 2b (scenario (4b)): = /z-sees two components C; and €y, and one of these compo-
nents, say (', is nonbipartite and (% . %, Ve)-large.

We map z; into z, and then embed the roots of g5 into €y (we know that x has enough
neighbours in Gy because of (3.19))). We then embed the rest of JJs greedily into Cs.

For the trees from J;, we can make use of Corollary |3.3.12l and Lemma |3.3.8] whose con-
ditions hold by (3.14)), (3.15), (3.16) and (3.21)), to map UJ; to C;.

Case 2c (scenario ): x y/e-sees two components C; and €y, one of these components,
say Ci, is bipartite, and x sees both sides A, B of the bipartition.

First, we map z; into = and then embed |JJF; greedily into €, (embedding the roots into
neighbours of x, as before). For the remaining forests, F, and JF3, observe that for any
proper 2-colouring of |JF, and | F3, and for any i € {2,3}, the larger colour class of JF;
and the smaller colour class of |J F5_; add up to at most

Fs5-i F F F: k
2 2 2
Now, our aim is to embed the roots and all the even levels of |J F; into A, while embedding
the odd levels into B. Moreover, we plan to embed [J F3 in a way that its larger colour class

goes to the same set as the smaller colour class of U F.

As x /e-sees C;, we may assume that z VE _sees A. Moreover, since x has at least one
) 2 )

neighbour b € |J B, and since |J F3 has only one root because of , we can choose whether
we map the single root of |J F3 into b, or into some neighbour of x in A. We will make this
choice according to our plan above (that is, it will depend on whether the even or the odd
levels of | F» contain more vertices).

\UF| +

We then greedily embed the rest of | F3 into €;. Now, we can make use of Corollary

together with Remark whose conditions hold by (3.16|) and by (3.23), to complete the
embedding of |J F; into C;, while avoiding the image of | F3.

Case 2d (scenario (4d)): x /z-sees two components €; and €, one of them is bipartite

with parts A and B, such that min{|Al,|B[} > (1 + /€)% - %‘ and z sees only one side of
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the bipartition.

Let us assume that €; is the bipartite component with parts A and B containing at least
(1+ {‘/E)% . %' clusters each and that x only sees the set A. We map z; into x and then
embed | do greedily into Gy (embedding the roots into neighbours of x, as before). Note that
there are few roots of trees in J; U Jo, because of . Since J; is a (%, g, %)—forest, we
may apply Corollary so that we can embed [JJ; into C; in a way that the images of its
roots are neighbours of x. This works because of .

Case 2e (scenario ): x \/e-sees two bipartite components €; and Gy, with parts
A1, By and As, B, respectively, such that min{|A;],|Bs|} > (1 + /&) - % and x sees only
.Al and .AQ.

We map z; into x, note that x /z-sees A; and A,. Consider the colouring ¢ that T" induces
in JJy. If the roots of the trees in J; are contained in the heavier colour class of ¢, then
we embed UJ; into C;, otherwise we embed [JJ; into Cy. In any case, and since J; is a
<2k k1

%, 5, )-forest, we may use Corollary to embed |JJ; (taking care of mapping the roots

into neighbours of x). Finally, we greedily embed |JJs into the remaining component.

This completes the proof of Lemma [3.5.3] [

3.6 Embedding trees with degree conditions

In this section we prove Theorems [1.3.5 [1.3.6] and [1.3.3] All of them will be proved us-
ing Lemma [3.5.3] which, fortunately, makes all these proofs quite straightforward.

We begin by proving the approximate version of the 2k — g

in Section [3.6.1, Then, we show the approximate version of 2-conjecture (Theorem

conjecture (Theorem

3
Section [3.6.2] In Section [3.6.3 we show Theorem [I.3.6] (our extension of Theorem

constant degree trees).

k

3.6.1 An approximate version of the 2k — J

conjecture

Proof of Theorem[1.3.5 Given ¢ € (0, 1), we set

64
c:

1
= m, and a := 5

Let Ny, My be given by Lemma [2.3.2] with input e, 1 := 5y/¢ and mg := 1, and let nj be
given by Lemma [3.5.3] with input «, e and M. We choose ng := (1 — &)~ max{n{, No} + 1
as the numerical output of the theorem.
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Let G be an n-vertex graph as in Theorem [1.3.5, where n > k > dn and n > ng, and let
z € V(G) be a vertex of degree at least 2(1 + )k. Let T be a k-edge tree with maximum
degree at most k%, where r = 67 =18 -4 — 5.

We apply Lemma to G — z so that we get a subgraph G' C G — z, with |G'| >
(1 —¢)(n—1), that admits an (g, 5y/¢)-regular partition. Moreover, the minimum degree in
G’ is at least

5(G) > (1+5)§—(6+5\/E)(n—1)—1 > (1+\4/§)];. (3.24)

Let R be the corresponding (g, 51/¢)-reduced graph of G'. Our aim is to show that R fulfills
at least one of the conditions (I)—(4) from Lemma [3.5.3] for inputs a,e and M,. We will

assume that
all the components of R are (k - %", v/€)-small, (3.25)

as otherwise either we have or (2) from Lemma |3.5.3, and we are done.

Since G’ misses less than en vertices from G, we have that
degq(z, G') = 2(1 + 2)k = 2(1 + 100v/2)k. (3.26)

Suppose that z does not /e-see any component of R. Since én < k and because of ([3.26)),
we have that

26n < 2(1+ 2k < degg(z, G') = degy(z, V(UC)) < Ven, ()
(¢

a contradiction. Therefore, there is some component €; of R receiving more than /2| Cy|
edges from z.

By (3.25)),  can have at most 2(1 + /¢)k neighbours in JC;. So by (3.26)), there are
more than /zk neighbours of z outside |J C;. Following the same reasoning as in (©), there

must be a second component G receiving at least \/g| | Cs| edges from x. We can assume
that x has no neighbours outside | €; U €y, as otherwise condition from Lemma [3.5.3]
holds.

By (3.26) and by symmetry, we can assume that
degg(z, V(UCL)) = (1+ )k

In particular, we can again employ (13.25)) to see that C; is bipartite, and moreover z has to
see both classes of the bipartition. Therefore, condition from Lemma holds and
the proof is finished. n

3.6.2 An approximate version of the %-conjecture

Proof of Theorem[1.3.3. Given ¢ € (0, 1), we set

[jp— 54 [p— 2
g = W, and a := g
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Let Ny, My be given by Lemma , with input &, n := 5y/¢ and mg := é, and let n{ be
given by Lemma [3.5.3] with input «, e and M. We choose ng := (1 — &)~ max{n{, No} + 1
as the numerical output of the theorem.

Let G be an n-vertex graph as in Theorem [1.3.3] where n > k > dn and n > ng, and let
z € V(G) be a vertex of degree at least (1 + d)k. Let T be a k-edge tree with maximum
degree at most k%, where r =49 =18 -3 — 5.

We apply Lemma to G — x so that we get a subgraph G' C G — z, with |G'| >
(1—¢)(n—1), that admits an (e, 5y/2)-regular partition. Let R be the corresponding (e, 51/2)-
reduced graph of G’, we will assume that every component of R is (k - I‘g’l\’ We)-small. An
easy computation shows that

2k 2k
(G = (1+3) 5 2 (1+10095) %, (3.27)

because of the minimum degree in G. Also, note that deg(z, G') = (1 + $)k. Following
the same reasoning as in (©), and because of the degree of x, there is some component C; of

R such that x \/e-sees C;.

First, assume that x has more than (1 + 2/2)k neighbours in J€;. Since €; is small,
C; must be bipartite and x must see at least a y/ze-portion of both sides of the bipartition,
namely A and B. Then, by we have max{|A[, |B|} > (1+ /)% - |g,|‘ and, therefore,
G’ satisfies condition from Lemma [3.5.3|

Now, we may assume that x has less than (1 + 2/¢)k neighbours in U €;. As in (O), we
can calculate that there is a second component C, containing at least /¢|J C| neighbours
of . We can assume that x does not send edges to any other component, otherwise we are

in case from Lemma [3.5.3] and are done.

Also, by symmetry we can assume that degq(z, V(UC1)) = (1+£)%. Following the same

reasoning as before we conclude that |G| > (1+$)%- ||§,||. In particular, if C; is nonbipartite,

then G’ satisfies condition from Lemma and we are done.

So we may suppose that C; is bipartite. If x sees both sides of the bipartition, condi-
tion from Lemma holds, so let us assume this is not the case. The minimum degree
tells us that one of the sides of the bipartition of €; has size at least (1 + g)% Bl clusters,

3 0]
and we can argue similarly for the other side of the bipartition. This means that G’ satisfies
condition from Lemma [3.5.3] which completes the proof. O

3.6.3 Embedding trees with maximum degree bounded by a con-
stant

Proof of Theorem[1.5.6, Given ¢ € (0,1) and A > 2, we set
54

8::ﬁanda::§.
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Let Ny, My be given by Lemma , with input ,n := 5/ and mq := %, and let ny be
given by Lemma [3.5.3] with input «, e and M. We choose ng := (1 — &)~ max{n{, No} + 1
as the numerical output of the theorem.

Let G be an n-vertex graph as in Theorem [1.3.6] where n > k > dn and n > ng, and let
z € V(G) be a vertex of degree at least 2(252 + §)k. Let T be a k-edge tree with maximum
degree at most A.

We apply Lemma to G — x and we obtain a subgraph G’, with |G'| > (1 —¢)(n—1),
that admits an (e,5/¢)-regular partition. Let R be the corresponding (g,5+/¢)-reduced
graph.

Observe that each k-edge tree T' with maximum degree at most A will satisfy

ki < AA_lk, (3.28)

where £ is the size of the larger bipartition class of T. We can discard scenarios and
and therefore assume that

all nonbipartite components of R are (k - %, v/e)-small, (3.29)
and, by (3.28),
all bipartite components of R are (%k; . %, V/)-small. (3.30)

As we removed only few vertices from G, it is clear that z has at least 2(£5% + $)k neighbours
in G'. This, together with (3.29)) and (3.30]), implies that there are components €; and Cy of
R such that

dege(z, V(UC)) = e|UGC|, forie {1,2}.
Moreover, we may assume that x does not see any other components, otherwise G’ satisfies
condition from Lemma and we are done. First, suppose that A = 2, that is, T is
a path of length k. In this case, we choose a cut vertex z of T' that splits T into two paths
of length g and then we embed z into x. After that, we can greedily embed each component
of T'— z into €; and C,, respectively.

Now, suppose that A > 3. By symmetry, we may assume that
degg(z,V(UC)) = (55 + §)k. (3.31)

If C; is nonbipartite, G’ satisfies condition from Lemma as A > 3. If C; is bipartite
with parts A and B, we can employ (3.30]) together with (3.31)) to conclude that G’ satisfies
condition from Lemma m This concludes the proof. O

3.7 An approximate version of the intermediate range
conjecture

In this section, we prove an approximate version of the intermediate range conjecture (Theo-
rem [1.3.8]). The proof is based on a structural result for graphs with minimum degree above
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g and maximum degree above %”“ avoiding some tree with k edges and bounded degree. Let

us start with the definition of the extremal graphs.

Definition 3.7.1 ((g, x)-extremal). Let ¢ > 0 and let k € N. Given a graph G and a vertex
z € V(G), we say that G is (e, x)-extremal if for every (e,5\/¢)-reduced graph R of G — x
the following conditions hold:

%]

(i) every component of R is (k - @ Ve)-small;

(ii) x \/e-sees two components C; and Cy of R and x does not see any other component

of R;

and furthermore, assuming that deg(z, UV (Cy)) > deg(z,UV(Cy)),

(7ii) ©Cy is bipartite and (% . %, Ve)-large, with x only seeing the larger side of Cy;

() if Co is non-bipartite, then Cq is (% . %, Ve)-small, and if Cy is bipartite, then x sees
only one side of the bipartition.

Now we will prove that a graph of minimum degree above g and maximum degree above
43—k either contains every tree with k edges and bounded degree or is (e, x) extremal for each
vertex z of high degree.

Theorem 3.7.2. For all 6 € (0,1) there is ng € N such that for all k,n > ng withn >k >
on, the following holds for every n-vertex graph G with 6(G) = (1+6)% and A(G) = (1+0)%.
If T is a tree with k edges such that A(T) < L, then either

(a) T embeds in G; or

(b) G is (lg%,az)-extremal for every x € V(G) of degree at least (14 0)%.

Proof. Given ¢ € (0,1), we set
64

Let Ny, My be given by Lemma, with input €, 7 := 51/ and mg := 1, and let nj, be
given by Lemma [3.5.3 with input & and M,. We choose

no := (1 —¢) ' max{nj, No} + 1
as the numerical output of Theorem (3.7.2]

Let G and T be given as in Theorem [3.7.2] Consider an arbitrary vertex z € V(G) with
deg(z) = (1 + 5)%1@ and apply Lemma to G — x. We obtain a subgraph G' C G — z
which admits an (e, 5y/¢)-regular partition of G — x, with corresponding (g, 5/¢)-reduced
graph R. Note that

0(G) = (1+3)

o |

k
> (1+1002)3.
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If R has a (k- \'(ﬂ;"w V/€)-large component, we are either in scenario (1)) or () from Lemma|3.5.3]

and we can embed T'. So let us assume this is not the case. In particular, we can assume
that condition (i) of Definition [3.7.1] holds.

Since G’ misses less than en + 1 vertices from G, we have that
4 4
degy(z,G") > (1 + g)gk > (1+ 100\4/2)§k. (3.33)

It is clear that x has to \/e-see at least one component C; of R. Indeed, otherwise, we would

have that
4

4
gén < §k < degg(z, G") ZdegG z, UV (C)) < en, (3.34)

where the sum is over all components € of R, and this contradicts (3.32)). Suppose that x
sees only one component. Since C; is (k - o, /2)-small and degg(z,UV(C)) > (1 + 44

el
it follows that C; is bipartite and thence the largest bipartition class of €; has size at least
(14 ) W| and x y/z-sees both bipartition classes. Therefore we are in scenario from
Lemma and thus we can embed 7.

Suppose from now that z sends edges outside of €;. Since C; is (k - ||§,|‘, We)-small, it
follows that

et (e, G\ UV(€D) > (14 5048). (3.35)

We claim that = \/z-sees at least two components of R. Indeed, since k > dn and from (3.35])
we have

M < (1 50Y5)E < 3 den(n,UV(€)) < VEn,

C£C,

which contradicts (3.32]).

If = sends at least one edge to a third component, then we are in scenario (4al) from
Lemma and thus T can be embedded. Therefore, we know that x actually /c-sees
exactly two components, which we will call €; and G, (In particular, we know that condi-
tion (ii) of Definition holds). By symmetry, we may assume that deg(z, UV (C;)) >

deg(z,UV(Cs)) and thus, by (3.33),
2k
deg(e,UV(€1)) > (1+1003/2) 5 (3.36)

Thus, if C; is non-bipartite we are in scenario from Lemma and therefore, we can
assume C; = (A, By) is bipartite. Also, = only sees one side of the bipartition, say A;, since
otherwise we are in scenario ([4d). Moreover, by (3.36)), and since we may assume we are not
in scenario (4d), we know that

2k; |iR| 2k |R]
A 1+ 100y d B <1+ vVe)—- . 3.37
So, condition (iii) of Definition holds.
Furthermore, if Gy is non-bipartite, then it is (% an e)-small, as otherwise we are in

case (4b]). If G, is bipartite, then x can only see one side of the bipartition, since otherwise
we are in scenario (dd). Therefore, Cy satisfies condition (iv) of Definition [3.7.1] implying
that G is (1010, x)-extremal. O

47



Now we are ready for the proof of Theorem [1.3.8]

Proof of Theorem[1.53.8. Given 6 € (0,1), we set

54
EERETI
and apply Lemma [2.3.2] with inputs €, = 5y/¢ and mg := £, to obtain numbers ng and M.

Next, apply Corollary with input € and further inputs d := 3 and M, to obtain a
number k). Choose kq as the larger of ny, & and the output of Theorem [3.7.2]

Now, let k,n € N, let a € [0, %), let T be a tree and let G be a graph as in Theoremm
Let = be an arbitrary vertex of maximum degree in G. Note that

degg(z) 2 2(1+6)(1 — a)k = (14 0)%.

We apply the regularity lemma (Lemma [2.3.2)) to G — x to obtain a subgraph G' C G — x
which admits an (g, 5y/¢)-regular partition with a corresponding reduced graph R. Moreover,
since G’ misses only few vertices from G, we know that

degg(z,G') = 2(14 %)(1 — a)k (3.38)
and
5(E) > (1+ )1+ a)’;, (3.39)
and thus
S(R) = (1+5)(1+ a)]; : ||§,|‘ : (3.40)

Apply Theorem B.7.2] to T" and G. This either yields an embedding of T', which would be as
desired, or tells us that G is an (g, x)-extremal graph. We assume the latter from now on.

So, we know that = \/e-sees two components C; and Gy of R, where C; = (A, B) is bipar-
tite, say with |A| > |B|. Moreover, x does not see any other component of R. Furthermore,

(A) C;is (k- I‘CJ;"\’ Ve)-small, for i € {1,2}; and

(B) €y is (% : %, e)-large, and x does not see B.

By (3.38]), and since we assume that = sends more edges to UV (C;) than to UV (Cy), we
know that

deg (e, UV(€1) > (1+ )1 - a)k, (3.41)
and thus, by ,
R
4l > 141> (14 DL - )k (3.42)

since x has at least that many neighbours in A, because of inequality (3.41]).
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Also, note that because of and because of the bound (3.40), we know that any pair
of clusters from the same bipartition class of €; has a common neighbour. Therefore,

the diameter of C; is bounded by 3. (3.43)

Let us now turn to the tree T'. We apply Lemma to find a cut vertex z of T" such that
every component of 7' — z has size at most [%W Let F denote the set of all components of
T — z. Then

t
each component of F has size at most [2] (3.44)

I

)

\

TR

il

Figure 3.3: Embedding if (3.45) does not to hold.

Let Vj denote the set of all vertices of T'— z that lie at even distance to z. We claim that
if we cannot embed T, then

k
Vol > (1 + )5 (3.45)

Indeed, suppose otherwise. Then we can apply Lemma to obtain a partition of F into
two sets J; and J5 such that

2 k
|UL71’ < gk’ and |Uj2| < 5
We embed z into x. Our plan is to use Corollary with reduced host graph C;, and with
2
ki + ke = [UJ| < gk

where ky := |UJ1 \ Vo| and ke := |U J1 N V| are the sizes of the two bipartition classes of
UJ1. Since we assumed (3.45)) does not to hold, we have

k
by < Vol < (1+a)3. (3.46)

We now embed |J.J; into €y, with the roots of J; embedded in the neighbourhood of z.

Observe that condition (iii) of Corollary holds because of (3.40) and ([3.46]), and con-
dition (iv) holds because of (3.42). Moreover, the neighbourhood of x is large enough to
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accommodate the roots of the trees from J; because of (3.41)) and the bound on A(T). In
order to see condition (ii) of Corollary [3.3.4] it suffices to recall ().

Also, because of , and since z also y/e-sees the component Gy, we can embed the
trees from J5 into Cy. We do this by first mapping the roots of the trees from J, into the
neighbourhood of x in €;. Then, since the minimum degree of G’ is larger than | J2| we
may complete the embedding of J J> greedily. In this way, we have embedded all of T, as
desired.

So, from now we can and will assume that holds. We split the remainder of the
proof into two complementary cases, which will be solved in different ways. Our two cases
are defined according to whether or not there is a tree F* € F such that |V (F*) N Vy| > ak.
Let us first treat the case where such a tree F™* does not exist.

Figure 3.4: Embedding in Case 1.

Case 1: |V(F)N V| < ak for each F € F.

In this case, we proceed as follows. First, we embed z into x. We take an inclusion-
maximal subset JF; of F such that

k
[UFNVl < (1+a)g (3.47)
holds. Then, because of the maximality of F; and our assumption on |V (F) N Vy| for the
trees F' € F, we know that
k
[UF V| = (1 = a)3. (3.48)
Hence, the trees from F; can be embedded into €y, by using Corollary as before, with
ki + ko := |UFi| where ki := |UF; \ Vo| and ko := | U F1 N Vp|. Indeed, inequalities (3.47]

and ([3.40) ensure that condition (iii) of the lemma holds. Furthermore, because of (3.42
and (3.48)), we know that

ki=|UF\V| < (1+a)
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and hence, it is clear that also condition (iv) of Corollary holds.

Condition (ii) of Corollary holds because of (ii). Finally, inequality (3.41]) ensures
we can embed Fj in C; in such a way the roots of F; are embedded into the neighbourhood

of z in C;.

Now, the trees from F, := F \ F; can be embedded into Cy. First, embed the neighbours
of z into the neighbourhood of = in Cy. Then, observe that (3.48|) implies that

o |

|IUF| < (1+a) <I(G).

Therefore, we can embed the remainder of the trees from JF; into Cy in a greedy fashion.

Figure 3.5: Embedding in Case 2.

Case 2: There is a tree F™* € F such that |V (F*) N V| > ak.

In this case, let us set F' := F \ {F*} and note that
IUF NV < (1 —a)k. (3.49)

Our plan is to embed z into a neighbour of z in A, and embed all trees from F’ into ;. We
then complete the embedding by mapping the root of F™* to x, and the rest of F™* to Cs.

For the embedding of {z} U F’, we will use Corollary as before, but this time the
roles of A and B will be reversed. That is, all of

Fo={z}UUF )N
is destined to go to A, while all of

Fri=({z} VUF)\ W
is destined to go to B.
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We choose ki + ko := | UF'| + 1 where k; and ks are the sizes of the bipartition classes
of {z} UUF, that is, we set ki := |Fp| and ks := |Fi|. Because of (3.45)), there are at most
(1-— a)g vertices in T' — z lying at odd distance from z. In particular, ks < (1 — a)g. So,
by (3.40]), we know that condition (iii) of Corollary holds (and condition (i) is obviously

true).

Now, condition (iv) of Corollary is ensured by inequality (3.49)) together with ([3.42]).
Observe that condition (ii) of Corollary holds because of (). Therefore, we can embed

all of {z} UUF’ with the help of Corollary [3.3.4} Furthermore, we can make sure that z is
embedded into a neighbour of x.

It remains to embed the tree F*. We embed its root r(F™*) into x, and embed all the
neighbours of r(F*) into arbitrary neighbours of x in C;. We then embed the rest of F™*
greedily inyo Cs. Note that this is possible, since by (3.44]), we know that

- < 5] -1

and so, our bound (3.39) guarantees that the minimum degree in |J G5 is large enough to
embed the remainder of F* greedily into C,. O]
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Chapter 4

On the Erd6s—Sés conjecture for
bounded degree trees

Based on joint work with Guido Besomi and Maya Stein [18]

In this chapter we present a proof of the Erd6s—Sés conjecture for trees with maximum degree
bounded by a given constant and dense host graphs (Theorem . As an application, in
Section we present a new upper bound on the multicolour Ramsey number for bounded
degree trees.

Our proof of Theorem relies on a stability analysis of the structure of dense graphs
with average degree above k — 1 avoiding some tree with k edges and bounded maximum
degree. Namely, we will prove that if a graph G, satisfying the conditions of Theorem [I.1.2]
does not contain some tree T" with k£ edges and bounded maximum degree, then G looks like
a union of extremal graphs. In that case, we may use a single edge of G' to connect two of
those extremal graphs to embed T' there.

In order to prove this structural result we use the regularity method. Let G be a graph
with n vertices and d(G) > k — 1, where n > k > 0n, and let us further assume the size
of GG is considerable larger than k. We apply the regularity lemma to G to obtain a regular
partition. We know that the corresponding reduced graph R roughly preserves the average
degree of G. We first prove an approximate version of Theorem [I.1.2] using our embedding
lemma (Lemma [3.5.3). This approximate result turns to imply that R has average degree
roughly £ - %, and then we can prove that each connected component of R has roughly the
same average degree. Let C be a connected component of R. If € is large enough, we can show
that if C is either bipartite or contains a useful matching structure, then we can embed any
given k-edge tree T" with bounded degree into € using the tools from Section Otherwise,
the reduced graph is a union of graphs corresponding to the description given in Section [I.1]
that is, graphs which are almost complete and of size roughly k or balanced almost complete
bipartite graphs of size roughly 2k.

If, on the other hand, the order of GG is very close to k or if the host graph is close to
being a bipartite graph of order 2k, then a different approach is needed. To take care of these
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cases, we prove Theorem [4.0.1] This result might be of independent interest, as it greatly
improves the main result from [54] for bounded degree trees. Note that given a graph G
with d(G) > k — 1, a standard argumentﬂ shows that G has a subgraph of minimum degree
I(G) > g that preserves the average degree. So, since in the Erdds-Sos conjecture and all
our theorems, we are looking for subgraphs, we may always assume that in addition to the
average degree condition, G satisfies a minimum degree condition. (In particular, this is
assumed in Theorem )

Before stating Theorem [4.0.1] we need the following definition. Given § > 0, we say that
a graph H is B-bipartite if there is a partition V(H) = AU B such that e(A)+e(B) < Se(H).

Theorem 4.0.1. For each k, A € N and each graph G with d(G) >k — 1 and §(G) > £ the
following holds.

(a) If k > 10% and |G| < (1 + 107"k then G contains a copy of every tree T with k edges

such that A(T) < W\/OEO'

(b) If k = 8A% and G = (A, B) is 5z -bipartite with |A|,|B| < (14 5xz)k then G contains
a copy of every tree T with k edges such that A(T) < A.

This chapter is organized as follows. In Section [4.I] we proved some tools needed to
prove that if a graph with average degree greater than k£ — 1 contains no copy of some k-
edge tree with bounded degree, then the its degree must be concentrated around its mean.
In Section we proved that average degree a bit lower than k is enough to ensure the
containment every k-edge tree with bounded degree if the host graph is sufficiently “nice”.
We put everything together in Section [.4] to prove Theorem [I.1.2] Finally, in Section [1.5] we
show a consequence of Theorem [1.1.2]in Ramsey theory for trees.

4.1 Tools

In this section, we collect some of the tools that will allow us to analyse the structure of
graphs avoiding some tree with bounded degree. We first prove an approximate version of
the Erd6s—Sds conjecture for trees of bounded degree and dense host graphs.

Lemma 4.1.1. For all A > 2 and 4,0 € (0,1), there is ng € N such that for all n = ng
and k € N with n > k > on the following holds. Let G be an graph on n wvertices such that
d(G) = (1 +0)k. Then G contains a copy of every tree T" with k edges such that A(T) < A.

Proof. Let e > 0 be a sufficiently small constant so that ¢ < 6, 9. Let Ny, My be the numerical
outputs of the regularity lemma (Lemma with parameters € and my = % Let G be a
graph on n > N, vertices such that d(G) > (1 + 0)k, where n > k > dn. Moreover, we may
assume that 0(G) > (1+6)%. By the regularity lemma, there exists a subgraph G’ C G, with

1'We iteratively remove from G vertices of degree less than % This will not affect the average degree, and

result in the desired minimum degree, unless we end up removing all vertices. However, that cannot happen,

as then |E(G)| < & . n < d(G) - 2, a contradiction.
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|G'| > (1 5)n such that G" admits an (e, 5y/¢)-regular partition V(G') = VpuViU--- UV,
where my < £ < My. Moreover, by the choice of € we have

§(G") > (1 + g) l; and d(G') > (1 - Z) k.

