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Resumen

Esta tesis describe el trabajo que yo he realizado para contribuir al desarrollo de la tubeŕıa
de análisis de datos para procesar las observaciones del experimento Polarbear. El proyecto
observó el Fondo Cósmico de Microondas (CMB por sus siglas en inglés) durante tres años
usando detectores sensitivos a polarización y una placa de media onda continuamente gira-
toria para modular la polarización del CMB. El experimento Polarbear está emplazado en
el Telescopio Huan Tran (HTT por sus siglas en inglés) a 5190 metros de altitud en una
ladera del Cerro Toco en el desierto de Atacama del norte de Chile. El propósito de este ex-
perimento es medir las ondas gravitacionales primordiales que han sido propuestas de haber
sido creadas durante la expansión exponencial del universo temprano. Esta huella es una
predicción única de un proceso denominado Inflación Cósmica, donde la amplitud total de
esta señal r es un parámetro que requiere ser constreñido. La detección de esta señal de onda
gravitacional representa un esfuerzo experimental desafiante.

Este manuscrito describe la tubeŕıa de análisis usada para transformar la secuencia de
datos sin procesar a un espectro de potencia de polarización del CMB, con énfasis en la esti-
mación del espectro de potencia. Doy una detallada descripción de mi contribución principal
a esta tubeŕıa donde las modificaciones al pseudo-espectro del modo puro B son implemen-
tadas. El resultado principal de esta tesis es una resiliencia mejorada bajo variaciones del
auto espectro de modo B de entrada para la estimación del contenedor de espectro multipo-
lar más bajo. Cuantitativamente, 80% de las pruebas en el régimen perturbativo presentado
en este trabajo tuvieron una diferencia significativa de entre 3σ y 4σ comparando el uso de
las modificaciones implementadas en el estimador de espectro de potencia con el caso en
que se prescinde de ellas. Estas modificaciones contribuyeron a la validación del espectro
de potencia y a la detección de un moderado exceso de potencia por sobre las predicciones
obtenidas del modelo ΛCDM con lente gravitacional en los dos contenedores de espectro mul-
tipolar más bajos de la campaña de observaciones de Polarbear. Por completitud, también
describo brevemente el trabajo realizado por otros miembros de la colaboración Polarbear
pero expĺıcitamente menciono mis contribuciones a lo largo de este trabajo.
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Abstract

This thesis describes the work that I performed to contribute to the development of the data
analysis pipeline to process observations of the Polarbear experiment. The project observed
the Cosmic Microwave Background (CMB) radiation for three years using polarization sensi-
tive detectors and a continuously rotating half-wave plate to modulate the CMB polarization.
The Polarbear experiment is placed on the Huan Tran Telescope (HTT) at 5,190 meters al-
titude on the side of Cerro Toco in the Atacama desert of northern Chile. The purpose of
the experiment is to measure the primordial gravitational waves which are been proposed to
have been created during the exponential expansion of the early universe. This signature is
a unique prediction for a process dubbed Cosmic inflation, where the overall amplitude of
this signal r is a parameter that needs to be constrained. The detection of this gravitational
wave signal represents an extremely challenging experimental endeavor.

This manuscript describes the analysis pipeline used to transform the raw data streams
into a CMB polarization power spectrum, with a focus on the power spectrum estimation. I
give a detailed outline of my main contribution to this pipeline where modifications to the pure
B-mode pseudo-spectrum are implemented. The main result of this thesis is an improved
resilience under variations of the B-mode input auto spectrum for the estimation of the
lowest multipole spectrum bin. Quantitatively, 80% of the tests in the perturbation regime
reported in this work had a significant improvement between 3σ and 4σ, when comparing
the use of the implemented modifications in the power spectrum estimator to the case where
these changes were not applied. These modifications contributed to the validation of our
power spectrum estimator and to the detection of a moderate excess of power above the
predictions from the ΛCDM lensing model in the lowest two multipole bins of the Polarbear
observations campaign. For completeness, I also briefly describe the work done by other
members of the Polarbear collaboration but explicitly mention my contributions throughout
this dissertation.
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′

φ. The outbound ray is along the êz-direction, leading to
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permission from Elsevier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8 In the upper panel a polarization pattern produced by a single plane-wave
scalar perturbation lying in the x-axis is illustrated. The perturbation pro-
duces a temperature quadrupole pattern that changes in space as observed by
electrons, drawn as dots. In three-dimensional space, with the z-axis directed
out of the page, this pattern is invariant under rotations around the wave vec-
tor k̂, say, the x-direction, as pointed out by the round arrow on the left. As a
mental exercise, we can see the photons deviated by the electrons in the z-axis,
directed out of the page. Recalling Section 3.2, the polarization pattern is seen
as the one drawn in the lower panel. If we contrast this picture with Fig. 3.3,
we realize that this should be a pure E-mode. Figure from [4]. Reproduced
with permission from Elsevier. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xii



3.9 Angular power spectra of temperature anisotropies and E-mode polarization
anisotropies, along with their cross-correlation, given a fiducial concordance
cosmology. The polarization anisotropies power spectra are of lower amplitude
than those of the temperature anisotropies by a factor of order 1/50, but less
suppressed in smaller scales. Figure from [4]. Reproduced with permission
from Elsevier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.10 Top panel: Angular cross power spectrum of temperature and E-mode polar-
ization anisotropies as observed by the Planck experiment (drawn with points;
DTE
` ≡ `(` + 1)CTE(`)T 2

0 /2π, as plotted in Fig. 1.3). We must be aware that
the scales of both the multipole and spectrum axes changes at l = 30. The
solid line illustrates the forecast for the fiducial concordance cosmology. It is
remarkable the values below zero in the multipole range 30 . ` . 200. Bot-
tom panel: discrepancy of the theory with the measurements. Figure from [3].
Reproduced with permission © ESO. . . . . . . . . . . . . . . . . . . . . . . . 56

3.11 Inflationary B-mode CMB polarization anisotropy angular spectrum induced
by tensor modes or gravitational waves, for a pair of the tensor-to-scalar ra-
tio values r = 0.001, and r = 0.05, as indicated. From recent constrains on
the r value, the B-mode power spectrum amplitudes are well below those of
the E-mode polarization. On small scales, the B-mode signal is produced by
the gravitational lensing of the photons caused by the intervening large-scale
structure altering the primordial CMB E-mode polarization. The experimen-
tal data, drawn as points with error bars, have unequivocally confirmed the
presence of this expected lensed emission. A signal surplus is also detected on
large scales produced by polarized galactic emission. This work presents a new
measurement of the B-mode CMB polarization anisotropy angular spectrum
at large scales [6]. Figure from [4,7]. Reproduced with permission from Elsevier. 60

3.12 The concordance model theoretical prediction for Cdd
L angular power spectrum,

where d is in units of radians, sourced by the LSS of the universe. Figure from
[8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.13 The ΛCDM theoretical prediction for the CBB
` angular power spectrum pro-

duced by gravitational lensing of pure E-mode polarization. Left panel: CBB
`

on a logarithmic scale to compare it to CTT
` and CEE

` . Right panel: CBB
` on

a linear scale. Figure from [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xiii



3.14 Current measurements of the CMB temperature anisotropy and polarization.
The pair of models, the fine almost overlapping grey lines, comes from Planck
(dashed line) and from ACT+WMAP (derived from [9], solid line). Ad-
ditionally, the primordial B-modes auto spectrum with r = 0.1 is plotted
with the dot-dashed line. For the Planck measurements, the 2018 results
are shown [3]. For SPT the measurements performed in the 150 GHz band
for TT ` < 2000, TE and EE spectra are shown [10], and from [11] for
BB spectrum. For the range ` > 2000 the SPT spectrum from [12] which
has been revised for point source contamination is shown. In practice, it
is almost identical from the more precise but not revised spectrum in [13].
For BICEP2/KECK Array data from [14] are shown. For ACT, prelimi-
nary EE spectrum results for ` = [103, 150.5, 200.5, 250.5, 300.5], DEE

` =
[1.14 ± 0.32, 1.40 ± 0.22, 0.70 ± 0.14, 2.02 ± 0.20, 9.74 ± 0.39](µK)2 reported
but not used in their analysis in [15] are shown. For Polarbear, EE spectrum
from [16] and BB spectrum processed by pipeline A in [17] are shown. This
work presents a new measurement of the B-mode CMB polarization anisotropy
angular spectrum for Polarbear at large scales [6]. Each error bar is 1σ and
data points which lack bottom bounds in TT and EE spectra are not shown at
small scales. More data for each survey have been omitted here, for instance,
data contained in other frequencies. Figure from [15]. . . . . . . . . . . . . . . 66

4.1 Sketch of the Polarbear receiver that illustrates the optical path, focal plant
tower and microfabricated antennae and TES bolometers. Figure from [18]. . . 69

4.2 Patch coverage centered at (RA,Dec) = (+0h12m0s,−59◦18′). The scan pat-
tern illustrates with red the nethermost center and with blue the poor weighted
boundaries. The nethermost region of the patch has a map depth as low as
16µK-arcmin and the average of the effective map depth is 32 µ K-arcmin,
both quantities in polarization. The vertical lines correspond to an artifact of
breaks in the low elevation observations to regularly tune the detectors and
execute the relative gain calibration. The horizontal lines correspond to an
artifact of the elevation offsets performed in the transit scan. The Polarbear
depth map is superimposed on the Planck 353 GHz temperature map to illus-
trate the Galactic contamination pattern. Figure from [18]. . . . . . . . . . . . 70

4.3 Generated beam window function from Jupiter raster scans. The statistical
uncertainty in the pointing model suppressed more power at small scales, as
illustrated by the dashed effective beam curve. The statistical uncertainty in
the Jupiter beam window function corresponds to the shaded area. Figure
from [6]. ©AAS. Reproduced with permission. . . . . . . . . . . . . . . . . . 72

4.4 Distribution of the data chosen for the performed glitch flagging statistics
study in the azimuth-elevation plane. . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 An example of output generated by the code implemented to check the vi-
brational level for a given elevation. In this case, El = 52◦. The vibrational
response is represented as the power of the measurements and the peaks were
identified with vertical lines. Subsequent analysis considered the distribution
of peaks per elevation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xiv



4.6 A comparison for the noise bias estimation for the all the observation set be-
tween the data stream noise model and the “signflip” coaddition configuration
is shown. An overall agreement between the two configurations is patent. The
fiducial power spectrum pipeline uses the “signflip” noise model as one of the
inputs. These spectra are not corrected by the filter transfer or beam window
functions presented in Section 5.1. The shaded area illustrates the standard
deviation of the reproduced noise bias. Figure from [6]. ©AAS. Reproduced
with permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Polarization maps corresponding to the Stokes parameters Q and U of the real
data (upper panel) and a sample noise realization generated by the “signflip”
coaddition noise model configuration (lower panel) are shown for Polarbear.
The E-mode polarization imprint of the CMB signal is appreciable in the
real maps in the shape of a checkerboard structure for both Q and U Stokes
parameters. Figure from [6]. ©AAS. Reproduced with permission. . . . . . . 81

5.1 Power spectra estimation output for set of 48 maps characterized by a two
arcminute resolution and a 79◦ apodization mask size using Gaussian realiza-
tions. Top panel: Angular power spectrum. Shown in dashed lines, the input
cosmology for the simulations. In solid lines, the estimated values obtained
from the power spectra estimator are shown. Middle panel: BB absolute bias
defined as the absolute value of the discrepancy between the input and output
BB power spectrum shown in the top panel. Bottom panel: The bias as a
fraction of the error on the bias. The error on the bias is computed as the
standard deviation of all the simulations divided by the square-root of the
number of simulations. Courtesy of D. Boettger. . . . . . . . . . . . . . . . . . 87

5.2 The distribution of the error relative bias shown in Fig. 5.1. Courtesy of D.
Boettger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Fractional correction to the standard term of Eq.(5.3) ifN
′

ell = 2/
√

(`− 1)(`+ 2)

and Nell = 1/
√

(`− 1)`(`+ 1)(`+ 2) in Eq.(25) of [19] are not approximated
for `→∞ in the implementation of our power spectrum estimator. Courtesy
of D. Boettger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Top panel: Smoothed version of the filter transfer function implemented in our
estimator. Bottom panel: Fractional difference of the smoothed version of the
filter transfer function with one where the smoothing is not applied. Courtesy
of D. Boettger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Same as Fig. 5.1, but without the application of the smoothing in the filter
transfer function. Courtesy of D. Boettger. . . . . . . . . . . . . . . . . . . . . 90

5.6 For the mode coupling matrices involved in the power spectrum estimation
shown in Fig. 5.1, the total contribution of the mode couplings with every
other multipole moments for a given multipole moment ` as a fraction of the
total mode coupling contributions for that multipole moment, including the
mode coupling from the same multipole moment, is shown. Courtesy of D.
Boettger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xv



5.7 A two-dimensional power spectrum estimation output is shown after injecting
Gaussian pure B-mode power into a multipole moment ring 400 < ` < 420.
Left panel: without the application of the counter terms in Eq.(5.3). Right
panel: with the application of the counter terms in Eq.(5.3). Courtesy of D.
Boettger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.8 The resulting two-dimensional spectra for simulations injecting normalized
power at ` = 410 is collapsed into the normalized one-dimensional spectra,
and the ratio of power at low multipole moment (below ` = 20) to the power
in the ` = 410 bin is shown. Since power is only injected into the simulations at
400 < ` < 420, this ratio should be as low as possible. The different curves are
using circular window functions convolved with kernels labeled by their sizes.
Each point on the plot represents the average of 20 realizations. Courtesy of
D. Boettger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.9 The resulting power spectrum estimation in the ` = 410 bin and few adjacent
bins for simulations injecting normalized power at ` = 410 is shown for the
same configuration illustrated in Fig. 5.8. Courtesy of D. Boettger. . . . . . . 94

5.10 The cosine apodization window function defined in Eq.(5.22), for r = 15◦ and
r∗ = 5◦ centered in a 30◦ × 30◦ sky patch, with a 8’ pixel size. . . . . . . . . . 97

5.11 The ` = 30 and φ~̀ = 0 peak-normalized “Stokes pure B-mode” QX
B (~x, ~̀)

and UX
B (~x, ~̀) patterns as defined in Eqs.(5.20) and (5.21), for X ∈ {P, I}

respectively, given the cosine apodization window function shown in Fig. 5.10.
Left panels are for X = I and right panels are for X = P . From top to bottom
panels, the real component of QX

B (~x, ~̀), the imaginary component of QX
B (~x, ~̀),

the real component of UX
B (~x, ~̀) and the imaginary component of UX

B (~x, ~̀). . . 99

5.12 The ` = 60 and φ~̀ = 0 peak-normalized “Stokes pure B-mode” QX
B (~x, ~̀)

and UX
B (~x, ~̀) patterns as defined in Eqs.(5.20) and (5.21), for X ∈ {P, I}

respectively, given the cosine apodization window function shown in Fig. 5.10.
Left panels are for X = I and right panels are for X = P . From top to bottom
panels, the real component of QX

B (~x, ~̀), the imaginary component of QX
B (~x, ~̀),

the real component of UX
B (~x, ~̀) and the imaginary component of UX

B (~x, ~̀). . . 100
5.13 The normalization N (`, φ~̀ = 0◦) for the apodization window function pre-

sented in Section 5.3.1. Top panel: The standard 1/`2, the numerical as de-
fined in Eq.(5.27) and the analytical as defined in Eq.(5.28) normalizations are
shown as a function of multipole moment. Bottom panel: The absolute value
of the fractional error between the numerical and analytical normalizations for
the same multipole moment range. . . . . . . . . . . . . . . . . . . . . . . . . 103

5.14 The final apodization window function used in the pseudo spectrum stage of
the wide patch analysis with an 8’-pixel size. The smoothing employed with
this mask is considerably more aggressive than the small patch analysis. To
fulfill the pure-B mode estimator requirements regarding the vanishing of both
the apodization window function and its derivatives on the sky patch edge [19],
a 8◦ cosine square edge taper is applied, along with a 8◦ Hamming window to
the map of pixel weights. Point sources are not masked in the power spectrum
estimation to avert sharp features in the apodization window function or an
important sky area reduction [18]. . . . . . . . . . . . . . . . . . . . . . . . . . 104

xvi



5.15 The normalization N (`, φ~̀ = 0◦) for the apodization window function pre-
sented in Fig. 5.14. Top panel: The standard 1/`2, the numerical as defined in
Eq.(5.27) and the analytical as defined in Eq.(5.28) normalizations are shown
as a function of multipole moment. Bottom panel: The absolute value of the
fractional error between the numerical and analytical normalizations for the
same multipole moment range. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.16 The normalization N (` = 50, φ~̀) for the apodization window function pre-
sented in Fig. 5.14. Top panel: The standard 1/`2, the numerical as defined in
Eq.(5.27) and the analytical as defined in Eq.(5.28) normalizations are shown
as a function of multipole moment angle. Bottom panel: The absolute value
of the fractional error between the numerical and analytical normalizations for
the same multipole moment angle range. . . . . . . . . . . . . . . . . . . . . . 106

