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TOPICS IN EXTREMAL AND PROBABILISTIC COMBINATORICS:
TREES AND WORDS

En esta tesis se estudia una serie de problemas en combinatoria extremal y probabilista
relacionados a árboles y palabras. En la primera parte de este trabajo se estudian qué
condiciones debe cumplir un grafo para que contenga a todos los árboles de cierto tamaño.
Se prueban una serie de resultados que combinan condiciones de grado mínimo y máximo
para contener a todos los árboles de cierto tamaño y grado acotado. También se logra un
avance en la conjetura de Erdős–Sós [42] para árboles de grado acotado. Finalmente, se
estudia el problema de contenimiento de árboles en el grafo aleatorio G(n, p). Se prueba
que incluso después de borrar una fracción de las aristas de G(n, p) el grafo resultante sigue
conteniendo árboles grandes con grado acotado.

En la segunda parte de esta tesis se estudian problemas extremales para palabras. Se
determina el largo mínimo que debe tener una palabra para contener cada palabra de largo
k ∈ N. Además, se determina el umbral n = n(k) de modo que, con alta probabilidad,
una palabra aleatoria de largo (1 + ε)n contenga una copia de cada palabra de largo k.
Finalmente, se estudia una noción de cuasi-aleatoriedad para palabras y se muestra una serie
de propiedades equivalentes. Basados en esta noción de cuasi-aleatoriedad, se desarrolla una
teoría límite para palabras finitas en el espíritu de lo que se ha hecho para grafos [82].

In this thesis, we study several problems in extremal and probabilistic combinatorics
regarding trees and words. In the first part of this work we study which conditions a graph
has to satisfy in order to contain every tree of certain size. We obtain a series of results
regarding a combination of minimum and maximum degree that ensures the containment of
every tree of certain size and bounded degree. We also make progress towards the Erdős–
Sós conjecture [42] for trees with bounded maximum degree. Finally, we study the tree
containment problem in the random graph G(n, p) showing that even after a deletion of a
fraction of the edges of G(n, p) the resulting subgraph still contains large trees of bounded
degree.

In the second part of this thesis we study extremal problems for words. We determine
the minimum length of a word containing every word of length k ∈ N, and the threshold
n = n(k) so that, with high probability, a random word of length (1 + ε)n contains a copy
of every word of length k. Finally, we study a notion of quasi-randomness for words and we
show a series of equivalent properties. Based on this quasi-random notion, we develop a limit
theory for finite words in the spirit of what has been done for graphs [82].
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Chapter 1

Introduction

A central problem in graph theory consists of determining which conditions a graph G has
to satisfy in order to ensure it contains a given substructure. For instance, one of the most
important questions in extremal graph theory is the Turán problem, which asks for global
degree conditions to force the containment of a graph or, more generally, a family of graphs.
The extremal number of a graph H, denoted by ex(n,H), is defined as the maximum number
of edges in a graph G on n vertices which does not contain H as a subgraph. Another
important problem is to determine local degree conditions that force the containment of
certain graphs. For instance, Dirac’s theorem states that every graph on n > 3 vertices with
minimum degree at least n

2 contains a Hamilton cycle, that is, a cycle that uses each vertex
on the graph exactly once. For a general overview of this area, we refer to the recent survey
of Simonovits and Szemerédi [103].

In this thesis, we will be interested in the class of graphs called trees. A tree is a connected
graph without cycles. In this part of the thesis, we will focus on degree conditions that ensure
the containment of all trees of a given size satisfying some condition on the maximum degree.

Let us start with an easy observation. Let k ∈ N, let G be a graph with minimum degree
at least k, and let T be a tree with k edges rooted at some vertex r ∈ V (T ). We claim
that T embeds into G. Indeed, starting from any vertex v ∈ V (G), we may map r to v and
then greedily embed the children of r into unoccupied neighbours of v. We then repeat this
argument with the children of r and so on until T is completely embedded. It is important
to note that the minimum degree of G is at least as large as the remaining vertices of T
at each step, which ensure that we can run this argument until T is completely embedded.
Although this minimum degree condition is rather strong, we note that it is actually tight.
Indeed, one can consider the union of several disjoint copies of Kk, which does not contain
any tree with k edges.
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1.1 Average degree

Arguably, the most important problem regarding tree containment and degree conditions is
a famous conjecture of Erdős and Sós from 1964, which suggests that it is possible to replace
the minimum degree condition, that we discussed before, with a bound on the average degree.

Conjecture 1.1.1 (Erdős and Sós [42]). Let k ∈ N and let G be a graph with average degree
greater than k − 1. Then G contains a copy of every tree with k edges as a subgraph.

We observe that this conjecture is tight for every k ∈ N, which can be seen by considering
(again) the complete graph on k vertices. This graph has average degree exactly k− 1 but it
is too small to contain any tree with k edges. A structurally different example is the balanced
complete bipartite graph on 2k−2 vertices (where by balanced we mean that the bipartition
classes have equal sizes). This graph has average degree k − 1 but does not contain the star
with k edges. In order to obtain examples of larger order, one can consider the disjoint union
of copies of the two extremal graphs we just described.

To illustrate the importance of the Erdős–Sós conjecture in extremal graph theory, let us
quickly consider the Turán problem for trees. We first note that for any fixed tree T with
k edges, the minimum degree condition discussed before implies that ex(n, T ) 6 (k − 1)n.
Indeed, one can prove that any graph G on n vertices such that e(G) > (k − 1)n contains
a subgraph of minimum degree at least k, and therefore contains a copy of T . On the
other hand, the Erdős–Sós conjecture greatly improves this bound by a factor of 1

2 , that is,
Conjecture 1.1.1 would imply

ex(n, T ) 6 (k − 1)
2 n. (1.1)

The Erdős-Sós conjecture has further consequences in Ramsey theory for trees (see Sec-
tion 4.5).

Let us now give some evidence for Conjecture 1.1.1. It is easy to see that the Erdős–Sós
conjecture is true for stars and double stars (the latter are graphs obtained by joining the
centres of two stars with an edge). A classical result of Erdős and Gallai [43] implies that it
also holds for paths. In the early 90s, Ajtai, Komlós, Simonovits and Szemerédi announced
a proof of the Erdős–Sós conjecture for large k. Nevertheless, many particular cases have
been settled since then. For instance, Brandt and Dobson [28] proved that the Erdős–Sós
conjecture is true for graphs with girth at least 5, and Saclé and Woźniak [100] proved it for
C4-free graphs. Goerlich and Zak [54] proved the Erdős–Sós conjecture for graphs of order
n = k + c, where c is a given constant and k is sufficiently large depending on c. More
recently, Rozhoň [99] gave an approximate version of the Erdős–Sós conjecture for trees with
linearly bounded maximum degree and dense host graph. In this thesis, we will show that
Conjecture 1.1.1 holds for trees with maximum degree bounded by any given constant and
dense host graph. Namely, we prove the following theorem.

Theorem 1.1.2 (Besomi, P., and Stein [18]). For all δ > 0 and ∆ ∈ N, there exists n0 ∈ N
such that for each n, k ∈ N with n > n0 and n > k > δn the following holds. Let G be a
graph on n vertices such that d(G) > k − 1. Then G contains a copy of every tree T with k
edges such that ∆(T ) 6 ∆.

3



1.2 Spanning trees and minimum degree

In his classical book of extremal graph theory, Bollobás [24] conjectured that for any δ > 0
and ∆ ∈ N, there is n0 ∈ N such that every graph on n > n0 vertices and minimum degree
at least (1

2 + δ)n would contain every spanning tree with maximum degree bounded by ∆.
This conjecture was proved by Komlós, Sárközy and Szemerédi [72] in 1995, and its proof
strategy was a prototype version of what is now known as the “blow-up lemma”. In 2001,
the same authors [73] improved their earlier result in a different direction, showing that one
can actually embed spanning trees with maximum degree of order O( n

logn).

Theorem 1.2.1 (Komlós, Sárközy and Szemerédi [73]). For all δ > 0, there are positive
constants n0 and C such that for all n > n0 the following holds. Let G be a graph on n
vertices such that δ(G) > (1

2 + δ)n. Then G contains a copy of every tree T on n vertices
such that ∆(T ) 6 C n

logn .

They also show that the bound on the maximum degree is essentially best possible.
Indeed, for a sufficiently large constant C > 0, let T be the tree consisting of a vertex r
connected to logn

C
vertices such that each child of r has C n

logn children. Note that T has a
dominating set of size logn

C
. Let us consider the binomial random graph G = G(n, p) with

p = 0.9. It is easy to see that, with high probability, G has minimum degree greater than
0.8n and has no dominating set of size larger than logn

C
. Thus, with high probability, G does

not contain T as a subgraph.

For trees with maximum degree bounded by a constant, Csaba, Levitt, Nagy-György,
and Szemerédi [39] showed in 2010 that actually a minimum degree of at least n

2 + Ω(log n)
suffices.

Theorem 1.2.2 (Csaba, Levitt, Nagy-György, and Szemerédi [39]). For all ∆ > 2, there
exist c > 0 and n0 ∈ N such that for all n > n0 the following holds. Let G be a graph on n
vertices and δ(G) > n

2 + c log n. Then G contains a copy of every tree T on n vertices such
that ∆(T ) 6 ∆.

Moreover, they proved that there exists a graph G with δ(G) > n
2 + logn

17 such that G does
not contain the complete ternary tree. A very interesting question is to understand what
happens if the minimum degree is between n

2 + c log n and n
2 + δn. The following problem

was asked by Rob Morris [90].

Problem 1.2.3. Let f : N → N be a function such that there exist positive constants c and
C such that c log n 6 f(n) 6 Cn for all n ∈ N. Determine a function g : N→ N so that for
all large n, every graph G on n vertices with minimum degree δ(G) > n

2 + f(n) contains a
copy of every tree on n vertices with maximum degree bounded by g(n).

In view of Theorems 1.2.1 and 1.2.2, it is tempting to make the following conjecture.

Conjecture 1.2.4. Let c and C be positive constants and let f : N → N be a function
satisfying c log n 6 f(n) 6 Cn. Then there exist K > 0 and n0 ∈ N such that for all n > n0
the following holds. Let G be a graph on n vertices and minimum degree δ(G) > n

2 + f(n).
Then G contains a copy of every tree T on n vertices such that ∆(T ) 6 K f(n)

logn .
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1.3 Maximum and minimum degree

A new angle in the tree containment problem was introduced in 2016 by Havet, Reed, Stein,
and Wood [61], who impose bounds on both the minimum and the maximum degree to
force the containment of every tree of fixed size. More precisely, they suggest the following
conjecture, which we call the 2

3–conjecture.

Conjecture 1.3.1 (2
3–conjecture; Havet, Reed, Stein, and Wood [61]). Let k ∈ N and let

G be a graph with maximum degree at least k and minimum degree at least b2k
3 c. Then G

contains a copy of every tree with k edges as a subgraph.

The following example shows that Conjecture 1.3.1 is essentially tight. Let k be divisible
by 3 and consider a graph G consisting of two disjoint copies of K 2k

3 −2 and an additional
vertex v which is adjacent to every other vertex in G. Let T be the tree consisting of three
paths, each of length k

3 , sharing a common end point. It is easy to see that T cannot be
embedded into G, since at least two of those paths must be embedded into one of the copies
of K 2k

3 −2.

Conjecture 1.3.1 is obviously true for stars and double stars. The following argument
shows that it also holds for paths. If the host graph G has a 2-connected component of size
at least k + 1, then by a variant1 of Dirac’s theorem, this component contains a cycle of
length at least k, and thus also a k-edge path (possibly using one edge that leaves the cycle).
Otherwise, we can embed a vertex from the middle of the path into any cutvertex x of G,
and then greedily embed the remainder of the path into two components of G− x, using the
minimum degree of G. In [61], Havet, Reed, Stein, and Wood proved the following partial
results towards Conjecture 1.3.1.

Theorem 1.3.2 (Havet, Reed, Stein, and Wood [61]). There exist a function f : N → N
and a small constant γ > 0 such that if a graph G satisfies either

1. ∆(G) > f(k) and δ(G) > b2k
3 c, or

2. ∆(G) > k and δ(G) > (1− γ)k,

then G contains a copy of every tree with k edges.

Even if the degree conditions in Theorem 1.3.2 are no the same as in Conjecture 1.3.1, it
proves that the idea combining a maximum and minimum degree condition is morally correct
for the tree containment problem. We remark that the function f(k) of Theorem 1.3.2 is
super-exponential in k, and so any improvement on f(k) would be of great interest. Moreover,
Reed and Stein recently showed in [94, 95] that Conjecture 1.3.1 holds for large k, in the
case of spanning trees (that is, if we additionally assume that |V (G)| = |V (T )| = k + 1).
We prove an approximate version of Conjecture 1.3.1 for trees with certain bound on the
maximum degree and dense host graph.

1This variant was already observed by Dirac [41]. It states that every 2-connected n-vertex graph G has
a cycle of length at least min{n, 2δ(G)}.
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Theorem 1.3.3 (Besomi, P., and Stein [19]). For all δ > 0, there exists n0 ∈ N such that
for each n, k ∈ N with n > n0 and n > k > δn the following holds. Let G be a graph on n
vertices with minimum degree at least (1 + δ)2k

3 and maximum degree at least (1 + δ)k. Then
G contains a copy of every tree T with k edges such that ∆(T ) 6 k

1
49 .

Another natural question is whether a version of Theorem 1.2.1 holds for trees that are
not necessarily spanning. That is, one might ask if a graph G with minimum degree δ(G) > k

2
contains a copy of every tree with k edges (or at least each such tree of bounded degree).
Clearly, this cannot work because of the examples showing the tightness of Conjecture 1.1.1
or Conjecture 1.3.1. However, as in Conjecture 1.3.1, we believe that if in addition to the
minimum degree condition, we require G to have at least one vertex of large degree, then
every tree with k edges should be contained in G. More precisely, we believe that the following
holds.

Conjecture 1.3.4 (2k–k2 conjecture; Besomi, P., and Stein [19]). Let k ∈ N and let G be
a graph of minimum degree at least k

2 and maximum degree at least 2k. Then G contains a
copy of every tree with k edges as a subgraph.

Let us give a quick example showing that Conjecture 1.3.4 is essentially tight (an example
with better bounds will be given in Section 3.1). For ε > 0 and k ∈ N, let Gε,k be the graph
consisting of two disjoint copies of the complete bipartite graph, with parts of size (1 − ε)k
and (1− ε)k2 , and one vertex that is adjacent to every vertex in the parts of size (1− ε)k. It
is easy to see that Gε,k does not contain the tree Tk consisting of

√
k stars of size

√
k whose

centers are adjacent to the central vertex of Tk, provided that k is sufficiently large.

Similar as for the 2
3 -conjecture, one can see that Conjecture 1.3.4 is true for stars, double

stars, and paths. As more evidence for Conjecture 1.3.4, we prove an approximate version
for trees of bounded degree and dense host graphs.

Theorem 1.3.5 (Besomi, P., and Stein [19]). For all δ > 0, there exists n0 ∈ N such that
for each n, k ∈ N with n > n0 and n > k > δn the following holds. Let G be a graph on n
vertices with minimum degree at least (1 + δ)k2 and maximum degree at least (1 + δ)2k. Then
G contains a copy of every tree T with k edges such that ∆(T ) 6 k

1
67 as a subgraph.

Moreover, if we consider trees whose maximum degree is bounded by an absolute constant,
we can improve the bound on the maximum degree of the host graph given by Theorem 1.3.5
as follows.

Theorem 1.3.6 (Besomi, P., and Stein [19]). For all δ > 0 and ∆ > 2, there exists n0 ∈ N
such that for each n, k ∈ N with n > n0 and n > k > δn the following holds. Let G be
a graph on n vertices with minimum degree at least (1 + δ)k2 and maximum degree at least
2(∆−1

∆ + δ)k. Then G contains a copy of every tree T with k edges such that ∆(T ) 6 ∆.

Comparing the two variants of maximum/minimum degree conditions given by conjec-
tures 1.3.1 and 1.3.4, it seems natural to ask whether one can allow for a wider spectrum
of bounds for the maximum and the minimum degree of the host graph. We believe that it
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is possible to weaken the bound on the maximum degree given by the 2k–k2 conjecture, if
simultaneously, the bound on the minimum degree is increased. Quantitatively speaking, we
suggest the following.

Conjecture 1.3.7 (Intermediate range conjecture; Besomi, P., and Stein [17]). Let k ∈ N
and let α ∈ [0, 1

3). Let G be a graph with δ(G) > (1 + α)k2 and ∆(G) > (1 − α)2k. Then G
contains a copy of every tree with k edges as a subgraph.

Note that for α = 0, the bounds from Conjecture 1.3.7 coincide with the bounds from the
2k–k2 conjecture. In contrast, the case α = 1

3 is not included in Conjecture 1.3.7 as we believe
that the appropriate value for the maximum degree is k and not 4k

3 if the minimum degree
is 2

3k (as suggested by the 2
3 -conjecture). We show in Section 3.1 that Conjecture 1.3.7 is

asymptotically best possible for infinitely many values of α.

Again, Conjecture 1.3.7 holds for stars, for double stars, and for paths. In this thesis, we
provide further evidence for the correctness of Conjecture 1.3.7 by proving an approximate
version for bounded degree trees and large dense host graphs.

Theorem 1.3.8 (Besomi, P., and Stein [17]). For all δ > 0, there exists n0 ∈ N such that
for each α ∈ [0, 1

3) and n, k ∈ N with n > n0 and n > k > δn the following holds. Let G
be a graph on n vertices with minimum degree at least (1 + δ)(1 + α)k2 and maximum degree
at least (1 + δ)(1 − α)2k. Then G contains a copy of every tree T with k edges such that
∆(T ) 6 k

1
67 .

1.4 Trees in random graphs

The binomial random graph G(n, p) is a graph on n vertices where each of the possible
(
n
2

)
edges appears, independently, with probability p. A graph property P is a family of graphs
closed under isomorphisms. Given a graph property P , the typical question in this area
is to determine the probability of the event that G(n, p) ∈ P . For many properties, such
as monotone properties, this probability shows a phase transition as p grows from 0 to 1,
meaning that P[G(n, p) ∈ P ] changes abruptly from 0 to 1 as p passes some threshold. We
say that a graph property P has a threshold p∗ = p∗(n) if

lim
n→∞

P[G(n, p) ∈ P ] =
0 if p = o(p∗),

1 if p = ω(p∗).

If limn→∞ P(G(n, p) ∈ P) = 1 then we say that P holds with high probability. A classical
result due to Erdős and Rényi [46] states that the property of being connected has a sharp
threshold at p∗ = logn

n
. This means that for any fixed ε > 0, for p > (1 + ε) logn

n
the random

graph G(n, p) is connected with high probability, and for p 6 (1− ε) logn
n

the random graph
G(n, p) has an isolated vertex with high probability. In particular, this result states that if
p > (1 + ε) logn

n
then, with high probability, G(n, p) contains a spanning tree. A reasonable

question is therefore to ask which spanning trees appear in G(n, p) at this probability. The
following conjecture was posed by Kahn.
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Conjecture 1.4.1 (Kahn conjecture). For every ∆ > 2 there exists a positive constant C
such that the following holds. For any tree T with n vertices and ∆(T ) 6 ∆, the random
graph G(n,C logn

n
) contains a copy of T with high probability.

This conjecture has received a lot of attention over the last 20 years and was recently
solved in a much stronger form. Indeed, in 2018 Montgomery [88] showed that G(n,C logn

n
)

contains a copy of every spanning tree with bounded degree at the same time. Montgomery’s
proof relies on the absorption method for random graphs. A radically different proof was
recently found by Frankston, Kahn, Narayanan, and Park [50], who proved a fractional
version of the expectation-threshold conjecture of Kahn and Kalai [67] which, among many
other results, implies Conjecture 1.4.1.

Regarding almost spanning trees, Alon, Krivelevich, and Sudakov [5] proved that for any
α ∈ (0, 1) and ∆ > 2, there exists a constant C > 0 such that, with high probability, the
random graph G(n, C

n
) contains a copy of every tree T on (1− α)n vertices and ∆(T ) 6 ∆.

In 2014, Balogh, Csaba, and Samotij [13] showed that even by deleting a (1
2 − δ)-fraction of

the edges incident to each vertex from G(n, C
n

), the resulting subgraph still contains a copy
of every almost spanning tree of bounded degree.

Theorem 1.4.2 (Balogh, Csaba, and Samotij [13]). For every ∆ > 2 and α, δ ∈ (0, 1), there
exists C > 0 such that if p > C

n
, then G = G(n, p), with high probability, has the following

property. Let G′ ⊆ G be a subgraph with δ(G′) > (1
2 + δ)pn, then G′ contains a copy of every

tree T on (1− α)n vertices such that ∆(T ) 6 ∆.

This result is best possible in some sense. For instance, the value of p is tight up to a
constant factor since for p = o( 1

n
) the size of the largest connected component of G(n, p) is

sublinear. The maximum degree condition is tight too, since for p = O( 1
n
) the degree of a

typical vertex of G(n, p) is roughly pn = O(1). Finally, the constant 1
2 is also sharp since one

can delete a (1
2 + δ)-fraction of edges to every vertex in G(n, C

n
) so that the largest connected

component of the resulting graph has about n
2 vertices (see [13] for details).

Let us note that Theorem 1.4.2 is a random analogue of Komlós–Sárközy–Szemerédi’s
theorem (Theorem 1.2.1) for very sparse graphs. In this thesis we prove a global version of
Theorem 1.4.2, which may be seen as a sparse random analogue of the Erdős–Sós conjecture.
Namely, we prove the following theorem.

Theorem 1.4.3 (Araújo, Moreira, and P. [10]). For every r,∆ > 2 and δ ∈ (0, 1), there
exists C > 0 such that if p > C

n
, then G = G(n, p), with high probability, has the following

property. Let G′ ⊆ G be a subgraph such that e(G′) >
(

1
r

+ δ
)
p
(
n
2

)
, then G′ contains a copy

of every tree T with n
r
edges such that ∆(T ) 6 ∆.

We point out that Theorem 1.4.3 is best possible in the same ways as Theorem 1.4.2 is
tight. Again, the value of p is tight up to a constant factor since for smaller values of p the
largest connected component has sublinear size, and one cannot hope to find trees of higher
degree for p = O( 1

n
). Moreover, the 1

r
factor cannot be improved. Indeed, one can partition

the vertex set in r+1 parts such that the smaller part has at most r vertices and the others r
parts have the same number of vertices, and thus fewer than n

r
. Then, with high probability,
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the graph G′ ⊆ G(n, p) obtained by removing edges between parts has (1
r
− o(1))p

(
n
2

)
edges

but every connected component of G′ has less than n
r
vertices.

We wonder if Theorem 1.4.3 holds for smaller trees as well. It is tempting to conjecture
that, for a reasonable p and a tree T with bounded degree, if G′ ⊆ G(n, p) is a subgraph with
e(G′) > (1 +o(1))p|T |n2 , then G

′ contains a copy of T . We observe that Theorem 1.4.3 shows
that this conjecture holds for trees with linear size, however, we believe that for smaller trees
this problem might be quite hard. A more tractable question is the following.

Problem 1.4.4. Let f : N → N be a function such that f(n) = o(n), and let T be a
tree on f(n) vertices and maximum degree bounded by some fixed constant ∆. Determine
p = p(n) and a constant C > 0 so that, with high probability, every subgraph G′ ⊆ G(n, p)
with e(G′) > Cpf(n)n contains a copy of T .

When f(n) is a constant function, we believe that this problem follows by an application
of the hypergraph container method (see [15] for a survey). However, it is not clear what
happens if f(n) grows with n.
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Chapter 2

Preliminaries

2.1 Basic notation

Given a positive integer ` ∈ N, we write [`] = {1, . . . , `}. Also, we will write a � b to
indicate that given b, we choose a significantly smaller than b. The value for such a can be
explicitly calculated from the proofs, but sometimes we will prefer to omit it for clarity of
the presentation. For real numbers a, b, x, we write a = b±x if a ∈ [b−x, b+x]. Given a set
S and an integer 0 6 k 6 |S|, we denote by

(
S
k

)
the collection of all subsets of S of size k.

A graph is a pair G = (V,E), where V is the set of vertices of G and E ⊆
(
V
2

)
is the set

of edges of G. If it is not specified, we write V (G) and E(G) for vertex set and edge set of
G, respectively. We say that a graph G is bipartite if there exists a partition V (G) = A ∪B
such that each edge e ∈ E(G) has one endpoint in A and the other in B. If G is bipartite,
we will write G = (A,B) to refer that G has a bipartition V (G) = A ∪B.

Given a graph H, we write |H| = |V (H)| for its number of vertices and e(H) = |E(H)|
for the number of edges of H. We write δ(H), d(H), and ∆(H), for the minimum, average,
and maximum degree of H, respectively. As usual, degH(x) denotes the degree of a vertex
x ∈ V (H), and we write NH(x) for the set of neighbours of x. Moreover, given a set
S ⊆ V (H), we write NH(x, S) = NH(x)∩ S for the neighbourhood of x in S and degH(x, S)
for the respective degree. For two disjoint sets X, Y ⊆ V (H), we write EH(X, Y ) for the set
of edges xy ∈ E(H) such that x ∈ X and y ∈ Y , and we set eH(X, Y ) := |EH(X, Y )|. In all
of the above, we omit the subscript H if it is clear from the context.

Given a set U ⊆ V (H), we write H[U ] for the graph induced in H by the set U , that is,
the vertex set of H[U ] is U and the edge set corresponds to all edges having both endpoints
in U . For two disjoint sets X, Y ⊆ V (H), we write H[X, Y ] for the bipartite graph induced
in H by X and Y . We say a vertex x sees a set U ⊆ V (H) if it sends at least one edge to U .

Given a collection of sets F , we write ⋃F for the union of all members of F . For instance,
if F = {F1, . . . , Fm} then

⋃F = F1∪· · ·∪Fm. If G is a collection of graphs, then ⋃G denotes
the graph which is the union of all graphs in G.
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Given two graphs F and G, a homomorphism from F to G is a function ϕ : V (F )→ V (G)
which preserves adjacency, that is, if for every edge e ∈ E(F ) we have ϕ(e) ∈ E(G). An
embedding ϕ of F into G is an injective homomorphism from F to G and we say that F
embeds into G if there exists an embedding ϕ : V (F )→ V (G). Moreover, we say that F is a
subgraph of G if F embeds into G.

2.2 Trees

Let us go through some notation for trees. We will write (T, r) for a tree T rooted at a vertex
r ∈ V (T ). Given a rooted tree (T, r) and vertices x, y ∈ V (T ), we say that x is below y (resp.
y is above x) if x lies on the unique path from y to r (our trees grow from the top to the
bottom). If in addition xy ∈ E(T ), we say y is a child of x, and x is the parent of y. We
note that this defines a partial order on the vertex set of T . The tree induced by x, denoted
by T (x), is the subtree of T induced by all vertices above x. For i > 0, the i-th level of T ,
denoted by Li, consists of all vertices at distance i from r.

We say that a vertex of a tree is a leaf if it has degree 1. A bare path in a tree is a path
all whose internal vertices have degree 2 in the tree. The next lemma has been extensively
used in the literature of tree embeddings, as it states that the structure of any given tree
satisfies a certain dichotomy. Namely, each tree contains either a large number of leaves or
a large number of bare paths of some fixed constant length (we refer to [76, 88] for a more
general statement and a proof, and note that here and elsewhere, the length of a path is its
number of edges).

Lemma 2.2.1 (Lemma 2.1 from [88]). Let ` > 2 and let T be a tree. Then either T has at
least |T |/4` leaves or it has at least |T |/4` vertex disjoint bare paths, each of length `.

Trees are bipartite graphs whose bipartition classes may be as imbalanced as possible.
For instance, a path of length k has colour classes of size differing in at most 1, and a star
with k edges has a colour class of size 1 and the other class of size k. Nevertheless, for trees
having maximum degree bounded by a constant one can guarantee that both colour classes
have linear size.

Fact 2.2.2. Let ∆ > 2 and let T be a tree with bipartition V (T ) = C ∪ D and maximum
degree ∆(T ) 6 ∆. Then min{|C|, |D|} > k

∆ .

2.2.1 Basic results on tree embedding

As we mentioned before, a greedy argument shows that every k-edge tree can be embedded
into any graph of minimum degree at least k. We now give two lemmas that generalise this
simple observation.

Lemma 2.2.3. Let ∆, h, k ∈ N, let (T, r) be a tree with k − h edges and ∆(T ) 6 ∆, and let
G be a graph satisfying

11



(i) δ(G) > ∆ + h;

(ii) there are at most h vertices x ∈ V (G) with deg(x) < k.

Then T can be embedded in G. Moreover, any vertex v ∈ G can be chosen as the image of r.

Proof. We construct an embedding φ as follows. We set φ(r) := v. Since deg(v) > ∆ + h,
we can embed each neighbour of r into a neighbour of v that has degree at least k. Since T
has k− h vertices, we can then embed the rest of T levelwise using only vertices of degree at
least k at each step.

Observe that for h = 0 Lemma 2.2.3 recovers the greedy procedure we mentioned above.
Moreover, if the host graph G is bipartite, one can relax the minimum degree condition
for one side of the bipartition of G. The proof of the following result is a straightforward
modification of the proof of Lemma 2.2.3.

Lemma 2.2.4. Let ∆, h, k1, k2 ∈ N, let (T, r) be a tree with colour classes C,D of sizes k1−h
and k2 − h, respectively, and ∆(T ) 6 ∆. Let G = (A,B) be a bipartite graph such that

(i) δ(G) > ∆ + h;

(ii) there are at most h vertices a ∈ A with deg(x) < k2;

(iii) there are at most h vertices b ∈ B with deg(x) < k1.

Then T can be embedded into G with C going to A and D going to B. Moreover, if r ∈ C
(resp. D), then any vertex a ∈ A (resp. b ∈ B) can be chosen as the image of r.

2.2.2 Cutting trees

In this section, we present some results regarding how to cut a tree into small pieces. The
first two results allow us to find a cut vertex which split a tree into subtrees of controlled
sizes. On the other hand, the last result states that any large enough tree can be decomposed
into a bounded family of small subtrees.

Lemma 2.2.5. Let T be a tree on k+1 vertices, and let x be a leaf of T . Then T has a vertex
z such that every component of T − z has at most bk2c vertices, except the one containing x,
which has at most dk2e vertices.

Proof. Let z be a maximal vertex, with respect to the order in (T, x), such that |T (z)| > bk2c.
Then every component of T −z has at most bk2c vertices: This is obvious (from the definition
of z) for the components not containing x, while the component that contains x only has
|T | − |T (z)| 6 k + 1− (bk2c+ 1) = dk2e vertices.

The following lemma is a generalisation of Lemma 2.2.5, stating that one can control even
more the size of at least one of the components (see [61] for other variants).
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Lemma 2.2.6. For all 0 < γ 6 1 and for all k > 200
γ
, any given tree T with k edges has a

subtree (T ∗, t∗) such that

(i) γk
2 6 |V (T ∗)| 6 γk; and

(ii) every component of T − T ∗ is adjacent to t∗.

Proof. Let r ∈ V (T ) be an arbitrary vertex and let t∗ ∈ V (T ) be a maximal vertex, with
respect to the order in (T, r), such that |T (t∗)| > γk

2 . Note that, by maximality of t∗, every
child u of t∗ satisfies |T (u)| < γk

2 . Let U be a minimal subset of the children of t∗ such that
|⋃u∈U T (u)| > γk/2. Then the tree T ∗ induced by t∗ and ⋃

u∈U T (u) satisfies the desired
properties.

By iteratively applying Lemma 2.2.6, we can show that any tree can be decomposed into
a bounded family of arbitrary small subtrees. Versions of this result have already appeared
in earlier literature on tree embeddings, see for instance [2].

Proposition 2.2.7. Let β ∈ (0, 1) and let (T, r) be a rooted tree with k > β−1 edges. Then
there exists a set S ⊆ V (T ) and a family P of disjoint rooted trees such that

1. r ∈ S;

2. P consists of the components of T − S, and each P ∈ P is rooted at the vertex closest
to the root of T ;

3. |P | 6 βk for each P ∈ P; and

4. |S| < 1
β

+ 2.

The vertices from S will be called seeds, and the components from P will be called the pieces
of the decomposition.

Proof. We iteratively construct the set S, starting with T 0 := T and S0 := ∅. At step i+ 1,
let si+1 be a maximal vertex of T i (with respect to the order induced by r) such that

|T i(si+1)| > βk.

Note that by the maximality of si+1 the trees in T i(si+1)−si+1 each cover at most βk vertices.
We obtain Si+1 by adding si+1 to Si and set T i+1 = T i − T i(si+1). If at some step j there
is no vertex sj+1 with |T j(sj+1)| > βk, then |T j| 6 βk and we end the process. We set
S := Sj ∪ {r} and let P be the set of connected components of T − S. Note that Properties
(1)–(3) clearly hold. For (4), we observe that |T i+1| < |T i| − βk and hence

0 6 |Tm| < |T 0| − j · βk,

which implies that |S| = j + 1 6 |T |
βk

+ 1 < 1
β

+ 2.
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2.3 The Regularity Lemma

The celebrated Szemerédi’s regularity lemma [105] is one of the most powerful tools in ex-
tremal graph theory. It states that the vertex set of every large enough graph can be par-
titioned into finitely many parts so that most of the pairs of these parts induces a bipartite
quasi-random graph. In order to state this result, let us begin with some definitions.

Let H = (A,B) be a bipartite graph with density

d(A,B) := e(A,B)
|A||B|

.

For a fixed ε > 0, the pair (A,B) is said to be ε-regular if for any X ⊆ A and Y ⊆ B, with
|X| > ε|A| and |Y | > ε|B|, we have

|d(X, Y )− d(A,B)| 6 ε.

Moreover, an ε-regular pair (A,B) is called (ε, η)-regular if d(A,B) > η. Given an ε-regular
pair (A,B), we say that X ⊆ A is ε-significant if |X| > ε|A|, and similarly for subsets of B.
A vertex x ∈ A is called ε-typical to a significant set Y ⊆ B if deg(x, Y ) > (d(A,B)− ε)|Y |.
We simply write regular, significant or typical if ε is clear from the context.

It it well known that regular pairs behave, in many ways, like random bipartite graphs
with the same edge density. The next well known fact (see for instance [74]) states that in a
regular pair almost every vertex is typical to any given significant set, and also that regularity
is inherited by subpairs.
Fact 2.3.1. Let (A,B) be an ε-regular pair with density η. Then the following holds:

1. For any ε-significant Y ⊆ B, all but at most ε|A| vertices from A are ε-typical to Y .

2. Let α ∈ (0, 1). For any subsets X ⊆ A and Y ⊆ B, with |X| > α|A| and |Y | > α|B|,
the pair (X, Y ) is 2ε

α
-regular with density between η − ε and η + ε.

The regularity lemma of Szemerédi states that, for any given ε > 0, the vertex set of any
large enough graph can be partitioned into a bounded number of sets, also called clusters,
such that the graph induced by almost any pair of these clusters is ε-regular. We will make
use of the well known degree form of the regularity lemma (see for instance [77]). Call a
vertex partition V (G) = V1 ∪ · · · ∪ V` an (ε, η)-regular partition if

1. |V1| = |V2| = · · · = |V`|;

2. Vi is independent for all i ∈ [`]; and

3. for all 1 6 i < j 6 `, the pair (Vi, Vj) is ε-regular with density either d(Vi, Vj) > η or
d(Vi, Vj) = 0.

Lemma 2.3.2 (Lemma 41 from [77]). For all ε > 0 and m0 ∈ N there are N0,M0 such that
the following holds for all η ∈ [0, 1] and n > N0. Any n-vertex graph G has a subgraph G′,
with |G| − |G′| 6 εn and degG′(x) > degG(x) − (η + ε)n for all x ∈ V (G′), such that G′
admits an (ε, η)-regular partition V (G′) = V1 ∪ · · · ∪ V`, with m0 6 ` 6M0.
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The (ε, η)-reduced graph R corresponding to the (ε, η)-regular partition given by Lemma 2.3.2
has vertex set V (R) = {Vi : i ∈ [`]} in which ViVj is an edge if and only if d(Vi, Vj) > η.
Henceforth, we will use calligraphic letters to refer to the reduced graph, or to subsets of
its vertex set. Moreover, given C ⊆ V (R), we write |C| for the number of clusters in C. In
contrast, we write |⋃C| for the number of vertices of the subgraph ⋃C of G. Now we state
some useful facts about the reduced graph (see [74] for a proof).

Fact 2.3.3. Let G be a graph on n vertices and let R be an (ε, η)-reduced graph of G. Then
the following holds.

(i) Given a cluster C ∈ V (R) we have

degR(C) > 1
|C|

∑
v∈C

deg(v) · |R|
n
.

In particular, summing over all clusters we have d(R) > d(G) · |R|
n
.

(ii) Let Y be a collection of significant sets in G and let C ∈ V (R). Then

|{Y ∈ Y : v is typical to Y }| > (1−
√
ε)|Y|

for all but at most
√
ε|C| vertices v ∈ C.

We close this section with a lemma that illustrates why regularity is useful for embedding
trees. It states that a tree will always fit into a regular pair, if the tree is small enough.

Lemma 2.3.4. Let 0 < β 6 ε 6 1
25 . Let (A,B) be a (ε, 5

√
ε)-regular pair with |A| = |B| = m,

and let X ⊆ A, Y ⊆ B,Z ⊆ A∪B be such that min{|X \Z|, |Y \Z|} >
√
εm. Then any tree

T on at most βm vertices can be embedded into (X ∪ Y ) \ Z. Moreover, for each v ∈ V (T )
there are at least 2εm vertices from (X ∪ Y ) \ Z that can be chosen as the image of v.

Proof. We construct the embedding φ : V (T ) → X ∪ Y levelwise, starting with the root,
which is embedded into a typical vertex of (X ∪ Y ) \ Z. At each step i we ensure that all
vertices of level i are embedded into vertices of X \Z (or Y \Z) that are typical with respect
to the unoccupied vertices of Y \ Z (or X \ Z). This is possible, because at each step i, and
for each vertex v of level i, the degree of a typical vertex into the unoccupied vertices on
the other side is at least 4εm, and there are at most εm non typical vertices and at most
|T | 6 βm already occupied vertices.
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Chapter 3

Embedding trees with maximum and
minimum degree conditions

This chapter is based on joint work with Guido Besomi and Maya Stein [17, 19].

In this chapter, we will prove a series of results regarding maximum and minimum degree
conditions that ensure the containment of every tree with maximum degree bounded by
certain function. Namely, we will prove Theorems 1.3.5,1.3.6, 1.3.3, and 1.3.8. Most of our
results rely on our key embedding lemma (Lemma 3.5.3) and thus let us start by describing
this lemma, which will be stated and proved in Section 3.5.

Lemma 3.5.3 provides an embedding of any tree T with maximum degree bounded by k 1
r ,

where r is a constant, into any host graphG of suitable minimum degree, as long asG contains
one of several favourable scenarios explicitly described in the statement of Lemma 3.5.3. The
scenarios contemplated by the lemma cover the situation where, after applying the regularity
lemma to G, the corresponding reduced graph has a large1 component, but also cover a
number of situations where there is no large component. In these latter situations, we will
have to use a maximum degree vertex x of G, as well as a suitable cut vertex z of T , and
embed the components of T − z into components of G− x. Several possible shapes and sizes
of components possibly seen by x are taken into account in Lemma 3.5.3.

Once we have Lemma 3.5.3, the proof of Theorems 1.3.5, 1.3.6 and 1.3.3 will be fairly
easy. We only need to regularise the host graph G and then show that we are in one of the
situations as described in Lemma 3.5.3. This is done in Section 3.6.

Let us now sketch the proof of our key embedding lemma. There are two crucial ingredi-
ents for the proof of Lemma 3.5.3. One of these ingredients is some work that we accomplish
in Section 3.2. In that section, we prove some useful results on cutting trees, the most im-
portant ones being Lemma 3.2.1 and Proposition 3.2.5. These two auxiliary results allow us
to cut a tree at some convenient cut vertex z and then group the components of T − z into
two or three groups (as necessary), so that the union of the components from these groups
form sets of convenient sizes. Moreover, we show that it is possible to 2-colour the vertices

1That is, large enough to accommodate T .
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of T − z in a way that the resulting colour classes are not too unbalanced. This will be very
important when, in the context of Lemma 3.5.3, we wish to embed several components of
T − z into a single bipartite component of the reduced graph of G− x.

The other crucial ingredient for the proof of Lemma 3.5.3 is the preparatory work accom-
plished in Sections 3.3 and 3.4. There we show how to embed a tree into a host graph that,
after an application of the regularity lemma, has a reduced graph with a large connected
component. For this, we cut the tree into tiny subtrees and few connecting vertices, and
then embed these trees into suitable edges of the reduced graph. This approach has been
used earlier in the literature, see for instance [2]. The only remaining problem is how to make
the connections between the tiny trees.

For these connections, we use paths in the reduced graph. For this argument to work, we
have to bound the maximum degree of the tree we wish to embed in terms of the diameter of
the reduced graph of G (another argument will allow us to relax the bound later, see below).
Also, we have to distinguish two cases, namely whether the large component of the reduced
graph is bipartite or not. If it is bipartite, we embed the larger colour class of the tree into
the larger side of the component and, since the smaller colour class of the tree is smaller than
the minimum degree of G, each tiny tree can be embedded into an unsaturated edge. If the
component is non-bipartite, we can find a large connected matching (see Lemma 3.3.8) that
can be filled, in a balanced way, with tiny trees.

The two cases will be treated in Propositions 3.3.1 and 3.3.9, respectively. In the remain-
der of Section 3.3, we deduce some corollaries from these propositions, which will come in
handy later when, in the proof of Lemma 3.5.3, we need to embed parts of the tree into parts
of the host graph that correspond to different components of its reduced graph.

In Section 3.4, we unify and improve the results from Section 3.3. Namely, in Proposi-
tion 3.4.3 we provide an embedding result for trees into large connected components of the
reduced graph of G, where the bound on the maximum degree of the tree no longer depends
on the diameter of the reduced graph of the host graph, but instead is k 1

r , where r is an
absolute constant. The idea for the proof of this result is that we first try to follow the
embedding scheme from the previous section, but only using paths of bounded length for the
connections. If this fails, then the only possible reason is that we could not reach suitable
free space at a bounded distance from the cluster C we were currently embedding into. In
this case, we abort our mission, and we are able to prove that it is possible to embed the tree
into a ball of appropriate radius centered at C.

Finally, in Section 3.7 we prove Theorem 1.3.8. The proof of Theorem 1.3.8 is more
involved and does not directly follows from Lemma 3.5.3. The proof is based on a structural
result for graphs with minimum degree above k

2 and maximum degree above 4k
3 avoiding some

tree with k edges and bounded degree (Theorem 3.7.2).
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3.1 Sharpness of Conjecture 1.3.7

This section is devoted to show the asymptotical tightness of our conjecture for infinitely
many values of α. Namely, we will prove the following result.