Let R be the corresponding (¢, 5/)-reduced graph. Then, by Fact [2.3.3] we have

5@U><1+§>§wfhmdﬂﬁ) O+ﬁ>k‘i

Let Cy,...,C; be the collection of connected components of R. By averaging, there exists
some component C; such that

0\ k |R| |R|
6C)=(1+-)5-— andd(C 1 k-
(€) (+2>27zw (€) > <+2> n
and thus ©; is large enough in order to use either Proposition [3.3.1] or [3.3.9] to conclude. [

Now we prove two results regarding the concentration of a given function around its mean
value. Given N € N and a function f: [N] — R, we write

Hmng%umn

for the infinity norm of f. If u is a probability measure on [N] then

= > f()u(n)

ne[N]

denotes the expectation of f under p, and if p is the uniform probability we write

Epen f(n) = — Z f(n

ne [N]

Lemma 4.1.2. Let N e N, t € R and ¢ € (0,1). Let u be a probability measure on [N] and
let f:[N] — Ry satisfying el flleo <t <E,(f). Then at least one of the following holds

(i) n(fn: f(n) > (1+VE)}) > &, or
(i) n(fn: f(n) > (1= YE)1}) > 1 - V&,

Proof. Let A be the set of all n € [N] with f(n) > (1 + /¢)t and set B := [N]\ A. Suppose
that (i) does not hold. Then pu(A) < ¢, and therefore,

Y ) f(n) =Eu(f) = > un)f(n) =t — u(A)lflle = (1 - Vet (4.1)

neB neA

Let B; be the set of all n € B such that f(n) < (1 + /¢ — 2W/e)t, and set By := B\ By.
From (4.1)) and the definition of B we deduce that

(1= Vet < (1 +Ve)t-pu(B) = 2vet - w(Br) < (1+ Ve)t = 2v/et - p(By),
and hence, u(By) < /e. Therefore, u(AU By) > 1 — u(By) > 1 — /e, which implies (ii). O
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In the proof of Theorem [1.1.2] we will use Lemma with f(z) = degg(x) for some
graph G. A useful corollary of Lemma [4.1.2]is the case when we have an even better upper
bound on the || - ||oo norm of the function f and pu is the uniform measure.

Lemma 4.1.3. Let N € N, and let ¢ € (0,3). Let f: [N] = Ry be a function and let t > 0
such that t < Epenif(n) and || flle < (14 ¢€)t. Then f(n) > (1 — /)t for every n in a set
of size at least (1 —\/e)N.

4.2 Small host graph

In this section we prove Theorem [£.0.1] which will follow directly from Propositions [.2.1]
and [4.2.3] We first deal in Proposition the case when the host graph is almost bipartite.
Recall that H is S-bipartite if at least a (1 — )-fraction of its edges lie between A and B.

Proposition 4.2.1. Let k,A € N such that k > 8A2. Let G = (A, B) be a 50%—bipartite
graph, with |A],|B| < (1 + 5x2)k, d(G) > k — 1 and 6(G) = 5. Then G contains a copy of

every tree T with k edges such that A(T) < A.

Proof. Set & := 35z and write n = [V(G)|. Then, n < (1 +¢)2k. Since G is S-bipartite, we
2

know that e(A4, B) > (1 — &)X, Suppose that |B| > 2 > |A|. Then
1 (1 —¢)kn
— ) deg(a,B) > ——— > (1 — e)k, (4.2)
A1 214

and thus |B| > (1 — ¢)k. Furthermore, since n = |A| + |B|, we have

kn
AlIBI > (A, B) > (1 - ) > (1 - )iy [A] B,

and thus, the fact that |B| < (1 + )k implies that |A] > (11:;)2k > (1 — 3¢)k. Now we can

give a lower bound for the average degree from B to A by using the first inequality from (4.2))
and the fact that n = |A| + | B| to calculate

1 k |A| 1—¢ 1—3¢
|B|%:Bdeg(b,A)> (1 g)2<1 |B‘) > — <1+ 1+8)k> (1 — 4e)k. (4.3)
Using Lemma with fa(a) = deg(a, B) for a € A, t4 = (1 —e)k and €4 = 4¢, and with
fB(b) = deg(b, A) for b € B, tp = (1 — 3¢)k and 5 = 9¢, we see that all but at most 2./¢|A|
vertices from A have degree at least (1 — 24/2)k to B, and all but at most 3,/¢|B| vertices
from B have degree at least (1 — 3/2)k to A. Let Ay and By be the set of vertices of low
degree in A and B respectively, and let H be the bipartite graph induced by A’ = A\ Ay
and B’ = B\ By. Then the minimum degree of H is at least (1 — 5y/¢)k. Now, given a tree
T eT(k,A),if V(T) = CUD is its natural bipartition, Fact implies that

1
max{|C], DI} < (1= 5 )k < (1= 5V,
and therefore, by Lemma [2.2.4] we can embed T in H. O
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Now we turn to the non-bipartite case. In this case we can embed trees with maximum
degree at most ev/k, for some small constant . As a first step, we will embed a small but
linear size subtree 7" C T trying to fill up as many low degree vertices of G as possible. We
can then use the following result to embed the leftover vertices from 1" — 7.

Lemma 4.2.2 (Lemma 4.4 from [61]). Let 0 < v < 55, let k € N and let H be a k+1-vertex

graph with 6(H) > (1 —2v)k, and let v € V(H) be a vertex of degree k. If (T, 1) is a rooted
tree with at most k edges such that every vertex is adjacent to at most vk/2 leaves, then T
can be embedded in H and any vertex in H — v can be chosen as the image of r.

Proposition 4.2.3. Let k > 10° and let G be a graph onn < (14 107"k vertices such that

d(G) >k —1 and §(G) = £. Then G contains a copy of every tree T with k edges such that
A(T) < 2

1000 *

Proof. Given G and k, set € := 10’% and note that necessarily, n > k. Moreover, for the
complement G of G, we have that d(G) < n — k. Thus,

2¢(G) < n(n—k) < (1 +e)k-ck < 2k (4.4)

Let X be the set of all vertices of G having degree at most |(1 —+/2)k| in G, and let YV
be the set of all vertices of G having degree at least k in G. Since deg(v) < k — 1 for all
v €Y, we have that

>, deg(v) < (B -DV(G)\ (XUY)

VeV (G)\(XUY)

and thus, since d(G) > k — 1 and hence 3, cy () deg(v) > (kK — 1)|V(G)], we obtain

k—DIXUY] < 3 deg(v) < |X|(1—vVEk+[Y](1+e)k.

veXUY

Therefore,
| X| < 2y/elY| < 3v/ek. (4.5)

For each v € Y set X, := N(v) N X. Let v* € Y be a vertex that minimises |X,| among all
veY. So,
for each v € Y, deg(v, X) > | X,+]. (4.6)

Let T € T (k, T\/()Eo)' Now if X,« = (), then the graph induced by v* and a k-subset of N(v*)

satisfies the conditions of Lemma [4.2.2] with v := /¢, and thus we can embed T'. So, we will
from now on assume that X« # (.
We use Lemma with v := 1684/¢, to obtain a subtree (7*,¢*) such that
84v/zk < |T| < 168k (4.7)

and such that every component of T'— T™ is adjacent to t*. We will now embed 7% in a way
that at least | X,«| vertices from X will be used. Then, we embed the rest of 7" into G — X
with the help of Lemma [2.2.1 Before we start, we quickly prove two claims that will be
helpful for the embedding of T™.

First, using (4.5) and the fact that §(G) > g, the following claim is easy to see.

27



Claim 4.2.4. For every x,x’ € V(G), there are more than 2~*k internally disjoint paths of
length at most 3 connecting x and x’.

Second, we will see now that a useful subset of Y can be ‘reserved’ for later use.

Claim 4.2.5. There is a subset Y' C Y \ {v*} of size at most |5\/ek| such that all but at
most |2ek| vertices in G — X have at least | X| neighbours in Y".

To see this, suppose first that |Y| > |5y/ck] + 1 and take any subset Y C Y\ {v*} of size
|5y/ek . Since every vertex v in G — X has degree at least [(1—+/2)k] and since n < (1+4¢)k,
we know that v has at least [3y/ek] > | X| neighbours in Y, and we are done.

Assume now that |Y| < |5y/ek] and let us write Z for the set of vertices in G — X having
less than | X| neighbours in Y\ {v*}. Then one has the estimates

e(W\{v'},G) = > degly) > (Y| -1,

yeY\{v*}
and
e(Y\{v'},G) = ZZdeg(zy YA\ {v}) + %: deg(z, Y \ {v"}) < |Z[| X[+ (n — [Z])(]Y] - 1).

Therefore, as | X| < 24/2|Y| by (4.5]), and since by assumption n < (14+¢)k, we have | Z| < 2¢k
and we can take Y’ =Y \ {v*}. This finishes the proof of Claim

By applying Lemma [2.2.1} with ¢ = 3, we deduce that T* has either |7%|/12 bare paths,
each of length 3, or it has at least |7%|/12 leaves. The embedding of T splits into two cases
depending on the structure of 7.

Case 1: T™ has a set B of |T%|/12 vertex disjoint bare paths, each of length 3.

We embed T™ vertex by vertex in a pseudo-greedy fashion always avoiding v*. We start
by embedding t* arbitrarily into any vertex of degree at least (1 — /e)k of G — v*. Now
suppose we are about to embed a vertex v’ whose parent u has already been embedded into
a vertex ¢(u). If ' is not the starting point of a path from B or if all of X« is already used,
we embed u' greedily. Now assume that u is the starting point of some B € B and there is at
least one unused vertex z € X,«. By Claim and since |T*| < 27k, vertices = and ¢(u)
are connected by a path P of length at most 3 that uses only unoccupied vertices. Embed
B (including u) into P, and if |B| > |P|, choose its last vertices greedily. Since by
and ,
|7
12
we know that after embedding T™ every vertex in X, is used.

| X| < 3vek < = |8,

Case 2: T* has at least |T%|/12 leaves.
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In this case, we cannot ensure that every vertex in X,- is used for the embedding of 7™,
however, we can still guarantee that at least | X,«| vertices from X are used.

Because of our bound on the maximum degree of 7', we can find a set U* C V(T%) \ {t*}
of parents of leaves such that the number of leaves pending from U* is at least 6./ck, which
by is greater than 2|X|. We then take an independent set U C U* such that for the
set L of leaves pending from U we have |L| > | X]|, and such that |U| < |X]|.

Starting from t* we embed 7™, following its natural order but leaving out the vertices
from L. All vertices are embedded greedily into G — Y”, except vertices from U and their
parents which are embedded in a different way. Assume v € V(T™) is a parent of some
vertex in U. Since T™ is small, because of , because of our assumption on the minimum
degree of G, and because of Claim 4.2.5, we may embed v into a vertex having at least | X|
neighbours in Y’. After this, we embed the children of v in U into unoccupied vertices of Y.
Other children of v are embedded greedily. At the end of this process we have embedded all
of T* — L. If we have used at least | X,«| vertices from X, we complete the embedding of T™*
greedily, so let us assume we have used less than | X,| vertices from X. We embed the leaves
pending from U one by one into vertices from X until we use | X,+| vertices, which is possible
since U was embedded into Y’ and because of . After this point, we simply embed the
leftover leaves of T™ greedily but always avoiding v*.

This finishes the case distinction. Set 7" := T — (T™* — t*). Denoting by ¢ the embedding
we note that

IN@WIN\(B(T) U X )| 2 k= [§(T7)] = [Xon| + [o(T) N X | + [o(T*) \ N(07) = [T"] - 2.

Therefore, the graph H induced by v*, ¢(t*) and any (|7"|—2)—subset of | N (v*)\ (¢(T*)UX )]
has order |T”| and we may complete the embedding of (7”,t*) by using Lemma for H,
with v := 864/¢, fixing the image of ¢* as ¢(t*). O

4.3 Using the regularity method

In this section, we will use the embedding tools from Section to show that average degree
slightly below £ is enough to ensure the containment of every k-edge tree with bounded
degree, provided the host graph has a regular partition and is considerable larger than the
tree.

Lemma 4.3.1. Forall A > 2, My €N, §,e,n € (0,1) withe < n < % there is kg € N such
that for all k > ko, n € N with 6~ 'k > n > k the following holds.

Let G be an n-vertex graph with an (g,n)-reqular partition and corresponding reduced graph R,
with |R| < My, which is connected and bipartite with parts A and B such that |A| > |B|. If

(i) d(G) > (1 — 3\/i)k;
(ii) 6(G) = (1 —3/1)%; and
(iii) |UA| = (1+ )k,
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then G contains a copy of every tree T with k edges such that A(T) < A.

Proof. Given A, My, € and n, we choose kg as the output of Proposition [3.3.1] Given G as
in Lemma [£.3.T], we suppose for contradiction that G contains no copy of some tree 7" with
k edges such that A(T) < A. Set

|R]

n

and let |JUA| = a and | B| = b. We claim that

(1495

t =

Indeed, otherwise can use (fij) to calculate that

2
(1 - 3yMkn < 2¢(G) < 2ab < <1+j)ka< <1+i)k- (1 _ i) (1— f6>kn

where the second to last inequality follows from the fact that because of we have a =
n—b<n—(1-3yn% < (1-%n. But this is a contradiction to our assumptions on 7

and 9. This proves (4.8]), and so, we also know that
o k
Al > [B| = (1 + 4) ot (4.9)

Now we turn to the tree T. Let A and B denote its colour classes, and assume |A| > |B].
Moreover, we may assume that

kE+1 E+1

k k

as otherwise, since £ < 7 we have §(G) > (1 + 100,/2)|B| and so, by (i), we can use
Proposition to embed T

Let V4 C A and Vg C B be the sets of all clusters of degree at least (1 + \/ﬁ)gt We
claim that
|Val+|Vs| = (14 y/n)kt. (4.11)

Suppose this is not the case. Then Fact (i), condition (i), and (4.9 imply that
(1 —-3yn)kt|R| < 2e(R)
k
VAIIB -+ [VallA] + (L+ V)5t IR = [Val = [Val)

k k
= (R + Val (18] = 0+ yiDe) + Vsl (141 - L+ i)
) k
< (1+ \/%t\:m b (14 )kt <8 - \/ﬁ) ot
Therefore, and since n > k, we have

Stk < (1= Tymin = (1= TyIRI < (L4 i) (§ = vkt < o D

a contradiction. So, assuming that [V| > (1+,/7)%t, by Proposition (see Remark-
we can embed T into G, with A going to clusters in V4 and B going to clusters in B.

N
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Now we turn to the case when the reduced graph is connected, non-bipartite and large.
We first derive some useful information about the structure of the reduced graph of G if it
is connected and non-bipartite, and G contains no copy of some k-edge tree with bounded
degree.

Lemma 4.3.2. For all A > 2, My € N, §,e,n € (0,1) with e < n < %, there is kg € N
such that for all k,n > ko with 6=k > n > (1+06)k the following holds. Let G be an n-vertex
graph that admits an (e,n)-reqular partition into My parts, and assume the corresponding
(e,n)-reduced graph is connected and non-bipartite. If furthermore,

(i) d(G) > (1 — 3/mk; and
(ii) 6(G) = (1 —3ym)3,

and G contains no copy of some tree T with k edges such that A(T) < A, then G has a
subgraph G' C G of size |G'| = |G| — My such that there is a partition V(G') = T UV, U V4
with

() Vil = (1£3y/m)5 fori € {1,2};
(b) I is an independent set in G' and there are no edges between I and Vy in G';
(c) deggi(z) = (1 —5yn)n for at least (1 — 4y/n)|V1| vertices v € Vi;

(d) degei(y) = (1 —=3/n)k for at least (1 —2¥/m)|Va| vertices y € Vs.

Proof. Let ky > 2o be at least as large as the output of Proposition for £ and A.
Applying Lemma to G, with £ = My and t = (1 — 3\/ﬁ)§, we find a subgraph G’ of
size |G'| = n — My that admits an (5¢, 2)-regular partition. Moreover, the corresponding
reduced graph R contains a matching M and a disjoint independent set J such that V(R) =

Ju V(M) =JuU Vl U VQ and Nj{(j) g Vl'

Letting I = UJ and V; = UV; for i € {1,2} we have (b). Furthermore, because of
Proposition we know that |V;| < (1 + 77)%'%' and thus |[V;| < (1+n)% for i € {1,2}.
Therefore, and because of condition (ii) we have (@l).

In order to see (d) and (d)), we do the following. For any subset A C V(G') let d4 denote
the average degree in G’ of the vertices in A. By (b)), we have d; < |Vi| < (1+n)%. By
condition (i) and since degq (x) > degq(z) — My for every x € V(G'), we have

(L—4ynkn < 2e(G') = [I|d; + [Vildy, + |Va|dy,
(T+ )5I|+ dy, + dy,)
(1 +n)5(n— (il + Va]) + dv; + dv,)
(L+m)k(n — (1= 3ymk + dy, + duy),

NN N

and therefore,
dv, +dv, = (1 =8yn)n+ (1 — 3/n)k. (4.12)
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Because of (b)), we have dy, < |Vi| + Vo] < (1 +n)k. Thus implies that dy, >
(1—12,/n)n. Since dy, < n and since n < 0~ 'k, inequality also implies that dy, > (1—
&Mk Apply Lemma[i.1.3[to fi(v) = degq (v) for v € V3, with parameters ¢, = (1—12,/7)n,
and ; = 16,/7, and to fy(v) = dege(v) for v € Vy, with £y = (1 — ¢/n)k and 2 = 4/7, to
obtain and @ O

The next lemma finishes the analysis of the non-bipartite case.

Lemma 4.3.3. For all A > 2, My € N, 6,e,n € (0,1) with e < n < 18%, there is kg € N
such that for all k,n > ko with 6~'k > n > (1 4+ &)k the following holds. Let G be an
n-vertex graph that admits an (e,n)-reqular partition into at most My parts and assume the
corresponding reduced graph is connected and non-bipartite. If

(i) d(G) > (1 —3/m)k; and
(ii) 6(G) = (1 —3\/m)5,

then G contains a copy of every tree T with k edges such that A(T) < A.

Proof. Let ky be the output of Lemma and let G be given. Let T be a tree with k
edges and A(T) < A and suppose we cannot embed 7" into G. Then by Lemma we
may find a subgraph G’ C G and a partition V(G") = I UV} U V4 fulfilling the properties of
Lemma [4.3.2]

Let Uy C Vi be the set of all vertices x € Vi with degg/ (z) > (1 —5¢n)n, and let Uy C V;
be the set of all vertices € V, with degg/(z) > (1 — 3¢/n)k. In particular, because of

Lemma (8), we have that

each vertex x € Uy has at least (1 — /7)|/| neighbours in I. (4.13)

Also, note that |Uy| > (1-4¢/m)|Vi| > |Vi|—¢nk and |Us| > (1—2.y/1)|Va|, by Lemmald.3.2] (a),
and @ Let H be the graph induced by U; and U,. Note that because of Lemma
and @, we know that the vertices from U, have minimum degree at least (1 — 6.&7)k in H,
and because of Lemma @D and @, the vertices from U; have minimum degree at least

(1 —9¢mn —2y/mk — |I| > (1 — 3yM)k in H. Hence,
S(H) > (1—6n)k. (4.14)

So, by Lemma every tree with at most (1 — 63/7)k edges can be embedded greedily
into H. Let (T*,¢*) be the subtree given by Lemma [2.2.6| for v = 1, so that & < [T*] < £

and every component of T'— T™ is adjacent to t*. We apply Lemma [2.2.1| to T™, with ¢ = 3,
which splits the proofs into two cases.

Case 1: T™* has a set B of |T*|/12 vertex disjoint bare paths, each of length 3.

Note that each vertex from H has at least A neighbours in U;, because of Lemma (&)

and our bound from (4.14)), which will be tacitly used in what follows.
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We embed t* into any vertex from H. The rest of T* will be embedded in DFS order
into H. We will use the following strategy until we have occupied (%lﬂ vertices from 1.
For each path P € B, we proceed as follows. We embed the first vertex v; of the path P into
a vertex u; € Uy, and then find another vertex uz € U; which has a common neighbour us
with u; in /. Note that the vertex us exists because of . We then embed the middle
vertex vy of P into uy € I, and the end point v into ug € U;. The remaining vertices of T™*

are embedded greedily into H.
Case 2: T* has |T*]/12 leaves.

In this case, the embedding of T™* follows a similar strategy. We embed t* into any vertex
from H and the rest will be embedded in DFS order. We take care to embed all parents of
leaves into U; and all leaves into I, until we have used [%H vertices from I. The remaining
vertices of T are embedded greedily into H.

Now, let m be the number of vertices we have embedded so far into H, and let H' C H
contain all unused vertices of H. By our embedding strategy, we have that m < |T*| — 2-k.

100
Therefore, and by (4.14)),
§(H') = (1—6ymk —m = (1—6ynk+ 135k — [T = (14 3255k — | T,
and so we can finish the embedding of T by embedding 7" — T greedily into H'. O]

4.4 Proof of the Erd6s—Sé6s conjecture for trees with
bounded degree and dense host graph

In this section we finally prove Theorem with the help of the results from the previous
sections.

. . 2
Proof of Theorem[I.1.9. Given A and 6, we set v = min{g, 1o, 3207} and we fix parame-

ters €, n, 6 such that
8

0 < 2

Let ko be the maximum of 2 and the outputs of Lemma [2.3.2] Lemma [4.3.1, Lemma m
and Lemma m (with v playing the role of 6, and mg = [2]). Set ng = [0~ ko].

By Proposition we may assume that |G| > (1 + v)k and if G is v-bipartite, Propo-
sition allows us to assume that the larger bipartition class of G has at least (1 + v)k
vertices. Now the regularity lemma (Lemma [2.3.2)) provides us with a subgraph G’ with
|G'| = (1 — e)n that has an (e,7n)-regular partition. Let R be the corresponding reduced
graph and let Uy, ..., U, be the connected components of R. Then, since we may assume

that 6(G) > % (see the footnote in the Introduction), we have

deges(x) = (1 —2¢/n) dege(z) > (1 — Qﬁ)g for all z € V(G'),
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and therefore

lk
T S-2Ub < T ULl<n<
i€l
implying that
<407t (4.15)

We set U/ = JU; for each i € [{].
Claim 4.4.1. Suppose G' contains no copy of some k-edge tree T with A(T) < A, then

(i) d(G'U]]) = (1 £ %)k and 6(G'[U]]) = (1 — %)% for alli € [{]; and
(it) for each i € [{] either

(a) G'[U]] is non-bipartite and |U;| = (1% %)k, or
(b) G'[U]] is bipartite with V (U;) = A; U B; such that |A;|, |B;| = (1 £ %)k.

In order to see this claim, observe that since T' cannot be embedded into G, Lemma [4.1.1
implies that d(G'[U]]) < (1 + 0)k for each i € [¢]. Note that

L /
Ui nrr! !
> ey =ae) > 0 - sy
i=1
Set t = (1 —3,/n)k. Applying Lemma 1.2 with N = ¢, u(i) = |U]|/n and f(i) = d(G'[U]]),
and with v/ in the role of e, we see that the set I = {i € [(] : d(G'[U}]) < (1 — 2V0)t}

satisfies
|

2n

(where for the first inequality we use that |U;| > £ for each 7). Thus, |I| < 85'v0 < 1. In
other words, I = (), and therefore, for each i € [¢] we have

< p(l) <2V

d(G'[UN) = (1 —2vV0)(1 = 3y/n)k > (1 — 3V0)k. (4.16)

This, together with the minimum degree in G’ proves . In order to see , we use (4.16))
and Lemmas [£.3.1 and [4.3.3] This proves Claim [£.4.1]

Now we distribute the vertices from G — G’ into the sets U/. We successively assign each
leftover vertex to the set U/ it sends most edges to (or to any one of these sets, if there is
more than one). Then for each i € [¢] and all x € U; we have

k _ ¢
deg(z,U]) > Z 5 2 8l<:

where we used (4.15)) for the second inequality. Since we add at most en < vk vertices to
each set, we end up with a partition V(G) = U; U ... U U, satisfying, for each i € [(],

(1) d(G[U)) = (1 £ 1)k and §(G[U]) > Sk

64



(II) deg(z,U;) < (1 — )% for less than vk vertices z € U;; and

(III) either G[U;] is non-bipartite and |U;| = (1£v)k, or G[U;] is v-bipartite with U; = A;UB;
such that |4;|,|B;| = (1 £ v)k.

For each i € [¢], we use Lemma for f(z) = deg(z, U;), with 2v playing the role of €, to
deduce that

deg(z,U;) > (1 — V2v)k for at least (1 — /2v)|U;| vertices from U;. (4.17)

Now we embed T using this structural information of G. We apply Lemma [2.2.6] to T,
with v = 1, to obtain a subtree (7,t*) with £ < |T*| < £ such that every component of
T —T* is adjacent to t*. Moreover, since A(T') < A there is a component 7" of T'— T™* with

£ T < 2

Note that if there are no edges between different sets U;, then an averaging argument
shows that there is i* € [(] such that d(G[U;+]) > d(G) > k — 1. But then, because of (III)
and because of Theorem [£.0.1} we are done. Thus, we may assume that there is an edge u;u;
with u; € U; and u; € U;. We map t* into u; and map the root of 7" into u;. Note that

by , we have

S(GIUI]) = =k > 4k > V20 |Us| + A (4.18)

ol >

and that ([II)), together with our choice of v ensures that v2v|U;| < 5. So, we may finish
the proof by using Lemma and Lemma to embed T'— T" into U; and T" into Uj,

which we can do because of (4.17)) and (4.18)).

4.5 Multicolour Ramsey number of bounded degree
trees

To finish this chapter, let us briefly mention a consequence of the Erdos—Sés conjecture in
Ramsey theory. Given an integer ¢ > 2 and a graph H, the ¢-colour Ramsey number r,(H) of
H is the smallest n € N such that every ¢-colouring of the edges of K, yields a monochromatic
copy of H. In general, determining the Ramsey number of a graph is a very difficult problem
and have received considerable attention over more than 70 years. We do not aim to describe
Ramsey theory for graphs here, however, we recommend the survey of Conlon, Fox, and
Sudakov [36] for recent developments.

Regarding Ramsey numbers of trees, Erdés and Graham conjectured [44] in 1973 that
every tree T with k edges satisfies

ro(T) =tk + O(1), (4.19)

and they established the lower bound r,(7T") > ¢(k — 1) + 1 for large enough ¢ satisfying ¢ = 1
mod k. Moreover, Erdés and Graham also observed that the upper bound in (4.19) would
follow from the Erd6s—S6s conjecture. Indeed, already for n > ¢(k — 1) 4+ 2 note that the
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most popular colour in any ¢-colouring of K, has at least %(;‘) edges and thus average degree
at least "771 > k — 1. So the Erd6s—S6s conjecture would imply that the most popular colour
contains a copy of every tree with k edges. Therefore, from Theorem we deduce the
following result.

Corollary 4.5.1. Let {,A > 2 be two integers. Then there exists kg € N such that for
every k = ko the following holds. For every tree T with k edges and A(T) < A we have
ro(T) < l(k—1)+2.

We remark that in Corollary one can actually find a copy of every k-edge tree with
bounded degree in the same colour, at the same time. Regarding the lower bound, we observe
that the construction of Erdds and Graham works for fixed k£ and large ¢ depending on k,
while Corollary works for large k& depending on ¢. Therefore, a construction showing
the lower bound is still missing.

]
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Chapter 5

Global resilience of trees in sparse
random graphs

Based on joint work with Pedro Aratjo and Luiz Moreira [10)].

The study of random analogues of classical results in extremal combinatorics has been an
active area of research in the last decades with remarkable results (see [35] for a survey). One
particular line of research is looking for the containment of large graphs in sparse random
graphs. For instance, studying the threshold for the containment of a perfect matching, a
Hamilton cycle, or a spanning tree have been very popular problems in the last 20 years.
Moreover, it has been also studied how resilient is G(n, p) with respect to some property that
it typically possesses. For instance, a prototype problem is to determine how many edges can
be removed from G(n,p) so that the resulting subgraph still contains a Hamilton cycle. We
recommend the survey of Bottcher [27] for a general overview of this area. In this chapter,
we will make some progress towards this program showing a sparse random analogue of the
Erd6s—Sés conjecture (Theorem . Actually, we will prove an even stronger statement
by replacing the random graph G(n,p) with a random-like graph. To make this statement
precise, let us give some definitions.

Definition 5.0.1 (Uniform graph). Let n,p € (0,1). We say that a graph G on n vertices is
(n, p)-uniform, if for every pair of disjoint sets A, B C V(G) such that |Al|,|B| = nn we have

(1 =n)plA|[B] < ec(A, B) < (1+n)p|Al|B| (5.1)

and
(1— n)p<’§|> <eg(A) < (1+ n)p<|§‘>~ (5.2)

Furthermore, we say that G is (n, p)-upper-uniform if (possibly) only the upper bounds in (5.1)
and (5.2) hold for all A, B C V(G) as above.

It is not hard to prove that, with high probability, the random graph G(n,p) is (,p)-
uniform provided that pn is large enough (see Lemma [5.1.4)). The main result of this chapter
states that one can replace G(n,p) in Theorem by a (1, p)-uniform graph. Namely, we
will prove the following result.
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Theorem 5.0.2. Let 6,0 € (0,1) and A > 2. There are positive constants ng,ny and C such
that for all 0 < n < ny and n = ng the following holds. Let p € [0, 1] with p > % and let G be
a (n, p)-uniform graph on n vertices. If G' C G is a subgraph such that e(G') = (0 + 9) e(G),
then G’ contains a copy of every tree T with on edges such that A(T) < A.