5.17 The normalization N (` = 100, φ~̀) for the apodization window function pre-
sented in Fig. 5.14. Top panel: The standard 1/`2, the numerical as defined in
Eq.(5.27) and the analytical as defined in Eq.(5.28) normalizations are shown
as a function of multipole moment angle. Bottom panel: The absolute value
of the fractional error between the numerical and analytical normalizations for
the same multipole moment angle range. . . . . . . . . . . . . . . . . . . . . . 107

5.18 The normalization N (`, φ~̀ = 90◦) for the apodization window function pre-
sented in Fig. 5.14. Top panel: The standard 1/`2, the numerical as defined in
Eq.(5.27) and the analytical as defined in Eq.(5.28) normalizations are shown
as a function of multipole moment. Bottom panel: The absolute value of the
fractional error between the numerical and analytical normalizations for the
same multipole moment range. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.19 A two-dimensional pseudo spectrum output is shown after injecting Gaussian
pure B-mode power into a multipole moment ring 400 < ` < 420. The upper
panels are the E-modes. The second row are the B-modes and the bottom
panels are the same as the second row but zoomed in the low multipole moment
range. The left panels show the result with the use of mixed estimator with
the standard 1/`2 normalization, the middle panels show the use of the pure
estimator with the standard 1/`2 normalization and the right panels show the
use of the pure estimator with the analytical normalization Eq.(5.28) for φ~̀ = 0◦.108

5.20 A two-dimensional pseudo spectrum output is shown after injecting Gaussian
E-mode power into a multipole moment ring 400 < ` < 420. The upper panels
are the E-modes. The second row are the B-modes and the bottom panels
are the same as the second row but zoomed in the low multipole moment
range. The left panels show the result with the use of mixed estimator with
the standard 1/`2 normalization, the middle panels show the use of the pure
estimator with the standard 1/`2 normalization and the right panels show the
use of the pure estimator with the analytical normalization Eq.(5.28) for φ~̀ = 0◦.109

xvii



5.21 Mode-mode mixing matrices log10M``′ with multipole moment bins of size
∆` = 2 for the wide patch window apodization function shown in Fig. 5.14
for the cases of the mixed estimator (left panels), the pure estimator with the
standard 1/`2 normalization (middle panels), and the pure estimator with the
analytical normalization (right panels). The first row shows the BBBB term,
and the second row shows the cross component EEBB that represents the
E → B leakage. In the case of the mixed estimator, the BBBB matrix is
diagonal along with the EEBB component. In the case of the pure estimator,
the BBBB case shows a large correlation of low multipole moments of the
spectrum (horizontal `′) with all multipole moments of the pseudo-spectrum
(vertical `), but the EEBB component is substantially reduced. This structure
allows the minimization of the E → B leakage [20]. The introduction of
the implemented analytical normalization removes most of the off-diagonal
structure that can cause problems to the numerical stability of the estimator
[18], at the price of a slightly increased EEBB component, but still far below
the levels of the mixed estimator. . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1 The uncalibrated BB pseudo-spectrum output with ∆` = 2. The curves are
shown for the pure estimator when the standard 1/`2 normalization is used
(blue line), when the proposed normalization as described in Section 6.1 is
employed (orange line) and when this proposed normalization is modified with
a full evaluation of the multipolar angle dependence in Eq.5.28 for ` < 110
and the standard normalization for ` > 110 is used (green line). The error
bars are obtained from the standard error of the Monte Carlo (MC) simulations.114

6.2 Mode-mode mixing matrix log10M``′ outputs with multipole bins of size ∆` =
2, for the cases of the pure estimator when the standard 1/`2 normalization is
used (left panel), when the proposed normalization as described in Section 6.1
is employed (middle panel) and when this proposed normalization is modified
with a full evaluation of the multipolar angle dependence in Eq.5.28 for ` < 110
and the standard normalization for ` > 110 is used (right panel). The first
row shows the BBBB term, and the second row shows the cross component
EEBB that represents the E → B leakage. . . . . . . . . . . . . . . . . . . . 115

6.3 Filter transfer function outputs for the cases of the pure estimator when the
standard 1/`2 normalization is used (blue line), when the proposed normal-
ization as described in Section 6.1 is employed (orange line) and when this
proposed normalization is modified with a full evaluation of the multipolar
angle dependence in Eq.5.28 for ` < 110 and the standard normalization for
` > 110 is used (green line). The first row shows the BB → BB term, and the
second row shows the cross component EE → BB that represents the E → B
leakage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xviii



6.4 BB estimated power spectrum outputs for the cases of the pure estimator
when the standard 1/`2 normalization is used (blue line), when the proposed
normalization as described in Section 6.1 is employed (orange line) and when
this proposed normalization is modified with a full evaluation of the multipolar
angle dependence in Eq.5.28 for ` < 110 and the standard normalization for
` > 110 is used (green line). Top panel: The binned power spectrum is shown
as points with their error bars. The dashed black line corresponds to the under-
lying input power spectrum. The black points and their error bars correspond
to their binned version. Bottom panel: The significance of the discrepancy of
the three estimated power spectra with respect to the binned theory as de-
fined in Eq.6.2. The dashed lines correspond to the average significance over
all the multipole range. The multipole bin width is ∆` = 50 and the multipole
centers are ` = [75, 125, 175, 225, 275, 325, 375, 425, 475, 525, 575]. The verti-
cal error bars are obtained from the standard error of the Monte Carlo (MC)
simulations and the horizontal bars are defined by the bin width. . . . . . . . . 118

6.5 EB estimated power spectrum outputs for the cases of the pure estimator
when the standard 1/`2 normalization is used (blue line), when the proposed
normalization as described in Section 6.1 is employed (orange line) and when
this proposed normalization is modified with a full evaluation of the multipolar
angle dependence in Eq.5.28 for ` < 110 and the standard normalization for
` > 110 is used (green line). Top panel: The binned power spectrum is shown
as points with their error bars. The dashed black line corresponds to the under-
lying input power spectrum. The black points and their error bars correspond
to their binned version. Bottom panel: The significance of the discrepancy of
the three estimated power spectra with respect to the binned theory as de-
fined in Eq.6.2. The dashed lines correspond to the average significance over
all the multipole range. The multipole bin width is ∆` = 50 and the multipole
centers are ` = [75, 125, 175, 225, 275, 325, 375, 425, 475, 525, 575]. The verti-
cal error bars are obtained from the standard error of the Monte Carlo (MC)
simulations and the horizontal bars are defined by the bin width. . . . . . . . . 119

6.6 Same as Fig. 6.4 for the tests described in Section 6.3. Left panels: Same
as top panel of Fig. 6.4 . Right panels: Same as bottom panel of Fig. 6.4.
From top to bottom panels, the Gaussian noise levels are associated with
σn = [1.0 · 10−3, 1.1 · 10−3, 1.2 · 10−3, 1.3 · 10−3, 1.4 · 10−3]µK2. . . . . . . . . . . 121

7.1 The result of the B-mode angular power spectrum measurement using the
fiducial cross-spectrum pipeline described in Section 6.4. The error bars are
only from the statistical uncertainties. The dashed line is obtained from fore-
ground best-fit dust power at 150 GHz described in [6]. The outlier measure-
ment present at ` = 375 has a PTE of 9% as described in [6], meaning that
this deviation is not significant. Figure from [6]. ©AAS. Reproduced with
permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Current measurements of the B-mode angular power spectrum, where the
measurements reported in Fig. 7.1 are labeled as “PB (wide)”. Courtesy of
Y. Chinone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xix



List of tables

1.1 Baseline results for the six main parameters 68% confidence levels for the
base-ΛCDM cosmology computed from the Planck CMB power spectra, in
combination with CMB lensing reconstruction. Results extracted from [3]. . . 11

1.2 Some events of the termal history of the universe. Based on [21,22]. . . . . . 12

4.1 List of observing seasons for the data set considered in this study. The seasons
are divided by interval periods of hardware maintenance. The first two seasons
are detailed in [17,23] and are not part of this study. Table from [6]. ©AAS.
Reproduced with permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Operations and data selection efficiency for this study. In total 2985 CESs of
one-hour extension have any portion of data fed in the final science pipeline.
The focal plane yield is normalized to the originally intended number of active
optical detectors, that is 1274. The overall data selection efficiency is the
multiplicative result of the three rows above it. Table from [6]. ©AAS.
Reproduced with permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xx



Units, notation and conventions

In this thesis, we use the convention of units c = ~ = MP = 1. c is the speed of light, ~ is
the reduced Planck constant and MP =

√
~c/8πG is the reduced Planck mass.

gµν is the spacetime metric.

Greek indices (α, β, . . . ) are assigned to spacetime components and latin indices (a, b,
. . . ), to field-space components. An asterisk is used for the complex conjugate.

The Christoffel symbols are given by the expression,

Γa bc =
1

2
γad (∂bγdc + ∂cγdb − ∂dγbc) ,

where ∂a are partial derivatives with respect to the scalar fields and the Einstein summation
convention is assumed. The Riemman tensor is given by,

Ra
bcd = ∂cΓ

a
bd − ∂dΓa bc + Γa ceΓ

e
db − Γa deΓ

e
cb,

with Ricci tensor and scalar defined as Rab = Rc
acb and R = γabRab, respectively. The

definitions for the spacetime metric are the same, indices used and context makes them dis-
tinguishable.

For noting a quantity as a vector, we interchangeably write in bold or put an arrow on
top of the quantity, i.e., a ≡ ~a. We also use bold quantities for tensors and the indices
distinguish them. The angular (auto/cross) power spectrum for CMB fields X, Y is inter-
changeably noted as CXY (`) ≡ CXY

` , where ` is the multipole moment. For this quantity, we
also consider an interchangeable notation l ≡ `.
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Chapter 1

Introduction

More than a century has elapsed since Einstein published the field equations that govern his
theory of General Relativity (GR) [24]. This theory allows the possibility of an expanding
universe. This option began to be considered with the observed relation of galaxies receding
away with a velocity that is proportional to their distance, made by Edwin Hubble at the
end of the thirties [25].

Later, in 1964, Penzias and Wilson were intrigued by an excess source of noise measure-
ments of their radio antenna located at Bell Labs in Holmdel, New Jersey. After discarding
a bunch of known interfering signals and cleaning the antenna from pigeons’ droppings, the
noise was still there, coming from every direction independently of time. Then they were
told by a colleague about the search of this signal by another group. The signal was the
Cosmic Microwave Background (CMB). It was in the context of early research into Big Bang
nucleosynthesis (BBN), a cosmological stage of the Universe, that Gamow, Alpher, and Her-
man originally predicted the existence of the CMB in 1948 [26–29]. Nevertheless, they were
focused on its energy density and did not realize its spectral shape or the fact that it could
be measured.[30]

The year before Penzias and Wilson’s discovery, the soviet physicists Doroshkevich and
Novikov predicted a black body spectrum for the CMB and the possibility to detect it [31].
They even went farther and suggested that a specific Bell Laboratories antenna placed at
Crawford Hill, NJ would be an ideal device for measuring it. Finally, this was the antenna
used by Penzias and Wilson, unaware of this suggestion. This was reported by them [32],
along with a second paper made by Dicke, Peebles, Roll and Wilkinson [33], where the CMB
was proposed as a possible theoretical explanation for this measurement. This excess of radio
noise, the CMB, would be a thermal artifact of the universe during its early expansion.

As the temperature of the universe dropped, photons were no longer scattered by elec-
trons and protons, which recombined to become neutral hydrogen. In 1967, Partridge and
Wilkinson shown that, over large portions of the sky, the temperature fractional difference
was of order 0.1 per cent [34] , showing that the Universe was in thermal equilibrium during
this decoupling stage.
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Since then, several experiments have been deployed to study the universe through the
CMB. In 1992, the Cosmic Microwave Background Explorer (COBE) satellite using its Far-
InfraRed Absolute Spectrophotometer (FIRAS) instrument measured an almost perfect black
body spectral radiation corresponding to a temperature of T = 2.725±0.002K, coming from
all directions in the sky [35, 36]. To have in mind, Penzias and Wilson originally reported a
temperature of 3.5 ± 1K, close to this value. COBE was also the first to observe the CMB
anisotropies with an angular resolution of ∼ 7◦ using the Differential Microwave Radiome-
ter (DMR) instrument [37]. The extremely good approximation to a black body radiation
allowed the possibility to perform precise tests of spectrum distortion through non-thermal
energy injections before recombination, such as the existence of long-lived unstable particles.

After COBE, several advances in the field were achieved. The first peak (recombination)
of the angular power spectrum of the CMB (defined in Eq.(1.22)) was first measured at the
end of the nineties by the Mobile Anisotropy Telescope (MAT) experiment, located on Cerro
Toco in the northern Chile [38]. The result was later confirmed by the balloon-based experi-
ments BOOMERanG [39] and MAXIMA-1 [40] over the course of several flights. This proved
the universe’s flatness [41].

Several years later the Wilkinson Mapping Anisotropy Probe(WMAP) measured with un-
precedented precision the first and second acoustic peaks in the CMB temperature anisotropies
and further tightened constraints on the Universe’s properties, in many cases at the percent
levels [42]. This has been progressing to what are now few percent-level measurements. This
has set the Standard Cosmological Model as the unrivaled model to explain the physics of
the Universe.

One of the prominent breakthroughs in cosmology came in 1998 with the Supernova Cos-
mology Project, and the High-Z Supernova Search Team [43]. By then, the accepted idea was
that the gravitational interaction of matter in the Universe would slow down the recession
velocity of objects in the universe and a positive deceleration (negative acceleration) rate
was expected. Using type Ia supernovae they measured this rate and contrary to this belief,
they found the opposite: objects in the Universe are moving away from each other with a
positive accelerated rate. This is known as the accelerating expansion of the universe. This
was confirmed with the location of the first CMB acoustic peak described above, and analyses
of the clustering of galaxies. This show us that generally accepted “facts” or preconceived
notions should always be contrasted with well performed measurements of nature.

In the theoretical side, the theory of cosmic inflation, first proposed in the early eighties
independently by Guth [44], Sato [45], Linde [46], Starobinsky [47], Albrecht and Steinhardt
[48] to explain the homogeneity and the flatness of our Universe; has as bonus the machinery
to generate density fluctuations that seeded the anisotropies in the CMB and subsequent
growth of galaxy clusters. The measurements reported by WMAP underpinned the notion
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that structures in the Universe emerged from gravitational instability to overdensities, as
was thought two decades before these findings. With a similar timing as with Gamow, again,
the theory successfully forecasted the measurements made by the WMAP experiment and
recently, Planck, long time before.

These observations have provided strong evidence to support the currently leading cosmo-
logical model: the concordance or ΛCDM model. The acronym gives us the big picture of the
composition of the Universe. The first letter, Λ, refers to the hypothetical source that drives
the late expansion of the Universe, the dark energy. The remaining part, CDM, refers to
the cold dark matter, which supplies enough gravitational attraction needed to form galaxies
and source their observed rotation curves. Its nature and lack of interaction with ordinary
matter are still a matter of debate. From the latest measurements our Universe consists of
roughly 68.5% of dark energy, 26.6% of cold dark matter and 4.9% of baryonic matter [3],
the ordinary matter of the Universe with which we are more familiar. The latter refers to
the constituents of ourselves, what surrounds us, the planets, the stars, the interstellar and
intergalactic medium. This model consists of a set of six free parameters that characterize
the physics, content and geometry of the entire universe. As we mentioned above, some of
the components are still modeled only from a phenomenological perspective. We still do not
understand the microphysics that governs the nature of the dark matter and the dark energy.
This is the reason why many particle physicists have turned into cosmologists to find the
required evidence to fill the gaps in their Standard Model.