Proposition 3.1.1. For all odd ` ∈ N with ` > 3, and for all γ > 0 there are k ∈ N, a
k-edge tree T , and a graph G with δ(G) > (1 + 1

`
− γ)k2 and ∆(G) > 2(1− 1

`
− γ)k such that

T does not embed in G.

In order to be able to prove Proposition 3.1.1, let us consider the following example.

Figure 3.1: The graph Hk,`,c from Example 3.1.2

Example 3.1.2. Let `, k, c ∈ N with 1 6 c 6 k
`(`+1) such that ` > 3 is odd and divides k.

For i ∈ {1, 2}, we define Hi = (Ai, Bi) to be the complete bipartite graph with

|Ai| = (`− 1)
(
k

`
− 1

)
and |Bi| =

k

2 + (c− 1)(`+ 1)
2 − 1.

We obtain Hk,`,c by adding a new vertex x to H1 ∪ H2, and adding all edges between x and
A1 ∪ A2. Observe that

δ(Hk,`,c) = min{|A1|, |B1|+ 1} = |B1|+ 1 = k

2 + (c− 1)(`+ 1)
2

and

∆(Hk,`,c) = |A1 ∪ A2| = 2(`− 1)
(
k

`
− 1

)
.

Let Tk,` be the tree formed by ` stars of order k
`
and an additional vertex v connected to the

centres of the stars.
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We will use Example 3.1.2 to prove Proposition 3.1.1. However, a similar proposition
(with slightly weaker bounds) could be obtained by replacing one of the graphs Hi from
Example 3.1.2 with a small complete graph. See Example 3.1.5 near the end of this section.

Let us now show that the graph Hk,`,c from Example 3.1.2 does not contain the tree Tk,`.

Lemma 3.1.3. For all `, k, c ∈ N with 1 6 c 6 k
`(`+1) such that ` > 3 is odd and divides k,

the tree Tk,` from Example 3.1.2 does not embed in the graph Hk,`,c.

Proof. Observe that we cannot embed Tk,` in Hk,`,c by mapping v into x, since then, one of
the sets Bi would have to accommodate all leaves of at least `+1

2 of the stars of order k
`
. But

these are at least

`+ 1
2 ·

(
k

`
− 1

)
= k

2 + 1
2`(k − `(`+ 1)) > k

2 + 1
2(c− 1)(`+ 1) > |Bi|

leaves in total, so they will not fit into Bi.

Moreover, we cannot map v into one of the Hi, because then we would have to embed at
least ` − 1 stars into Hi. The leaves of these stars would have to go to the same side as v,
but together these are

(`− 1)
(
k

`
− 1

)
+ 1 > |Ai| > |Bi|

vertices (note that we count v), so this, too, is impossible. We conclude that the tree Tk,`
does not embed in Hk,`,c.

Before we prove Proposition 3.1.1, let us state a weaker result which, in particular, proves
the tightness of Conjecture 1.3.4.

Proposition 3.1.4. For all α ∈ (0, 1
2) there are k ∈ N, a k-edge tree T , and a graph G with

δ(G) = k
2 and ∆(G) > 2(1− α)k such that T does not embed in G.

Proof. Given α ∈ (0, 1), we set ` := 2d 1
α
e − 1. Then ` > 3 is odd, and we can consider the

tree Tk,` and the graph Hk,`,c from Example 3.1.2, where we take k := `(` + 1) and c := 1.
By Lemma 3.1.3, we know that Tk,` does not embed in Hk,`,c.

Observe that δ(Hk,`,c) = k
2 and, by our choice of k we have

∆(Hk,`,c) = 2(`− 1)
(1
`
− 1
k

)
k = 2

(
1− 2

`+ 1

)
k,

and therefore, ∆(Hk,`,c) > 2(1− α)k, which is as desired.

Let us now prove Proposition 3.1.1. For this, we will let the constant c go to infinity.

Proof of Proposition 3.1.1. Let ` and γ be given. For any fixed integer c > 1, set

k := c`(`+ 1),
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and consider the tree Tk,` and the host graph Hk,`,c from Example 3.1.2 for parameters k, `
and c. Observe that

δ(Hk,`,c) >
(

1 + (c− 1)(`+ 1)
k

)
k

2 =
(

1 + c− 1
c`

)
k

2 =
(

1 + 1
`
− 1
c`

)
k

2

and

∆(Hk,`,c) = 2
(

1− 1
`
− `− 1

k

)
k > 2

(
1− 1

`
− 1
c`

)
k.

So, for any given γ we can choose c large enough such that

δ(Hk,`,c) >
(

1 + 1
`
− γ

)
k

2 and ∆(Hk,`,c) > 2
(

1− 1
`
− γ

)
k,

which is as desired, since by Lemma 3.1.3, we know that Tk,` does not embed in Hk,`,c,

Let us now quickly discuss an alternative example, which gives worse bounds than the
ones given in Proposition 3.1.1, but might be interesting because of its different structure.

Example 3.1.5. Let k, `, c be as in Example 3.1.2. Let C be a complete graph of order
k
2 + (c−1)(`+1)

2 . Let Gk,`,c be obtained by taking C and the bipartite graph H1 = (A1, B1) from
Example 3.1.2, and joining a new vertex x to all vertices from A1 and to all vertices in C.
Then δ(Gk,`,c) = k

2 + (c−1)(`+1)
2 and ∆(Gk,`,c) = 3`−2

2` k + (c−3)(`+1)
2 − 2, and an analogue of

Lemma 3.1.3 holds.

Moreover, in the same way as in the proof of Proposition 3.1.1, we can show that if k is
large enough in terms of (odd) ` > 3 and γ, then

δ(Gk,`,c) > (1 + 1
`
− γ)k2 and ∆(Gk,`,c) >

3
2(1− 1

`
− γ)k.

This example, as well as the examples underlying Propositions 3.1.4 and 3.1.1 illustrate
that requiring a maximum degree of at least ck, for any c < 2, and a minimum degree of at
least k

2 is not enough to guarantee that any graph obeying these conditions contains all k-edge
tree as subgraphs. Nevertheless, we could not come up with any radically different examples,
and it might be that graphs that look very much like the graph Hk,`,c from Example 3.1.2 or
the graph Gk,`,c from Example 3.1.5 are the only obstructions for embedding all k-edge trees.

To finish this section, let us discuss about the values of α not covered in Proposition 3.1.1.
For any α ∈ [0, 1

3) and γ > 0 small, we can construct examples of graphs with minimum
degree at least (1 + α − γ)k2 and maximum degree at least 2(1 − g(α) − γ)k, where g(α)
is a function which is bigger than α but reasonably close to it. In particular, g(α) satisfies
|α − g(α)| = O(α2), and, more explicitly, for any even ` > 3 we obtain g(1

`
) = 1

`
+ 1

`(`−2) .
These examples are very similar to Example 3.1.2. The difference is that the small stars that
make up the tree may have different sizes (more precisely, one star is smaller than the other
ones). The host graph is the same, with slightly adjusted size of the sets Ai.
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3.2 Finding a good cut vertex

In this section, we prove a series of results regarding how to find a cut vertex z in a tree T
and a 2-colouring of the vertices of T − z such that both colour classes have controlled size.
This will be particularly useful when embedding trees into bipartite graphs.

We first prove an auxiliary lemma on partitioning sequences of integers. This lemma will
be used in the proofs of both Lemma 3.2.3 and Proposition 3.2.5, and also in the proofs of
Theorems 1.3.5 and 1.3.6.

Lemma 3.2.1. Let m, t ∈ N+ and let {ai}mi=1 be a sequence of positive integers such that
0 < ai 6 d t2e, for each i ∈ [m], and ∑m

i=1 ai 6 t. Then

1. there is a partition {I1, I2, I3} of [m] such that ∑i∈I3 ai 6
∑
i∈I2 ai 6

∑
i∈I1 ai 6 d

t
2e ;

and

2. there is a partition {J1, J2} of [m] such that ∑i∈J2 ai 6
∑
i∈J1 ai 6

2
3t.

Proof. We first pick a set I1 ⊆ [m] with ∑
i∈I1 ai 6 d t2e that maximises the sum. From

[m] \ I1 we extract a second set I2 with ∑i∈I2 ai 6 d
t
2e that maximises the sum. The choice

of I1 and I2 ensures that for I3 := [m] \ (I1 ∪ I2) it also holds that ∑i∈I3 ai 6 d
t
2e, and that∑

i∈I3 ai 6
∑
i∈I2 ai. Therefore, the sets I1, I2, I3 fulfil the conditions in (i). (Notice that I3,

and possibly also I2, may be empty.)

For (ii) we proceed as follows. If I3 = ∅ we just set J1 := I1 and J2 := I2, which clearly
satisfies (ii). If I3 6= ∅ we define J1 as one of the sets I2 ∪ I3 and I1, and J2 as the other
set, in a way that ∑i∈J2 ai 6

∑
i∈J1 ai. Observe that the second part of (i) implies that∑

i∈I2∪I3 ai 6
2
3t. So again, (ii) is satisfied.

Remark 3.2.2. Observe that the set I3 from Lemma 3.2.1 (i) has at most one element,
because otherwise, due to the maximality of I1 and I2, there would exist j, k ∈ I3 such that
aj +∑

i∈I1 ai > d
t
2e and ak +∑

i∈I2 ai > d
t
2e, a contradiction to the fact that ∑m

i=1 ai 6 t.

Lemma 3.2.1 tells us that after using Lemma 2.2.5 to cut a tree T at a vertex z, we can
group the components of T −z in such a way that the total size of each group is conveniently
bounded. We would now like to say something about the balancedness of the resulting forest,
and for this we resort to the concept of vertex colouring.

For a proper 2-colouring c : V (G)→ {0, 1} of a graph G, with colours 0 and 1, we define

c0 := {v ∈ V (G) : c(v) = 0} and c1 := {v ∈ V (G) : c(v) = 1}.

For better readability, throughout all proofs we will stick to the convention that |c0| > |c1|
(but this will be restated in each proof).

Lemma 3.2.3. Every tree T with t edges has a cut vertex z such that T − z admits a proper
2-colouring c : V (T − z)→ {0, 1} with |c0| 6 3t−1

4 and |c1| 6 t
2 .
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Proof. We apply Lemma 2.2.5 to obtain a cut vertex z and a forest T − z with components
{Ti}mi=1 such that |Ti| 6 d t2e, for every i ∈ [m]. We will now use Lemma 3.2.1 in order to
group the components of T − z. Setting ai := |Ti|, the lemma yields three sets I1, I2 and I3
such that the forests Fj := ⋃

i∈Ij Ti, with j ∈ {1, 2, 3}, cover at most d t2e vertices each. Also,
the forest F1 covers at least t

3 vertices.

For j ∈ {1, 2, 3}, consider any proper 2-colouring cj of the forest Fj, with colour classes
cj0 and cj1, such that F1 and F2 each meet both colours (This is possible unless |F1| and/or
|F2| is 1, and in that case we are done anyway). For each j, we assume that |cj0| > |cj1|.

We split the remainder of the proof into two cases.

Case 1: |c1
0| >

3|F1|−1
4 .

In this case, we define the colouring c by setting c0 := c1
0∪c2

1∪c3
1 and c1 := V (T −z)\c0 =

c1
1 ∪ c2

0 ∪ c3
0. Then,

|c0| = |c1
0|+ |c2

1|+ |c3
1| 6 |F1| − 1 + |F2|

2 + |F3|
2

6
t+ 1

4 − 1 + t

2
6

3t− 1
4 ,

where the second inequality follows from the equality |F1| − 1 + |F2|
2 + |F3|

2 = |F1|
2 − 1 + |T−z|

2 .
Moreover,

|c1| 6 t− |c1
0| − |c2

1| 6 t− 3|F1| − 1
4 − 1 6 t− t− 1

4 − 1 6
3t− 1

4 ,

where the penultimate inequality comes from the fact that |F1| > t
3 . Hence, max{|c0|, |c1|} 6

3t−1
4 ; renaming the colour classes if necessary we get the desired result.

Case 2: |c1
0| <

3|F1|−1
4 .

In this case, we define the colouring c by setting c0 := c1
0∪c2

1∪c3
0 and c1 := V (T −z)\c0 =

c1
1 ∪ c2

0 ∪ c3
1. Then,

|c0| <
3|F1| − 1

4 + |F2|
2 + |F3| =

|T − z|
2 + |F1|+ 2|F3| − 1

4

6
t

2 + |F1|+ |F2|+ |F3| − 1
4

= 3t− 1
4 ,

and
|c1| 6

|F1|
2 + |F2| − 1 + |F3|

2 = t

2 + |F2|
2 − 1 6

3t− 1
4 .

Again, we obtain max{|c0|, |c1|} 6 3t−1
4 , swapping the colour classes if necessary.
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Let us remark that the bound 3t−1
4 , given by Lemma 3.2.3, is best possible if we insist that

the cut vertex is as the given by Lemma 2.2.5. This is illustrated by the following example.

Let t be divisible by four and consider the tree obtained by identifying the central vertex
of a star of order t

2 with an end vertex of a path of order t
2 + 2. Let z be the cut vertex

provided by Lemma 2.2.5. Then z leaves exactly two components: a path of order t
2 and a

star of order t
2 . One of the colour classes of this forest necessarily contains 3t

4 − 1 vertices.

Nevertheless, it is possible to cut the tree at a different cut vertex so that the resulting
forest admits a significantly more balanced colouring than the one given by Lemma 3.2.3.
This is the purpose of Proposition 3.2.5 below. Before we state this proposition, let us
introduce some useful notation.

Definition 3.2.4 (Colouring imbalance). Given a graph G and a proper 2-colouring of its
vertex set c : V (G)→ {0, 1}, we define the imbalance of c as

σ(c) := |c0| − |c1|.

For a tree T , we will use σ(T ) to denote the imbalance of its unique 2-colouring.

Proposition 3.2.5. Let T be a tree with t edges. Then there exist z ∈ V (T ) and a proper
2-colouring c : V (T − z)→ {0, 1} of T − z, with |c1| 6 |c0|, such that |c0| 6 2t

3 and |c1| 6 t
2 .

Proof. We may assume that t > 3. Assume the proposition does not hold, that is, for every
z ∈ V (T ) and every proper 2-colouring of T − z, the heavier colour class of T − z contains
more than 2t

3 vertices.

Let z0 ∈ V (T ) and c : V (T − z0)→ {0, 1} as given by Lemma 3.2.3. By our assumption
above, we know that c0, the heavier colour class induced by c, contains between 2t

3 and 3t−1
4

vertices, while c1, the lighter colour class, contains between t
4 and t

3 vertices.

Consider the set {Ti}i∈I of all components of T − z0. Let J ⊆ I be the set of all indices
j such that Tj has more vertices in c0 than in c1. So clearly,∑

i∈I\J
σ(Ti) 6 0 (3.1)

and ∑
j∈J

σ(Tj) > |c0| − |c1| >
t

3 . (3.2)

Moreover, we claim that

for each J ′ ⊆ J either
∑
j∈J ′

σ(Tj) <
t

12 or
∑
j∈J ′

σ(Tj) >
t

3 . (3.3)

Indeed, if this were not true for some J ′ ⊆ J , we could invert the colours in all trees in
{Tj}j∈J ′ . This yields a colouring with both colour classes having at most 2t

3 vertices, because
c0 would have lost at least t

12 vertices, and c1 would have gained at most t
3 vertices. This

contradicts our assumption, and thus proves (3.3).
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We say that a family J ′ ⊆ J is small if ∑j∈J ′ σ(Tj) < t
12 , and large otherwise (that is,

by (3.3), if ∑j∈J ′ σ(Tj) > t
3). Note that (3.2) implies that J is large.

Because of (3.3), for any partition J = C ∪ D we have that either C or D is large. So,
taking a minimal large subset of J we see that

there is a j∗ ∈ J such that {j∗} is large. (3.4)

Notice that if J \ {j∗} was large we could switch the colour classes in each of the associated
trees and obtain a contradiction to the initial assumption. So,

J \ {j∗} is small, (3.5)

and therefore

∑
i∈I\{j∗}

σ(Ti) 6
∑

i∈J\{j∗}
σ(Ti) +

∑
i∈I\J

σ(Ti) <
t

12 . (3.6)

Now, we apply Lemma 2.2.5 to obtain z1 ∈ V (Tj∗) such that every component of Tj∗ − z1

covers at most d |Tj∗ |−1
2 e vertices. Let Tz0 denote the component of T − z1 that contains z0

and let {C`}`∈L denote the set of all other components of T − z1. Further, let Cz0 denote the
unique component of Tj∗ − z1 that is contained in Tz0 , if such a component exists. Observe
that Lemma 2.2.5 allows us to assume that

|Cz0| 6
⌊
|Tj∗ | − 1

2

⌋
6

⌊
d t2e − 1

2

⌋
6
t− 1

4 . (3.7)

Next, we group the elements of {C`}`∈L into two forests, FA and FB, satisfying

max{|FA|, |FB|} 6 t+ 1
3 , (3.8)

which is possible by Lemma 3.2.1 (ii), and since max{ |Tj∗ |−1
2 , 2

3 |Tj∗|} 6
t+1

3 .

For i ∈ {A,B}, consider the proper 2-colouring ci induced by Tj∗ on F i. By symmetry,
we may assume that

σ(cA) > σ(cB). (3.9)

Observe that by (3.2), and by the choice of ci, we have that

t

3 < σ(Tj∗) 6 σCz0∪{z1} + σ(cA) + σ(cB),

where σCz0∪{z1} denotes the imbalance that Tj∗ induces on Cz0 ∪ {z1}. Note that σCz0∪{z1} 6
max{|Cz0 |, 1}, Therefore,

σ(cA) + σ(cB) > t

3 −max{|Cz0|, 1}. (3.10)

Now we consider and separately treat two possible cases, according to the imbalance of the
canonical colouring of Tz0 . For convenience, let A(Tz0) denote the larger colour class of Tz0
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in this colouring, and let B(Tz0) denote the smaller colour class.

Case 1: σ(Tz0) 6 t
3 .

In this case, we define a new colouring c′ by setting c′0 := A(Tz0) ∪ cA1 ∪ cB0 and c′1 :=
(T − z1) \ c′0 = B(Tz0) ∪ cA0 ∪ cB1 . Then, by (3.9),

|c′0| =
|Tz0|

2 + σ(Tz0)
2 + |F

A|
2 − σ(cA)

2 + |F
B|

2 + σ(cB)
2 6

t

2 + σ(Tz0)
2 6

2t
3 ,

and, moreover, by (3.8) we have

|c′1| <
|Tz0|

2 + max{|FA| − 1, 1}+ |F
B|

2 6
2t
3 ,

and hence after possibly swapping the colours we found a colouring as desired for the propo-
sition (with z1 in the role of z). This is a contradiction, since we assumed no such colouring
exists.

Case 2: σ(Tz0) > t
3 .

This time we define c′ by setting c′0 := A(Tz0) ∪ cA1 ∪ cB1 and c′1 := B(Tz0) ∪ cA0 ∪ cB0 . Let
σCz0∪{z0} denote the imbalance that Tz0 induces on Cz0 ∪{z0} and note that by (3.7), we have

σCz0∪{z0} 6 max{|Cz0|, 1} 6
t− 1

4 .

Recalling (3.6) and (3.10), we obtain

|c′0| =
t

2 + σ(Tz0)− (σ(cA) + σ(cB))
2

6
t

2 +
∑
i∈I\{j∗} σ(Ti) + σCz0∪{z0} + max{|Cz0|, 1} − t

3
2

6
t

2 + t

24 + max{|Cz0|, 1} −
t

6
6

2t
3 .

Furthermore, by (3.8) we have

|c′1| 6
|Tz0|

2 − σ(Tz0)
2 + |cA0 |+ |cB0 | 6

2t
3 ,

and we thus again obtain a contradiction.

3.3 Embedding trees in robust components

In this section, we discuss the embedding of trees into a large robust component of some
host graph, by which we mean we embed into graphs whose corresponding reduced graph
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has a large connected component. The arguments depend on whether the reduced graph is
bipartite or not, and hence we deal with these situations separately.

The main results from this section are Propositions 3.3.1 and 3.3.9 and their corollaries.
They will be used in the proof of Proposition 3.4.3, our main embedding result for robust
components. Moreover, they will be one of the tools in the proof of our key embedding lemma
(Lemma 3.5.3) on which most of our main results rely.

3.3.1 The bipartite case

As we mentioned in the introduction, any tree with k edges greedily embeds in any graph of
minimum degree at least k. In a bipartite graph H = (X, Y ) the minimum degree condition
can be relaxed: If the tree T has bipartition classes of sizes k1 and k2, then it is clearly
enough to require the vertices from X to have degree at least k1 and the vertices from Y to
have degree at least k2. In particular, if deg(x) > bk2c for all x ∈ X, and deg(y) > k for all
y ∈ Y , then each tree with k edges embeds in H.

If the tree we wish to embed has bounded degree, and the host graph has an (ε, η)-reduced
graph which is bipartite and connected, for some ε and η, one can do even better: We will
now show that in this case it is enough to require a minimum degree of roughly k

2 for the
vertices in only one of the bipartition classes, as long as this class is not too small.

Proposition 3.3.1. For all ε ∈ (0, 10−8) and for all d,M0 ∈ N, there is k0 such that for all
n, k > k0 the following holds. Let G be an n-vertex graph, with (ε, 5

√
ε)-reduced graph R that

satisfies |R| 6M0, such that

(i) R = (A,B) is bipartite and connected;

(ii) diam(R) 6 d;

(iii) deg(C) > (1 + 100
√
ε)k2 ·

|R|
n
, for all C ∈ A; and

(iv) |A| > (1 + 100
√
ε)k · |R|

n
.

Then G contains every tree T with k edges and ∆(T ) 6 k
1
d as a subgraph.

Proof. Given ε, d and M0 as in the Theorem, we set

k0 :=
(

8M2
0

ε2

)d
.

Let G be a graph as in Proposition 3.3.1, and let ⋃A = X1∪· · ·∪Xs and
⋃
B = Y1∪· · ·∪Yt

be the (ε, 5
√
ε)-regular partition of G corresponding to the reduced graph R (in particular

s+ t 6M0). Set m := |Xi| = |Yj| (for any i, j).
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For each i ∈ [s], we arbitrarily partition Xi into three sets Xi,S, Xi,L, Xi,C ; and for each
j ∈ [t] we arbitrarily partition Yj into three sets Yj,S, Yj,L, Yj,C , such that

|Xi,S| = |Xi,L| = |Yj,S| = |Yj,L| = d10
√
εme.

The letters S, L and C stand for seeds, links and clusters, respectively (sets Xi,C and Yj,C
contain the bulk of the clusters). We also call these subsets the L-, S- or C-slice of the
corresponding cluster.

Note that, by Fact 2.3.1, for every (Xi, Yj) with positive density, each of the pairs
(Xi,K , Yj,K′), with K,K ′ ∈ {S, L, C}, is

√
ε

5 -regular with density greater than 4
√
ε.

Root T at any vertex r ∈ V (T ). By Proposition 2.2.7, with parameters β = ε
s+t , we

obtain a decomposition of (T, r) into a collection of pieces P , each of order at most βk, and
a family of seeds S of size at most 2

β
. Order the elements from S ∪ P in a way that the first

element is r, and the parent of each element is either an earlier seed or belongs to an earlier
piece. (Note that the parent of a seed or piece is a vertex, so it either is a seed or belongs to
a piece.)

Our plan is to embed the elements from S ∪ P in this order. Seeds will go to S-slices of
appropriate clusters Xi,S or Yj,S, with r going to cluster Xi if r(T ) belongs to the heavier bi-
partition class of T , and going to Yj otherwise. Pieces from P will go into C-slices (Xi,C , Yj,C)
of appropriate pairs (Xi, Yj), and into L-slices of other clusters.

More precisely, for each piece P ∈ P we will find a pair (Xi, Yj) such that there is
enough space left in (Xi,C , Yj,C) to accommodate P . At this point, the parent of P is already
embedded into some cluster Z, so we need to embed part of P into a path ZZ1Z2Z3 . . . Zh
that connects Z with the pair (Xi, Yj). Because of the bounded degree of T , and since the
diameter of G is also bounded, this path can be chosen short enough to ensure that the levels
of P that are embedded into this path only contain relatively few vertices. So we can use
the L-slices of the clusters Z` for these levels. The remaining levels of P will be embedded
into the free space of (Xi,C , Yj,C).

Let us make this sketch more precise. During the embedding procedure, we will write
X ′i,C and Y ′j,C for the set of unoccupied vertices of Xi,C and Yj,C respectively. We will say
that a pair (Xi, Yj) is good if d(Xi, Yj) > 0 and min{|X ′i,C |, |Y ′j,C |} > 5

√
εm. Hence we will

be able to apply Lemma 2.3.4 to any good pair and any piece belonging to P .

The embedding φ : V (T )→ V (G) will be constructed iteratively, following the embedding
order of S ∪P chosen above. Employing the strategy explained above, we make sure that at
every step, the following conditions will be satisfied:

1. Each vertex is embedded into a neighbour of the image of its already embedded parent;

2. each s ∈ S is embedded into the S-slice of some cluster;

3. for each P ∈ P , the first (up to d − 1) levels are embedded into the L-slices of some
clusters, and the rest goes into the C-slices; and
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4. every v ∈ V (T ) is mapped into a vertex that is typical towards both the S-slice and
the L-slice of some adjacent cluster.

Since the set S has constant size, and since we do not particularly care into which cluster a
seed goes, as long as it goes to the S-slice, it is clearly possible to embed a seed s, when its
time comes, satisfying conditions (1), (2) and (4).

So assume we are about to embed a piece P ∈ P . The parent of the root r(P ) of P is
already embedded into some vertex that is typical with respect to the L-slice of some cluster
Z1. In order to be able to embed P according to our plan, it suffices to ensure that

1. there exists some good pair (Xi, Yj);

2. there is a path Z1Z2Z3 . . . Zh of length h 6 d from Z1 to Xi;

3. the union of the first h− 1 levels of P is small enough to fit into the free space in the
L-slices of {Z1, Z2, Z3, . . . , Zh−1}.

If we can assure these properties, we can repeatedly apply Lemma 2.3.4 to embed the first
levels of P into the L-slices of the clusters Z`, and the remaining levels of P into (X ′i,C , Y ′j,C)
in a way that (1), (3) and (4) hold.

So, let us prove (1). We first note that there exists some clusterXi such that |φ−1(Xi,C)| <
|Xi,C | − 5

√
εm. Indeed, otherwise we have used at least

(1− 25
√
ε)|⋃A| − 5

√
ε|⋃A| > (1− 30

√
ε)(1 + 100

√
ε)k > (1 + 2

√
ε)k > k + 1

vertices from ⋃
A already, a contradiction, since |T | = k + 1.

Next, we claim there exists some cluster Yj such that (Xi, Yj) is good. If this was not the
case, then we have used at least

(1− 30
√
ε)|NG(Xi)| > (1− 30

√
ε)(1 + 100

√
ε)k2 > (1 + 2

√
ε)k2 >

k + 1
2

vertices of ⋃B already, a contradiction, as we placed the root r of T in a way that guaranteed
we would embed the smaller bipartition class of T into B.

Observe that (1) implies (2), because of condition (ii) of Proposition 3.3.1. So it only
remains to prove (3).

Using (3) for already embedded pieces P ′, and using the fact that, for any such piece
P ′, the number of vertices in their first d− 1 levels is bounded by 2(∆(T )− 1)d−2 (except if
∆(T ) 6 2, in which case this number is bounded by d − 1), we have that the total number
of occupied vertices in L-slices is at most

|S| ·∆(T ) · 2(∆(T )− 1)d−2 6
4
β
· k

d−1
d 6

4M0

ε
· k

d−1
d < ε

k

2M0
6 εm

for k > k0. In particular, each L-slice of a cluster Z` has at least d9
√
εme unused vertices.

This is enough to ensure that the first h − 1 levels of P fit into the L-slices of the clusters
Z1, Z2, Z3, . . . , Zh−1. This proves (3).
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Remark 3.3.2. It is easy to see that instead of conditions (iii) and (iv) from Proposition 3.3.1
we could use the weaker requirement that there is a set C of clusters in A such that deg(C) >
(1 + 100

√
ε)k2 ·

|R|
n
, for all C ∈ C, and |C| > (1 + 100

√
ε)k · |R|

n
.

Remark 3.3.3. Observe that Proposition 3.3.1 remains true with the following additional
conditions. Let U ⊆ V (G) such that

• |U |+ |T | 6 k + 1;

• |U ∩ V (⋃A)|+ c0(T ) 6 k; and

• |U ∩ V (⋃B)|+ c1(T ) 6 k
2 ,

where c0(T ) and c1(T ) are the two colour classes of T . Then T can be embedded into G
avoiding U , that is, we can embed T in such a way φ(V (T )) ⊆ V (G) \ U .

Moreover, observe that by repeatedly applying Proposition 3.3.1, together with Re-
mark 3.3.3, we can actually embed a forest instead of a tree. We say that a forest F ,
with colour classes C1 and C2, is a (k1, k2, t)-forest if

1. |Ci| 6 ki for i ∈ {1, 2}, and

2. ∆(F ) 6 (k1 + k2)t.

Corollary 3.3.4. For all ε ∈ (0, 10−8) and for all d,M0 ∈ N there is k0 such that for all
n, k1, k2 > k0 the following holds. Let G be an n-vertex graph having a (ε, 5

√
ε)-reduced graph

R that satisfies |R| 6M0, such that

(i) R = (A,B) is connected and bipartite;

(ii) diam(R) 6 d;

(iii) deg(C) > (1 + 100
√
ε)k2 · |R|n , for all C ∈ A; and

(iv) |A| > (1 + 100
√
ε)k1 · |R|n .

Then any (k1, k2,
1
d
)-forest F , with colour classes C1 and C2, can be embedded into G, with

C1 going to V (⋃A) and C2 going to V (⋃B).

Moreover, if F has at most εn
|R| roots, then the images of the roots going to V (⋃A) can

be mapped to any prescribed set of size at least 2ε|⋃A| in ⋃A, and the images of the roots
going to V (⋃B) can be mapped to any prescribed set of size at least 2ε|⋃B| in ⋃B.

Remark 3.3.5. An analogue of Remark 3.3.3 holds for the situation of Corollary 3.3.4.

It is easy to see that we can bound the balancedness of trees whose maximum degree is
bounded by some constant ∆. So, it comes as no surprise that for the class of all constant
degree trees, it is possible to show the following improvement of Proposition 3.3.1.
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Corollary 3.3.6. For all ε ∈ (0, 10−8), d,M0 ∈ N and ∆ > 2 there is a k0 such that for all
n, k > k0 the following holds. Let G be an n-vertex graph that has an (ε, 5

√
ε)-reduced graph

R that satisfies |R| 6M0, such that

1. R = (A,B) is connected and bipartite;

2. diam(R) 6 d;

3. deg(C) > (1 + 100
√
ε)k2 ·

|R|
n

for all C ∈ A;

4. |A| > (1 + 100
√
ε) (∆−1)

∆ k · |R|
n
.

Then G contains every tree T with k edges and ∆(T ) 6 ∆ as a subgraph.

3.3.2 The nonbipartite case

In this section we treat tree embeddings into graphs with large nonbipartite components in
the reduced graph. The proof of the corresponding proposition, Proposition 3.3.9 below, is
very similar to the proof of Proposition 3.3.1. For convenience, we will now work with a
matching in the reduced graph.

For a graph G with an (ε, η)-regular partition, we say that M is a cluster matching if
it is a matching in the corresponding (ε, η)-reduced graph. We begin our treatment of the
nonbipartite case by showing that we can always find a large cluster matching in graphs with
large minimum degree that admit an (ε, η)-regular partition, for some ε, η ∈ (0, 1). To do so,
we first need the following result.

Lemma 3.3.7. Let H be any graph. Then there exists an independent set I, a matching M ,
and a set of vertex disjoint triangles Γ so that V (H) = I ∪ V (M) ∪ V (Γ). Moreover, there
is a partition V (M) = V1 ∪ V2 of V (M) such that every edge of M has one vertex in V1 and
one vertex in V2, and N(x) ⊆ V1 for all x ∈ I.

Proof. Let us choose a matching M and a family Γ of disjoint triangles, that are disjoint
from M , maximising |V (M)| + |V (Γ)|. Then the set I consisting of all vertices not covered
by M ∪ Γ is independent.

Consider a vertex x ∈ I. Note that because of our choice of M and Γ, we know that x is
not adjacent to any vertex from any triangle from Γ. Also, note that for any edge uv in M ,
vertex x sees at most one of u, v. Finally, if x sees u, then no other vertex from I can see v.
This proves the statement.

Lemma 3.3.8. Let ε, η ∈ (0, 1), let t, ` ∈ N, and let G be a graph on n > 2t+ ` vertices with
δ(G) > t + ` which has an (ε, η)-regular partition into ` parts. Then G has a subgraph G′
with |G′| > n− ` that admits a (5ε, η− ε)-regular partition with 2` parts whose corresponding
reduced graph R contains a matching M and an independent family of clusters I, disjoint
from M, such that
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(i) ⋃V (M) ∪ V (⋃ I) = V (G′);

(ii) |⋃V (M)| > 2t; and

(iii) there is a partition V (M) = V1∪V2 such that NR(I) ⊆ V1 and every edge in M has one
endpoint in V1 and one endpoint in V2.

Proof. Let R be the reduced graph corresponding to the (ε, η)-regular partition of G. By
applying Lemma 3.3.7 to R, we obtain an independent set I′, a matching M′ and a set of
disjoint triangles Γ, such that V (R) = I ∪ V (M′) ∪ V (Γ). If Γ is empty, we are done by
choosing I := I′ and M := M′. So suppose Γ 6= ∅.

We arbitrarily partition each cluster X ∈ V (R) into X1 ∪X2 ∪X3 so that |X1| = |X2|
and |X3| 6 1. Let G′ = G− V (⋃X∈V (R) X

3). Thanks to Fact 2.3.1.2, the partition V (G′) =⋃
X∈V (R) X

1 ∪X2 is (5ε, η − ε)-regular and has 2` atoms. We set

M :=
⋃

CD∈M′
{(C1D1), (C2D2)} ∪

⋃
XY Z∈Γ

{(X1, Y 2), (Y 1, Z2), (Z1, X2)}

and
I :=

⋃
C∈I′
{C1, C2}

Note that I and M inherit the properties of I′ and M′, respectively. Property (ii) follows
from Property (iii) and the minimum degree of G.

We will apply Lemma 3.3.8 to the reduced graph of a given host graph G. The lemma
then says that, after modifying the reduced graph (cutting its clusters in half), one can find
a cluster matching whose size depends on the minimum degree of G. In particular, given
δ > 0, if G has minimum degree at least (1 + δ)k2 , one can find a matching covering at least
(1 + δ)k vertices of G.

Now we are ready for Proposition 3.3.9 and its proof.

Proposition 3.3.9. For all ε ∈ (0, 10−8) and d,M0 ∈ N there exists k0 such that for all
n, k > k0 the following holds. Let G be an n-vertex graph that has an (ε, 5

√
ε)-reduced graph

R that satisfies |R| 6M0, such that

1. R is connected and nonbipartite;

2. diam(R) 6 d; and

3. R has a matching M with |V (M)| > (1 + 100
√
ε)k · |R|

n
.

Then G contains every tree T with k edges and ∆(T ) 6 k
1

3d+1 as a subgraph.

Proof. Given ε, d and M0 as in the Theorem, we set

k0 :=
(

8M2
0

ε2

)3d+1
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Now, let G be a graph as in Proposition 3.3.9, let V (G) = V1∪ . . .∪V` be the (ε, 5
√
ε)-regular

partition of G corresponding to the reduced graph R (in particular ` 6 M0). Set m := |Vi|
for any i ∈ [`].

For each i ∈ [`], we partition cluster Vi into sets Vi,S, Vi,L, Vi,C in the same way as
we did in Proposition 3.3.1. Also, consider the decomposition of T into T and S given
by Proposition 2.2.7, with β = ε

`
. We order S ∪ P in the same way as in the proof of

Proposition 3.3.1.

The embedding φ : V (T ) → V (G) will be constructed iteratively, following the order of
S ∪ P . We make sure that at every step, the following conditions will be satisfied:

1. Each vertex is embedded into a neighbour of the image of its already embedded parent;

2. each s ∈ S is embedded into the S-slice of some cluster;

3. for each P ∈ P , the first 3d levels are embedded into the L-slices of some clusters, and
the remaining levels go to the C-slices;

4. every v ∈ V (T ) is mapped to a vertex that is typical with respect to both the S-slice
and the L-slice of some adjacent cluster; and

5.
∣∣∣|φ−1(Vi,C)| − |φ−1(Vj,C)|

∣∣∣ 6 εm for each pair (Vi, Vj) ∈M.

We already know that it is no problem to embed a seed s, when its time comes, satisfying
conditions (1), (2) and (4). So we mainly have to worry about (3) and (5).

Assume we are about to embed a piece P ∈ P . The parent of the root r(P ) of P is already
embedded into some vertex that is typical with respect to the L-slice of some cluster Z1. In
order to be able to embed P so that the above conditions are satisfied, it suffices to ensure
that

1. there exists some good pair (Vi, Vj);

2. for either choice of Z3d+1 ∈ {Vi, Vj} there is a walk Z1Z2 . . . Z3d+1 in R;

3. the first 3d levels of P are small enough to fit into the free space in the L-slices of
{Z1, Z2 . . . , Z3d},

where a walk in a graph is a sequence Z1Z2 . . . Zh such that each Zi is adjacent to Zi+1 for
all 1 6 i < h.

Before we prove (1)–(3), let us explain why these conditions are enough to ensure we can
embed T correctly. As before, we plan to repeatedly apply Lemma 2.3.4 in order to embed
the first levels of P into the L-slices of the clusters Z1, Z2, . . . , Z3d, and the later levels into
the C-slices of Vi, Vj, always avoiding all vertices used earlier.

Since our aim is to embed P in such a way that (5) is fulfilled, we take care to choose
Z3d+1 ∈ {Vi, Vj} in a way that the larger bipartition class of the tree P ′ obtained from P by
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deleting its first 3d levels goes to the less occupied slice from Vi,C , Vj,C . That is, assuming
that

∣∣∣φ−1(Vi,C)
∣∣∣ 6 ∣∣∣φ−1(Vj,C)

∣∣∣ (the other case is analogous), we proceed as follows. If the
levels of P ′ that lie at even distance from the root of P in total contain more vertices than
those lying at odd distance, we choose Z3d+1 = Vj. Otherwise, we choose Z3d+1 = Vi. We
then embed P , making the first 3d levels go to L-slices, and embedding P ′ into Vi,C ∪ Vj,C .

Let us now prove (1). Suppose there is no good pair in M. This together with (5) implies
that the number of embedded vertices is at least∑

AB∈M
(|Ai,C | − 6

√
εm+ |Bi,C | − 6

√
εm) > (1− 33

√
ε)(1 + 100

√
ε)k > k + 1,

a contradiction, since |T | = k + 1.

Next, we show (2). Assume we chose Z3d+1 = Vi (the other case is analogous). Let C =
C1C2 . . . CpC1 be a minimal odd cycle in the reduced graph. Since C is minimally odd, the
shortest path between two clusters in C is the shortest arc in the cycle, and hence p 6 2d+1.
Let U := Z1U1 . . . UsC1 be a shortest path from Z1 to C1 and let Q := Cd p2 eQ1 . . . QtVi be a
shortest path from Cd p2 e to Vi. As diam(R) 6 d, we have that s + t + 2 6 2d. So, by using
the appropriate one of the two C1–Cd p2 e paths in C, we can extend U ∪ Q to an odd walk
of length at most 2d + (d + 1) = 3d + 1, which connects Z1 with Vi. By going back- and
forwards on this walk, if necessary, we can obtain a walk of length exactly 3d + 1, which is
as desired. So, condition (2) holds.

Finally, using the same reasoning as in Proposition 3.3.1 we can prove that the total
number of occupied vertices in L-slices is at most

|S| ·∆(T ) · 2(∆(T )− 1)3d−1 6
4
β
· k

3d
3d+1 < εm

for k > k0. In particular, the L-slice of each cluster has at least d9
√
εme unused vertices

and, therefore, we can embed each vertex of the first 3d levels of P into the L-slices of the
clusters from the walk Z1Z2 . . . Z3d without a problem. This proves (3).

Remark 3.3.10. If d = 1 we can actually embed trees with maximum degree bounded by ρk,
where ρ is a sufficiently small constant, without modifying our proof significantly, because we
can reach both Vi and Vj in one step from the image of the latest embedded seed.

Remark 3.3.11. Similarly to the bipartite case, we can add an extra hypothesis as in Re-
mark 3.3.3. Consider an arbitrary set U ⊆ V (G) such that |U | + |T | 6 k + 1 and such that
U is reasonably balanced in M, that is,

∣∣∣|U ∩ C| − |U ∩D|∣∣∣ < ε|C| for all CD ∈M. Then T
can be embedded into G avoiding U .

Repeatedly applying Proposition 3.3.9, together with Remark 3.3.11, we can embed a
forest instead of a tree.

Corollary 3.3.12. Let ε ∈ (0, 10−8) and let d,M0 ∈ N. There exists k0 ∈ N such that for
all n, k > k0 the following holds. Let G be a n-vertex graph with an (ε, 5

√
ε)-reduced graph

R that satisfies |R| 6M0. Suppose that
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1. R is connected and nonbipartite;

2. diam(R) 6 d;

3. R has a matching M with |V (M)| > (1 + 100
√
ε)k · |R|

n
;

then any forest F on at most k + 1 vertices that satisfies ∆(F ) 6 k
1

3d+1 is a subgraph of G.
Moreover, if F has at most εn

|R| roots, then the images of the roots can be mapped into any
prescribed set of size at least 2εn.

3.4 Improving the maximum degree bound

In the previous section, we proved that in graphs of minimum degree at least (1 + δ)k2 having
a large connected component, after applying regularity and performing the usual cleaning-up,
all trees of maximum degree kO( 1

d
) appear as subgraphs (see Propositions 3.3.1 and 3.3.9).

The aim of the present section is to prove a similar statement as there, but with a significant
weakening in the bound on the maximum degree of the tree. More precisely, the exponent
in this bound will no longer depend on the diameter of the reduced graph.

We need a theorem from [45], which says that one can bound the diameter of any con-
nected graph in terms of its number of vertices and its minimum degree.

Theorem 3.4.1 (Erdős, Pach, Pollach and Tuza [45]). Let G be a connected graph on n
vertices with minimum degree at least 2. Then

diam(G) 6
⌊

3n
δ(G)+1

⌋
− 1.

We also need the following lemma. Given a graph G and a vertex v ∈ V (G), let Ni(v)
denote the i-th neighbourhood of v (i.e. the set of vertices of G at distance i from v).

Lemma 3.4.2. Let q ∈ N and let G be a connected graph, and let v ∈ V (G). Then∣∣∣∣∣∣
3q+1⋃
i=0

Ni(v)
∣∣∣∣∣∣ > min{(q + 1)(δ(G) + 1), |V (G)|}.