The proof of Theorem [5.0.2] is based on the sparse regularity method combined with tree
embedding results in bipartite expander graphs. Let us give a rough outline of the proof here.

Let G be an (7, p)-uniform graph and let G’ C G be a subgraph of G such that e(G’) >
(0 + §)e(G). We may apply the sparse regularity lemma to G’ to obtain a regular partition
of V(G’). We will work on the reduced graph R’ of G’ in order to find a "good" structure.
Let k£ be the number of vertices of R’. As in the standard regularity lemma, one can prove
that R’ inherits the edge density of G’, but scaled by p, so that the average degree of R’
satisfies d(R') > (o0 + g)k: Using the large average degree we find a large matching structure
(see Section which will allow us to embed any given bounded degree tree. The matching
structure consists of cluster X, a matching M, and a bipartite graph H = (), Z), such that
N(X)=V(M)UY and Y has large minimum degree in H (see Figure [5.1)).

N(X) N ’l "
//l‘:\’/ ‘ -~ A /I \ /
\ o N Z
TN /r\ / TN
ANANY,
M

Figure 5.1: Matching structure.

Let T be a tree with gn edges such that A(T) < A. Our goal is to embed 7" using the
matching structure. To do so, we first cut the tree into very small subtrees and then locate
every such subtree into some edge of the reduced graph. If M is large enough, then we will
locate each subtree into an edge of the matching, using both clusters of the edge in a balanced
way. Otherwise, we will first locate subtrees into edges from H, until a large proportion of
YU Z is used. The leftover subtrees can be located into M, always using both clusters from
each edge in a balanced way. In any case, once we have located the subtrees, we will use
an embedding technique due to Balogh, Csaba and Samotij [13] in order to embed each of
this subtrees into the regular pair that was assigned to this subtree. The role of X here is to
connect the embedding, meaning that X will be used in order to go from one edge to another

in MUH.
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This chapter is organized as follows. In Section we introduce the regularity lemma
for sparse graphs and in Section we present the embedding techniques that will be used
to embed tees into regular pairs. In Section we state a result that allow us to partition
a bounded degree tree into smaller subtrees in such a way that each subtree is connected to
few other subtrees. In Section we find the matching structure and in Section we put
everything together in order to prove Theorem [5.0.2] Finally, in Section we discuss some
applications of Theorem in Ramsey theory.

5.1 Szemerédi’s regularity lemma for sparse graphs

It is well known that the Szemerédi’s regulariyt lemma does not work in sparse graphs, and
the reason is that the typical cleaning procedure might delete all the edges if the graph is not
dense enough. In this section, we introduce a sparse variant of the regularity lemma which
works for graphs with even a linear number of edges. Let us start with some definitions.

Let G be a graph and let p € (0,1). Given two disjoint sets A, B C V(G), we define the
p-density of the pair (A, B) by
¢(4, B)
d,(A, B) = :
g plA[|B]
Given € > 0, we say that the pair (A, B) is (e, p)-regular if for all A’ C A and B’ C B, with
|A'| > ¢|A| and |B'| > ¢|B|, we have

d,(A', B) — dy(A, B)| < e.

Now we state some standard results regarding properties of regular pairs (we refer to the
survey [52] for the proofs).

Lemma 5.1.1. Given o > ¢ > 0, let G be a graph and let A, B C V(G) be disjoint sets such
that (A, B) is (e, p)-reqular with d,(A, B) = d > 0. Then the following properties hold.

1. Let A” C A with |A'| > «a|A] and B' C B with |B'| > «|B|. Then the pair (A’, B') is
(e/a, p)-reqular with p-density at least d — ¢.

2. There are at most €| A| vertices in A with less than (d — )p|B| neighbours in B.
A partition V(G) = VoUWV, U---UVj is said to be (g, p)-regular if

(a) Vol < elV(G)],
(b) |Vi| =|V;| for all 4,5 € [k], and

(¢) all but at most ek? pairs (V;, V;) are (e, p)-regular.

We may now state a sparse version of Szemerédi’s regularity lemma, due to Kohayakawa and
Rodl [70] [71] .
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Theorem 5.1.2 (Sparse Regularity Lemma). Given ¢ > 0 and kg € N, there are n > 0 and
Ko = ko such that the following holds. Let G be an n-upper-uniform graph onn > kg vertices
and let p € (0,1), then G admits an (e, p)-regular partition V(G) = Vo U Vi U -+ UV}, with
k}o < k < Ko.

Let G be a graph that admits an (e, p)-regular partition V(G) = Vo U Vi U---U V. Let
d € (0,1). The (g, p,d)-reduced graph R, with respect to this (g, p)-regular partition of G,
is the graph with vertex set V(R) = {V; : i € [k]}, called clusters, such that V;V; is an edge
if and only if (V;,V;) is an (e, p)-regular pair with d,(V;,V;) > d. The following proposition
establishes that the edge density of R is roughly the same as in G, but scaled by p.

Proposition 5.1.3. Let ¢,n,p,d € (0,1) and let k € N such that k > 1/e. Let G be
an (n, p)-upper uniform graph on n vertices that admits an (e, p)-reqular partition V(G) =
VouViU-- UV, and let R be the (e, p,d)-reduced graph of G with respect to this partition.

Then )
e(R) > (ffn))p (i) — (6e + d)k2.

Proof. Let G* be the subgraph of G obtained by deleting all the edges within clusters,
between irregular pairs, and between regular pairs with density less than d. Since k > 1/¢,
for i € [k] we have

Vil < - < en.

>3

Let us choose 1 so that |V;| > n/(k+ 1) > nn for all i € [k]. The (n, p)-upper uniformity of
G implies that G* misses at most

k- (1+n)p|Vol% < 2epn® between V; and V(G) \ Va;

(k+1)-(1+ n)p(?) < 2epn? edges within the clusters;

ek? - (14 n)p(%)? < 2epn® edges between irregular pairs;

(g) -dp(%)? < dpn® edges between regular pairs with density below d.

Thus we have e(G*) > (@) — (6¢ +d)pn?. Note that the (V;, V) induces a non-empty graph
in G* if and only if V;Vj is an edge in R. Therefore, we have

e(G) — (6e + d)pn® < e(G*) < (1 + n)pzze(fR),

which implies the desired bound. O
Finally, let us remark that Theorem [5.1.2] works for very sparse random graphs due to
the following lemma.

Lemma 5.1.4 (Lemma 4 from [13]). Let n > 0 and let pn >
probability, the random graph G(n,p) is (n,p) uniform.

ﬁ. Then, with high
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5.2 'Tree embeddings in bipartite expander graphs

In this section we show how to embed trees in (g, p)-regular pairs. One of the main difficul-
ties while working with the sparse regularity lemma is that the vertex-by-vertex embedding
strategy does not work in general. This is because the neighbourhood of typical vertex in a
sparse regular pair is too small in order to use the reqularity inheritance. That is, if (A, B)
is an (g, p)-regular pair of density p and p = o(1), then the degree of a typical vertex in
A is roughly dp|B| = o(|B]), which is much smaller that what one needs in order to use a
vertex-by-vertex embedding strategy. To deal with this problem, we will make use of the
expansion properties of regular pairs and tree embedding results in expander graphs.

Roughly speaking, we say that a graph is expander if every set of vertices has a large
outer neighbourhood. The neighbour expansion notion is particularly useful while embedding
graphs such as paths, trees, and cycles. For instance, Friedman and Pippenger [51] proved
that graphs satisfying some expansion condition contain all small trees size of bounded max-
imum degree. This result was improved by Haxell [62] allowing the embedding of larger
trees in expander graphs. In our context, we want to use expansion conditions to embed
trees in regular pairs. To do so, we will use an embedding result due to Balogh, Csaba, and
Samotij [I3] which extends the result of Friedman and Pippenger to the bipartite setting.

Definition 5.2.1 (Bipartite (q, d)-expander). Let H = (V},V3) be a bipartite graph such that
(V1| < |Va|. Let d > 2 and let q be a positive integer such that ¢ < |Vi|. We say that H is a
bipartite (q,d)-expander if the following holds.

1. For every subset X CV; of size at most ¢ we have |[N(X)| > d|X| fori e {1,2}.
2. For every subset X C V; of size at least ¢ we have |[N(X)| = |V3_;| — q fori € {1,2}.

Lemma 5.2.2 (Corollary 12 from [13]). Let d > 2 and let H = (V,V4) be a bipartite graph
with [Vi| < |Va|. Suppose that H is a bipartite (q,d + 1)-expander with 0 < q < (2|C‘l/jr‘1).
Then H contains a copy of every tree T with A(T) < d and bipartition classes Ay, Ay with
|A1] < Vi — (2d + 1)m and |Ay| < |Va| — (2d + 1)m, respectively. Furthermore, for each

u € A; and v € V; there exists an embedding ¢ : V(T) — H such that p(u) = v.

We cannot use Lemma directly in (g, p)-regular pairs, since regular pairs are not
bipartite expanders. Indeed, it might be that a regular pair has vertices with too low degree
or even isolated vertices. However, one can prove that any large subgraph of an (g, p)-regular
pairs contains an almost spanning subgraph which is a bipartite expander.

Lemma 5.2.3 (Lemma 19 from [13]). Let (A, B) be an (g, p)-regular pair such that d,(A, B) >
. Suppose that |A| = |B| = m and let A’ C A and B C B be sets of size at least (4D +6)em.
Then there are subsets A” C A’ and B" C B’ such that

a) |A'\ A" <em and |B'\ B"| < em, and
(a) | :
(b) the subgraph induced by (A”, B") is a bipartite (em, 2D + 2)-expander.
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5.3 Cutting trees with bounded maximum degree

Now we show how to cut a given tree T into a constant number of tiny rooted subtrees.
The main difference with the results of Section 3.2 is that we need to control the number of
neighbours that each subtree has and we also need that the root of each of these subtrees
is at even distance from the root of 7. To do so, we will modify the following result due to
Balogh, Csaba, and Samotij [13].

Lemma 5.3.1 (Lemma 15 from [I3]). Let A > 2 and let (T,r) be a rooted tree with
A(T) < A. If |T) = 7L, then there exists a family of t < 487" disjoint rooted subtrees
(T3, ri)icqy such that V(T) =V (Ty)U---UV(T}) and for each i € [t] we have

1. |Ti| < ABITY,

2. Ty is connected (by an edge) to at most A® other subtrees, and

3. T; is rooted at r; and all the children of r; belong to T;.

Given a tree T let (T}, 7;);ciy be the family given by Lemma [5.3.1, We may define an
auxiliary graph Ty (see figure [5.2)), called cluster tree, with vertex set V(T1) = [t] and edge

set
E(Tn) ={ij | T; and T; are adjacent in T'}.

Figure 5.2: Cluster tree.

Note that Lemma implies that |Tj;| < 4871, which is the best one could hope by
imposing property . Moreover, property implies that A(Ty) < A?, which will play
a crucial role in our embedding strategy. We only need to refine the partition given by
Lemma in order to impose that the root of each subtree is at even distance from the
root of T', which is a stronger property than ({3)).

Proposition 5.3.2. Let A > 2 and let (T,r) be a rooted tree with A(T) < A. If |T| > 71,
then there exists a family of t < AB~'A disjoint rooted subtrees (T;,7;)iepy such that V(T) =
V(Ty)U---UV(T}) and for each i € [t] we have
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1. |Ti| < A*BITY,
2. T; is rooted at r; and the distance from r; to r is even,
3. all the children of r; belong to T;, and

4. the corresponding cluster tree has maximum degree at most A*.

Proof. Starting with the partition given by Lemma [5.3.1] we will refine this partition as we
run a breadth first search (BFS) on (7',r). Suppose that in this search we have reached a
vertex v, which is the root of a subtree in the current partition, such that v and every root
before v in the search are at even distance from each other in the current partition.

If there is a root u of some subtree in the current partition, which is at odd distance from
v and such that the subtree rooted at v is adjacent to u, then we may update the partition by
splitting the tree rooted at u (each neighbour of u is now the root of a subtree) and adding
u to the subtree rooted at v. We repeat this process for every such u. Note that after these
splittings, the root of each tree that is adjacent to the tree rooted at v is at even distance
from all the previous roots. Moreover, a subtree of the original partition can only be split
by this process when the BFS reaches its parent. Since each subtree has only one parent,
they are split at most once into at most A new subtrees and therefore the final partition has
at most 4A3~! new subtrees. For the same reason, the maximum degree of the cluster tree
cannot go higher than A%, since the original Tj; had maximum degree at most A3,

Finally, the size of each subtree grows by at most A3 if the roots of its children are added.
Since the update only moves forward in the BF'S order, at the end of the process each subtree
has size at most A?B|T| + A% < A*B|T). O

5.4 Matching structure in the reduced graph

In this section we prove that if H is an (7, p)-upper-uniform graph with 2e(H) > (o + g)pnz,
then H has an (e,p,d)-reduced graph R containing a cluster X of large degree such that
its neighbourhood can be partitioned as N(X) = V(M) U Y, where M is a matching and
Y is an independent set. Moreover, denoting by H the bipartite graph induced by ) and
Z = N(()\ (X UN(X)), then either M is large enough or every cluster in ) has large
degree in H.

Proposition 5.4.1. Lete,d,0 € (0,1) and let d = &. There exist ng, k, Ko € N and ng > 0
such that 1/e < k < Ko and that for all0 < n < no, p € (0,1) and n = ng the following holds.
Every (n, p)-upper uniform graph H on n vertices with 2e(H) > (0+0/2)pn® admits an (e, p)-
reqular partition with k parts such that its (g, p,d)-reduced graph R satisfies the following.
There ezist X € V(R), a matching M and a bipartite induced subgraph H = R[Y, Z] such

that

(a) N(X)=V(M)UY and V(M)NY = 0;
0) [VIM)[+[Y] = (Q + %) k; and
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(¢) for allY € Y we have

1> (o 5) 5 - HEL

Proof. Given ¢’ = min{, 125} and ko = %, let n,nf and K} be the outputs of the Sparse

Regularity Lemma (Theorem with parameters ¢ and kg. Setting ny = ng and 7y =
min{n), ﬁ‘oo}, let H be an (1, p)-upper uniform graph on n > ng vertices and 0 < n < np.
Then H admits an (¢, p)-regular partition V(H) = VjUV{U--- UV}, with & < ¢ < Ko, and
let us denote by R’ the (&', p, 2d)-reduced graph of H with respect to this regular partition.
By Proposition and the bound on e(H) we have

: 1 0\ 2 : 2 a\ £
e(®) = (14 1) <Q+)—(65 +od) > <g+>. (5.3)
2/ 2 3/ 2
Note that (5.3]) implies that the average degree of R’ is at least (o+ g)ﬁ. Thus, by successively
removing vertices of low degree, we may find a subgraph Ry C R’ such that

d(Re) = (Q+ g)ﬁ and  §(Rg) > <Q+ g)g

In particular, this implies that there exists a cluster X’ € V(Ry) with degree at least (o + g)K
in Ry. Applying Lemma to Ng,(X’), we find an independent set Z, a matching M’ and
a collection of triangles I' that partition Ng,(X') = Z U V(M') U V(T'), and moreover, by
writing V/(M') =V, UV, we have that Ng,(Z) C V;. Note that the minimum degree on R
implies that for all Y € 7 we have

4

2 2

(5.4)

g 5 _ IV(;\/l)I S <Q+5> ¢ VM|

[Nay (V) | (X' U Ny (X))] > (g+ ) Ly

If there are no triangles in this decomposition, then we would finish the proof by setting
M = M’ and H as the bipartite graph induced by Z and Ng/(Z) \ (X U Ne/(X)). If is
not the case, for each i € [¢] we may arbitrarily partition V; = V;o U V;; U V;5 so that
Voil < 1 and |V;1| = |Via|. Noting that |V;1] = |Via| = |Vi|/3 for every i € [¢], because
of Lemma [.1.1] for each V;V; € E(R') and a,b € {1,2} the pair (V4,V}s) is (¢, p)-regular
with density at least d. Moreover, by setting V; = Vj U Vo U--- UV, we conclude that
V(H)=VyUViaUVasU---UV,1 UV, is an (g, p)-regular partition with 2¢ 4+ 1 parts. Let
R be the (g, p,d)-reduced graph of H with respect to this partition, and let k = 2¢ be the
number of vertices of R (note that R is a blow-up of R’). Let X be one of the clusters coming
from X', and ) be the set of all the V;, such that V/ € 7 and a € {1,2}. Now note that
each triangle in I" can be decomposed as three disjoint edges in R. Then we set

M = U {ViaVja, ViaVia b U U {VaiVor, Voo Ver, VeoVao}
ViVieM: VaVyVeel

and Z = Nx()) \ (X U Ng(X)). Letting H as the bipartite graph induced by ) and Z, it is
clear that X, M and H satisfy @ and (]E[), follows from ([5.4)).

]
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5.5 Proof of Theorem [5.0.2

As we mentioned in the sketch of the proof, the idea is to use the structure given by Propo-
sition to embed any tree with gon edges and bounded maximum degree. To do so,
we first need to cut the tree into a family (7;,r;),cqy of tiny subtrees such that the root of
all the subtrees are in the same colour class (see Proposition [5.3.2). The main idea of the
proof is to first assign each 7; to some edge of M U H so that each of those regular pairs
has enough space to embed all the trees assigned to it. After this, we use Lemma to
clean each regular pair that is used, and thus each subtree T; is assigned to a pair (Y;1,Y;2)
which induces a bipartite expander graph that connects well with a large subset of X (see
Claim . We embed the subtrees one-by-one following a BFS order in the cluster tree
T, using Lemma to map each subtree into the bipartite expander graph assigned to it.

Now we are ready to prove Theorem [5.0.2

Proof of Theorem[5.0.3. Let nf, Ko and 7y be the outputs of Proposition with inputs
5,0 and ¢ = 27 BA65%. We set

52 217102 ATKZ
6 - 212kA4 and CO = 63 ) (55)
and let ng = max{n{, 37'} and n > ng. Given p € (0, 1) such that pn > Cy and 0 < 1 < o,

let G be an (7, p)-uniform graph on n vertices and let G’ C G be a subgraph with

2(C) > (0 +8)26(C) > (1 — ) o+ S)pn® > <g+ g) .

Since G’ is (n, p)-upper uniform, by Proposition we may find an (g, p)-regular partition
V(G') = VoUVi U - UV, with £ < k < Ko, such that the (g, p, 15 )-reduced graph R,
with respect to this partition, contains a cluster X, a matching M and a bipartite subgraph

H = (Y, Z) satisfying the conclusions of Proposition [5.4.1]

Let T be a tree with gn edges such that A(T") < A. We consider the bipartition of T
that assigns colour 1 to the smaller partition class of 7" and colour 2 to the larger one, and
then we choose an arbitrary vertex r in colour 1 as the root of 7. We apply Proposition [5.3.2
to (T,r), with parameters § and A, obtaining a family (T;,r;);eq of t < 4871 A rooted trees
such that |T;| < A*Bon for all ¢ € [t]. Furthermore, each root r; is at even distance from r
and therefore every root has colour 1. For ¢ € [t], let us write 7} ; for the set of vertices of T;
having colour j € {1,2}.

Let m denote the size of the clusters in the regular partition and observe that m > (1—¢)
The heart of the proof is the following claim.

n
e

Claim 5.5.1. For each i € [t], there are sets (Y;1,Yi2) and W; C X such that the following
holds.

(1) There is an edge V;1Vio € MU E(H) such that Y;; C Viy and Y; o C V;o. Moreover, if
‘/;71‘/;72 € E(H) then ‘/i,Z ey
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2) For{#iandj,j €{1,2},Y;;NYy; = 0.
3) Forj e {L1,2}, |Yi,| > |T; ;| + 13Aem.

(2)

(3)

(4) G'[Yi1,Yi2] is a bipartite (em, 2A + 2)-ezpander.

(5) Every vertex of Y;o has at least 2Oopm netghbours in W;.
(6)

6) If Ty is a child of T; in the cluster tree, then every vertex of W; has at least A + 1

neighbours in Y 5.

Before proving Claim let us show how to use it in order to finish the proof of
Theorem [5.0.2] Assume that we have ordered [¢] so that if T} is below T, with respect to the
root of T', then i < (. Starting with the subtree containing r, we will embed (7});cp following
this ordering. Let us denote by ¢ the partial embedding of T'. For every embedded subtree
(T;,r;) we will ensure that

(a) ¢(r;) € Wy for some s < 4, and

(0) @(Tij \{ri}) €Yy, for j € {1,2}.

Suppose we are about to embed a subtree T, which is a child of some subtree T; that was
already embedded satisfying @ and (]ED Let v; € V(T;) be the parent of r, and note that

v; is embedded into some vertex p(v;) € Y;o (since v; is adjacent to 7, and every root has
colour 1).

Figure 5.3: Embedding of Ty

Then, because of Claim

Ner(p(o)) N Wil > 2 pm > (1— )



and therefore at least one neighbour of ¢(v;) has not been used during the embedding. We
choose any unused vertex wy, € W; N Ne/(p(v;)) and set ¢(ry) = wy (when we embed T}, we
choose any vertex vetex w; € Wy as the image of r; = r). By Claim we know that
G'[Y;1,Y:2] is a bipartite (em, 2A + 2)-expander, we will prove now that

G'[Yi1 U{we}, Yso] is a bipartite (em + 1, A + 1)-expander.

Indeed, since G'[Y; 1, Y 2] is a bipartite (em, 2A+2)-expander is easy to see that the expansion
conditions hold for every set X C Y;; UY;s. Let X’ C Y;; non-empty and let us consider
X = X' U{we}. If |X'| < em then we have

| Ner(X) N Yeo| > 24 +2)1X'| = (A + 1)1X],

where the first inequality follows because G'[Yy1, Y| is bipartite (em,2A + 2)-expander.
Similarly, if | X’| > em then we have

|NG/(X) ﬂYg,2| Z |NG/(X/) ﬂYVe72| 2 |}/ng2’ — (€m+ 1)

Finally, if X = {w,} then by Claim (©) we know that |Nes(we) N Yea| = A+ 1, and
therefore G'[Y;1 U {w,}, Y] is a bipartite (em + 1, A + 1)-expander.

To complete the embedding of 7}, note that because of Claim we have
1Yol — A+ 1)(em +1) > |Ty;| + 13Aem — 6Aem > |1} ]

for j € {1,2}. Thus, using Lemma we may extend ¢ to Ty, embedding 7} into (Y, U
{w¢}, Yi2) so that o(Ty; \ {re}) C Yy, for j € {1,2} and wy is fixed as the image of r, (we
remark that Claim allows us to ensure that at every step of the embedding we are
using unused vertices). [l

Proof of Claim[5.5.1. Let o be a permutation on [¢] such that for all 1 < i < j <t we have
Totiy2l = [To@)al 2 |Togy2l = [Tog)l-

Recall that we chose colour 2 for the larger partition class of V(7'). Therefore, for every

¢ € [t] we have
¢

> (To@ 2l = |To@al) > 0. (5.6)

i=1
The proof of Claim will be done in two stages. In the first stage, for each i € [t]
the subtree T; will be assigned to a pair of sets (X1, X;2), contained in some edge from
MU E(H), such that |X; ;| = |T;,| + 16Aem for j € {1,2}. In the second stage, we will
remove some vertices from each set in order to find the sets W; C X and Y; ; C X; ; satisfying

the properties (1) — (6) from Claim [5.5.1]

Stage 1 (Assignation): In this stage we will prove that for each i € [t], there exist an edge
ViiVie € MUE(H) and sets X, ; CV;;, for 7 € {1,2}, such that
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(A) Xi,j N Xﬁ,j’ = @ if {Zaj} 7é {€7j/};

(B) |Xi | =|T;;| + 16Aem; and

(C) if (‘/7;’1, ‘/;72) S E(?‘[) then ‘/1,2 ey.

The assignment will be done in two steps following the order given by o. At step 1 we

assign trees to edges from H until we use a large proportion of U Z, and at step 2 we will
use edges from M ensuring that the clusters from each edge of M are used in a balanced way.

Step 1: We will assume that |[M| < (0 + l%)k, as otherwise we just skip this step. Let us
set Q = (0 + 2)k — |[V(M)| and note that we have

V= Q > f(ik and dy(Y) > CQ? forallY € V.

We will choose sets in ) U Z until we have assigned at least (1 — %)Qm vertices to Y U Z.
Following the order of o, assume that we have made the assignation up to some 0 </ <t—1
and we are about to assign the tree T;(,41). Suppose that there are Y € Y such that

Y Xoel <m— (A'Bn+ 164em), (5.7)
Xo(i),2CY
and Z € Ny(Y') with
> [ Xo@al <m— (A*Bn+ 16Aem). (5.8)
Xo(@),1CZ

Since |Ty 11| < A*Bon, we can select sets Xo@sn1 € Z and Xy41y2 € Y, disjoints from
the previously chosen sets, such that | X, i1);] = [To@s1),;| + 16Aem for j € {1,2}. So, if
there is no Y € Y satisfying (5.7)), then we have

¢ ¢
YTl =D [ Towel = (|Xa(i),2| — 16A5m)

i=1 i=1 i=1
> |V|m —t-16Aem — k- (A*Bn + 16Aem)
52
> _
> |Y|m 162km

(- g

This means that we have already used enough vertices from )Y U Z. On the other hand, if
every Y satisfying (/5.7)) has no neighbours satisfying (5.8)), then we may use (/5.6]) to deduce

L

¢ ¢
Z T5(i)] > 22 Toi)1| = QZ (|Xg(i),1| — 16A5m>
1=1 i=1

i=1

> 2dy (Y)m —t - 328em — k - 2(A*Bn + 16Aem)

52
> _
> Qm 162km
1)
> 11— — .
( 16>Qm
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This means that if at step £+ 1 € [¢] we could not find a pair (Y, Z) satisfying (5.7) and (5.8),
then we have used vertices at least (1 — —)Qm vertices from ) U Z at step /.

Step 2: Let 0 < fy <t be such that Ty, ..., Ty, have been assigned to YV U Z, satisfy-

ing , and , and

5 &l 5
(1-)am< > ITl < (1- 16)@m + A'Bon. (5.9)
Assume that {, < t, otherwise we are done. For {4+ 1 <7 <t we will assign each T5(;) to

some edge AB € M. At each step we will ensure that for every edge AB € M we have

> 1 Xowal = X 1 Xowl

Xo(1),; €A Xo(1),;EB

< A*Bon. (5.10)

Suppose we are about to assign a subtree T, for some ¢ > {, 4 1, and that ([5.10]) holds
at step i = ¢ — 1 (note that - holds tr1v1ally at step fy). Suppose that there is an edge
AB € M such that

max{ S 1 Xewa S |X(,(i),j|} < m — (A'Bon + 16Aem). (5.11)
Xo(),;CA Xo(1),; B
Assuming that ZXo(i),ng | X0, < 2ox, (@SB | Xogny,j|, we let j* = arg{ma}X|Ta(g)]| and
je{1,2

then we may take sets

o Xogoj» € A with [Xoep j+| = [Th),j+| + 16Aem, and
o Xow3—j+ C B with | X, 3 j+| = [Tr0)3-5+| + 16Acm.

disjoints from the previously chosen sets. Note that we have assigned the larger colour class
of T, to the less occupied cluster in {A, B}. Furthermore, since holds at step £ — 1
and as |T,()| < A*Bon, the assignment of T,y implies that holds at step £. So suppose
that does not hold at step ¢ — 1 for any AB € M. Then we have

-1
ST = [VIM)|m —t-328em — k- (3A*Bon + 32Aem)
i=flo+1
> V(M) —ik‘
> m 16 m,
which together with (5.9)) yields
/—1 ) 5
Tol > (1-— S
> [T (155 )@m+ [V(M)m = Skm
) )
> (1-2 Nem — 2k
( 16)<Q+4> ST
)
> (ot g)hom
> (e 55)
Z \¢T16)"



which is impossible since |T'| = gn. This implies that we can make the assignation for each
let].