New, exciting, and unexpected results are going on in Observational Cosmology. Several
methods have been developed to determine the rate of the expansion of the Universe with
increasing accuracy and precision, but a recent tension has arisen between probes from the
early and late universe. Unrecognized systematic uncertainties among several independent
tests with the same amplitude and redshift pattern seems extremely unlikely, giving room for
the development of new physics that could explain the evolution of the Universe from early
to late times.

One of the parameters that it is possible to measure is the current rate of the expansion of
the Universe, the Hubble constant, denoted by H0. There are several independent methods
to constrain the value of H0 using data from the early and late Universe. From the former, we
have the CMB power spectrum that contains a wealth of information about the distribution
of dark matter, baryons, and radiation at the surface of last scattering. With the knowledge
of the temporal evolution of those components and the use of additional assumptions like the
spatial flatness of the Universe, it is possible to make precise predictions about the statistical
properties of the modern-day universe, including its expansion rate. From the latter, we have
methods such as the distance ladder. This method relates distance to redshift using objects
with a known (or approximately known) intrinsic luminosity, like the Type Ia Supernovae
(SNe Ia). The Cepheid variable stars are used as an intermediate step to help calibrate the
supernova absolute luminosity because the rate of SNe Ia is too low in nearby galaxies where
we have good direct distances.
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Inference from early-Universe probes such the CMB is in an increasing statistical dis-
crepancy with late-Universe determinations of the Hubble constant. For instance, the CMB
Planck Mission reports a measurement of H0 = 67.4± 0.5 km s−1 Mpc−1 assuming a ΛCDM
model [49]. On the other hand, independent local determinations like the ones based on
Cepheids/Type SNe Ia yields H0 = 74.03±1.42 km s−1 Mpc−1 [3]. Local measurements seem
to be converging to a compatible value that is approximately at a 5σ level away from the
Planck Mission.

This issue, known as the Hubble tension, has attracted increasing attention in the cos-
mological community. This could be the consequence of unaccounted for systematics in one
or more experiments, or potential deviations from ΛCDM. The variety and independence of
late-universe measurements based on probes like Cepheids/ Type SNe Ia, water megamasers
and time-delay cosmography of lensed quasars, makes the existence of such systematics across
all these experiments in the same direction, magnitude, and redshift pattern very unlikely
[50,51]. Also, the exclusion of one or more CMB experiments does not help reconcile the two
regimes when galaxy clustering data are included [52]. This motivates the consideration of
models beyond the ΛCDM concordance model that might contain new physics between the
early and late Universe.

Another pending problem in the standard cosmology is the Lithium (7Li) primordial
abundance, known as the Lithium problem [53, 54]. It is theorized that in the first minutes
after the Big Bang, nuclear reactions generated light elements such as 4He, D, 3He and 7Li.
The standard predictions of the abundance of these elements can be estimated and agree
pretty well with the measurements, with the exception of 7Li abundance by roughly a factor
of three. The discrepancy between the predicted and observed Lithium primordial abun-
dance has not been solved neither by new measurements nor by nuclear physics. Therefore,
the ancient Lithium problem threatens either the success of BBN or the accepted thermal
history of the universe.

Coming back to what bring us in this manuscript, another quest is to detect the primordial
gravitational waves which were assumed to have been produced during the primordial stage of
superluminal expansion of the universe. These gravitational waves generate unique imprints
on the polarized CMB known as the tensor B-modes. Despite several experiments developed
to measure them the primordial tensor B-modes remain elusive. If detected, this will be
another compelling evidence for the theory of Cosmic inflation that proposes an initial period
of exponential expansion of the Universe. The detection will also tell us about the energy
scales in which inflation took place. With the increasing number of detectors, its sensitivity
and the better control over systematics, in the next years we will be able to constrain this
signal with substantially improved statistical power. This thesis shows honest efforts in this
direction. Let us review this from the beginning.
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1.1 The Standard ΛCDM Model

General Relativity is the theoretical framework that enables our understanding of the ex-
panding universe. The Big Bang theory proposes that the universe we observe now was
hotter and denser in earlier times due to its spatial expansion and promoted Cosmology as
a precision science. The following review of this framework will be based on many standard
books in the field such as [4, 55–58] and also [21,22].

1.1.1 The Metric in General Relativity

The spatial and time intervals can be formulated for a system of coordinates with the four-
dimensional metric tensor gµν . Then we have for a line element ds:

ds2 = gµνdx
µdxν (1.1)

This tensor allows us to compute physical distances and time intervals integrating the
line elements along some path of interest for the corresponding coordinate system. This is
how GR describes the nature of space-time.

In GR, the metric gµν can be obtained from the Einstein field equations provided with a
energy distribution and at the same time the energy moves along geodesics dictated by the
metric. In other words, matter and energy dictate space how to curve, and the deformation
of space dictates matter and energy how to move [59].

The Einstein field equations are ten coupled and non-linear differential equations which do
not admit analytic solutions in general. However, we will simplify this given the experimental
facts of the large scale geometry of the universe.

1.1.2 The Cosmological Principle

The Cosmological Principle is an example of a simplified geometry and requires that the
distribution of energy be homogeneous and isotropic. This requierement is patently broken
in the late universe, although it is thought to hold almost perfectly in the early universe and
to a greater extent today at the largest scale. The metric that describes this scenario in the
most general expression is the Friedmann-Robertson-Walker(FRW) metric. The line-element
follows as [60]

ds2 = −dt2 + a2(t)
(dx2 + dy2 + dz2)[

1 + κ
4a2

(x2 + y2 + z2)
] (1.2)

The parameter κ dictates the spatial curvature kind, where κ is 0 for flat space; 1 for positive
curvature space and −1 for negative ones. For flat space, this metric case is equivalent to
the Minkowski metric case of special relativity, except for the scale factor a(t) that describes
the scaling of spatial distances at different times. Hence the physical distances between two
points in the x, y, z coordinate system can expand or contract with time, that corresponds
to an expansion or contraction of space.
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In cosmology, it is convenient to index time with the redshift z that relates the observed
wavelength of a signal λobs to its emitted wavelength λemit:

1 + z =
λobs
λemit

=
a(tobs)

a(temit)
(1.3)

Then if a(t) increases with time, same with the wavelength, and the frequency shifts to the
infrared, that corresponds to the redshift today, by a factor a(temit)/a(tobs) and z is strictly
positive. We define the Hubble parameter as the expansion rate of the universe,

H(t) =
ȧ(t)

a(t)
(1.4)

For a universe in expansion, H > 0, and for a universe in contraction, the converse is true.
By convenience and convention, we set a(t0) = 1 and recognize H(t0) = H0 as the expansion
rate of the universe today or the Hubble constant. Then we define a comoving or coordinate
distance as the distance traveled by light from an object at time t and redshift z in the
coordinate grid to us,

χ(t) =

∫ t0

t

dt′

a(t′)
=

∫ 1

a(t)

da′

a′2H(a′)
=

∫ z

0

dz′

H(z′)
≡ χ(z) (1.5)

There are a couple of ways to compute distances that are important in cosmology. First, we
have the angular diameter distance, the ratio of an object’s known physical size l to the angle
subtended by l at emission time as observed on Earth. Assuming absence of curvature, it is

dA(z) = a(z)χ(z) =
χ(z)

1 + z
(1.6)

The second is the luminosity distance. This describes the distance at which an object would
locate based on its measured luminosity. This considers two attenuating factors: relativistic
redshift and the Doppler shift of emission, with a contribution 1+z of attenuation from each
of them. Again, assuming κ = 0, we have:

dL(z) =
χ(z)

a(z)
= (1 + z)χ(z) (1.7)

All these three distance measures will differ at large redshifts, say z > 0.1, given the effects
of the universe’s expansion or contraction encoded in z, that will allow us to distinguish
between these two states and their rate.
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1.1.3 The Einstein-Friedmann equations

The motion equations of a test particle in the ΛCDM universe are obtained from the Einstein
field equations,

Gµν ≡ Rµν −
1

2
R gµν =

8πG

c4
Tµν (1.8)

where Gµν is the Einstein tensor, Rµν and R are Ricci tensor and scalar, gµν is the metric
discussed in Section 1.1.1, G is the Newton’s gravitation constant, Tµν is the stress-energy
tensor, and c is the speed of light. Without anisotropic stresses or bulk flow, the stress-energy
tensor can be written as:

Tµν =


ρ(t) 0 0 0

0 −p(t) 0 0
0 0 −p(t) 0
0 0 0 −p(t)

 (1.9)

where ρ represents the density and p the pressure of a perfect fluid with all the symmetries
discussed previously. Obtaining the FLRW metric above was based on symmetry arguments
and not on GR. It is matter of GR to obtain the scale factor a(t) provided by a physical
distribution of matter and energy following the Cosmological Principle described above. We
can obtain the Friedmann equation, which dictates the evolution of the scale factor a(t), by
evaluating Eq.(1.8):

H2(t) +
κ

a2(t)
=

8πG

3
ρ(t),

ä(t)

a(t)
= Ḣ(t) +H2(t) = −4πG

3
[ρ(t) + 3p(t)] (1.10)

Here we have set c = 1. Using the conservation of the stress-energy tensor T 0µ
;ν , we have:

ρ̇(t) + 3H(t) [ρ(t) + p(t)] = 0 (1.11)

Cosmology often deals with low density gases, for which the equation of state is simple. For
fluids of cosmological interest, the equation of state can be reduced to a simple linear relation:

p(t) = ωρ(t) (1.12)

The, we can rearrange Eq.(1.11) as:

dρ

ρ
= −3(1 + ω)

da

a
(1.13)

Assuming ω as a constant, then we have,

ρ(a) = ρ0a
−3(1+ω) (1.14)

That allows as to consider a ∼ ρ
1

−3(1+ω) for ω 6= −1. With the proper normalization, the scale
factor in a spatially flat, single-component universe is:

a(t) =


(
t
t0

) 2
3+3ω

for ω 6= −1

eH(t−t0) for ω = −1
(1.15)
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Where t0 is such that a(t0) = 1. We see that the evolution of the scale factor a(t) and the
Hubble parameter H(t) will depend on the fluid component under consideration. We know
that our universe contains a mix of different fluid components, so we will sort them by their
contribution to the pressure. The most remarkable cases are:

� Cold Matter. Also known just as matter, is used to denote nonrelativistic matter and
corresponds to any kind of substance which contributes with negligible pressure, p = 0.
A pressureless Universe is the simplest supposition that we can consider, where mass
is the main component of the energy density. This describes pretty well the baryons in
the Universe after the temperature has decreased significantly, as they are enough apart
and without interact, and also applies to clusters of galaxies in the Universe, as the
gravitational interaction is the only one they experience with each other. This includes
dark matter. The concept dust is also used to refer to matter in some contexts. Setting
w = 0, we obtain ρ ∝ a−3. This energy density’s decrement is just the consequence of
the expansion of a volume V ∝ a3.

� Hot Matter. Or better know as radiation or relativistic matter. Light particles travel,
as we can guess, at the speed of light. Their dominant kinetic energy conducts to a
pressure force, the radiation pressure, which can be proven to be p = ρ/3 with the
aid of the standard theory of radiation. More broadly, any gas of particles traveling at
relativistic speeds carry this equation of state. Photons, neutrinos, and gravitons being
an obvious example. Setting w = 1/3, we obtain ρ ∝ a−4. Three of those powers we
have already recognized as the expansion in volume, causing a dilution in the density.
The remaining power is caused by the stretching of the wavelength of the photons.
Since the stretching is proportional to the scale factor, and the energy of photons is
proportional to their frequency E = hf , this ends in an extra decrease in energy density
by the remaining power of a. This drop of energy is the same redshifting phenomena
that we account to measure distances.

� Dark Energy. Contrasting with dark matter, this is a form of nonclustered energy
density with negative pressure. It may be either a cosmological constant with p = −ρ or
a scalar field (quintessence) with p = ωρ and ω < −1/3 today. This is the hypothetical
source for the late expansion of the universe. In the case of a cosmological constant it
is also known as vacuum energy where a constant energy density ρ ∝ a0 is obtained.
As we can see in this case, there is not dilution in the energy density, generating energy
with the universe’s expansion.

� Curvature. The curvature of spacetime can be thought as a fluid with ω = −1/3 and
an energy density ρ ∝ a−2.
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Figure 1.1: Discovery of an accelerating universe. The supernovae magnitude-redshift data
for the Supernova Cosmology Project, at 0.18 < z < 0.83, are fitted together with a set of
supernovae from the Calán/Tololo Supernova Survey, at z < 0.1, for cosmological parameter
inference. This was one of the attestations found at the end of the 1990’s for dark energy.
Figure from [1]. © AAS. Reproduced with permission.

From Eq.(1.10) we can denote the critical density of the universe ρc which is the density
needed for the universe to be spatially flat with κ = 0,

ρc,0 =
3H2

0

8πG
(1.16)

Where ‘0’ stands to specify that these are today’s values. It is customary to normalize the
energy densities with respect to the ρc as the density parameters,

ΩX,0 =
ρX,0
ρc,0

(1.17)

Where X stands for any constituent of the universe: cold-dark matter (c), baryons (b),
radiation (r), cosmological constant or dark energy (Λ) and m for the total non-relativistic
matter Ωm,0 = Ωc,0 + Ωb,0. We can also define the curvature density parameter,

Ωκ,0(a) = − κ

a2H2
0

(1.18)

Then inserting these definitions in Eq.(1.10), it becomes

H(a) = H0

√
Ωr,0a−4 + (Ωc,0 + Ωb,0)a−3 + Ωκ,0a−2 + ΩΛ (1.19)
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The measurements are consistent with a flat universe with the density value equal to the
current value of critical density O(10−27) kg m−3, so we will omit it for the rest of this
manuscript.

1.1.4 The concordance model of cosmology

The concordance or ΛCDM model consists of a set of six free parameters that characterize
the content and geometry of the entire universe. It is built on well-proved physical postu-
lates, which includes general relativity that characterizes the dynamics of the expansion of
the universe, the quantum mechanical principles that rule the production of particle species
during the early universe, and the Boltzmann equation which let us to analyze the evolution
of each of these species.

Nevertheless, nearly all the parameters in this model carry information about still non-
completely understood physics. The relative ratios of baryons, dark matter and dark energy in
the universe are ruled by elemental processes that are still beyond the scope of the present-
day Standard Model of particle physics, and might prolong up to the TeV, GUT or even
Planck energy scales. There are several ways to define the set of parameters depending in
the availability of data required to measure specific combinations of observables and our
understanding of the underlying physics behind each of these parameter combinations.

Parameter Planck TT,TE,EE+lowE+lensing

Ωbh
2 0.02237± 0.00015

Ωch
2 0.1200± 0.0012

100θMC 1.04092± 0.00031
τ 0.0544± 0.0073
ln (1010As) 3.044± 0.014
ns 0.9649± 0.0042

Table 1.1: Baseline results for the six main parameters 68% confidence levels for the base-
ΛCDM cosmology computed from the Planck CMB power spectra, in combination with CMB
lensing reconstruction. Results extracted from [3].

Table 1.1 shows the six base parameter values inferred for the concordance model reported by
[3]. From Table 1.1 we can extract with the appropriate parameter combinations that a flat
universe is favored with a composition lead by 68.5% of dark energy, 26.6% of cold dark matter
and 4.9% of baryonic matter. This configuration of the parameters contains information
related to the primordial conditions needed to generate the CMB power spectrum. Under the
supposition of a primordial universe permeated with small adiabatic curvature perturbations
characterized with the following power spectrum term (which explanation will be more clear
in Section 2.2.2):

PR ∝ Ask
ns−1 (1.20)

Data from Table 1.1 constrains Eq.(1.20) to an approximated scale invariant power spectrum.

1.1.5 Brief thermal history

In Section 1.1.4 we examined the current content of the universe. The concordance model
depicts the way dark energy is the main component of the universe, and how it is constituted
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of a specific number of species. Inasmuch as dark energy keeps constant in time, at some
point before, matter and radiation should have been the main components.