Proof. If Ni(v) = ∅ for some i ∈ [3q + 1], then, as G is connected, V (G) ⊆ ⋃i−1
j=0Nj(v) and

thus |⋃3q+1
j=0 Nj(v)| = |V (G)|. Therefore, we assume that Ni(v) 6= ∅ for every i ∈ [3q + 1].

Now, for each j ∈ [q], pick a vertex v3j ∈ N3j(v). Observe that N(v3j) ⊆ N3j−1(v) ∪
N3j(v) ∪N3j+1(v), and hence,

|N3j−1(v) ∪N3j(v) ∪N3j+1(v)| > δ(G) + 1.

We also know that |N0(v) ∪N1(v)| = |N(v)|+ 1 > δ(G) + 1. This proves the statement.
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The next result shows that we can make the exponent in Proposition 3.3.1 and Proposi-
tion 3.3.9 depending only on the minimum degree of G. In order to prove the result, we will
first apply a strategy similar to the one used in Propositions 3.3.1 and 3.3.9. If this strategy
fails, we will have found a good structure in the host graph and then, forgetting about the
earlier attempt at an embedding of T , we make use of the structure to embed the tree in a
different way.

Proposition 3.4.3. For all α ∈ [1
2 , 1), ε ∈ (0, 10−8) and M0 ∈ N, there exists k0 ∈ N such

that for all n, k > k0 the following holds.

Let G be a n-vertex graph with δ(G) > (1 + 100
√
ε)αk that has a connected (ε, 5

√
ε)-

reduced graph R with |R| 6M0. If

1. R = (A,B) is bipartite and such that |A| > (1 + 100
√
ε)k · |R|

n
; or

2. R is non-bipartite and n > (1 + 100
√
ε)k;

then G contains every k-edge tree of maximum degree at most k 1
r , where r = 18d 2

α
e − 5.

Proof. Given α, we define

d1 := 3d 2
α
e − 2 and d2 := 2(d1 + 1),

and observe that
r = 3d2 + 1.

Given ε and M0, let k0 be the maximum of the outputs of Proposition 3.3.1 and Proposi-
tion 3.3.9, for input ε, d2 and 2M0.

Let G be as in Proposition 3.4.3. Note that if |V (G)| < (1+100
√
ε)2k, then Theorem 3.4.1

implies that diam(R) 6 b 6
α
c − 1 6 d2. Therefore, we may apply either Proposition 3.3.1 or

Proposition 3.3.9, together with Lemma 3.3.8, to conclude. Thus, from now on we will assume
that

|V (G)| > (1 + 100
√
ε)2k. (3.11)

Let T be a tree with k edges and ∆(T ) 6 k
1
r , and let us root T at any vertex. We

partition T using Proposition 2.2.7, with β := εn
|R| , obtaining a set S of seeds and a family

P of pieces. We first try to emulate the embedding scheme used in the proof of Proposition
3.3.1.

Consider the regular partition associated to the reduced graph R of G, and divide each
cluster X into three sets XC , XS, XL, with |XS| = |XL| = d10

√
ε|X|e. We are going to embed

T in |S| steps, letting φ denote the partial embedding defined so far.

At step j we consider a vertex sj ∈ S not embedded yet, but whose parent uj is already
embedded (except in the step j = 1, in which case we embed the root of T into any cluster
of our choice). We know that φ(uj) is typical towards the S-slice of some adjacent cluster Q.
Embed sj in QS, choosing φ(sj) typical to UL and to US, where U is any neighbour of Q.

35



Now, suppose there is a good pair (W,Z), that is, an edge WZ such that both clusters
W and Z have free space of size at least 5

√
ε|W |, and additionally, dist(U,W ) 6 d1. Find a

shortest path from U to W , say X0X1 . . . Xt−1Xt, where X0 = U and Xt = W and, further,
t 6 d1.

Consider a piece P adjacent to sj that is not yet embedded. We map the root of P into
the neighbourhood of φ(sj) in (X0)L. We then embed the first t levels of P into the path
X0X1 . . . Xt−1Xt, mapping the vertices from the i-th level of P into unoccupied vertices from
(Xi)L that are typical towards (Xi+1)L and to (Xi+1)S, for each i ∈ {0, . . . , t−1} respectively.
Finish the embedding of P , by mapping the remaining levels into the unoccupied vertices
of (WC , ZC). For this, we use Lemma 2.3.4, mapping the vertices from the t-th level of
P into WC and picking all the images typical towards the L-slice and the S-slice of some
adjacent cluster. We repeat this procedure for every not yet embedded piece adjacent to sj
and then move on to the next seed.

If every step of this process is successful, then T is satisfactorily embedded into G. How-
ever, it might happen that the embedding cannot be completed, because at some step we
could not find a good pair (W,Z) at close distance. In that case, consider the seed s∗ where
the process stopped and let C∗ be the cluster to which s∗ was assigned. Let us define H
as the subgraph of R induced by all those clusters that lie at distance at most d1 from C∗.
Further, let S be the set of all those clusters C ∈ V (H) that have free space of size at least
5
√
ε|C|. Note that, since the embedding could not be finished,

S is an independent set. (3.12)

By applying Lemma 3.4.2, with q = d 2
α
e − 1, and since δ(R) > (1 + 100

√
ε)αk · |R|

n
and

by (3.11), we deduce that

|V (H)| > (1 + 100
√
ε)2k · |R|

n
.

This is more than twice the space needed for embedding T . So, since we have embedded at
most k vertices before we declared the embedding to have failed, we conclude that

|S| > (1 + 200
√
ε)k · |R|

n
. (3.13)

Let us define H′ as the subgraph of R induced by all clusters at distance at most d1 + 1 from
C∗. So, V (H′) consists of V (H) together with the neighbours of H in R.

Forgetting about our previous attempt to embed T , we are now going to embed T with
the help of our earlier propositions. We distinguish two cases, depending on whether H′ is
bipartite or not.

Case 1: H′ is nonbipartite.

Let M be a matching in H covering a maximal number of clusters from S. We claim that
|V (M)| > (1 + 100

√
ε)k · |R|

n
. Indeed, otherwise (3.13) implies that there is a cluster X ∈

V (S) \ V (M). By our choice of M, and because of (3.12), we know that X sees at most one
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end vertex of each edge from M, and no cluster outside V (M). This contradicts the fact that
degH′(X) > (1 + 100

√
ε)k2 ·

|R|
n
.

Hence, as diam(H′) 6 2(d1 + 1) = d2, we can apply Proposition 3.3.9 to H′ and the
subgraph of G induced by the clusters of H′, and we are done.

Case 2: H′ is bipartite.

Since |V (H)| > (1 + 100
√
ε)2k · |R|

n
, one of the bipartition classes of H′, say A, satisfies

|A ∩ H| > (1 + 100
√
ε)k · |R|

n
. Since degH′(X) > (1 + 100

√
ε)k2 ·

|R|
n

for each X ∈ V (H), we
can apply Proposition 3.3.1, together with Remark 3.3.2, to obtain the embedding of T .

3.5 The key embedding lemma

In the current section, we present and prove our key embedding lemma, namely Lemma 3.5.3.
This lemma describes a series of configurations which, if they appear in a graph G, allow us
to embed any bounded degree tree of the right size into G.

Before stating the lemma we need two simple definitions.

Definition 3.5.1 (θ-see). Let θ ∈ (0, 1). A vertex x of a graph H θ-sees a set U ⊆ V (H) if
it has at least θ|U | neighbours in U . Furthermore, if C is a component of some reduced graph
of H − x, we say that x θ-sees C if x has at least θ|⋃C| neighbours in V (⋃C).

Definition 3.5.2 ((k, θ)-small and (k, θ)-large). Let k ∈ N and let θ ∈ (0, 1). A nonbipartite
graph G is said to be (k, θ)-small if |V (G)| < (1 + θ)k. A bipartite graph H = (A,B) is said
to be (k, θ)-small if max{|A|, |B|} < (1 + θ)k. If a graph is not (k, θ)-small, we will say that
it is (k, θ)-large.

We are now ready for the key lemma (for an illustration of the situation described in the
lemma, see Figure 3.2).

Lemma 3.5.3 (Key embedding lemma). For each α ∈ [1
2 , 1), for each ε ∈ (0, 10−10) and for

each M0 ∈ N there is n0 ∈ N such that for all n, k > n0 the following holds.

Let G be an n-vertex graph of minimum degree at least (1 + 4
√
ε)αk and let T be a tree

with k edges whose maximum degree is bounded by k 1
r , where r = 18d 2

α
e − 5. Let x ∈ V (G),

and let R be an (ε, 5
√
ε)-reduced graph of G− x, with |R| 6M0, such that at least one of the

following conditions (I)–(IV) holds:

1. R has a (k · |R|
n
, 4
√
ε)-large nonbipartite component; or

2. R has a (k1 · |R|n , 4
√
ε)-large bipartite component, where k1 is the size of the larger bipar-

tition class of T ; or
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3. R has a (2k
3 ·

|R|
n
, 4
√
ε)-large bipartite component such that x

√
ε-sees both sides of the

bipartition; or

4. x
√
ε-sees two components C1 and C2 of R in a way that one of the following holds:

(a) x sends at least one edge to a third component C3 of R;
(b) there is i ∈ {1, 2} such that Ci is nonbipartite and (2k

3 ·
|R|
n
, 4
√
ε)-large;

(c) there is i ∈ {1, 2} such that Ci is bipartite and x sees both sides of the bipartition;
(d) there is i ∈ {1, 2} such that Ci is bipartite with parts A and B, such that min{|A|, |B|} >

(1 + 4
√
ε)2k

3 ·
|R|
n

and x sees only one side of the bipartition;
(e) C1 and C2 are bipartite with parts A1,B1 and A2,B2, respectively, such that

min{|A1|, |B2|} > (1 + 4
√
ε)2k

3 ·
|R|
n

and x does not see B1 ∪B2.

Then T embeds in G.

Proof. Let k′0 be the maximum of the outputs k0 of Proposition 3.4.3, Corollary 3.3.4 and
Corollary 3.3.12, for inputs ε, d = 6

α
and 2M0, and choose n0 := k′0 + 1 as the numerical

output of Lemma 3.5.3.

Now assume we are given an n-vertex graph G with x ∈ V (G), and let T be a k-edge tree
as in Lemma 3.5.3. Let R be the (ε, 5

√
ε)-reduced graph of G − x. An easy computation

shows that
δ(R) > (1 + 1

2
4
√
ε)αk · |R|

n
> (1 + 100

√
ε)αk · |R|

n
, (3.14)

where the last inequality follows since ε 6 10−10. Furthermore, note that R must fulfill
one of the conditions (I)–(IV) from Lemma 3.5.3. If R contains a (k · |R|

n
, 4
√
ε)-large non-

bipartite component or a (k1 · |R|n , 4
√
ε)-large bipartite component, then we can conclude by

Proposition 3.4.3.

So we can discard scenarios (1) and (2) from Lemma 3.5.3. Therefore, by Theorem 3.4.1,
and by (3.14), we can assume that every connected component C of R satisfies

diam(C) 6 3|C|
δ(C) + 1 6

3(1 + 4
√
ε)2k · |R|

n

(1 + 1
2

4
√
ε)αk · |R|

n

6
6
α

+ 1, (3.15)

and thus
r > 3 · diam(C) + 1. (3.16)

So, the maximum degree of T and the diameter of the components are in the right relation
to each other, meaning that we could apply Corollaries 3.3.4 and 3.3.12 to each connected
component of R (if the other conditions of these corollaries hold).

In order to embed T under scenarios (3) and (4), we use the results from Section 3.2.

Case 1 (scenario (3)): R has a (2k
3 ·

|R|
n
, 4
√
ε)-large bipartite component C such that x

√
ε-

sees both sides of the bipartition.
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Figure 3.2: The scenarios described in Lemma 3.5.3
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Applying Proposition 3.2.5 to T , we obtain a cut-vertex z0 ∈ V (T ) and a proper 2-colouring
c : V (T − z0)→ {0, 1} of T − z0 such that

|c1| 6 |c0| 6
2k
3 and |c1| 6

k

2 .

Let us note that, because of the bound on k0, the number of components of T −z0 is bounded
by

∆(T ) 6 k
1
r 6

εk

M0
6

εn

|R|
. (3.17)

Now, we map z0 into x. Recalling (3.14), (3.15), (3.16) and the fact that T −z0 is a (2k
3 ,

k
2 ,

1
r
)-

forest we can apply Corollary 3.3.4 to embed T − z0 into C, and by (3.17) we may choose the
images of the roots of T − z0 as neighbours of x.

Case 2 (scenario (4)): x
√
ε-sees two components C1 and C2 of R.

Let z1 ∈ V (T ) be the vertex given by Lemma 2.2.5 applied to T , with any leaf v. Let T be
the set of connected components of T − z1. Then T is a family of at most ∆(T ) rooted trees
whose roots are neighbours of z1 in T , and |V (T ′)| 6 dk2e for every T

′ ∈ T.

Apply Lemma 3.2.1 (i) to T to obtain a partition of T into three families of trees F1,F2
and F3, where F3 could be empty, such that

|V (⋃F3)| 6 |V (⋃F2)| 6 |V (⋃F1)| 6
⌈
k

2

⌉
. (3.18)

For later use, let us record here that

|F1|+ |F2|+ |F3| 6 ∆(T ) 6 εn

|R|
. (3.19)

Furthermore, due to Remark 3.2.2, we know that

|F3| 6 1. (3.20)

Similarly, applying Lemma 3.2.1 (ii) to T we obtain a partition of T into two families of trees
J1 and J2 such that

|V (⋃ J2)| 6 k

2 and |V (⋃ J2)| 6 |V (⋃ J1)| 6 2k
3 , (3.21)

and again, we know that
|J1|+ |J2| 6 ∆(T ) 6 εn

|R|
. (3.22)

We split the remainder of the proof into five cases, according to which of the conditions
(4a), (4b), (4c), (4d) or (4e) holds. Depending on the case we will make use of partition
{Fi}i=1,2 or {Ji}i=1,2,3.
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Case 2a (scenario (4a)): x
√
ε-sees two components C1, C2 and sends at least one edge to

a third component C3.

We embed z1 into x, and then proceed to embed the roots of the trees from Fi into the
neighbourhood of x in Ci, for each i ∈ {1, 2, 3}. This is possible since by (3.20), there is at
most one root to embed into C3. Furthermore, by (3.19), there are at most ∆(T ) 6 εn

|R| roots
to be embedded into Ci, for i ∈ {1, 2}. Finally, because of the minimum degree in G, and
because of (3.18), we can greedily embed the remaining vertices of each forest Fi into Ci.

Case 2b (scenario (4b)): x
√
ε-sees two components C1 and C2, and one of these compo-

nents, say C1, is nonbipartite and (2k
3 ·

|R|
n
, 4
√
ε)-large.

We map z1 into x, and then embed the roots of J2 into C2 (we know that x has enough
neighbours in C2 because of (3.19)). We then embed the rest of ⋃ J2 greedily into C2.

For the trees from J1, we can make use of Corollary 3.3.12 and Lemma 3.3.8, whose con-
ditions hold by (3.14), (3.15), (3.16) and (3.21), to map ⋃ J1 to C1.

Case 2c (scenario (4c)): x
√
ε-sees two components C1 and C2, one of these components,

say C1, is bipartite, and x sees both sides A, B of the bipartition.

First, we map z1 into x and then embed ⋃F1 greedily into C2 (embedding the roots into
neighbours of x, as before). For the remaining forests, F2 and F3, observe that for any
proper 2-colouring of ⋃F2 and ⋃F3, and for any i ∈ {2, 3}, the larger colour class of ⋃Fi
and the smaller colour class of ⋃F5−i add up to at most

|⋃Fi|+ |⋃F5−i|
2 6

|⋃F1|+ |
⋃F2|+ |

⋃F3|
2 = k

2 . (3.23)

Now, our aim is to embed the roots and all the even levels of ⋃F2 into A, while embedding
the odd levels into B. Moreover, we plan to embed ⋃F3 in a way that its larger colour class
goes to the same set as the smaller colour class of ⋃F2.

As x
√
ε-sees C1, we may assume that x

√
ε

2 -sees A. Moreover, since x has at least one
neighbour b ∈ ⋃B, and since ⋃F3 has only one root because of (3.20), we can choose whether
we map the single root of ⋃F3 into b, or into some neighbour of x in A. We will make this
choice according to our plan above (that is, it will depend on whether the even or the odd
levels of ⋃F2 contain more vertices).

We then greedily embed the rest of ⋃F3 into C1. Now, we can make use of Corollary 3.3.4
together with Remark 3.3.5, whose conditions hold by (3.16) and by (3.23), to complete the
embedding of ⋃F2 into C1, while avoiding the image of ⋃F3.

Case 2d (scenario (4d)): x
√
ε-sees two components C1 and C2, one of them is bipartite

with parts A and B, such that min{|A|, |B|} > (1 + 4
√
ε)2k

3 ·
|R|
n

and x sees only one side of
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the bipartition.

Let us assume that C1 is the bipartite component with parts A and B containing at least
(1 + 4

√
ε)2k

3 ·
|R|
n

clusters each and that x only sees the set A. We map z1 into x and then
embed ⋃ J2 greedily into C2 (embedding the roots into neighbours of x, as before). Note that
there are few roots of trees in J1 ∪ J2, because of (3.22). Since J1 is a (2k

3 ,
k
2 ,

1
r
)-forest, we

may apply Corollary 3.3.4 so that we can embed ⋃ J1 into C1 in a way that the images of its
roots are neighbours of x. This works because of (3.21).

Case 2e (scenario (4e)): x
√
ε-sees two bipartite components C1 and C2, with parts

A1,B1 and A2,B2 respectively, such that min{|A1|, |B2|} > (1 + 4
√
ε)2k

3 ·
|R|
n

and x sees only
A1 and A2.

We map z1 into x, note that x
√
ε-sees A1 and A2. Consider the colouring ϕ that T induces

in ⋃ J1. If the roots of the trees in J1 are contained in the heavier colour class of ϕ, then
we embed ⋃

J1 into C1, otherwise we embed ⋃
J1 into C2. In any case, and since J1 is a

(2k
3 ,

k
2 ,

1
r
)-forest, we may use Corollary 3.3.4 to embed ⋃ J1 (taking care of mapping the roots

into neighbours of x). Finally, we greedily embed ⋃ J2 into the remaining component.

This completes the proof of Lemma 3.5.3.

3.6 Embedding trees with degree conditions

In this section we prove Theorems 1.3.5, 1.3.6 and 1.3.3. All of them will be proved us-
ing Lemma 3.5.3, which, fortunately, makes all these proofs quite straightforward.

We begin by proving the approximate version of the 2k − k
2 conjecture (Theorem 1.3.5)

in Section 3.6.1. Then, we show the approximate version of 2
3–conjecture (Theorem 1.3.3) in

Section 3.6.2. In Section 3.6.3, we show Theorem 1.3.6 (our extension of Theorem 1.3.5 to
constant degree trees).

3.6.1 An approximate version of the 2k − k
2 conjecture

Proof of Theorem 1.3.5. Given δ ∈ (0, 1), we set

ε := δ4

1010 , and α := 1
2 .

Let N0,M0 be given by Lemma 2.3.2, with input ε, η := 5
√
ε and m0 := 1

ε
, and let n′0 be

given by Lemma 3.5.3, with input α, ε and M0. We choose n0 := (1− ε)−1 max{n′0, N0}+ 1
as the numerical output of the theorem.
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Let G be an n-vertex graph as in Theorem 1.3.5, where n > k > δn and n > n0, and let
x ∈ V (G) be a vertex of degree at least 2(1 + δ)k. Let T be a k-edge tree with maximum
degree at most k 1

r , where r = 67 = 18 · 4− 5.

We apply Lemma 2.3.2 to G − x so that we get a subgraph G′ ⊆ G − x, with |G′| >
(1− ε)(n− 1), that admits an (ε, 5

√
ε)-regular partition. Moreover, the minimum degree in

G′ is at least
δ(G′) > (1 + δ)k2 − (ε+ 5

√
ε)(n− 1)− 1 > (1 + 4

√
ε)k2 . (3.24)

Let R be the corresponding (ε, 5
√
ε)-reduced graph of G′. Our aim is to show that R fulfills

at least one of the conditions (1)–(4) from Lemma 3.5.3, for inputs α, ε and M0. We will
assume that

all the components of R are (k · |R||G′| ,
4
√
ε)-small, (3.25)

as otherwise either we have (1) or (2) from Lemma 3.5.3, and we are done.

Since G′ misses less than εn vertices from G, we have that

degG(x,G′) > 2(1 + δ
2)k > 2(1 + 100 4

√
ε)k. (3.26)

Suppose that x does not
√
ε-see any component of R. Since δn 6 k and because of (3.26),

we have that

2δn 6 2(1 + δ
2)k 6 degG(x,G′) =

∑
C

degG(x, V (⋃C)) 6
√
εn, (♥)

a contradiction. Therefore, there is some component C1 of R receiving more than
√
ε|⋃C1|

edges from x.

By (3.25), x can have at most 2(1 + 4
√
ε)k neighbours in ⋃C1. So by (3.26), there are

more than 4
√
εk neighbours of x outside ⋃C1. Following the same reasoning as in (♥), there

must be a second component C2 receiving at least
√
ε|⋃C2| edges from x. We can assume

that x has no neighbours outside ⋃C1 ∪ C2, as otherwise condition (4a) from Lemma 3.5.3
holds.

By (3.26) and by symmetry, we can assume that

degG(x, V (⋃C1)) > (1 + δ
2)k.

In particular, we can again employ (3.25) to see that C1 is bipartite, and moreover x has to
see both classes of the bipartition. Therefore, condition (4c) from Lemma 3.5.3 holds and
the proof is finished.

3.6.2 An approximate version of the 2
3-conjecture

Proof of Theorem 1.3.3. Given δ ∈ (0, 1), we set

ε := δ4

1010 , and α := 2
3 .
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Let N0,M0 be given by Lemma 2.3.2, with input ε, η := 5
√
ε and m0 := 1

ε
, and let n′0 be

given by Lemma 3.5.3, with input α, ε and M0. We choose n0 := (1− ε)−1 max{n′0, N0}+ 1
as the numerical output of the theorem.

Let G be an n-vertex graph as in Theorem 1.3.3, where n > k > δn and n > n0, and let
x ∈ V (G) be a vertex of degree at least (1 + δ)k. Let T be a k-edge tree with maximum
degree at most k 1

r , where r = 49 = 18 · 3− 5.

We apply Lemma 2.3.2 to G − x so that we get a subgraph G′ ⊆ G − x, with |G′| >
(1−ε)(n−1), that admits an (ε, 5

√
ε)-regular partition. Let R be the corresponding (ε, 5

√
ε)-

reduced graph of G′, we will assume that every component of R is (k · |R||G′| , 4
√
ε)-small. An

easy computation shows that

δ(G′) >
(
1 + δ

2

) 2k
3 > (1 + 100 4

√
ε)2k

3 , (3.27)

because of the minimum degree in G. Also, note that degG(x,G′) > (1 + δ
2)k. Following

the same reasoning as in (♥), and because of the degree of x, there is some component C1 of
R such that x

√
ε-sees C1.

First, assume that x has more than (1 + 2 4
√
ε)k neighbours in ⋃C1. Since C1 is small,

C1 must be bipartite and x must see at least a
√
ε-portion of both sides of the bipartition,

namely A and B. Then, by (3.27) we have max{|A|, |B|} > (1 + 4
√
ε)2k

3 ·
|R|
|G′| and, therefore,

G′ satisfies condition (3) from Lemma 3.5.3.

Now, we may assume that x has less than (1 + 2 4
√
ε)k neighbours in ⋃C1. As in (♥), we

can calculate that there is a second component C2 containing at least
√
ε|⋃C2| neighbours

of x. We can assume that x does not send edges to any other component, otherwise we are
in case (4a) from Lemma 3.5.3, and are done.

Also, by symmetry we can assume that degG(x, V (⋃C1)) > (1 + δ
2)k2 . Following the same

reasoning as before we conclude that |C1| > (1+ δ
2)2k

3 ·
|R|
|G′| . In particular, if C1 is nonbipartite,

then G′ satisfies condition (4b) from Lemma 3.5.3 and we are done.

So we may suppose that C1 is bipartite. If x sees both sides of the bipartition, condi-
tion (4c) from Lemma 3.5.3 holds, so let us assume this is not the case. The minimum degree
tells us that one of the sides of the bipartition of C1 has size at least (1 + δ

2)2k
3 ·

|R|
|G′| clusters,

and we can argue similarly for the other side of the bipartition. This means that G′ satisfies
condition (4d) from Lemma 3.5.3, which completes the proof.

3.6.3 Embedding trees with maximum degree bounded by a con-
stant

Proof of Theorem 1.3.6. Given δ ∈ (0, 1) and ∆ > 2, we set

ε := δ4

1010 and α := 1
2 .
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Let N0,M0 be given by Lemma 2.3.2, with input ε, η := 5
√
ε and m0 := 1

ε
, and let n′0 be

given by Lemma 3.5.3, with input α, ε and M0. We choose n0 := (1− ε)−1 max{n′0, N0}+ 1
as the numerical output of the theorem.

Let G be an n-vertex graph as in Theorem 1.3.6, where n > k > δn and n > n0, and let
x ∈ V (G) be a vertex of degree at least 2(∆−1

∆ + δ)k. Let T be a k-edge tree with maximum
degree at most ∆.

We apply Lemma 2.3.2 to G−x and we obtain a subgraph G′, with |G′| > (1− ε)(n− 1),
that admits an (ε, 5

√
ε)-regular partition. Let R be the corresponding (ε, 5

√
ε)-reduced

graph.

Observe that each k-edge tree T with maximum degree at most ∆ will satisfy

k1 6
∆− 1

∆ k, (3.28)

where k1 is the size of the larger bipartition class of T . We can discard scenarios (1) and (2)
and therefore assume that

all nonbipartite components of R are (k · |R||G′| ,
4
√
ε)-small, (3.29)

and, by (3.28),

all bipartite components of R are (∆−1
∆ k · |R||G′| ,

4
√
ε)-small. (3.30)

As we removed only few vertices from G, it is clear that x has at least 2(∆−1
∆ + δ

2)k neighbours
in G′. This, together with (3.29) and (3.30), implies that there are components C1 and C2 of
R such that

degG(x, V (⋃Ci)) >
√
ε|⋃Ci|, for i ∈ {1, 2}.

Moreover, we may assume that x does not see any other components, otherwise G′ satisfies
condition (4a) from Lemma 3.5.3 and we are done. First, suppose that ∆ = 2, that is, T is
a path of length k. In this case, we choose a cut vertex z of T that splits T into two paths
of length k

2 and then we embed z into x. After that, we can greedily embed each component
of T − z into C1 and C2, respectively.

Now, suppose that ∆ > 3. By symmetry, we may assume that

degG(x, V (⋃C1)) > (∆−1
∆ + δ

2)k. (3.31)

If C1 is nonbipartite, G′ satisfies condition (4b) from Lemma 3.5.3 as ∆ > 3. If C1 is bipartite
with parts A and B, we can employ (3.30) together with (3.31) to conclude that G′ satisfies
condition (4c) from Lemma 3.5.3. This concludes the proof.

3.7 An approximate version of the intermediate range
conjecture

In this section, we prove an approximate version of the intermediate range conjecture (Theo-
rem 1.3.8). The proof is based on a structural result for graphs with minimum degree above
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k
2 and maximum degree above 4k

3 avoiding some tree with k edges and bounded degree. Let
us start with the definition of the extremal graphs.

Definition 3.7.1 ((ε, x)-extremal). Let ε > 0 and let k ∈ N. Given a graph G and a vertex
x ∈ V (G), we say that G is (ε, x)-extremal if for every (ε, 5

√
ε)-reduced graph R of G − x

the following conditions hold:

(i) every component of R is (k · |R||G| , 4
√
ε)-small;

(ii) x
√
ε-sees two components C1 and C2 of R and x does not see any other component

of R;

and furthermore, assuming that deg(x,⋃V (C1)) > deg(x,⋃V (C2)),

(iii) C1 is bipartite and (2k
3 ·

|R|
|G| ,

4
√
ε)-large, with x only seeing the larger side of C1;

(iv) if C2 is non-bipartite, then C2 is (2k
3 ·

|R|
|G| ,

4
√
ε)-small, and if C2 is bipartite, then x sees

only one side of the bipartition.

Now we will prove that a graph of minimum degree above k
2 and maximum degree above

4k
3 either contains every tree with k edges and bounded degree or is (ε, x) extremal for each
vertex x of high degree.

Theorem 3.7.2. For all δ ∈ (0, 1) there is n0 ∈ N such that for all k, n > n0 with n > k >
δn, the following holds for every n-vertex graph G with δ(G) > (1+δ)k2 and ∆(G) > (1+δ)4k

3 .
If T is a tree with k edges such that ∆(T ) 6 k

1
67 , then either

(a) T embeds in G; or

(b) G is ( δ4

1010 , x)-extremal for every x ∈ V (G) of degree at least (1 + δ)4k
3 .

Proof. Given δ ∈ (0, 1), we set

ε := δ4

1010 . (3.32)

Let N0,M0 be given by Lemma 2.3.2, with input ε, η := 5
√
ε and m0 := 1

ε
, and let n′0 be

given by Lemma 3.5.3, with input ε and M0. We choose

n0 := (1− ε)−1 max{n′0, N0}+ 1

as the numerical output of Theorem 3.7.2.

Let G and T be given as in Theorem 3.7.2. Consider an arbitrary vertex x ∈ V (G) with
deg(x) > (1 + δ)4

3k, and apply Lemma 2.3.2 to G − x. We obtain a subgraph G′ ⊆ G − x
which admits an (ε, 5

√
ε)-regular partition of G − x, with corresponding (ε, 5

√
ε)-reduced

graph R. Note that
δ(G′) > (1 + δ

2)k2 > (1 + 100 4
√
ε)k2 .
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If R has a (k · |R||G′| , 4
√
ε)-large component, we are either in scenario (1) or (2) from Lemma 3.5.3,

and we can embed T . So let us assume this is not the case. In particular, we can assume
that condition (i) of Definition 3.7.1 holds.

Since G′ misses less than εn+ 1 vertices from G, we have that

degG(x,G′) > (1 + δ
2)4

3k > (1 + 100 4
√
ε)4

3k. (3.33)

It is clear that x has to
√
ε-see at least one component C1 of R. Indeed, otherwise, we would

have that
4
3δn 6

4
3k 6 degG(x,G′) =

∑
C

degG(x,⋃V (C)) 6
√
εn, (3.34)

where the sum is over all components C of R, and this contradicts (3.32). Suppose that x
sees only one component. Since C1 is (k · |R||G′| , 4

√
ε)-small and degG(x,⋃V (C)) > (1 + δ

2)4k
3 ,

it follows that C1 is bipartite and thence the largest bipartition class of C1 has size at least
(1 + δ

2)2k
3 ·

|R|
|G′| and x

√
ε-sees both bipartition classes. Therefore we are in scenario (3) from

Lemma 3.5.3 and thus we can embed T .

Suppose from now that x sends edges outside of C1. Since C1 is (k · |R||G′| , 4
√
ε)-small, it

follows that
degG(x,G′ \ ⋃V (C1)) > (1 + 50 4

√
ε)k3 . (3.35)

We claim that x
√
ε-sees at least two components of R. Indeed, since k > δn and from (3.35)

we have
δn

3 6 (1 + 50 4
√
ε)k3 6

∑
C 6=C1

degG(x,⋃V (C)) 6
√
εn,

which contradicts (3.32).

If x sends at least one edge to a third component, then we are in scenario (4a) from
Lemma 3.5.3 and thus T can be embedded. Therefore, we know that x actually

√
ε-sees

exactly two components, which we will call C1 and C2 (In particular, we know that condi-
tion (ii) of Definition 3.7.1 holds). By symmetry, we may assume that deg(x,⋃V (C1)) >
deg(x,⋃V (C2)) and thus, by (3.33),

deg(x,⋃V (C1)) > (1 + 100 4
√
ε)2k

3 . (3.36)

Thus, if C1 is non-bipartite we are in scenario (4b) from Lemma 3.5.3, and therefore, we can
assume C1 = (A1,B1) is bipartite. Also, x only sees one side of the bipartition, say A1, since
otherwise we are in scenario (4c). Moreover, by (3.36), and since we may assume we are not
in scenario (4d), we know that

|A1| > (1 + 100 4
√
ε)2k

3 ·
|R|
|G′|

and |B1| 6 (1 + 4
√
ε)2k

3 ·
|R|
|G′|

. (3.37)

So, condition (iii) of Definition 3.7.1 holds.

Furthermore, if C2 is non-bipartite, then it is (2k
3 ·

|R|
|G′| ,

4
√
ε)-small, as otherwise we are in

case (4b). If C2 is bipartite, then x can only see one side of the bipartition, since otherwise
we are in scenario (4c). Therefore, C2 satisfies condition (iv) of Definition 3.7.1, implying
that G is ( δ4

1010 , x)-extremal.
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Now we are ready for the proof of Theorem 1.3.8.

Proof of Theorem 1.3.8. Given δ ∈ (0, 1), we set

ε := δ4

1010

and apply Lemma 2.3.2, with inputs ε, η = 5
√
ε and m0 := 1

ε
, to obtain numbers n0 and M0.

Next, apply Corollary 3.3.4, with input ε and further inputs d := 3 and M0 to obtain a
number k′0. Choose k0 as the larger of n0, k′0 and the output of Theorem 3.7.2.

Now, let k, n ∈ N, let α ∈ [0, 1
3), let T be a tree and let G be a graph as in Theorem 1.3.8.

Let x be an arbitrary vertex of maximum degree in G. Note that

degG(x) > 2(1 + δ)(1− α)k > (1 + δ)4k
3 .

We apply the regularity lemma (Lemma 2.3.2) to G − x to obtain a subgraph G′ ⊆ G − x
which admits an (ε, 5

√
ε)-regular partition with a corresponding reduced graph R. Moreover,

since G′ misses only few vertices from G, we know that

degG(x,G′) > 2(1 + δ
2)(1− α)k (3.38)

and
δ(G′) > (1 + δ

2)(1 + α)k2 , (3.39)

and thus
δ(R) > (1 + δ

2)(1 + α)k2 ·
|R|
|G′|

. (3.40)

Apply Theorem 3.7.2 to T and G. This either yields an embedding of T , which would be as
desired, or tells us that G is an (ε, x)-extremal graph. We assume the latter from now on.

So, we know that x
√
ε-sees two components C1 and C2 of R, where C1 = (A,B) is bipar-

tite, say with |A| > |B|. Moreover, x does not see any other component of R. Furthermore,

(A) Ci is (k · |R||G′| , 4
√
ε)-small, for i ∈ {1, 2}; and

(B) C1 is (2k
3 ·

|R|
|G′| ,

4
√
ε)-large, and x does not see B.

By (3.38), and since we assume that x sends more edges to ⋃V (C1) than to ⋃V (C2), we
know that

degG(x,⋃V (C1)) > (1 + δ
2)(1− α)k, (3.41)

and thus, by (B),

|C1| > |A| > (1 + δ
2)(1− α)k · |R|

|G′|
, (3.42)

since x has at least that many neighbours in A, because of inequality (3.41).
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Also, note that because of (A) and because of the bound (3.40), we know that any pair
of clusters from the same bipartition class of C1 has a common neighbour. Therefore,

the diameter of C1 is bounded by 3. (3.43)

Let us now turn to the tree T . We apply Lemma 2.2.5 to find a cut vertex z of T such that
every component of T − z has size at most dk2e. Let F denote the set of all components of
T − z. Then

each component of F has size at most
⌈
t

2

⌉
. (3.44)

Figure 3.3: Embedding if (3.45) does not to hold.

Let V0 denote the set of all vertices of T − z that lie at even distance to z. We claim that
if we cannot embed T , then

|V0| > (1 + α)k2 . (3.45)

Indeed, suppose otherwise. Then we can apply Lemma 3.2.1 to obtain a partition of F into
two sets J1 and J2 such that

|⋃J1| 6
2
3k and |⋃J2| 6

k

2 .

We embed z into x. Our plan is to use Corollary 3.3.4 with reduced host graph C1, and with

k1 + k2 := |⋃J1| 6
2
3k

where k1 := |⋃J1 \ V0| and k2 := |⋃J1 ∩ V0| are the sizes of the two bipartition classes of⋃J1. Since we assumed (3.45) does not to hold, we have

k2 6 |V0| 6 (1 + α)k2 . (3.46)

We now embed ⋃J1 into C1, with the roots of J1 embedded in the neighbourhood of x.
Observe that condition (iii) of Corollary 3.3.4 holds because of (3.40) and (3.46), and con-
dition (iv) holds because of (3.42). Moreover, the neighbourhood of x is large enough to
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accommodate the roots of the trees from J1 because of (3.41) and the bound on ∆(T ). In
order to see condition (ii) of Corollary 3.3.4, it suffices to recall (ii).

Also, because of (3.39), and since x also
√
ε-sees the component C2, we can embed the

trees from J2 into C2. We do this by first mapping the roots of the trees from J2 into the
neighbourhood of x in C2. Then, since the minimum degree of G′ is larger than |⋃J2| we
may complete the embedding of ⋃J2 greedily. In this way, we have embedded all of T , as
desired.

So, from now we can and will assume that (3.45) holds. We split the remainder of the
proof into two complementary cases, which will be solved in different ways. Our two cases
are defined according to whether or not there is a tree F ∗ ∈ F such that |V (F ∗) ∩ V0| > αk.
Let us first treat the case where such a tree F ∗ does not exist.

Figure 3.4: Embedding in Case 1.

Case 1: |V (F ) ∩ V0| 6 αk for each F ∈ F .

In this case, we proceed as follows. First, we embed z into x. We take an inclusion-
maximal subset F1 of F such that

|⋃F1 ∩ V0| 6 (1 + α)k2 (3.47)

holds. Then, because of the maximality of F1 and our assumption on |V (F ) ∩ V0| for the
trees F ∈ F , we know that

|⋃F1 ∩ V0| > (1− α)k2 . (3.48)

Hence, the trees from F1 can be embedded into C1, by using Corollary 3.3.4 as before, with
k1 + k2 := |⋃F1| where k1 := |⋃F1 \ V0| and k2 := |⋃F1 ∩ V0|. Indeed, inequalities (3.47)
and (3.40) ensure that condition (iii) of the lemma holds. Furthermore, because of (3.42)
and (3.48), we know that

k1 = |⋃F1 \ V0| 6 (1 + α)k2 6
1

1 + δ
2
|⋃V (A)|,
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and hence, it is clear that also condition (iv) of Corollary 3.3.4 holds.

Condition (ii) of Corollary 3.3.4 holds because of (ii). Finally, inequality (3.41) ensures
we can embed F1 in C1 in such a way the roots of F1 are embedded into the neighbourhood
of x in C1.

Now, the trees from F2 := F \F1 can be embedded into C2. First, embed the neighbours
of z into the neighbourhood of x in C2. Then, observe that (3.48) implies that

|⋃F2| 6 (1 + α)k2 6 δ(G′).

Therefore, we can embed the remainder of the trees from F2 into C2 in a greedy fashion.

Figure 3.5: Embedding in Case 2.

Case 2: There is a tree F ∗ ∈ F such that |V (F ∗) ∩ V0| > αk.

In this case, let us set F ′ := F \ {F ∗} and note that

|⋃F ′ ∩ V0| 6 (1− α)k. (3.49)

Our plan is to embed z into a neighbour of x in A, and embed all trees from F ′ into C1. We
then complete the embedding by mapping the root of F ∗ to x, and the rest of F ∗ to C2.

For the embedding of {z} ∪ ⋃F ′, we will use Corollary 3.3.4 as before, but this time the
roles of A and B will be reversed. That is, all of

F0 := ({z} ∪ ⋃F ′) ∩ V0

is destined to go to A, while all of

F1 := ({z} ∪ ⋃F ′) \ V0

is destined to go to B.
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We choose k1 + k2 := |⋃F ′| + 1 where k1 and k2 are the sizes of the bipartition classes
of {z} ∪ ⋃F ′, that is, we set k1 := |F0| and k2 := |F1|. Because of (3.45), there are at most
(1 − α)k2 vertices in T − z lying at odd distance from z. In particular, k2 6 (1 − α)k2 . So,
by (3.40), we know that condition (iii) of Corollary 3.3.4 holds (and condition (i) is obviously
true).

Now, condition (iv) of Corollary 3.3.4 is ensured by inequality (3.49) together with (3.42).
Observe that condition (ii) of Corollary 3.3.4 holds because of (ii). Therefore, we can embed
all of {z} ∪ ⋃F ′ with the help of Corollary 3.3.4. Furthermore, we can make sure that z is
embedded into a neighbour of x.

It remains to embed the tree F ∗. We embed its root r(F ∗) into x, and embed all the
neighbours of r(F ∗) into arbitrary neighbours of x in C2. We then embed the rest of F ∗
greedily inyo C2. Note that this is possible, since by (3.44), we know that

|F ∗ − r(F ∗)| 6
⌈
k

2

⌉
− 1,

and so, our bound (3.39) guarantees that the minimum degree in ⋃
C2 is large enough to

embed the remainder of F ∗ greedily into C2.
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Chapter 4

On the Erdős–Sós conjecture for
bounded degree trees

Based on joint work with Guido Besomi and Maya Stein [18]

In this chapter we present a proof of the Erdős–Sós conjecture for trees with maximum degree
bounded by a given constant and dense host graphs (Theorem 1.1.2). As an application, in
Section 4.5 we present a new upper bound on the multicolour Ramsey number for bounded
degree trees.

Our proof of Theorem 1.1.2 relies on a stability analysis of the structure of dense graphs
with average degree above k − 1 avoiding some tree with k edges and bounded maximum
degree. Namely, we will prove that if a graph G, satisfying the conditions of Theorem 1.1.2,
does not contain some tree T with k edges and bounded maximum degree, then G looks like
a union of extremal graphs. In that case, we may use a single edge of G to connect two of
those extremal graphs to embed T there.

In order to prove this structural result we use the regularity method. Let G be a graph
with n vertices and d(G) > k − 1, where n > k > δn, and let us further assume the size
of G is considerable larger than k. We apply the regularity lemma to G to obtain a regular
partition. We know that the corresponding reduced graph R roughly preserves the average
degree of G. We first prove an approximate version of Theorem 1.1.2 using our embedding
lemma (Lemma 3.5.3). This approximate result turns to imply that R has average degree
roughly k · |R|

n
, and then we can prove that each connected component of R has roughly the

same average degree. Let C be a connected component of R. If C is large enough, we can show
that if C is either bipartite or contains a useful matching structure, then we can embed any
given k-edge tree T with bounded degree into C using the tools from Section 3.3. Otherwise,
the reduced graph is a union of graphs corresponding to the description given in Section 1.1,
that is, graphs which are almost complete and of size roughly k or balanced almost complete
bipartite graphs of size roughly 2k.