Stage 2 (Cleaning): Assume that the cluster tree is ordered according to a BFS starting
from the subtree which the root of T'. Starting with a leaf of the cluster tree, suppose that
we have found the sets Y; ; satisfying properties (1) — (6) for all subtrees T; below 7} in the
order of the cluster tree. Let us define

Wy:={ve X :dv,Y2) > A+1 for all i such that T; is a child of 7}},

we want to prove that W, has a reasonable size. Given a child T} of T} in the cluster tree, we
have that
|YZ‘72‘ = |Ti,j| + 13Aem = (A + 1)em

and therefore, since (X, V) is (e, p)-regular, by Lemma there are at most (A + 1)em
vertices in X with less than A 4 1 neighbours in Y; 5. Since the auxiliary tree has maximum
degree at most A%, then W, has at least

X] = (A +D)A%X] > 2

vertices. Now, since (X, V) is (e,p)-regular, then by Lemma the pair (W, Vio) is

(2¢, p)-regular with p-density at least % — ¢. By Lemma [5.1.1| there are at most 2em
vertices of V; o with less than

J

5
2 _3 Wl > —
(100 5) Wil = 5P

neighbours in Wy. We remove each such vertex from Xy, thus obtaining a set X, such that

every vertex in X, has at least 2%Opm neighbours in W,. Now, we need to find an expander

subgraph of (Xy1, X7,). Since (Vy1, Vi) is (¢, p)-regular with d,(Vy1, Vi2) > and

0

100
| Xeal, [ Xpol > 16Aem — 2em > (4A 4 6)em,

we may use Lemma [5.2.3[ to obtain a pair (Y1, Ys2), with Y, € X1 and Y;» C Xj,, such

that G'[Yr1,Yeo] is bipartite (em,2A + 2)-expander and satisfies |Yz ;| > |Xo;| — 3em >
Ty + 13Aem for j € {1,2}. O

5.6 Applications in Ramsey theory

We end this chapter with some quick applications of Theorem [1.4.3| in Ramsey theory. For
s > 2 and graphs Hy,..., Hy, we say that a graph G is (Hy,..., Hy)-Ramsey, denoted by
G — (Hy, ..., Hy), if for every colouring of the edges of G with s colours there exists i € [s]
such that G contains a copy of H; in colour 7. Given families of graphs Fi,...,F,, we say
that G is (F,...,Fs)-Ramsey, denoted by G — (Fi,...,F;), if for every colouring of the
edges of G with s colours there exists i € [s] such that G contains a copy of every member
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of F; in colour i. Furthermore, we write G = H when H; = --- = H, = H and G 3 F
when F; = --- = Fy = F, in which case we say that G is (H, s)-Ramsey and (F, s)-Ramsey
respectively.

For a graph H and s > 2, one asks for threshold probability p* = p(n) such that if
p > p* then, with high probability, the random graph G(n,p) is (H,s)-Ramsey. The first
result regarding this question, proved by Frankl and Rodl [49] and Fuczak, Ruciniski and
Voigt [87], states that for p > C'y/n the random graph is (K3, 2)-Ramsey with high probability.
The systematic study of Ramsey properties of the random graph was initiated by Rodl and
Ruciniski [97, O8] who proved the following result.

Theorem 5.6.1. Let s > 2 and let H be a graph that is not a forest consisting of stars and
paths of length 3. Then there exist positive constants ¢ and C' such that

s 1 ifp > Cn mm
lim P[(G(n,p) & H] =L P=0n ™
n—o00 0 pr < cn M2(H)7
where /
H) -1
mz(H):maX{efm)_Q:ngﬂand |Hl|>3}

In the modern probabilistic combinatorics, there are at least 3 different ways to prove
Theorem : the transference principle of Conlon and Gowers [37], the multi-round ex-
posure method of Schacht [102], and the hypergraph container method developed by Balogh,
Morris, and Samotij [14], and, independently, by Saxton and Thomasson [I0I]. However, as
far as we understand, none of this methods works for graphs whose vertices grows linearly in
n.

The aim of this section is to make some progress in this area studying the Ramsey number
of linear sized trees in the random graph, in particular, we prove a random analogue of the
Erdés-Graham conjecture [44]. As in the dense case (Corollary [4.5.1]), we may deduce the
multicolour Ramsey number of trees in random graphs from Theorem [1.4.3]

Corollary 5.6.2. Let s,A > 2 and let € > 0. Then there exists a constant C' > 0 such that
ifp> % we have
lim P[G((1 +¢)sn, p) 5 T(n,A)] =1.

Proof. Let N = (1 +¢)sn and let 0 < § < £ be fixed. For a given colouring of the edges of
G(N, p) with s colours, we denote by G; the graph induced by all the edges in colour i € [s].

By Theorem we may assume that e(G;) < (£ + §)e(G(sn, p)) for all i € [s]. Therefore

s 7

1
> e(G) <X (£ +0) el Glnp)) < (14 sD)e(Glsn,p) < e(GIN,p))
i=1 i=1
which is a contradiction. O

We remark that Corollary is sharp up to the value of C'. However, for larger p (say
P> k’%) we believe that the error term O(en) in the size of the host graph can be improved.
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For instance, for trees with a given ratio in the size of its colour classes, Corollary if far
from best possible. Indeed, Letzter [78] proved that, with high probability, G((% +e)n,p) is
(Py,2)-Ramsey provided pn — oo, where P, denotes the path of length n. In a forthcoming
work we will extend Letzter’s result to arbitrary bounded degree trees.

A very interesting consequence of Corollary is an upper bound for the multicolour
size Ramsey number of bounded degree trees. Given a graph H and an integer s > 2, the
s-colour size Ramsey number 7s(H) of H is the smallest integer m so that there exists a
graph G with m edges such that every s-colouring of E(G) yields a monochromatic copy of
H. In the case of trees, it was conjecture in 1983 by Beck [16] that 7#2(7") = O(Dn) for any
fixed tree T' € T (n, D). This conjecture was settled by Friedman and Pippenger [51] proving
that 75(T") = O(n) for every s > 2 and every tree 7" with n vertices and bounded degree. We
remark that this result also follows from Corollary as the random graph G(n, %) has

roughly %(g) = O(n) edges.
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Part 11

Extremal Combinatorics on Words
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Chapter 6

Introduction

The systematic study of combinatorics on words began in 1906 with the work of Thue [107]
about the structure of square-free words. Although Thue’s theorem appeared one year before
Mantel’s theorem, this field has received considerable less attention than extremal graph
theory. However, after the appearance of Lothaire’s book “Combinatorics on words” [81] in
1983, this topic has grown exponentially. We do not aim to describe in details this field of
research. Our goal is rather to collect some of the recent results of what could be called
extremal combinatorics on words.

A word w of length n is an ordered sequence w = (wyws ... w,) € X", where X is a fixed
size alphabet. The set of all possible finite words over X is denoted by ¥* = (J,,»; X". We will
usually represent a word in two equivalent ways, either as an order tuple or as a sequence.
For example, the tuple (1011) and the sequence 1011 represent the same word. Moreover,
we will usually denote words in bold letters in order to make a difference with its letters.
Regarding the alphabet 3, we are only interested in its cardinality. For ¢ = 2 we will assume
¥ =4{0,1}, and ¥ = [¢] whenever |X| = ¢ > 3.

In extremal combinatorics one usually deals with the problem of finding substructures
maximising or minimising some parameters. So, as a first step, let us define what kind of
substructures we will be interested in. There are at least three types of substructures that
often appear in the literature (we will follow the nomenclature of Lothaire’s book).

A substring or factor of a word w € X" is a sequence of consecutive characters in w. A
subsequence or subword of w is some word v € ¢ such that there are indices 1 < i3 < ... <
i¢ < n so that w;; = v; for each j € [¢]. In particular, every substring is a subword but not
vice versa. Finally, a pattern P of w is a word P = py...p,, € A™, where A = {ay,...,a;}
is an auxiliary alphabet, such that there are words uy, ..., u; over X and a substitution rule
¢(a;) = u;, for i € [t], such that p(P) = ¢(p1)...¢o(pm) yields a factor in w. For instance,
the word w = 011011011 contains v = 011 as a factor, v = 111111 as a subword, and
contains the pattern P = xzxx by replacing x = 011.

Let us now describe two problems that illustrate what we think as extremal combinatorics
on words.
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6.1 Longest common subsequence

Let w = (w; ... w,) and u = (u; ... u,) be two words of length n chosen uniformly at random
from ¥". The longest common subsequence (LCS) problem asks for the maximum ¢ < n such
that there exist sequences 1 < 47 < -+ < iy <nand 1 < j; < --- < jy < n such that
w;, = uj, for all s € [¢]. We write LCS,(n) to denote the random variable which is equal to
the length of the longest common subsequence between two random words chosen uniformly
from X" where ¥ is the alphabet on ¢ symbols.

In 1975, Chvétal and Sankoff [34] proved that the expected value of TLCS,(n) converges
as n — 0o. Indeed, it is easy to see that for every n,m € N we have

E[LCS,(n 4+ m)] = E[LCS,(n)] + E[LCS,(m)]

and, therefore, by Fekete’s supper additive lemma [48] we have that

1 .
Vg = lim ﬁE[LCSq(n)] exists.
The value 7, is known as the Chvatal-Sankoff constant and is an open problem to determine
the exact value of 7,. In 2005, Kiwi, Loebl, and Matousek [68] determined the asymptotic
behaviour of -, showing that

V=2
that is, for large ¢ the expected length of the longest common subsequence is roughly %n.
6.2 Twins in words

For a word w € ¥*, let LT(w) be the maximum integer m so that there are two disjoint
identical subwords of w, each of length m. Such subwords are called twins. For n € N, we
define

LT(n,Y) = min{LT(w) : w € X"}.

Thus, every word w € 3" has twins of length LT(n, ). For ¢ > 2, we observe that

LT(n.[g)) > | <.

Indeed, we start by splitting any word w € [¢]" into ¢ = Lﬁj substrings, each of length

q + 1. By the pigeonhole principle, there is at least one letter which has two occurrences
a;, a; the i-th substring, for each i € [¢]. Then, the words v = a;y...ap and v’ = d} ... qa) are

identical and disjoint subsequences of length |

i

Axenovich, Person and Puzynina [12] improved this trivial lower bound showing that
LT(n,lg]) =2 % — o(n), which is tight for binary alphabets up to the lower order error terms.
Their proof is based in a reqularity lemma for words which allows to split any large enough
word into a bounded number of quasi-random substrings (see Chapter |§ for details). For
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larger alphabets the best lower bound is due to Bukh and Zhou [30], who showed that
LT(n,[3]) = 0.34n — o(n) and

n g\ /3
LT(n,[q]) > W - <3> for ¢ = 3.

6.3 Our contributions

In this work, we study three problems in extremal combinatorics on words. In Chapter [7| we
solved the universality problem for words and d-dimensional arrays. We ask for the minimum
integer f4(q,k) so that there exists a d-array over an alphabet on ¢ symbols so that there
exists a d-dimensional array of order f;(q, k) containing a copy of every d-array of order k. In
particular, fi(q, k) denotes the minimum length of a word over an alphabet on ¢ symbols that
contains, as a subsequence, a copy of every word of length k. We also study the probabilistic
version of this problem. That is, for £ € N, we ask for the smallest n = n(k) so that, with
high probability as k — oo, a random d-array of order n contains a copy of every d-array of
order k.

In Chapter [§| we study two intimately related topics: quasi-randomness and limit struc-
tures. We study the notion of quasi-randomness of words that appeared in the work of
Axenovich, Person, and Puzinina [I2] and the work of Cooper [38]. We prove a result in
the spirit of Chung—Graham—Wilson’s theorem [33] for quasi-random graphs, giving a list of
properties equivalent to those that a quasi-random word enjoys. In the second part of this
chapter, we develop a theory of convergent word sequences in the vein of what has been done
for other discrete structures, such as graphs [82] and permutations [64]. We prove that a
sequence of binary words that converges in certain sense can be “represented” by a Lebesgue
measurable function f : [0,1] — [0, 1], and that every measurable function f : [0, 1] — [0, 1]
can be approximated, in a appropriate sense, by a convergent sequence of binary words.
Moreover, most of our results can be straightforwardly extended to larger alphabets.
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Chapter 7

Universal arrays

Based on joint work with Daniel A. Quiroz and Nicolds Sanhueza-Matamala [91).

A wuniversal mathematical structure is one which contains all possible substructures of a
particular form. Famous examples of universal structures are De Bruijn sequences [40],
which are periodic words that contain, exactly once, every possible word of a fixed size as a
substring. Universal structures where perhaps first considered in a general sense by Rado [93],
who studied the existence of universal graphs, hypergraphs and functions for various notions
of containment.

The study of universal (finite) graphs has received particular attention, and for these the
containment relation of choice has been that of induced subgraphs. Thus, a graph G is said to
be k-universal if G contains every graph on k vertices as an induced subgraph. Two problems
have been at the centre of the study of k-universal graphs. The first one is that of finding the
minimum n such that there exists an n-vertex k-universal graph. In 1965, Moon [89] gave,
through a simple counting argument, a lower bound of 2*~1/2 for that value of n. Recently,
Alon [3] showed that this lower bound is asymptotically tight, essentially settling this 50-
year-old problem. More so, in a later paper, Alon and Sherman [8] gave an asymptotically
tight bound for the hypergraph generalisation of this problem. The second central problem
in the study of k-universal graphs is the “random” analogue of the previous question, that is,
finding the minimum n such that “almost every” n-vertex graph is k-universal. After works
of Bollobéas and Thomason [25], and Brightwell and Kohayakawa [29], Alon [3] has essentially
settled this problem as well.

Finding a k-universal graph is equivalent to finding an adjacency matrix which “contains”
the adjacency matrices of all k-vertex graphs. Here we are considering that an adjacency
matrix M contains another matrix M’, if we can obtain M’ from M by iteratively applying
the following operation: choose a value ¢ and delete the i-th row and the ¢-th column. It is
thus natural to consider square matrices together with the notion of containment given by the
operation of choosing values i, j and deleting row ¢ and column j, and its associated notion
of universality. More generally, we shall consider the analogue of this notion of containment
for “d-dimensional arrays” for all d > 1.

Given an alphabet ¥ and positive integers d,ny,...,nq, a d-dimensional array of size
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ni,...,ny over ¥ is a collection of symbols a;, 4, . ;, € ¥ indexed by the vectors (i1, s, . .., i4) €
[n1] X [ng] X« - - X [ng]. With regard to the alphabet ¥ we are only interested in its cardinality,
and will assume ¥ = [g], whenever |¥| = ¢. Thus ¥ will usually be clear in the context and,
for short, we will just talk about d-arrays of a certain size. A d-array of order n is a d-array
of size n,n,...,n, and note that 1-arrays of size n are just words of length n.

For general d-arrays and a corresponding notion of universality, we study the analogue
of the two questions settled by Alon on the graph case (the “deterministic” and “random”
questions). Whenever d > 2, we obtain asymptotically tight bounds for both questions (See
Theorem and Corollary [7.0.4] below) by extending a method used by Alon in the graph
case. However, this technique does not seem (directly) to work when d = 1, that is, for the

case of words. For this case we develop different tools which allow us to show tight bounds
for both problems (See Theorems |7.0.1{ and [7.0.2)).

Let us first define the notion of containment we will consider for general d-arrays, which
is a generalisation of the containment notion for matrices discussed above. For fixed d, let
A = (ai, iy....i;) be a d-array of size ny,...,ng. We define the coordinate restriction operation
on A as follows. Choose some j € [d] and ¢ € [n;]. Delete all the symbols whose j-th
coordinate is ¢, to obtain a d-array of size ni,ng,...,n;_1,n; — 1,n;41,...,n4. We say a d-
array A contains a d-array A’ if we can obtain A’ by iteratively applying coordinate restriction
operations, and consider universal d-arrays under this containment notion.

For fixed d,k > 1, and a fixed alphabet X, we say a d-array over X is k-universal if it
contains every d-array A on X of size ny, no, ..., nq, where n; < k for all j € [d]. Note that if
we want to show that a given d-array is k-universal, it is enough to show that it contains every
d-array of order k. We let f4(q, k) be the minimum n such that there exists a k-universal
d-array of order n over the ¢-symbol alphabet.

Our results in the case of words are the following.

Theorem 7.0.1. Let k > 1 and q > 2 be integers. Then fi(q, k) = qk.

This result establishes the gap between the notions of subword and substring. While a
minimal k-universal word has size gk, a De Bruijn sequence has size ¢*. We also obtain the
following “threshold” behaviour for randomly chosen words to be k-universal.

Theorem 7.0.2. Let ¢ > 2 be a fized integer and ¢, :== q+ q/2+ q/3 + ...+ 1. Consider
a uniformly chosen word w of length n = n(k) over the q-symbol alphabet. Then for every
e > 0 we have

Plw is k-universal| — {(1) i

where the limit is taken as k — oo.

In particular, for the 2-symbol alphabet, we have fi(2, k) = 2k, while roughly 3%k symbols
are necessary and sufficient for a typical binary word of that length to be k-universal. This
last statement answers a question of Biers-Ariel, Godbole and Kelley [20].

The following theorem and its corollary are our results for general d-arrays with d > 2.

88



Theorem 7.0.3. Let d,q > 2 be fized integers. For every € > 0, a uniformly chosen d-array

d—1
of order n = (1 + a)quT over the q-symbol alphabet is k-universal with high probability as
k — oo.

d—1
Furthermore, a simple counting argument gives fq(q, k) > qu 7 (see Section . Thus
we obtain the following.

d—1

Corollary 7.0.4. Let d,q > 2 be fized integers. We have fy(q,k) = (1 + 0(1))§qk T,

We point out that the cases d =1 and d > 2 behave in completely different manners. In
the case d = 1, the case of words, the value of n in the random version is considerably larger
than fi(q, k) (a similar scenario holds for the graph case [3]). In contrast, for d-arrays with
d > 2 the order which is necessary for random d-arrays to be k-universal is asymptotically

equal to fy(q, k).

7.1 Universal words

In this section we prove Theorems and [7.0.2] We will use ¥ = [¢] as the fixed ¢g-symbol
alphabet. We recall the standard notation used to work with words. Given a word w and
an integer k, w” is the k-fold concatenation of w with itself k times.

Proof of Theorem[7.0.1. No word w on at most gk — 1 symbols can be k-universal: by the
pigeonhole principle, one of the ¢ symbols of ¥ (which we can assume is 1) must appear less
than k times in w, but then the word 1* is not contained in w. On the other hand, the word
(12---q)* has length gk and is clearly k-universal. O

To prove Theorem [7.0.2] we will need a few tools. Given any word w on X*, define
Us(w) as the minimal prefix of w which contains all symbols of ¥ if it exists, or Ug(w) = w
otherwise. Define Ts(w) as w with the prefix Us(w) removed. Given a word w, we can
greedily decompose it in a unique way as w = wjus - - - upu’ such that for all i € [{], u; =
Us(uwithiy -+ - wprr) and Tx(wwiyg - - wptd') = uiyq - - - wpd/, each u; contains all the symbols
of ¥ and u' (possibly empty) does not contain all the symbols of ¥.. We say ujus - - - upt’ is
the ¥-universal decomposition of w and we let vg(w) = £. We can use vy (w) to characterise
k-universal words, as follows.

Proposition 7.1.1. A word w € ¥* is k-universal if and only if vs(w) > k.
Proof. Suppose w satisfies vg(w) > k. Then w has as a prefix a substring w;us - - - ux, where

each of the words wu,; contains all of the symbols from ¥. Then any word v € ¥ can be found
greedily as a subword in w by finding the i-th symbol of v inside the word w;.

In the other direction, suppose vs,(w) = k' < k and let w = u; - - - upu' be the Y-universal
decomposition of w. Since each u; is a minimal prefix of u;---upu’ that contains all the
symbols of ¥, it must have the form w; = v;0;, where o; is a symbol in ¥ and v; does not
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use the symbol ¢;. Further, let o}/, ; be any symbol in ¥ which does not appear in w’ (which
exists by definition). We claim that w does not contain the word w’ = o109+ ook 41.
Since k' + 1 < k, this readily implies that w is not k-universal.

To find a contradiction, suppose that w’ is contained in w. The first symbol of w’ is
o1, and the first time oy appears in w is at the end of u;, thus the remaining symbols must
appear after the end of w;. That means the word oy - - - o0k 11 is contained in us - - - upw.
Using the same reasoning, we see that for all 7 < &/, the j-th symbol of w’ appears in w
only after the last symbol of u;. Therefore, the last symbol of w’, which is o441, appears as
a symbol in u’, a contradiction. O]

We will need to estimate vs,(w) for a uniformly chosen random word w. We will appeal to
the well-known “coupon-collector problem”. Given a ¢-sized set ) and a sequence X7, Xo, ...
of independent and uniformly chosen random variables X; € @ for all © > 1, define the
random variable 7" as the minimum integer such that {Xy,..., X7} = Q. It is known that T
can be written as the sum of ¢ independent geometric random variables T' = G + - - - + G,
where G; has parameter j/q for each j € [¢], and from this it is deduced that E[T] = ¢, :=
q+q/2+q/3+---+ 1.

Now we are ready for the proof of Theorem [7.0.2]

Proof of Theorem[7.0.3 Let X be the g-symbol alphabet. To estimate vs(w) of a random
word w, we will couple w with a word created from “coupon-collector” experiments, as
follows. Define a random string U € ¥* using the following process. Initially, let U = oy be
a word of length 1, where oq is chosen uniformly from . If U already has all the symbols of
Y., stop. Otherwise, choose uniformly and independently a symbol o € ¥ and update U by
appending o at the end. Clearly, the length |U| of U distributes as in the “coupon-collector
problem” and thus E[|U|] = ¢,. Given k > 0, let Uy, ..., Uy be independent random strings,
each of them distributed as U, and let U (k) — U,Uy - - - Uy, be their concatenation. Crucially,
we have vg(U®) = k, and each strict prefix u of U®) satisfies vs(u) < k.

Given k,n > 0, we construct a (random) word w in X" as follows: if [U*)| > n then let w
be the first n symbols of U®); otherwise, construct w’ from U*) by appending n— |U®| fresh
random symbols at the end of U®). Note that each symbol of w is chosen independently and
uniformly over the symbols of ¥, so w corresponds exactly to a word on »" chosen uniformly
at random. By construction it is clear that, for all k,n > 0,

Plw is k-universal | = Plug(w) > k] = P[|UW| < n], (7.1)
where the first equality is due to Proposition [7.1.1]

To estimate the last probability, note that [U*)| = S°¢_ | |U;] and recall that each of the
|U;| has expectation equal to ¢,. Thus, by the (Weak) Law of Large Numbers, we have that,
for all ¢ > 0,

P[(1 — €)cek < |UP| < (1 +¢)ck] — 1, (7.2)

whenever k goes to infinity. In particular, if n < (1 — €)c,k then P[[U®| < n] — 0; and if
n > (1+¢)c,k then P|[U®| < n] — 1. By (7.1), the result follows. O

90



7.2 Universal d-arrays

As before, let ¥ = [g] be the ¢-symbol alphabet. For integers d,k > 1, we write A4(%, k)
for the set of all d-arrays of order k over . In this section, we prove Theorem [7.0.3| and
stablish the lower bound for f;(q, k) which implies Corollary . To do so, we first need the
following well-known estimates for binomial coefficients, most of which follow from Stirling’s
approximation. For all n,k > 1,

K> (i)k and (Z) < (?)k (7.3)

Further, if & — oo as n — oo, while k£ = o(y/n),

() ()

and if £k = Q(n) then

log, (Z) = (1+ o(1))H(%)n, (7.5)

where H(x) = —zlogyx — (1 — x)log,(1 — ) is the binary entropy.

The lower bound for fy(q, k) when d > 2 is given by the following counting argument.
Notice that there are qkd g-symbol d-arrays of order k. Therefore, a g-symbol d-array of order

n must satisfy
d
n d
< k) > q¢"

in order to contain all arrays of order k. By (7.3) and the definition of f;(q, k) we obtain

) 1

and thus we have

k o a-
fala k) > —¢" /1, (7.6)
In light of Theorem [7.0.1] we know that for d = 1 the lower bound obtained here is consid-
erably far from being tight. But we will show that it is asymptotically tight for all d > 2. In
fact, it is asymptotically tight for the random version of the problem.

In order to prove Theorem we follow an approach taken by Alon [3] in the study of
universal graphs. Before diving into the proof let us first give a rough outline.

Given k € N sufficiently large and n = (1 —i—o(l))%qkd_l/d, let A € A4(2, n) be a uniformly
chosen d-array of order n over X. For a fixed array M € A4(X, k), we consider the random
variable X that counts the number of copies of M in A. Since there are q”d d-arrays of order
n over ¥, it is enough to prove that P[X = 0] = o(q*kd) and then use a union bound in order
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to conclude. However, it is not easy to prove this directly. Instead, we consider the random
variable Y that counts the number of disjoint copies of M in A. It is clear that Y = 0 if
and only if X = 0. Therefore, it is enough to estimate P[Y" = 0]. The random variable Y
has the advantage that it is 1-Lipschitz, meaning that changing the value of one entry of the
random array may change the value of Y in at most 1. Therefore, we may use (a known
consequence of) Talagrand’s inequality in order to upper bound P[Y = 0]. However, to be
able to use this tool, we need estimates on the expected number of pairs of copies of M in A
which overlap in some entries, which amounts to studying the variance of X. Grasping the
asymptotic behaviour of this variance turns out to be the most technical part of our proof.

Theorem 7.2.1 (Talagrand’s inequality [9, Theorem 7.7.1]). Let Q = [I;c(,) €2 be a product
probability space, with the product probability measure, and let h :  — R be a 1-Lipschitz
function, that is, |h(z) — h(y)| < 1 when x and y differ in at most one coordinate. For
f: N —= N, suppose that h is f-certifiable, that is, if x € Q is such that h(x) > s then there
exists a set I C [r] of size at most f(s) such that if a vector y € Q coincides with x on I,
then h(y) = s. Then, for Y(x) = h(x) and all b, t, we have

P[Y <b—ty/f(b)]-P[Y >b] <e /4

Proof of Theorem[7.0.3 Let d,q > 2, e > 0, k € N (which we can assume to be large) and

n=(1 +5)§qk{71. Let M € A4(X, k) be a fixed d-array of order k over the g-symbol alphabet
Y, and let A be a uniformly chosen array from 4,(3,n). Our aim is to find a good upper
bound on the probability that A does not contain M, i.e., one allowing us to use a union
bound to prove the result.

Let T denote the collection of subsets of [n]¢ of the form T = T} x - - - x Ty, where |T;| = k
for each 1 < i < d. Given T € T, let T(A) be the subarray of A with entries a;, ;, with
11 €T1,...,19 € Ty. Let X be the indicator function of the event that 7" induces a copy of
M, and let X = > 77 X7 be the number of copies of M in A. Since for every T' € T we
have E[X7]| = g%, by linearity of the expectation we have

d
po=E[X] = <Z> ¢ > 16k 10g q, (7.7)

where the last inequality follows from the choice of n, the assumption that & is large, and (7.4)).
It will be crucial to show that we have
Var(X) < (1 +o(1))p. (7.8)
To this end, we investigate (the expectation of) the random variable

Z = Z XTXTI,

.1

where the sum ranges over the pairs of distinct 7, 7" € T which intersect in at least one cell.
For iy,...,i4 € [k], we write

Ail,...,id = Z E[XTXT’];



77777

i.e., T"and T” intersect on exactly i; indices on the j-th coordinate. Therefore, if A := E[Z],
then we have

A= Z ]E[XTXT/] = Z Ail ..... iq" (79)

1’ (i1

Given i € [k], we define

e YY) e ) ()

In order to prove (7.8)) we will use the following two claims.

Claim 7.2.2. For all iy, ..., iq € [k] we have

Proof of Claim[7.2.3. Let iy, ...,4 be given. First, note that the total number of pairs T, T
which intersect on i; entries on the j-th coordinate is exactly equal to [];c[q As;. Moreover,
the union of two subarrays 7" and T" of this type together span exactly 2k% — iy - - - iy cells.
Then X7 X7 = 1 holds if and only if in each one of those cells the correct symbol is attained,
which implies

(92— i
iy S Q (k=i -ia) H Ay
j€ld]

d
By the AM-GM inequality we have i - --1g < (é Z?Zl z'j> . Thus we have

—(2k%—iq--i
Aioin 4 ( 1+++4q) [Tica A < q_k,d_,’_(% > e i) H k noy
1 n\?¢ _pa . i I\ E— .