In the early epochs of our universe, it was hotter and denser than ever, experiencing an
exponential expansion. This implies that they were featured by high energies, where some
specific violated symmetries of fundamental physics were recovered, and by the important
function that H(t) performs as a time scale. Interaction among species freeze out or decouple
as the interaction rate decreases below the expansion rate. Table 1.2 outlines phase transitions
linked to events where symmetry is broken. We will give a brief summary of the most
important events in the evolution of the Universe. This is heavily based on [57]:

Time Energy Redshift

Electroweak phase transition 2 · 10−11 s 100 GeV 1015

QCD phase transition 2 · 10−5 s 150 MeV 1012

Neutrino decoupling 1 s 1 MeV 6 · 109

Electron-positron annihilation 6 s 500 keV 2 · 109

Big Bang nucleosynthesis 180 s 100 keV 4 · 108

Matter-radiation equality 60 kyr 0.75 eV 3400
Recombination 260− 380 kyr 0.26− 0.33 eV 1100− 1400
CMB decoupling 380 kyr 0.23− 0.28 eV 1000− 1200
Reionization 100− 400 Myr 2.6− 7.0 meV 11− 30
Dark energy-matter equality 9 Gyr 0.33 meV 0.4
Today 13.8 Gyr 0.24 meV 0

Table 1.2: Some events of the termal history of the universe. Based on [21,22].

� ∼ 10−43s (T ∼ 1019 GeV) We are in the Planckian scale regime and nonperturba-
tive quantum gravity governs the dynamics, relegating General Relativity. The main
problems of spacetime structure at the Planckian scale such as the question of cosmic
singularities are still without a convincing explanation. An expected nonperturbative
string/quantum gravity theory is awaiting to be discovered here to explain these mys-
teries.

� ∼ 10−43 − 10−14s (T ∼ 1019 GeV−10 TeV) These energy scales are outside the reach
of current and planned accelerators. Nonperturbative quantum gravity would lose its
predominance and General Relativity would be restored to explain the dynamics of the
universe. The big question here is what the matter content of the Universe is. There
are big chances of more particle species than what is observed today. Supersymmetry
predicts that we should have twice the number of particles species. This theory also
offers us interesting weakly interacting massive particle options for dark matter.

Cosmic inflation, a plausible explanation for the accelerated universe’s expansion, is
expected to have took place close to the Grand Unification energy scales. Fortunately,
the main predictions of inflation are not greatly dependent on undiscovered particle
physics. Thus, is expected that we will be able to contrast their predictions with ob-
servations somewhen in the future.
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The creation of baryon asymmetry in our universe is also linked to physics beyond
the Standard Model. A Grand Unification of the electroweak and strong interactions
are expected to dominate at energy scales of order 1016 GeV. Maybe cosmic strings,
monopoles and other topological defects produced in unified theories were present in
the early universe but current measurements of the CMB anisotropy rules out any sig-
nificant role for large scale structure.

� ∼ 10−14 − 10−10s (T ∼ 10 TeV−100 GeV) We enter to the regime of energy scales
achievable by accelerators. We can start to consider the application of the Standard
Model of electroweak and strong interactions rules here. We expect that at temper-
atures below this regime the electroweak symmetry is broken, and the gauge bosons
become massive. Fermion and baryon numbers become mostly conserved below these
symmetry breaking temperatures.

� ∼ 10−5s (T ∼ 200 MeV) This is the quark–gluon transition energy scale: free quarks
and gluons ends within baryons and mesons. The mechanism of such transition remains
a mystery, although it is not believed that this event has left any relevant cosmological
signature.

� ∼ 0.2s (T ∼ 1− 2 MeV) With the drop in temperature, some weak interaction mech-
anisms fall out of equilibrium. To begin, the decoupling of primordial neutrinos from
the rest of the matter takes place and they stream freely. Also, the ratio of neutrons
to protons becomes constant as they are not chemically in equilibrium anymore due to
the inefficiency of such interactions. The number of neutrons left after this proportion
freezing will dictate the abundances of primordial elements.

� ∼ 1s (T ∼ 0.5 MeV) This is the energy scale of the electron mass. Electrons and
positrons start to annihilate in pairs as the temperature decreases below their rest mass
and only a small fraction of electrons over positrons, approximately one per billion
photons, are left after annihilation. The photons generated by these annihilations
are in thermal equilibrium and their associated temperature rises with respect to the
temperature of neutrinos, which have been decoupled before.

� ∼ 200− 300s (T ∼ 0.05 MeV) The temperature decreases enough for nuclear reactions
to be efficient. Consequently, free protons and neutrons can combine into helium,
lithium, and beryllium. The abundances of such elements predicted by primordial
nucleosynthesis coincides in greatly extent to the measurements performed up to date
and confirms our notions of the history of the universe since the first second of this
plot.

� ∼ 1011s (T ∼ eV) During this period, the matter–radiation equality occurs which
divides the radiation-dominated epoch from the matter-dominated epoch. The precise
cosmological time at which equality took place is depended on the components of the
dark matter and, thus, its current value is known with a multiplicative numerical factor
of order unity.
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� ∼ 1011s (T ∼ eV) During this period, the matter–radiation equality occurs which
divides the radiation-dominated epoch from the matter-dominated epoch. The precise
cosmological time at which equality took place is depended on the components of the
dark matter and, thus, its current value is known with a multiplicative numerical factor
of order unity.

Photons and charged matter particles are highly coupled in the plasma and density fluctua-
tions disseminate as cosmic sound waves. About 0.1 eV (380. 000 yrs) electrons and protons
merge into neutral hydrogen atoms. This period, when the the atoms starts to produce
neutral hydrogen is known as recombination (a misnomer because electrons and nuclei were
never combined before).

When the universe was at temperatures slightly above than 3000K it was formed of an
ionized plasma of mainly electrons, protons and photons, with mostly helium and vestiges of
lithium. The most important characteristic of this plasma was its opaqueness, this is to say,
the mean free path of a light particle was shorter than the Hubble length. With the universe
decreasing its temperature and expanding, the plasma recombines into neutral atoms, start-
ing with helium and a bit later the hydrogen.

Following recombination, as we mentioned above, the plasma became neutral and finally
the mean free path for light surpassed the Hubble length, because radiation decoupled from
matter. The universe become filled of a background of free streaming photons with a nearly
perfect black body radiation spectra during the recombination epoch. The initial tempera-
ture of this background radiation was of T = 3000K. The photons gets redshifted due to the
expansion of the universe, causing its temperature to decrease with the growth of the scale
factor as T ∝ a−1. It is possible for us to measure this background radiation today coming
isotopically from all directions in the sky as seen from the Earth, with a temperature that
averages T0 = 2.73K. This is known as the cosmic microwave background (CMB). As we look
to objects at higher redshifts, we are looking more to the past in time, so we observe the
CMB photons as originated at a uniform surface of last scattering located at redshift 1100.

To the degree that recombination occurs at the same moment and in the same manner
in all places, the CMB will be characterized of a precise uniform temperature. Although the
observed CMB is highly isotropic, it is not totally isotropic. The most important contribution
to CMB’s anisotropy as observed from the Earth is merely Doppler shift produced by our
planet’s motion through space. The CMB photons experience a slight blue shifting in the
same direction of our motion and a slight red shifting in the opposite direction of our motion.
This motion changes the temperature of the CMB producing a distinctive shape of a dipole
temperature anisotropy. However, it is a local feature that can be averaged out. Furthermore,
any locally uniform perturbation will add to the effective temperature background, effect that
would not be noticeable for us. Because of the mentioned reasons, we conclude that ` = 0, 1
that corresponds to the monopole and dipole moments, are gauge dependent in a part in a
one hundred thousand, so there is no reason to care too much about their precise values.
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Figure 1.2: Temperature fluctuations in the CMB, as observed by Planck satellite. This
map has been masked and inpainted in zones where residuals from foreground emission are
believed to be important. This mask, mainly around the Galactic plane, is depicted by a
grey line in the map. Figure from [2]. Reproduced with permission © ESO.

A primordial anisotropy of the CMB would be of much more interest for cosmological
purposes. For characterization of the CMB anisotropy, we use the fact that the surface of
last scattering is observed by us as a spherical surface at a redshift of z = 1100. Then a natural
parametrization to describe the anisotropy of the CMB seen in the sky is an expansion in a
series of spherical harmonics Y`m (θ, φ). Despite what was mentioned above about ` = 0, 1,
the rest of multipoles l > 1 are truly gauge invariant and well-defined quantities [61]:

Θ (θ, φ) ≡ ∆T (θ, φ)

T0

=
∞∑
`=0

∑̀
m=−`

aT`mY`m (θ, φ) , (1.21)

Assuming statistical isotropy, there are not special directions in the universe. Then the
statistical properties of ∆T/T0 should not dependent on the index m. Under this assumption,
it is customary to represent the CMB angular power spectrum as CTT

` which is the variance
of the a`m. The mean value of a`m is zero. Hence,

CTT
` δ``′δmm′ = 〈aT∗`maT`m〉

CTT
` =

1

2`+ 1

∑
m

〈aT∗`maT`m〉
(1.22)

Formally denoted as the rotationally invariant temperature angular power spectrum. Mathe-
matically speaking, it is the variance of the probability distribution for the multipole moments
a`m. This quantity makes much simpler a big portion of the information hold in a CMB map
pixel, and therefore is used in the CMB analysis.
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Figure 1.3: The angular power spectrum of temperature fluctuations according to the results
of the PLANCK experiment reported in 2018. The base ΛCDM theoretical spectrum best fit
to the Planck TT,TE,EE+lowE+lensing likelihoods with fit parameters shown in Table 1.1 is
plotted in light blue in the upper panel. The mismatches with this model are reported in the
lower panel. The measurements are well modeled by the six parameters ΛCDM model. The
error bars include cosmic variance and not uncertainties in the foreground model at ` ≥ 30.
The horizontal axis is logarithmic up to ` = 30, and linear beyond. The shape of peaks
and troughs is a manifestation of the coherence of primordial fluctuation. The vertical axis
is DTT

` ≡ `(` + 1)CTT (`)T 2
0 /2π, where CTT (`) is the temperature angular power spectrum.

Figure from [3]. Reproduced with permission © ESO.

The ` = 1 moment is simply the dipole temperature anisotropy discussed above,(
∆T

T0

)
`=1

∼ 10−3 (1.23)

The first anisotropy found was the dipole which was first detected in the 1970’s by several
collaborations. More than a decade later, the first observation of the anisotropy was made
for ` > 1 by COBE satellite [37]. COBE’s measurements indicates(

∆T

T0

)
`>1

≈ 10−5 (1.24)

This anisotropy shows the authentic fluctuations contained in the CMB induced by the ex-
istence of small primordial density fluctuations in the matter component of the universe at
the recombination epoch.
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These tiny density perturbations increase due to gravitational instability to create the
large-scale distribution of the universe at late times. The struggle between the background
pressure and the gravitational attraction delineates the particularities of the formation of the
large-scale structure. In the radiation domination epoch, the overdensities are increasing at a
small pace δρ ∝ ln a. We must wait until the matter domination epoch for the overdensities
to cluster at a higher rate, δρ ∝ a. As the small scales grow, they remain linear until ρ ∼ 1
[55], and then start to collapse in more compact objects that are left behind the large-scale
expansion and leave us an image of stratified structure configuration with small-scale struc-
tures, such as stars and galaxies, emerging and then clustering in larger structures, such as
clusters and superclusters of galaxies.

At approximately redshift z ∼ 25, high energized photons coming from the earliest stars
start to ionize the hydrogen in the surrounding intergalactic medium. This epoch is known as
reionization and ends at z ∼ 6. In the meantime, the stars with highest mass exhausted their
nuclear supplies and explode as supernovae. These explosions create the heavy elements (C,
O, etc.) that are needed for the emergence of life. After z ∼ 1 dark energy with its negative
pressure become dominant in the expansion of the universe, counteracting the gravitational
clustering, discontinuing the growth of structure, δρ ≈ constant.

Figure 1.4: An artist’s representation depicting the evolution of the Universe. It starts with
the Big Bang on the left end of the figure. Moving to the right, we have the emergence of the
CMB. Next, the formation of the earliest stars puts an end to the cosmic dark ages. Finally,
to the right end of the picture, the plot ends with the formation of galaxies. Image credit:
M. Weiss / Harvard-Smithsonian Center for Astrophysics.
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Currently, there are several experiments such as Polarbear [6], CLASS [62], BICEP2 and
KECK Array [14], ACTPol [15], SPTpol [11], SPIDER [63] and QUIJOTE [64], and also
forthcoming experiments such as Simons Observatory [65], LiteBIRD [66] and PIPER [67],
in the challenging quest of primordial gravitational waves (PGW) by the detection their
unique imprints – the tensor B-modes – on the polarized CMB radiation. The PGW were
produced during the first times of the universe when the universe expanded exponentially
by a mechanism known as cosmic inflation. The fundamental importance of the primordial
B-modes lies in the fact that they should be a product of quantum gravity phenomena.
Moreover, we would be able to discover the energy scale of cosmic inflation. The quantum
physics of inflation tell us that its signal should be there because it must excite light degree
of freedom, but we do not have a clue of its energy. The solely detection of this signal will tell
us by its own something about its energy, regardless of the inflationary model. If quantum
fluctuations can justify the properties of primordial fluctuations that are somehow encoded
in the distribution of our current universe, this would mean that quantum gravity effects are
observable. This would imply that CMB polarization measurements can test physics at the
grand unification energy scale, unachievable to any other current experimental technique.
Such claims encourage our efforts to push the experimental frontiers to reveal the secrets of
this elusive treasure.

The objective of the present thesis is to show my efforts in the validation of the power
spectrum estimator of the polarized CMB within the context of one of the abovementioned
projects, the Polarbear experiment.

1.2 Outline of this thesis

The outline of this thesis is the following: In Chapter 1, I sketch the most remarkable
features of the standard cosmological model ΛCDM. In Chapter 2, I give a quick review of
the standard paradigm of inflation. In Chapter 3, I discuss the mechanisms that shape the
CMB polarization spectra, analyzing piece by piece the main features for the polarized signal,
and its relation to inflationary physics. In Chapter 4, I introduce the Polarbear experiment,
giving a quick summary of the different stages of the data analysis pipeline, with a focus on
those that are applied earlier in the pipeline than the power spectrum estimator to the data.
In Chapter 5, I present the background of the power spectrum estimator, the motivation of
the present work and the study and implementation of prospective changes of such estimator.
In Chapter 6, I show the implementation and results of different tests performed to test solely
the performance of the implemented modifications, along with the coupling of such changes
to the main data analysis pipeline and the final power spectrum validation of the entire
data analysis framework, for which the products of this work constitute an integral part. In
Chapter 7, I give a brief summary of the science results of the fiducial data analysis pipeline
applied to real data, that uses the modifications described in this thesis. Finally, Chapter 8
presents some conclusions.
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Figure 1.5: Me at the James Ax Observatory of the Polarbear experiment, located in the
Chajnantor scientific reserve (Northern Chile) at an altitude of nearly 5200 m.
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Chapter 2

Cosmic Inflation

The cosmic inflation or merely inflation is an early stage of our universe. During this epoch,
the universe experiments a considerable exponential spatial expansion. This period can solve
the issues associated with the universe flatness and why it is so homogeneous and isotropic
on large scales. Soon, it was also noticed as a mechanism to generate the largescale structure
(LSS) of the universe, producing quantum fluctuations of tiny regions of the space that grew
exponentially by the inflationary expansion of the universe to form the LSS that we see today
[44,68].

The study of this mechanism will give us the initial conditions for the treatment of the
Boltzmann and Einstein equations. As we have mentioned in Chapter 1, a direct experimen-
tal test of inflation requires energy scales that are largely out of the reach of present-day
accelerators. However, it is the most promising explanation for the formation of the LSS and
will have to confront the scrutiny of the forthcoming generation of CMB and LSS survey
experiments, characterized by a dramatic increase in sensitivity.

A common set of predictions derived from the inflationary models have already been
confirmed: the characterization of the primordial perturbations as Gaussian, adiabatic and
described by a roughly scale-invariant power spectrum with a spectral index marginally be-
low the unity. We will explore this in this chapter. We will begin with a brief review about
some cosmic problems that motivated the idea of inflation and how it solves them. Then, the
inflation-driven dynamics of the homogeneous and isotropic background for a single scalar
field is introduced, and the simplest case of slow-roll is presented within this framework.
Finally, the theory of primordial perturbations generated during the epoch of inflation is re-
viewed including their potential ability to tell us about the energy scales that drive inflation.