If, on the other hand, the order of G is very close to k or if the host graph is close to
being a bipartite graph of order 2k, then a different approach is needed. To take care of these
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cases, we prove Theorem 4.0.1. This result might be of independent interest, as it greatly
improves the main result from [54] for bounded degree trees. Note that given a graph G
with d(G) > k − 1, a standard argument1 shows that G has a subgraph of minimum degree
δ(G) > k

2 that preserves the average degree. So, since in the Erdős-Sós conjecture and all
our theorems, we are looking for subgraphs, we may always assume that in addition to the
average degree condition, G satisfies a minimum degree condition. (In particular, this is
assumed in Theorem 4.0.1.)

Before stating Theorem 4.0.1 we need the following definition. Given β > 0, we say that
a graph H is β-bipartite if there is a partition V (H) = A∪B such that e(A)+e(B) 6 βe(H).

Theorem 4.0.1. For each k,∆ ∈ N and each graph G with d(G) > k − 1 and δ(G) > k
2 the

following holds.

(a) If k > 106 and |G| 6 (1 + 10−11)k then G contains a copy of every tree T with k edges
such that ∆(T ) 6

√
k

1000 .

(b) If k > 8∆2 and G = (A,B) is 1
50∆2 -bipartite with |A|, |B| 6 (1 + 1

25∆2 )k then G contains
a copy of every tree T with k edges such that ∆(T ) 6 ∆.

This chapter is organized as follows. In Section 4.1 we proved some tools needed to
prove that if a graph with average degree greater than k − 1 contains no copy of some k-
edge tree with bounded degree, then the its degree must be concentrated around its mean.
In Section 4.3 we proved that average degree a bit lower than k is enough to ensure the
containment every k-edge tree with bounded degree if the host graph is sufficiently “nice”.
We put everything together in Section 4.4 to prove Theorem 1.1.2. Finally, in Section 4.5 we
show a consequence of Theorem 1.1.2 in Ramsey theory for trees.

4.1 Tools

In this section, we collect some of the tools that will allow us to analyse the structure of
graphs avoiding some tree with bounded degree. We first prove an approximate version of
the Erdős–Sós conjecture for trees of bounded degree and dense host graphs.

Lemma 4.1.1. For all ∆ > 2 and δ, θ ∈ (0, 1), there is n0 ∈ N such that for all n > n0
and k ∈ N with n > k > δn the following holds. Let G be an graph on n vertices such that
d(G) > (1 + θ)k. Then G contains a copy of every tree T with k edges such that ∆(T ) 6 ∆.

Proof. Let ε > 0 be a sufficiently small constant so that ε� θ, δ. LetN0,M0 be the numerical
outputs of the regularity lemma (Lemma 2.3.2) with parameters ε and m0 = 1

ε
. Let G be a

graph on n > N0 vertices such that d(G) > (1 + θ)k, where n > k > δn. Moreover, we may
assume that δ(G) > (1+θ)k2 . By the regularity lemma, there exists a subgraph G′ ⊆ G, with

1We iteratively remove from G vertices of degree less than k
2 . This will not affect the average degree, and

result in the desired minimum degree, unless we end up removing all vertices. However, that cannot happen,
as then |E(G)| < k

2 · n 6 d(G) · n
2 , a contradiction.

54



|G′| > (1− ε)n, such that G′ admits an (ε, 5
√
ε)-regular partition V (G′) = V0 ∪ V1 ∪ · · · ∪ V`,

where m0 6 ` 6M0. Moreover, by the choice of ε we have

δ(G′) >
(

1 + θ

2

)
k

2 and d(G′) >
(

1 + θ

2

)
k.

Let R be the corresponding (ε, 5
√
ε)-reduced graph. Then, by Fact 2.3.3, we have

δ(R) >
(

1 + θ

2

)
k

2 ·
|R|
n

and d(R) >
(

1 + θ

2

)
k · |R|

n
.

Let C1, . . . ,Ct be the collection of connected components of R. By averaging, there exists
some component Ci such that

δ(Ci) >
(

1 + θ

2

)
k

2 ·
|R|
n

and d(Ci) >
(

1 + θ

2

)
k · |R|

n
,

and thus Ci is large enough in order to use either Proposition 3.3.1 or 3.3.9 to conclude.

Now we prove two results regarding the concentration of a given function around its mean
value. Given N ∈ N and a function f : [N ]→ R, we write

‖f‖∞ = max
n∈[N ]

|f(n)|

for the infinity norm of f . If µ is a probability measure on [N ] then

Eµ[f ] =
∑
n∈[N ]

f(n)µ(n)

denotes the expectation of f under µ, and if µ is the uniform probability we write

En∈[N ]f(n) = 1
N

∑
n∈[N ]

f(n).

Lemma 4.1.2. Let N ∈ N, t ∈ R and ε ∈ (0, 1). Let µ be a probability measure on [N ] and
let f : [N ]→ R+ satisfying

√
ε‖f‖∞ < t 6 Eµ(f). Then at least one of the following holds

(i) µ({n : f(n) > (1 +
√
ε)t}) > ε, or

(ii) µ({n : f(n) > (1− 4
√
ε)t}) > 1− 4

√
ε.

Proof. Let A be the set of all n ∈ [N ] with f(n) > (1 +
√
ε)t and set B := [N ] \A. Suppose

that (i) does not hold. Then µ(A) 6 ε, and therefore,∑
n∈B

µ(n)f(n) = Eµ(f)−
∑
n∈A

µ(n)f(n) > t− µ(A)‖f‖∞ > (1−
√
ε)t. (4.1)

Let B1 be the set of all n ∈ B such that f(n) < (1 +
√
ε − 2 4

√
ε)t, and set B2 := B \ B1.

From (4.1) and the definition of B we deduce that

(1−
√
ε)t 6 (1 +

√
ε)t · µ(B)− 2 4

√
εt · µ(B1) 6 (1 +

√
ε)t− 2 4

√
εt · µ(B1),

and hence, µ(B1) 6 4
√
ε. Therefore, µ(A∪B2) > 1− µ(B1) > 1− 4

√
ε, which implies (ii).
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In the proof of Theorem 1.1.2, we will use Lemma 4.1.2 with f(x) = degG(x) for some
graph G. A useful corollary of Lemma 4.1.2 is the case when we have an even better upper
bound on the ‖ · ‖∞ norm of the function f and µ is the uniform measure.

Lemma 4.1.3. Let N ∈ N, and let ε ∈ (0, 1
2). Let f : [N ]→ R+ be a function and let t > 0

such that t 6 En∈[N ]f(n) and ‖f‖∞ 6 (1 + ε)t. Then f(n) > (1−
√
ε)t for every n in a set

of size at least (1−
√
ε)N .

4.2 Small host graph

In this section we prove Theorem 4.0.1, which will follow directly from Propositions 4.2.1
and 4.2.3. We first deal in Proposition 4.2.1 the case when the host graph is almost bipartite.
Recall that H is β-bipartite if at least a (1− β)-fraction of its edges lie between A and B.

Proposition 4.2.1. Let k,∆ ∈ N such that k > 8∆2. Let G = (A,B) be a 1
50∆2 -bipartite

graph, with |A|, |B| 6 (1 + 1
25∆2 )k, d(G) > k − 1 and δ(G) > k

2 . Then G contains a copy of
every tree T with k edges such that ∆(T ) 6 ∆.

Proof. Set ε := 1
25∆2 and write n = |V (G)|. Then, n 6 (1 + ε)2k. Since G is ε

2 -bipartite, we
know that e(A,B) > (1− ε)kn2 . Suppose that |B| > n

2 > |A|. Then

1
|A|

∑
a∈A

deg(a,B) > (1− ε)kn
2|A| > (1− ε)k, (4.2)

and thus |B| > (1− ε)k. Furthermore, since n = |A|+ |B|, we have

|A||B| > e(A,B) > (1− ε)kn2 > (1− ε)k
√
|A||B|,

and thus, the fact that |B| 6 (1 + ε)k implies that |A| > (1−ε)2

1+ε k > (1 − 3ε)k. Now we can
give a lower bound for the average degree from B to A by using the first inequality from (4.2)
and the fact that n = |A|+ |B| to calculate

1
|B|

∑
b∈B

deg(b, A) > (1− ε)k2

(
1 + |A|
|B|

)
>

1− ε
2

(
1 + 1− 3ε

1 + ε

)
k > (1− 4ε)k. (4.3)

Using Lemma 4.1.3 with fA(a) = deg(a,B) for a ∈ A, tA = (1− ε)k and εA = 4ε, and with
fB(b) = deg(b, A) for b ∈ B, tB = (1− 3ε)k and εB = 9ε, we see that all but at most 2

√
ε|A|

vertices from A have degree at least (1 − 2
√
ε)k to B, and all but at most 3

√
ε|B| vertices

from B have degree at least (1 − 3
√
ε)k to A. Let A0 and B0 be the set of vertices of low

degree in A and B respectively, and let H be the bipartite graph induced by A′ = A \ A0
and B′ = B \B0. Then the minimum degree of H is at least (1− 5

√
ε)k. Now, given a tree

T ∈ T (k,∆), if V (T ) = C ∪D is its natural bipartition, Fact 2.2.2 implies that

max{|C|, |D|} 6
(

1− 1
∆

)
k 6 (1− 5

√
ε)k,

and therefore, by Lemma 2.2.4, we can embed T in H.
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Now we turn to the non-bipartite case. In this case we can embed trees with maximum
degree at most ε

√
k, for some small constant ε. As a first step, we will embed a small but

linear size subtree T ∗ ⊆ T trying to fill up as many low degree vertices of G as possible. We
can then use the following result to embed the leftover vertices from T − T ∗.

Lemma 4.2.2 (Lemma 4.4 from [61]). Let 0 < ν < 1
200 , let k ∈ N and let H be a k+1-vertex

graph with δ(H) > (1− 2ν)k, and let v ∈ V (H) be a vertex of degree k. If (T, r) is a rooted
tree with at most k edges such that every vertex is adjacent to at most νk/2 leaves, then T
can be embedded in H and any vertex in H − v can be chosen as the image of r.

Proposition 4.2.3. Let k > 106 and let G be a graph on n 6 (1 + 10−11)k vertices such that
d(G) > k − 1 and δ(G) > k

2 . Then G contains a copy of every tree T with k edges such that
∆(T ) 6

√
k

1000 .

Proof. Given G and k, set ε := 10−11 and note that necessarily, n > k. Moreover, for the
complement Ḡ of G, we have that d(Ḡ) < n− k. Thus,

2e(Ḡ) < n(n− k) 6 (1 + ε)k · εk 6 2εk2. (4.4)

Let X be the set of all vertices of G having degree at most b(1−
√
ε)kc in G, and let Y

be the set of all vertices of G having degree at least k in G. Since deg(v) 6 k − 1 for all
v 6∈ Y , we have that ∑

v∈V (G)\(X∪Y )
deg(v) 6 (k − 1)|V (G) \ (X ∪ Y )|

and thus, since d(G) > k − 1 and hence ∑v∈V (G) deg(v) > (k − 1)|V (G)|, we obtain

(k − 1)|X ∪ Y | <
∑

v∈X∪Y
deg(v) 6 |X|(1−

√
ε)k + |Y |(1 + ε)k.

Therefore,
|X| < 2

√
ε|Y | < 3

√
εk. (4.5)

For each v ∈ Y set Xv := N(v) ∩X. Let v? ∈ Y be a vertex that minimises |Xv| among all
v ∈ Y . So,

for each v ∈ Y, deg(v,X) > |Xv?|. (4.6)

Let T ∈ T (k,
√
k

1000). Now if Xv? = ∅, then the graph induced by v? and a k-subset of N(v?)
satisfies the conditions of Lemma 4.2.2, with ν :=

√
ε, and thus we can embed T . So, we will

from now on assume that Xv? 6= ∅.

We use Lemma 2.2.6, with γ := 168
√
ε, to obtain a subtree (T ∗, t∗) such that

84
√
εk 6 |T ∗| 6 168

√
εk (4.7)

and such that every component of T − T ∗ is adjacent to t∗. We will now embed T ∗ in a way
that at least |Xv?| vertices from X will be used. Then, we embed the rest of T into G −X
with the help of Lemma 2.2.1. Before we start, we quickly prove two claims that will be
helpful for the embedding of T ∗.

First, using (4.5) and the fact that δ(G) > k
2 , the following claim is easy to see.
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Claim 4.2.4. For every x, x′ ∈ V (G), there are more than 2−4k internally disjoint paths of
length at most 3 connecting x and x′.

Second, we will see now that a useful subset of Y can be ‘reserved’ for later use.

Claim 4.2.5. There is a subset Y ′ ⊆ Y \ {v?} of size at most b5
√
εkc such that all but at

most b2εkc vertices in G−X have at least |X| neighbours in Y ′.

To see this, suppose first that |Y | > b5
√
εkc+1 and take any subset Y ′ ⊆ Y \{v?} of size

b5
√
εkc. Since every vertex v in G−X has degree at least d(1−

√
ε)ke and since n 6 (1+ε)k,

we know that v has at least d3
√
εke > |X| neighbours in Y ′, and we are done.

Assume now that |Y | 6 b5
√
εkc and let us write Z for the set of vertices in G−X having

less than |X| neighbours in Y \ {v?}. Then one has the estimates

e(Y \ {v?}, G) =
∑

y∈Y \{v?}
deg(y) > (|Y | − 1)k,

and

e(Y \ {v?}, G) =
∑
z∈Z

deg(z, Y \ {v?}) +
∑
z 6∈Z

deg(z, Y \ {v?}) 6 |Z||X|+ (n− |Z|)(|Y | − 1).

Therefore, as |X| < 2
√
ε|Y | by (4.5), and since by assumption n 6 (1+ε)k, we have |Z| < 2εk

and we can take Y ′ = Y \ {v?}. This finishes the proof of Claim 4.2.5.

By applying Lemma 2.2.1, with ` = 3, we deduce that T ∗ has either |T ∗|/12 bare paths,
each of length 3, or it has at least |T ∗|/12 leaves. The embedding of T ∗ splits into two cases
depending on the structure of T ∗.

Case 1: T ∗ has a set B of |T ∗|/12 vertex disjoint bare paths, each of length 3.

We embed T ∗ vertex by vertex in a pseudo-greedy fashion always avoiding v?. We start
by embedding t∗ arbitrarily into any vertex of degree at least (1 −

√
ε)k of G − v?. Now

suppose we are about to embed a vertex u′ whose parent u has already been embedded into
a vertex φ(u). If u′ is not the starting point of a path from B or if all of Xv? is already used,
we embed u′ greedily. Now assume that u′ is the starting point of some B ∈ B and there is at
least one unused vertex x ∈ Xv? . By Claim 4.2.4 and since |T ∗| < 2−4k, vertices x and φ(u)
are connected by a path P of length at most 3 that uses only unoccupied vertices. Embed
B (including u) into P , and if |B| > |P |, choose its last vertices greedily. Since by (4.5)
and (4.7),

|X| 6 3
√
εk <

|T ∗|
12 = |B|,

we know that after embedding T ∗ every vertex in Xv? is used.

Case 2: T ∗ has at least |T ∗|/12 leaves.
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In this case, we cannot ensure that every vertex in Xv? is used for the embedding of T ∗,
however, we can still guarantee that at least |Xv?| vertices from X are used.

Because of our bound on the maximum degree of T , we can find a set U∗ ⊆ V (T ∗) \ {t∗}
of parents of leaves such that the number of leaves pending from U∗ is at least 6

√
εk, which

by (4.5) is greater than 2|X|. We then take an independent set U ⊆ U∗ such that for the
set L of leaves pending from U we have |L| > |X|, and such that |U | 6 |X|.

Starting from t∗ we embed T ∗, following its natural order but leaving out the vertices
from L. All vertices are embedded greedily into G − Y ′, except vertices from U and their
parents which are embedded in a different way. Assume v ∈ V (T ∗) is a parent of some
vertex in U . Since T ∗ is small, because of (4.5), because of our assumption on the minimum
degree of G, and because of Claim 4.2.5, we may embed v into a vertex having at least |X|
neighbours in Y ′. After this, we embed the children of v in U into unoccupied vertices of Y ′.
Other children of v are embedded greedily. At the end of this process we have embedded all
of T ∗ − L. If we have used at least |Xv?| vertices from X, we complete the embedding of T ∗
greedily, so let us assume we have used less than |Xv? | vertices from X. We embed the leaves
pending from U one by one into vertices from X until we use |Xv?| vertices, which is possible
since U was embedded into Y ′ and because of (4.6). After this point, we simply embed the
leftover leaves of T ∗ greedily but always avoiding v?.

This finishes the case distinction. Set T ′ := T − (T ∗− t∗). Denoting by φ the embedding
we note that

|N(v?) \ (φ(T ∗) ∪Xv?)| > k − |φ(T ∗)| − |Xv?|+ |φ(T ∗) ∩Xv? |+ |φ(T ∗) \N(v?)| > |T ′| − 2.

Therefore, the graphH induced by v?, φ(t∗) and any (|T ′|−2)−subset of |N(v?)\(φ(T ∗)∪Xv?)|
has order |T ′| and we may complete the embedding of (T ′, t∗) by using Lemma 4.2.2 for H,
with ν := 86

√
ε, fixing the image of t∗ as φ(t∗).

4.3 Using the regularity method

In this section, we will use the embedding tools from Section 3.3 to show that average degree
slightly below k is enough to ensure the containment of every k-edge tree with bounded
degree, provided the host graph has a regular partition and is considerable larger than the
tree.

Lemma 4.3.1. For all ∆ > 2, M0 ∈ N, δ, ε, η ∈ (0, 1) with ε� η 6 δ2

104 there is k0 ∈ N such
that for all k > k0, n ∈ N with δ−1k > n > k the following holds.
Let G be an n-vertex graph with an (ε, η)-regular partition and corresponding reduced graph R,
with |R| 6M0, which is connected and bipartite with parts A and B such that |A| > |B|. If

(i) d(G) > (1− 3√η)k;

(ii) δ(G) > (1− 3√η)k2 ; and

(iii) |⋃A| > (1 + δ)k,
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then G contains a copy of every tree T with k edges such that ∆(T ) 6 ∆.

Proof. Given ∆,M0, ε and η, we choose k0 as the output of Proposition 3.3.1. Given G as
in Lemma 4.3.1, we suppose for contradiction that G contains no copy of some tree T with
k edges such that ∆(T ) 6 ∆. Set

t = |R|
n

and let |⋃A| = a and |⋃B| = b. We claim that

b >
(

1 + δ

4

)
k

2 . (4.8)

Indeed, otherwise can use (i) to calculate that

(1− 3√η)kn 6 2e(G) 6 2ab 6
(

1 + δ

4

)
ka 6

(
1 + δ

4

)
k ·
(

1− δ

4

)
n 6

(
1− δ2

16

)
kn

where the second to last inequality follows from the fact that because of (ii) we have a =
n − b 6 n − (1 − 3√η)k2 6 (1 − δ

4)n. But this is a contradiction to our assumptions on η
and δ. This proves (4.8), and so, we also know that

|A| > |B| >
(

1 + δ

4

)
k

2 t. (4.9)

Now we turn to the tree T . Let A and B denote its colour classes, and assume |A| > |B|.
Moreover, we may assume that

(1− 4√η)k2 < |B| 6 k + 1
2 and k + 1

2 6 |A| 6 (1 + 4√η)k2 . (4.10)

as otherwise, since ε � η we have δ(G) > (1 + 100
√
ε)|B| and so, by (iii), we can use

Proposition 3.3.1 to embed T .

Let VA ⊆ A and VB ⊆ B be the sets of all clusters of degree at least (1 + √η)k2 t. We
claim that

|VA|+ |VB| > (1 +√η)kt. (4.11)
Suppose this is not the case. Then Fact 2.3.3 (i), condition (i), and (4.9) imply that

(1− 3√η)kt|R| 6 2e(R)

6 |VA||B|+ |VB||A|+ (1 +√η)k2 t
(
|R| − |VA| − |VB|

)
= (1 +√η)k2 t|R|+ |VA|

(
|B| − (1 +√η)k2 t

)
+ |VB|

(
|A| − (1 +√η)k2 t

)
< (1 +√η)k2 t|R|+ (1 +√η)kt ·

(
δ

8 −
√
η
)
k

2 t.

Therefore, and since n > k, we have
1
2t · k 6 (1− 7√η)tn = (1− 7√η)|R| < (1 +√η)

(
δ

4 −
√
η
)
kt 6

3
2 ·

δ

4kt,

a contradiction. So, assuming that |VA| > (1+√η)k2 t, by Proposition 3.3.4 (see Remark 3.3.2)
we can embed T into G, with A going to clusters in VA and B going to clusters in B.
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Now we turn to the case when the reduced graph is connected, non-bipartite and large.
We first derive some useful information about the structure of the reduced graph of G if it
is connected and non-bipartite, and G contains no copy of some k-edge tree with bounded
degree.

Lemma 4.3.2. For all ∆ > 2, M0 ∈ N, δ, ε, η ∈ (0, 1) with ε � η 6 δ4

108 , there is k0 ∈ N
such that for all k, n > k0 with δ−1k > n > (1+δ)k the following holds. Let G be an n-vertex
graph that admits an (ε, η)-regular partition into M0 parts, and assume the corresponding
(ε, η)-reduced graph is connected and non-bipartite. If furthermore,

(i) d(G) > (1− 3√η)k; and

(ii) δ(G) > (1− 3√η)k2 ,

and G contains no copy of some tree T with k edges such that ∆(T ) 6 ∆, then G has a
subgraph G′ ⊆ G of size |G′| > |G| −M0 such that there is a partition V (G′) = I ∪ V1 ∪ V2
with

(a) |Vi| = (1± 3√η)k2 for i ∈ {1, 2};

(b) I is an independent set in G′ and there are no edges between I and V2 in G′;

(c) degG′(x) > (1− 5 4
√
η)n for at least (1− 4 4

√
η)|V1| vertices x ∈ V1;

(d) degG′(y) > (1− 3 8
√
η)k for at least (1− 2 8

√
η)|V2| vertices y ∈ V2.

Proof. Let k0 > M0
ε

be at least as large as the output of Proposition 3.3.9 for ε
5 and ∆.

Applying Lemma 3.3.8 to G, with ` = M0 and t = (1 − 3√η)k2 , we find a subgraph G′ of
size |G′| > n −M0 that admits an (5ε, η2)-regular partition. Moreover, the corresponding
reduced graph R contains a matching M and a disjoint independent set I such that V (R) =
I ∪ V (M) = I ∪ V1 ∪ V2 and NR(I) ⊆ V1.

Letting I = ⋃
I and Vi = ⋃

Vi for i ∈ {1, 2} we have (b). Furthermore, because of
Proposition 3.3.9 we know that |Vi| 6 (1 + η)k2

|R|
n

and thus |Vi| 6 (1 + η)k2 for i ∈ {1, 2}.
Therefore, and because of condition (ii) we have (a).

In order to see (c) and (d), we do the following. For any subset A ⊆ V (G′) let dA denote
the average degree in G′ of the vertices in A. By (b), we have dI 6 |V1| 6 (1 + η)k2 . By
condition (i) and since degG′(x) > degG(x)−M0 for every x ∈ V (G′), we have

(1− 4√η)kn 6 2e(G′) = |I|dI + |V1|dV1 + |V2|dV2

6 (1 + η)k2 (|I|+ dV1 + dV2)
6 (1 + η)k2 (n− (|V1|+ |V2|) + dV1 + dV2)
6 (1 + η)k2 (n− (1− 3√η)k + dV1 + dV2),

and therefore,
dV1 + dV2 > (1− 8√η)n+ (1− 3√η)k. (4.12)
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Because of (b), we have dV2 6 |V1| + |V2| 6 (1 + η)k. Thus (4.12) implies that dV1 >
(1−12√η)n. Since dV1 6 n and since n 6 δ−1k, inequality (4.12) also implies that dV2 > (1−
4
√
η)k. Apply Lemma 4.1.3 to f1(v) = degG′(v) for v ∈ V1, with parameters t1 = (1−12√η)n,

and ε1 = 16√η, and to f2(v) = degG′(v) for v ∈ V2, with t2 = (1 − 4
√
η)k and ε2 = 4 4

√
η, to

obtain (c) and (d).

The next lemma finishes the analysis of the non-bipartite case.

Lemma 4.3.3. For all ∆ > 2,M0 ∈ N, δ, ε, η ∈ (0, 1) with ε � η 6 δ8

1080 , there is k0 ∈ N
such that for all k, n > k0 with δ−1k > n > (1 + δ)k the following holds. Let G be an
n-vertex graph that admits an (ε, η)-regular partition into at most M0 parts and assume the
corresponding reduced graph is connected and non-bipartite. If

(i) d(G) > (1− 3√η)k; and

(ii) δ(G) > (1− 3√η)k2 ,

then G contains a copy of every tree T with k edges such that ∆(T ) 6 ∆.

Proof. Let k0 be the output of Lemma 4.3.2 and let G be given. Let T be a tree with k
edges and ∆(T ) 6 ∆ and suppose we cannot embed T into G. Then by Lemma 4.3.2 we
may find a subgraph G′ ⊆ G and a partition V (G′) = I ∪ V1 ∪ V2 fulfilling the properties of
Lemma 4.3.2.

Let U1 ⊆ V1 be the set of all vertices x ∈ V1 with degG′(x) > (1− 5 4
√
η)n, and let U2 ⊆ V2

be the set of all vertices x ∈ V2 with degG′(x) > (1 − 3 8
√
η)k. In particular, because of

Lemma 4.3.2 (a), we have that

each vertex x ∈ U1 has at least (1−√η)|I| neighbours in I. (4.13)

Also, note that |U1| > (1−4 4
√
η)|V1| > |V1|− 8

√
ηk and |U2| > (1−2 8

√
η)|V2|, by Lemma 4.3.2 (a),

(c) and (d). Let H be the graph induced by U1 and U2. Note that because of Lemma 4.3.2 (b)
and (d), we know that the vertices from U2 have minimum degree at least (1− 6 8

√
η)k in H,

and because of Lemma 4.3.2 (a) and (d), the vertices from U1 have minimum degree at least
(1− 9 4

√
η)n− 2 8

√
ηk − |I| > (1− 3 8

√
η)k in H. Hence,

δ(H) > (1− 6 8
√
η)k. (4.14)

So, by Lemma 2.2.3 every tree with at most (1 − 6 8
√
η)k edges can be embedded greedily

into H. Let (T ∗, t∗) be the subtree given by Lemma 2.2.6 for γ = 1
2 , so that k

4 6 |T ?| 6 k
2

and every component of T − T ∗ is adjacent to t∗. We apply Lemma 2.2.1 to T ∗, with ` = 3,
which splits the proofs into two cases.

Case 1: T ? has a set B of |T ?|/12 vertex disjoint bare paths, each of length 3.

Note that each vertex from H has at least ∆ neighbours in U1, because of Lemma 4.3.2 (a)
and our bound from (4.14), which will be tacitly used in what follows.
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We embed t? into any vertex from H. The rest of T ? will be embedded in DFS order
into H. We will use the following strategy until we have occupied d δ

100ke vertices from I.
For each path P ∈ B, we proceed as follows. We embed the first vertex v1 of the path P into
a vertex u1 ∈ U1, and then find another vertex u3 ∈ U1 which has a common neighbour u2
with u1 in I. Note that the vertex u3 exists because of (4.13). We then embed the middle
vertex v2 of P into u2 ∈ I, and the end point v3 into u3 ∈ U1. The remaining vertices of T ?
are embedded greedily into H.

Case 2: T ? has |T ?|/12 leaves.

In this case, the embedding of T ? follows a similar strategy. We embed t? into any vertex
from H and the rest will be embedded in DFS order. We take care to embed all parents of
leaves into U1 and all leaves into I, until we have used d δ

100ke vertices from I. The remaining
vertices of T ? are embedded greedily into H.

Now, let m be the number of vertices we have embedded so far into H, and let H ′ ⊆ H
contain all unused vertices of H. By our embedding strategy, we have that m 6 |T ?| − δ

100k.
Therefore, and by (4.14),

δ(H ′) > (1− 6 8
√
η)k −m > (1− 6 8

√
η)k + δ

100k − |T
?| > (1 + δ

200)k − |T ?|,

and so we can finish the embedding of T by embedding T − T ∗ greedily into H ′.

4.4 Proof of the Erdős–Sós conjecture for trees with
bounded degree and dense host graph

In this section we finally prove Theorem 1.1.2 with the help of the results from the previous
sections.

Proof of Theorem 1.1.2. Given ∆ and δ, we set ν = min{ δ2

210 ,
1

1011 ,
1

25∆2} and we fix parame-
ters ε, η, θ such that

0 < ε� η � θ 6
ν8

1080 .

Let k0 be the maximum of 3
ε
and the outputs of Lemma 2.3.2, Lemma 4.3.1, Lemma 4.3.3

and Lemma 4.1.1 (with ν playing the role of δ, and m0 = d1
ε
e). Set n0 = dδ−1k0e.

By Proposition 4.2.3 we may assume that |G| > (1 + ν)k and if G is ν-bipartite, Propo-
sition 4.2.1 allows us to assume that the larger bipartition class of G has at least (1 + ν)k
vertices. Now the regularity lemma (Lemma 2.3.2) provides us with a subgraph G′ with
|G′| > (1 − ε)n that has an (ε, η)-regular partition. Let R be the corresponding reduced
graph and let U1, . . . ,U` be the connected components of R. Then, since we may assume
that δ(G) > k

2 (see the footnote in the Introduction), we have

degG′(x) > (1− 2√η) degG(x) > (1− 2√η)k2 for all x ∈ V (G′),

63



and therefore
`k

4 6 (1− 2√η)k2` 6
∑
i∈[`]
|⋃Ui| 6 n 6 δ−1k,

implying that
` 6 4δ−1. (4.15)

We set U ′i = ⋃
Ui for each i ∈ [`].

Claim 4.4.1. Suppose G′ contains no copy of some k-edge tree T with ∆(T ) 6 ∆, then

(i) d(G′[U ′i ]) = (1± ν
2 )k and δ(G′[U ′i ]) > (1− ν

2 )k2 for all i ∈ [`]; and

(ii) for each i ∈ [`] either

(a) G′[U ′i ] is non-bipartite and |Ui| = (1± ν
2 )k, or

(b) G′[U ′i ] is bipartite with V (Ui) = Ai ∪Bi such that |Ai|, |Bi| = (1± ν
2 )k.

In order to see this claim, observe that since T cannot be embedded into G′, Lemma 4.1.1
implies that d(G′[U ′i ]) < (1 + θ)k for each i ∈ [`]. Note that

∑̀
i=1

|U ′i |
n
d(G′[U ′i ]) = d(G′) > (1− 3√η)k.

Set t = (1− 3√η)k. Applying Lemma 4.1.2 with N = `, µ(i) = |U ′i |/n and f(i) = d(G′[U ′i ]),
and with

√
θ in the role of ε, we see that the set I = {i ∈ [`] : d(G′[U ′i ]) < (1 − 2

√
θ)t}

satisfies
t|I|
2n 6 µ(I) 6 2

√
θ

(where for the first inequality we use that |Ui| > t
2 for each i). Thus, |I| 6 8δ−1

√
θ < 1. In

other words, I = ∅, and therefore, for each i ∈ [`] we have

d(G′[U ′i ]) > (1− 2
√
θ)(1− 3√η)k > (1− 3

√
θ)k. (4.16)

This, together with the minimum degree in G′, proves (i). In order to see (ii), we use (4.16)
and Lemmas 4.3.1 and 4.3.3. This proves Claim 4.4.1.

Now we distribute the vertices from G−G′ into the sets U ′i . We successively assign each
leftover vertex to the set U ′i it sends most edges to (or to any one of these sets, if there is
more than one). Then for each i ∈ [`] and all x ∈ Ui we have

deg(x, U ′i) >
k

2` >
δ

8k,

where we used (4.15) for the second inequality. Since we add at most εn � νk vertices to
each set, we end up with a partition V (G) = U1 ∪ . . . ∪ U` satisfying, for each i ∈ [`],

(I) d(G[Ui]) = (1± ν)k and δ(G[Ui]) > δ
8k;
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(II) deg(x, Ui) < (1− ν)k2 for less than νk vertices x ∈ Ui; and

(III) eitherG[Ui] is non-bipartite and |Ui| = (1±ν)k, orG[Ui] is ν-bipartite with Ui = Ai∪Bi

such that |Ai|, |Bi| = (1± ν)k.

For each i ∈ [`], we use Lemma 4.1.3 for f(x) = deg(x, Ui), with 2ν playing the role of ε, to
deduce that

deg(x, Ui) > (1−
√

2ν)k for at least (1−
√

2ν)|Ui| vertices from Ui. (4.17)

Now we embed T using this structural information of G. We apply Lemma 2.2.6 to T ,
with γ = 1

2 , to obtain a subtree (T, t∗) with k
4 6 |T ∗| 6 k

2 such that every component of
T − T ∗ is adjacent to t∗. Moreover, since ∆(T ) 6 ∆ there is a component T ′ of T − T ∗ with
k

2∆ 6 |T ′| 6 3k
4 .

Note that if there are no edges between different sets Ui, then an averaging argument
shows that there is i? ∈ [`] such that d(G[Ui? ]) > d(G) > k − 1. But then, because of (III)
and because of Theorem 4.0.1, we are done. Thus, we may assume that there is an edge uiuj
with ui ∈ Ui and uj ∈ Uj. We map t∗ into ui and map the root of T ′ into uj. Note that
by (I), we have

δ(G[Ui]) >
δ

8k > 4
√
νk >

√
2ν|Ui|+ ∆ (4.18)

and that (III), together with our choice of ν ensures that
√

2ν|Ui| 6 k
2∆ . So, we may finish

the proof by using Lemma 2.2.3 and Lemma 2.2.4 to embed T − T ′ into Ui and T ′ into Uj,
which we can do because of (4.17) and (4.18).

4.5 Multicolour Ramsey number of bounded degree
trees

To finish this chapter, let us briefly mention a consequence of the Erdős–Sós conjecture in
Ramsey theory. Given an integer ` > 2 and a graph H, the `-colour Ramsey number r`(H) of
H is the smallest n ∈ N such that every `-colouring of the edges ofKn yields a monochromatic
copy of H. In general, determining the Ramsey number of a graph is a very difficult problem
and have received considerable attention over more than 70 years. We do not aim to describe
Ramsey theory for graphs here, however, we recommend the survey of Conlon, Fox, and
Sudakov [36] for recent developments.

Regarding Ramsey numbers of trees, Erdős and Graham conjectured [44] in 1973 that
every tree T with k edges satisfies

r`(T ) = `k +O(1), (4.19)

and they established the lower bound r`(T ) > `(k− 1) + 1 for large enough ` satisfying ` ≡ 1
mod k. Moreover, Erdős and Graham also observed that the upper bound in (4.19) would
follow from the Erdős–Sós conjecture. Indeed, already for n > `(k − 1) + 2 note that the
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most popular colour in any `-colouring of Kn has at least 1
`

(
n
2

)
edges and thus average degree

at least n−1
`
> k− 1. So the Erdős–Sós conjecture would imply that the most popular colour

contains a copy of every tree with k edges. Therefore, from Theorem 1.1.2 we deduce the
following result.
Corollary 4.5.1. Let `,∆ > 2 be two integers. Then there exists k0 ∈ N such that for
every k > k0 the following holds. For every tree T with k edges and ∆(T ) 6 ∆ we have
r`(T ) 6 `(k − 1) + 2.

We remark that in Corollary 4.5.1 one can actually find a copy of every k-edge tree with
bounded degree in the same colour, at the same time. Regarding the lower bound, we observe
that the construction of Erdős and Graham works for fixed k and large ` depending on k,
while Corollary 4.5.1 works for large k depending on `. Therefore, a construction showing
the lower bound is still missing.
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Chapter 5

Global resilience of trees in sparse
random graphs

Based on joint work with Pedro Araújo and Luiz Moreira [10].

The study of random analogues of classical results in extremal combinatorics has been an
active area of research in the last decades with remarkable results (see [35] for a survey). One
particular line of research is looking for the containment of large graphs in sparse random
graphs. For instance, studying the threshold for the containment of a perfect matching, a
Hamilton cycle, or a spanning tree have been very popular problems in the last 20 years.
Moreover, it has been also studied how resilient is G(n, p) with respect to some property that
it typically possesses. For instance, a prototype problem is to determine how many edges can
be removed from G(n, p) so that the resulting subgraph still contains a Hamilton cycle. We
recommend the survey of Böttcher [27] for a general overview of this area. In this chapter,
we will make some progress towards this program showing a sparse random analogue of the
Erdős–Sós conjecture (Theorem 1.4.3). Actually, we will prove an even stronger statement
by replacing the random graph G(n, p) with a random-like graph. To make this statement
precise, let us give some definitions.

Definition 5.0.1 (Uniform graph). Let η, p ∈ (0, 1). We say that a graph G on n vertices is
(η, p)-uniform, if for every pair of disjoint sets A,B ⊆ V (G) such that |A|, |B| > ηn we have

(1− η)p|A||B| 6 eG(A,B) 6 (1 + η)p|A||B| (5.1)

and
(1− η)p

(
|A|
2

)
6 eG(A) 6 (1 + η)p

(
|A|
2

)
. (5.2)

Furthermore, we say that G is (η, p)-upper-uniform if (possibly) only the upper bounds in (5.1)
and (5.2) hold for all A,B ⊆ V (G) as above.

It is not hard to prove that, with high probability, the random graph G(n, p) is (η, p)-
uniform provided that pn is large enough (see Lemma 5.1.4). The main result of this chapter
states that one can replace G(n, p) in Theorem 1.4.3 by a (η, p)-uniform graph. Namely, we
will prove the following result.
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Theorem 5.0.2. Let δ, % ∈ (0, 1) and ∆ > 2. There are positive constants n0, η0 and C such
that for all 0 < η 6 η0 and n > n0 the following holds. Let p ∈ [0, 1] with p > C

n
and let G be

a (η, p)-uniform graph on n vertices. If G′ ⊆ G is a subgraph such that e(G′) > (%+ δ) e(G),
then G′ contains a copy of every tree T with %n edges such that ∆(T ) 6 ∆.

The proof of Theorem 5.0.2 is based on the sparse regularity method combined with tree
embedding results in bipartite expander graphs. Let us give a rough outline of the proof here.

Let G be an (η, p)-uniform graph and let G′ ⊆ G be a subgraph of G such that e(G′) >
(% + δ)e(G). We may apply the sparse regularity lemma to G′ to obtain a regular partition
of V (G′). We will work on the reduced graph R′ of G′ in order to find a "good" structure.
Let k be the number of vertices of R′. As in the standard regularity lemma, one can prove
that R′ inherits the edge density of G′, but scaled by p, so that the average degree of R′
satisfies d(R′) > (%+ δ

3)k. Using the large average degree we find a large matching structure
(see Section 5.4) which will allow us to embed any given bounded degree tree. The matching
structure consists of cluster X, a matchingM, and a bipartite graph H = (Y ,Z), such that
N(X) = V (M) ∪ Y and Y has large minimum degree in H (see Figure 5.1).

Figure 5.1: Matching structure.

Let T be a tree with %n edges such that ∆(T ) 6 ∆. Our goal is to embed T using the
matching structure. To do so, we first cut the tree into very small subtrees and then locate
every such subtree into some edge of the reduced graph. IfM is large enough, then we will
locate each subtree into an edge of the matching, using both clusters of the edge in a balanced
way. Otherwise, we will first locate subtrees into edges from H, until a large proportion of
Y ∪Z is used. The leftover subtrees can be located intoM, always using both clusters from
each edge in a balanced way. In any case, once we have located the subtrees, we will use
an embedding technique due to Balogh, Csaba and Samotij [13] in order to embed each of
this subtrees into the regular pair that was assigned to this subtree. The role of X here is to
connect the embedding, meaning that X will be used in order to go from one edge to another
inM∪H.
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This chapter is organized as follows. In Section 5.1 we introduce the regularity lemma
for sparse graphs and in Section 5.2 we present the embedding techniques that will be used
to embed tees into regular pairs. In Section 5.3 we state a result that allow us to partition
a bounded degree tree into smaller subtrees in such a way that each subtree is connected to
few other subtrees. In Section 5.4 we find the matching structure and in Section 5.5 we put
everything together in order to prove Theorem 5.0.2. Finally, in Section 5.6 we discuss some
applications of Theorem 1.4.3 in Ramsey theory.

5.1 Szemerédi’s regularity lemma for sparse graphs

It is well known that the Szemerédi’s regulariyt lemma does not work in sparse graphs, and
the reason is that the typical cleaning procedure might delete all the edges if the graph is not
dense enough. In this section, we introduce a sparse variant of the regularity lemma which
works for graphs with even a linear number of edges. Let us start with some definitions.

Let G be a graph and let p ∈ (0, 1). Given two disjoint sets A,B ⊆ V (G), we define the
p-density of the pair (A,B) by

dp(A,B) = e(A,B)
p|A||B|

.

Given ε > 0, we say that the pair (A,B) is (ε, p)-regular if for all A′ ⊆ A and B′ ⊆ B, with
|A′| > ε|A| and |B′| > ε|B|, we have

|dp(A′, B′)− dp(A,B)| 6 ε.

Now we state some standard results regarding properties of regular pairs (we refer to the
survey [52] for the proofs).

Lemma 5.1.1. Given α > ε > 0, let G be a graph and let A,B ⊆ V (G) be disjoint sets such
that (A,B) is (ε, p)-regular with dp(A,B) = d > 0. Then the following properties hold.

1. Let A′ ⊆ A with |A′| > α|A| and B′ ⊆ B with |B′| > α|B|. Then the pair (A′, B′) is
(ε/α, p)-regular with p-density at least d− ε.

2. There are at most ε|A| vertices in A with less than (d− ε)p|B| neighbours in B.

A partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vk is said to be (ε, p)-regular if

(a) |V0| 6 ε|V (G)|,

(b) |Vi| = |Vj| for all i, j ∈ [k], and

(c) all but at most εk2 pairs (Vi, Vj) are (ε, p)-regular.

We may now state a sparse version of Szemerédi’s regularity lemma, due to Kohayakawa and
Rödl [70, 71] .
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Theorem 5.1.2 (Sparse Regularity Lemma). Given ε > 0 and k0 ∈ N, there are η > 0 and
K0 > k0 such that the following holds. Let G be an η-upper-uniform graph on n > k0 vertices
and let p ∈ (0, 1), then G admits an (ε, p)-regular partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vk with
k0 6 k 6 K0.

Let G be a graph that admits an (ε, p)-regular partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vk. Let
d ∈ (0, 1). The (ε, p, d)-reduced graph R, with respect to this (ε, p)-regular partition of G,
is the graph with vertex set V (R) = {Vi : i ∈ [k]}, called clusters, such that ViVj is an edge
if and only if (Vi, Vj) is an (ε, p)-regular pair with dp(Vi, Vj) > d. The following proposition
establishes that the edge density of R is roughly the same as in G, but scaled by p.

Proposition 5.1.3. Let ε, η, p, d ∈ (0, 1) and let k ∈ N such that k > 1/ε. Let G be
an (η, p)-upper uniform graph on n vertices that admits an (ε, p)-regular partition V (G) =
V0 ∪ V1 ∪ · · · ∪ Vk, and let R be the (ε, p, d)-reduced graph of G with respect to this partition.
Then

e(R) > e(G)
(1 + η)p

(
k

n

)2

− (6ε+ d)k2.