(1) a jeia) \' j

Using Jensen’s inequality (with the convex function z + 2%) we further have
1vd ;\¢ 1 d .d : A n < \k—i d laci —
(3 21 zj) < 5(325-115). Using that (k — z).(kﬂ.) < (n —4)"" and replacing n = (1 +

d—1
£)E¢"/? we have

VAN
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=
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N
=
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w
-
~
<
N~—
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. x5
N~
N
—
—_
+
™
N—
x5
N~
S
EN
a
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=
|
o

as desired

Claim 7.2.3. If1 <i < k—1, then Lyg(i) = o(k™%).
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Proof of Claim/|7.2.5. Without loss of generality we may assume that 8¢ < log ¢, as otherwise
we can restrict to a smaller array. Setting ¢ = k — j and by the Bernoulli inequality (1 +
=L-)d= 1>1+j7 we have

k—j
, -0 1 ema-ty 1 (k) (1 +e)k\’
Lylk—j) = q 4 (I=(45/ (k=) —
J\J e

< it L k\ ((1+e)k)’
h I\ e '

We now split into two cases. Assume first that j > (1 B)k where 8 € (0,1) is small enough
so that H(() < logq This choice of j allows us to use ) to obtain

k . ‘
og, (1) = (1 o)) < 2087,
J
and, since H(z) is decreasing in (1, 1), it also guarantees

H() < H( - B) = H(9).
These two observations and ([7.3)) give us

log La(k — ) — T (k=) Mog g + 22— H(1) + 2log(%) + log(1 +¢)

jlogy e

<
< —3(k—j)"tlogq+4H(B) + 210g(§) +e.

We use the fact that log(ﬁ) = log(1 + k];]) < 1 together with our choices of £ and 3 to

obtain log Ly(k — 7) 1 4H(B) 4 1
0g La(k — ] €
=R AL A G | — < —- logg.
i —J) 2OgQ+k—j+k+k—j 110849

Therefore, for j > (1 — §)k we have

Ld(k —]) < e—I(k=j)loga/4

We are left to consider the case j < (1 — )k. Similarly, by (7.3) we have log j! > jlogj —j
k ek \J
and (;) < (7) , and then
log La(k —j) _ 1 B

Nd—1 : k
; g—i(k—j) —logj+1+2log(3) +e < — 5

+1+2logk +e.

Therefore, in this range we have
La(k — j) < e P 1kA,

The claim follows.

Since the sum in ((7.9)) is over all the k%—1 tuples (i1, ..., iq) in [k]? distinct from (k, ... k),
then Claim [7.2.2) and Claim [7.2.3] together imply that

A =o(p). (7.10)
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Now, since X is a sum of zero-one random variables, we have

Var(X) <E[X]+ Y Cov(Xr, Xr).
TT'eT

In the sum we only need to consider the pairs T',7" € T with non-trivial intersection (oth-

erwise the variables X7, X7 are independent and thus their covariance is zero). Further, we
have Cov(Xp, X7v) < E(X7rXg). Therefore, by (7.10) we have

Var(X) < i+ A = (1+ (1)
and so we have finally proved ([7.8)).
By Chebyshev’s inequality, and equations ([7.7) and (7.8) we have

16 Var(X) < 32 N

1
PIIX —pl = 4 < e p

Therefore, X > %,u with probability at least %. Likewise, by Markov’s inequality and ([7.10))
we have — 5A
P[ZE%M]éi[ ]:7_>o,
H M
and therefore Z < i v with probability at least %. In particular, both events hold at the same
time with probability at least %

Let Y denote the random variable that counts the maximum number of disjoint copies of
M in A. Since X > %u and Z < iu hold with probability at least %, then, by conditioning
on this event, we deduce that

(7.11)
Notice also that X = 0 if and only if ¥ = 0.

We are now ready to use Talagrand’s inequality to finish the proof. Note that h(A) :=Y
is 1-Lipschitz, since by switching the value of one entry one can add or remove at most 1
copy of M (the one using that entry). Moreover, h(A) is f-certifiable for f(s) = sk?. Using

b= %u and t = k=% 2\/31, Talagrand’s inequality and (7.11)) give us
P[X = 0] = P[Y = 0] < 2"/,

Finally, we use a union bound over all the possible choices of M € A4(3, k), to deduce that
the probability that A is not k-universal is at most

qudeﬁuk—‘i/S < 2qk‘1672kd logq __ 2q7kd =0
where the inequality comes from ((7.7). The result follows. H

Remark 7.2.4. The constant error term e in Theorem [7.0.5 can be improved to a term
Q(%) This can be seen by checking that replacing € = C’% (with C' being a large constant)
is enough for (7.7) to hold. This does not change the rest of the calculations.
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Chapter 8

Quasi-random words and limits of
convergent word sequences

Based on joint work with Hiép Han and Marcos Kiwi [60)].

8.1 Introduction

Roughly speaking, quasi-random structures are deterministic objects which share many char-
acteristic properties of their random counterparts. Formalizing this concept has turned out
to be tremendously fruitful in several areas, among others, number theory, graph theory,
extremal combinatorics, the design of algorithms and complexity theory. This often follows
from the fact that if an object is quasi-random, then it immediately enjoys many other
properties satisfied by its random counterpart.

Seminal work on quasi-randomness concerned graphs [33, 96], [I06]. Subsequently, other
combinatorial objects were considered, which include subsets of Z,, [32, 57], hypergraphs [I]
311, 58, 108], finite groups [59], and permutations [3§]. Curiously, in the rich history of quasi-
randomness, words, i.e., sequences of letters from a finite alphabet, one of the most basic
combinatorial object with many applications, do not seem to have been explicitly investigated.
We overcome this apparent neglect, put forth a notion of quasi-random words and show it is
equivalent to several other properties.

In contrast to the classical topic of quasi-randomness, the research of limits for dis-
crete structures was launched rather recently by Chayes, Lovasz, Sos, Szegedy and Veszter-
gombi [20] [84], and has become a very active topic of research since. Central to the area is
the notion of convergent graph sequences (G},)n— 00, i-€., sequences of graphs which, roughly
speaking, become more and more “similar” as |V (G,)| grows. For convergent graph se-
quences, Lovéasz and Szegedy [84] show the existence of natural limit objects, called graphons,
endow the space of these structures with a metric and establish the equivalence of their no-
tion of convergence and convergence on such a metric. Among many other consequences,
it follows that quasi-random graph sequences, with edge density p + o(1), converge to the
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constant p graphon.

In this paper, we continue the lines of previously mentioned investigations and study quasi-
randomness for words and limits of convergent word sequences. Not only in the literature
of quasi-randomness but also in the one concerning limits of discrete structures, explicit
investigation of this fundamental object has not been considered so far.

8.1.1 Quasi-random words

Concerning quasi-randomness for words, our central notion is that of uniform distribution of
letters over intervals. Specifically, a word w = (w; ... w,) € {0,1}" is called (d, &)-uniform
if for every interval I C [n] we have

Swy={iel:w =1} =d|I|Len. (8.1)

iel
We say that w is e-uniform if w is (d,)-uniform for some d. Thus, uniformity states that
up to an error term of en the number of l-entries of w in each interval I is roughly d|I|, a
property which binomial random words with parameter d satisfy with high probability. This
notion of uniformity has been studied by Axenovich, Person and Puzynina in [12], where a
regularity lemma for words was established and applied to the problem of finding twins in
words. In a different context, it has been studied by Cooper [38] who gave a list of equivalent
properties. A word (w; ... w,) € {0,1}" can also be seen as the set W = {i: w; = 1} C Z,
and from this point of view uniformity should be compared to the classical notion of quasi-
randomness of subsets of Z,, studied by Chung and Graham in [32] and extended to the
notion of Ug-uniformity by Gowers in [57]. With respect to this line of research we note that
our notion of uniformity is strictly weaker than all of the ones studied in [32], [57]. Indeed,
the weakest of them concerns Us-uniformity and may be rephrased as follows: W C Z,
has Us-norm at most ¢ > 0 if for all A C Z, and all but en elements z € Z we have
WnN(A+z)| = |W]% +en where A+2 = {a+x: a € A}. Thus, e.g., the word 0101...01
is uniform in our sense but its corresponding set does not have small Us-norm.

Analogous to the graph case there is a counting property related to uniformity. Given a
word w = (wy ... w,) and a set of indices I = {iy,...,3,} C [n], where i; < iy < -+ < iy,
let sub(/,w) be the length ¢ subsequence w = (u;...us) of w such that u; = w;,. We
show that uniformity implies adequate subsequence count, i.e., for any fixed w the number of
subsequences equal to u in a large uniform word w, denoted by (‘:), is roughly as expected
from a random word with same density of 1-entries as w. It is then natural to ask whether
the converse also holds and one of our main results concerning quasi-random words states
that uniformity is indeed already enforced by counting of subsequences of length three. Let
|wl]1 = ¥ e wi denote the number of 1-entries in w, then our result reads as follows.

Theorem 8.1.1. For every € > 0, d € [0,1], and ¢ € N, there is an ny such that for all
n > ng the following holds.

o Ifw € {0,1}" is (d,e)-uniform, then for each u € {0,1}*
(’;’) — d||uH1<1 _ d>£—||u||1 (Z) + 5ent.
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o Conversely, if w € {0,1}" is such that for all w € {0,1}® we have

(%) = dll (1 — @)l (7) + en?

then w is (d, 18¢'/3)-uniform.

Note that in the second part of the theorem the density of 1-entries is implicitly given.
This is because <(1’f1)) = (”“;Hl>, and therefore the condition ((1?1)) ~ d? (’;) implies that
|lwl|1 &~ dn. We also note that length three subsequences in the theorem cannot be replaced
by length two subsequences and in this sense the result is best possible. Indeed, the word
(0...01...10...0) consisting of (1 — d)% zeroes followed by dn ones followed by (1 — d)%
zeroes contains the “right” number of every length two subsequences without being uniform.

We also study a property called Equidistribution and show that it is equivalent to uni-
formity. Together with Theorem [8.1.1] (and its direct consequences) and a result from
Cooper [38, Theorem 2.2] this yields a list of equivalent properties stated in Theorem [8.1.2]
To state the result let w[j] denote the j-th letter of the word w. Furthermore, by the Cayley
digraph I' = I'(w) of a word w = (wy ... w,) we mean the graph on the vertex set Z, in which
i and j form an edge if and only if w;_; (mod n) = 1. Given a word u € {0, 1}*™, a sequence
of vertices (vy...vp1) is an increasing w-path in I' = I'(w) if the numbers iy, ...,i, € [n]
defined by w11 = v + i (mod n) satisfy i1 < --- < i, and for each k € [{] the pair vxv1
is an edge in I' if u, = w;, = 1 and a non-edge if u, = w;, = 0.

Henceforth, we define the Lipschitz norm of a function f : R/Z — C by

|f(z) = f(y)]
||f||L1p ||f||00+iu5 min{l — ‘$—y‘>’$_y’}'

Theorem 8.1.2. For a sequence (Wy,)n—oo 0f words w,, € {0,1}" such that |w,||; = dn+o(n)
for some d € [0, 1], the following are equivalent:

(Uniformity) (wy)n—oo s (d,0(1))-uniform.
(Counting) For all ¢ € N and all u € {0,1}* we have

(11;n> = dll(1 — @)~ ||u||1( ) + o(nh).
(Minimizer) For all w € {0,1}* we have

(u?;n) = gl (1 — g)*~ ||u||1( ) + o(n?).
(Exponential sums) For any fized o > 0 and for all k € [n — 1] we have

LS wali] - exp (22k5) = o(1)[k.

(Equidistribution) For every Lipschitz function f : R/Z — C
s jemwali] - F(L) = d foyz [+ oD fllLip-
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o (Cayley graph) For all w € {0,1}? the number of increasing u-paths in T'(w,,) is
d”"”l(l _ d)3_”u”1n(§> + 0(714).

We will say that a word sequence is quasi-random if it satisfies one of (hence all) the
properties of Theorem [8.1.2]

8.1.2 Convergent word sequences and word limits

Over the last two decades it has been recognized that quasi-randomness and limits of discrete
structures are intimately related subjects. Being interesting in their own right, limit theories
have also unveiled many connections between various branches of mathematics and theoretical
computer science. Thus, as a natural continuation of the investigation on quasi-randomness,
we study convergent word sequences and their limits, a topic which, to the best of our
knowledge, has only been briefly mentioned by Szegedy [104].

The notion of convergence we consider is specified in terms of convergence of subsequence
densities. Given w € {0,1}" and u € {0,1}*, let #(u,w) be the density of occurrences of u

in w, i.e.,
w) (n) !
tu,w) = (u) (e) :
Alternatively, if we define sub(¢, w) := sub(I,w) for I uniformly chosen among all subsets
of [n] of size ¢, then t(u,w) = P[sub({,w) = u).

A sequence of words (w,,),—o is called convergent if for every finite word w the sequence
(t(u, w”))n—> converges. In what follows, we will only consider sequences of words such
that the length of the words tend to infinity. This, however, is not much of a restriction since
convergent word sequences with bounded lengths must be constant eventually and limits
considerations for these sequences are simple.[]

We show that convergent word sequences have natural limit objects, which turn out to
be Lebesgue measurable functions of the form f : [0,1] — [0, 1]. Formally, write f! = f and
f9=1— f for a function f :[0,1] — [0,1] and for a word u € {0,1}¢ define

tu, f) = 0! / I1 £ (i) da .. da. (8.2)

0z < <ap<l ZE[Z]

We say that (w,,),—0o converges to f and that f is the limit of (w,,), 0, if for every word u

we have
lim t(u,w,) = t(u, f).

n—oo
In particular, (w,)n—c iS convergent in this case. Furthermore, let W be the set of all
Lebesgue measurable functions of the form f : [0,1] — [0, 1] in which, moreover, functions
are identified when they are equal almost everywhere. We show that each convergent word
sequence converges to a unique f € W and that, conversely, for each f € VW there is a word
sequence which converges to f.

'Word sequences with bounded lengths contain a subsequence of infinite length which is constant and due
to convergence all members of the original sequence must agree with this constant eventually.
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Theorem 8.1.3 (Limits of convergent word sequences).

o For each convergent word sequence (Wy,)n—o0o there is an f € W such that (wy)n—co
converges to f. Moreover, if (W,)n—0o converges to g then f and g are equal almost
everywhere.

o Conversely, for every f € W there is a word sequence (Wy,)n—o0o Which converges to f.

Theorem can be phrased in topological terms as follows. Given a word wu, one can
think of ¢(u,-) as a function from W to [0,1]. Then, endow W with the initial topology
with respect to the family of maps t(u,-), with w € {0,1}* and ¢ € N, that is, the smallest
topology that makes all these maps continuous. We show that this topology is actually
metrisable and, moreover, compact (thereby proving Theorem [8.1.3)).

The overall approach we follow is in line with what has been done for graphons [84] and
permutons [64]. Nevertheless, there are important technical differences, specially concerning
the (in our case, more direct) proofs of the equivalence between distinct notions of convergence
which avoid compactness arguments. Instead, we rely on Bernstein polynomials and their
properties as used in the (constructive) proof the Stone-Weierstrass approximation theorem.

In contrast with other technically more involved limit theories, say the ones concerning
graph sequences [84] and permutation sequences [64], the simplicity of the underlying com-
binatorial objects we consider (words) yields concise arguments, elegant proofs, simple limit
objects, and requires the introduction of far fewer concepts. Yet despite the technically com-
paratively simpler theory, many interesting aspects common to other structures and some
specific to words appear in our investigation. As an illustration, we work out the implica-
tions for testing of the class of so-called hereditary word properties and address the question
concerning finite forcibility for words, i.e., which word limits are completely determined by
a finite number of prescribed subsequence densities.

8.1.3 Testing hereditary word properties

The concept of self-testing/correcting programs was introduced by Blum et al. [22, 23] and
greatly expanded by the concept of graph property testing proposed by Goldreich, Goldwasser
and Ron [56] (for an in depth coverage of the property testing paradigm, the reader is referred
to the book by Goldreich [55]). An insightful connection between testable graph properties
and regularity was established by Alon and Shapira [6] and further refined in [4, [7]. It was
then observed that similar and related results can be obtained via limit theories (for the case
of testing graph properties, the reader is referred to [85], and for the case of (weakly) testing
permutation properties, to [65]). Thus, it is not surprising that analogue results can be
established for word properties. On the other hand, it is noteworthy that such consequences
can be obtained very concisely and elegantly.

We next state our main result concerning testing word properties. Formally, for u, w €
{0,1}" let dy(w,u) = L¥icpy |wi —wi|. A word property is simply a collection of words.

n
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A word property P is said to be testable if there is another word property P’ (called test
property for P) satisfying the following conditions:

(Completeness) For every w € P of length n and every ¢ € [n], Plsub({,w) € P'] > 2.

(Soundness) For every ¢ > 0 there is an {(¢) > 1 such that if w € {0,1}" with
di(w, P) = minyepno,3» di(w, u) > ¢, then Plsub(¢,w) € P'] < & for all {(e) < ¢ < n.

Variants of the notion of testability can be considered. However, the one stated is sort
of the most restrictive. On the other hand, the notion can be strengthened by replacing the
2/3 in the completeness part by 1 — ¢ and 1/3 in the soundness part by . The notion can
be weakened letting the test property P’ depend on . These variants do not change the
concept of testability.

A word property P is called hereditary if for each w € P, every subsequence u of w also
belongs to P.

Theorem 8.1.4. FEvery hereditary word property is testable.

Since the notion of testability given above is very restrictive (it consists in sampling
uniformly a constant number of characters from the word being tested) it straightforwardly
yields efficient (polynomial time) testing procedures.

Examples of hereditary properties are: (1) the collection Px of words that do not contain
as subsequence any word in F where F is a family of words (F might even be infinite), and
(2) for given P4, ..., Py hereditary word properties, the collection P, of words that can be
k-coloured (i.e., each of its letters assigned a colour in [k]) so that for all ¢ € [k] the induced
¢ coloured sub-word is in P,.

8.1.4 Finite forcibility

Finite forcibility was introduced by Lovasz and Sés [83] while studying a generalization of
quasi-random graphs. For an in depth investigation of finitely forcible graphons we refer
to the work of Lovdsz and Szegedy [86]. We say that f € W is finitely forcible if there
is a finite list of words wy,...u,, such that any function h : [0,1] — [0, 1] which satisfies
t(uw;, h) = t(u;, f) for all i € [m] must agree with f almost everywhere. A direct consequence
of Theorem [8.1.1] concerning quasi-random words is that the constant functions are finitely
forcible (by words of length three). We can generalize this result as follows:

Theorem 8.1.5. Piecewise polynomial functions are finitely forcible. Specifically, if there
is an interval partition {1y, ..., Iy} of [0,1], polynomials Pi(x), ..., P.(x) of degrees dy, ..., dx,
respectively, and f € W is such that f(x) = Py(x) for all i € [k] and x € I;, then there

k
is a list of words Wy, . .., Wpm, with m < 21T2R+220,di 4 9\2 (bmaxidi) cch that any function
h:[0,1] — [0,1] which satisfies t(u;, h) = t(u;, ) for all i € [m] must agree with f almost
everywhere.
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8.1.5 Permutons from words limits

Given n € N, we denote by &,, the set of permutations of order n and & = U,»; &,, the
set of all finite permutations. Also, for o € &,, and 7 € &, we let A(7,0) be the number of
copies of 7 in o, that is, the number of k-tuples 1 < z; < --- < 2 < n such that for every
i,j € [K]

o(z;) <o(z;) it 7() <7(5).

The density of copies of 7 in o, denoted by ¢(7,0), is the probability that o restricted to
a randomly chosen k-tuple of [n] yields a copy of 7. A sequence (0,), s Of permutations,
with 0, € &, for each n € N| is said to be convergent if lim, ., t(7,0,) exists for every
permutation 7 € &. Hoppen et al. [64] proved that every convergent sequence of permutations
converges to a suitable analytic object called permuton, which are probability measures on the
Borel og-algebra on [0, 1] x [0, 1] with uniform marginals, the collection of which they denote
by Z, and also extend the map ¢(7,-) to the whole of Z. Then, they define a metric dn on
Z so that for all 7 € & the maps ¢(, ) are continuous with respect to dg. They also show
that (Z,dn) is compact and, as a consequence, establish that convergence as defined above
and convergence in dp are equivalent. In particular, they prove that for every convergent
sequence of permutations (0,),— there is a permuton p € Z such that ¢(7,0,) — t(7, 1)
for all 7 € &. We give new proofs of these two results by using a more direct approach based
on Theorem [8.1.3

8.2 Quasi-randomness

In this section we give the proof of the second part of Theorem [8.1.1] and Theorem [8.1.2
We start by establishing an inverse form of the Cauchy—Schwarz inequality which is used
to prove the second part of Theorem [8.1.1], that controlling the density of subsequences of
length three is enough to guarantee uniformity. An alternative demonstration of the second
part of Theorem can be extracted from the proof of Theorem m (see Remark .

Then, after recalling some basic facts and terminology about Fourier analysis and Lips-
chitz functions, we proceed to prove the equivalence of the quasi-random properties listed in
Theorem [8.1.2]

Lemma 8.2.1. Ifg=(g1,...,9n),h = (h1,...,h,) € R" and € € (0,1) are such that
(g.h)* = llgl*[IRl* - en’||R]?,

then all but at most £'/*n indices i € [n] satisfy g; = éiigi h; £ e'/3n.

Proof. Let z be the projection of g onto the plane orthogonal to h, i.e., z = g— éiﬁ;h As z
(g;h

and h are orthogonal, applying Pythagoras to g = ﬁh + z yields

h)2 h)2
lgll? = &Rz IRl + l|2]* = 5 + |12
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The assumption then yields
2
en® > 2P =Y (9 — &53hi) (8.3)
i€[n]

Thus, the conclusion of the lemma must hold, otherwise || z|> > £/*n(e'/3n)? = en?, contra-

dicting ({8.3)). H

Proof (of the second part of Theorem . Given € > 0 let n > ng be sufficiently large.
By a word containing * we mean the family of words obtained by replacing * by 0 or 1,
e.g., u = (*uguz) denotes the family {(Ouqus), (lusus)}. For a word w containing *, let
(:‘L’) = > (Z’/) where the sum ranges over the family mentioned above. Given a word
w = (wy ... wy,) € {0,1}" which satisfies the assumption of the theorem we have

w n w w n
< & 3 > — 8en®. :
(11*) <d (3) +2en”  and <*1*> + <1**> > 2d<3> 8en (8.4)

We may also assume that d > ¢, otherwise the first condition yields ||w||; < 3¢'/?n due to

(H“;)Hl) = (11{’1) and the result follows trivially.

Let g = (g1,...,9n) Where gy = > ;c;qw; and let h = (1,2,...,n). Since g, = [Jw]|y, it is

easily seen that w is 18¢'/3-uniform if
h
ge = é’gl: hié +9¢3n for every £ € [n]. (8.5)

To show (8.5)) note first that
={(i,5) € [(*: w; =w; =1} <|{(i,)) el =1 wi=w; =1,i #j} +3(—1)+ 1.

Hence, up to an additive error of 3(¢ — 1) + 1 the quantity g7 is twice the number of subse-
quences of w equal to (11wy). Summing over all £ € [n] we obtain from (8.4)

lalf = X gt <2( [ ) + 32 < 2 () sen 86)

Le(n]

Consider next, for an ¢ € [n], the family S, of subsequences of w equal to (w;w;wy) or
(wjwswe), where i, j € [(—1], i # j, and w; = 1, w, € {0,1}. Then, we have |S;| < g-¢, since
there are at most g, choices for ¢ and each such choice of i gives rise to (i — 1)+ ({ —i—1) < ¢
choices for j. On the other hand, 3¢, |S¢| counts all subsequences of w of the form (x1x)
and (1xx). Hence, together with h = (1,2,...,n) yields

2 2
(eg]gz ) > (ZGZ[;L] \&!)2 = ((:ﬁ) + (f;)) > Ad? (g) - 32€<§>n3.
As |h|? = Xigp i = gn(n +1)(2n+1) 2( ) + 3p? — 2 from (8.6) we obtain
= gttt e (5) o= (3o~ (3 () 5ent ) I
2d2< ) (|th2 2 2) — 16en?||B| — <2d2 (";) —|—5€n3> 3k
P>

—22en?||h||*.
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By Lemma [8.2.1| all but at most (22¢)'/3n indices i € [n] satisfy ¢; = é,’;’;iz + (22¢)n. In

particular, for every ¢ € [n] there is such an index i with i = £ 4 (22¢)'/3n. Thus

h). (g, h)
— gt (226)n = P ogneys, P g0 s
ge = g; £ (22¢)°n (h,h)z (22¢)/°n <h,h>£ 3(22¢)7°n

which shows (8.5) and the second part of Theorem follows. O

Remark 8.2.2. The previous proof shows something stronger than what is claimed. Specifi-
cally, that instead of requiring the right count of all subsequences of length three it is sufficient
to have , i.e., the correct upper bound for the count of (11x) and the correct lower bound
for the sum of the count of (x1x) and (1xx).

We now turn our attention to Theorem [R.1.2] and recall here some facts from Fourier
analysis on the circle. Letting dx correspond to the Lebesgue measure on the unit circle, for

o~

k € Z, the Fourier transform f(k) of a function f : R/Z — C is defined by

~

fw = | @ da

Given N € N, the Fejér approximation of order N of f is defined by

onf@) = X (1= 3 ) e

Inf<N

Lemma 8.2.3 (Proposition 1.2.12 from [92]). There is a constant C > 0 such that for any

Lipschitz function f : R/Z — C and for every M > 2 one has
log M

Lemma 8.2.4 (Theorem 1.5.3 from [92]). There is a constant ¢ > 0 such that for any
Lipschitz function f : R/Z — C and for every m # 0 one has

|J?(m)| < CHfHLiP‘

|m|

We are now in the position to prove Theorem [8.1.2]

Proof (of Theorem . The equivalence between the Uniformity, Counting, and Mini-
mizer properties follow from Theorem The equivalence between the Cayley graph and
Counting properties follows by noting that there is a one-to-n correspondence between sub-
sequences in w, equal to w and increasing u-paths in I'(w,,). To see this, simply note that
(v1, ..., Up11) is an increasing u-path in I'(w,,) if and only if (v +a, ..., vpy1 +a) is an increasing
u-path in I'(w,,), for all a € [n| (where arithmetic over vertices is modulo n). The equiva-
lence between the properties Uniformity and Exponential sums was shown by Cooper in [38],
Theorem 2.2] who also proved that if Exponential sums is true for a particular ag, then it is
true for all & > 0. We next show that the properties Exponential sums and Equidistribution
are equivalent. It is clear that the latter implies the former for a = 1, and thus for all a > 0,
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by Cooper’s work and since f(z) = exp (2mikx) integrates to 0 and has Lipschitz norm at
most 2|k|. To show the converse let f : R/Z — C be given. We will show that for any £ > 0
and for large n, the following holds for d = ||wl|;/n:

LS fm - [

" jiwalj)=1

Let C and ¢ be the absolute constants from Lemma [8.2.3] and Lemma [8.2.4] respectively.
Choose M large enough so that M/log M > 2C' /e and n large enough so that for all |m| < M

we have ’Z; wn[j]=1 EXD ( mg)‘ < ga7n|m|. Applying this bound we obtain

> onfGm= X X (15 fom) exp (i)

Jrwn [j]=1 Jwy[j]=1 |m|<M
m| ) 7 2
=3 (1 - (m) > exp( ’”mg)
jml<M M+1 jrwalil=1
- € lm| \ =
—f0) dnt-"n Y (1— )f(m)‘|m|.
2cM O<|mi<t M+1

As f(0) = Jryz [, we obtain from Lemma 8.2.4) that

LS gm-af d<gy S |0 ) e m <

n Jrwy[f]=1 R/Z 0<|m|<M

By Lemma [8.2.3] triangle inequality and the choice of M we conclude

1 , log M
S Y gGm—af <l S oufm—d s+l
n._ = R/Z
Jrwnlj]=1 " jow, [J] 1
< Sl + 51l = €l i
This finishes the proof. O

8.3 Limits of word sequences

In this section we give the proof of Theorem [8.1.3] concerning word limits. Although the
overall approach is in line with what has been done for graphons [84] and permutons [64],
there are important technical differences which we will stress below. Central concepts and
auxiliary results involved in the proof will be introduced along the way. The section is
divided into four subsections. We start by a simple reformulation of the notion of convergent
word sequences in terms of convergence of a function sequence in V. This notion is called
t-convergence and we show in Lemma that the limit of a t-convergent function sequence
is unique, if it exists. In the second subsection, we endow W with the interval-distance
dn and show in Lemma that convergence with respect to dp implies ¢-convergence.
Proposition [8.3.6] from the same subsection gives a direct proof of the converse. In the third
subsection, we specify a third and last notion of convergence (convergence in distribution)
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based on sampling of f-random letters for a given f € W. We prove in Lemma [8.3.8
that this notion of convergence is equivalent to the two previously defined, and deduce the
compactness of the metric space (W, dn) in Theorem . In the fourth and last part, we
show in Lemma [8.3.10] and Corollary that every element of f € W is, a.s., the limit of

a convergent random word sequence.