This chapter is in part based on [4, 21, 22, 56]. The content and structure of this chapter
is greatly influenced by [69,70].
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2.1 Causal structure

The most sacred principle of physics refers to Causality. As the word suggests, it rules the
relation between causes and effects. An effect cannot depend on a cause in the future. This
tenet dictates the forms of both already discovered and hypothetical interactions of parti-
cle physics. In the context of General Relativity, it fundamentally defines the boundaries
between regions of space time where events can influence each other with regions were this
is not possible depending on their spatial and time coordinates. For a specific spacetime,
this information is contained in the metric as we already have discussed in section 1.1.1 and
will tell us if two events are able to make causal contact or not. For example, if we have
enough time, two events can influence each other no matter how far from each other they
are given the Minkowski metric case of special relativity. In contrast, no matter how much
time passes, an object inside a Black Hole’s event horizon will not be able to contact an
object outside it. This introduces our task in this section. Whether or not two entities in an
FWR universe can contact each other, and how it defines the causal structure of such universe.

This structure is defined by the propagation of photons in the universe given an FRW metric.
Any massless particle like photons will move along null geodesics, mathematically ds2 = 0 in
Eq.(1.2). For convenience, regarding these trajectories, we can define the conformal time,

τ ≡
∫

dt

a(t)
(2.1)

for which the FRW metric becomes a Minkowski metric ηµν rescaled by a time-dependent
conformal factor a(τ)

ds2 = a(τ)2ηµνdx
µdxν , (2.2)

By isotropy we can just consider the radial propagation of photons, therefore, neglecting the
angular term of the line element above,

ds2 = a(τ)2
[
−dτ 2 + dr2

]
, (2.3)

Then, null geodesics written in conformal time are sketched as straight lines at 45◦ in the
τ − r plane

r(τ) = ±τ + const. , (2.4)

The upper limit for the distance that photons can travel in the time interval [ti, t] with t > ti
is

∆r(t, ti) = τ − τi =

∫ t

ti

dt′

a(t′)
. (2.5)

From Eq.(2.1) we recognize that this distance is equivalent to the amount of conformal time
elapsed during the time interval [ti, t]. We can define the maximum distance traveled from
the origin of the universe ti = 0 up to a later time t as the (comoving) particle horizon at
that specific time t,

∆rmax(t) = τ(t)− τ(ti) =

∫ t

0

dt′

a(t′)
. (2.6)
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Rearranging Eq.(2.1), including the definitions from Eqs.(1.3) and (1.4), we have,

τ =

∫
da

a2H(a)
=

∫
dz

H(z)
=

∫
d ln a

aH(a)
(2.7)

This means that the conformal time for a given period lean on the evolution of the comoving
Hubble radius (aH)−1 during that period. For instance, if we fill the universe with a fluid
characterized by an equation of state ω = p/ρ, the evolution is dictated by,

(aH)−1 ≈ a
1
2

(1+3ω) (2.8)

So, it is a power law with exponent depending on the factor 1 + 3ω. The strong energy
dominance condition (SEC) 1 + 3ω > 0 is obeyed for all the known fluids. This implies the
growth of the comoving Hubble radius with the expansion of the universe. Inserting Eq.(2.8)
in Eq.(2.1) reduces to

τ ≈ 2

(1 + 3ω)
a

1
2

(1+3ω) (2.9)

The primordial singularity is at τi = 0. For familiar sources, this implies

τi ∝ a
1
2

(1+3ω)

i (2.10)

And the initial singularity means ai = 0. The SEC avoids an undefinition of this contribution
and the comoving horizon in Eq.(2.6) becomes finite

∆rmax(t) ∝ a(t)
1
2

(1+3ω) (2.11)

2.1.1 Flatness Problem

The evolution of the density parameter for the curvature given a FRW metric can be inferred
from Eq.(1.18)

Ωκ(a) = − κ

a2H2
(2.12)

To have rough idea, let’s assume that the expansion is driven by a generic barotropic fluid
with ω 6= 0. Then, from Eq.(1.15) we can compute the evolution,

Ω̇κ = ΩκH (1 + 3ω) (2.13)

If we define N , “the total number of e-folds of inflationary expansion” (we will see what it
means later)

dN = d ln a = Hdt (2.14)

Then we can insert this in Eq.(2.13)

dΩκ

dN
= Ωκ (1 + 3ω) (2.15)

It turns out that the assumption of the SEC ω > −1/3 makes Ωκ = 0 an unstable solution.
For any perturbation around this solution, Ωκ will quickly move away, increasing consistently
up to Ωκ = 1 for a perturbation towards a positive value of Ωκ and decreasing consistently
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down to Ωκ = −1 for the opposite case, given the restriction by definition for any of the
density parameters, |Ωκ| ≤ 1. When Ωκ reach the extreme values, ω takes the value −1/3
for κ < 0, or we have the collapse of the universe for κ > 0.

To be more specific, let us assume a standard Universe (matter or radiation dominated)
where the ordinary matter is prevalent over the curvature or dark energy. Then we can ignore
the curvature contribution, and using Eqs.(1.4) and (1.15), we find

a2H2 ∝
{
t−1 radiation domination
t−2/3 matter domination

(2.16)

This implies from Eq.(2.12),

|Ωκ(t)| ∝
{

t radiation domination
t2/3 matter domination

(2.17)

In both cases, |Ωκ| is a growing function of time given the restricted range of values already
mentioned in the paragraph above. This is an explicit example of how flatness is an unsta-
ble solution for the Universe; any deviation from a flat geometry of the Universe will make
that geometry rapidly more and more curved. In consequence, for the Universe to be so flat
even at current times (Ωκ = 0.001 ± 0.002 according to [3]) means that at ancient times its
curvature must have been extremely close to zero.

Another way to visualize this is to recall that the matter and radiation densities dilutes
as the universe expands with a dependence 1/a3 and 1/a4 respectively. Both drops are much
quicker than the curvature density dilution term 1/a2. Consequently, if curvature is not the
dominant component of the universe today, it must have started much smaller than the other
components.

The equations for |Ωκ| computed above are not valid anymore when curvature or dark
energy terms become relevant contributions, due to our evaluation of a(t) solutions for flatness
to obtain them. But they give us a rough idea of the scale of the problem. Going further in
this simplification, let us consider an always radiation-filled Universe. Using Eq.(2.17), we
can estimated how close to zero the curvature density parameter must have been at some
specific early times, given the measurements for our current universe (t0 ' 4× 1017 sec).

� At decoupling (t ' 1013 s), we estimate |Ωκ| ≤ 10−5.

� At matter-radiation equality (t ' 1012 s), we estimate |Ωκ| ≤ 10−6.

� At BBN (t ' 1 s), we estimate |Ωκ| ≤ 10−18.

� At electroweak phase transition (t ' 10−12 s), we estimate |Ωκ| ≤ 10−30.

� At the Planck scale (t ' 10−43 s), we estimate |Ωκ| ≤ 10−63.

We emphasize for example the BBN era, an epoch we are supposed to know very well within
the standard model. Then, the curvature density parameter must have lain within a very
narrow range, considering all the feasible values that it could have had. Any other value
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would have ended with a universe extremely different to the one we are living in.

A possible solution could be that the Universe must have precisely the critical density.
However, on the face of it there seems no reason for this fine tuning. An explanation for such,
at first glance, arbitrary choice would solve this problem. A second possible explanation, can
be that at some point of the existence of the universe, it would have been dominated by some
exotic matter component that violates the SEC.

Despite our ability or inability to justify the physical generation of such values, we can
confirm them by observations. Furthermore, having a universe extremely flat at decoupling
and at BBN, has the nice advantage to let us set κ = 0 as a good approximation in the
Friedmann equations when describing the physics governing those cosmological periods.

2.1.2 Horizon Problem

To introduce the problem, we will make a straightforward computation. Given that the
universe appears to be extremely homogeneous at large scales, a legitimate inquiry to pose
is if we can track back this to the origin of the universe. Let us start estimating the angle
subtended by the comoving horizon at recombination. This is the proportion of the comoving
particle horizon at recombination and the comoving angular diameter distance from the Earth
(at redshift z = 0) to recombination (z ≈ 1100).

θhor =
dhor
dA

(2.18)

From Eqs. (2.5) and (2.1), we can express the comoving distance between redshifts z1 and
z2,

τ2 − τ1 =

∫ z2

z1

dz

H(z)
≡ I(z1, z2) (2.19)

Let us evaluate the comoving particle horizon at recombination,

dhor = τrec − τi ≈ I(zrec,∞) (2.20)

In the same way, recalling the remarkable spatial flatness of our universe from Section 2.1.1,
we express the comoving angular diameter distance from us to recombination as,

dA = τ0 − τrec = I(0, zrec) (2.21)

So, we have all what we need. Evaluating both Eqs.(2.20) and (2.21) in Eq.(2.18), we obtain
the angle subtended by the comoving horizon at recombination,

θhor ≈
I(zrec,∞)

I(0, zrec)
(2.22)

Evaluating the Hubble parameter as a function of redshift from Eq.(1.4), we have

H(z) = H0

√
Ωr,0(1 + z)4 + Ωm,0(1 + z)3 + ΩΛ (2.23)
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Inserting this in Eq.(2.23), we numerically evaluated this with the current parameter values
as,

θhor ≈ 1.16◦ (2.24)

So, even regions which seem to be relatively close to each other on the sky (θ > θc = 2θhor =
2.3◦) would not have been able to influence each other before decoupling to achieve thermal
equilibrium. This largely contradicts the near perfect isotropy at large angular scales ob-
served from the CMB measurements. This remarkable evidence shows us that even at the
time of last scattering, the largest scales were well outside the comoving particle horizon.
This is known as the Horizon Problem.

2.1.3 The LSS Seeding Problem

The near scale-invariant primordial scalar power spectrum of the matter overdensities that
seeded the large-scale structure (LSS) of our universe needs a mechanism for the production
of such perturbations.

2.1.4 Relic Particle Abundances Problem

Another riddle emerges from bringing together the Hot Big Bang model and modern con-
cepts of particle physics. An inquisitive aspect concerning the Universe is that it remained
radiation dominated for such a long time, roughly a thousand of years of the existence of
the universe. This would not be expected considering that radiation density dilutes as 1/a4,
the fastest drop rate among the known components of the universe. Even with a very small
portion of non-relativistic matter, then its slower density dilution will quickly promote it as
the main component of the universe.

The particles in the Standard Model do not prompt any issues since they actively couple
with radiation and thermalization prevents them getting excessively dominant. Neverthe-
less, modern particle physics brings up other exotic particles. The kind of particles that
mostly influenced the emergence of inflation are the magnetic monopole. Such particles are
an inescapable outcome of theories of unification of fundamental interactions, referred as the
Grand Unified Theories, which predict them with an enormous massiveness at the beginning
of the universe. They are theorized to have a large mass; the Grand Unified Scale is believed
to be roughly 1016 GeV in contrast with the proton’s tiny ∼ 1 GeV. Such particles would be
non-relativistic for practically all the Universe’s evolution, allowing them to easily become
the most important component of the universe. The fact that we have not been able to detect
any of these particles yet rules out any current dominance from this component and arises an
unavoidable incompatibility between the standard Hot Big Bang model and such theories.

By the time inflation was proposed, magnetic monopoles were the most relevant relic
particles. Nevertheless, new theories predict the existence of several types of relic particles
with similar consequences, such as gravitinos and moduli fields.
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2.2 A solution

The problems themselves can hint us about what such a solution requires. Eq.(1.5) show us
that the comoving horizon τ is a logarithmic integral d ln a of the comoving Hubble radius
(aH)−1. The comoving Hubble radius is the estimated distance needed to be covered by
light for the scale factor to be amplified by one Napier’s constant. This definition serves as a
ruler to determine if objects can at a specific time make contact during one e-fold expansion.
In the matter or radiation domination epochs, the universe’s expansion is characterized by
a Hubble parameter with a scale factor dependence of a−3/2 or a−2, respectively, as can be
derived from Eqs.(1.4) and (1.15), with a persistent growth of the comoving Hubble radius
with the expansion of the universe. This means that the largest integrated amounts of τ
correspond to the last epochs.

This sheds light to a solution. The existence of an early era characterized by a shrinking
of the comoving Hubble radius would imply that the comoving horizon τ have received the
most relevant contributions at very early times given a much larger Hubble radius. In other
words, a larger portion of the universe would have been able to reach thermal equilibrium
than what we naively anticipated on Eq.(2.24), and even much larger than our comoving
horizon today. Given this early period, the uniformity observed in the CMB is no longer a
problem. In such a case, a decreasing (aH)−1 = ȧ−1 implies an increasing ȧ−1, or ä > 0, or in
words, an accelerated expansion of the universe. In conclusion, a period of early acceleration
would elucidate the apparent dissensions raised by the Horizon Problem in Section 2.1.2.
This proposed period is what we call inflation.

There is a relation on the Hubble parameter that is imposed by inflation. It is

d

dt
(aH)−1 = − ȧH + aḢ

(aH)−2
= −1

a
(1− ε) , where ε ≡ − Ḣ

H2
. (2.25)

We realize that a shrinking comoving Hubble radius is equivalent to,

ε = − Ḣ

H2
= −d lnH

dN
< 1 (2.26)

Here, we have used N defined in Eq.(2.14). From there, Eq.(2.26) means that the fractional
variation of the Hubble parameter per e-fold is small. Furthermore, ε should be imposed to
remain less than one a sufficiently long time to solve the horizon problem. The fractional
change of ε per e-fold is, then,

η ≡ ε̇

εH
=
d ln ε

dN
(2.27)

We enforce η << 1 to allow inflation persists. Now we need to elucidate what kind of
stress-energy tensor sourced this accelerated expansion. Let us assume a perfect fluid with
pressure p and density ρ, Eqs.(1.10) and (1.11). Furthermore, we neglect curvature given our
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conclusions from Section 2.1.1. Then, we have,

Ḣ +H2 = −4πGρ

3

(
1 + 3

p

ρ

)
Ḣ +H2 = −H

2

2
(1 + 3ω)

Ḣ

H2
+ 1 = −1

2
(1 + 3ω)

Ḣ

H2
+ 1 = −1

2
− 3ω

2

− Ḣ

H2
=

3

2
+

3ω

2

ε = − Ḣ

H2
=

3

2
(1 + ω)

(2.28)

The condition in Eq.(2.26) implies

ω < −1

3
(2.29)

So this solution violates the SEC, and a solution for the Flatness Problem in Section 2.1.1 is
also obtained.

The sudden expansion of the inflationary epoch dilutes away any luckless relic particles
because their density is diminished by the expansion faster than the mysterious fluid that
drives inflation, solving the Monopole Problem mentioned in Section 2.1.4. With the required
amount of expansion, this dilution can easily account for the fact that the particles are not
seen nowadays. Rather even less expansion is required to solve this than the other problems.

Nevertheless, the decay of this exotic matter which ends the inflationary expansion must
not regenerate the problematic particles again. In consequence, the universe after the end of
inflation must have cooled down sufficiently to suppress any new thermal production.

Our challenge now is how we can implement inflation on a theoretical context. To do this
we have several alternatives. This is a big issue in inflation, as there is not a single model
that is able to account for all the predictions of inflation. Rather, a myriad of models has
been developed since the first proposition of inflation at the beginning of the eighties. Here,
we will introduce the most basic and hackneyed example.

2.2.1 Single field slow-roll inflation

The simplest mechanism to source this transient period of accelerated expansion is by the
existence of the potential energy of a scalar field (also used in the so-called quintessence dark
energy models), dubbed the inflaton. We should keep in mind that there is still not confirmed
scalar field that can do this. Moreover, the only scalar field that has been observed in nature
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is the Higgs boson, and the measurements of its observables have rule it out as a candidate
for inflation. As well, most of the possible model candidates from particle physics, like string
theory models, contain several scalar fields. We will abandon any pretentious attempt to
connect this generic scalar field to known physics, but we warn that the source of inflation
could be something different than a scalar field.