Proof. Let GR be the subgraph of G obtained by deleting all the edges within clusters,
between irregular pairs, and between regular pairs with density less than d. Since k > 1/ε,
for i ∈ [k] we have

|Vi| 6
n

k
6 εn.

Let us choose η so that |Vi| > n/(k + 1) > ηn for all i ∈ [k]. The (η, p)-upper uniformity of
G implies that GR misses at most

• k · (1 + η)p|V0|nk 6 2εpn2 between V0 and V (G) \ V0;

• (k + 1) · (1 + η)p
(
εn
2

)
6 2εpn2 edges within the clusters;

• εk2 · (1 + η)p(n
k
)2 6 2εpn2 edges between irregular pairs;

•
(
k
2

)
· dp(n

k
)2 6 dpn2 edges between regular pairs with density below d.

Thus we have e(GR) > e(G)− (6ε+d)pn2. Note that the (Vi, Vj) induces a non-empty graph
in GR if and only if ViVj is an edge in R. Therefore, we have

e(G)− (6ε+ d)pn2 6 e(GR) 6 (1 + η)pn
2

k2 e(R),

which implies the desired bound.

Finally, let us remark that Theorem 5.1.2 works for very sparse random graphs due to
the following lemma.

Lemma 5.1.4 (Lemma 4 from [13]). Let η > 0 and let pn > 8
η4(1−η) . Then, with high

probability, the random graph G(n, p) is (η, p) uniform.
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5.2 Tree embeddings in bipartite expander graphs

In this section we show how to embed trees in (ε, p)-regular pairs. One of the main difficul-
ties while working with the sparse regularity lemma is that the vertex-by-vertex embedding
strategy does not work in general. This is because the neighbourhood of typical vertex in a
sparse regular pair is too small in order to use the regularity inheritance. That is, if (A,B)
is an (ε, p)-regular pair of density p and p = o(1), then the degree of a typical vertex in
A is roughly dp|B| = o(|B|), which is much smaller that what one needs in order to use a
vertex-by-vertex embedding strategy. To deal with this problem, we will make use of the
expansion properties of regular pairs and tree embedding results in expander graphs.

Roughly speaking, we say that a graph is expander if every set of vertices has a large
outer neighbourhood. The neighbour expansion notion is particularly useful while embedding
graphs such as paths, trees, and cycles. For instance, Friedman and Pippenger [51] proved
that graphs satisfying some expansion condition contain all small trees size of bounded max-
imum degree. This result was improved by Haxell [62] allowing the embedding of larger
trees in expander graphs. In our context, we want to use expansion conditions to embed
trees in regular pairs. To do so, we will use an embedding result due to Balogh, Csaba, and
Samotij [13] which extends the result of Friedman and Pippenger to the bipartite setting.

Definition 5.2.1 (Bipartite (q, d)-expander). Let H = (V1, V2) be a bipartite graph such that
|V1| 6 |V2|. Let d > 2 and let q be a positive integer such that q < |V1|. We say that H is a
bipartite (q, d)-expander if the following holds.

1. For every subset X ⊆ Vi of size at most q we have |N(X)| > d|X| for i ∈ {1, 2}.

2. For every subset X ⊆ Vi of size at least q we have |N(X)| > |V3−i| − q for i ∈ {1, 2}.

Lemma 5.2.2 (Corollary 12 from [13]). Let d > 2 and let H = (V1, V2) be a bipartite graph
with |V1| 6 |V2|. Suppose that H is a bipartite (q, d + 1)-expander with 0 < q < |V1|

(2d+1) .
Then H contains a copy of every tree T with ∆(T ) 6 d and bipartition classes A1, A2 with
|A1| 6 |V1| − (2d + 1)m and |A2| 6 |V2| − (2d + 1)m, respectively. Furthermore, for each
u ∈ Ai and v ∈ Vi there exists an embedding ϕ : V (T )→ H such that ϕ(u) = v.

We cannot use Lemma 5.2.2 directly in (ε, p)-regular pairs, since regular pairs are not
bipartite expanders. Indeed, it might be that a regular pair has vertices with too low degree
or even isolated vertices. However, one can prove that any large subgraph of an (ε, p)-regular
pairs contains an almost spanning subgraph which is a bipartite expander.

Lemma 5.2.3 (Lemma 19 from [13]). Let (A,B) be an (ε, p)-regular pair such that dp(A,B) >
ε. Suppose that |A| = |B| = m and let A′ ⊆ A and B′ ⊆ B be sets of size at least (4D+6)εm.
Then there are subsets A′′ ⊆ A′ and B′′ ⊆ B′ such that

(a) |A′ \ A′′| 6 εm and |B′ \B′′| 6 εm, and

(b) the subgraph induced by (A′′, B′′) is a bipartite (εm, 2D + 2)-expander.
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5.3 Cutting trees with bounded maximum degree

Now we show how to cut a given tree T into a constant number of tiny rooted subtrees.
The main difference with the results of Section 3.2 is that we need to control the number of
neighbours that each subtree has and we also need that the root of each of these subtrees
is at even distance from the root of T . To do so, we will modify the following result due to
Balogh, Csaba, and Samotij [13].

Lemma 5.3.1 (Lemma 15 from [13]). Let ∆ > 2 and let (T, r) be a rooted tree with
∆(T ) 6 ∆. If |T | > β−1, then there exists a family of t 6 4β−1 disjoint rooted subtrees
(Ti, ri)i∈[t] such that V (T ) = V (T1) ∪ · · · ∪ V (Tt) and for each i ∈ [t] we have

1. |Ti| 6 ∆2β|T |,

2. Ti is connected (by an edge) to at most ∆3 other subtrees, and

3. Ti is rooted at ri and all the children of ri belong to Ti.

Given a tree T , let (Ti, ri)i∈[t] be the family given by Lemma 5.3.1. We may define an
auxiliary graph TΠ (see figure 5.2), called cluster tree, with vertex set V (TΠ) = [t] and edge
set

E(TΠ) = {ij | Ti and Tj are adjacent in T}.

.. .....
.....

..
... .

...

.
.

. .

Figure 5.2: Cluster tree.

Note that Lemma 5.3.1 implies that |TΠ| 6 4β−1, which is the best one could hope by
imposing property (1). Moreover, property (2) implies that ∆(TΠ) 6 ∆3, which will play
a crucial role in our embedding strategy. We only need to refine the partition given by
Lemma 5.3.1 in order to impose that the root of each subtree is at even distance from the
root of T , which is a stronger property than (3).

Proposition 5.3.2. Let ∆ > 2 and let (T, r) be a rooted tree with ∆(T ) 6 ∆. If |T | > β−1,
then there exists a family of t 6 4β−1∆ disjoint rooted subtrees (Ti, ri)i∈[t] such that V (T ) =
V (T1) ∪ · · · ∪ V (Tt) and for each i ∈ [t] we have
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1. |Ti| 6 ∆4β|T |,

2. Ti is rooted at ri and the distance from ri to r is even,

3. all the children of ri belong to Ti, and

4. the corresponding cluster tree has maximum degree at most ∆4.

Proof. Starting with the partition given by Lemma 5.3.1, we will refine this partition as we
run a breadth first search (BFS) on (T, r). Suppose that in this search we have reached a
vertex v, which is the root of a subtree in the current partition, such that v and every root
before v in the search are at even distance from each other in the current partition.

If there is a root u of some subtree in the current partition, which is at odd distance from
v and such that the subtree rooted at v is adjacent to u, then we may update the partition by
splitting the tree rooted at u (each neighbour of u is now the root of a subtree) and adding
u to the subtree rooted at v. We repeat this process for every such u. Note that after these
splittings, the root of each tree that is adjacent to the tree rooted at v is at even distance
from all the previous roots. Moreover, a subtree of the original partition can only be split
by this process when the BFS reaches its parent. Since each subtree has only one parent,
they are split at most once into at most ∆ new subtrees and therefore the final partition has
at most 4∆β−1 new subtrees. For the same reason, the maximum degree of the cluster tree
cannot go higher than ∆4, since the original TΠ had maximum degree at most ∆3.

Finally, the size of each subtree grows by at most ∆3 if the roots of its children are added.
Since the update only moves forward in the BFS order, at the end of the process each subtree
has size at most ∆2β|T |+ ∆3 6 ∆4β|T |.

5.4 Matching structure in the reduced graph

In this section we prove that if H is an (η, p)-upper-uniform graph with 2e(H) > (%+ δ
2)pn2,

then H has an (ε, p, d)-reduced graph R containing a cluster X of large degree such that
its neighbourhood can be partitioned as N(X) = V (M) ∪ Y , where M is a matching and
Y is an independent set. Moreover, denoting by H the bipartite graph induced by Y and
Z := N(Y) \ (X ∪ N(X)), then either M is large enough or every cluster in Y has large
degree in H.

Proposition 5.4.1. Let ε, δ, % ∈ (0, 1) and let d = δ
100 . There exist n0, k,K0 ∈ N and n0 > 0

such that 1/ε 6 k 6 K0 and that for all 0 < η 6 η0, p ∈ (0, 1) and n > n0 the following holds.
Every (η, p)-upper uniform graph H on n vertices with 2e(H) > (%+δ/2)pn2 admits an (ε, p)-
regular partition with k parts such that its (ε, p, d)-reduced graph R satisfies the following.
There exist X ∈ V (R), a matching M and a bipartite induced subgraph H = R[Y ,Z] such
that

(a) N(X) = V (M) ∪ Y and V (M) ∩ Y = ∅;

(b) |V (M)|+ |Y| >
(
%+ δ

3

)
k; and
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(c) for all Y ∈ Y we have

|NH(Y )| >
(
%+ δ

4

)
k

2 −
|V (M)|

2 .

Proof. Given ε′ = min{ ε5 ,
δ

1000} and k0 = 1
ε′
, let η0, n

′
0 and K ′0 be the outputs of the Sparse

Regularity Lemma (Theorem 5.1.2) with parameters ε′ and k0. Setting n0 = n′0 and η0 =
min{η′0, δ

1000}, let H be an (η, p)-upper uniform graph on n > n0 vertices and 0 < η 6 η0.
Then H admits an (ε′, p)-regular partition V (H) = V ′0 ∪ V ′1 ∪ · · · ∪ V ′` , with 1

ε′
6 ` 6 K0, and

let us denote by R′ the (ε′, p, 2d)-reduced graph of H with respect to this regular partition.
By Proposition 5.1.3 and the bound on e(H) we have

e(R′) > (1 + η)−1
(
%+ δ

2

)
`2

2 − (6ε′ + 2d)`2 >
(
%+ δ

3

)
`2

2 . (5.3)

Note that (5.3) implies that the average degree of R′ is at least (%+ δ
3)`. Thus, by successively

removing vertices of low degree, we may find a subgraph R0 ⊆ R′ such that

d(R0) >
(
%+ δ

3

)
` and δ(R0) >

(
%+ δ

3

)
`

2 .

In particular, this implies that there exists a cluster X ′ ∈ V (R0) with degree at least (%+ δ
3)`

in R0. Applying Lemma 3.3.7 to NR0(X ′), we find an independent set I, a matchingM′ and
a collection of triangles Γ that partition NR0(X ′) = I ∪ V (M′) ∪ V (Γ), and moreover, by
writing V (M′) = V1 ∪ V2 we have that NR0(I) ⊆ V1. Note that the minimum degree on R0
implies that for all Y ∈ I we have

|NR0(Y ) \ (X ′ ∪NR0(X))| >
(
%+ δ

3

)
`

2 − 1− |V (M)|
2 >

(
%+ δ

4

)
`

2 −
|V (M)|

2 . (5.4)

If there are no triangles in this decomposition, then we would finish the proof by setting
M = M′ and H as the bipartite graph induced by I and NR′(I) \ (X ∪ NR′(X)). If is
not the case, for each i ∈ [`] we may arbitrarily partition Vi = Vi,0 ∪ Vi,1 ∪ Vi,2 so that
|V0,i| 6 1 and |Vi,1| = |Vi,2|. Noting that |Vi,1| = |Vi,2| > |Vi|/3 for every i ∈ [`], because
of Lemma 5.1.1, for each ViVj ∈ E(R′) and a, b ∈ {1, 2} the pair (Vi,a, Vj,b) is (ε, p)-regular
with density at least d. Moreover, by setting V0 = V ′0 ∪ V1,0 ∪ · · · ∪ V`,0 we conclude that
V (H) = V0 ∪ V1,2 ∪ V2,2 ∪ · · · ∪ V`,1 ∪ V`,2 is an (ε, p)-regular partition with 2`+ 1 parts. Let
R be the (ε, p, d)-reduced graph of H with respect to this partition, and let k = 2` be the
number of vertices of R (note that R is a blow-up of R′). Let X be one of the clusters coming
from X ′, and Y be the set of all the Vi,a such that V ′i ∈ I and a ∈ {1, 2}. Now note that
each triangle in Γ can be decomposed as three disjoint edges in R. Then we set

M =
⋃

ViVj∈M′
{Vi,1Vj,1, Vi,2Vj,2} ∪

⋃
VaVbVc∈Γ

{Va,1Vb,1, Vb,2Vc,1, Vc,2Va,2}

and Z = NR(Y) \ (X ∪NR(X)). Letting H as the bipartite graph induced by Y and Z, it is
clear that X,M and H satisfy (a) and (b), (c) follows from (5.4).
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5.5 Proof of Theorem 5.0.2

As we mentioned in the sketch of the proof, the idea is to use the structure given by Propo-
sition 5.4.1 to embed any tree with %n edges and bounded maximum degree. To do so,
we first need to cut the tree into a family (Ti, ri)i∈[t] of tiny subtrees such that the root of
all the subtrees are in the same colour class (see Proposition 5.3.2). The main idea of the
proof is to first assign each Ti to some edge of M∪H so that each of those regular pairs
has enough space to embed all the trees assigned to it. After this, we use Lemma 5.2.3 to
clean each regular pair that is used, and thus each subtree Ti is assigned to a pair (Yi,1, Yi,2)
which induces a bipartite expander graph that connects well with a large subset of X (see
Claim 5.5.1). We embed the subtrees one-by-one following a BFS order in the cluster tree
TΠ, using Lemma 5.2.2 to map each subtree into the bipartite expander graph assigned to it.

Now we are ready to prove Theorem 5.0.2.

Proof of Theorem 5.0.2. Let n′0, K0 and η0 be the outputs of Proposition 5.4.1 with inputs
δ, % and ε = 2−28∆−6δ4. We set

β = δ2

212k∆4 and C0 = 217102∆5K2
0

δ3 , (5.5)

and let n0 = max{n′0, β−1} and n > n0. Given p ∈ (0, 1) such that pn > C0 and 0 < η 6 η0,
let G be an (η, p)-uniform graph on n vertices and let G′ ⊆ G be a subgraph with

2e(G′) > (%+ δ)2e(G) > (1− η)(%+ δ)pn2 >

(
%+ δ

2

)
pn2.

Since G′ is (η, p)-upper uniform, by Proposition 5.4.1 we may find an (ε, p)-regular partition
V (G′) = V0 ∪ V1 ∪ · · · ∪ Vk, with 1

ε
6 k 6 K0, such that the (ε, p, δ

100)-reduced graph R,
with respect to this partition, contains a cluster X, a matchingM and a bipartite subgraph
H = (Y ,Z) satisfying the conclusions of Proposition 5.4.1.

Let T be a tree with %n edges such that ∆(T ) 6 ∆. We consider the bipartition of T
that assigns colour 1 to the smaller partition class of T and colour 2 to the larger one, and
then we choose an arbitrary vertex r in colour 1 as the root of T . We apply Proposition 5.3.2
to (T, r), with parameters β and ∆, obtaining a family (Ti, ri)i∈[t] of t 6 4β−1∆ rooted trees
such that |Ti| 6 ∆4β%n for all i ∈ [t]. Furthermore, each root ri is at even distance from r
and therefore every root has colour 1. For i ∈ [t], let us write Ti,j for the set of vertices of Ti
having colour j ∈ {1, 2}.

Letm denote the size of the clusters in the regular partition and observe thatm > (1−ε)n
k
.

The heart of the proof is the following claim.

Claim 5.5.1. For each i ∈ [t], there are sets (Yi,1, Yi,2) and Wi ⊆ X such that the following
holds.

(1) There is an edge Vi,1Vi,2 ∈ M∪ E(H) such that Yi,1 ⊆ Vi,1 and Yi,2 ⊆ Vi,2. Moreover, if
Vi,1Vi,2 ∈ E(H) then Vi,2 ∈ Y.
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(2) For ` 6= i and j, j′ ∈ {1, 2}, Yi,j ∩ Y`,j′ = ∅.

(3) For j ∈ {1, 2}, |Yi,j| > |Ti,j|+ 13∆εm.

(4) G′[Yi,1, Yi,2] is a bipartite (εm, 2∆ + 2)-expander.

(5) Every vertex of Yi,2 has at least δ
200pm neighbours in Wi.

(6) If T` is a child of Ti in the cluster tree, then every vertex of Wi has at least ∆ + 1
neighbours in Y`,2.

Before proving Claim 5.5.1, let us show how to use it in order to finish the proof of
Theorem 5.0.2. Assume that we have ordered [t] so that if Ti is below T`, with respect to the
root of T , then i 6 `. Starting with the subtree containing r, we will embed (Ti)i∈[t] following
this ordering. Let us denote by ϕ the partial embedding of T . For every embedded subtree
(Ti, ri) we will ensure that

(a) ϕ(ri) ∈ Ws for some s 6 i, and

(b) ϕ(Ti,j \ {ri}) ⊆ Yi,j for j ∈ {1, 2}.

Suppose we are about to embed a subtree T` which is a child of some subtree Ti that was
already embedded satisfying (a) and (b). Let vi ∈ V (Ti) be the parent of r` and note that
vi is embedded into some vertex ϕ(vi) ∈ Yi,2 (since vi is adjacent to r` and every root has
colour 1).

.
.

.
.

.

.. ...

Figure 5.3: Embedding of T`

Then, because of Claim 5.5.1 (5)

|NG′(ϕ(vi)) ∩Wi| >
δ

200pm > (1− ε) δC0

200k >
8∆
β

> 2t
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and therefore at least one neighbour of ϕ(vi) has not been used during the embedding. We
choose any unused vertex w` ∈ Wi ∩NG′(ϕ(vi)) and set ϕ(r`) = w` (when we embed T1, we
choose any vertex vetex w1 ∈ W1 as the image of r1 = r). By Claim 5.5.1 (4) we know that
G′[Yi,1, Yi,2] is a bipartite (εm, 2∆ + 2)-expander, we will prove now that

G′[Y`,1 ∪ {w`}, Y`,2] is a bipartite (εm+ 1,∆ + 1)-expander.

Indeed, since G′[Yi,1, Yi,2] is a bipartite (εm, 2∆+2)-expander is easy to see that the expansion
conditions hold for every set X ⊆ Y`,1 ∪ Y`,2. Let X ′ ⊆ Y`,1 non-empty and let us consider
X = X ′ ∪ {w`}. If |X ′| 6 εm then we have

|NG′(X) ∩ Y`,2| > (2∆ + 2)|X ′| > (∆ + 1)|X|,

where the first inequality follows because G′[Y`,1, Y`,2] is bipartite (εm, 2∆ + 2)-expander.
Similarly, if |X ′| > εm then we have

|NG′(X) ∩ Y`,2| > |NG′(X ′) ∩ Y`,2| > |Y`,2| − (εm+ 1).

Finally, if X = {w`} then by Claim 5.5.1 (6) we know that |NG′(w`) ∩ Y`,2| > ∆ + 1, and
therefore G′[Y`,1 ∪ {w`}, Y`,2] is a bipartite (εm+ 1,∆ + 1)-expander.

To complete the embedding of T`, note that because of Claim 5.5.1 (3) we have

|Y`,j| − (2∆ + 1)(εm+ 1) > |T`,j|+ 13∆εm− 6∆εm > |T`,j|

for j ∈ {1, 2}. Thus, using Lemma 5.2.2 we may extend ϕ to T`, embedding T` into (Y`,1 ∪
{w`}, Y`,2) so that ϕ(T`,j \ {r`}) ⊆ Y`,j for j ∈ {1, 2} and w` is fixed as the image of r` (we
remark that Claim 5.5.1 (2) allows us to ensure that at every step of the embedding we are
using unused vertices).

Proof of Claim 5.5.1. Let σ be a permutation on [t] such that for all 1 6 i < j 6 t we have

|Tσ(i),2| − |Tσ(i),1| > |Tσ(j),2| − |Tσ(j),1|.

Recall that we chose colour 2 for the larger partition class of V (T ). Therefore, for every
` ∈ [t] we have ∑̀

i=1
(|Tσ(i),2| − |Tσ(i),1|) > 0. (5.6)

The proof of Claim 5.5.1 will be done in two stages. In the first stage, for each i ∈ [t]
the subtree Ti will be assigned to a pair of sets (Xi,1, Xi,2), contained in some edge from
M∪ E(H), such that |Xi,j| = |Ti,j| + 16∆εm for j ∈ {1, 2}. In the second stage, we will
remove some vertices from each set in order to find the setsWi ⊆ X and Yi,j ⊆ Xi,j satisfying
the properties (1)− (6) from Claim 5.5.1.

Stage 1 (Assignation): In this stage we will prove that for each i ∈ [t], there exist an edge
Vi,1Vi,2 ∈M∪ E(H) and sets Xi,j ⊆ Vi,j, for j ∈ {1, 2}, such that
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(A) Xi,j ∩X`,j′ = ∅ if {i, j} 6= {`, j′};

(B) |Xi,j| = |Ti,j|+ 16∆εm; and

(C) if (Vi,1, Vi,2) ∈ E(H) then Vi,2 ∈ Y .

The assignment will be done in two steps following the order given by σ. At step 1 we
assign trees to edges from H until we use a large proportion of Y ∪ Z, and at step 2 we will
use edges fromM ensuring that the clusters from each edge ofM are used in a balanced way.

Step 1: We will assume that |M| 6 (% + δ
16)k, as otherwise we just skip this step. Let us

set Q = (%+ δ
4)k − |V (M)| and note that we have

|Y| > Q >
δ

16k and dH(Y ) > Q

2 for all Y ∈ Y .

We will choose sets in Y ∪ Z until we have assigned at least (1− δ
16)Qm vertices to Y ∪ Z.

Following the order of σ, assume that we have made the assignation up to some 0 6 ` 6 t−1
and we are about to assign the tree Tσ(`+1). Suppose that there are Y ∈ Y such that∑

Xσ(i),2⊆Y
|Xσ(i),2| 6 m− (∆4βn+ 16∆εm), (5.7)

and Z ∈ NH(Y ) with ∑
Xσ(i),1⊆Z

|Xσ(i),1| 6 m− (∆4βn+ 16∆εm). (5.8)

Since |Tσ(`+1)| 6 ∆4β%n, we can select sets Xσ(`+1),1 ⊆ Z and Xσ(`+1),2 ⊆ Y , disjoints from
the previously chosen sets, such that |Xσ(`+1),j| = |Tσ(`+1),j| + 16∆εm for j ∈ {1, 2}. So, if
there is no Y ∈ Y satisfying (5.7), then we have

∑̀
i=1
|Tσ(i)| >

∑̀
i=1
|Tσ(i),2| =

∑̀
i=1

(
|Xσ(i),2| − 16∆εm

)
> |Y|m− t · 16∆εm− k · (∆4βn+ 16∆εm)

> |Y|m− δ2

162km

>
(

1− δ

16

)
Qm.

This means that we have already used enough vertices from Y ∪ Z. On the other hand, if
every Y satisfying (5.7) has no neighbours satisfying (5.8), then we may use (5.6) to deduce

∑̀
i=1
|Tσ(i)| > 2

∑̀
i=1
|Tσ(i),1| = 2

∑̀
i=1

(
|Xσ(i),1| − 16∆εm

)
> 2dH(Y )m− t · 32∆εm− k · 2(∆4βn+ 16∆εm)

> Qm− δ2

162km

>
(

1− δ

16

)
Qm.
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This means that if at step `+1 ∈ [t] we could not find a pair (Y, Z) satisfying (5.7) and (5.8),
then we have used vertices at least (1− δ

16)Qm vertices from Y ∪ Z at step `.

Step 2: Let 0 6 `0 6 t be such that Tσ(1), . . . , Tσ(`0) have been assigned to Y ∪ Z, satisfy-
ing (A),(B) and (C), and(

1− δ

16

)
Qm 6

`0∑
i=1
|Tσ(i)| 6

(
1− δ

16

)
Qm+ ∆4β%n. (5.9)

Assume that `0 < t, otherwise we are done. For `0 + 1 6 i 6 t we will assign each Tσ(i) to
some edge AB ∈M. At each step we will ensure that for every edge AB ∈M we have∣∣∣∣∣∣

∑
Xσ(i),j⊆A

|Xσ(i),j| −
∑

Xσ(i),j⊆B
|Xσ(i),j|

∣∣∣∣∣∣ 6 ∆4β%n. (5.10)

Suppose we are about to assign a subtree Tσ(`), for some ` > `0 + 1, and that (5.10) holds
at step i = `− 1 (note that (5.10) holds trivially at step `0). Suppose that there is an edge
AB ∈M such that

max
{ ∑
Xσ(i),j⊆A

|Xσ(i),j|,
∑

Xσ(i),j⊆B
|Xσ(i),j|

}
6 m− (∆4β%n+ 16∆εm). (5.11)

Assuming that ∑Xσ(i),j⊆A |Xσ(i),j| 6
∑
Xσ(i′),j′⊆B |Xσ(i′),j′ |, we let j? = argmax

j∈{1,2}
|Tσ(`),j| and

then we may take sets

• Xσ(`),j? ⊆ A with |Xσ(`),j?| = |Tσ(`),j?|+ 16∆εm, and

• Xσ(`),3−j? ⊆ B with |Xσ(`),3−j?| = |Tσ(`),3−j? |+ 16∆εm.

disjoints from the previously chosen sets. Note that we have assigned the larger colour class
of Tσ(`) to the less occupied cluster in {A,B}. Furthermore, since (5.10) holds at step `− 1
and as |Tσ(`)| 6 ∆4β%n, the assignment of Tσ(`) implies that (5.10) holds at step `. So suppose
that (5.11) does not hold at step `− 1 for any AB ∈M. Then we have

`−1∑
i=`0+1

|Tσ(i)| > |V (M)|m− t · 32∆εm− k · (3∆4β%n+ 32∆εm)

> |V (M)|m− δ

16km,

which together with (5.9) yields
`−1∑
i=1
|Tσ(i)| >

(
1− δ

16

)
Qm+ |V (M)|m− δ

16km

>
(

1− δ

16

)(
%+ δ

4

)
km− δ

16km

>
(
%+ δ

8

)
km

>
(
%+ δ

16

)
n,
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which is impossible since |T | = %n. This implies that we can make the assignation for each
` ∈ [t].

Stage 2 (Cleaning): Assume that the cluster tree is ordered according to a BFS starting
from the subtree which the root of T . Starting with a leaf of the cluster tree, suppose that
we have found the sets Yi,j satisfying properties (1)− (6) for all subtrees Ti below T` in the
order of the cluster tree. Let us define

W` := {v ∈ X : d(v, Yi,2) > ∆ + 1 for all i such that Ti is a child of T`},

we want to prove that W` has a reasonable size. Given a child Ti of T` in the cluster tree, we
have that

|Yi,2| > |Ti,j|+ 13∆εm > (∆ + 1)εm
and therefore, since (X, Vi,2) is (ε, p)-regular, by Lemma 5.1.1 there are at most (∆ + 1)εm
vertices in X with less than ∆ + 1 neighbours in Yi,2. Since the auxiliary tree has maximum
degree at most ∆4, then W` has at least

|X| − (∆ + 1)∆4ε|X| > m

2

vertices. Now, since (X, V`,2) is (ε, p)-regular, then by Lemma 5.1.1 the pair (W`, V`,2) is
(2ε, p)-regular with p-density at least δ

100 − ε. By Lemma 5.1.1 there are at most 2εm
vertices of V`,2 with less than (

δ

100 − 3ε
)
p|W`| >

δ

200pm

neighbours in W`. We remove each such vertex from X`,2 thus obtaining a set X ′`,2 such that
every vertex in X ′`,2 has at least δ

200pm neighbours in W`. Now, we need to find an expander
subgraph of (X`,1, X

′
`,2). Since (V`,1, V`,2) is (ε, p)-regular with dp(V`,1, V`,2) > δ

100 and

|X`,1|, |X ′`,2| > 16∆εm− 2εm > (4∆ + 6)εm,

we may use Lemma 5.2.3 to obtain a pair (Y`,1, Y`,2), with Y`,1 ⊆ X`,1 and Y`,2 ⊆ X ′`,2, such
that G′[Y`,1, Y`,2] is bipartite (εm, 2∆ + 2)-expander and satisfies |Y`,j| > |X`,j| − 3εm >
|T`,j|+ 13∆εm for j ∈ {1, 2}.

5.6 Applications in Ramsey theory

We end this chapter with some quick applications of Theorem 1.4.3 in Ramsey theory. For
s > 2 and graphs H1, . . . , Hs, we say that a graph G is (H1, . . . , Hk)-Ramsey, denoted by
G→ (H1, . . . , Hs), if for every colouring of the edges of G with s colours there exists i ∈ [s]
such that G contains a copy of Hi in colour i. Given families of graphs F1, . . . ,Fs, we say
that G is (F1, . . . ,Fs)-Ramsey, denoted by G → (F1, . . . ,Fs), if for every colouring of the
edges of G with s colours there exists i ∈ [s] such that G contains a copy of every member
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of Fi in colour i. Furthermore, we write G s−→ H when H1 = · · · = Hs = H and G
s−→ F

when F1 = · · · = Fs = F , in which case we say that G is (H, s)-Ramsey and (F , s)-Ramsey
respectively.

For a graph H and s > 2, one asks for threshold probability p∗ = p(n) such that if
p � p∗ then, with high probability, the random graph G(n, p) is (H, s)-Ramsey. The first
result regarding this question, proved by Frankl and Rödl [49] and Łuczak, Ruciński and
Voigt [87], states that for p > C

√
n the random graph is (K3, 2)-Ramsey with high probability.

The systematic study of Ramsey properties of the random graph was initiated by Rödl and
Ruciński [97, 98] who proved the following result.

Theorem 5.6.1. Let s > 2 and let H be a graph that is not a forest consisting of stars and
paths of length 3. Then there exist positive constants c and C such that

lim
n→∞

P[(G(n, p) s−→ H] =
1 if p > Cn

− 1
m2(H) ,

0 if p 6 cn
− 1
m2(H) ,

where
m2(H) = max

{
e(H ′)− 1
|H| − 2 : H ′ ⊆ H and |H ′| > 3

}
.

In the modern probabilistic combinatorics, there are at least 3 different ways to prove
Theorem 5.6.1: the transference principle of Conlon and Gowers [37], the multi-round ex-
posure method of Schacht [102], and the hypergraph container method developed by Balogh,
Morris, and Samotij [14], and, independently, by Saxton and Thomasson [101]. However, as
far as we understand, none of this methods works for graphs whose vertices grows linearly in
n.

The aim of this section is to make some progress in this area studying the Ramsey number
of linear sized trees in the random graph, in particular, we prove a random analogue of the
Erdős-Graham conjecture [44]. As in the dense case (Corollary 4.5.1), we may deduce the
multicolour Ramsey number of trees in random graphs from Theorem 1.4.3.

Corollary 5.6.2. Let s,∆ > 2 and let ε > 0. Then there exists a constant C > 0 such that
if p > C

n
we have

lim
n→∞

P[G((1 + ε)sn, p) s−→ T (n,∆)] = 1.

Proof. Let N = (1 + ε)sn and let 0 < δ < ε
s
be fixed. For a given colouring of the edges of

G(N, p) with s colours, we denote by Gi the graph induced by all the edges in colour i ∈ [s].
By Theorem 1.4.3, we may assume that e(Gi) 6 (1

s
+ δ)e(G(sn, p)) for all i ∈ [s]. Therefore

r∑
i=1

e(Gi) 6
r∑
i=1

(1
s

+ δ
)
e(G(sn, p)) 6 (1 + sδ)e(G(sn, p)) < e(G(N, p)),

which is a contradiction.

We remark that Corollary 5.6.2 is sharp up to the value of C. However, for larger p (say
p� logn

n
) we believe that the error term O(εn) in the size of the host graph can be improved.

81



For instance, for trees with a given ratio in the size of its colour classes, Corollary 5.6.2 if far
from best possible. Indeed, Letzter [78] proved that, with high probability, G((3

2 + ε)n, p) is
(Pn, 2)-Ramsey provided pn→∞, where Pn denotes the path of length n. In a forthcoming
work we will extend Letzter’s result to arbitrary bounded degree trees.

A very interesting consequence of Corollary 5.6.2 is an upper bound for the multicolour
size Ramsey number of bounded degree trees. Given a graph H and an integer s > 2, the
s-colour size Ramsey number r̂s(H) of H is the smallest integer m so that there exists a
graph G with m edges such that every s-colouring of E(G) yields a monochromatic copy of
H. In the case of trees, it was conjecture in 1983 by Beck [16] that r̂2(T ) = O(Dn) for any
fixed tree T ∈ T (n,D). This conjecture was settled by Friedman and Pippenger [51] proving
that r̂s(T ) = O(n) for every s > 2 and every tree T with n vertices and bounded degree. We
remark that this result also follows from Corollary 5.6.2 as the random graph G(n, C

n
) has

roughly C
n

(
n
2

)
= O(n) edges.
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Part II

Extremal Combinatorics on Words
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Chapter 6

Introduction

The systematic study of combinatorics on words began in 1906 with the work of Thue [107]
about the structure of square-free words. Although Thue’s theorem appeared one year before
Mantel’s theorem, this field has received considerable less attention than extremal graph
theory. However, after the appearance of Lothaire’s book “Combinatorics on words” [81] in
1983, this topic has grown exponentially. We do not aim to describe in details this field of
research. Our goal is rather to collect some of the recent results of what could be called
extremal combinatorics on words.

A word w of length n is an ordered sequence w = (w1w2 . . . wn) ∈ Σn, where Σ is a fixed
size alphabet. The set of all possible finite words over Σ is denoted by Σ∗ = ⋃

n>1 Σn. We will
usually represent a word in two equivalent ways, either as an order tuple or as a sequence.
For example, the tuple (1011) and the sequence 1011 represent the same word. Moreover,
we will usually denote words in bold letters in order to make a difference with its letters.
Regarding the alphabet Σ, we are only interested in its cardinality. For q = 2 we will assume
Σ = {0, 1}, and Σ = [q] whenever |Σ| = q > 3.

In extremal combinatorics one usually deals with the problem of finding substructures
maximising or minimising some parameters. So, as a first step, let us define what kind of
substructures we will be interested in. There are at least three types of substructures that
often appear in the literature (we will follow the nomenclature of Lothaire’s book).

A substring or factor of a word w ∈ Σn is a sequence of consecutive characters in w. A
subsequence or subword of w is some word v ∈ Σ` such that there are indices 1 6 i1 < . . . <
i` 6 n so that wij = vj for each j ∈ [`]. In particular, every substring is a subword but not
vice versa. Finally, a pattern P of w is a word P = p1 . . . pm ∈ Am, where A = {a1, . . . , at}
is an auxiliary alphabet, such that there are words u1, . . . ,ut over Σ and a substitution rule
ϕ(ai) = ui, for i ∈ [t], such that ϕ(P ) = ϕ(p1) . . . ϕ(pm) yields a factor in w. For instance,
the word w = 011011011 contains v = 011 as a factor, u = 111111 as a subword, and
contains the pattern P = xxx by replacing x = 011.

Let us now describe two problems that illustrate what we think as extremal combinatorics
on words.
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6.1 Longest common subsequence

Let w = (w1 . . . wn) and u = (u1 . . . un) be two words of length n chosen uniformly at random
from Σn. The longest common subsequence (LCS) problem asks for the maximum ` 6 n such
that there exist sequences 1 6 i1 < · · · < i` 6 n and 1 6 j1 < · · · < j` 6 n such that
wis = ujs for all s ∈ [`]. We write LCSq(n) to denote the random variable which is equal to
the length of the longest common subsequence between two random words chosen uniformly
from Σn, where Σ is the alphabet on q symbols.

In 1975, Chvátal and Sankoff [34] proved that the expected value of 1
n
LCSq(n) converges

as n→∞. Indeed, it is easy to see that for every n,m ∈ N we have

E[LCSq(n+m)] > E[LCSq(n)] + E[LCSq(m)]

and, therefore, by Fekete’s supper additive lemma [48] we have that

γq := lim
n→∞

1
n
E[LCSq(n)] exists.

The value γq is known as the Chvátal–Sankoff constant and is an open problem to determine
the exact value of γq. In 2005, Kiwi, Loebl, and Matoušek [68] determined the asymptotic
behaviour of γq showing that

lim
q→∞

γq
√
q = 2,

that is, for large q the expected length of the longest common subsequence is roughly 2√
q
n.

6.2 Twins in words

For a word w ∈ Σ∗, let LT(w) be the maximum integer m so that there are two disjoint
identical subwords of w, each of length m. Such subwords are called twins. For n ∈ N, we
define

LT(n,Σ) = min{LT(w) : w ∈ Σn}.

Thus, every word w ∈ Σn has twins of length LT(n,Σ). For q > 2, we observe that

LT(n, [q]) >
⌊

n

q + 1

⌋
.

Indeed, we start by splitting any word w ∈ [q]n into ` = b n
q+1c substrings, each of length

q + 1. By the pigeonhole principle, there is at least one letter which has two occurrences
ai, a

′
i the i-th substring, for each i ∈ [`]. Then, the words v = a1 . . . a` and v′ = a′1 . . . a

′
` are

identical and disjoint subsequences of length b n
q+1c.

Axenovich, Person and Puzynina [12] improved this trivial lower bound showing that
LT(n, [q]) > n

q
− o(n), which is tight for binary alphabets up to the lower order error terms.

Their proof is based in a regularity lemma for words which allows to split any large enough
word into a bounded number of quasi-random substrings (see Chapter 8 for details). For
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larger alphabets the best lower bound is due to Bukh and Zhou [30], who showed that
LT(n, [3]) > 0.34n− o(n) and

LT(n, [q]) > n

34/3q2/3 −
(
q

3

)1/3
for q > 3.

6.3 Our contributions

In this work, we study three problems in extremal combinatorics on words. In Chapter 7 we
solved the universality problem for words and d-dimensional arrays. We ask for the minimum
integer fd(q, k) so that there exists a d-array over an alphabet on q symbols so that there
exists a d-dimensional array of order fd(q, k) containing a copy of every d-array of order k. In
particular, f1(q, k) denotes the minimum length of a word over an alphabet on q symbols that
contains, as a subsequence, a copy of every word of length k. We also study the probabilistic
version of this problem. That is, for k ∈ N, we ask for the smallest n = n(k) so that, with
high probability as k →∞, a random d-array of order n contains a copy of every d-array of
order k.

In Chapter 8 we study two intimately related topics: quasi-randomness and limit struc-
tures. We study the notion of quasi-randomness of words that appeared in the work of
Axenovich, Person, and Puzinina [12] and the work of Cooper [38]. We prove a result in
the spirit of Chung–Graham–Wilson’s theorem [33] for quasi-random graphs, giving a list of
properties equivalent to those that a quasi-random word enjoys. In the second part of this
chapter, we develop a theory of convergent word sequences in the vein of what has been done
for other discrete structures, such as graphs [82] and permutations [64]. We prove that a
sequence of binary words that converges in certain sense can be “represented” by a Lebesgue
measurable function f : [0, 1] → [0, 1], and that every measurable function f : [0, 1] → [0, 1]
can be approximated, in a appropriate sense, by a convergent sequence of binary words.
Moreover, most of our results can be straightforwardly extended to larger alphabets.
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Chapter 7

Universal arrays

Based on joint work with Daniel A. Quiroz and Nicolás Sanhueza-Matamala [91].

A universal mathematical structure is one which contains all possible substructures of a
particular form. Famous examples of universal structures are De Bruijn sequences [40],
which are periodic words that contain, exactly once, every possible word of a fixed size as a
substring. Universal structures where perhaps first considered in a general sense by Rado [93],
who studied the existence of universal graphs, hypergraphs and functions for various notions
of containment.

The study of universal (finite) graphs has received particular attention, and for these the
containment relation of choice has been that of induced subgraphs. Thus, a graph G is said to
be k-universal if G contains every graph on k vertices as an induced subgraph. Two problems
have been at the centre of the study of k-universal graphs. The first one is that of finding the
minimum n such that there exists an n-vertex k-universal graph. In 1965, Moon [89] gave,
through a simple counting argument, a lower bound of 2(k−1)/2 for that value of n. Recently,
Alon [3] showed that this lower bound is asymptotically tight, essentially settling this 50-
year-old problem. More so, in a later paper, Alon and Sherman [8] gave an asymptotically
tight bound for the hypergraph generalisation of this problem. The second central problem
in the study of k-universal graphs is the “random” analogue of the previous question, that is,
finding the minimum n such that “almost every” n-vertex graph is k-universal. After works
of Bollobás and Thomason [25], and Brightwell and Kohayakawa [29], Alon [3] has essentially
settled this problem as well.

Finding a k-universal graph is equivalent to finding an adjacency matrix which “contains”
the adjacency matrices of all k-vertex graphs. Here we are considering that an adjacency
matrix M contains another matrix M ′, if we can obtain M ′ from M by iteratively applying
the following operation: choose a value i and delete the i-th row and the i-th column. It is
thus natural to consider square matrices together with the notion of containment given by the
operation of choosing values i, j and deleting row i and column j, and its associated notion
of universality. More generally, we shall consider the analogue of this notion of containment
for “d-dimensional arrays” for all d > 1.

Given an alphabet Σ and positive integers d, n1, . . . , nd, a d-dimensional array of size
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n1, . . . , nk over Σ is a collection of symbols ai1,i2,...,id ∈ Σ indexed by the vectors (i1, i2, . . . , id) ∈
[n1]× [n2]×· · ·× [nd]. With regard to the alphabet Σ we are only interested in its cardinality,
and will assume Σ = [q], whenever |Σ| = q. Thus Σ will usually be clear in the context and,
for short, we will just talk about d-arrays of a certain size. A d-array of order n is a d-array
of size n, n, . . . , n, and note that 1-arrays of size n are just words of length n.

For general d-arrays and a corresponding notion of universality, we study the analogue
of the two questions settled by Alon on the graph case (the “deterministic” and “random”
questions). Whenever d > 2, we obtain asymptotically tight bounds for both questions (See
Theorem 7.0.3 and Corollary 7.0.4, below) by extending a method used by Alon in the graph
case. However, this technique does not seem (directly) to work when d = 1, that is, for the
case of words. For this case we develop different tools which allow us to show tight bounds
for both problems (See Theorems 7.0.1 and 7.0.2).