8.3.1 Uniqueness and t-convergence

Given the nature of the limit it is convenient to first reformulate the notion of convergence
in analytic terms. For a given word w,, = (w; ... w,) define the function associated to w,
to be the n-step 0-1-function f,,, € W given by fu, () = we1. It is then easy to see that

t(u, fuw,), as defined in (8.2)), satisfies]
t(u, fuw,) = t(u,w,) + O(n‘l) for every word w. (8.7)

Thus the following, applied to f, = fu,, yields a reformulation of convergence of (W), -
Given a sequence (fy,)n—0o in W and f € W, we say that

fo o f if lim t(u, f,) = t(u, f) for all finite words wu.

n—oo

The next lemma implies that the limit, if it exists, is guaranteed to be unique. The idea
of the proof goes back to a remark of Kral’ and Pikhurko concerning permutons (see [75]

Remark 6]).

Lemma 8.3.1. Let f,g : [0,1] — [0,1]. If t(u, f) = t(u,g) for all words w, then f = g
almost everywhere.

Proof. Given k € N, note that

/01 f(z)zk de = /01 f(IE)(/OI dy)k dr = /yhm’yk@ f(x)dy ... dy,de
1

:k:!/ dyy .. dypds = —— Huy . gl
y1<m<yk<xf(x) Y1 Yy da k+1ue%:1}k (uy ... ul, f)
1 1
=—— > tlur...ul,g) = / g(x)z* dz.
k+1u€{0,l}k 0

Thus, for each polynomial P(z) € R[z] we get [ f(z)P(z)dx = [, g(x)P(x)dz, and by
the Stone-Weierstrass theorem [j f(z)h(z)dz = [y g(z)h(z) dz holds for every continuous
function h : [0,1] — R. This implies that f = g almost everywhere. ]

2To see (8.7)), split [0,1] into n intervals of equal lengths. Let A denote the event that ¢ independent
uniform random points of [0, 1] land in different intervals and let B be the event that, after reordering these

points, say z1 < -+ < xg, we have (fuw, (21),..., fw,(z¢)) = u. Then, t(u, fw,) = P[B|A]P[A] + P[B|A|P[A]
and we further have P[B|A] = t(u, w,) and P[A] = Hf;ll(l —i/n)=1-0(n"1).
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8.3.2 Interval-metric and the metric space (W, dp)

In view of the equivalence of uniformity and subsequence counts shown in Theorem [8.1.1] it
is natural to consider the following notions of norm, distance and convergence, which are all
analogues of the notions of cut-norm, cut-distance and convergence in graph limit theory.
Given h : [0,1] — [—1, 1] define the interval-norm

[Allo = sup
1C(0,1]

/Ih(a:) dz

Y

where the supremum is taken over all intervals I C [0,1]. The interval-metric dg is then
defined by

dD(fag):“f_gHD for every fvg: [071]%[071]7
and we write

an>f 1f nh_{{.lodlj(fnaf):o

The following result states that the interval-norm controls subsequence counts, in particu-
lar, f, 5 f implies f, L f. As a by-product of the lemma, we obtain the first part of
Theorem concerning counting subsequences in uniform words.

Lemma 8.3.2. For f,g € W and u € {0, 1} we have

t(u, f) = t(u, g)| < - da(f, 9).

In particular, if w € {0,1}" is e-uniform and n = n(e,{) is sufficiently large, then for some
d € [0,1] we have for each u € {0,1}*

(%) = dlh (1 = dyt =Tl () + Ben.

Proof. We first show that the second part follows from the first. Given an e-uniform word
w € {0,1}" let f:[0,1] — [0, 1] be the function associated to w and let d = [ f(¢)dt € [0, 1].
Define g : [0,1] — [0, 1] constant equal to d and recall that ¢! = g and ¢ = 1 — g. Then, for
each u € {0, 1}*

tug) =0 [ TT 9" (x)) e ... dag = d (1 — @y,

0Lz < <xp<1 ZE[@

Since dn(f, g) < 2¢ due to uniformity of w, for large n, the second part of the lemma follows
from the first part and as

(¥) = t(u, £)(}) £en’ = t(u,g)(}) £ 5en’ = dll (1 — d) I (7) + 5en’.

u

Now we turn to the proof of the first part. Let
j—1
Xj(, .. ) = (fuj(xj) — g% (%)) IT f () TI 9" (o).
i=1
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Making use of a telescoping sum we write

[ ()~ o) an . ar

i€l i€l

t(u, f) — t(u, g)| = 0!

:g‘/ ZXj(xl,...,l'g)dl'l...dl'g
r1<---<xy jele]
<€!Z / Xi(z1,...,zp)day ... day).
je[f] <<y

Since < do(f,g) and 0 < f,g < 1, for j € [¢] we have

L7 () = g (ay) da;

j—1

J— ¢

<do(fog) [T /@) T1 9% ().

Tjt1
/ Xj([[‘h...,l'g)dl'j

7j—1

i=1 i=j+1
Hence,
/ Xi(z1,...,z¢)dey ... day
1 <--<xy
j—1 ¢
< do(f,9) /‘,,31<..,<mj71 I 7 (@) T] 9% (xs)day ... dojy dajp ... dag
Lrjp1<<zp 1=1 1=7+1
1
< 75— dol/,
—1) o(f,9)

and the first part of the lemma follows. n

Remark 8.3.3. We note that the same argument extends without change to larger size al-
phabets in the following sense. Given an alphabet ¥ = {aq,...,ax}, let f = (f*,..., f%)
and g = (g™, ...,9%) be two tuples of functions f%, g% :[0,1] — [0,1], fori € [k], such that

fz)+ -+ f%*(x) =1 and g (z) + - - - + g* (z) = 1 almost everywhere.

For a word w € XX, define the density of w in f in similar manner as in (8.2)), namely

t(u, f) :a/ T /™ (z:) day ... dzy.

0z < <xp<l le[k]
Then, the proof from above yields

‘t(u, f)— t(u,g)’ < 2 -maxdp(f*, g%).

i€k]

Note that Lemma implies that if f, — f, then f, = f. Our goal now is to show
that the converse also holds. Let (f,)n—0o be a sequence such that f, N f. Following
the proof of Lemma [8.3.1 we will use that for any polynomial P(z) € R[z] we can write
Jo (fu(z) — f(z))P(x) as a linear combination of subsequence densities. By approximating
14 (x) by a polynomial P, () € R[z], with error term uniform in 0 < a < b < 1, we may
show that [y (fu(2) — f(2))1as(x) can be approximated by [y (fu(z) — f(2))Pay(w), thence
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by a linear combination of subsequence densities, implying our claim. In order to prove this
approximation result, we introduce next the class of Bernstein polynomials,

bei(x) = (:)SBZ(l — ) forall t € N, ¢ € [t] and = € [0, 1].

Since by ;(z) is the probability mass function (pmf) of a binomial random variable we have
that:

t t

Fact 8.3.4. > b ;(z) =1, > ibyi(z) = ta and > (te —0)?byi(x) = ta(l — ).

i=0 i=0 =0

Even though here we only need to approximate functions on [0, 1], we will consider the
general case of functions on [0, 1]* since it will later be useful in our study of higher dimen-
sional combinatorial structures. For k,t € N\ {0}, let 4 = (i1, ...4) € [t]*. Given a function
J :]0,1]* — R, define its Bernstein polynomial evaluated at & = (z1,...,7;) € [0,1]* by

B, j(x) = Z % H bei; ().

0<21,.00,0 < jEk]
We can now formally state the approximation of indicator functions we use.
Lemma 8.3.5. For a = (ay,...,a;) € [0,1]% let J = 194,15 x[0.0s)- If 7 €N and z € [0, 1]"
satisfy |x; — a;| > r=* for alli € [k], then |B, j(x) — J(z)| < kr~1/2,

Proof. Let B = B, ;. By Fact we have

B@) ~ J@)| = |B@) - J@) 5] b e)

0<i1,enyin <7 jE[k]

< T (] Tl

0<i1,.nyifg <7 JE[K]

Let L = {i: [|@ — || > r~/*} C ({0} U [r])*. As |z; — aj| > r~/* for all j € [k], for each
i ¢ L we have that J(%) = J(z) and thus

STE) = J@)| TT brs, (25) =0

igl jElk]
For ¢ € [k], let Ly = {i € L: |rz, —is| > r**}, and note that L = L; U---U L;. Due to
‘J(%) - J(:c)‘ < 1 we have

S22 = @)| TT briy (1) < 3530 TT by ()- (8.8)
i€l JEk] Lelk] i€l jE[K]
By Fact [8.3.4} since b,;,(x) < 1, for every x € [0, 1],
(Tl’k - ’Lk)2 1 1
>0 bry () < > oz briy (T1) = miﬁk(l —xp) < VER

i€ Ly, je[k] i€Ly,

The same bound holds for every Ly, ¢ € [k — 1]. Therefore, the RHS of (8.8)) is at most

kr—1/2. as required. O
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Given two functions f, g € W, we have the inequality

bf(m) dz — bg(m) dz|.
Jy e |

0

bf(x) dz — bg(:p) dz
Jy e |

sup
b€(0,1]

<do(f,g9) <2 sup
be[0,1]

(8.9)

The first inequality in is direct from the definition of dn, and the second inequality
follows from the identity [7(f(z) — g(x)) = J;(f(z) — g(x)) + [§(f(x) — g(x)).

The following proposition states that t-convergence implies convergence with respect to
dn, and thus, together with Lemma [8.3.2 establishes that both notions of convergence are
equivalent.

Proposition 8.3.6. If (f,)noc s a sequence in W which is t-convergent, then it is a Cauchy
sequence with respect to do. Moreover, if f, N f for some f € W, then f, 5 f

Proof. Given e > 0, let r = [(20/¢)*]. For § = /2% %2 let ng be sufficiently large so that for
all n,m > ny we have

t(u, fu) = t(u, f)| <6 forallwe (J{0,1}", (8.10)

s€|r]

Recall from the proof of Lemma [8.3.1], that for each k& € N we have

1 1
Fdp = —— t(uy ... ugl, f).
/0 f(x)x r k+1ue%,:1}k (Ul U f)

Thus, for k < r and h = f,, — f,,, we have

1
k+1

/1 h(z)z" da

0

S (tus gl f) — tu, . ,ukl,fm))‘ <22

ue{0,1}*

For a € [0,1], let J, = 1} and j, be the largest index such that ]7" < a. Then,

Ja

/01 h(z)B,., () dx’ < Z (:)

=0

< 2%76.

/01 h(z)z'(1 —2)" " dx

Thus, since |h| < 1 and |1y q(x) — By, | < 2, by Lemma [8.3.5, we have

/0 (@) By, () da| + /0 1 h(z)(1pa () — By, () do

1
[ h@)10a (@) do <
0

< 2% + (47‘_1/4 + 7“_1/2).

The desired conclusion follows from and by our choice of ¢ and ¢ observing that

1
da(fn, fm) <2 sup / h(x) 1.0 (7) dz| < 27416 + 1004 < e,
0

a€[0,1]

The second part follows by replacing f,,, by f in (8.10]), taking h = f,, — f, and repeating the

above argument. O]
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The compactness of the metric space (W), dn) can be easily established via the Banach—
Alaoglu theorem in L*([0, 1]). Instead, we follow a different strategy laid out in the following
section. This strategy has the advantage that it emphasizes the probabilistic point of view
of convergence. It is based on a new model of random words that naturally arises from the
theory and that may be of independent interest.

We note that one can also establish the compactness of (W), dn) by using the regularity
lemma for words [I2]. This approach has the advantage of being more constructive and for
the sake of completeness we include it in the Section [8.6]

8.3.3 Random letters from limits and compactness of (W, dn)

Consider the standard metric on [0, 1] and the discrete metric on {0,1}. Let Q@ = [0, 1] x {0, 1}
be equipped with the L..-distance, which thus assigns to a pair of points in €2 the standard
distance of their first coordinates if the second coordinates agree and one otherwise. Let B
denote the Borel o-algebra of Q, let f : [0,1] — [0,1] be a Borel measurable function and
recall that f! = f and f® = 1— f. Also, denote by U([0, 1]) and B(p) the uniform distribution
over [0, 1] and the Bernoulli distribution with expected value p € [0, 1], respectively. We say
that

(X,Y) € Qis an f-random letter if X ~ U([0,1]) and Y ~ B(f(X)).

Observe that an f-random letter (X,Y) is a pair of mixed’| random variables where Y is
distributed according to the conditional pmf

frix(elz) =PY =¢|X =a] = f*(z) e€{0,1} and x € [0,1].

Then, (X,Y) has the mixed joint cumulative probability distribution
Flz,e) =P[X <a,Y =¢] = /z F2(8) dt, (8.11)
0

and thus the mixed joint pmf fxy(z,¢) = f¢(z). The marginal probability distribution of ¥’
is

PY =¢]=F(l,¢) = /01 fe(t) de, e €{0,1},

hence Y ~ B(p) with p = [ f(t)dt. Furthermore, conditioned on Y the variable X is
distributed according to the conditional pmf fxy which satisfies

fxpy (zle) PY =¢] = fxy(z,e) = f*(2). (8.12)

One may therefore equivalently sample (X, Y) by first choosing Y ~ B(p) with p = [, f(¢) dt,
and then choose X (conditional on Y') according to the conditional pmf fxy satisfying (8.12)).

By means of this sampling procedure a sequence ( f,,),—oo gives rise to a sequence ((Xn, Yn)) o

where each (X,,,Y,,) is the f,-random letter, and the corresponding sequence of probability
distributions (IP,), o is as defined in (8.11]). As usual for general metric spaces (see, e.g., [21)

3Mixed in the sense that X is continuous while Y is discrete.
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Chapter 5]), we say that ((Xn, Yn)) . converges to (X, Y) in distribution if (P,), . weakly
converges to P, i.e., if for all bounded continuous functions h : 2 — R we have

lim / hdP, = / hdP. (8.13)
n—oo JO (e}
From this definition we immediately have the following.

Fact 8.3.7. If ((Xn,Yn)> ., converges to (X,Y) in distribution, then (X,)n—oo (T€SP-
(Y3)nooo) converges to X (resp. Y') in distribution.

We now write
fo S f if ((Xn, Yn)) converges to (X,Y') in distribution.
n—oo
The next lemma shows the equivalences of convergence in dg and convergence in distribution.

Lemma 8.3.8. Let f1, fo,... and [ be functions in W. Then, f, 5 fif and only if f, N f.

Proof. Let (X,,,Y,) be an f,-random letter (resp. (X,Y’) be an f-random letter) with the
associated probability measure P, and cumulative distribution F;, (resp. P and F'). Let

|En — Flloo = sup |Fu(z,e) — F(x,¢)|
(z,e)EQ

and note that by definition we have

HFn - FHoo = sup |Fn<x7 O) - F<$,0)| = sup ‘Fn<x7 1) - F(:C, 1)|
e

€N

Now observe that
| Fp = Flloo < do(fn, f) < 2||F, — Fllo, (8.14)

where the first inequality is obvious and the second one follows because for all ¢ € {0,1} and
0 < a<b< 1it holds that fi, ,(f, — f)(t) dt = (F,— F)(b,e) — (F, — F)(a,). Thus, f, = f
if and only if lim,, .« || F;, — F'||cc = 0 which we claim holds if and only if

lim F,(z,¢) = F(z,¢) for all e € {0,1} and = € [0, 1]. (8.15)

Indeed, it is clear that lim,,_, ||F, — F'||oc = 0 implies (8.15)). For the converse note that for
each € € {0, 1} we have |f¢| < 1, thus for every x,y € [0, 1]

Flae) = Pl =| [ rrode- [ F@ar) <oyl (8.16)

Given an integer k£ > 0, by , there is an ny such that max;e ‘Fn (i, 5) —F (Z 5)‘ < %

L
for each n > ng. For an = € [0,1] let i, € [k] be such that |z — %] < ;. Then, by triangle
inequality and (8.16)), for any x € [0, 1]
|Fo(3,8) = F (2,6)| < |Fy (B.2) — F (%,¢)| + 2lo — 2 < 2
which thus establishes that (8.15)) implies lim,, o ||F, — Fljoc = 0.
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To prove the lemma we now show that holds if and only if (X3,Y)), (X3, Y2),. ..
converges to (X,Y) in distribution, i.e., P;, [Py, ... weakly converges to P as defined in .
For an h: Q2 — R and an € € {0, 1} define the projection h. : [0,1] — R via h.(z) = h(z,¢).
Thus, F.(x) = F(z,¢), F,.(x) = F,(x,¢) and we also define P, via P.[A] = P[A x {e}] for
any A € B([0,1]) and in the same manner define PP, ..

For a metric space (M, d), we denote by C(M) the set of continuous functions h : M — R.
As ) is equipped with L-distance dg we have do((z, «), (y,5)) =0 < 1l if an only if & = 8
and |z —y| = 6. Hence, h € C(Q) if and only if ho, h; € C([0,1]). Moreover, by verifying
the following for step functions h and then extending to all h € C(Q) by a standard limiting
argument we have

hdP, = / h.dP, . d /hdIP’: / h. dP..
/Q 25: [0,1] ' o Q ZE: (0,1]

In particular,

n—o0

lim / hdP, = / hdP for all h e C(Q)
Q Q
holds if and only if

n—oo

lim / hdP,,. = / hdP. forall e € {0,1}, and all h € C([0,1]).
Q Q

In other words, P, Py, ... converges weakly to IP if and only if P, ., P, ., ... converges weakly
to P, for alle € {0,1}. As the underlying space is [0, 1] it is well known that weak convergence
of Py, Py, ... to P, is equivalent to the fact that lim, . F),c(2) = F.(x) holds for all
where F.(z) is continuous. As seen from (8.16)), . is continuous on the entirety of [0, 1]. This
thus shows that weak convergence of Py, Py, ... to P is equivalent to and the lemma
follows. [

The compactness of (W, dn) now follows from Lemma and classical results from
measure theory, namely Prokhorov’s theorem concerning the existence of weak convergent
subsequences for a given sequence of measures over compact measurable spaces and Radon—
Nikodym theorem concerning the existence of derivatives of measures which are absolutely
continuous with respect to the Lebesgue measure.

Theorem 8.3.9. The metric space (W, dn) is compact.

Proof. Given a sequence (fy,)n—o0 of functions f,, € W. Consider the sequence of f,-random
letters ((Xn, Yn>)n—>oo with the corresponding sequence of probabilities (P,), 0 on (€2, B)
defined by . As Q is compact we conclude from Prokhorov’s theorem (see Chapter 1,
Section 5 of [21I]) that there is a pair of random variables (X,Y’) with joint probability
measure P such that (P, ), contains a subsequence (P,,); o which weakly converges to P.
By Fact we know that X ~ UJ0, 1] while Y is Bernoulli. Denoting by A the Lebesgue
measure, the restriction of P to Y = 1 yields a measure p which satisfies u(A) = P[X €
AY = 1] < M(A) for every measurable set A. In particular, p is absolutely continuous with
respect to the Lebesgue measure A\ (i.e., u(A) = 0 whenever A\(A) = 0) and the Radon-
Nikodym theorem guarantees the existence of a function f such that

pl(0,a]) = [ () at =PIX <Y = 1]
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and thus .
PIX <,V =0 =z — pu([0,2]) = /0 (1— f(t))dt.

In other words, fxy(x,¢) = f*(z) is the pmf of (X, Y") and we thus have f,, 4 f. Lemmal8.3.8
guarantees that f,, — f as well. Lastly, it is easily seen that f(z) € [0, 1] almost everywhere
and we may therefore assume that f € W. ]

The last theorem thus establishes the existence of the limit object claimed in the first
part of Theorem [8.1.3]

8.3.4 Random words from limits

To establish the second part of Theorem [8.1.3|we consider, for any f € W, a suitable sequence
of random words arising from f and show that it converges to f almost surely. For f € W
and © = (71,...,7¢) € [0,1]° such that z; < x5 < ... < ¢ let w = sub(x, f) be the word
obtained by choosing w; = 1 with probability f(z;) and w; = 0 with probability 1 — f(z;)
(making independent decisions for different xz;’s). Consider now n independent f-random
letters (X1,Y7),...,(X,,Y,). After reordering the first coordinate, i.e., taking a permutation
o : [n] = [n] so that X,y < -+ < Xy, the f-random word sub(n, f) is given by

sub(n, f) = (Yg(l), R ,Ya(n)).

Lemma 8.3.10. Let f € W and let f, be the function associated to the f-random word
sub(n, f). For alln € N and a > = we have

P[dg(fn,f) > 10a} < dne 2,

Proof. For x € [0,1] let

Wn(:v)—/oxfn(t)dt and W(x)—/oxf(t)dt.

Recall that by we have do(fn, f) < 2||W,, — W||w. Therefore, we only need to bound
P[HWn - WHOO > 5a]'

Given i € [n] and z € [=1, 1) since |f,],]f] < 1, we have that [W,(z) — W(z)]

N

[Wa(£) = W(L)|+ 2, and thus
2 i i
Wi = Willoe < — + max [W,(3) = W(7)].
n i€[n]
For i € [n], we next bound the probability that [IW,(£) — W ()| is at least 3a. Consider the
sequence (X1,Y1),...,(X,,Y,) of f-random letters that define sub(n, f), and suppose that

Xoa) < -+ < Xy for some permutation o : [n] — [n]. Since f, is the function associated
to sub(n, f) we have

1
n

Wa(i) = PR ETIES
iz
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and thus, letting Z; = % i 1{X, < %} and S; = % ;.L:lel{Xj < %}: %ijii Y, (), we
get

i
- —Z
n

Mﬁp—&<+ . (8.17)

On the other hand, for every j € [n] we have that

EYX; <2 = [" foydt = W),

so E[S;] = W(%). Using Chernoff’s bound (see Theorem 2.8 and Remark 2.5 from [66]) we
get
2

2a}§2672‘”‘ and ]P’{Si—W()

i
n

P

i
Zi—+

—92a2
> a] < 272,

which together with (8.17) and the fact that a > 1, implies that

n’

B[, () — W) > 3a] <P|Si — W(E)| > o] +B[|Z: &

n

Putting everything together we conclude that

Plda(fu, f) > 10a] < P[|Wy = Wle > 5a] < YB[[Wa(}) = W(3)| > 3a] < dne™".

i=1

As an immediate consequence we obtain the following.

Corollary 8.3.11. Forall f € W, the sequence of f-random words (sub(n, f))n—eo converges
to f a.s.

Proof. For n € N let f,, = sub(n, f). Taking a = n~1 in Lemma [8.3.10| and using the Borel-
Cantelli lemma, it follows that f, 5 f almost surely. Then, by Lemma |8.3.2| we conclude
that f, - f almost surely, and therefore, by (8.7), (sub(n, f))n—oo converges to f almost
surely. O]

Equipped with the results from above we now establish the second main result of this
section.

Proof (of Theorem m The uniqueness of the limit, if it exists, follows from Lemma m
The second part of the theorem concerning the existence of word sequences converging to
any given f € W follows from Corollary [8.3.11

It is thus left to establish the existence of a limit. Consider a convergent sequence
(Wy) oo Of words and let (f,), 00 be the sequence of associated functions f, = f,,, € W.
Because of the sequence (f,,)n—o0 is t-convergent and thus, by Proposition m, (fr)n—soo
is a Cauchy sequence with respect to dg. The compactness of (W, dn), as guaranteed by The-
orem [8.3.9] implies that there exists f € W such that do(f,, f) — 0. Finally, because of

Lemma we have that f,, - f and therefore (W) n—oo cONverges to f. ]
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Concluding this section and in preparation for the next one, we show that a tail bound
on dno( fu, fw) similar to the one of Lemma [8.3.10] holds if instead of sampling an f,,-random
word for some word w, we sample a subsequence u = sub({, w).

Lemma 8.3.12. Let w € {0,1}", ¢ € [n] and
u = sub({, w) we have that

> a > 5. Then, for the random word

1
8 ¢

Pldo(fu, fu) = 8a) < 20e™ 5.

Proof. For z € [0,1] let Fy(z) = [y fu(t)dt and Fi,(z) = [§ fw(t) dt. By an argument similar
to the initial part of the proof of Lemma [8.3.10, we get that

Plds(fur fu) > 8] < P max | Fu(}) = Ful})] > 20| < Z{%P[\F; Fu(2)] > 2a]. (818)
NS4

Now, let Iy, ..., I, be indicator random variables summing up to ¢, and observe that

jelm):L<s

Using that a > %, by (8.18]), we get that

Pldo(fu, fu) > 8a] < Y PISi — E(S)| > al. (8.19)

iell]

Let X; = €S;. Note that X; = 3 ;c; () I; where Ji(w) = {j € [n] : j < in,w[j] = 1}.
We claim that X; is a hypergeometric distribution with parameters n, ¢ and |J;(w)| (the
distribution of the number of black balls obtained by sampling without replacement ¢ balls
from a set of n balls of which |J;(w)| are black). It is well known that Chernoff type tail
bounds hold for these distributions (see for example [66, Theorem 2.10]). Specifically, by
(2.5) and (2.6) from [66], for A = ¢|.J;(w)|/n, and since A < ¢, we have that

2
P[S; < E[S)] — a] = P[X; <E[X;] — la] < exp ( - (éa)\) > <e 3,

and, since a < % < %,

P[S; > E[Si]+a] = P[X; > E[Xi]+(a] < exp< (A(@a/g)) < oxp <_ 2(1&/3) ) ot

The last two tail bounds together with (8.19)) yield the desired conclusion. O]
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8.4 Testing hereditary word properties

We now turn our focus to algorithmic considerations. Specifically, to the study of testable
word properties and how it relates to word limits (recall that a word property P is simply
a collection of words). The presentation below is heavily influenced by the derivation of
analogous results for graphons by Lovasz and Szegedy [85] (for related results concerning
testability of permutation properties and limit objects see [65, 69]). First, we define the
notion of closure of a word property and then give two alternative useful characterizations.
Next, we shall see that there is a close connection between testability of word properties and
attributes of their closures. Finally, we derive this section’s main result, that is Theorem [8.1.4]

First, we define the closure of a word property P, denoted P, as
f:{feW: w, € P for all n € N, andwn—t>f}_

Recall that property P is hereditary if sub(/, w) € P for every w € P of length n and every
I C [n].

Proposition 8.4.1. If P is a hereditary word property, then
P={feW: Psub(l,f)gP]=0foralll =1} ={f eW: t(u, f) =0 for allu & P}.

Moreover, if there is a word that does not belong to P, then every f € P is 0-1 valued except
maybe on a set of null measure.

Proof. The second equality holds since for each integer ¢ > 1 we have

Plsub(,f) €P)= S Plub(l,f)=ul= S t(u,f) (8.20)

ue{0,1}\P ue{0,1}\P

To show the first equality recall from Corollary 8.3.11| that (Sub(é, f )) converges to

l—

f a.s. Hence, if moreover P[sub(¢, f) € P] =1 holds for every ¢, then there is a sequence of
words from P which converges to f, showing that f € P.

To show the converse, let (w,), s be a sequence of words in P that converges to f € P,
ie., lim, o t(u, w,) = t(u, f) for every word w. In particular, if u ¢ P then t(u,w,) =0
by heredity of P and thus ¢(u, f) = 0. By (8.20) we then obtain P[sub(¢, f) & P] = 0.

Finally, suppose that f € P and that there is a w € {0,1}* \ P for some £. Let X =
(X1, ..., X¢) be uniformly chosen in [0, 1)¢, then the characterization of P yields

0 = Plsub((, f) ¢ P] > Plsub(X, f) = u]
> /wl ----- zeef~1(10,1]) H} f (@) dy ... dwg

21 <...<Tp i€ll

Thus, f~'(]0, 1[) has null Lebesgue measure. O
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Next, we establish two technical results that will allow us to relate testability of hereditary
word properties and characteristics of their closure. In what follows, for f,g € W we write
di(f,g9) = ||f — g1 for the usual distance in L;([0, 1]).