Our first mission is to derive the stress-energy tensor for this scalar field. For that purpose,
we begin with the Lagrangian for a canonical scalar field φ with a potential V (φ),

Lφ = −1

2
gµν

∂φ

∂xµ
∂φ

∂xν
− V (φ) (2.30)

It should be noticed that the Lagrangian is obtained by the subtraction of the potential energy
from the kinetic energy and due to the negative value of g00, we must impose a negative sign
for the kinetic energy. The stress-energy tensor is given by,

Tµν =
∂Lφ
∂gµν

+ gµνLφ (2.31)

Then, inserting Eq.(2.30) in Eq.(2.31) yields,

Tαβ = gαν
∂φ

∂xν
∂φ

∂xβ
− δα β

[
1

2
gµν

∂φ

∂xµ
∂φ

∂xν
− V (φ)

]
(2.32)

Considering the homogeneous background field φ(t) implies that solely the time derivatives
of the field do not vanish. This means that the indices ν, β in the first part of Eq.(2.32) and
µ, ν in the second must be set to 0. Then this is reduced to,

Tαβ = −δα 0δ
0
βφ̇

2 + δα β

[
1

2
φ̇2 − V (φ)

]
(2.33)

Comparing this to Eq.(1.9), we have,

ρ =
1

2
φ̇2 + V (φ)

P =
1

2
φ̇2 − V (φ)

(2.34)

Thus if there is more potential energy than kinetic (subdominant but not negligible), then
we will have a negative pressure component. Furthermore, from Eqs.(1.12) and (2.34), this
means that

ωφ =
P
ρ

=
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

(2.35)

is roughly −1 and we easily fulfill the condition (2.29). To obtain the time evolution of the
field for an arbitrary potential, we need to make use of the conservation of the stress-energy
tensor:

∇µT
µ
ν =

∂T µν
∂xµ

+ Γµ αµT
α
ν − Γα νµT

µ
α = 0. (2.36)
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The energy-momentum tensor for the homogeneous part of the field is of the same kind as
Eq.(1.9). Then, we can make use of Eq.(1.10), along with Eq.(2.34), to obtain,

φ̈+ 3Hφ̇+ V,φ(φ) = 0 (2.37)

Where we have defined V,φ(φ) ≡ dV/dφ. Again, from Eq.(1.10) neglecting curvarture and
inserting the energy density from Eq.(2.34), we have,

H2 =
8πG

3

[
1

2
φ̇2 + V (φ)

]
(2.38)

From Eqs.(2.37) and (2.38) we obtain the continuity equation,

Ḣ = −4πGφ̇2 (2.39)

Now we are in conditions to rewrite the kinetic energy sub dominance condition obtained
above in terms of the slow-roll parameter ε, inserting Eq.(2.39) in Eq.(2.26):

ε = − Ḣ

H2
= 4πG

φ̇2

H2
� 1 (2.40)

Also, we recognize that Eq.(2.37) is the same that describes the dynamics of a particle rolling
down a potential, experiencing a frictional force mediated by the term 3Hφ̇. In the same
way as for the particle dynamics, φ̇ ≈ −V,φ/3H should be a slow-roll attractor solution for a
sufficient large friction component. We can express this in terms of a slow roll parameter δ,

δ ≡ φ̈

Hφ̇
=
d ln φ̇

dN
= ε− 1

2ε

dε

dN
= ε− η

2
� 1 (2.41)

where we have used Eq.(2.14) and Eq.(2.27). We also notice that {ε, |δ|} � 1⇒ {ε, |η|} � 1.
Then for inflation to occur and persist the two slow-roll parameters must be much smaller
than 1. Specifically, the condition on the parameter ε tell us that we are on a background
solution and the condition on the fractional change of φ̇ per Hubble time η tell us that we are
on an attractor solution, and furthermore that this epoch of accelerated expansion (ω ≈ −1,
a ∝ eHt) will remain for a long time. The above conditions ε ∼ |η| � 1 will allow us to
simplify the equations of motion. This is what we call “slow-roll approximation”. Expressing
the parameters in terms of the potential, we find that,

ε ≈ 1

2

(
V ′

V

)2

η ≈
(
V ′′

V

)2

− 1

2

(
V ′

V

)2
(2.42)

These conditions allow us to rewrite the inflation equations in a simpler way. From Eq.(2.38),

H2 =
8πG

3


�
�
��7

0
1

2
φ̇2 + V (φ)

 (2.43)
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And then, the inflation equations reduces to,

φ̇ =
V ′

3H
, H2 =

8πGV

3
, a ∝ eHt (2.44)

Inflation will stop to take place when the condition ω ≈ −1 does not hold anymore, which is
equivalent to,

ε ∼ η ∼ 1 (2.45)

At the beginning, the field starts on top of its potential and slowly rolls down. As the Hubble
parameter decreases, there is less friction. Eventually, the slope of the potential becomes too
pronounced and the field arrives to the minimum of the potential as sketched in Fig.2.1 In
such location, the slow-roll configuration is not valid anymore as expressed in Eq.(2.45), and
there is significant kinetic energy. The field oscillates around the bottom of the potential. At
that time, the equation of state Eq.(2.35) is not -1 anymore. Instead, it is roughly zero, and
the universe is expanding with a decreasing acceleration. Next, φ breaks down into lighter
particles. Ultimately, maybe after a long concatenation of decays, the universe becomes a
nearly homogeneous and radiation-filled universe. The details concerning this transition,
dubbed reheating, are still not completely understood, but the perturbations of cosmological
interest are not affected by them as they are well outside the horizon by the end of inflation.
They keep frozen during this period.

Figure 2.1: A scalar field is slowly rolling down a potential V (φ). As it is rolling slowly, the
kinetic energy that it possesses is small. Nevertheless, the potential energy does not vanish. In
consequence, there is a negative pressure associated with this scalar field. Inflation comes to
an end when the field has arrived at the bottom of the potential. Figure from [4]. Reproduced
with permission from Elsevier.

The degree of inflation needed to reconcile the observations with the theoretical predic-
tions is much easy to express in number of e-folds as defined in Eq.(2.14). We can integrate
such relation to obtain this quantity, using the fact that a ∝ eHt along with the slow roll
approximations,

N(φ) = ln
(aend

a

)
=

∫ aend

a

d ln a =

∫ tend

t

Hdt =

∫ φend

φ

H

φ̇
≈
∫ φ

φend

V

V ′
dφ, (2.46)
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In the CMB, the largest scales that can be seen were generated about 60-efolds before the
culmination of inflation,

NCMB ≈
∫ φ

φend

V

V ′
dφ ≈ 60 (2.47)

2.2.2 Primordial Scalar and Tensor Perturbations

The need to explain the observed temperature uniformity of initially, supposed to be, uncor-
related scales push us into the theory of inflation. Not only inflation explains the persistent
fine-tuning problems of the ΛCDM model such as the horizon, flatness and monopole prob-
lems as we have already discussed in the previous sections, but also serves as a mechanism
for seeding the primordial perturbations around the uniform cosmic background, a problem
already raised in Section 2.1.3.

During inflation, the universe is composed mainly of a uniform scalar field and a uniform
background metric. From this background, the fields fluctuate quantum-mechanically,

φ(x, t) = φ(t) + δφ(x, t) (2.48)

where we denoted the background field with an overbar. At any specific time, the average
fluctuation vanishes, with patches of the universe with a little larger than its average value of
the field and others in which it is smaller. Nevertheless, the variance, the mean of the square
of the fluctuations, does not vanish. From this variance, we can draw from a distribution
with this variance to impose the primordial conditions for the evolution of the large-scale
structure.

One of the predictions of inflation is that quantum perturbations in the very initial uni-
verse are created when the scales of interest are in causal contact. Then, the wavelength of
these modes is stretched by this dramatic expansion, while the comoving horizon remains
roughly constant. These fluctuations are then quickly redshifted by the expansion until their
wavelength becomes larger than the horizon, only to come back inside it much later to seed
the initial conditions for the formation of the LSS in the universe. Fourier decomposition is
the best way to describe these perturbations. The mean of a given Fourier mode, for instance
for the gravitational potential, vanishes:

〈Φ(k)〉 = 0. (2.49)

In addition, Fourier modes are not correlated with others. Nevertheless, a specific mode has
a strictly positive variance, so

〈Φ(k)Φ∗(k′)〉 = PΦ(k)(2π)3δ
(3)
D (k− k′), (2.50)

Furthermore, a remarkable result in relativity, the decomposition theorem, imposes an inde-
pendent evolution of the different types of perturbations, such as scalar, vector, and tensor,
when they are in a linear regime. For instance, for a given physical phenomena in the
primordial universe that creates tensor perturbations, then they do not couple to scalar per-
turbations in their evolution. In the other hand, the evolution of scalar perturbations is not
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affected by possible vector or tensor perturbations. The main justification for the validity of
the decomposition theorem lies in the spatial isotropy of the background FLRW metric.

In the case of scalar perturbations to the metric, these couple to the density of matter
and radiation, sourcing the density fluctuations at the same time as they are sourced by
them, finally seeding the large structure we see nowadays. For these perturbations, one of the
main predictions of single-field inflation is that it produces adiabatic perturbations : different
regions of the universe have different overdensities, but the fractional density perturbations
are uniform for all species:

δρX
ρX

=
δρ

ρ
(2.51)

with the same relations for their velocities. The fact that inflation is sourced by a single
field is the main justification for this, whose value defines when inflation ceases. For that
reason, any specific region in the epoch of inflation is totally defined by the value of the
quantum field φ(x, t). The adiabaticity of perturbations has been ratified to great extent by
the CMB, which reduces the fact that each specie has their own primordial density pertur-
bations (dubbed as isocurvature perturbations) to no more than a percent-level fraction of
the adiabatic perturbations. Then it is enough to derive δρ. In the same way, through the
Einstein equations, we can determine the primordial conditions by Φ, because specifying one
initial field is enough.

We will start with an FLRW metric that is slightly perturbed,

g00(t,x) = −1 + h00(t,x)

g0i(t,x) = a(t)h0i(t,x) = a(t)hi0(t,x)

gij(t,x) = a2(t)[δij + hij(t,x)].

(2.52)

For scalar perturbations, we will begin in the conformal-Newtonian gauge, so that our metric
becomes,

g00(x, t) = −1− 2Ψ(x, t)

g0i(x, t) = 0

gij(x, t) = a2(t)δij[1 + 2Φ(x, t)].

(2.53)

Where we have introduced Ψ, the perturbation to the spatial curvature. When the wavelength
of the perturbation is much smaller than the horizon, we can neglect the metric perturbations.
Then, it is possible to derive the equation for perturbations to δφ considered in Eq.(2.48) in
terms of conformal time η,

δφ′′ + 2aHδφ′ + k2δφ = 0 (2.54)

Then δφ follows the equation of a massless field under the expansion of the universe just
like the one of the massless gravitons as we will see below. It can be shown that the power
spectrum of fluctuations in δφ is equal to

Pδφ =
H2

2k3
(2.55)
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By the end of inflation, the metric perturbation becomes relevant. So, despite that the
perturbations begin as only δφ, they finish as a linear combination of Ψ and δφ or more
broadly as a linear combination of Ψ and perturbations to the stress-energy tensor. The
strategy consists to come up with a linear combination that is preserved outside the horizon.
The value of this preserved quantity is defined by δφ when the perturbation crosses the
horizon.In this way, the post-inflation power spectrum of Φ can be shown to be

PΨ(k) = PΦ(k) =
8πG

9k3

H2

ε

∣∣∣∣
aH=1

(2.56)

The first equality holds because we are neglecting anisotropic stresses and then we have
Ψ = −Φ from the Einstein and Boltzmann Equations. We notice that the scalar spectrum
has a dependence on the slow-roll parameter ε, that we have defined in Eq.(2.26), directly
proportional to the derivative of the Hubble parameter. Considering that the Hubble pa-
rameter is mostly constant in the inflationary epoch, due to the potential energy dominance,
then ε is usually tiny.

The scalar perturbations produced during inflation are currently most parametrized by
the power spectrum of the gauge-invariant curvature perturbationR. This quantity is a linear
combination of Ψ and δφ, as mentioned above. Hence, having as a benefit being preserved
on super-horizon scales, without regard to if it is matter or radiation what dominates, and
hence is a univocal reference point. This power spectrum is given by,

PR(k) =
2π

k3

H2

m2
Plε

∣∣∣∣
aH=k

≡ 2π2Ask−3

(
k

kp

)ns−1

(2.57)

where we have definedAs as the variance of curvature perturbations in a logarithmic wavenum-
ber interval that has its center around the pivot wavenumber kp, and ns is the scalar spectral
index. The pivot wavenumber is a convention choice, generally adopted as the scale that
is best estimated by a specific survey (for instance, for the CMB anisotropies the Planck
experiment chose kp = 0.05 Mpc−1, and we will adopt the same choice). For our fiducial
cosmology,

As =
k3
p

2π2
PR(kp) ' 2.1× 10−9 (2.58)

Hence, the usual amplitude of curvature perturbations on the wavenumber kp is
√
As '

4.6× 10−5 which is roughly of the same order, although slightly above, than the CMB tem-
perature fluctuations. This is not an accidental coincidence, as can be reviewed in [4].

Along with scalar perturbations, inflation also produced tensor perturbations in the
metric; this means gravitational waves. In a parallel track to cosmology, gravitational waves
have become as a remarkable test of multiple astrophysical processes in the lights of their
pioneering detection by the LIGO experiment [71]. The LIGO experiment is aimed to detect
wavelengths in the order of hundreds of kilometers, but in the context of cosmology we will
be analyzing wavelengths of thousands of megaparsecs. Nevertheless, the generation and
streaming of the waves in both regimes are rule by the same master equation.
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These perturbations are not coupled to the density and so are not the source for the LSS
of the universe. However, the most auspicious method for the quest of cosmological grav-
itational waves is by their large-scale induced distortions in the CMB. These anisotropies
become a singular imprint of inflation and represents the best window to inflation energy
scales.

The generation of tensor perturbations are simpler than scalar perturbations: they are
gauge invariant, meaning that they preserve their value regardless of the coordinate system
that we chose to represent them. In addition, we can obviate the mixing of tensor modes
with other types of perturbations in the metric or matter. Scalar perturbations are affected
by both issues: they do not resemble the same depending on which coordinates we choose
and the perturbations of the scalar field couples with the perturbations in the metric.

Tensor perturbations can be expressed by a metric perturbation Eq.(2.52) with the sub-
stitutions h00 = −1, h0i = 0, δgij(t,x) = a2(t)hTTij (t,x), and

hTTij =

h+ h× 0
h× −h+ 0
0 0 0

 (2.59)

This means that the perturbations to the metric are characterized by two functions, h+

and h×, that we suppose small. For definiteness, the perturbations are fixed in the x–y
plane. There is an underlying coordinate choice: the one where the z-axis is in the direction
of the perturbation wavevector, k̂ = êz. Broadly speaking, h+ and h× are the pair of
components of a divergenceless, traceless, symmetric tensor. Divergenceless is expressed as
kihTTij = kjhTTij = 0, condition satisfied by Eq.(2.59) since there are no components with
directions along the z-axis. Tracelessness means that the sum of the components along the
diagonal is zero, condition that is also accomplished. It can be shown that both h+ and h×
are governed by the same equation. Then, the tensor modes obey the equation

h′′t + 2
a′

a
h′t + k2ht = 0 (2.60)

With t = +,×. Eq.(2.60) is a wave equation, with solutions as the so-called gravitational
waves. For instance, if we ignore the expansion of the universe neglecting the damping term
in Eq.(2.60), then the two solutions are ht ∝ e±ikη. The perturbation to the metric written
in real space is, then

ht(x, t) =

∫
d3k

(2π)3
eik·x

[
A(k)eikη +B(k)e−ikη

]
(without expansion) (2.61)

The two modes in this solution represent waves propagating in the ±z direction at the
speed of light. The spacetime induced deformations by these modes are sketched in the
bottom panel of Fig. 2.2. There is an evident elliptical shape in the plane normal to the
wavevector (bottom panel). This asymmetry is a characteristic difference between tensor and
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scalar perturbations; the spacetime deformation produced by scalar perturbations is totally
symmetric around the azimuthal direction of the perturbation wavevector.

Figure 2.2: Sketch of spacetime distortions induced by a traveling gravitational wave (tensor
mode). The wavenumber vector of the perturbation lies in the z axis as in Eq.(2.59), coming
out of the page. The top panel illustrates the evolution of the mode amplitude as a function
of time (ignoring the decay produced by the expanding universe within one oscillation cycle).
The bottom illustrates the distension and squeezing of spacetime in the plane normal to the
mode’s direction of propagation at different times within one oscillation period. Figure from
[4]. Reproduced with permission from Elsevier.