Let us first define the notion of containment we will consider for general d-arrays, which
is a generalisation of the containment notion for matrices discussed above. For fixed d, let
A = (ai1,i2,...,id) be a d-array of size n1, . . . , nd. We define the coordinate restriction operation
on A as follows. Choose some j ∈ [d] and ` ∈ [nj]. Delete all the symbols whose j-th
coordinate is `, to obtain a d-array of size n1, n2, . . . , nj−1, nj − 1, nj+1, . . . , nd. We say a d-
array A contains a d-array A′ if we can obtain A′ by iteratively applying coordinate restriction
operations, and consider universal d-arrays under this containment notion.

For fixed d, k > 1, and a fixed alphabet Σ, we say a d-array over Σ is k-universal if it
contains every d-array A on Σ of size n1, n2, . . . , nd, where nj 6 k for all j ∈ [d]. Note that if
we want to show that a given d-array is k-universal, it is enough to show that it contains every
d-array of order k. We let fd(q, k) be the minimum n such that there exists a k-universal
d-array of order n over the q-symbol alphabet.

Our results in the case of words are the following.

Theorem 7.0.1. Let k > 1 and q > 2 be integers. Then f1(q, k) = qk.

This result establishes the gap between the notions of subword and substring. While a
minimal k-universal word has size qk, a De Bruijn sequence has size qk. We also obtain the
following “threshold” behaviour for randomly chosen words to be k-universal.

Theorem 7.0.2. Let q > 2 be a fixed integer and cq := q + q/2 + q/3 + . . . + 1. Consider
a uniformly chosen word w of length n = n(k) over the q-symbol alphabet. Then for every
ε > 0 we have

P[ w is k-universal ]→
0 if n 6 (1− ε)cqk, and

1 if n > (1 + ε)cqk,

where the limit is taken as k →∞.

In particular, for the 2-symbol alphabet, we have f1(2, k) = 2k, while roughly 3k symbols
are necessary and sufficient for a typical binary word of that length to be k-universal. This
last statement answers a question of Biers-Ariel, Godbole and Kelley [20].

The following theorem and its corollary are our results for general d-arrays with d > 2.
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Theorem 7.0.3. Let d, q > 2 be fixed integers. For every ε > 0, a uniformly chosen d-array
of order n = (1 + ε)k

e
q
kd−1
d over the q-symbol alphabet is k-universal with high probability as

k →∞.

Furthermore, a simple counting argument gives fd(q, k) > k
e
q
kd−1
d (see Section 7.2). Thus

we obtain the following.

Corollary 7.0.4. Let d, q > 2 be fixed integers. We have fd(q, k) = (1 + o(1))k
e
q
kd−1
d .

We point out that the cases d = 1 and d > 2 behave in completely different manners. In
the case d = 1, the case of words, the value of n in the random version is considerably larger
than f1(q, k) (a similar scenario holds for the graph case [3]). In contrast, for d-arrays with
d > 2 the order which is necessary for random d-arrays to be k-universal is asymptotically
equal to fd(q, k).

7.1 Universal words

In this section we prove Theorems 7.0.1 and 7.0.2. We will use Σ = [q] as the fixed q-symbol
alphabet. We recall the standard notation used to work with words. Given a word w and
an integer k, wk is the k-fold concatenation of w with itself k times.

Proof of Theorem 7.0.1. No word w on at most qk − 1 symbols can be k-universal: by the
pigeonhole principle, one of the q symbols of Σ (which we can assume is 1) must appear less
than k times in w, but then the word 1k is not contained in w. On the other hand, the word
(12 · · · q)k has length qk and is clearly k-universal.

To prove Theorem 7.0.2, we will need a few tools. Given any word w on Σ∗, define
UΣ(w) as the minimal prefix of w which contains all symbols of Σ if it exists, or UΣ(w) = w
otherwise. Define TΣ(w) as w with the prefix UΣ(w) removed. Given a word w, we can
greedily decompose it in a unique way as w = u1u2 · · ·u`u

′ such that for all i ∈ [`], ui =
UΣ(uiui+1 · · ·u`u

′) and TΣ(uiui+1 · · ·u`u
′) = ui+1 · · ·u`u

′, each ui contains all the symbols
of Σ and u′ (possibly empty) does not contain all the symbols of Σ. We say u1u2 · · ·u`u

′ is
the Σ-universal decomposition of w and we let νΣ(w) = `. We can use νΣ(w) to characterise
k-universal words, as follows.

Proposition 7.1.1. A word w ∈ Σ∗ is k-universal if and only if νΣ(w) > k.

Proof. Suppose w satisfies νΣ(w) > k. Then w has as a prefix a substring u1u2 · · ·uk where
each of the words ui contains all of the symbols from Σ. Then any word v ∈ Σk can be found
greedily as a subword in w by finding the i-th symbol of v inside the word ui.

In the other direction, suppose νΣ(w) = k′ < k and let w = u1 · · ·uk′u
′ be the Σ-universal

decomposition of w. Since each ui is a minimal prefix of ui · · ·uk′u
′ that contains all the

symbols of Σ, it must have the form ui = viσi, where σi is a symbol in Σ and vi does not
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use the symbol σi. Further, let σk′+1 be any symbol in Σ which does not appear in u′ (which
exists by definition). We claim that w does not contain the word w′ = σ1σ2 · · ·σk′σk′+1.
Since k′ + 1 6 k, this readily implies that w is not k-universal.

To find a contradiction, suppose that w′ is contained in w. The first symbol of w′ is
σ1, and the first time σ1 appears in w is at the end of u1, thus the remaining symbols must
appear after the end of u1. That means the word σ2 · · ·σk′σk′+1 is contained in u2 · · ·uk′u.
Using the same reasoning, we see that for all j 6 k′, the j-th symbol of w′ appears in w
only after the last symbol of uj. Therefore, the last symbol of w′, which is σk′+1, appears as
a symbol in u′, a contradiction.

We will need to estimate νΣ(w) for a uniformly chosen random word w. We will appeal to
the well-known “coupon-collector problem”. Given a q-sized set Q and a sequence X1, X2, . . .
of independent and uniformly chosen random variables Xi ∈ Q for all i > 1, define the
random variable T as the minimum integer such that {X1, . . . , XT} = Q. It is known that T
can be written as the sum of q independent geometric random variables T = G1 + · · ·+Gq,
where Gj has parameter j/q for each j ∈ [q], and from this it is deduced that E[T ] = cq :=
q + q/2 + q/3 + · · ·+ 1.

Now we are ready for the proof of Theorem 7.0.2.

Proof of Theorem 7.0.2. Let Σ be the q-symbol alphabet. To estimate νΣ(w) of a random
word w, we will couple w with a word created from “coupon-collector” experiments, as
follows. Define a random string U ∈ Σ∗ using the following process. Initially, let U = σ0 be
a word of length 1, where σ0 is chosen uniformly from Σ. If U already has all the symbols of
Σ, stop. Otherwise, choose uniformly and independently a symbol σ ∈ Σ and update U by
appending σ at the end. Clearly, the length |U | of U distributes as in the “coupon-collector
problem” and thus E[|U |] = cq. Given k > 0, let U1, . . . , Uk be independent random strings,
each of them distributed as U , and let U (k) = U1U2 · · ·Uk be their concatenation. Crucially,
we have νΣ(U (k)) = k, and each strict prefix u of U (k) satisfies νΣ(u) < k.

Given k, n > 0, we construct a (random) word w in Σn as follows: if |U (k)| > n then let w
be the first n symbols of U (k); otherwise, construct w′ from U (k) by appending n−|U (k)| fresh
random symbols at the end of U (k). Note that each symbol of w is chosen independently and
uniformly over the symbols of Σ, so w corresponds exactly to a word on Σn chosen uniformly
at random. By construction it is clear that, for all k, n > 0,

P[ w is k-universal ] = P[νΣ(w) > k] = P[|U (k)| 6 n], (7.1)

where the first equality is due to Proposition 7.1.1.

To estimate the last probability, note that |U (k)| = ∑`
i=1 |Ui| and recall that each of the

|Ui| has expectation equal to cq. Thus, by the (Weak) Law of Large Numbers, we have that,
for all ε > 0,

P[(1− ε)cqk 6 |U (k)| 6 (1 + ε)cqk]→ 1, (7.2)

whenever k goes to infinity. In particular, if n 6 (1 − ε)cqk then P[|U (k)| 6 n] → 0; and if
n > (1 + ε)cqk then P[|U (k)| 6 n]→ 1. By (7.1), the result follows.
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7.2 Universal d-arrays

As before, let Σ = [q] be the q-symbol alphabet. For integers d, k > 1, we write Ad(Σ, k)
for the set of all d-arrays of order k over Σ. In this section, we prove Theorem 7.0.3 and
stablish the lower bound for fd(q, k) which implies Corollary 7.0.4. To do so, we first need the
following well-known estimates for binomial coefficients, most of which follow from Stirling’s
approximation. For all n, k > 1,

k! >
(
k

e

)k
and

(
n

k

)
6
(
en

k

)k
. (7.3)

Further, if k →∞ as n→∞, while k = o(
√
n),(

n

k

)
= (1 + o(1)) 1√

2πk

(
en

k

)k
, (7.4)

and if k = Ω(n) then

log2

(
n

k

)
= (1 + o(1))H( k

n
)n, (7.5)

where H(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy.

The lower bound for fd(q, k) when d > 2 is given by the following counting argument.
Notice that there are qkd q-symbol d-arrays of order k. Therefore, a q-symbol d-array of order
n must satisfy (

n

k

)d
> qk

d

in order to contain all arrays of order k. By (7.3) and the definition of fd(q, k) we obtain(
efd(q, k)

k

)kd
>

(
fd(q, k)

k

)d
> qk

d

and thus we have

fd(q, k) > k

e
qk

d−1/d. (7.6)

In light of Theorem 7.0.1, we know that for d = 1 the lower bound obtained here is consid-
erably far from being tight. But we will show that it is asymptotically tight for all d > 2. In
fact, it is asymptotically tight for the random version of the problem.

In order to prove Theorem 7.0.3 we follow an approach taken by Alon [3] in the study of
universal graphs. Before diving into the proof let us first give a rough outline.

Given k ∈ N sufficiently large and n = (1+o(1))k
e
qk

d−1/d, let A ∈ Ad(Σ, n) be a uniformly
chosen d-array of order n over Σ. For a fixed array M ∈ Ad(Σ, k), we consider the random
variable X that counts the number of copies of M in A. Since there are qnd d-arrays of order
n over Σ, it is enough to prove that P[X = 0] = o(q−kd) and then use a union bound in order
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to conclude. However, it is not easy to prove this directly. Instead, we consider the random
variable Y that counts the number of disjoint copies of M in A. It is clear that Y = 0 if
and only if X = 0. Therefore, it is enough to estimate P[Y = 0]. The random variable Y
has the advantage that it is 1-Lipschitz, meaning that changing the value of one entry of the
random array may change the value of Y in at most 1. Therefore, we may use (a known
consequence of) Talagrand’s inequality in order to upper bound P[Y = 0]. However, to be
able to use this tool, we need estimates on the expected number of pairs of copies of M in A
which overlap in some entries, which amounts to studying the variance of X. Grasping the
asymptotic behaviour of this variance turns out to be the most technical part of our proof.

Theorem 7.2.1 (Talagrand’s inequality [9, Theorem 7.7.1]). Let Ω = ∏
i∈[r] Ωi be a product

probability space, with the product probability measure, and let h : Ω → R be a 1-Lipschitz
function, that is, |h(x) − h(y)| 6 1 when x and y differ in at most one coordinate. For
f : N → N, suppose that h is f -certifiable, that is, if x ∈ Ω is such that h(x) > s then there
exists a set I ⊆ [r] of size at most f(s) such that if a vector y ∈ Ω coincides with x on I,
then h(y) > s. Then, for Y (x) = h(x) and all b, t, we have

P[Y 6 b− t
√
f(b)] · P[Y > b] 6 e−t

2/4.

Proof of Theorem 7.0.3. Let d, q > 2, ε > 0, k ∈ N (which we can assume to be large) and
n = (1+ε)k

e
q
kd−1
d . LetM ∈ Ad(Σ, k) be a fixed d-array of order k over the q-symbol alphabet

Σ, and let A be a uniformly chosen array from Ad(Σ, n). Our aim is to find a good upper
bound on the probability that A does not contain M , i.e., one allowing us to use a union
bound to prove the result.

Let T denote the collection of subsets of [n]d of the form T = T1×· · ·×Td, where |Ti| = k
for each 1 6 i 6 d. Given T ∈ T , let T (A) be the subarray of A with entries ai1,...,id with
i1 ∈ T1, . . . , id ∈ Td. Let XT be the indicator function of the event that T induces a copy of
M , and let X = ∑

T∈T XT be the number of copies of M in A. Since for every T ∈ T we
have E[XT ] = q−k

d , by linearity of the expectation we have

µ := E[X] =
(
n

k

)d
q−k

d

> 16k2d log q, (7.7)

where the last inequality follows from the choice of n, the assumption that k is large, and (7.4).

It will be crucial to show that we have

Var(X) 6 (1 + o(1))µ. (7.8)

To this end, we investigate (the expectation of) the random variable

Z :=
∑
T,T ′

XTXT ′ ,

where the sum ranges over the pairs of distinct T, T ′ ∈ T which intersect in at least one cell.
For i1, . . . , id ∈ [k], we write

∆i1,...,id :=
∑

T,T ′∈Ti1,...,id

E[XTXT ′ ],
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where Ti1,...,id denotes the collection of indices T, T ′ ∈ T such that |Tj∩T ′j| = ij for all j ∈ [d],
i.e., T and T ′ intersect on exactly ij indices on the j-th coordinate. Therefore, if ∆ := E[Z],
then we have

∆ :=
∑
T,T ′

E[XTXT ′ ] =
∑

(i1,...,id)6=(k,...,k)
∆i1,...,id . (7.9)

Given i ∈ [k], we define

Λi =
(
n

k

)(
k

i

)(
n− k
k − i

)
and Ld(i) = q

id

d (1−(k/i)d−1) 1
(k − i)!

(
k

i

)(
(1 + ε)k

e

)k−i
.

In order to prove (7.8) we will use the following two claims.

Claim 7.2.2. For all i1, . . . , id ∈ [k] we have

∆i1,...,id

µ
6
∏
j∈[d]

Ld(ij).

Proof of Claim 7.2.2. Let i1, . . . , ik be given. First, note that the total number of pairs T, T ′
which intersect on ij entries on the j-th coordinate is exactly equal to ∏j∈[d] Λij . Moreover,
the union of two subarrays T and T ′ of this type together span exactly 2kd − i1 · · · id cells.
Then XTXT ′ = 1 holds if and only if in each one of those cells the correct symbol is attained,
which implies

∆i1,...,id 6 q−(2kd−i1···id) ∏
j∈[d]

Λij .

By the AM-GM inequality we have i1 · · · id 6
(

1
d

∑d
j=1 ij

)d
. Thus we have

∆i1,...,id

µ
6
q−(2kd−i1···id)∏

j∈[d] Λij(
n
k

)d
q−kd

6 q
−kd+( 1

d

∑
j∈[d] ij)

d ∏
j∈[d]

(
k

ij

)(
n

k − ij

)
.

Using Jensen’s inequality (with the convex function x 7→ xd) we further have(
1
d

∑d
j=1 ij

)d
6 1

d
(∑d

j=1 i
d
j ). Using that (k − i)!

(
n
k−i

)
6 (n − i)k−i and replacing n = (1 +

ε)k
e
qk

d−1/d we have

∆i1,...,id

µ
6 q

−kd+ 1
d

∑
j∈[d] i

d
j
∏
j∈[d]

(
k

ij

)
nk−ij

(k − ij)!

6
∏
j∈[d]

q
1
d

(idj−k
d) 1

(k − ij)!

(
k

ij

)(
(1 + ε)k

e

)k−ij
q

1
d
kd−1(k−ij)

=
∏
j∈[d]

Ld(ij),

as desired

Claim 7.2.3. If 1 6 i 6 k − 1, then Ld(i) = o(k−d).
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Proof of Claim 7.2.3. Without loss of generality we may assume that 8ε 6 log q, as otherwise
we can restrict to a smaller array. Setting i = k − j and by the Bernoulli inequality (1 +
j

k−j )
d−1 > 1 + j d−1

k−j we have

Ld(k − j) = q
(k−j)d
d

(1−(1+j/(k−j))d−1) 1
j!

(
k

j

)(
(1 + ε)k

e

)j

6 q−
d−1
d
j(k−j)d−1 1

j!

(
k

j

)(
(1 + ε)k

e

)j
.

We now split into two cases. Assume first that j > (1−β)k, where β ∈ (0, 1) is small enough
so that H(β) 6 log q

32 . This choice of j allows us to use (7.5) to obtain

log2

(
k

j

)
= (1 + o(1))kH( j

k
) 6 2kH( j

k
),

and, since H(x) is decreasing in (1
2 , 1), it also guarantees

H( j
k
) 6 H(1− β) = H(β).

These two observations and (7.3) give us

1
j

logLd(k − j) 6 −d−1
d

(k − j)d−1 log q + 2k
j log2 e

H( j
k
) + 2 log(k

j
) + log(1 + ε)

6 −1
2(k − j)d−1 log q + 4H(β) + 2 log(k

j
) + ε.

We use the fact that log(k
j
) = log(1 + k−j

j
) 6 k−j

j
, together with our choices of ε and β to

obtain
logLd(k − j)
j(k − j) 6 −1

2 log q + 4H(β)
k − j

+ 4
k

+ ε

k − j
6 −1

4 log q.

Therefore, for j > (1− β)k we have

Ld(k − j) 6 e−j(k−j) log q/4.

We are left to consider the case j 6 (1− β)k. Similarly, by (7.3) we have log j! > j log j − j
and

(
k
j

)
6
(
ek
j

)j
, and then

logLd(k − j)
j

6 −1
2(k − j)d−1 − log j + 1 + 2 log(k

j
) + ε 6 −β

d−1k

2 + 1 + 2 log k + ε.

Therefore, in this range we have

Ld(k − j) 6 e−β
d−1jk/4.

The claim follows.

Since the sum in (7.9) is over all the kd−1 tuples (i1, . . . , id) in [k]d distinct from (k, . . . , k),
then Claim 7.2.2 and Claim 7.2.3 together imply that

∆ = o(µ). (7.10)
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Now, since X is a sum of zero-one random variables, we have

Var(X) 6 E[X] +
∑

T,T ′∈T
Cov(XT , XT ′).

In the sum we only need to consider the pairs T, T ′ ∈ T with non-trivial intersection (oth-
erwise the variables XT , XT ′ are independent and thus their covariance is zero). Further, we
have Cov(XT , XT ′) 6 E(XTXT ′). Therefore, by (7.10) we have

Var(X) 6 µ+ ∆ = (1 + o(1))µ,

and so we have finally proved (7.8).

By Chebyshev’s inequality, and equations (7.7) and (7.8) we have

P[|X − µ| > 1
4µ] 6 16 Var(X)

µ2 6
32
µ
→ 0.

Therefore, X > 3
4µ with probability at least 3

4 . Likewise, by Markov’s inequality and (7.10)
we have

P[Z > 1
5µ] 6 5E[Z]

µ
= 5∆

µ
→ 0,

and therefore Z 6 1
4µ with probability at least 3

4 . In particular, both events hold at the same
time with probability at least 1

2 .

Let Y denote the random variable that counts the maximum number of disjoint copies of
M in A. Since X > 3

4µ and Z 6 1
4µ hold with probability at least 1

2 , then, by conditioning
on this event, we deduce that

P[Y > 1
2µ] > 1

2 . (7.11)

Notice also that X = 0 if and only if Y = 0.

We are now ready to use Talagrand’s inequality to finish the proof. Note that h(A) := Y
is 1-Lipschitz, since by switching the value of one entry one can add or remove at most 1
copy of M (the one using that entry). Moreover, h(A) is f -certifiable for f(s) = skd. Using
b = 1

2µ and t = k−d/2
√

1
2µ, Talagrand’s inequality and (7.11) give us

P[X = 0] = P[Y = 0] 6 2e−µk−d/8.

Finally, we use a union bound over all the possible choices of M ∈ Ad(Σ, k), to deduce that
the probability that A is not k-universal is at most

2qkde−µk−d/8 6 2qkde−2kd log q = 2q−kd → 0

where the inequality comes from (7.7). The result follows.

Remark 7.2.4. The constant error term ε in Theorem 7.0.3 can be improved to a term
Ω( log k

k
). This can be seen by checking that replacing ε = C log k

k
(with C being a large constant)

is enough for (7.7) to hold. This does not change the rest of the calculations.
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Chapter 8

Quasi-random words and limits of
convergent word sequences

Based on joint work with Hiê.p Hàn and Marcos Kiwi [60].

8.1 Introduction

Roughly speaking, quasi-random structures are deterministic objects which share many char-
acteristic properties of their random counterparts. Formalizing this concept has turned out
to be tremendously fruitful in several areas, among others, number theory, graph theory,
extremal combinatorics, the design of algorithms and complexity theory. This often follows
from the fact that if an object is quasi-random, then it immediately enjoys many other
properties satisfied by its random counterpart.

Seminal work on quasi-randomness concerned graphs [33, 96, 106]. Subsequently, other
combinatorial objects were considered, which include subsets of Zn [32, 57], hypergraphs [1,
31, 58, 108], finite groups [59], and permutations [38]. Curiously, in the rich history of quasi-
randomness, words, i.e., sequences of letters from a finite alphabet, one of the most basic
combinatorial object with many applications, do not seem to have been explicitly investigated.
We overcome this apparent neglect, put forth a notion of quasi-random words and show it is
equivalent to several other properties.

In contrast to the classical topic of quasi-randomness, the research of limits for dis-
crete structures was launched rather recently by Chayes, Lovász, Sós, Szegedy and Veszter-
gombi [26, 84], and has become a very active topic of research since. Central to the area is
the notion of convergent graph sequences (Gn)n→∞, i.e., sequences of graphs which, roughly
speaking, become more and more “similar” as |V (Gn)| grows. For convergent graph se-
quences, Lovász and Szegedy [84] show the existence of natural limit objects, called graphons,
endow the space of these structures with a metric and establish the equivalence of their no-
tion of convergence and convergence on such a metric. Among many other consequences,
it follows that quasi-random graph sequences, with edge density p + o(1), converge to the
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constant p graphon.

In this paper, we continue the lines of previously mentioned investigations and study quasi-
randomness for words and limits of convergent word sequences. Not only in the literature
of quasi-randomness but also in the one concerning limits of discrete structures, explicit
investigation of this fundamental object has not been considered so far.

8.1.1 Quasi-random words

Concerning quasi-randomness for words, our central notion is that of uniform distribution of
letters over intervals. Specifically, a word w = (w1 . . . wn) ∈ {0, 1}n is called (d, ε)-uniform
if for every interval I ⊆ [n] we have∑

i∈I
wi = |{i ∈ I : wi = 1}| = d|I| ± εn. (8.1)

We say that w is ε-uniform if w is (d, ε)-uniform for some d. Thus, uniformity states that
up to an error term of εn the number of 1-entries of w in each interval I is roughly d|I|, a
property which binomial random words with parameter d satisfy with high probability. This
notion of uniformity has been studied by Axenovich, Person and Puzynina in [12], where a
regularity lemma for words was established and applied to the problem of finding twins in
words. In a different context, it has been studied by Cooper [38] who gave a list of equivalent
properties. A word (w1 . . . wn) ∈ {0, 1}n can also be seen as the set W = {i : wi = 1} ⊆ Zn
and from this point of view uniformity should be compared to the classical notion of quasi-
randomness of subsets of Zn, studied by Chung and Graham in [32] and extended to the
notion of Uk-uniformity by Gowers in [57]. With respect to this line of research we note that
our notion of uniformity is strictly weaker than all of the ones studied in [32, 57]. Indeed,
the weakest of them concerns U2-uniformity and may be rephrased as follows: W ⊆ Zn
has U2-norm at most ε > 0 if for all A ⊆ Zn and all but εn elements x ∈ Z we have
|W ∩ (A+ x)| = |W | |A|

n
± εn where A+ x = {a+ x : a ∈ A}. Thus, e.g., the word 0101 . . . 01

is uniform in our sense but its corresponding set does not have small U2-norm.

Analogous to the graph case there is a counting property related to uniformity. Given a
word w = (w1 . . . wn) and a set of indices I = {i1, . . . , i`} ⊆ [n], where i1 < i2 < · · · < i`,
let sub(I,w) be the length ` subsequence u = (u1 . . . u`) of w such that uj = wij . We
show that uniformity implies adequate subsequence count, i.e., for any fixed u the number of
subsequences equal to u in a large uniform word w, denoted by

(
w
u

)
, is roughly as expected

from a random word with same density of 1-entries as w. It is then natural to ask whether
the converse also holds and one of our main results concerning quasi-random words states
that uniformity is indeed already enforced by counting of subsequences of length three. Let
‖w‖1 = ∑

i∈[n] wi denote the number of 1-entries in w, then our result reads as follows.

Theorem 8.1.1. For every ε > 0, d ∈ [0, 1], and ` ∈ N, there is an n0 such that for all
n > n0 the following holds.

• If w ∈ {0, 1}n is (d, ε)-uniform, then for each u ∈ {0, 1}`(
w
u

)
= d‖u‖1(1− d)`−‖u‖1

(
n
`

)
± 5εn`.

97



• Conversely, if w ∈ {0, 1}n is such that for all u ∈ {0, 1}3 we have(
w
u

)
= d‖u‖1(1− d)3−‖u‖1

(
n
3

)
± εn3,

then w is (d, 18ε1/3)-uniform.

Note that in the second part of the theorem the density of 1-entries is implicitly given.
This is because

(
w

(111)

)
=
(
‖w‖1

3

)
, and therefore the condition

(
w

(111)

)
≈ d3

(
n
3

)
implies that

‖w‖1 ≈ dn. We also note that length three subsequences in the theorem cannot be replaced
by length two subsequences and in this sense the result is best possible. Indeed, the word
(0 . . . 01 . . . 10 . . . 0) consisting of (1 − d)n2 zeroes followed by dn ones followed by (1 − d)n2
zeroes contains the “right” number of every length two subsequences without being uniform.

We also study a property called Equidistribution and show that it is equivalent to uni-
formity. Together with Theorem 8.1.1 (and its direct consequences) and a result from
Cooper [38, Theorem 2.2] this yields a list of equivalent properties stated in Theorem 8.1.2.
To state the result let w[j] denote the j-th letter of the word w. Furthermore, by the Cayley
digraph Γ = Γ(w) of a word w = (w1 . . . wn) we mean the graph on the vertex set Zn in which
i and j form an edge if and only if wi−j (mod n) = 1. Given a word u ∈ {0, 1}`+1, a sequence
of vertices (v1 . . . v`+1) is an increasing u-path in Γ = Γ(w) if the numbers i1, . . . , i` ∈ [n]
defined by vk+1 = vk + ik (mod n) satisfy i1 < · · · < i` and for each k ∈ [`] the pair vkvk+1
is an edge in Γ if uk = wik = 1 and a non-edge if uk = wik = 0.

Henceforth, we define the Lipschitz norm of a function f : R/Z→ C by

‖f‖Lip = ‖f‖∞ + sup
x 6=y

|f(x)− f(y)|
min{1− |x− y|, |x− y|} .

Theorem 8.1.2. For a sequence (wn)n→∞ of words wn ∈ {0, 1}n such that ‖wn‖1 = dn+o(n)
for some d ∈ [0, 1], the following are equivalent:

• (Uniformity) (wn)n→∞ is (d, o(1))-uniform.

• (Counting) For all ` ∈ N and all u ∈ {0, 1}` we have(
wn

u

)
= d‖u‖1(1− d)`−‖u‖1

(
n
`

)
+ o(n`).

• (Minimizer) For all u ∈ {0, 1}3 we have(
wn

u

)
= d‖u‖1(1− d)3−‖u‖1

(
n
3

)
+ o(n3).

• (Exponential sums) For any fixed α > 0 and for all k ∈ [n− 1] we have

1
n

∑
j∈[n] wn[j] · exp

(
2πi
n
kj
)

= o(1)|k|α.

• (Equidistribution) For every Lipschitz function f : R/Z→ C
1
n

∑
j∈[n] wn[j] · f( j

n
) = d

∫
R/Z f + o(1)‖f‖Lip.

98



• (Cayley graph) For all u ∈ {0, 1}3 the number of increasing u-paths in Γ(wn) is

d‖u‖1(1− d)3−‖u‖1n
(
n
3

)
+ o(n4).

We will say that a word sequence is quasi-random if it satisfies one of (hence all) the
properties of Theorem 8.1.2.

8.1.2 Convergent word sequences and word limits

Over the last two decades it has been recognized that quasi-randomness and limits of discrete
structures are intimately related subjects. Being interesting in their own right, limit theories
have also unveiled many connections between various branches of mathematics and theoretical
computer science. Thus, as a natural continuation of the investigation on quasi-randomness,
we study convergent word sequences and their limits, a topic which, to the best of our
knowledge, has only been briefly mentioned by Szegedy [104].

The notion of convergence we consider is specified in terms of convergence of subsequence
densities. Given w ∈ {0, 1}n and u ∈ {0, 1}`, let t(u,w) be the density of occurrences of u
in w, i.e.,

t(u,w) =
(

w
u

)(
n
`

)−1
.

Alternatively, if we define sub(`,w) := sub(I,w) for I uniformly chosen among all subsets
of [n] of size `, then t(u,w) = P[sub(`,w) = u].

A sequence of words (wn)n→∞ is called convergent if for every finite word u the sequence(
t(u,wn)

)
n→∞

converges. In what follows, we will only consider sequences of words such
that the length of the words tend to infinity. This, however, is not much of a restriction since
convergent word sequences with bounded lengths must be constant eventually and limits
considerations for these sequences are simple.1

We show that convergent word sequences have natural limit objects, which turn out to
be Lebesgue measurable functions of the form f : [0, 1]→ [0, 1]. Formally, write f 1 = f and
f 0 = 1− f for a function f : [0, 1]→ [0, 1] and for a word u ∈ {0, 1}` define

t(u, f) = `!
∫

06x1<···<x`61

∏
i∈[`]

fui(xi) dx1 . . . dx`. (8.2)

We say that (wn)n→∞ converges to f and that f is the limit of (wn)n→∞, if for every word u
we have

lim
n→∞

t(u,wn) = t(u, f).

In particular, (wn)n→∞ is convergent in this case. Furthermore, let W be the set of all
Lebesgue measurable functions of the form f : [0, 1] → [0, 1] in which, moreover, functions
are identified when they are equal almost everywhere. We show that each convergent word
sequence converges to a unique f ∈ W and that, conversely, for each f ∈ W there is a word
sequence which converges to f .

1Word sequences with bounded lengths contain a subsequence of infinite length which is constant and due
to convergence all members of the original sequence must agree with this constant eventually.
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Theorem 8.1.3 (Limits of convergent word sequences).

• For each convergent word sequence (wn)n→∞ there is an f ∈ W such that (wn)n→∞
converges to f . Moreover, if (wn)n→∞ converges to g then f and g are equal almost
everywhere.

• Conversely, for every f ∈ W there is a word sequence (wn)n→∞ which converges to f .

Theorem 8.1.3 can be phrased in topological terms as follows. Given a word u, one can
think of t(u, ·) as a function from W to [0, 1]. Then, endow W with the initial topology
with respect to the family of maps t(u, ·), with u ∈ {0, 1}` and ` ∈ N, that is, the smallest
topology that makes all these maps continuous. We show that this topology is actually
metrisable and, moreover, compact (thereby proving Theorem 8.1.3).

The overall approach we follow is in line with what has been done for graphons [84] and
permutons [64]. Nevertheless, there are important technical differences, specially concerning
the (in our case, more direct) proofs of the equivalence between distinct notions of convergence
which avoid compactness arguments. Instead, we rely on Bernstein polynomials and their
properties as used in the (constructive) proof the Stone–Weierstrass approximation theorem.

In contrast with other technically more involved limit theories, say the ones concerning
graph sequences [84] and permutation sequences [64], the simplicity of the underlying com-
binatorial objects we consider (words) yields concise arguments, elegant proofs, simple limit
objects, and requires the introduction of far fewer concepts. Yet despite the technically com-
paratively simpler theory, many interesting aspects common to other structures and some
specific to words appear in our investigation. As an illustration, we work out the implica-
tions for testing of the class of so-called hereditary word properties and address the question
concerning finite forcibility for words, i.e., which word limits are completely determined by
a finite number of prescribed subsequence densities.

8.1.3 Testing hereditary word properties

The concept of self-testing/correcting programs was introduced by Blum et al. [22, 23] and
greatly expanded by the concept of graph property testing proposed by Goldreich, Goldwasser
and Ron [56] (for an in depth coverage of the property testing paradigm, the reader is referred
to the book by Goldreich [55]). An insightful connection between testable graph properties
and regularity was established by Alon and Shapira [6] and further refined in [4, 7]. It was
then observed that similar and related results can be obtained via limit theories (for the case
of testing graph properties, the reader is referred to [85], and for the case of (weakly) testing
permutation properties, to [65]). Thus, it is not surprising that analogue results can be
established for word properties. On the other hand, it is noteworthy that such consequences
can be obtained very concisely and elegantly.

We next state our main result concerning testing word properties. Formally, for u,w ∈
{0, 1}n let d1(w,u) = 1

n

∑
i∈[n] |wi − ui|. A word property is simply a collection of words.
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A word property P is said to be testable if there is another word property P ′ (called test
property for P) satisfying the following conditions:

(Completeness) For every w ∈ P of length n and every ` ∈ [n], P[sub(`,w) ∈ P ′] > 2
3 .

(Soundness) For every ε > 0 there is an `(ε) > 1 such that if w ∈ {0, 1}n with
d1(w,P) = minu∈P∩{0,1}n d1(w,u) > ε, then P[sub(`,w) ∈ P ′] 6 1

3 for all `(ε) 6 ` 6 n.

Variants of the notion of testability can be considered. However, the one stated is sort
of the most restrictive. On the other hand, the notion can be strengthened by replacing the
2/3 in the completeness part by 1 − ε and 1/3 in the soundness part by ε. The notion can
be weakened letting the test property P ′ depend on ε. These variants do not change the
concept of testability.

A word property P is called hereditary if for each w ∈ P , every subsequence u of w also
belongs to P .

Theorem 8.1.4. Every hereditary word property is testable.

Since the notion of testability given above is very restrictive (it consists in sampling
uniformly a constant number of characters from the word being tested) it straightforwardly
yields efficient (polynomial time) testing procedures.

Examples of hereditary properties are: (1) the collection PF of words that do not contain
as subsequence any word in F where F is a family of words (F might even be infinite), and
(2) for given P1, ...,Pk hereditary word properties, the collection Pcol of words that can be
k-coloured (i.e., each of its letters assigned a colour in [k]) so that for all c ∈ [k] the induced
c coloured sub-word is in Pc.

8.1.4 Finite forcibility

Finite forcibility was introduced by Lovász and Sós [83] while studying a generalization of
quasi-random graphs. For an in depth investigation of finitely forcible graphons we refer
to the work of Lovász and Szegedy [86]. We say that f ∈ W is finitely forcible if there
is a finite list of words u1, . . .um such that any function h : [0, 1] → [0, 1] which satisfies
t(ui, h) = t(ui, f) for all i ∈ [m] must agree with f almost everywhere. A direct consequence
of Theorem 8.1.1 concerning quasi-random words is that the constant functions are finitely
forcible (by words of length three). We can generalize this result as follows:

Theorem 8.1.5. Piecewise polynomial functions are finitely forcible. Specifically, if there
is an interval partition {I1, ..., Ik} of [0, 1], polynomials P1(x), ..., Pk(x) of degrees d1, ..., dk,
respectively, and f ∈ W is such that f(x) = Pi(x) for all i ∈ [k] and x ∈ Ii, then there

is a list of words u1, . . . ,um, with m 6 21+2k+2
∑

i
di + 2

(
k
2

)
(1+maxi di) such that any function

h : [0, 1] → [0, 1] which satisfies t(ui, h) = t(ui, f) for all i ∈ [m] must agree with f almost
everywhere.
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8.1.5 Permutons from words limits

Given n ∈ N, we denote by Sn the set of permutations of order n and S = ⋃
n>1 Sn the

set of all finite permutations. Also, for σ ∈ Sn and τ ∈ Sk we let Λ(τ, σ) be the number of
copies of τ in σ, that is, the number of k-tuples 1 6 x1 < · · · < xk 6 n such that for every
i, j ∈ [k]

σ(xi) 6 σ(xj) iff τ(i) 6 τ(j).

The density of copies of τ in σ, denoted by t(τ, σ), is the probability that σ restricted to
a randomly chosen k-tuple of [n] yields a copy of τ . A sequence (σn)n→∞ of permutations,
with σn ∈ Sn for each n ∈ N, is said to be convergent if limn→∞ t(τ, σn) exists for every
permutation τ ∈ S. Hoppen et al. [64] proved that every convergent sequence of permutations
converges to a suitable analytic object called permuton, which are probability measures on the
Borel σ-algebra on [0, 1]× [0, 1] with uniform marginals, the collection of which they denote
by Z, and also extend the map t(τ, ·) to the whole of Z. Then, they define a metric d2 on
Z so that for all τ ∈ S the maps t(τ, ·) are continuous with respect to d2. They also show
that (Z, d2) is compact and, as a consequence, establish that convergence as defined above
and convergence in d2 are equivalent. In particular, they prove that for every convergent
sequence of permutations (σn)n→∞ there is a permuton µ ∈ Z such that t(τ, σn) → t(τ, µ)
for all τ ∈ S. We give new proofs of these two results by using a more direct approach based
on Theorem 8.1.3.

8.2 Quasi-randomness

In this section we give the proof of the second part of Theorem 8.1.1 and Theorem 8.1.2.
We start by establishing an inverse form of the Cauchy–Schwarz inequality which is used
to prove the second part of Theorem 8.1.1, that controlling the density of subsequences of
length three is enough to guarantee uniformity. An alternative demonstration of the second
part of Theorem 8.1.1 can be extracted from the proof of Theorem 8.1.5 (see Remark 8.5.2).

Then, after recalling some basic facts and terminology about Fourier analysis and Lips-
chitz functions, we proceed to prove the equivalence of the quasi-random properties listed in
Theorem 8.1.2.

Lemma 8.2.1. If g = (g1, . . . , gn),h = (h1, . . . , hn) ∈ Rn and ε ∈ (0, 1) are such that

〈g,h〉2 > ‖g‖2‖h‖2 − εn3‖h‖2,

then all but at most ε1/3n indices i ∈ [n] satisfy gi = 〈g,h〉
〈h,h〉hi ± ε

1/3n.

Proof. Let z be the projection of g onto the plane orthogonal to h, i.e., z = g− 〈g,h〉〈h,h〉h. As z

and h are orthogonal, applying Pythagoras to g = 〈g,h〉
〈h,h〉h + z yields

‖g‖2 = 〈g,h〉2
〈h,h〉2‖h‖

2 + ‖z‖2 = 〈g,h〉2
‖h‖2 + ‖z‖2.
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The assumption then yields

εn3 > ‖z‖2 =
∑
i∈[n]

(
gi − 〈g,h〉〈h,h〉hi

)2
. (8.3)

Thus, the conclusion of the lemma must hold, otherwise ‖z‖2 > ε1/3n(ε1/3n)2 = εn3, contra-
dicting (8.3).

Proof (of the second part of Theorem 8.1.1). Given ε > 0 let n > n0 be sufficiently large.
By a word containing ∗ we mean the family of words obtained by replacing ∗ by 0 or 1,
e.g., u = (∗u2u3) denotes the family {(0u2u3), (1u2u3)}. For a word u containing ∗, let(

w
u

)
= ∑

u′

(
w
u′

)
where the sum ranges over the family mentioned above. Given a word

w = (w1 . . . wn) ∈ {0, 1}n which satisfies the assumption of the theorem we have(
w

11∗

)
6 d2

(
n

3

)
+ 2εn3 and

(
w

∗1∗

)
+
(

w

1∗∗

)
> 2d

(
n

3

)
− 8εn3. (8.4)

We may also assume that d > ε, otherwise the first condition yields ‖w‖1 6 3ε1/3n due to(
‖w‖1

3

)
=
(

w
111

)
and the result follows trivially.

Let g = (g1, . . . , gn) where g` = ∑
i∈[`] wi and let h = (1, 2, . . . , n). Since gn = ‖w‖1, it is

easily seen that w is 18ε1/3-uniform if

g` = 〈g,h〉
〈h,h〉

`± 9ε1/3n for every ` ∈ [n]. (8.5)

To show (8.5) note first that
g2
` = |{(i, j) ∈ [`]2 : wi = wj = 1}| 6 |{(i, j) ∈ [`− 1]2 : wi = wj = 1, i 6= j}|+ 3(`− 1) + 1.

Hence, up to an additive error of 3(`− 1) + 1 the quantity g2
` is twice the number of subse-

quences of w equal to (11w`). Summing over all ` ∈ [n] we obtain from (8.4)

‖g‖2 =
∑
`∈[n]

g2
` 6 2

(
w

11∗

)
+ 3

2n
2 6 2d2

(
n

3

)
+ 5εn3. (8.6)

Consider next, for an ` ∈ [n], the family S` of subsequences of w equal to (wiwjw`) or
(wjwiw`), where i, j ∈ [`−1], i 6= j, and wi = 1, w` ∈ {0, 1}. Then, we have |S`| 6 g` ·`, since
there are at most g` choices for i and each such choice of i gives rise to (i−1)+(`− i−1) 6 `
choices for j. On the other hand, ∑`∈[n] |S`| counts all subsequences of w of the form (∗1∗)
and (1∗∗). Hence, (8.4) together with h = (1, 2, . . . , n) yields

〈g,h〉2 =
( ∑
`∈[n]

g` · `
)2

>
( ∑
`∈[n]
|S`|

)2
=
((

w

∗1∗

)
+
(

w

1∗∗

))2

> 4d2
(
n

3

)2

− 32ε
(
n

3

)
n3.

As ‖h‖2 = ∑
i∈[n] i

2 = 1
6n(n+ 1)(2n+ 1) = 2

(
n
3

)
+ 3

2n
2 − n

2 from (8.6) we obtain

〈g,h〉2 − ‖g‖2‖h‖2 > 4d2
(
n

3

)2

− 32ε
(
n

3

)
n3 −

(
2d2

(
n

3

)
+ 5εn3

)
‖h‖2

> 2d2
(
n

3

)(
‖h‖2 − 3

2n
2
)
− 16εn3‖h‖2 −

(
2d2

(
n

3

)
+ 5εn3

)
‖h‖2

> −22εn3‖h‖2.
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By Lemma 8.2.1 all but at most (22ε)1/3n indices i ∈ [n] satisfy gi = 〈g,h〉
〈h,h〉i ± (22ε)1/3n. In

particular, for every ` ∈ [n] there is such an index i with i = `± (22ε)1/3n. Thus

g` = gi ± (22ε)1/3n = 〈g,h〉
〈h,h〉

i± 2(22ε)1/3n = 〈g,h〉
〈h,h〉

`± 3(22ε)1/3n

which shows (8.5) and the second part of Theorem 8.1.1 follows.