Proposition 8.4.2. If P is an hereditary word property and w is a word, then di(w,P) <
dl(fw’f)'

Proof. We may assume that there is a word not contained in P, since the conclusion is

trivial otherwise. Let 6 > 0, then by Proposition there is a 0-1 valued g € P such

that di(fw,9) < di(fw,P) + 0. By Proposition |8.4.1| we know that P[sub(n,g) € P] = 1,
hence, if w’ = sub(X, g) where X = (X, ..., X,,) is such that X; is uniformly chosen in the
interval [*=1, L] then Plw’ € P] =1 as well. Since the probability that index i contributes

i
‘n

to dy(w,w’) is g(X;) if w; =0 and 1 — g(X;) if w; = 1 we have

Eldi(w, w')] = || fuw = glh = di(fw, 9) < di(fu, P) + 0.

In particular, there exists w € P for which dy (fw, P)+0 = di(w,w) > di(w, P) holds. Since
0 is arbitrary, the desired conclusion follows. n

Lemma 8.4.3. If P is an hereditary word property and (fn)n—c @ a sequence of functions

in W such that da(fn, P) — 0, then dy(f,, P) — 0.

Proof. It every word is in P, then P = W and the result is obvious. Assuming otherwise,
suppose that d;(f,, P) # 0. Then, there exist € > 0, a sequence (&,),—00 that converges to
0, and a sequence (g, )n—oo in P such that for all n € N we have

dl(fnygn) > € and dl:l(fn; gn) < dl:l(fnaﬁ) + En-
Since W is compact (passing to a subsequenc we may assume that g, 5 f for some

f € P, and deduce that f, = f. Moreover, by Proposition we get that f is 0—1 valued.
Consider the Lebesgue measurable sets €, = f~1(b) for b € {0,1}. Then

(fu )= =Tl = [ Jo+ [ (0= 5.

In case €, §2; are intervals we conclude from lim,, . do(fy,, f) = 0 that

lim Qofn:/gof:o and  lim (1—fn):/Q(1—f):0.

n—oo n—oo Ql 1

By standard limiting arguments this extends to finite unions of intervals and finally to all
Lebesgue measurable sets, and the lemma follows. O

Finally, we are ready to derive the main result of this section.

4The term “passing to a subsequence” means considering a subsequence instead of the original sequence.
However, to avoid making the notation more cumbersome, the subsequence keeps the same name as the
original sequence.
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Proof (of Theorem . Let P be a hereditary word property and let £ > 0. By Lemmam
there is a § = §(¢) > 0 such that if do(f, P) < 6, then d;(f, P) < e. We first observe that, by
definition of P and Lemma , there is an n(e) > 1 such that for every word w of length
n = n(e) the following holds:

(i) If w belongs to P, then do(fw, P) < .

(ii) If w = sub(¢,w) and n > € = n(e), then Pldo(fu, fu) < 6/4] = 2.

Let P’ be the collection of words v such that dg(f,, P) < 2 (this depends on €, but this is
acceptable as discussed after introducing the notion of testability). We claim that P’ is a
test property for P (for the given ¢).

Let w be a word which we assume to be of length n > n(e)] Let u = sub(¢, w) where
¢ € [n]. In order to establish completeness, suppose that w € P. By definition of P’ and
triangle inequality

Plu € P'] = Pldo(fu, P) < §] 2 Plda(fu, fu) + do(fuw, P) < 5.

Hence, from () we get Plu € P'] > Pldo(fu, fw) < 2]. By it follows that u € P’ with
probability at least 2/3.

To prove soundness, assume ¢ > n(e) and that w € P’ (i.e., do(fu,P) < §/2) with
probability strictly larger than % Together with , this implies that there is at least one
subsequence uw of w such that do(f;, fuw) < /4 and da(f;, P) < §/2. By triangle inequality
do(fw, P) < 4, so by our choice of §, we have d;(f, P) < €. Thus, Proposition implies

that dy(w, P) < di(fw, P) < € as desired. O

8.5 Finite forcibility

In this section we investigate word limits that are prescribed by a finite number of subsequence
densities. In particular, we prove Theorem [8.1.5]showing that piecewise polynomial functions
are forcible.

The proof relies on the following lemma which shows, among other, that moments of
cumulative distributions can be characterized by a finite number of subsequence densities of
the distribution’s mass density function.

Lemma 8.5.1. If f : [0,1] — [0, 1] is a Lebesgue measurable function and F(z) = [y f(t)dt,
then for each i,7 € N we have
[e#rayar= S i)
= — u, f).
! v ! (Z +] + 1)' ue{o’l}i+j+l

UL+ AU =]

5Adding to P’ every word of length smaller than n(e) preserves its hereditary property and immediately
implies that both completeness and soundness are satisfied for w’s of length smaller than n(e).
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Proof. Observe that

/sz(q:)J dz = / (/Ox dy)i(/oz f(z)dz)jdx

J
0<y1,...,yi<w 0<21,0.,2i<T g
J

:i!j!/</ dyl...dyi)</ Hf(zk)dzl...dzj> dx
0<y1<...<y; <z 0<21<... <2<z k=1
.J0

SClitiliIS|=j " OSPLS STHIST se s

Since
1= I (fa)+0—=f@))= > (I f@)(I10 - f@),
seli+4]\S UC[i+4]:SCU  s€U\S sgU
we get
/xiF(x)fdxzixj! > (M) I f(x) [[Q = f(2) day... das; da
UC[i+j):[U|>] 0S21 <o <Tij ST 5y sgU

ilj! lull
= — Yt (u, f).
(i+j+1) ue{o%iﬂﬂ (")

U+ Ui =]

]

We next prove this section’s main result concerning the finite forcibility of piecewise
polynomial functions.

Proof (of Theorem[8.1.5). Let Pi(z),..., Py(z) be polynomials where P; is of degree d; and
let {I1,..., It} be an interval partition of [0, 1] such that f(z) = P;(z) for all x € I;. Let

Qilx) = |

Iiﬂ[O,a:]

Pdt+ Y /I_Pj(t)dt.

jelk]:I;<[0,x] © 72
Then, F(x) = [y f(t)dt is continuous and F(x) = Q;(x) for each i € [k].

Next, let d = 3=;cpy deg(Qi) = k + ;e di and define the polynomial

P(z,y) = (y - Q1(m)>2(y B Q2($))2 . (y _ Qk(m‘))2 _ Y ety

1<i+j<2d

for some coefficients ¢;;. Note that I P(:IZ‘, F (a:)) dz = 0. Moreover, Lemma [8.5.1 guarantees
that there is a list of words of length at most 2d+1, say, w1, . .., w,, with m < 22! such that
the fact f; P(x, F (:v)) dz = 0 already follows from the prescription of the values t(u;, f), i €
[m]. Thus, if h € W is such that t(u;, h) = t(u,, f) for all i € [m], then H(z) = [7 h(t)dt is
continuous and satisfies 0 = [ P (x, H (x)) dz. This implies that P (m, H (a:)) = 0 everywhere,
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and by the definition of P(z,y) we conclude that for each x € [0, 1] there is an ¢ = {(x) € [k]
such that H(x) = Q¢(z). Suppose that ¢(xz) = j for some x and ¢(z') = j' # j for some
x' > x. As H is continuous this can only happen if @; intersects ) in the interval [z, 2’]. On

the other hand, two polynomials ); and (); have at most max{deg(Q;), deg(Q;)} intersection

points, thus there are at most ¢t = (g)(l + max;ep d;) intersection points of Qq,...,Q in

total. Let these points be ordered by the first coordinate. Then, each H from above can be
associated to a subsequence of intersection points, thus there are at most 2! functions H such
that P (SB,H (:E)) = 0 everywhere, implying at most that many functions h : [0,1] — [0, 1]
such that t(u;, h) = t(u;, f) for all i € [m]. To finish the proof note that by uniqueness of
word limits, see Theorem [8.1.3] we can find for each h, which differs from f by a non-zero
measure set, a word wy, such that t(wuy, f) # t(up, h). Thus, f is uniquely determined by the

k
densities of at most m + 2t < 21H2k+222,di 4 9\2 (hmaxid) o ds. O

Remark 8.5.2. The same proof for k =1 and Py(x) = a being constant yields an alternative
proof of the second part of Theorem|8.1.1. In this case

P(x, F(x)) = (F(ZL”) — am)2 = F(2)? — 2axF(x) + a*z?

and by Lemma |8.5.1|, the fact fol P(x,F(:c)) dx = 0 is determined by densities of words of
length three.

8.6 Regularity lemma for words

In this section we give an alternative proof of Theorem based on the regularity lemma
for words introduced by Axenovich, Puzynina and Person in [12] to study the twins problem.
For completeness, we give an (analytic) proof of the regularity lemma.

A measurable partition P of [0,1] is a partition in which each atom is a measurable set
of positive measure. Moreover, we say that P is an interval partition if every atom in P is
a non-degenerate interval. In what follows, we will only consider measurable partitions with
a finite number of atoms, and given a partition P we denote by |P| its number of atoms.
Given two partitions P and Q we say that Q refines P, which we denote by ) <X P, if for
every P € P there are atoms ()q,...,Q, € Q such that P = Q1 U --- U Q). The common
refinement of P and @ is the partition

PAQ={ANB:A€P,Be Qsuch that AN B # 0}.

Moreover, given a measurable set A we define the refinement of P by A as the common
refinement of P and the partition {A, A°}.

Let f :]0,1] — R be a measurable function and let P be a partition. The conditional
expectation of f with respect to P is the function E[f|P] defined as

]-P T
) | rwat,
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for all x € [0,1]. The energy of P with respect to f is defined by

&(P) = [ (BIAPI) da

Note that £;(P) < ||f||2. The following is a well known (easily derived) result about
conditional expectations.

Lemma 8.6.1. Let P and Q be two partitions such that @ < P. Given any measurable
function f:]0,1] — R, we have

[ ELPIEL QU de = [ (RL7IPI) ar

Our next result shows that every [0, 1]-valued measurable function over the interval [0, 1]
can be approximated by a step function, which is supported on a partition of “bounded
complexity” (a somewhat related result by Feige et al., the so called Local Repetition Lemma,
was obtained in [47, Lemma 2.4]).

Theorem 8.6.2. (Weak regularity lemma) Let € > 0 and let P be an interval partition of
[0,1]. For every measurable function f : [0,1] — [0,1] there exists an interval partition
P. <P such that || f — E[f|P:]|lo < & and |P:| < |P| + 2e72.

Proof. Set P; = P and suppose that || f — E[f|Pi]||o > ¢, as otherwise the result is trivial.
For k > 1, assume we have defined a sequence of interval partitions P, < --- =< P; such that
|f —E[f|Px]llo > €. This implies that there is an interval Iy 1 ¢ Py such that

’/Ik (= ELIPD() dt| > < (8.21)

Define Py as the smallest interval partition that contains the refinement of Py by Iy ;.
Since either I, can split two distinct intervals of Py into two subintervals each, or split a
single interval of Py into three subintervals, we have that |Pyy1| < |Pk| + 2. From and
by the Cauchy-Schwartz inequality, we deduce that

< ([ (sUPele) - EUPI®) i)
< [ BIFIPe(0) ~ BP0
= [ (Bl a— [ (ElRdm) ar
where the last equality follows from Lemma [8.6.1] Thus we have

L2 |Ifl% = £1(Prsa) > E¢(Pr) +€°,

and so, after at most e 72 iterations, one finds some ¢ < e~2+1 which satisfies || f —E[f|P/]||o <
e. Since |Px| < |Pgs1| + 2 for every k € [¢], we get the claimed upper bound for |Py|. O
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Lemma 8.6.3 (Theorem 35.5 from [21]). Let f : [0,1] — R be an integrable function, and
let (Pi)ien be a sequence of partitions such that Piry = P; for all i € N. Then the sequence
(E[f|Pi])ien converges a.e. to E[f|Px], where Py is the smallest o-algebra containing each
atom in (P;)ien-

Now we are ready to provide an alternative proof of Theorem |8.3.9,

Proof (of Theorem [8.3.9). Let (f,)nen be any sequence in W. By the Banach—Alaoglu theo-
rem we may assume that (f,,)nen converges weakly to some f € W. We claim that there are
a collection of subsequences (f,x)nen, for k € N, satisfying the following properties.

(1) (fak)nen is a subsequence of (fy k—1)nen, With f,o = f, for all n € N.

(ii) For k > 2, there is an interval partition P, < Pi_; such that |Py| < my and || for —
E[fnklPilllo < % for every n € N.

(iii) For all k € N, the sequence (E[f, x|Pk])nen converges a.e. to fi = E[f|Pg].

Assume we have constructed the sequence up to step k. We apply Theorem [8.6.2] with
€ = #1 and initial partition Py, to the sequence (f, x)nen so that for every n € N we get an
interval partition P, < Py, with |P,, x| < myy1 for some positive integer my1 independent
of n, and such that ||f,r — E[fuk|Prilllo < ﬁ Forn € N, let J, = {ap,1 =0<--- <
any, = 1} be the set of points that define the intervals of P, . Note that ¢, < my4,. By the
pigeonhole principle there is an integer ¢ < my41 and a subsequence (f, k+1)nen such that
¢, = for all n € N. Moreover, since [0, 1] is compact we may even assume that a,; — a;
for each i € [¢], where a; =0 < ... < a; = 1. Let Pry1 = Py be the partition defined by
Jp = {ay < --- < ay}. Note that and hold because of the definition of (f,, x+1)nen.
Furthermore, because Py is finite and since (f, k+1)nen converges weakly to f we conclude
that also holds. On the other hand, by Lemma we deduce that the sequence
(f¥)ken converges a.e. to foo = E[f|Ps]. We claim that limy e do(frk, foo) — 0. Indeed,
Given ¢ > 0 by , and the dominated convergence theorem, for large & we have
do(foor fi) < do(foos f) + do(frk, Elfek|Prl) + do(BlfeklPrl, fr) < 5+

+ - <e.

wlm
=
Wl m

8.7 Permutons from words limits

In this section we re-derive two key results proven by Hoppen et al. [64] concerning permu-
tation sequences and show they can be obtained as consequences of our results concerning
convergent word sequences. This leads to an alternative proof of the existence of permutons.
Overall, our approach gives a simpler proof for the existence of permutons due mostly to
the simpler objects (words and measurable transformations of the unit interval) on which
our analysis is carried out, and the rather direct implication concerning permutons presented
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below. Moreover, we give a direct proof (avoiding compactness arguments) of the equivalence
between t-convergence and convergence in the respective cut-distance, which we believe is
both technically original and of independent interest.

First, recall that for n € N, we write &,, for the set of permutations of order n and &
for the set of all finite permutations. Also, for o € &,, and 7 € &, we write A(7,0) for the
number of copies of 7 in o, that is, the number of k-tuples 1 < z; < --- < xp < n such that
for every 7, € [k]

o(z;) <o(z;) it 7() <7(5).
The density of copies of 7 in o, denoted by ¢(7,0), was defined as the probability that o
restricted to a randomly chosen k-tuple of [n] yields a copy of 7, that is

(Z)ilA(T, o) ifn >k,

t(r,0) =
0 otherwise.

Following [64, Definition 1.2], a sequence (0,,)n_00 Of permutations, with o,, € &,, for each
n € N, is said to be convergent if lim, . t(7,0,) exists for every permutation 7 € &. A
permuton is a probability measure p on the Borel o-algebra on [0, 1] x [0, 1] that has uniform
marginals, that is, for every measurable set A C [0, 1] one has

(A [0,1]) = ([0, 1] x A) = A(A).

The collection of permutons is denoted by Z. It turns out that every permutation may be
identified with a permuton which preserves the sub-permutation densities. Indeed, given a
permutation o € &,, we define the permuton g, associated to ¢ in the following way. First,
for i, j € [n] define

n—1 1} otherwise.

n

e S ,
Bi,j:BiXBj where Bl:{{n n) ' Z#n

and note that B;; has Lebesgue measure A\ (B;;) = 2 for every i,j € [n]. For every
measurable set E C [0, 1] we let

n

() = S\ D (Bioiy 1 B) = [ n1{o([na]) = [ny]} dedy.

i=1

It is easy to see that u, € Z.

We next argue that the densities of sub-permutations is preserved by u,. First, let us
explain what we mean by sub-permutation densities for a permuton. Given u € Z and k €
N, we sample k points (X1,Y7),..., (X, Yi), where each (X;,Y;) is sampled independently
accordingly to p. Then, if 0,7 € G are two permutations such that

Xey <. < Xpy and Yoy << Yo,

we define the random sub-permutation sub(k, i) € & by sub(k, u) = o L.

Henceforth, let u®) = y®- - - ® u be the k-fold product measure on ([0, 1] x [0, 1])*. Given
a permutation 7 € &, the density of 7 in u, denoted by ¢(7, 1), is defined as the probability
that sub(k, ) is isomorphic to 7, that is

t(T, u) = ]{3'/1{1‘1 < <Xy Yrm1n) <000 < qu(k)}d,u(k)
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It is easily shown (see [64, Lemma 3.5] for a proof) that given any permutations o € &,, and
T € G, we have

(7, o) — t(7, 1) < <’“> 1 (8.22)

2/n

In particular, implies that a sequence of permutations (¢,,), s converges if and only
if (£(7, tto, ) )n—oo is convergent for every permutation 7 € &, and thus we may talk about
permutations and permutons as the “same” object. We say that a sequence of permutons
(Hn)n—oo is t-convergent if (¢(7, pin))n—oc) converges for every 7 € &.

As in the case of words one can define a metric dg on Z so that for all 7 € & the maps
t(7,-) are Lipschitz continuous with respect to dn. Indeed, given two permutons p,v € Z
define

do(,v) = sup |u(I x J) (I % J)|,

1,JC[0,1]

where the supremum is taken over all intervals in [0,1]. In order to prove that ¢(r,-) is
Lipschitz continuous with respect to do we need the following result which is the permuton
analogue of Lemma [8.3.2]

Lemma 8.7.1. Given a permutation T € &y, for all permutons u,v € Z we have

[t(7, 1) — (7, )| < K?do(p,v).

Proof. Define
ET={Zy) €0, 1]F x 0,112y < <zpyyr10) < -+ < Y1y} (8.23)
Then, we have t(7, 1) = k!lp®™ (E7) and t(7,v) = klw®(E7). For j € [K], let
Q; = ,u(j) @ ki) _ M(j_l) @ pk—itl)

and note that

167, 1) = H7,0)] = [0 (B7) — o9 ()| =

; Q;(ET)

k
<Y 1Q (B

Let j € [k] be fixed. Given (Z,9), let ET(Z,9) = [1;-1,%j11] X [Yr-1(-1); Yr—1G+)) If 71 <
e < T < T < <X and Y1) < 0 < Yr1-1) < Yr-1G+1) < 00 < Yr-1(k), and
E7(Z,§) = 0 otherwise. Thus ’M(E;(f, y)) — v(E(Z, yj’))‘ < do(p,v) for all (Z,y) and then,
we have that

|Q;(ET)| = ‘ / ((E; (7, 9) — v(E(7,7))) du™ @ v+

< [ | @) - viE; @)

At @ k=)

<

T = = T = = i—1 k—j
CE] (7, 7) = (] (@) | ™ @

/JJ1<-~~<l‘j_1<Ij+1<~“<$k

1
< md[}(ﬂ, V).

Finally, summing for each j € [k] we obtain the bound. O
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In Hoppen et al. [64], the compactness of (Z,dn) is established and, as a consequence,
also the equivalence between t-convergence and convergence in dp. In particular, they prove
that for every convergent sequence of permutations (0,), s there is a permuton p € Z
such that ¢(7,0,) — t(7, 1) for all 7 € &. The goal of this section is to give a new proof of
these two results by using a more direct approach based on Theorem [8.1.3] and the permuton
analogue of Proposition [8.3.6] based on Bernstein polynomials.

We start with a permuton analogue of Lemma [8.3.1, A similar result was proved by
Glebov, Grzesik, Klimosova and Kral’ [53, Theorem 3] by using a probabilistic interpretation.

Lemma 8.7.2. Let p € Z be a permuton and let i,j € N. There exist a set S;; of permuta-
tions of order i+ j 4 1 and positive numbers (Cr),cs, , such that

/[}xyjd,uxy ZCtru
0,1]2

TES; ;

Proof. We proceed as in the proof of Lemma [8.3.1] First, since p has uniform marginals we
have that

v ([ @) = [ e < s dudonm) - dplan )
[0,z]x[0,1] [0,1]2

and similarly

y = /[0 " Wyirt, - Yirg <yt dup(zicr, yir1) - dp(@igg, Yirg)-

)

Whence, setting

Gu(#,x) =1{xy,...,2; < x} H H{zr;, <z} H H{r < i}

uelU ugU

and

Hs(7,y) = H{yis1, - viny <yt [] Hys <} [] 1y < s}
ses s¢S

by the Fubini—Tonelli theorem, we have
iy = [ U < e vi < g} (@)
[0,1]2(+3)

-y 7,0) Hs(7,y) du) (7, ).

vcy) scp ? 020+

Finally, by reordering the position of the coordinates below and above z, respectively, we
have

/[0,1} ey’ dp(z,y) = Y D ( )(K) Z(ti)j& 1)@! 3 t(o, 11).

ke[]] eE[Z] U€6i+j+120'(i+k+1)>j+1
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As pointed out in [75], the previous result can be used to prove the uniqueness of the
limit of a sequence of permutations as we did for limits of words by using Lemma [8.3.1]
Indeed, suppose that p,v € Z are two permutons such that t(o,u) = t(o,v) for every
finite permutation 0 € &. By Lemma [B.7.2] we deduce that for every continuous function
h:[0,1]* — R we have

| ke dnty) = [ h(ey)dv(a,y).
[0,1]? [0,1]?

which implies that ¢4 = v. On the other hand, Lemma can also be used to establish
the permuton analogue of Proposition that t-convergence implies the convergence with
respect to dp.

Proposition 8.7.3. If (jin)n—oo IS a sequence in Z which is t-convergent, then it is a Cauchy
sequence with respect to dn. Moreover, if i, L w for some p € Z, then py, 5 L4

Proof. Let ¢ > 0 be fixed and let r = [(80/¢)*]. Let S;; C &;4,41 and C, be as in the
statement of Lemma [8.7.2) define C' = max{C, : 7 € 5, ;,4,j < r}, and let

€

0= Clor + )2

Let ng be sufficiently large so that for all n,m > ny we have

(7, pn) — (T, )| <6 forall T e | &, (8.24)

i€[r]

Hence, for i, j < r and v = u,, — iy, by Lemma and since |S;4 ;41| < (2r+1)!, we have

’/ xyjdl/xy’—
[0,1)2

For a,b € [0,1], let J, = 1jo,q)x[0,5) and let j,, J, be the largest indices such that ]" < a and
I < b. Recall that the Bernstein polynomial of J, is denoted by B,. J., and observe that

Z Cr(t(T, pn) — t(T, ,um))’ <C2r+1)46.

TES; ;

[ Brau(w ) dulay)| < zz(g)(g)

T"L""]

<X XX0O000D)

O<'L]<Tk 04=0

< O27(2r +1)00.

/ (1—x)" Z'yj(l — y)r_j dy(z, y)’

/xz‘+kyj+z dv(z, y)l

Now, by Lemma [8.3.5| we have

0,0) % 0,0)] = | [ oupeton (. 9) dv(a, )

<[ Broalsn) (e, 9)| + | [ Qoaiston(@,0) = Bro, (o 9) dv(e, )
< C2Y(2r 4+ 116 4 (8714 4 2r71/2),
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where the last inequality follows since p,, and p,, have uniform marginals. Putting everything
together, by our choice of r, § and v, we have

Ao (fin, pim) < 4 sup  [v(]0,a] x [0,0])] < C27H2(2r + 1)16 + 40~ Y4 L e
a,be[0,1]

For the second part just replace p,, by p in (8.24]) and choose v = p,, — . Then, repeat the

above argument. O

We can now give the alternative proof of the result of Hoppen et al. [64] concerning the
existence of a limit (permuton) for a convergent permutation sequence. Note that this limit
is unique as discussed right after the proof of Lemma [8.7.2

Theorem 8.7.4 (Hoppen et al. [64, Theorem 1.6]). For every convergent sequence of per-
mutations (0 )neo there exists a permuton p € Z such that o, N 1.

Proof. Let (0,,)n—00 be given and let (p,)n—00 be the sequence of corresponding permutons.
Given z € [0,1] and n € N, we define

Fouly) = /O “nl{on([nt]) = [ny]}dt  forall y € [0, 1].

It is easy to see that

(1) frnz() < fow(:) forall x < o,
(i) fno(-) =0 for all n € N, and
(iii) fo1(-)=1for alln e N.

We claim that (f,,:)n—eo converges for all z € [0,1]. Indeed, by Proposition m (tn ) n—so00
is a Cauchy sequence with respect to dg, and for every interval I C [0, 1]

[ ) = o) 2] = [p(0.2] 5 1) = (0,21 x D] < (s ).

Thus (fn.z)n—eo 18 a Cauchy sequence in (W, dn) and therefore, by Theorem W, it has a
limit f, € W. Furthermore, note that for all x € [0, 1] we have

[ty = i [ patdr= i P2 (5.25)

and, because of (i), for all a,z, 2’ € [0, 1],

‘/O fo(t)dt — /0 fur(t) dt‘ <z —2). (8.26)

Given s € [0, 1] and given an interval I C [0, 1], we set

0,5 < 1) = [ f.(t)a.
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Because of , and , it is well defined and so by standard limiting arguments we can
extend [i to a unique probability measure p on [0, 1] x [0, 1]. Observe that because of we
have that fi(-) = 1 almost everywhere. This together with (8.25)) imply that p has uniform

marginals and therefore y € Z. To conclude that o, N i, by Lemma [8.7.1] it is enough to
show that dn(o,, ) — 0. If not, then there are € > 0 and sequences (7, )n 00 and (@n)n—so00
such that, without loss of generality, for all n sufficiently large we have

[ B (00t > ([0, 0] x [0, )y 2 = [, (1)t 4

Moreover, because of (8.26) and by compactness of [0, 1] we can find a,z € [0, 1] such that
(passing to a subsequence) for all n sufficiently large we have

a a 8
/O fn,m(t)dw/o fult)dt + .

contradicting the fact that (f, ;)n—eo converges to f;. O

8.8 Non-binary words.

Let ¥ be a finite alphabet. For a word w € ¥" and an interval I C [n] let N,(w,I) denote
the number of occurrences of a € ¥ in sub(/, w) and let N,(w) = N,(w, [n]). Moreover, as

for the binary alphabet case, denote by ( ) the number of subsequences of w which coincide

with w. A sequence (w,)n—oo Of words w,, € X" is called o(1)-uniform if for each a € X
there is a density d, such that N,(w,,I) = d,|I| 4+ o(1)n holds for each interval I C [n]. We
obtain the following analogue (generalization) of Theorem for finite size alphabets.

Theorem 8.8.1. Given a sequence (Wy)n—oo 0f words w, € X" over the finite size alpha-
bet X, If (W) n—oo @8 o(1)-uniform, then for each a € X there is a density d, € [0,1] such that

for every ¢ € N and every word u € XX we have (“;") = [Laes; dNe “)( ) + o(n*). Conversely,

if for some collection of densities {d, € [0,1] : a € £} we have (“””‘) = Tsex dN“(“)( )—i—o( %)
for all words u € 33, then (w,)n—s0o s o(1)-uniform.

Proof. The first part of the theorem follows from Remark [8.3.3] by an argument similar to the
one used in the proof of the first part of Lemma [8.3.2, For the second part, let us consider a
letter a € ¥ and a word w over X. We define the binary word w® as the word obtained by
replacing each letter @ in w by 1 and the remaining letters by 0. Moreover, for u € {0, 1}*
we let X, (u) be the set of words v € X such that v® = w. Then, it is easy to see that

tu,w) = > tv,w). (8.27)

vEX, (u)

For each a € 3 we can thus define the sequence (w?),, o of words over the alphabet {0, 1}
which, because of , satisfies the counting property for subsequences of length 3. From
Theorem and our working hypothesis we conclude that (w?), . is o(1)-uniform over
the alphabet {0,1} and thus we deduce that N,(w,,I) = Ny(w?,I) = d,|I| + o(1)n for all
intervals I C [n]. By repeating the above argument for each letter in ¥ we conclude that
(W) n—oo 18 0(1)-uniform. O
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Similarly, one can obtain an analogue of Theorem [8.1.3| concerning limits of convergent
word sequences for larger alphabets. A sequence (W), of words over the alphabet ¥ =

{ay,...,a;} is convergent if for all £ € N and u € X the subsequence density ((";") / (’Z)) .

converges. Moreover, given a k-tuple of functions f = (f%,..., f%*) € W* such that f% (z)+
o4 f*%(x) = 1 for almost all z € [0, 1], we say that (w,,)n—o converges to f = (f*,..., f%)

if for all £ € N and u € X the subsequence density ((“;j) / @))n—m converges to

tu, ) = 0 / TT () day . . da.