Eq.(2.60) is the expanding universe gravitational-wave equation. For a universe that is
filled with only radiation or matter this equation can be solved analytically. The corre-
sponding solutions are oscillations, such as the ones in Eq.(2.61), but damped in time. The
evolution of ht for four solutions of different wavelengths are shown in Fig. 2.3 During early
times. when the wavelength of these modes is larger than the horizon, kη < 1, the mode
remains constant in time. In fact, this can be seen if we take the limit k → 0 in Eq.(2.60).
Then we will see that ht = constant is a solution of that equation. When the wavelength of
the mode is roughly of the same size as the horizon, its amplitude fluctuates with frequency
k/2π and starts to decrease. Specifically, the drop is such (∝ 1/a) that the energy density
in gravitational waves redshifts as a−4, the same that we obtain for radiation. A given mode
with wavelength k crosses the horizon when kη = 1. The fact that the small-scale modes,
like the one k/H0 = 1000 plotted in Fig. 2.3, enter the horizon before than the large-scale
tensor modes, makes the former more damped than the later.
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Figure 2.3: Gravitational waves for four different wavenumbers as a function of conformal
time, normalized to their initial amplitude. After some time, each mode starts to oscillate
and decrease as it enters the horizon, which corresponds to the epoch kη = 1. The small-
scale modes (with large k) starts to decay before than the large-scale modes. Figure from
[4]. Reproduced with permission from Elsevier.

Akin to scalar perturbations, perturbations to the tensor part of the metric are also
Gaussian with mean zero. The power spectrum of a single polarization Ph in can be derived
as,

Ph(k) =
16πG

a2

1

2k3η2
=

8πGH2

k3

∣∣∣∣
k|η|=1

(2.62)

By convention, primordial tensor modes are characterized by their total power spectrum
PT (k), outside the horizon, defined by

〈
hTTij (k)

(
hTTij

)∗
(k′)

〉 ∣∣∣∣
η=0

= (2π)3δ
(3)
D (k− k′)PT (k), (2.63)

Using Eq.(2.59) the left-hand side of Eq.(2.63). is reduced to 2〈h+h
∗
+〉+ 2〈h×h∗×〉. Then, we

have,

PT (k) = 4Ph(k) =
32π

k3

H2

m2
Pl

∣∣∣∣
aH=k

≡ 2π2ATk−3

(
k

kp

)nT

(2.64)

Where we have defined the tensor amplitude AT and spectral index nT .A spectrum in which
k3P(k) is constant on k is known as a a scale invariant or scale-free spectrum. Leaving out
tiny divergences contained in the slow-roll parameters, the scale-invariance is followed by both
the scalar and the tensor perturbations. Furthermore, inasmuch as the field is slowly rolling
down a potential during the inflationary epoch such that the Hubble parameter is gradually
decreasing, then is also commonly predicted that the potential is marginally red-tilted, that
means that the larger-scale perturbations, the ones which have exited the horizon earlier,
are characterized by a marginally larger amplitude than the smaller-scale perturbations that
exited the horizon later. A spectrum with a small red tilt has been strongly confirmed by
the CMB observations.
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The well spread convention for the tensor parameter above fixes a scale-free scalar spec-
trum to ns = 1 and at the same time for the tensor modes this is true for nT = 0. It is more
common to refer, in place of AT , to the tensor-to-scalar ratio r,

r(k) ≡ PT (k)

PR(k)

k=kp
=
AT
As

. (2.65)

From Eqs.(2.57) and (2.64) we can obtain

r(k) = 16ε

∣∣∣∣
aH=k

(2.66)

Technically r should depend on k for the sake of the different spectral index of scalar and
tensor modes, but in practice this dependence is negligible. We can express the primordial
spectral indices ns and nT in terms of the slow-roll parameters ε and δ:

nT = −2ε

ns = 1− 4ε− 2δ
(2.67)

The prediction about a tensor index nT proportional to ε is one of the most powerful that
are derived from inflation. Several models of inflation with a multiplicity of prediction for
the slow-roll parameters have been proposed. The common feature of most of these models
though preserves the following relationship,

nT = −r
8

(2.68)

The slow-roll parameters provide a suitable framework to encapsulate the predictions of an
inflationary model. Nevertheless, at the end we are looking for the physics behind, so we
are looking of the way these parameters link to the physical foundations of inflation, such as
the potential V for the scalar field that drives inflation. These relations are summarized in
Eq.(2.42). Hence, an estimation of the slow-roll parameters from cosmological observations is
equivalent to testing the potential of the scalar field that sources inflation. Considering that
the energy scale of this potential is estimated to be around 1015 GeV, 11 orders of magnitude
beyond the reach of contemporary accelerators, this is a mesmerizing window to the high
energy physics. However, we cannot assure that gravitational waves generated during the in-
flationary epoch will be inside the reach of cosmological experiments. In fact, given Eq.(2.62)
and considering that H2 ∝ ρ/m2

Pl, where m2
Pl = 1/G, the power spectrum is proportional to

ρ/m4
Pl, the energy density at the inflationary epoch in units of the Planck mass. If inflation

occurs at energy scales well below the Planck scale, then primordial gravitational waves may
be outside the reach of CMB experiments.

The fluctuations in h are highly Gaussian. The high degree of Gaussianity that characterizes
the perturbations is another robust prediction of the theory of inflation, that has been ratified
in the CMB and large-scale structure surveys, imposing more and more constricted upper
bounds on the level of primordial non-Gaussianity. Anyway, some degree of non-Gaussianity,
mainly of scalar perturbations, is theorized, including from theories of inflation. Its detection
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would be another striking probe of the physics that drives inflation.

Finally, the third type of perturbations, the vector perturbations, are less appealing,
because they are not generated in a relevant amount for most of the cosmological cases and,
if produced, they decay quickly after their generation.
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Chapter 3

Polarized CMB

During the recombination epoch, Compton scattering produced polarization anisotropies in
the CMB. Polarization opens new gates in the analysis of the CMB. First, it duplicates the
already available information that we can find regarding scalar perturbations in the temper-
ature anisotropies. Nevertheless, more important for us will be the chance for polarization to
reveal a singular pattern that only can be produced by the elusive and much-desired gravita-
tional waves, or tensor perturbations, as opposed to scalar perturbations, which are unable
to reproduce such imprints on large scales. Hence, polarization provide us an exceptional
approach for the quest of the inflationary gravitational waves.

Most of the CMB polarization treatment resembles some aspects of the temperature ma-
nipulation. For the reasons mentioned above, and furthermore, due to the framework of this
thesis, we will focus on the analysis of the polarization. We want to motivate and pave our
way to the power spectrum estimation developed in the context of the Polarbear experiment.
As we will see in Chapter 4, for the low multipole analysis of the experiment, where the
present work is framed, the temperature maps are not considered, and we restrict our analy-
sis to the polarization maps [18]. The goal of the experiment is to measure both the E and,
above all, the B polarization modes, and the temperature anisotropies are not considered a
data product of the project. Then, we will use some of the known results and facts of the
CMB temperature analysis, but, apart from the brief introduction provided in Section 1.1.5,
a detailed explanation and derivation of them is beyond the scope of this work and I refer the
reader to look into the standard books of cosmology for the temperature treatment [4, 61].

Anyway, the polarization treatment is quite more complex than the temperature one in
technical terms due to a pair of difficulties. One of the complexities comes from the fact that
the characterization of the polarization pattern on the celestial sphere is not a straightfor-
ward function of the position on the celestial sphere as the temperature. Rather, the function
becomes a “headless vector.” We will make some simplifications under the flat-sky approxi-
mation (Section 3.1), restricting the reach of our results to small angular scales. This cost is
small compared to the large degree of simplification that we will achieve in the derivations
without losing any of the relevant physics involved. Moreover, this will be consistent with
the size of the patch observed in the involved experiment, that allow us to consider such ap-
proximation in the data analysis, although with some unwanted consequences that, in fact,
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we try to mitigate as an objective of this work. Other complexity lies in the consideration
of the geometry involved in the Compton scattering of polarized emission. We will review
this in a two-step approach in the corresponding Sections 3.1 and 3.2. The importance of
this geometry is essential to realize the implication of polarization in the detection of the
gravitational waves 3.6.

Sections 3.1 to 3.6 are heavily based on Chapter 10 of [4]. Section 3.8 takes from [8] and
Section 3.9 is mostly based on [18].

3.1 Polarization of radiation

The easiest way to measure the polarization of a light wave is to place a polarizer in front
of the detector, so that only a field pattern aligned in a specific direction of the transverse
wave, ergo perpendicular to the direction of propagation, is not obstructed. The intensity
measured by the detector can be plotted as a function of the polarizer angle to extract the
polarization. Under a half-turn of the polarizer around its axis of rotation, we will quantify
the same polarization, so it acts as a headless vector. Let us define the unit vector along
the direction of the polarizer as m̂, so that m̂ · ṗ = 0, with p̂ the wavevector of the light
wave. Then, the intensity measured by the detector should be independent of the sign of m̂.
Hence, the intensity should be quadratic in m̂. We can express it as,

Figure 3.1: Detecting polarized radiation. Light particles coming with direction p̂ (in this
case, p̂ = êz) have polarization in the plane normal to the direction of propagation p̂. The
inference of polarization can be performed placing a polarizer in the path of the light wave,
obstructing the pass of light that is not aligned with a given linear polarization. This is done
rotating the polarizer around its axis, that is coincident with êz in the figure, allowing to
quantify the amount and direction of polarization that characterize the signal. This measured
polarization is described as a headless vector with azimuthal angle φ as measured from the
x-axis in the x − y plane that is normal to the direction of propagation p̂. Figure from [4].
Reproduced with permission from Elsevier.

Idet(m̂) = Iijm̂
im̂j (3.1)

where Iij denotes the light polarization, also called the polarization tensor. We highlight
that this is a two-dimensional square matrix, because m̂ is fixed to the plane normal to p̂.
Evidently, Iij can be considered a symmetric matrix 1. Furthermore, in the case of unpolarized

1Technically, Iij is Hermitian; but we will ignore circular polarization because it is not produced by
cosmological perturbations and Polarbear is not aimed to measure it. In this scenario, Iij can be considered
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radiation, the measured intensity Idet(m̂) is the same in the m̂x− and m̂y−directions, then
Iij is proportional to δij. That allows to write,

Iij =

(
I +Q U
U I −Q

)
(3.2)

The terms in the diagonal I are the intensity, which represents the temperature T , with a
uniform part and a perturbation. The termsQ and U characterize the polarization as sketched
in Figure 3.2. These elements I, Q, and U are three of the four Stokes parameters used in
the context of electricity and magnetism to characterize polarization. The fourth parameter,
V , is not present because we are neglecting circular polarization, by the same reason as the
discussed in footnote 1. Then, in place of make use of a single distribution function f(x, p̂, η)
as with the temperature treatment, we deal with two added distribution functions fQ and
fU to account for. Furthermore, we will find that a somewhat different formalism is more
convenient than the Q and U parametrization. In terms of the electromagnetic fields, we can
express them as,

Figure 3.2: Definition of the Stokes parameters Q and U in the plane normal to the incident
light wave. Radiation that is not polarized is characterized by Q = U = 0. Figure from [4].
Reproduced with permission from Elsevier.

I = 〈E2
x〉+ 〈E2

y〉
Q = 〈E2

x〉 − 〈E2
y〉

U = 2 Re(〈ExE∗y〉)
V = −2 Im(〈ExE∗y〉)

(3.3)

The orientation of the polarization ellipse relative to the x−axis is given via the polarization
angle,

m =
1

2
tan−1 U

Q
(3.4)

as a real and symmetric matrix.
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The polarization amplitude is given by,

~P =
√
Q2 + U2m̂ (3.5)

Now our goal is to obtain the statistics for Q and U that we predict in the CMB. The
statistics of the temperature are simple to obtain due to the invariant nature of temperature
under coordinate transformations. However, this is different for polarization: if we detect
polarization lying in the x-axis, that is coincident with Ixx, and we perform a rotation of
the coordinate system, then the quantity Ixx is changed. The Stokes parameters Q and U
change in the same way as well. They transform like a spin-2 object. That means that if a
coordinate system (x̂, ŷ) is rotated by an angle φ around ẑ, then Q and U rotate to Q′ and
U ′ by an angle 2ψ. We have,

(Q± iU)′(ẑ) = e∓2iψ(Q± iU)(ẑ) (3.6)

The polarization field of the CMB can be represented by the Stokes parameters U and Q.
Inspired by Eq.(3.6), we can combine Eqs.(3.4) and (3.5) into a single complex object (a spin
2 and spin -2 field) describing the polarization in the direction n̂ on the celestial sphere,

P±2(n̂) = (Q± iU)(n̂) (3.7)

This will be very useful when we introduce the E and B mode formalism in Section 3.7. For
now, we will develop our derivations in the flat-sky approximation. This greatly facilitate the
computations without losing any part of the physics. Thus, we can manipulate the position
on the celestial sphere as a two-dimensional vector on the x–y plane, that we denote by θ. In
the same way, rather than dealing with multipole moments `, m as in Eq.(1.21), we denote a
two-dimensional vector l as the Fourier counterpart of θ. For instance, for the temperature
field, defined as proportional to the intensity I, has the following Fourier counterpart,

T (l) =

∫
d2θ T (~θ) eil

~θ (3.8)

Let us write Eq.(3.2) as,
Iij = Iδij + ITij (3.9)

where ITij is traceless and encloses the information associated with the two polarization states.
Rather than in Q and U , however, we want to describe those two states by their action when
they are rotated. In the same way as we decomposed the components of the spatial metric
perturbation hij in Section 2.2.2 into scalar, vector, and tensor perturbations, we want to
do with ITij . In fact, it is slightly easier in two dimensions: Iij consist of three independent
elements. Hence, its traceless part ITij consists of only two independent components. One of
these is a scalar which we can obtain by the contraction liljITij/l

2. We will denote this as
E(l). The remaining one, which we will call ITij (l), is a transverse and traceless tensor (that
means liITTij (l) = 0). Then, we can set the following decomposition:

ITij(l) = 2

(
lilj
l2
− 1

2
δij

)
E(l) + ITTij (l) (3.10)
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We will see that the scalar term E mixes to both scalar and tensor metric perturbations.
In the other hand, the transverse and traceless term ITTij is coupled only to tensor metric
perturbations. This is an additional justification of the relevance of the decomposition. Now
we have to find the relationships between this new base and the original Q/U decomposition.
We can perform the contraction liljITij/l

2 to obtain the scalar part:

E(l) =
lilj

l2
+ ITij

= (cos2 φl − sin2 φl)Q(l) + 2 cosφl sinφlU(l)
(3.11)

where in the last line we have expressed in terms of components using the azimuthal angle
φl of the two dimensional wavevector: l = (lx, ly) = (cosφl, cosφl)l. With the double angle
trigonometric formulas, we can reduce it as

E(l) = cos 2φlQ(l) + sin 2φlU(l) (3.12)

Now, using Eq.(3.10) for ITT , we write

ITT12 (l) = IT12 − 2
l1l2
l2
E(l)

= U(l)− sin 2φl(cos 2φlQ(l) + sin 2φlU(l))

= (1− sin2φl)U(l)− sin 2φl cos 2φlQ(l)

= cos 2φlB(l)

(3.13)

Where we have defined,
B(l) = − sin 2φlQ(l) + cos2φlU(l) (3.14)

In the same way, the rest of terms in ITTij are also expressed in terms of B:

1

2

(
ITT11 − ITT22

)
(l) = − sin 2φlB(l) (3.15)

We have broken down the polarization tensor ITij , which before we were able to express in
terms of two independent parts Q and U , into the scalar component E(l) and the tensor
component B(l). Finally, we can decompose the polarization tensor as [72]:

ITij(l) =

(
cos 2φl sin 2φl
sin 2φl − cos 2φl

)
E(l) +

(
− sin 2φl cos 2φl
cos 2φl sin 2φl

)
B(l) (3.16)

For instance, we can focus on a single mode with a wavevector l = l0êx lying in the x−axis
(so φl = 0). The polarization pattern of this single mode as seen in real space is,

ITij

(
~θ
)

=

(
1 0
0 −1

)
eil0θxE0 +

(
0 1
1 0

)
eil0θxB0 (3.17)

This pattern is depicted in Fig. 3.3 The E-mode changes in amplitude along the same
direction as, or perpendicular to, its orientation. This is the analogy of an electric field.
An electric field produced from a point source E = qr̂/r2, changes in amplitude as one goes
farther from the point source, but always has the same orientation: radially out of the source.
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Moving in the same orientation of the field causes the amplitude of the field to decay. On
the other hand, the B-mode changes in amplitude in a different direction from that in which
it is oriented (that is to say, by 45◦), evoking a magnetic field. We realize that the B-mode
pattern can be obtained from the E-mode pattern if we turn around each of the polarization
orientations by 45◦.