Remark 8.2.2. The previous proof shows something stronger than what is claimed. Specifi-
cally, that instead of requiring the right count of all subsequences of length three it is sufficient
to have (8.4), i.e., the correct upper bound for the count of (11∗) and the correct lower bound
for the sum of the count of (∗1∗) and (1∗∗).

We now turn our attention to Theorem 8.1.2 and recall here some facts from Fourier
analysis on the circle. Letting dx correspond to the Lebesgue measure on the unit circle, for
k ∈ Z, the Fourier transform f̂(k) of a function f : R/Z→ C is defined by

f̂(k) =
∫
R/Z

f(x)e−2πikx dx.

Given N ∈ N, the Fejér approximation of order N of f is defined by

σNf(x) =
∑
|n|6N

(
1− |n|

N + 1

)
f̂(n)e2πinx.

Lemma 8.2.3 (Proposition 1.2.12 from [92]). There is a constant C > 0 such that for any
Lipschitz function f : R/Z→ C and for every M > 2 one has

‖f − σMf‖∞ 6 C‖f‖Lip
logM
M

.

Lemma 8.2.4 (Theorem 1.5.3 from [92]). There is a constant c > 0 such that for any
Lipschitz function f : R/Z→ C and for every m 6= 0 one has

|f̂(m)| 6 c‖f‖Lip

|m|
.

We are now in the position to prove Theorem 8.1.2.

Proof (of Theorem 8.1.2). The equivalence between the Uniformity, Counting, and Mini-
mizer properties follow from Theorem 8.1.1. The equivalence between the Cayley graph and
Counting properties follows by noting that there is a one-to-n correspondence between sub-
sequences in wn equal to u and increasing u-paths in Γ(wn). To see this, simply note that
(v1, ..., v`+1) is an increasing u-path in Γ(wn) if and only if (v1+a, ..., v`+1+a) is an increasing
u-path in Γ(wn), for all a ∈ [n] (where arithmetic over vertices is modulo n). The equiva-
lence between the properties Uniformity and Exponential sums was shown by Cooper in [38,
Theorem 2.2] who also proved that if Exponential sums is true for a particular α0, then it is
true for all α > 0. We next show that the properties Exponential sums and Equidistribution
are equivalent. It is clear that the latter implies the former for α = 1, and thus for all α > 0,
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by Cooper’s work and since f(x) = exp (2πikx) integrates to 0 and has Lipschitz norm at
most 2|k|. To show the converse let f : R/Z→ C be given. We will show that for any ε > 0
and for large n, the following holds for d = ‖w‖1/n:∣∣∣∣ 1n ∑

j:wn[j]=1
f(j/n)− d

∫
R/Z

f
∣∣∣∣ 6 ε‖f‖Lip.

Let C and c be the absolute constants from Lemma 8.2.3 and Lemma 8.2.4, respectively.
ChooseM large enough so thatM/ logM > 2C/ε and n large enough so that for all |m| 6M

we have
∣∣∣∑j:wn[j]=1 exp

(
2πi
n
mj
)∣∣∣ < ε

2cMn|m|. Applying this bound we obtain

∑
j:wn[j]=1

σMf(j/n) =
∑

j:wn[j]=1

∑
|m|6M

(
1− |m|

M + 1

)
f̂(m) exp

(
2πi
n
mj
)

=
∑
|m|6M

(
1− |m|

M + 1

)
f̂(m)

∑
j:wn[j]=1

exp
(

2πi
n
mj
)

= f̂(0) · dn± ε

2cM n
∑

0<|m|6M

∣∣∣∣∣
(

1− |m|
M + 1

)
f̂(m)

∣∣∣∣∣ |m|.
As f̂(0) =

∫
R/Z f , we obtain from Lemma 8.2.4 that

∣∣∣∣ 1n ∑
j:wn[j]=1

σMf(j/n)− d
∫
R/Z

f
∣∣∣∣ 6 ε

2cM
∑

0<|m|6M

∣∣∣∣(1− |m|
M + 1

)
f̂(m)

∣∣∣∣|m| 6 ε

2‖f‖Lip.

By Lemma 8.2.3, triangle inequality and the choice of M we conclude∣∣∣∣ 1n ∑
j:wn[j]=1

f(j/n)− d
∫
R/Z

f
∣∣∣∣ 6 ∣∣∣∣ 1n ∑

j:wn[j]=1
σMf(j/n)− d

∫
R/Z

f
∣∣∣∣+ C‖f‖Lip

logM
M

6
ε

2‖f‖Lip + ε

2‖f‖Lip = ε‖f‖Lip.

This finishes the proof.

8.3 Limits of word sequences

In this section we give the proof of Theorem 8.1.3 concerning word limits. Although the
overall approach is in line with what has been done for graphons [84] and permutons [64],
there are important technical differences which we will stress below. Central concepts and
auxiliary results involved in the proof will be introduced along the way. The section is
divided into four subsections. We start by a simple reformulation of the notion of convergent
word sequences in terms of convergence of a function sequence in W . This notion is called
t-convergence and we show in Lemma 8.3.1 that the limit of a t-convergent function sequence
is unique, if it exists. In the second subsection, we endow W with the interval-distance
d2 and show in Lemma 8.3.2 that convergence with respect to d2 implies t-convergence.
Proposition 8.3.6 from the same subsection gives a direct proof of the converse. In the third
subsection, we specify a third and last notion of convergence (convergence in distribution)
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based on sampling of f -random letters for a given f ∈ W . We prove in Lemma 8.3.8
that this notion of convergence is equivalent to the two previously defined, and deduce the
compactness of the metric space (W , d2) in Theorem 8.3.9. In the fourth and last part, we
show in Lemma 8.3.10 and Corollary 8.3.11 that every element of f ∈ W is, a.s., the limit of
a convergent random word sequence.

8.3.1 Uniqueness and t-convergence

Given the nature of the limit it is convenient to first reformulate the notion of convergence
in analytic terms. For a given word wn = (w1 . . . wn) define the function associated to wn

to be the n-step 0-1-function fwn ∈ W given by fwn(x) = wdnxe. It is then easy to see that
t(u, fwn), as defined in (8.2), satisfies2

t(u, fwn) = t(u,wn) +O(n−1
)

for every word u. (8.7)

Thus the following, applied to fn = fwn , yields a reformulation of convergence of (wn)n→∞.
Given a sequence (fn)n→∞ in W and f ∈ W , we say that

fn
t→ f if lim

n→∞
t(u, fn) = t(u, f) for all finite words u.

The next lemma implies that the limit, if it exists, is guaranteed to be unique. The idea
of the proof goes back to a remark of Král’ and Pikhurko concerning permutons (see [75,
Remark 6]).

Lemma 8.3.1. Let f, g : [0, 1] → [0, 1]. If t(u, f) = t(u, g) for all words u, then f = g
almost everywhere.

Proof. Given k ∈ N, note that
∫ 1

0
f(x)xk dx =

∫ 1

0
f(x)

( ∫ x

0
dy
)k

dx =
∫
y1,...,yk6x

f(x) dy1 . . . dyk dx

= k!
∫
y1<···<yk<x

f(x) dy1 . . . dyk dx = 1
k + 1

∑
u∈{0,1}k

t(u1 . . . uk1, f)

= 1
k + 1

∑
u∈{0,1}k

t(u1 . . . uk1, g) =
∫ 1

0
g(x)xk dx.

Thus, for each polynomial P (x) ∈ R[x] we get
∫ 1

0 f(x)P (x) dx =
∫ 1

0 g(x)P (x) dx, and by
the Stone–Weierstrass theorem

∫ 1
0 f(x)h(x) dx =

∫ 1
0 g(x)h(x) dx holds for every continuous

function h : [0, 1]→ R. This implies that f = g almost everywhere.
2To see (8.7), split [0, 1] into n intervals of equal lengths. Let A denote the event that ` independent

uniform random points of [0, 1] land in different intervals and let B be the event that, after reordering these
points, say x1 < · · · < x`, we have

(
fwn(x1), . . . , fwn(x`)

)
= u. Then, t(u, fwn) = P[B|A]P[A] + P[B|A]P[A]

and we further have P[B|A] = t(u,wn) and P[A] =
∏`−1

i=1(1− i/n) = 1−O(n−1).
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8.3.2 Interval-metric and the metric space (W , d2)

In view of the equivalence of uniformity and subsequence counts shown in Theorem 8.1.1, it
is natural to consider the following notions of norm, distance and convergence, which are all
analogues of the notions of cut-norm, cut-distance and convergence in graph limit theory.
Given h : [0, 1]→ [−1, 1] define the interval-norm

‖h‖2 = sup
I⊆[0,1]

∣∣∣∣∫
I
h(x) dx

∣∣∣∣ ,
where the supremum is taken over all intervals I ⊆ [0, 1]. The interval-metric d2 is then
defined by

d2(f, g) = ‖f − g‖2 for every f, g : [0, 1]→ [0, 1],

and we write
fn

2→ f if lim
n→∞

d2(fn, f) = 0.

The following result states that the interval-norm controls subsequence counts, in particu-
lar, fn 2→ f implies fn t→ f . As a by-product of the lemma, we obtain the first part of
Theorem 8.1.1 concerning counting subsequences in uniform words.

Lemma 8.3.2. For f, g ∈ W and u ∈ {0, 1}` we have∣∣∣t(u, f)− t(u, g)
∣∣∣ 6 `2 · d2(f, g).

In particular, if w ∈ {0, 1}n is ε-uniform and n = n(ε, `) is sufficiently large, then for some
d ∈ [0, 1] we have for each u ∈ {0, 1}`(

w
u

)
= d‖u‖1(1− d)`−‖u‖1

(
n
`

)
± 5εn`.

Proof. We first show that the second part follows from the first. Given an ε-uniform word
w ∈ {0, 1}n, let f : [0, 1]→ [0, 1] be the function associated to w and let d =

∫
f(t) dt ∈ [0, 1].

Define g : [0, 1]→ [0, 1] constant equal to d and recall that g1 = g and g0 = 1− g. Then, for
each u ∈ {0, 1}`

t(u, g) = `!
∫

06x1<···<x`61

∏
i∈[`]

gui(xi) dx1 . . . dx` = d‖u‖1(1− d)`−‖u‖1 .

Since d2(f, g) 6 2ε due to uniformity of w, for large n, the second part of the lemma follows
from the first part and (8.7) as(

w
u

)
= t(u, f)

(
n
`

)
± εn` = t(u, g)

(
n
`

)
± 5εn` = d‖u‖1(1− d)`−‖u‖1

(
n
`

)
± 5εn`.

Now we turn to the proof of the first part. Let

Xj(x1, . . . , x`) =
(
fuj(xj)− guj(xj)

) j−1∏
i=1

fui(xi)
∏̀

i=j+1
gui(xi).
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Making use of a telescoping sum we write∣∣∣t(u, f)− t(u, g)
∣∣∣ = `!

∣∣∣∣ ∫
x1<···<x`

( ∏
j∈[`]

fuj(xj)−
∏
j∈[`]

guj(xj)
)

dx1 . . . dx`
∣∣∣∣

= `!
∣∣∣∣ ∫
x1<···<x`

∑
j∈[`]

Xj(x1, . . . , x`) dx1 . . . dx`
∣∣∣∣

6 `!
∑
j∈[`]

∣∣∣∣ ∫
x1<···<x`

Xj(x1, . . . , x`) dx1 . . . dx`
∣∣∣∣.

Since
∣∣∣∣ ∫ xj+1

xj−1

(
fuj(xj)− guj(xj)

)
dxj

∣∣∣∣ 6 d2(f, g) and 0 6 f, g 6 1, for j ∈ [`] we have

∣∣∣∣ ∫ xj+1

xj−1
Xj(x1, ..., x`) dxj

∣∣∣∣ 6 d2(f, g)
j−1∏
i=1

fui(xi)
∏̀

i=j+1
gui(xi).

Hence, ∣∣∣∣ ∫
x1<···<x`

Xj(x1, . . . , x`) dx1 . . . dx`
∣∣∣∣

6 d2(f, g)
∫
x1<···<xj−1
6xj+1<···<x`

j−1∏
i=1

fui(xi)
∏̀

i=j+1
gui(xi) dx1 . . . dxj−1 dxj+1 . . . dx`

6
1

(`− 1)!d2(f, g)

and the first part of the lemma follows.

Remark 8.3.3. We note that the same argument extends without change to larger size al-
phabets in the following sense. Given an alphabet Σ = {a1, . . . , ak}, let f = (fa1 , . . . , fak)
and g = (ga1 , . . . , gak) be two tuples of functions fai , gai : [0, 1]→ [0, 1], for i ∈ [k], such that

fa1(x) + · · ·+ fak(x) = 1 and ga1(x) + · · ·+ gak(x) = 1 almost everywhere.

For a word u ∈ Σ`, define the density of u in f in similar manner as in (8.2), namely

t(u,f) = `!
∫

06x1<···<x`61

∏
i∈[k]

fui(xi) dx1 . . . dx`.

Then, the proof from above yields∣∣∣t(u,f)− t(u, g)
∣∣∣ 6 `2 ·max

i∈[k]
d2(fai , gai).

Note that Lemma 8.3.2 implies that if fn 2→ f , then fn t→ f . Our goal now is to show
that the converse also holds. Let (fn)n→∞ be a sequence such that fn t→ f . Following
the proof of Lemma 8.3.1, we will use that for any polynomial P (x) ∈ R[x] we can write∫ 1

0 (fn(x) − f(x))P (x) as a linear combination of subsequence densities. By approximating
1[a,b](x) by a polynomial Pa,b(x) ∈ R[x], with error term uniform in 0 6 a < b 6 1, we may
show that

∫ 1
0 (fn(x)− f(x))1[a,b](x) can be approximated by

∫ 1
0 (fn(x)− f(x))Pa,b(x), thence
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by a linear combination of subsequence densities, implying our claim. In order to prove this
approximation result, we introduce next the class of Bernstein polynomials,

bt,i(x) =
(
t
i

)
xi(1− x)t−i, for all t ∈ N, i ∈ [t] and x ∈ [0, 1].

Since bt,i(x) is the probability mass function (pmf) of a binomial random variable we have
that:

Fact 8.3.4.
t∑
i=0

bt,i(x) = 1,
t∑
i=0

ibt,i(x) = tx and
t∑
i=0

(tx− i)2bt,i(x) = tx(1− x).

Even though here we only need to approximate functions on [0, 1], we will consider the
general case of functions on [0, 1]k since it will later be useful in our study of higher dimen-
sional combinatorial structures. For k, t ∈ N \ {0}, let i = (i1, . . . ik) ∈ [t]k. Given a function
J : [0, 1]k → R, define its Bernstein polynomial evaluated at x = (x1, . . . , xk) ∈ [0, 1]k by

Bt,J(x) =
∑

06i1,...,ik6t
J( i

t
)
∏
j∈[k]

bt,ij(xj).

We can now formally state the approximation of indicator functions we use.

Lemma 8.3.5. For a = (a1, . . . , ak) ∈ [0, 1]k let J = 1[0,a1]×···×[0,ak]. If r ∈ N and x ∈ [0, 1]k
satisfy |xi − ai| > r−1/4 for all i ∈ [k], then |Br,J(x)− J(x)| 6 kr−1/2.

Proof. Let B = Br,J . By Fact 8.3.4 we have

|B(x)− J(x)| =
∣∣∣∣B(x)− J(x)

∑
06i1,...,ik6r

∏
j∈[k]

br,ij(xj)
∣∣∣∣ 6 ∑

06i1,...,ik6r

∣∣∣J( i
r
)− J(x)

∣∣∣ ∏
j∈[k]

br,ij(xj).

Let L = {i : ‖x − i
r
‖∞ > r−1/4} ⊆ ({0} ∪ [r])k. As |xj − aj| > r−1/4 for all j ∈ [k], for each

i 6∈ L we have that J( i
r
) = J(x) and thus

∑
i6∈L

∣∣∣J( i
r
)− J(x)

∣∣∣ ∏
j∈[k]

br,ij(xj) = 0.

For ` ∈ [k], let L` = {i ∈ L : |rx` − i`| > r3/4}, and note that L = L1 ∪ · · · ∪ Lk. Due to∣∣∣J( i
r
)− J(x)

∣∣∣ 6 1 we have

∑
i∈L

∣∣∣J( i
r
)− J(x)

∣∣∣ ∏
j∈[k]

br,ij(xj) 6
∑
`∈[k]

∑
i∈L`

∏
j∈[k]

br,ij(xj). (8.8)

By Fact 8.3.4, since br,ij(x) 6 1, for every x ∈ [0, 1],

∑
i∈Lk

∏
j∈[k]

br,ij(xj) 6
∑

i∈Lk

(rxk − ik)2

r3/2 br,ik(xk) = 1
r1/2xk(1− xk) 6

1
r1/2 .

The same bound holds for every L`, ` ∈ [k − 1]. Therefore, the RHS of (8.8) is at most
kr−1/2, as required.
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Given two functions f, g ∈ W , we have the inequality

sup
b∈[0,1]

∣∣∣∣∣
∫ b

0
f(x) dx−

∫ b

0
g(x) dx

∣∣∣∣∣ 6 d2(f, g) 6 2 sup
b∈[0,1]

∣∣∣∣∣
∫ b

0
f(x) dx−

∫ b

0
g(x) dx

∣∣∣∣∣ . (8.9)

The first inequality in (8.9) is direct from the definition of d2, and the second inequality
follows from the identity

∫ b
0 (f(x)− g(x)) =

∫ b
a (f(x)− g(x)) +

∫ a
0 (f(x)− g(x)).

The following proposition states that t-convergence implies convergence with respect to
d2, and thus, together with Lemma 8.3.2, establishes that both notions of convergence are
equivalent.

Proposition 8.3.6. If (fn)n→∞ is a sequence inW which is t-convergent, then it is a Cauchy
sequence with respect to d2. Moreover, if fn t→ f for some f ∈ W, then fn 2→ f.

Proof. Given ε > 0, let r = d(20/ε)4e. For δ = ε/23r+2, let n0 be sufficiently large so that for
all n,m > n0 we have∣∣∣t(u, fn)− t(u, fm)

∣∣∣ 6 δ for all u ∈
⋃
s∈[r]
{0, 1}s. (8.10)

Recall from the proof of Lemma 8.3.1, that for each k ∈ N we have∫ 1

0
f(x)xk dx = 1

k + 1
∑

u∈{0,1}k
t(u1 . . . uk1, f).

Thus, for k 6 r and h = fn − fm, we have∣∣∣∣ ∫ 1

0
h(x)xk dx

∣∣∣∣ = 1
k+1

∣∣∣∣ ∑
u∈{0,1}k

(t(u1 . . . uk1, fn)− t(u1, . . . , uk1, fm))
∣∣∣∣ 6 2kδ

k+1 .

For a ∈ [0, 1], let Ja = 1[0,a] and ja be the largest index such that ja
r
6 a. Then,

∣∣∣∣∫ 1

0
h(x)Br,Ja(x) dx

∣∣∣∣ 6 ja∑
i=0

(
r
i

) ∣∣∣∣∫ 1

0
h(x)xi(1− x)r−i dx

∣∣∣∣ 6 23rδ.

Thus, since |h| 6 1 and |1[0,a](x)−Br,Ja | 6 2, by Lemma 8.3.5, we have

∣∣∣∣∫ 1

0
h(x)1[0,a](x) dx

∣∣∣∣ 6 ∣∣∣∣∫ 1

0
h(x)Br,Ja(x) dx

∣∣∣∣+ ∣∣∣∣∫ 1

0
h(x)(1[0,a](x)−Br,Ja(x)) dx

∣∣∣∣
6 23rδ + (4r−1/4 + r−1/2).

The desired conclusion follows from (8.9) and by our choice of t and δ observing that

d2(fn, fm) 6 2 sup
a∈[0,1]

∣∣∣∣∫ 1

0
h(x)1[0,a](x) dx

∣∣∣∣ 6 23r+1δ + 10r−1/4 6 ε.

The second part follows by replacing fm by f in (8.10), taking h = fn− f , and repeating the
above argument.
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The compactness of the metric space (W , d2) can be easily established via the Banach–
Alaoglu theorem in L∞([0, 1]). Instead, we follow a different strategy laid out in the following
section. This strategy has the advantage that it emphasizes the probabilistic point of view
of convergence. It is based on a new model of random words that naturally arises from the
theory and that may be of independent interest.

We note that one can also establish the compactness of (W , d2) by using the regularity
lemma for words [12]. This approach has the advantage of being more constructive and for
the sake of completeness we include it in the Section 8.6.

8.3.3 Random letters from limits and compactness of (W , d2)

Consider the standard metric on [0, 1] and the discrete metric on {0, 1}. Let Ω = [0, 1]×{0, 1}
be equipped with the L∞-distance, which thus assigns to a pair of points in Ω the standard
distance of their first coordinates if the second coordinates agree and one otherwise. Let B
denote the Borel σ-algebra of Ω, let f : [0, 1] → [0, 1] be a Borel measurable function and
recall that f 1 = f and f 0 = 1−f . Also, denote by U([0, 1]) and B(p) the uniform distribution
over [0, 1] and the Bernoulli distribution with expected value p ∈ [0, 1], respectively. We say
that

(X, Y ) ∈ Ω is an f -random letter if X ∼ U([0, 1]) and Y ∼ B(f(X)).

Observe that an f -random letter (X, Y ) is a pair of mixed3 random variables where Y is
distributed according to the conditional pmf

fY |X(ε|x) = P[Y = ε|X = x] = f ε(x) ε ∈ {0, 1} and x ∈ [0, 1].

Then, (X, Y ) has the mixed joint cumulative probability distribution

F (x, ε) = P[X 6 x, Y = ε] =
∫ x

0
f ε(t) dt, (8.11)

and thus the mixed joint pmf fX,Y (x, ε) = f ε(x). The marginal probability distribution of Y
is

P[Y = ε] = F (1, ε) =
∫ 1

0
f ε(t) dt, ε ∈ {0, 1},

hence Y ∼ B(p) with p =
∫ 1

0 f(t) dt. Furthermore, conditioned on Y the variable X is
distributed according to the conditional pmf fX|Y which satisfies

fX|Y (x|ε) · P[Y = ε] = fX,Y (x, ε) = f ε(x). (8.12)

One may therefore equivalently sample (X, Y ) by first choosing Y ∼ B(p) with p =
∫ 1

0 f(t) dt,
and then choose X (conditional on Y ) according to the conditional pmf fX|Y satisfying (8.12).
By means of this sampling procedure a sequence (fn)n→∞ gives rise to a sequence

(
(Xn, Yn)

)
n→∞

,
where each (Xn, Yn) is the fn-random letter, and the corresponding sequence of probability
distributions (Pn)n→∞ is as defined in (8.11). As usual for general metric spaces (see, e.g., [21,

3Mixed in the sense that X is continuous while Y is discrete.
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Chapter 5]), we say that
(
(Xn, Yn)

)
n→∞

converges to (X, Y ) in distribution if (Pn)n→∞ weakly
converges to P, i.e., if for all bounded continuous functions h : Ω→ R we have

lim
n→∞

∫
Ω
h dPn =

∫
Ω
h dP. (8.13)

From this definition we immediately have the following.

Fact 8.3.7. If
(
(Xn, Yn)

)
n→∞

converges to (X, Y ) in distribution, then (Xn)n→∞ (resp.
(Yn)n→∞) converges to X (resp. Y ) in distribution.

We now write

fn
d→ f if

(
(Xn, Yn)

)
n→∞

converges to (X, Y ) in distribution.

The next lemma shows the equivalences of convergence in d2 and convergence in distribution.

Lemma 8.3.8. Let f1, f2, . . . and f be functions in W. Then, fn 2→ f if and only if fn d→ f .

Proof. Let (Xn, Yn) be an fn-random letter (resp. (X, Y ) be an f -random letter) with the
associated probability measure Pn and cumulative distribution Fn (resp. P and F ). Let

‖Fn − F‖∞ = sup
(x,ε)∈Ω

|Fn(x, ε)− F (x, ε)|

and note that by definition we have

‖Fn − F‖∞ = sup
x∈Ω
|Fn(x, 0)− F (x, 0)| = sup

x∈Ω
|Fn(x, 1)− F (x, 1)|.

Now observe that
‖Fn − F‖∞ 6 d2(fn, f) 6 2‖Fn − F‖∞, (8.14)

where the first inequality is obvious and the second one follows because for all ε ∈ {0, 1} and
0 6 a < b 6 1 it holds that

∫
[a,b](fn−f)(t) dt = (Fn−F )(b, ε)− (Fn−F )(a, ε). Thus, fn 2→ f

if and only if limn→∞ ‖Fn − F‖∞ = 0 which we claim holds if and only if

lim
n→∞

Fn(x, ε) = F (x, ε) for all ε ∈ {0, 1} and x ∈ [0, 1]. (8.15)

Indeed, it is clear that limn→∞ ‖Fn−F‖∞ = 0 implies (8.15). For the converse note that for
each ε ∈ {0, 1} we have |f ε| 6 1, thus for every x, y ∈ [0, 1]

|F (x, ε)− F (y, ε)| =
∣∣∣∣∫ x

0
f ε(t) dt−

∫ y

0
f ε(t) dt

∣∣∣∣ 6 |x− y|. (8.16)

Given an integer k > 0, by (8.15), there is an nk such that maxi∈[k]

∣∣∣Fn ( ik , ε)− F ( ik , ε)∣∣∣ < 1
k

for each n > nk. For an x ∈ [0, 1] let ix ∈ [k] be such that |x − ix
k
| 6 1

k
. Then, by triangle

inequality and (8.16), for any x ∈ [0, 1]

|Fn (x, ε)− F (x, ε)| 6
∣∣∣Fn ( ixk , ε)− F ( ixk , ε)∣∣∣+ 2|x− ix

k
| 6 3

k

which thus establishes that (8.15) implies limn→∞ ‖Fn − F‖∞ = 0.
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To prove the lemma we now show that (8.15) holds if and only if (X1, Y1), (X2, Y2), . . .
converges to (X, Y ) in distribution, i.e., P1,P2, . . . weakly converges to P as defined in (8.13).
For an h : Ω→ R and an ε ∈ {0, 1} define the projection hε : [0, 1]→ R via hε(x) = h(x, ε).
Thus, Fε(x) = F (x, ε), Fn,ε(x) = Fn(x, ε) and we also define Pε via Pε[A] = P[A × {ε}] for
any A ∈ B([0, 1]) and in the same manner define Pn,ε.

For a metric space (M,d), we denote by C(M) the set of continuous functions h : M → R.
As Ω is equipped with L∞-distance dΩ we have dΩ((x, α), (y, β)) = δ < 1 if an only if α = β
and |x − y| = δ. Hence, h ∈ C(Ω) if and only if h0, h1 ∈ C([0, 1]). Moreover, by verifying
the following for step functions h and then extending to all h ∈ C(Ω) by a standard limiting
argument we have∫

Ω
h dPn =

∑
ε

∫
[0,1]

hε dPn,ε and
∫

Ω
h dP =

∑
ε

∫
[0,1]

hε dPε.

In particular,
lim
n→∞

∫
Ω
h dPn =

∫
Ω
h dP for all h ∈ C(Ω)

holds if and only if

lim
n→∞

∫
Ω
h dPn,ε =

∫
Ω
h dPε for all ε ∈ {0, 1}, and all h ∈ C([0, 1]).

In other words, P1,P2, . . . converges weakly to P if and only if P1,ε,P2,ε, . . . converges weakly
to Pε for all ε ∈ {0, 1}. As the underlying space is [0, 1] it is well known that weak convergence
of P1,ε,P2,ε, . . . to Pε is equivalent to the fact that limn→∞ Fn,ε(x) = Fε(x) holds for all x
where Fε(x) is continuous. As seen from (8.16), Fε is continuous on the entirety of [0, 1]. This
thus shows that weak convergence of P1,P2, . . . to P is equivalent to (8.15) and the lemma
follows.

The compactness of (W , d2) now follows from Lemma 8.3.8 and classical results from
measure theory, namely Prokhorov’s theorem concerning the existence of weak convergent
subsequences for a given sequence of measures over compact measurable spaces and Radon–
Nikodym theorem concerning the existence of derivatives of measures which are absolutely
continuous with respect to the Lebesgue measure.

Theorem 8.3.9. The metric space (W , d2) is compact.

Proof. Given a sequence (fn)n→∞ of functions fn ∈ W . Consider the sequence of fn-random
letters

(
(Xn, Yn)

)
n→∞

with the corresponding sequence of probabilities (Pn)n→∞ on (Ω,B)
defined by (8.11). As Ω is compact we conclude from Prokhorov’s theorem (see Chapter 1,
Section 5 of [21]) that there is a pair of random variables (X, Y ) with joint probability
measure P such that (Pn)n→∞ contains a subsequence (Pni)i→∞ which weakly converges to P.
By Fact 8.3.7 we know that X ∼ U[0, 1] while Y is Bernoulli. Denoting by λ the Lebesgue
measure, the restriction of P to Y = 1 yields a measure µ which satisfies µ(A) = P[X ∈
A, Y = 1] 6 λ(A) for every measurable set A. In particular, µ is absolutely continuous with
respect to the Lebesgue measure λ (i.e., µ(A) = 0 whenever λ(A) = 0) and the Radon–
Nikodym theorem guarantees the existence of a function f such that

µ([0, x]) =
∫ x

0
f(t) dt = P[X 6 x, Y = 1]
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and thus
P[X 6 x, Y = 0] = x− µ([0, x]) =

∫ x

0
(1− f(t)) dt.

In other words, fX,Y (x, ε) = f ε(x) is the pmf of (X, Y ) and we thus have fni
d→ f . Lemma 8.3.8

guarantees that fni
2→ f as well. Lastly, it is easily seen that f(x) ∈ [0, 1] almost everywhere

and we may therefore assume that f ∈ W .

The last theorem thus establishes the existence of the limit object claimed in the first
part of Theorem 8.1.3.

8.3.4 Random words from limits

To establish the second part of Theorem 8.1.3 we consider, for any f ∈ W , a suitable sequence
of random words arising from f and show that it converges to f almost surely. For f ∈ W
and x = (x1, ..., x`) ∈ [0, 1]` such that x1 < x2 < ... < x` let w = sub(x, f) be the word
obtained by choosing wi = 1 with probability f(xi) and wi = 0 with probability 1 − f(xi)
(making independent decisions for different xi’s). Consider now n independent f -random
letters (X1, Y1), . . . , (Xn, Yn). After reordering the first coordinate, i.e., taking a permutation
σ : [n]→ [n] so that Xσ(1) < · · · < Xσ(n), the f -random word sub(n, f) is given by

sub(n, f) = (Yσ(1), . . . , Yσ(n)).

Lemma 8.3.10. Let f ∈ W and let fn be the function associated to the f -random word
sub(n, f). For all n ∈ N and a > 1

n
we have

P
[
d2(fn, f) > 10a

]
6 4ne−2an2

.

Proof. For x ∈ [0, 1] let

Wn(x) =
∫ x

0
fn(t) dt and W (x) =

∫ x

0
f(t) dt.

Recall that by (8.9) we have d2(fn, f) 6 2‖Wn −W‖∞. Therefore, we only need to bound
P[‖Wn −W‖∞ > 5a].

Given i ∈ [n] and x ∈ [ i−1
n
, i
n
), since |fn|, |f | 6 1, we have that |Wn(x) − W (x)| 6

|Wn( i
n
)−W ( i

n
)|+ 2

n
, and thus

‖Wn −W‖∞ 6
2
n

+ max
i∈[n]
|Wn( i

n
)−W ( i

n
)|.

For i ∈ [n], we next bound the probability that |Wn( i
n
)−W ( i

n
)| is at least 3a. Consider the

sequence (X1, Y1), . . . , (Xn, Yn) of f -random letters that define sub(n, f), and suppose that
Xσ(1) < · · · < Xσ(n) for some permutation σ : [n] → [n]. Since fn is the function associated
to sub(n, f) we have ∣∣∣∣Wn( i

n
)− 1

n

i∑
j=1

Yσ(j)

∣∣∣∣ 6 1
n
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and thus, letting Zi = 1
n

∑n
j=1 1{Xj 6 i

n
} and Si = 1

n

∑n
j=1 Yj1{Xj 6 i

n
}= 1

n

∑Zi
j=1 Yσ(j), we

get ∣∣∣∣Wn( i
n
)− Si

∣∣∣∣ 6 1
n

+
∣∣∣∣ in − Zi

∣∣∣∣. (8.17)

On the other hand, for every j ∈ [n] we have that

E[Yj1{Xj 6 i
n
}] =

∫ i
n

0
f(t) dt = W ( i

n
),

so E[Si] = W ( i
n
). Using Chernoff’s bound (see Theorem 2.8 and Remark 2.5 from [66]) we

get
P
[∣∣∣Zi − i

n

∣∣∣ > a
]
6 2e−2a2n and P

[∣∣∣Si −W ( i
n
)
∣∣∣ > a

]
6 2e−2a2n,

which together with (8.17) and the fact that a > 1
n
, implies that

P
[
|Wn( i

n
)−W ( i

n
)| > 3a

]
6 P

[
|Si −W ( i

n
))| > a

]
+ P

[∣∣∣Zi − i
n

∣∣∣ > a
]
6 4e−2a2n.

Putting everything together we conclude that

P[d2(fn, f) > 10a] 6 P[‖Wn −W‖∞ > 5a] 6
n∑
i=1

P
[
|Wn( i

n
)−W ( i

n
)| > 3a

]
6 4ne−2a2n.

As an immediate consequence we obtain the following.

Corollary 8.3.11. For all f ∈ W, the sequence of f -random words (sub(n, f))n→∞ converges
to f a.s.

Proof. For n ∈ N let fn = sub(n, f). Taking a = n−
1
4 in Lemma 8.3.10 and using the Borel–

Cantelli lemma, it follows that fn 2→ f almost surely. Then, by Lemma 8.3.2 we conclude
that fn t→ f almost surely, and therefore, by (8.7), (sub(n, f))n→∞ converges to f almost
surely.

Equipped with the results from above we now establish the second main result of this
section.

Proof (of Theorem 8.1.3). The uniqueness of the limit, if it exists, follows from Lemma 8.3.1.
The second part of the theorem concerning the existence of word sequences converging to
any given f ∈ W follows from Corollary 8.3.11.

It is thus left to establish the existence of a limit. Consider a convergent sequence
(wn)n→∞ of words and let (fn)n→∞ be the sequence of associated functions fn = fwn ∈ W .
Because of (8.7) the sequence (fn)n→∞ is t-convergent and thus, by Proposition 8.3.6, (fn)n→∞
is a Cauchy sequence with respect to d2. The compactness of (W , d2), as guaranteed by The-
orem 8.3.9, implies that there exists f ∈ W such that d2(fn, f) → 0. Finally, because of
Lemma 8.3.2 we have that fn t→ f and therefore (wn)n→∞ converges to f .
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Concluding this section and in preparation for the next one, we show that a tail bound
on d2(fu, fw) similar to the one of Lemma 8.3.10 holds if instead of sampling an fw-random
word for some word w, we sample a subsequence u = sub(`,w).

Lemma 8.3.12. Let w ∈ {0, 1}n, ` ∈ [n] and 1
8 > a > 1

`
. Then, for the random word

u = sub(`,w) we have that

P[d2(fu, fw) > 8a] 6 2`e− 1
3 `a

2
.

Proof. For x ∈ [0, 1] let Fu(x) =
∫ x

0 fu(t) dt and Fw(x) =
∫ x

0 fw(t) dt. By an argument similar
to the initial part of the proof of Lemma 8.3.10, we get that

P[d2(fu, fw) > 8a] 6 P
[

max
i∈[`]
|Fu( i

`
)− Fw( i

`
)| > 2a

]
6
∑
i∈[`]

P
[
|Fu( i

`
)− Fw( i

`
)| > 2a

]
. (8.18)

Now, let I1, ..., In be indicator random variables summing up to `, and observe that

Si = Fu( i
`
) = 1

`

∑
j∈[n]: j

n
6 i
`

w[j]Ij.

By linearity of expectation and given that E[Ij] = `
n
for every j ∈ [n] it follows that

E[Si] = 1
n

∑
j∈[n]: j

n
6 i
`

w[j] = Fw(b i
`
nc 1

n
) = Fw( i

`
)± 1

n
= Fw( i

`
)± 1

`
.

Using that a > 1
`
, by (8.18), we get that

P[d2(fu, fw) > 8a] 6
∑
i∈[`]

P[|Si − E(Si)| > a]. (8.19)

Let Xi = `Si. Note that Xi = ∑
j∈Ji(w) Ij where Ji(w) = {j ∈ [n] : j 6 i

`
n,w[j] = 1}.

We claim that Xi is a hypergeometric distribution with parameters n, ` and |Ji(w)| (the
distribution of the number of black balls obtained by sampling without replacement ` balls
from a set of n balls of which |Ji(w)| are black). It is well known that Chernoff type tail
bounds hold for these distributions (see for example [66, Theorem 2.10]). Specifically, by
(2.5) and (2.6) from [66], for λ = `|Ji(w)|/n, and since λ 6 `, we have that

P[Si 6 E[Si]− a] = P[Xi 6 E[Xi]− `a] 6 exp
(
− (`a)2

2λ

)
6 e−

1
2 `a

2
,

and, since a 6 1
8 6 3

2 ,

P[Si > E[Si]+a] = P[Xi > E[Xi]+`a] 6 exp
(
− (`a)2

2(λ+ `a/3)

)
6 exp

(
− `a2

2(1 + a/3)

)
6 e−

1
3 `a

2
.

The last two tail bounds together with (8.19) yield the desired conclusion.
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8.4 Testing hereditary word properties

We now turn our focus to algorithmic considerations. Specifically, to the study of testable
word properties and how it relates to word limits (recall that a word property P is simply
a collection of words). The presentation below is heavily influenced by the derivation of
analogous results for graphons by Lovász and Szegedy [85] (for related results concerning
testability of permutation properties and limit objects see [65, 69]). First, we define the
notion of closure of a word property and then give two alternative useful characterizations.
Next, we shall see that there is a close connection between testability of word properties and
attributes of their closures. Finally, we derive this section’s main result, that is Theorem 8.1.4.

First, we define the closure of a word property P , denoted P , as

P = {f ∈ W : wn ∈ P for all n ∈ N, and wn
t→ f}.

Recall that property P is hereditary if sub(I,w) ∈ P for every w ∈ P of length n and every
I ⊆ [n].

Proposition 8.4.1. If P is a hereditary word property, then

P = {f ∈ W : P[sub(`, f) 6∈ P ] = 0 for all ` > 1} = {f ∈ W : t(u, f) = 0 for all u 6∈ P}.

Moreover, if there is a word that does not belong to P, then every f ∈ P is 0-1 valued except
maybe on a set of null measure.

Proof. The second equality holds since for each integer ` > 1 we have

P[sub(`, f) 6∈ P ] =
∑

u∈{0,1}`\P
P[sub(`, f) = u] =

∑
u∈{0,1}`\P

t(u, f). (8.20)

To show the first equality recall from Corollary 8.3.11 that
(
sub(`, f)

)
`→∞

converges to
f a.s. Hence, if moreover P[sub(`, f) ∈ P ] = 1 holds for every `, then there is a sequence of
words from P which converges to f , showing that f ∈ P .

To show the converse, let (wn)n→∞ be a sequence of words in P that converges to f ∈ P ,
i.e., limn→∞ t(u,wn) = t(u, f) for every word u. In particular, if u 6∈ P then t(u,wn) = 0
by heredity of P and thus t(u, f) = 0. By (8.20) we then obtain P[sub(`, f) 6∈ P ] = 0.

Finally, suppose that f ∈ P and that there is a u ∈ {0, 1}` \ P for some `. Let X =
(X1, ..., X`) be uniformly chosen in [0, 1]`, then the characterization of P yields

0 = P[sub(`, f) 6∈ P ] > P[sub(X, f) = u]

>
∫
x1,...,x`∈f−1(]0,1[)

x1<...<x`

∏
i∈[`]

fui(xi) dx1... dx`

> 1
`!

∫
x1,...,x`∈f−1(]0,1[)

∏
i∈[`]

fui(xi) dx1... dx`.

Thus, f−1(]0, 1[) has null Lebesgue measure.
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Next, we establish two technical results that will allow us to relate testability of hereditary
word properties and characteristics of their closure. In what follows, for f, g ∈ W we write
d1(f, g) = ‖f − g‖1 for the usual distance in L1([0, 1]).

Proposition 8.4.2. If P is an hereditary word property and w is a word, then d1(w,P) 6
d1(fw,P).

Proof. We may assume that there is a word not contained in P , since the conclusion is
trivial otherwise. Let δ > 0, then by Proposition 8.4.1 there is a 0-1 valued g ∈ P such
that d1(fw, g) 6 d1(fw,P) + δ. By Proposition 8.4.1 we know that P[sub(n, g) ∈ P ] = 1,
hence, if w′ = sub(X, g) where X = (X1, ..., Xn) is such that Xi is uniformly chosen in the
interval [ i−1

n
, i
n
], then P[w′ ∈ P ] = 1 as well. Since the probability that index i contributes

to d1(w,w′) is g(Xi) if wi = 0 and 1− g(Xi) if wi = 1 we have

E[d1(w,w′)] = ‖fw − g‖1 = d1(fw, g) 6 d1(fw,P) + δ.

In particular, there exists w̃ ∈ P for which d1(fw,P)+δ > d1(w, w̃) > d1(w,P) holds. Since
δ is arbitrary, the desired conclusion follows.

Lemma 8.4.3. If P is an hereditary word property and (fn)n→∞ is a sequence of functions
in W such that d2(fn,P)→ 0, then d1(fn,P)→ 0.

Proof. If every word is in P , then P = W and the result is obvious. Assuming otherwise,
suppose that d1(fn, P ) 6→ 0. Then, there exist ε > 0, a sequence (εn)n→∞ that converges to
0, and a sequence (gn)n→∞ in P such that for all n ∈ N we have

d1(fn, gn) > ε and d2(fn, gn) 6 d2(fn,P) + εn.

Since W is compact (passing to a subsequence4) we may assume that gn 2→ f for some
f ∈ P , and deduce that fn 2→ f . Moreover, by Proposition 8.4.1 we get that f is 0–1 valued.
Consider the Lebesgue measurable sets Ωb = f−1(b) for b ∈ {0, 1}. Then

d1(fn, f) = ‖fn − f‖1 =
∫

Ω0
fn +

∫
Ω1

(1− fn).

In case Ω0,Ω1 are intervals we conclude from limn→∞ d2(fn, f) = 0 that

lim
n→∞

∫
Ω0
fn =

∫
Ω0
f = 0 and lim

n→∞

∫
Ω1

(1− fn) =
∫

Ω1
(1− f) = 0.

By standard limiting arguments this extends to finite unions of intervals and finally to all
Lebesgue measurable sets, and the lemma follows.

Finally, we are ready to derive the main result of this section.
4The term “passing to a subsequence” means considering a subsequence instead of the original sequence.

However, to avoid making the notation more cumbersome, the subsequence keeps the same name as the
original sequence.