O<x1<"'<x2<1 le[a

For the case of non-binary alphabets, we obtain the following limit theorem.

Theorem 8.8.2 (Limits of convergent k-letter word sequences). Let 3 = {ay,...,ax}.

o Fach convergent sequence (W, )n—oo 0f words, w, € X", converges to some vector f =
(for ..., f*) e WF and f*(z) + -+ + f%*(x) = 1 for almost all x € [0,1]. Moreover,

if (Wn)nooo converges to g = (g™, ..., g%), then f% = g% almost everywhere, for all

i € [k].

o Conversely, for every vector f = (f*,..., f%) € W* which satisfies f(x) + --- +
f%(z) = 1 for almost all x € [0,1] there is a sequence (Wy)n—0o 0of words w, € X"
which converges to f.

Proof. The first part follows by reducing to the size two alphabet case. Indeed, fix a; € X.
For each n € N we define the word w® as before and thus we obtain a sequence (wW%),
of words over the binary alphabet, which we claim is convergent. Indeed, since (w,)n—o00
is convergent then each term in the RHS in is convergent and thus (f(w, w%)),—eo
is convergent. Therefore, Theorem implies that (w), . converges to a (unique)
f% € W. In particular, the sequence (f%), . of functions associated to (w%), ., satisfies
fl N f% and Proposition m implies that f2 5 f% as well. The argument shown in
Lemma [8.3.2) (see Remark [8.3.3) then yields that (w,)n—e converges to f = (f™,..., fo)
and it is not hard to see that f* (x)+--- + f*(x) =1 for almost all z € [0,1].

To prove the second part, we exhibit a sequence of words which converges to a given
f=",...,f*). Consider the f-random letter (X,Y") € [0,1] x 3 obtained by choosing
X uniformly in [0, 1] and, conditioned on X = x, choosing Y to be a; € ¥ with probability
f%(z). Next, for each positive integer n choose f-random letters (Xi,Y7),...(X,,Y,) and a
permutation o : [n] = [n] such that X,y < ... < Xy, Then, define the f-random word
w, = Y5 ... Y. By fixing a letter a; € ¥ and replacing the w,’s by wy;i’s as above we
obtain a sequence of f%-random words over size two alphabets whose associated functions
converge in the interval-norm to f% a.s. due to Corollary Then, Lemma and
Remark imply that the f-random word sequence converges to f. O
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Chapter 9

Future perspectives

To conclude this part of the thesis, we discuss some potential future research directions.

9.1 Longest common subsequence for generalised ran-
dom words

As mentioned in Chapter |8 given a word limit f € W one can define an n-letter random
word sub(n, f) by sampling n points x; < --- < z,, from [0, 1] and then setting the i-th letter
of sub(n, f) as a Bernoulli random variable with mean f(x;). It is thus natural to define the
longest common subsequence problem in this new random word model.

For f1, fo € W, we write LCS(f1, f2,n) to denote the random variable which is equal to the
length of the longest common subsequence between sub(n, fi) and sub(n, f). If fi = fo = f,
then we write LCS(f,n) instead of LCS(f1, f2,n). We observe that if fi(z) = fo(z) = 3
for all z € [0,1], then LCS(3,n) = LCSy(n) for all n € N. On the other hand, it does not
seem possible to adapt the sub-additivity argument to prove that %LCS( f1, fa,n) converges
for arbitrary fi, fo € W. Therefore, it would be possible that LCS(fi, f2,n) = o(n) even if

fl = f?-

Problem 9.1.1. Characterise the functions f € W such that LCS(f,n) = Q(n).

9.2 Turan numbers for words

Recall that for a graph H, the Turdn function ex(n, H) of H is defined as the maximum
number of edges that a n-vertex H-free graph can have. The study of the Turdn numbers
is one of the central topics in extremal graph theory, however, as far as we know no such
concept has been studied for words. A quite interesting problem is to study the following
Turan-type problem for words (an analogue problem may be defined for permutations as
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well). Given two fixed words u and v, we define the Turén function of the pair (u,v) as
ex(n,u,v) = max{ (Z’) cw € 4{0,1}" and t(v, w) = 0}, (9.1)

that is, ex(n,u,v) is the maximum number of possible copies of u in a word of length n
which does not contain a copy of v. We conjecture that if w does not contain v, then the
unique maximiser for should be a blow-up of w. An even more challenging problem is
to study the function

exq(n, u, v) = max{ ("j;’) cw € {0,1}" and t(v,w) > a} (9.2)

for some fixed o € [0,1]. We remark here that both problems are quite natural. Indeed, let
us define the continuous version of (9.2)) as

exq(u,v) = sup{t(u, f): f € W and t(v, ) > a}. (9.3)

Since t(u,-), t(v,-) are continuous and (W), dp) is compact, we know that the set {f € W :
t(v, f) = a} is compact too and so is indeed a maximum. Therefore, in some sense the
extremal functions and are well defined, and thus one could hope to study the
Turan problem for words with analytical and elementary tools.

9.3 Twins in d-arrays

For d > 1 and a d-array A = (a;,
largest m such that there are indices Z = {(

) of size n over an alphabet 3, let LT(A) denote the

itH i(d)) € [n]?: (J1,...,7q4) € [m]?} and

Jr o Y
L= {(Eﬁ), . ,Eg-j)) € )¢ : (Ji,...,Ja) € [m]?}, where 1 < P << i") < n and
1< <. < (k) < n are increasing sequences for each k € [d], such that
am @ = a0 @ for all (j1,...,7q4) € [m]d
J1 77734 J1 7" id

The arrays (aiﬁ),...,iﬁ»‘f)k[m]d and (aé‘i)”“’%));e[m]d are called twins. For n,d € N and an

alphabet Y, we define the function
LTy(n,Y) =min{LT(A) : A € Ay(X,n)}.

Thus, by definition, every d-array of size n over ¥ contains twins of size LT;(n,X). As
mentioned in the introduction, for d = 1 we know that LT (n, [g]) = Q(n) for all ¢ > 2. It
would be interesting to study the function LT4(n,X) for d > 2.

Problem 9.3.1. For q,d > 2. Prove or disprove that LTy(n,[q]) = Q(n).

9.4 Universality of permutations

For k > 2, a k-universal permutation is one that contains all permutations of &;. The
question of the minimal n such that there exists a k-universal permutation in &,, was asked
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by Arratia [I1], who conjectured that the optimal value of n, given k, is (1 + o(1))k?/e>.
The random version of this problem was posed by Alon (see [I1]) who conjectured that a
random permutation of order (1 + o(1))k?/4 is k-universal with high probability. If true,
this bound would be tight, as can be deduced from the known results on the length of the
longest increasing subsequence of random permutations. The best known upper bound for
this problem is due to Xe and Kwan [63], who recently proved that a random permutation
on O(k*loglog k) elements is k-universal with high probability.

The study of higher dimensional permutations is ripe for further research. A line of a
d-array A = (a;, . ;,) of order n is a sequence of elements obtained by choosing some j € [n]
and looking at the entries a;; i, ¢i;,1,..iq> fOT sSOmMe fixed i1,. .., %5 1,%541,...,1q € [n] and
¢ ranging from 1 to n. Just as a usual permutation can be identified with a permutation
matrix, it is possible to define a d-dimensional permutation (henceforth, d-permutation) of
order n as a (d + 1)-array of order n over {0, 1}, where each line contains a unique 1 entry
(see [79, 8O] for equivalent definitions and discussion).

Looking for connections with the case of permutations, we propose the following notion
of “universality” for d-permutations. A d-pattern of order k is a sequence (o1, ...,04) where
or € Sy for all £ € [d]. We say a d-permutation M of order n contains a d-pattern of order k

if there exists a sequence V), ... 2®*) € [n]**! of index vectors such that Mo o o =1
1 2 d+1

for all i € [k], M < x§2) << xgk) (the first coordinates of the vectors are increasing), and
further, for each ¢ € [d] and all i, j € [k], it holds that z{, < %), if and only if o4 (i) < 04(5).
Note that for d = 1 this is equivalent to the containment of one permutation in another. We
say a d-permutation M is k-pattern-universal if it contains all d-patterns of order k.

Linial and Simkin [80] considered “monotone subsequences of length k” in d-permutations,
which expressed in our language correspond to d-patterns of order k of the form (o,..., o),
where ¢ is the identity function. They showed that the longest monotone subsequence in a
random d-permutation of order n has length ©(n%(@+1)) with high probability. This implies
that a random d-permutation needs to have order at least Q(k@+1/4) to be k-pattern-universal
with high probability. In analogy with the case of permutations, we believe this to be tight.

133



134



Bibliography

1]

2]

[10]

[11]

[12]

[13]

E. Aigner-Horev, D. Conlon, H. Han, Y. Person, and M. Schacht. Quasirandomness in
hypergraphs. Electron. J. Combin., 25(3):3-34, 2018.

M. Ajtai, J. Komlés, and E. Szemerédi. On a conjecture of Loebl. In Graph theory,
combinatorics, and algorithms, Vol. 1, 2 (Kalamazoo, MI, 1992), Wiley-Intersci. Publ.,
pages 1135-1146. Wiley, New York, 1995.

N. Alon. Asymptotically optimal induced universal graphs. Geom. Funct. Anal.,
27(1):1-32, 2017.

N. Alon, E. Fischer, I. Newman, and A. Shapira. A combinatorial characterization of
the testable graph properties: It’s all about regularity. SIAM J. Comput., 39(1):143—
167, 2009.

N. Alon, M. Krivelevich, and B. Sudakov. Embedding nearly-spanning bounded degree
trees. Combinatorica, 27(6):629-644, 2007.

N. Alon and A. Shapira. Every monotone graph property is testable. In Proc. of
the 37th Annual ACM Symposium on Theory of Computing, STOC’05, pages 128-137.
ACM, 2005.

N. Alon and A. Shapira. A characterization of the (natural) graph properties testable
with one-sided error. SIAM J. Comput., 37(6):1703-1727, 2008.

N. Alon and N. Sherman. Induced universal hypergraphs. SIAM J. Discrete Math.,
33(2):629-642, 2019.

N. Alon and J. H. Spencer. The Probabilistic Method. Wiley Publishing, 4th edition,
2016.

P. Aratjo, L. Moreira, and M. Pavez-Signé. Ramsey goodness of trees in random
graphs. arXiv preprint arXiv:2001.03083, 2020.

R. Arratia. On the Stanley-Wilf conjecture for the number of permutations avoiding a
given pattern. Electron. J. Combin., 6(1):1, 1999.

M. Axenovich, Y. Person, and S. Puzynina. A regularity lemma and twins in words.
J. Combin. Theory, Series A, 120(4):733-743, 2013.

J. Balogh, B. Csaba, and W. Samotij. Local resilience of almost spanning trees in
random graphs. Random Structures Algorithms, 38(1-2):121-139, 2011.

135



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]
[25]

[26]

[27]

28]

[29]

[30]

J. Balogh, R. Morris, and W. Samotij. Independent sets in hypergraphs. J. Amer.
Math. Soc., 28(3):669-709, 2015.

J. Balogh, R. Morris, and W. Samotij. The method of hypergraph containers. Proceed-
ings of the International Congress of Mathematicians (ICM 2018), pages 3059-3092,
2018.

J. Beck. On size Ramsey number of paths, trees, and circuits. I. J. Graph Theory,
7(1):115-129, 1983.

G. Besomi, M. Pavez-Signé, and M. Stein. Maximum and minimum degree conditions
for embedding trees. SIAM J. Discrete Math., 34(4):2108-2123, 2020.

G. Besomi, M. Pavez-Signé, and M. Stein. On the Erdés—Sés conjecture for bounded
degree trees. Accepted in Combin. Probab. Comput.

G. Besomi, M. Pavez-Signé, and M. Stein. Degree conditions for embedding trees.
SIAM J. Discrete Math., 33(3):1521-1555, 2019.

Y. Biers-Ariel, A. Godbole, and E. Kelley. Expected Number of Distinct Subsequences
in Randomly Generated Binary Strings. Discrete Math. Theor. Comput. Sci., Vol. 19
no. 2, Permutation Patterns 2016, June 2018.

P. Billingsley. Probability and Measure. Wiley Series in Probability and Statistics.
Wiley, 1995.

M. Blum and S. Kannan. Designing programs that check their work. J. ACM, 42:269—
291, 1995.

M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to
numerical problems. J. Comput. Syst. Sci., 47:549-595, 1993.

B. Bollobas. FExtremal Graph Theory. L.M.S. Monographs. Academic Press, 1978.

B. Bollobds and A. Thomason. Graphs which contain all small graphs. Furopean J.
Combin., 2(1):13-15, 1981.

C. Borgs, J. Chayes, L. Lovasz, V. S6s, and K. Vesztergombi. Convergent sequences
of dense graphs I: Subgraph frequencies, metric properties and testing. Adv. Math.,
219(6):1801-1851, 2008.

J. Bottcher. Large-scale structures in random graphs, page 87-140. London Mathemat-
ical Society Lecture Note Series. Cambridge University Press, 2017.

S. Brandt and E. Dobson. The Erd6s—Soés conjecture for graphs of girth 5. Discrete
Math., 150:411-414, 1996.

G. R. Brightwell and Y. Kohayakawa. Ramsey properties of orientations of graphs.
Random Structures Algorithms, 4(4):413-428, 1993.

B. Bukh and L. Zhou. Twins in words and long common subsequences in permutations.
Israel J. Math., 213(1):183-209, 2016.

136



[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[41]

[42]

[43]

[44]

[45]

[46]

F. Chung and R. Graham. Quasi-random hypergraphs. Proc. Natl. Acad. Sci.,
86(21):8175-8177, 1989.

F. Chung and R. Graham. Quasi-random subsets of Z,,. J. Combin. Theory, Series A,
61(1):64-86, 1992.

F. R. K. Chung, R. L. Graham, and R. M. Wilson. Quasi-random graphs. Combina-
torica, 9(4):345-362, 1989.

V. Chvatal and D. Sankoff. Longest common subsequences of two random sequences.
J. Appl. Probab., 12(2):306-315, 1975.

D. Conlon. Combinatorial theorems relative to a random set. Proceedings of the Inter-
national Congress of Mathematicians (ICM 2014), 4:303-328, 2014.

D. Conlon, J. Fox, and B. Sudakov. Recent developments in graph Ramsey theory,
volume 424 of Surveys in Combinatorics 2015 (London Mathematical Society Lecture
Note Series), pages 49-118. Cambridge University Press, 2015.

D. Conlon and W. T. Gowers. Combinatorial theorems in sparse random sets. Ann. of
Math., pages 367-454, 2016.

J. N. Cooper. Quasirandom permutations. J. Combin. Theory, Series A, 106(1):123~
143, 2004.

B. Csaba, 1. Levitt, J. Nagy-Gyorgy, and E. Szemerédi. Tight bounds for embedding
bounded degree trees. In Katona G.O.H., Schrijver A., Szenyi T., Sdagi G. (eds) Féte
of Combinatorics and Computer Science, volume 20, pages 95-137, 2010.

N. G. De Bruijn. A combinatorial problem. In Proc. Koninklijke Nederlandse Academie
van Wetenschappen, volume 49, pages 758-764, 1946.

G. A. Dirac. Some theorems on abstract graphs. Proc. Lond. Math. Soc., 2:69-81,
1952.

P. Erdés. Extremal problems in graph theory. In Theory of graphs and its applications,
Proc. Sympos. Smolenice, pages 29-36, 1964.

P. Erdés and T. Gallai. On maximal paths and circuits of graphs. Acta Math. Acad.
Sci. Hungar., 10(3):337-356, 1959.

P. Erdés and R. L. Graham. On partition theorems for finite graphs. In Infinite
and finite sets (Collog. Keszthely, 1973; dedicated to P. Erdés on his 60th birthday),
volume 10, pages 515-527. Colloq. Math. Soc. Janos Bolyai, 1975.

P. Erdés, J. Pach, R. Pollack, and Z. Tuza. Radius, diameter, and minimum degree.
J. Combin. Theory Ser. B, 47(1):73 — 79, 1989.

P. Erdés and A. Rényi. On random graphs I. Publ. Math. Debrecen, 6(18):290-297,
1959.

137



[47]

[48]

[49]

[50]

[51]

[52]

U. Feige, T. Koren, and M. Tennenholtz. Chasing ghosts: Competing with stateful
policies. SIAM J. Comput., 46(1):190-223, 2017.

M. Fekete. Uber die verteilung der wurzeln bei gewissen algebraischen gleichungen mit
ganzzahligen koeffizienten. Math. Z., 17:228-249, 1923.

P. Frankl and V. Roédl. Large triangle-free subgraphs in graphs withoutk 4. Graphs
Combin., 2(1):135-144, 1986.

K. Frankston, J. Kahn, B. Narayanan, and J. Park. Thresholds versus fractional
expectation-thresholds. arXiv preprint arXiv:1910.13433, 2019.

J. Friedman and N. Pippenger. Expanding graphs contain all small trees. Combina-
torica, 7(1):71-76, 1987.

S. Gerke and A. Steger. The sparse reqularity lemma and its applications, page 227-258.
Surveys in Combinatorics 2005 (London Mathematical Society Lecture Note Series).
Cambridge University Press, 2005.

R. Glebov, A. Grzesik, T. Klimosova, and D. Kral’. Finitely forcible graphons and
permutons. J. Combin. Theory B, 110:112 — 135, 2015.

A. Goerlich and A. Zak. On Erdés—Sés Conjecture for Trees of Large Size. Electron.
J. Combin., 23(1):P1-52, 2016.

O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653-750, 1998.

W. T. Gowers. A new proof of Szemerédi’s theorem. Geom. Funct. Anal., 11(3):465—
588, 2001.

W. T. Gowers. Quasirandomness, counting and regularity for 3-uniform hypergraphs.
Combin. Probab. Comput., 15(1-2):143-184, 2006.

W. T. Gowers. Quasirandom groups. Combin. Probab. Comput., 17(3):363-387, 2008.

H. Han, M. Kiwi, and M. Pavez-Signé. Quasi-random words and limits of word se-
quences. arXiv preprint arXiv:2003.03664, 2020.

F. Havet, B. Reed, M. Stein, and D. R. Wood. A variant of the Erdés—Sés conjecture.
J. Graph Theory, 94(1):131-158, 2020.

P. E. Haxell. Tree embeddings. J. Graph Theory, 36(3):121-130, 2001.

X. He and M. Kwan. Universality of random permutations. Bull. Lond. Math. Soc.,
52(3):515-529, 2020.

C. Hoppen, Y. Kohayakawa, C. G. Moreira, B. Rath, and R. M. Sampaio. Limits of
permutation sequences. J. Combin. Theory, Series B, 103(1):93-113, 2013.

138



[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

78]

[79]

[80]

C. Hoppen, Y. Kohayakawa, C. G. Moreira, and R. M. Sampaio. Testing permutation
properties through subpermutations. Theoret. Comput. Sci., 412(29):3555-3567, 2011.

S. Janson, T. Luczak, and A. Rucinski. Random Graphs. John Wiley & Sons, Ltd,
2011.

J. Kahn and G. Kalai. Thresholds and expectation thresholds. Combin. Probab. Com-
put., 16(3):495-502, 2007.

M. Kiwi, M. Loebl, and J. Matousek. Expected length of the longest common subse-
quence for large alphabets. Adv. Math., 197(2):480-498, 2005.

T. Klimosova and D. Kral’. Hereditary properties of permutations are strongly testable.
In Proc. of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’14,
pages 1164-1173. STAM, 2014.

Y. Kohayakawa. Szemerédi’s regularity lemma for sparse graphs. In Found. Comput.
Math., pages 216-230. Springer, 1997.

Y. Kohayakawa and V. Rodl. Szemerédi’s regularity lemma and quasi-randomness. In
Recent advances in algorithms and combinatorics, pages 289-351. Springer, 2003.

J. Komlos, G. N. Sarkozy, and E. Szemerédi. Proof of a Packing Conjecture of Bollobas.
Combin. Probab. Comput., 4(3):241-255, 1995.

J. Komlés, G. N. Sarkozy, and E. Szemerédi. Spanning trees in dense graphs. Combin.
Probab. Comput., 10(5):397-416, 2001.

J. Komlos, A. Shokoufandeh, M. Simonovits, and E. Szemerédi. The regularity lemma
and its applications in graph theory. In Theoretical Aspects of Computer Science,
Advanced Lectures (First Summer School on Theoretical Aspects of Computer Science,
Tehran, Iran, July 2000), pages 84—112, 2000.

D. Kral’ and O. Pikhurko. Quasirandom permutations are characterized by 4-point
densities. Geom. Funct. Anal., 23(2):570-579, 2013.

M. Krivelevich. Embedding spanning trees in random graphs. SIAM J. Discrete Math.,
24(4):1495-1500, 2010.

D. Kiithn and D. Osthus. Embedding large subgraphs into dense graphs, pages 137—-167.
Surveys in Combinatorics 2009 (London Mathematical Society Lecture Note Series).
Cambridge University Press, 20009.

S. Letzter. Path ramsey number for random graphs. Combin. Probab. Comput.,
25(4):612-622, 2016.

N. Linial and Z. Luria. An upper bound on the number of high-dimensional permuta-
tions. Combinatorica, 34(4):471-486, 2014.

N. Linial and M. Simkin. Monotone subsequences in high-dimensional permutations.
Combin. Probab. Comput., 27(1):69-83, 2018.

139



[81] M. Lothaire. Combinatorics on Words. Cambridge Mathematical Library. Cambridge
University Press, 2 edition, 1997.

[82] L. Lovasz. Large Networks and Graph Limits., volume 60 of Colloguium Publications.
American Mathematical Society, 2012.

[83] L. Lovasz and V. T. Sés. Generalized quasirandom graphs. J. Combin. Theory, Series
B, 98(1):146-163, 2008.

[84] L. Lovasz and B. Szegedy. Limits of dense graph sequences. J. Combin. Theory, Series
B, 96(6):933-957, 2006.

[85] L. Lovész and B. Szegedy. Testing properties of graphs and functions. Israel J. Math.,
178(1):113-156, 2010.

[86] L. Lovasz and B. Szegedy. Finitely forcible graphons. J. Combin. Theory, Series B,
101(5):269-301, 2011.

[87] T. Luczak, A. Rucinski, and B. Voigt. Ramsey properties of random graphs. J. Combin.
Theory Ser. B, 56(1):55-68, 1992.

[88] R. Montgomery. Spanning trees in random graphs. Adv. Math., 356:106793, 2019.

[89] J. W. Moon. On minimal n-universal graphs. Proceedings of the Glasgow Mathematical
Association, 7(1):32-33, 1965.

[90] R. Morris. Personal communication.

[91] M. Pavez-Signé, D. A. Quiroz, and N. Sanhueza-Matamala. Universal arrays. arXiv
preprint arXiv:2001.05767, 2020.

[92] M. Pinsky. Introduction to Fourier Analysis and Wavelets. Graduate studies in math-
ematics. American Mathematical Society, 2008.

[93] R. Rado. Universal graphs and universal functions. Acta Arithmetica, 9(4):331-340,
1964.

[94] B. Reed and M. Stein. Spanning trees in graphs of high minimum degree with a
universal vertex I: An approximate asymptotic result. Preprint 2019, arXiv 1905.09801.

[95] B. Reed and M. Stein. Spanning trees in graphs of high minimum degree with a
universal vertex II: A tight result. Preprint 2019, arXiv 1905.09806.

[96] V. R6dl. On universality of graphs with uniformly distributed edges. Discrete Math.,
59(1-2):125-134, 1986.

[97] V. Rodl and A. Rucinski. Lower bounds on probability thresholds for Ramsey proper-
ties. Combinatorics, Paul Erdds is eighty, 1:317-346, 1993.

[98] V. Rodl and A. Ruciriski. Threshold functions for Ramsey properties. J. Amer. Math.
Soc., 8(4):917-942, 1995.

140



[99]

[100]

[101]

[102]

103]

[104]

[105]

[106]

[107]

[108]

V. Rozhon. A local approach to the Erd6s—So6s conjecture. SIAM J. Discrete Math.,
33(2):643-664, 2019.

J.-F. Saclé and M. Wozniak. A note on the Erdés—Sos conjecture for graphs without
Cy. J. Combin. Theory Ser. B, 70(2):229-234, 1997.

D. Saxton and A. Thomason. Hypergraph containers. Invent. Math., 201(3):925-992,
2015.

M. Schacht. Extremal results for random discrete structures. Ann. of Math., pages
333-365, 2016.

M. Simonovits and E. Szemerédi. Embedding graphs into larger graphs: results, meth-
ods, and problems. In Building Bridges II, pages 445-592. Springer, 2019.

B. Szegedy. From graph limits to higher order Fourier analysis. In Proc. of the In-
ternational Congress of Mathematicians, volume 3, pages 3197-3218. World Scientific,
2018.

E. Szemerédi. Regular partitions of graphs. In Problemes combinatoires et théorie des
graphes (Collog. Internat. CNRS, Univ. Orsay, Orsay, 1976), volume 260 of Collog.
Internat. CNRS, pages 399-401. CNRS, Paris, 1978.

A. Thomason. Pseudo-random graphs. In A. Barlotti, M. Biliotti, A. Cossu, G. Ko-
rchmaros, and G. Tallini, editors, Annals of Discrete Mathematics (33), volume 144 of
North-Holland Mathematics Studies, pages 307-331. North-Holland, 1987.

A. Thue. Uber unendliche zeichenreihen. Norske Vid. Selsk. Skr. I Mat.-Nat. Ki,
7:1-22, 1906.

H. Towsner. c-algebras for quasirandom hypergraphs. Random Structures Algorithms,
50(1):114-139, 2017.

141



	I Tree embeddings and degree conditions
	Introduction
	Average degree
	Spanning trees and minimum degree
	Maximum and minimum degree
	Trees in random graphs

	Preliminaries
	Basic notation
	Trees
	Basic results on tree embedding
	Cutting trees

	The Regularity Lemma

	Embedding trees with maximum and minimum degree conditions
	Sharpness of Conjecture 1.3.7
	Finding a good cut vertex
	Embedding trees in robust components
	The bipartite case
	The nonbipartite case

	Improving the maximum degree bound
	The key embedding lemma
	Embedding trees with degree conditions
	An approximate version of the 2k-k2 conjecture
	An approximate version of the 23-conjecture
	Embedding trees with maximum degree bounded by a constant

	An approximate version of the intermediate range conjecture

	On the Erdos–Sós conjecture for bounded degree trees
	Tools
	Small host graph
	Using the regularity method
	Proof of the Erdos–Sós conjecture for trees with bounded degree and dense host graph
	Multicolour Ramsey number of bounded degree trees

	Global resilience of trees in sparse random graphs
	Szemerédi's regularity lemma for sparse graphs
	Tree embeddings in bipartite expander graphs
	Cutting trees with bounded maximum degree
	Matching structure in the reduced graph
	Proof of Theorem 5.0.2
	Applications in Ramsey theory


	II Extremal Combinatorics on Words
	Introduction
	Longest common subsequence
	Twins in words
	Our contributions

	Universal arrays
	Universal words
	Universal d-arrays

	Quasi-random words and limits of convergent word sequences
	Introduction
	Quasi-random words
	Convergent word sequences and word limits
	Testing hereditary word properties
	Finite forcibility
	Permutons from words limits

	Quasi-randomness
	Limits of word sequences
	Uniqueness and t-convergence
	Interval-metric and the metric space (W,d)
	Random letters from limits and compactness of (W,d)
	Random words from limits

	Testing hereditary word properties
	Finite forcibility
	Regularity lemma for words
	Permutons from words limits
	Non-binary words.

	Future perspectives
	Longest common subsequence for generalised random words
	Turán numbers for words
	Twins in d-arrays
	Universality of permutations

	Bibliography