118



Proof (of Theorem 8.1.4). Let P be a hereditary word property and let ε > 0. By Lemma 8.4.3
there is a δ = δ(ε) > 0 such that if d2(f,P) < δ, then d1(f,P) < ε. We first observe that, by
definition of P and Lemma 8.3.12, there is an n(ε) > 1 such that for every word w of length
n > n(ε) the following holds:

(i) If w belongs to P , then d2(fw,P) < δ
4 .

(ii) If u = sub(`,w) and n > ` > n(ε), then P[d2(fu, fw) < δ/4] > 2
3 .

Let P ′ be the collection of words v such that d2(fv,P) 6 δ
2 (this depends on ε, but this is

acceptable as discussed after introducing the notion of testability). We claim that P ′ is a
test property for P (for the given ε).

Let w be a word which we assume to be of length n > n(ε).5 Let u = sub(`,w) where
` ∈ [n]. In order to establish completeness, suppose that w ∈ P . By definition of P ′ and
triangle inequality

P[u ∈ P ′] = P[d2(fu,P) 6 δ
2 ] > P[d2(fu, fw) + d2(fw,P) < δ

2 ].

Hence, from (i) we get P[u ∈ P ′] > P[d2(fu, fw) < δ
4 ]. By (ii) it follows that u ∈ P ′ with

probability at least 2/3.

To prove soundness, assume ` > n(ε) and that u ∈ P ′ (i.e., d2(fu,P) 6 δ/2) with
probability strictly larger than 1

3 . Together with (ii), this implies that there is at least one
subsequence ũ of w such that d2(fũ, fw) < δ/4 and d2(fũ,P) 6 δ/2. By triangle inequality
d2(fw,P) < δ, so by our choice of δ, we have d1(fw,P) 6 ε. Thus, Proposition 8.4.2, implies
that d1(w,P) 6 d1(fw,P) < ε as desired.

8.5 Finite forcibility

In this section we investigate word limits that are prescribed by a finite number of subsequence
densities. In particular, we prove Theorem 8.1.5 showing that piecewise polynomial functions
are forcible.

The proof relies on the following lemma which shows, among other, that moments of
cumulative distributions can be characterized by a finite number of subsequence densities of
the distribution’s mass density function.

Lemma 8.5.1. If f : [0, 1]→ [0, 1] is a Lebesgue measurable function and F (x) =
∫ x

0 f(t) dt,
then for each i, j ∈ N we have∫

xiF (x)jdx = i!j!
(i+ j + 1)!

∑
u∈{0,1}i+j+1

u1+...+ui+j>j

t(u, f).

5Adding to P ′ every word of length smaller than n(ε) preserves its hereditary property and immediately
implies that both completeness and soundness are satisfied for w’s of length smaller than n(ε).
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Proof. Observe that∫
xiF (x)j dx =

∫ ( ∫ x

0
dy
)i( ∫ x

0
f(z)dz

)j
dx

=
∫ ( ∫

06y1,...,yi6x
dy1... dyi

)( ∫
06z1,...,zj6x

j∏
k=1

f(zk) dz1... dzj
)

dx

= i!j!
∫ ( ∫

06y1<...<yi6x
dy1... dyi

)( ∫
06z1<...<zj6x

j∏
k=1

f(zk) dz1... dzj
)

dx

= i!j!
∑

S⊆[i+j]:|S|=j

∫
06x1<...<xi+j6x

∏
s∈S

f(xs) dx1... dxi+j dx.

Since

1 =
∏

s∈[i+j]\S

(
f(xs) + (1− f(xs))

)
=

∑
U⊆[i+j]:S⊆U

( ∏
s∈U\S

f(xs)
)( ∏

s 6∈U
(1− f(xs))

)
,

we get∫
xiF (x)j dx = i!j!

∑
U⊆[i+j]:|U |>j

(
|U |
j

) ∫
06x1<...<xi+j6x

∏
s∈U

f(xs)
∏
s 6∈U

(1− f(xs)) dx1... dxi+j dx

= i!j!
(i+ j + 1)!

∑
u∈{0,1}i+j+1

u1+...+ui+j>j

(
‖u‖1
j

)
t(u, f).

We next prove this section’s main result concerning the finite forcibility of piecewise
polynomial functions.

Proof (of Theorem 8.1.5). Let P1(x), . . . , Pk(x) be polynomials where Pi is of degree di and
let {I1, ..., Ik} be an interval partition of [0, 1] such that f(x) = Pi(x) for all x ∈ Ii. Let

Qi(x) =
∫
Ii∩[0,x]

Pi(t) dt+
∑

j∈[k]:Ij⊆[0,x]

∫
Ij
Pj(t) dt.

Then, F (x) =
∫ x

0 f(t) dt is continuous and F (x) = Qi(x) for each i ∈ [k].

Next, let d = ∑
i∈[k] deg(Qi) = k +∑

i∈[k] di and define the polynomial

P (x, y) =
(
y −Q1(x)

)2(
y −Q2(x)

)2
. . .
(
y −Qk(x)

)2
=

∑
16i+j62d

cijx
jyi

for some coefficients cij. Note that
∫ 1

0 P
(
x, F (x)

)
dx = 0. Moreover, Lemma 8.5.1 guarantees

that there is a list of words of length at most 2d+1, say, u1, . . . ,um withm 6 22d+1, such that
the fact

∫ 1
0 P

(
x, F (x)

)
dx = 0 already follows from the prescription of the values t(ui, f), i ∈

[m]. Thus, if h ∈ W is such that t(ui, h) = t(ui, f) for all i ∈ [m], then H(x) =
∫ x

0 h(t) dt is
continuous and satisfies 0 =

∫ 1
0 P

(
x,H(x)

)
dx. This implies that P

(
x,H(x)

)
= 0 everywhere,
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and by the definition of P (x, y) we conclude that for each x ∈ [0, 1] there is an ` = `(x) ∈ [k]
such that H(x) = Q`(x). Suppose that `(x) = j for some x and `(x′) = j′ 6= j for some
x′ > x. As H is continuous this can only happen if Qj intersects Qj′ in the interval [x, x′]. On
the other hand, two polynomials Qi and Qj have at most max{deg(Qi), deg(Qj)} intersection
points, thus there are at most t =

(
k
2

)
(1 + maxi∈[k] di) intersection points of Q1, . . . , Qk in

total. Let these points be ordered by the first coordinate. Then, each H from above can be
associated to a subsequence of intersection points, thus there are at most 2t functions H such
that P

(
x,H(x)

)
= 0 everywhere, implying at most that many functions h : [0, 1] → [0, 1]

such that t(ui, h) = t(ui, f) for all i ∈ [m]. To finish the proof note that by uniqueness of
word limits, see Theorem 8.1.3, we can find for each h, which differs from f by a non-zero
measure set, a word uh such that t(uh, f) 6= t(uh, h). Thus, f is uniquely determined by the

densities of at most m+ 2t 6 21+2k+2
∑

i
di + 2

(
k
2

)
(1+maxi di) words.

Remark 8.5.2. The same proof for k = 1 and P1(x) = a being constant yields an alternative
proof of the second part of Theorem 8.1.1. In this case

P
(
x, F (x)

)
=
(
F (x)− ax

)2
= F (x)2 − 2axF (x) + a2x2

and by Lemma 8.5.1, the fact
∫ 1

0 P
(
x, F (x)

)
dx = 0 is determined by densities of words of

length three.

8.6 Regularity lemma for words

In this section we give an alternative proof of Theorem 8.3.9 based on the regularity lemma
for words introduced by Axenovich, Puzynina and Person in [12] to study the twins problem.
For completeness, we give an (analytic) proof of the regularity lemma.

A measurable partition P of [0, 1] is a partition in which each atom is a measurable set
of positive measure. Moreover, we say that P is an interval partition if every atom in P is
a non-degenerate interval. In what follows, we will only consider measurable partitions with
a finite number of atoms, and given a partition P we denote by |P| its number of atoms.
Given two partitions P and Q we say that Q refines P , which we denote by Q � P , if for
every P ∈ P there are atoms Q1, . . . , Qk ∈ Q such that P = Q1 ∪ · · · ∪ Qk. The common
refinement of P and Q is the partition

P ∧Q = {A ∩B : A ∈ P , B ∈ Q such that A ∩B 6= ∅}.

Moreover, given a measurable set A we define the refinement of P by A as the common
refinement of P and the partition {A,Ac}.

Let f : [0, 1] → R be a measurable function and let P be a partition. The conditional
expectation of f with respect to P is the function E[f |P ] defined as

E[f |P ](x) =
∑
P∈P

1P (x)

λ(P )

∫
P
f(t) dt,
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for all x ∈ [0, 1]. The energy of P with respect to f is defined by

Ef (P) =
∫ 1

0

(
E[f |P ](x)

)2
dx.

Note that Ef (P) 6 ‖f‖2
∞. The following is a well known (easily derived) result about

conditional expectations.

Lemma 8.6.1. Let P and Q be two partitions such that Q � P. Given any measurable
function f : [0, 1]→ R, we have

∫ 1

0
E[f |P ](t)E[f |Q](t) dt =

∫ 1

0

(
E[f |P ](t)

)2
dt.

Our next result shows that every [0, 1]-valued measurable function over the interval [0, 1]
can be approximated by a step function, which is supported on a partition of “bounded
complexity” (a somewhat related result by Feige et al., the so called Local Repetition Lemma,
was obtained in [47, Lemma 2.4]).

Theorem 8.6.2. (Weak regularity lemma) Let ε > 0 and let P be an interval partition of
[0, 1]. For every measurable function f : [0, 1] → [0, 1] there exists an interval partition
Pε � P such that ‖f − E[f |Pε]‖2 6 ε and |Pε| 6 |P|+ 2ε−2.

Proof. Set P1 = P and suppose that ‖f − E[f |P1]‖2 > ε, as otherwise the result is trivial.
For k > 1, assume we have defined a sequence of interval partitions Pk � · · · � P1 such that
‖f − E[f |Pk]‖2 > ε. This implies that there is an interval Ik+1 6∈ Pk such that∣∣∣∣ ∫

Ik+1
(f − E[f |Pk])(t) dt

∣∣∣∣ > ε. (8.21)

Define Pk+1 as the smallest interval partition that contains the refinement of Pk by Ik+1.
Since either Ik+1 can split two distinct intervals of Pk into two subintervals each, or split a
single interval of Pk into three subintervals, we have that |Pk+1| 6 |Pk|+ 2. From (8.21) and
by the Cauchy-Schwartz inequality, we deduce that

ε2 <
( ∫

Ik+1

(
E[f |Pk+1](t)− E[f |Pk](t)

)
dt
)2

6
∫ 1

0
(E[f |Pk+1](t)− E[f |Pk](t))2 dt

=
∫ 1

0

(
E[f |Pk+1](t)

)2
dt−

∫ 1

0

(
E[f |Pk](t)

)2
dt,

where the last equality follows from Lemma 8.6.1. Thus we have

1 > ‖f‖2
∞ > Ef (Pk+1) > Ef (Pk) + ε2,

and so, after at most ε−2 iterations, one finds some ` 6 ε−2+1 which satisfies ‖f−E[f |P`]‖2 6
ε. Since |Pk| 6 |Pk+1|+ 2 for every k ∈ [`], we get the claimed upper bound for |P`|.
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Lemma 8.6.3 (Theorem 35.5 from [21]). Let f : [0, 1] → R be an integrable function, and
let (Pi)i∈N be a sequence of partitions such that Pi+1 � Pi for all i ∈ N. Then the sequence
(E[f |Pi])i∈N converges a.e. to E[f |P∞], where P∞ is the smallest σ-algebra containing each
atom in (Pi)i∈N.

Now we are ready to provide an alternative proof of Theorem 8.3.9.

Proof (of Theorem 8.3.9). Let (fn)n∈N be any sequence in W . By the Banach–Alaoglu theo-
rem we may assume that (fn)n∈N converges weakly to some f ∈ W . We claim that there are
a collection of subsequences (fn,k)n∈N, for k ∈ N, satisfying the following properties.

(i) (fn,k)n∈N is a subsequence of (fn,k−1)n∈N, with fn,0 = fn for all n ∈ N.

(ii) For k > 2, there is an interval partition Pk � Pk−1 such that |Pk| 6 mk and ‖fn,k −
E[fn,k|Pk]‖2 6 1

k
for every n ∈ N.

(iii) For all k ∈ N, the sequence (E[fn,k|Pk])n∈N converges a.e. to f ∗k = E[f |Pk].

Assume we have constructed the sequence up to step k. We apply Theorem 8.6.2, with
εk = 1

k+1 and initial partition Pk, to the sequence (fn,k)n∈N so that for every n ∈ N we get an
interval partition Pn,k � Pk, with |Pn,k| 6 mk+1 for some positive integer mk+1 independent
of n, and such that ‖fn,k − E[fn,k|Pn,k]‖2 6 1

k+1 . For n ∈ N, let Jn,k = {an,1 = 0 < · · · <
an,`n = 1} be the set of points that define the intervals of Pn,k. Note that `n 6 mk+1. By the
pigeonhole principle there is an integer ` 6 mk+1 and a subsequence (fn,k+1)n∈N such that
`n = ` for all n ∈ N. Moreover, since [0, 1] is compact we may even assume that an,i → ai
for each i ∈ [`], where a1 = 0 6 . . . 6 a` = 1. Let Pk+1 � Pk be the partition defined by
Jk = {a1 < · · · < a`}. Note that (i) and (ii) hold because of the definition of (fn,k+1)n∈N.
Furthermore, because Pk+1 is finite and since (fn,k+1)n∈N converges weakly to f we conclude
that (iii) also holds. On the other hand, by Lemma 8.6.3 we deduce that the sequence
(f ∗k )k∈N converges a.e. to f∞ = E[f |P∞]. We claim that limk→∞ d2(fk,k, f∞) → 0. Indeed,
Given ε > 0 by (ii), (iii) and the dominated convergence theorem, for large k we have

d2(f∞, fk,k) 6 d2(f∞, f ∗k ) + d2(fk,k,E[fk,k|Pk]) + d2(E[fk,k|Pk], f ∗k ) 6 ε

3 + 1
k

+ ε

3 6 ε.

8.7 Permutons from words limits

In this section we re-derive two key results proven by Hoppen et al. [64] concerning permu-
tation sequences and show they can be obtained as consequences of our results concerning
convergent word sequences. This leads to an alternative proof of the existence of permutons.
Overall, our approach gives a simpler proof for the existence of permutons due mostly to
the simpler objects (words and measurable transformations of the unit interval) on which
our analysis is carried out, and the rather direct implication concerning permutons presented
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below. Moreover, we give a direct proof (avoiding compactness arguments) of the equivalence
between t-convergence and convergence in the respective cut-distance, which we believe is
both technically original and of independent interest.

First, recall that for n ∈ N, we write Sn for the set of permutations of order n and S
for the set of all finite permutations. Also, for σ ∈ Sn and τ ∈ Sk we write Λ(τ, σ) for the
number of copies of τ in σ, that is, the number of k-tuples 1 6 x1 < · · · < xk 6 n such that
for every i, j ∈ [k]

σ(xi) 6 σ(xj) iff τ(i) 6 τ(j).
The density of copies of τ in σ, denoted by t(τ, σ), was defined as the probability that σ
restricted to a randomly chosen k-tuple of [n] yields a copy of τ , that is

t(τ, σ) =

(
n
k

)−1
Λ(τ, σ) if n > k,

0 otherwise.

Following [64, Definition 1.2], a sequence (σn)n→∞ of permutations, with σn ∈ Sn for each
n ∈ N, is said to be convergent if limn→∞ t(τ, σn) exists for every permutation τ ∈ S. A
permuton is a probability measure µ on the Borel σ-algebra on [0, 1]× [0, 1] that has uniform
marginals, that is, for every measurable set A ⊆ [0, 1] one has

µ(A× [0, 1]) = µ([0, 1]× A) = λ(A).

The collection of permutons is denoted by Z. It turns out that every permutation may be
identified with a permuton which preserves the sub-permutation densities. Indeed, given a
permutation σ ∈ Sn we define the permuton µσ associated to σ in the following way. First,
for i, j ∈ [n] define

Bi,j = Bi ×Bj where Bi =

[
i−1
n
, i
n

)
if i 6= n,[

n−1
n
, 1
]

otherwise.

and note that Bi,j has Lebesgue measure λ(2)(Bi,j) = 1
n2 for every i, j ∈ [n]. For every

measurable set E ⊆ [0, 1]2 we let

µσ(E) =
n∑
i=1

nλ(2)(Bi,σ(i) ∩ E) =
∫
E
n1{σ(dnxe) = dnye} dx dy.

It is easy to see that µσ ∈ Z.

We next argue that the densities of sub-permutations is preserved by µσ. First, let us
explain what we mean by sub-permutation densities for a permuton. Given µ ∈ Z and k ∈
N, we sample k points (X1, Y1), . . . , (Xk, Yk), where each (Xi, Yi) is sampled independently
accordingly to µ. Then, if σ, π ∈ Sk are two permutations such that

Xπ(1) 6 . . . 6 Xπ(k) and Yσ(1) 6 . . . 6 Yσ(k),

we define the random sub-permutation sub(k, µ) ∈ Sk by sub(k, µ) = σπ−1.

Henceforth, let µ(k) = µ⊗· · ·⊗µ be the k-fold product measure on ([0, 1]× [0, 1])k. Given
a permutation τ ∈ Sk, the density of τ in µ, denoted by t(τ, µ), is defined as the probability
that sub(k, µ) is isomorphic to τ , that is

t(τ, µ) = k!
∫

1{x1 < · · · < xk, yτ−1(1) < · · · < yτ−1(k)} dµ(k).
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It is easily shown (see [64, Lemma 3.5] for a proof) that given any permutations σ ∈ Sn and
τ ∈ Sk we have

|t(τ, σ)− t(τ, µσ)| 6
(
k

2

)
1
n
. (8.22)

In particular, (8.22) implies that a sequence of permutations (σn)n→∞ converges if and only
if (t(τ, µσn))n→∞ is convergent for every permutation τ ∈ S, and thus we may talk about
permutations and permutons as the “same” object. We say that a sequence of permutons
(µn)n→∞ is t-convergent if (t(τ, µn))n→∞) converges for every τ ∈ S.

As in the case of words one can define a metric d2 on Z so that for all τ ∈ S the maps
t(τ, ·) are Lipschitz continuous with respect to d2. Indeed, given two permutons µ, ν ∈ Z
define

d2(µ, ν) = sup
I,J⊆[0,1]

|µ(I × J)− ν(I × J)|,

where the supremum is taken over all intervals in [0, 1]. In order to prove that t(τ, ·) is
Lipschitz continuous with respect to d2 we need the following result which is the permuton
analogue of Lemma 8.3.2.

Lemma 8.7.1. Given a permutation τ ∈ Sk, for all permutons µ, ν ∈ Z we have

|t(τ, µ)− t(τ, ν)| 6 k2d2(µ, ν).

Proof. Define

Eτ = {(~x, ~y) ∈ [0, 1]k × [0, 1]k : x1 < · · · < xk, yτ−1(1) < · · · < yτ−1(k)}. (8.23)

Then, we have t(τ, µ) = k!µ(k)(Eτ ) and t(τ, ν) = k!ν(k)(Eτ ). For j ∈ [k], let

Qj = µ(j) ⊗ ν(k−j) − µ(j−1) ⊗ ν(k−j+1)

and note that

1
k! |t(τ, µ)− t(τ, ν)| = |µ(k)(Eτ )− ν(k)(Eτ )| =

∣∣∣∣ k∑
j=1

Qj(Eτ )
∣∣∣∣ 6 k∑

j=1
|Qj(Eτ )|.

Let j ∈ [k] be fixed. Given (~x, ~y), let Eτ
j (~x, ~y) = [xj−1, xj+1] × [yτ−1(j−1), yτ−1(j+1)] if x1 <

· · · < xj−1 < xj+1 < · · · < xk and yτ−1(1) < · · · < yτ−1(j−1) < yτ−1(j+1) < · · · < yτ−1(k), and
Eτ
j (~x, ~y) = ∅ otherwise. Thus

∣∣∣µ(Eτ
j (~x, ~y))− ν(Eτ

j (~x, ~y))
∣∣∣ 6 d2(µ, ν) for all (~x, ~y) and then,

we have that

|Qj(Eτ )| =
∣∣∣∣ ∫ (

µ(Eτ
j (~x, ~y))− ν(Eτ

j (~x, ~y))
)

dµ(j−1) ⊗ ν(k−j)
∣∣∣∣

6
∫ ∣∣∣∣µ(Eτ

j (~x, ~y))− ν(Eτ
j (~x, ~y))

∣∣∣∣ dµ(j−1) ⊗ ν(k−j)

6
∫
x1<···<xj−1<xj+1<···<xk

∣∣∣∣µ(Eτ
j (~x, ~y))− ν(Eτ

j (~x, ~y))
∣∣∣∣ dµ(j−1) ⊗ ν(k−j)

6
1

(k − 1)!d2(µ, ν).

Finally, summing for each j ∈ [k] we obtain the bound.
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In Hoppen et al. [64], the compactness of (Z, d2) is established and, as a consequence,
also the equivalence between t-convergence and convergence in d2. In particular, they prove
that for every convergent sequence of permutations (σn)n→∞ there is a permuton µ ∈ Z
such that t(τ, σn) → t(τ, µ) for all τ ∈ S. The goal of this section is to give a new proof of
these two results by using a more direct approach based on Theorem 8.1.3 and the permuton
analogue of Proposition 8.3.6 based on Bernstein polynomials.

We start with a permuton analogue of Lemma 8.3.1. A similar result was proved by
Glebov, Grzesik, Klimošová and Král’ [53, Theorem 3] by using a probabilistic interpretation.

Lemma 8.7.2. Let µ ∈ Z be a permuton and let i, j ∈ N. There exist a set Si,j of permuta-
tions of order i+ j + 1 and positive numbers (Cτ )τ∈Si,j such that∫

[0,1]2
xiyj dµ(x, y) =

∑
τ∈Si,j

Cτ t(τ, µ).

Proof. We proceed as in the proof of Lemma 8.3.1. First, since µ has uniform marginals we
have that

xi =
( ∫

[0,x]×[0,1]
dµ(x′, y′)

)i
=
∫

[0,1]2i
1{x1, . . . , xi 6 x} dµ(x1, y1) . . . dµ(xi, yi)

and similarly

yj =
∫

[0,1]2j
1{yi+1, . . . , yi+j 6 y} dµ(xi+1, yi+1) . . . dµ(xi+j, yi+j).

Whence, setting

GU(~x, x) = 1{x1, . . . , xi 6 x}
∏
u∈U

1{xi+u 6 x}
∏
u6∈U

1{x 6 xi+u}

and
HS(~y, y) = 1{yi+1, . . . , yi+j 6 y}

∏
s∈S

1{ys 6 y}
∏
s 6∈S

1{y 6 ys},

by the Fubini–Tonelli theorem, we have

xiyj =
∫

[0,1]2(i+j)
1{x1, . . . , xi 6 x}1{yi+1, . . . , yi+j 6 y} dµ(i+j)(~x, ~y)

=
∑
U⊆[j]

∑
S⊆[i]

∫
[0,1]2(i+j)

GU(~x, x)HS(~y, y) dµ(i+j)(~x, ~y).

Finally, by reordering the position of the coordinates below and above x, respectively, we
have ∫

[0,1]2
xiyj dµ(x, y) =

∑
k∈[j]

∑
`∈[i]

(
j

k

)(
i

`

)
(i+ k)!(j − k)!

(i+ j + 1)!
∑

σ∈Si+j+1:σ(i+k+1)>j+1
t(σ, µ).
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As pointed out in [75], the previous result can be used to prove the uniqueness of the
limit of a sequence of permutations as we did for limits of words by using Lemma 8.3.1.
Indeed, suppose that µ, ν ∈ Z are two permutons such that t(σ, µ) = t(σ, ν) for every
finite permutation σ ∈ S. By Lemma 8.7.2 we deduce that for every continuous function
h : [0, 1]2 → R we have ∫

[0,1]2
h(x, y) dµ(x, y) =

∫
[0,1]2

h(x, y) dν(x, y),

which implies that µ = ν. On the other hand, Lemma 8.7.2 can also be used to establish
the permuton analogue of Proposition 8.3.6, that t-convergence implies the convergence with
respect to d2.

Proposition 8.7.3. If (µn)n→∞ is a sequence in Z which is t-convergent, then it is a Cauchy
sequence with respect to d2. Moreover, if µn t→ µ for some µ ∈ Z, then µn 2→ µ.

Proof. Let ε > 0 be fixed and let r = d(80/ε)4e. Let Si,j ⊆ Si+j+1 and Cτ be as in the
statement of Lemma 8.7.2, define C = max{Cτ : τ ∈ Si,j, i, j 6 r}, and let

δ = ε

C(2r + 1)!24r+3 .

Let n0 be sufficiently large so that for all n,m > n0 we have

|t(τ, µn)− t(τ, µm)| 6 δ for all τ ∈
⋃
i∈[r]

Si. (8.24)

Hence, for i, j 6 r and ν = µn−µm, by Lemma 8.7.2 and since |Si+j+1| 6 (2r+ 1)!, we have∣∣∣∣ ∫
[0,1]2

xiyj dν(x, y)
∣∣∣∣ =

∣∣∣∣ ∑
τ∈Si,j

Cτ (t(τ, µn)− t(τ, µm))
∣∣∣∣ 6 C(2r + 1)!δ.

For a, b ∈ [0, 1], let Ja,b = 1[0,a]×[0,b] and let ja, jb be the largest indices such that ja
r
6 a and

jb
r
6 b. Recall that the Bernstein polynomial of Ja,b is denoted by Br,Ja,b and observe that

∣∣∣∣ ∫ Br,Ja,b(x, y) dν(x, y)
∣∣∣∣ 6 ia∑

i=0

jb∑
j=0

(
r
i

)(
r
j

)∣∣∣∣ ∫ xi(1− x)r−iyj(1− y)r−j dν(x, y)
∣∣∣∣

6
∑

06i,j6r

r−i∑
k=0

r−j∑
`=0

(
r
i

)(
r
j

)(
r−i
k

)(
r−j
`

)∣∣∣∣ ∫ xi+kyj+` dν(x, y)
∣∣∣∣

6 C24r(2r + 1)!δ.

Now, by Lemma 8.3.5 we have

|ν([0, a]× [0, b])| =
∣∣∣∣∫ 1[0,a]×[0,b](x, y) dν(x, y)

∣∣∣∣
6
∣∣∣∣∫ Br,Ja,b(x, y) dν(x, y)

∣∣∣∣+ ∣∣∣∣∫ (1[0,a]×[0,b](x, y)−Br,Ja,b(x, y)) dν(x, y)
∣∣∣∣

6 C24r(2r + 1)!δ + (8r−1/4 + 2r−1/2),
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where the last inequality follows since µn and µm have uniform marginals. Putting everything
together, by our choice of r, δ and ν, we have

d2(µn, µm) 6 4 sup
a,b∈[0,1]

|ν([0, a]× [0, b])| 6 C24r+2(2r + 1)!δ + 40r−1/4 6 ε.

For the second part just replace µm by µ in (8.24) and choose ν = µn − µ. Then, repeat the
above argument.

We can now give the alternative proof of the result of Hoppen et al. [64] concerning the
existence of a limit (permuton) for a convergent permutation sequence. Note that this limit
is unique as discussed right after the proof of Lemma 8.7.2.

Theorem 8.7.4 (Hoppen et al. [64, Theorem 1.6]). For every convergent sequence of per-
mutations (σn)n→∞ there exists a permuton µ ∈ Z such that σn t→ µ.

Proof. Let (σn)n→∞ be given and let (µn)n→∞ be the sequence of corresponding permutons.
Given x ∈ [0, 1] and n ∈ N, we define

fn,x(y) =
∫ x

0
n1{σn(dnte) = dnye} dt for all y ∈ [0, 1].

It is easy to see that

(i) fn,x(·) 6 fn,x′(·) for all x 6 x′,

(ii) fn,0(·) = 0 for all n ∈ N, and

(iii) fn,1(·) = 1 for all n ∈ N.

We claim that (fn,x)n→∞ converges for all x ∈ [0, 1]. Indeed, by Proposition 8.7.3, (µn)n→∞
is a Cauchy sequence with respect to d2, and for every interval I ⊆ [0, 1]∣∣∣∣ ∫

I
(fn,x(t)− fm,x(t)) dt

∣∣∣∣ =
∣∣∣µn([0, x]× I)− µm([0, x]× I)

∣∣∣ 6 d2(µn, µm).

Thus (fn,x)n→∞ is a Cauchy sequence in (W , d2) and therefore, by Theorem 8.3.9, it has a
limit fx ∈ W . Furthermore, note that for all x ∈ [0, 1] we have∫ 1

0
fx(t) dt = lim

n→∞

∫ 1

0
fn,x(t) dt = lim

n→∞

dnxe
n

= x (8.25)

and, because of (i), for all a, x, x′ ∈ [0, 1],∣∣∣∣ ∫ a

0
fx(t) dt−

∫ a

0
fx′(t) dt

∣∣∣∣ 6 |x− x′|. (8.26)

Given s ∈ [0, 1] and given an interval I ⊆ [0, 1], we set

µ̃([0, s]× I) =
∫
I
fs(t) dt.
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Because of (i), (ii) and (iii), µ̃ is well defined and so by standard limiting arguments we can
extend µ̃ to a unique probability measure µ on [0, 1]× [0, 1]. Observe that because of (iii) we
have that f1(·) = 1 almost everywhere. This together with (8.25) imply that µ has uniform
marginals and therefore µ ∈ Z. To conclude that σn t→ µ, by Lemma 8.7.1, it is enough to
show that d2(σn, µ) → 0. If not, then there are ε > 0 and sequences (xn)n→∞ and (an)n→∞
such that, without loss of generality, for all n sufficiently large we have∫ an

0
fn,xn(t) dt > µ([0, xn]× [0, an]) + ε =

∫ an

0
fxn(t) dt+ ε.

Moreover, because of (8.26) and by compactness of [0, 1] we can find a, x ∈ [0, 1] such that
(passing to a subsequence) for all n sufficiently large we have∫ a

0
fn,x(t) dt >

∫ a

0
fx(t) dt+ ε

2 ,

contradicting the fact that (fn,x)n→∞ converges to fx.

8.8 Non-binary words.

Let Σ be a finite alphabet. For a word w ∈ Σn and an interval I ⊆ [n] let Na(w, I) denote
the number of occurrences of a ∈ Σ in sub(I,w) and let Na(w) = Na(w, [n]). Moreover, as
for the binary alphabet case, denote by

(
w
u

)
the number of subsequences of w which coincide

with u. A sequence (wn)n→∞ of words wn ∈ Σn is called o(1)-uniform if for each a ∈ Σ
there is a density da such that Na(wn, I) = da|I|+ o(1)n holds for each interval I ⊆ [n]. We
obtain the following analogue (generalization) of Theorem 8.1.3 for finite size alphabets.

Theorem 8.8.1. Given a sequence (wn)n→∞ of words wn ∈ Σn over the finite size alpha-
bet Σ. If (wn)n→∞ is o(1)-uniform, then for each a ∈ Σ there is a density da ∈ [0, 1] such that
for every ` ∈ N and every word u ∈ Σ` we have

(
wn

u

)
= ∏

a∈Σ d
Na(u)
a

(
n
`

)
+ o(n`). Conversely,

if for some collection of densities {da ∈ [0, 1] : a ∈ Σ} we have
(

wn

u

)
= ∏

a∈Σ d
Na(u)
a

(
n
3

)
+o(n3)

for all words u ∈ Σ3, then (wn)n→∞ is o(1)-uniform.

Proof. The first part of the theorem follows from Remark 8.3.3 by an argument similar to the
one used in the proof of the first part of Lemma 8.3.2. For the second part, let us consider a
letter a ∈ Σ and a word w over Σ. We define the binary word wa as the word obtained by
replacing each letter a in w by 1 and the remaining letters by 0. Moreover, for u ∈ {0, 1}`
we let Σa(u) be the set of words v ∈ Σ` such that va = u. Then, it is easy to see that

t(u,wa) =
∑

v∈Σa(u)
t(v,w). (8.27)

For each a ∈ Σ we can thus define the sequence (wa
n)n→∞ of words over the alphabet {0, 1}

which, because of (8.27), satisfies the counting property for subsequences of length 3. From
Theorem 8.1.1 and our working hypothesis we conclude that (wa

n)n→∞ is o(1)-uniform over
the alphabet {0, 1} and thus we deduce that Na(wn, I) = N1(wa

n, I) = da|I| + o(1)n for all
intervals I ⊆ [n]. By repeating the above argument for each letter in Σ we conclude that
(wn)n→∞ is o(1)-uniform.
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Similarly, one can obtain an analogue of Theorem 8.1.3 concerning limits of convergent
word sequences for larger alphabets. A sequence (wn)n→∞ of words over the alphabet Σ =
{a1, . . . , ak} is convergent if for all ` ∈ N and u ∈ Σ` the subsequence density

((
wn

u

)
/
(
n
`

))
n→∞

converges. Moreover, given a k-tuple of functions f = (fa1 , . . . , fak) ∈ Wk such that fa1(x)+
· · ·+fak(x) = 1 for almost all x ∈ [0, 1], we say that (wn)n→∞ converges to f = (fa1 , . . . , fak)
if for all ` ∈ N and u ∈ Σ` the subsequence density

((
wn

u

)
/
(
n
`

))
n→∞

converges to

t(u,f) = `!
∫

06x1<···<x`61

∏
i∈[`]

fui(xi) dx1 . . . dx`.

For the case of non-binary alphabets, we obtain the following limit theorem.

Theorem 8.8.2 (Limits of convergent k-letter word sequences). Let Σ = {a1, . . . , ak}.

• Each convergent sequence (wn)n→∞ of words, wn ∈ Σn, converges to some vector f =
(fa1 , . . . , fak) ∈ Wk and fa1(x) + · · · + fak(x) = 1 for almost all x ∈ [0, 1]. Moreover,
if (wn)n→∞ converges to g = (ga1 , . . . , gak), then fai = gai almost everywhere, for all
i ∈ [k].

• Conversely, for every vector f = (fa1 , . . . , fak) ∈ Wk which satisfies fa1(x) + · · · +
fak(x) = 1 for almost all x ∈ [0, 1] there is a sequence (wn)n→∞ of words wn ∈ Σn

which converges to f .

Proof. The first part follows by reducing to the size two alphabet case. Indeed, fix ai ∈ Σ.
For each n ∈ N we define the word wai

n as before and thus we obtain a sequence (wai
n )n→∞

of words over the binary alphabet, which we claim is convergent. Indeed, since (wn)n→∞
is convergent then each term in the RHS in (8.27) is convergent and thus (t(u,wai

n ))n→∞
is convergent. Therefore, Theorem 8.1.3 implies that (wai

n )n→∞ converges to a (unique)
fai ∈ W . In particular, the sequence (fain )n→∞ of functions associated to (wai

n )n→∞ satisfies
fain

t→ fai and Proposition 8.3.6 implies that fain
2→ fai as well. The argument shown in

Lemma 8.3.2 (see Remark 8.3.3) then yields that (wn)n→∞ converges to f = (fa1 , . . . , fak)
and it is not hard to see that fa1(x) + · · ·+ fak(x) = 1 for almost all x ∈ [0, 1].

To prove the second part, we exhibit a sequence of words which converges to a given
f = (fa1 , . . . , fak). Consider the f -random letter (X, Y ) ∈ [0, 1] × Σ obtained by choosing
X uniformly in [0, 1] and, conditioned on X = x, choosing Y to be ai ∈ Σ with probability
fai(x). Next, for each positive integer n choose f -random letters (X1, Y1), . . . (Xn, Yn) and a
permutation σ : [n] → [n] such that Xσ(1) 6 . . . 6 Xσ(n). Then, define the f -random word
wn = Yσ(1) . . . Yσ(n). By fixing a letter ai ∈ Σ and replacing the wn’s by wai

n ’s as above we
obtain a sequence of fai-random words over size two alphabets whose associated functions
converge in the interval-norm to fai a.s. due to Corollary 8.3.11. Then, Lemma 8.3.2 and
Remark 8.3.3 imply that the f -random word sequence converges to f .
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Chapter 9

Future perspectives

To conclude this part of the thesis, we discuss some potential future research directions.

9.1 Longest common subsequence for generalised ran-
dom words

As mentioned in Chapter 8, given a word limit f ∈ W one can define an n-letter random
word sub(n, f) by sampling n points x1 < · · · < xn from [0, 1] and then setting the i-th letter
of sub(n, f) as a Bernoulli random variable with mean f(xi). It is thus natural to define the
longest common subsequence problem in this new random word model.

For f1, f2 ∈ W , we write LCS(f1, f2, n) to denote the random variable which is equal to the
length of the longest common subsequence between sub(n, f1) and sub(n, f2). If f1 = f2 = f ,
then we write LCS(f, n) instead of LCS(f1, f2, n). We observe that if f1(x) = f2(x) = 1

2
for all x ∈ [0, 1], then LCS(1

2 , n) = LCS2(n) for all n ∈ N. On the other hand, it does not
seem possible to adapt the sub-additivity argument to prove that 1

n
LCS(f1, f2, n) converges

for arbitrary f1, f2 ∈ W . Therefore, it would be possible that LCS(f1, f2, n) = o(n) even if
f1 = f2.

Problem 9.1.1. Characterise the functions f ∈ W such that LCS(f, n) = Ω(n).

9.2 Turán numbers for words

Recall that for a graph H, the Turán function ex(n,H) of H is defined as the maximum
number of edges that a n-vertex H-free graph can have. The study of the Turán numbers
is one of the central topics in extremal graph theory, however, as far as we know no such
concept has been studied for words. A quite interesting problem is to study the following
Turán-type problem for words (an analogue problem may be defined for permutations as
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well). Given two fixed words u and v, we define the Turán function of the pair (u,v) as

ex(n,u,v) = max{
(

w
u

)
: w ∈ {0, 1}n and t(v,w) = 0}, (9.1)

that is, ex(n,u,v) is the maximum number of possible copies of u in a word of length n
which does not contain a copy of v. We conjecture that if u does not contain v, then the
unique maximiser for (9.1) should be a blow-up of u. An even more challenging problem is
to study the function

exα(n,u,v) = max{
(

w
u

)
: w ∈ {0, 1}n and t(v,w) > α} (9.2)

for some fixed α ∈ [0, 1]. We remark here that both problems are quite natural. Indeed, let
us define the continuous version of (9.2) as

exα(u,v) = sup{t(u, f) : f ∈ W and t(v, f) > α}. (9.3)

Since t(u, ·), t(v, ·) are continuous and (W , d2) is compact, we know that the set {f ∈ W :
t(v, f) > α} is compact too and so (9.3) is indeed a maximum. Therefore, in some sense the
extremal functions (9.1) and (9.2) are well defined, and thus one could hope to study the
Turán problem for words with analytical and elementary tools.

9.3 Twins in d-arrays

For d > 1 and a d-array A = (ai1,...,id) of size n over an alphabet Σ, let LT(A) denote the
largest m such that there are indices I = {(i(1)

j1 , . . . , i
(d)
jd

) ∈ [n]d : (j1, . . . , jd) ∈ [m]d} and
L = {(`(1)

j1 , . . . , `
(d)
jd

) ∈ [n]d : (j1, . . . , jd) ∈ [m]d}, where 1 6 i
(k)
1 < · · · < i(k)

m 6 n and
1 6 `

(k)
1 < · · · < `(k)

m 6 n are increasing sequences for each k ∈ [d], such that

a
i
(1)
j1
,...,i

(d)
jd

= a
`

(1)
j1
,...,`

(d)
jd

for all (j1, . . . , jd) ∈ [m]d.

The arrays (a
i
(1)
j1
,...,i

(d)
jd

)~j∈[m]d and (a
`

(1)
j1
,...,`

(d)
jd

)~j∈[m]d are called twins. For n, d ∈ N and an
alphabet Σ, we define the function

LTd(n,Σ) = min{LT(A) : A ∈ Ad(Σ, n)}.

Thus, by definition, every d-array of size n over Σ contains twins of size LTd(n,Σ). As
mentioned in the introduction, for d = 1 we know that LT1(n, [q]) = Ω(n) for all q > 2. It
would be interesting to study the function LTd(n,Σ) for d > 2.

Problem 9.3.1. For q, d > 2. Prove or disprove that LTd(n, [q]) = Ω(n).

9.4 Universality of permutations

For k > 2, a k-universal permutation is one that contains all permutations of Sk. The
question of the minimal n such that there exists a k-universal permutation in Sn was asked
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by Arratia [11], who conjectured that the optimal value of n, given k, is (1 + o(1))k2/e2.
The random version of this problem was posed by Alon (see [11]) who conjectured that a
random permutation of order (1 + o(1))k2/4 is k-universal with high probability. If true,
this bound would be tight, as can be deduced from the known results on the length of the
longest increasing subsequence of random permutations. The best known upper bound for
this problem is due to Xe and Kwan [63], who recently proved that a random permutation
on O(k2 log log k) elements is k-universal with high probability.

The study of higher dimensional permutations is ripe for further research. A line of a
d-array A = (ai1,...,id) of order n is a sequence of elements obtained by choosing some j ∈ [n]
and looking at the entries ai1,...,ij−1,`,ij+1,...,id , for some fixed i1, . . . , ij−1, ij+1, . . . , id ∈ [n] and
` ranging from 1 to n. Just as a usual permutation can be identified with a permutation
matrix, it is possible to define a d-dimensional permutation (henceforth, d-permutation) of
order n as a (d + 1)-array of order n over {0, 1}, where each line contains a unique 1 entry
(see [79, 80] for equivalent definitions and discussion).

Looking for connections with the case of permutations, we propose the following notion
of “universality” for d-permutations. A d-pattern of order k is a sequence (σ1, . . . , σd) where
σ` ∈ Sk for all ` ∈ [d]. We say a d-permutation M of order n contains a d-pattern of order k
if there exists a sequence x(1), . . . , x(k) ∈ [n]d+1 of index vectors such that M

x
(i)
1 x

(i)
2 ···x

(i)
d+1

= 1

for all i ∈ [k], x(1)
1 < x

(2)
1 < · · · < x

(k)
1 (the first coordinates of the vectors are increasing), and

further, for each ` ∈ [d] and all i, j ∈ [k], it holds that x(i)
`+1 < x

(j)
`+1 if and only if σ`(i) < σ`(j).

Note that for d = 1 this is equivalent to the containment of one permutation in another. We
say a d-permutation M is k-pattern-universal if it contains all d-patterns of order k.

Linial and Simkin [80] considered “monotone subsequences of length k” in d-permutations,
which expressed in our language correspond to d-patterns of order k of the form (σ, . . . , σ),
where σ is the identity function. They showed that the longest monotone subsequence in a
random d-permutation of order n has length Θ(nd/(d+1)) with high probability. This implies
that a random d-permutation needs to have order at least Ω(k(d+1)/d) to be k-pattern-universal
with high probability. In analogy with the case of permutations, we believe this to be tight.
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