Figure 3.3: Polarization produced by a single plane wave of perturbation in the x-direction (so
k = kêx), for an E-mode (upper panel) and a B-mode (lower panel). The size of each headless
vector shows the polarization amplitude. These patterns are discernible by observing the way
the polarization angle orientates with respect to the mode wavevector (the direction in which
the polarization varies). As in Fig. 3.4, the light that corresponds to this polarization pattern
propagates out of the page (in the z-direction). Figure from [4]. Reproduced with permission
from Elsevier.

Inspired by this analogy, we can consider a superposition of plane waves in the x–y plane
that have the same wavelength and phase at the origin, along with the amplitude. We only
allow to vary the azimuthal angle φl. The produced polarization patterns for E- and B-modes
are plotted in Fig. 3.4. These patterns are clearly noticeable, with the B-modes showing the
distinctive “swirly” shape. We can extract from the plot that E- and B-modes show dissim-
ilar parity: E have even parity, that is, it remains unchanged if we flip the figure, while B
have odd parity, that is, it flips sign. So, it is possible to recognize the E- and B-components
in an observed polarization map.

In short, E modes are scalar quantities with resembling properties of the divergence of the
electric field, while B modes are pseudo-scalars with similar properties as those of the curl
of the magnetic field. This observation does not apply for Q and U . Then, the computation
of power spectra for E and B becomes unambiguously simple. Eq.(3.16) also tell us that
we always can choose a smart coordinate system to realize if a specific physical phenomenon
generates E- or B-modes. Based on Eq.(3.17), a mode with a wavevector l lying in the x-axis
that is expressed only in terms of Q and not U , is a pure E-mode. By the invariance of
the E −B decomposition under coordinate transformations, this can be extrapolated to any
orientation of the wavevector.
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Figure 3.4: The same as Fig. 3.3, but now the polarization produced by a radial wave in the
x–y plane is plotted (left panel), that is, a superposition of plane waves with identical phase
and amplitude but varying azimuthal angle φl. The disposition of this plane waves shows
the distinction between E- and B-mode patterns very evidently (middle and right panels,
respectively; again, for radiation coming out of the page). For each case, the peak of the
radial wave is depicted with inner red lines and the trough of the same wave is sketched outer
blue lines. Figure from [4]. Reproduced with permission from Elsevier.

Figure 3.5: Left panel: unpolarized light ray propagating to the origin along the x-axis
gets deflected by an electron into the +z-direction. Only the intensity along the y-axis is
transmitted after scattering. Due to the absence of incident intensity along the x-direction,
the outgoing light ray is polarized along the y-direction. Right panel: incident isotropic
(i.e. monopole) radiation does not source polarization. In this case, because the incident
intensities along the x- and y-axis are identical, the outgoing amplitudes along both of these
directions are also the same, and polarization is not generated (another good explanation
can be found in [5]). Figure from [4]. Reproduced with permission from Elsevier.
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3.2 Polarization production from Compton scattering

Photons propagating in the z-direction have their corresponding electric and magnetic fields
oscillating in the plane perpendicular to the direction of propagation, the x–y plane. If both
transverse directions have the same intensity, we are talking about unpolarized radiation.
It is time to analyze when this condition does not hold, i.e. the intensities along the two
transverse directions are not the same and light is polarized.

Compton scattering can produce polarized light2. To conceptualize this, left panel of
Fig. 3.5 illustrates a light ray coming from the +x-direction. This unpolarized light ray is
characterized by the same intensity in the transverse y- and z-directions. Photons scatter off
an electron at the origin and deviates to the +z-direction (the observer line of sight). Since
the outgoing direction is coincident with the z-axis, no incoming intensity lying in this axis
is transmitted. In opposition, the intensity associated with the y-axis (perpendicular to both
the incoming and the outgoing ray directions) gets all transmitted. As outcome, the outgoing
radiation is polarized, meaning that the discrepancy between the outgoing intensities in the
two transverse directions (y: total transmission; x: no transmission) is maximized.

Now, let us consider incoming light from every possible direction towards an electron.
Then the simplistic situation picture in the left panel of Fig. 3.5 will not hold anymore.
Let us consider a situation a bit less oversimplified of isotropic incoming radiation from all
directions to the electron in the right panel of the same figure. We still say it is oversimplified
because we are considering incident rays from only two directions, the +x- and +y-directions,
but this will be enough for our analysis. The Ixx projection of the intensity of the outgoing
wave corresponds to the incoming light ray from the y-axis, while the outgoing Iyy comes
from the incoming radiation from the x−direction. Due to the isotropy, the intensities of the
incident light coming from both directions are the same. Then, the intensities associated with
the two axes of the outgoing light wave are identical, Ixx = Iyy, so the outgoing radiation is
not polarized.

We already have checked that isotropic radiation can only produce unpolarized emission.
But what about anisotropic radiation? The most elemental case is when we are dealing with
dipole radiation, as exemplified in the left panel of Fig. 3.6. In this example, the outbound
intensity associated with the x-direction comes from the ±y-incoming light rays, character-
ized by the average temperature (that are not shown in the figure). The outbound intensity
associated with the y-direction has also the average temperature because it is a superposition
of a cold spot (located in the −x-direction) and a hot spot (located in the +x-direction).
Then, the dipole pattern cannot produce polarized emission.

To emit polarized light, the incident radiation must have a nonvanishing quadrupole radi-

2We are focusing on elastic scattering of light particles off electrons, a particular case of Compton scat-
tering, the well-known Thomson scattering.
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ation contribution. This is drawn in the right panel of Fig. 3.6. The hotter (colder) incoming
light from the x- (y-) direction generates more (less) intensity than average, associated with
the y- (x-) axis for the outgoing light ray. Thus, there is more intensity along the y-axis of
the outgoing light ray than along the x-axis: the outbound radiation is polarized. Fig. 3.6
sketches polarization in the x–y plane, more specifically in the y-axis. We recall from Fig.
3.2 that this configuration corresponds to Q < 0 and U = 0. Rather, if we turn around the z
axis the incident rays by 45◦, the outbound polarization would have been along the axis 45◦

from the x and y-axes, generating only U polarization.

The implication that Compton scattering sources polarization only when the incident field
has a nonzero quadrupole moment leads to relevant consequences for cosmology. Electrons
and photons are strongly coupled before recombination, leading to a tiny quadrupole for the
radiation field. Hence, we predict a smaller CMB polarization as compared to the temperature
anisotropies.

Figure 3.6: Left panel: incident radiation with a dipolar pattern is not able to emit polarized
light. Hotter (colder) radiation is shown as thick blue (thin red) lines. In this example, the
incident radiation is hotter than average (medium black lines denotes average) along the +x-
axis, and colder than average along the −x-axis (the incident radiation from the ±y-direction
is characterized by the average intensity, as in the right panel of Fig. 3.5). The two light
waves along the x-axis hence leads to the average temperature for the outgoing light wave
along the y-axis. The outbound temperature associated with the x−axis is generated by the
incoming light waves from the ±y-directions. The outgoing temperature associated with the
x-direction is also average because both incident rays share the same temperature. This leads
to unpolarized outgoing light waves. Right panel: incident light with a quadrupolar pattern
generates outgoing polarized radiation. The outgoing light ray has more intensity along the
y-direction than in the x-axis. This is consequence of the incoming hotter light from the
±x-direction than the radiation from the ±y-direction. Figure from [4]. Reproduced with
permission from Elsevier.
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3.3 Polarization from a single plane wave

The examples of the previous subsection are relevant to acquire a qualitative comprehen-
sion of the mechanism responsible to source polarization in the CMB within the context of
Compton scattering. To analyze the physical process quantitatively, we must account for
the Boltzmann equation, considering the two photon polarization states and the polarization
dependence of Compton scattering in the collision term. We start with the simplest case of
a single plane-wave perturbation to the photon distribution.

In first place we set the polarization axes in the most generic situation when the incident
light ray comes from direction n̂′ (Fig. 3.7). In the case of the incoming direction êx, was
obvious that polarization was expressed as the difference in the intensity associated with the
two perpendicular directions, y and z. We generalize this to two axes perpendicular to this
direction, spanning the plane in which incident waves are polarized, as ε̂

′
1 and ε̂

′
2. We are still

focused on outbound rays along the z-axis, so we can set the two outgoing polarization axes
as ε̂1 = êx and ε̂2 = êy. In brief, the incident polarization vectors are ε̂

′
i, the outgoing are ε̂i.

Figure 3.7: Incident light ray from direction n̂′ gets deviated by an electron at the origin
generating an outbound ray along the direction n̂ = êz. The plane perpendicular to the
incident direction is defined by the two polarization vectors, ε̂

′
1 = ê

′

θ and ε̂
′
2 = ê

′

φ. The
outbound ray is along the êz-direction, leading to polarization vectors ε̂1 = êx and ε̂2 = êy.
Figure from [4]. Reproduced with permission from Elsevier.

Compton scattering has a polarization dependence, previously analyzed from a qualitative
point of view, that is cleanly captured by a multiplicative factor in the amplitude squared
for outbound light rays polarized along the ε̂i-direction. Summing over the two (not rele-

48



vant) electron spins along with the incident light polarization, the usual unpolarized squared
amplitude for the Thomson cross-section, considering each outgoing polarization i = 1, 2
individually, acquires an extra multiplicative contribution,

∑
3 spins

|M|2 ∝
2∑
j=1

|ε̂i(n̂) · ε̂′j(n̂′)|2 (3.18)

For the Q polarization that, according to Eq.(3.2), is produced by the difference between this
cross-section for i = 1 and i = 2, that is to say, the difference between the field amplitude
squared in the êx- and êy-directions, we have:

2∑
j=1

|ε̂1(n̂) · ε̂′j(n̂′)|2 −
2∑
j=1

|ε̂2(n̂) · ε̂′j(n̂′)|2 =
2∑
j=1

(
|êx(n̂) · ε̂′j(n̂′)− |êy(n̂) · ε̂′j(n̂′)|2

)
(3.19)

We perform the integral over all incident n̂′-directions, resulting in

Q(êz) = A

∫
dΩ′f(n̂′)

2∑
j=1

(
|êx(n̂) · ε̂′j(n̂′)− |êy(n̂) · ε̂′j(n̂′)|2

)
(3.20)

Where we have introducing A as a normalization factor fixed by the Boltzmann solution, and
f(n̂′) is the amplitude of the incident light from the n̂′-direction, and we are performing the
integral over all those directions. It is worthy to mention that f is a function of n̂′ solely
and not on j: this is due to the supposition that the incoming light is not polarized.The dot
products in Eq.(3.20) can be computed using Cartesian coordinates for ε̂

′
1 and ε̂

′
2. These unit

vectors are prescribed to be orthogonal to n̂′, with components

n̂′ = (sin θ′ cosφ′, sin θ′ sinφ′, cos θ′) (3.21)

We define ε̂
′
2 to be on the x-y plane, which ends with

ε̂
′

2(θ′, φ′) = (− sinφ′, cosφ′, 0) (3.22)

Hence, ε̂
′
1 is totally fixed by the vector product of n̂′ and ε̂

′
2:

ε̂
′

1(θ′, φ′) = (cos θ′ cosφ′, cos θ′ sinφ′,− sin θ′) (3.23)

Inserting Eq.(3.23) in Eq.(3.20), we have

Q(êz) = A

∫
dΩ′f(n̂′)

[
cos2 θ′ cos2 φ′ + sin2 φ′ − cos2 θ′ sin2 φ′ − cos2 φ′

]
= A

∫
dΩ′f(n̂′) sin2 θ′ cos 2φ′

(3.24)

We realize that the angular contribution is proportional to a superposition of the spherical
harmonics: Y2,2 +Y2,−2. Given the orthogonality of the spherical harmonics, the only nonzero
terms in the integral corresponds to the ` = 2, m = ±2 modes projected out of the intensity
distribution f . So, a non-vanishing Q-component of polarization will be sourced only if the
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incoming radiation has a quadrupole pattern. This is the quantitative verification of the
understanding gained by plots of the previous section. The U part of the polarization can
be obtained in a similar fashion and it is,

U(êz) = A

∫
dΩ′f(n̂′) sin2 θ′ sin 2φ′ (3.25)

For this case we realize that the angular contribution is proportional to a superposition of the
spherical harmonics: Y2,2 − Y2,−2. We arrive to the same conclusion, now for U polarization:
it only can be sourced if the incoming radiation has a quadrupole moment.

Now we are in conditions to show how the outgoing Q and U fields are coupled to the
moments of the incoming unpolarized intensity distribution. To study it, a first step might
be considering the k-vector lying in the x-direction. The next step would be to let k lie in
the x-z plane. The final step, a generalization to an arbitrary orientation of k. Nevertheless,
the first part will elucidate the most remarkable aspects of the general relationship.

The complication here lies in the fact that the orientation of the quadrupole pattern in the
radiation intensity distribution f(n̂′) is dictated by the orientation of the wavevector. The
photon distribution can be expressed as the sum of a zeroth-order part, a uniform distribution
dictated by the Planck’s law, and a perturbation as expressed in Eq.(1.21), here described
by Θ(k, µ) where µ is the dot product of the wave vector k̂ and the photon momentum
vector. So, we need to pay attention to three orientations: the wavevector k̂; the incident
direction n̂′; and the outbound photon direction n̂. Without loss of generality we can set
n̂ = êz. In this situation, we have µ = k̂ · n̂′. Hence, f(n̂′) in Eq.(3.24) can be expanded in
terms of Legendre polynomials with argument k̂ · n̂′, that should not be confused with the
cos θ′, because θ′ is the angle from the z-axis to the incoming direction n̂′. Therefore, is not
straightforward to connect the parameter µ with the angles θ′ and φ′.Let us start with the
first step we mentioned above. Then,

µ ≡ k̂ · n̂′ = (n̂′)x = sin θ′ cosφ′ (3.26)

Where we have used Eq.(3.21). We expand the perturbation Θ of Eq.(1.21) in terms of
Legendre polynomials,

Θ(k, k̂ · n̂′) =
∑
l

(−i)l(2l + 1)Θl(k)Pl(k̂ · n̂′)

→ −5Θ2(k)P2(sin θ′ cosφ′)

(3.27)

Where we have inserted Eq.(3.26), and projected out the only relevant contribution for the
integral in Eq.(3.24), that is the quadrupole term. Recall that we are concentrating our
attention to scalar perturbations. Following the recipe described above to obtain the re-
lationships of the outgoing Q and U fields with the moments of the incoming unpolarized
intensity distribution Θl, after some derivations, we obtain for k lying in the x-z plane:

Q(êz,k ⊥ êy) = 4πA sin2 θkΘ2(k) (3.28)
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And no U polarization is sourced. So, we only generate Q polarization for this case. Recalling
the flat sky approximation, the plane in the sky is the x–y plane (because it is perpendicular
to the line of sight, the z direction). Hence, a k vector lying in the x–z plane is projected
along the x-axis on the sky plane. Due to the fact that the polarization is only Q in this case,
we thus conclude from the polarization E/B-decomposition in Eqs.(3.16)-(3.17), that only
the E polarization is sourced from scalar perturbations. For an arbitrary direction of k, it
can be shown that the polarization also obeys the pure E-mode expectation from Eq.(3.16):

Q(êz,k) = 4πA sin2 θk cos(2θk)Θ2(k)

U(êz,k) = 4πA sin2 θk sin(2θk)Θ2(k)
(3.29)

Finally, we generalize these relations to an outgoing light ray, i.e. the line of sight, that has
not to be along the z-direction. Instead, it is represented by a generic unit vector n̂. For that
purpose, we remember the fact that the polarization is totally characterized by the scalar
E-component on the sky, invariant under a rotation of n̂. Hence, we only need to insert n̂ · k̂
in place of cos θk. Then,

E(n̂,k) = 4πA
(

1− [n̂ · k̂]2
)

Θ2(k) (3.30)

These are results obtained under the umbrella of the flat-sky approximation. The full sky
results are slightly more complicated, without a substantive gain in the physical understand-
ing of the phenomenon.

Essentially, scalar perturbations can source only E-polarization because of their symme-
try, as illustrated in Fig. 3.8. There we consider a configuration with a single plane-wave
scalar perturbation lying in the x-axis. If we rotate the wave perturbation around this axis,
it does not change. For this example the quadrupole pattern is seen as the hotter radiation
along the ±êx-directions, and colder in the direction orthogonal to x-direction (consistent
with the sum of Y2,±2 that we found before). As the Fig. 3.8 illustrates, the polarization
pattern sourced by Compton scattering is restricted to be lined up with the x-direction by
the described rotational symmetry, case shown in Fig. 3.4, corresponding to a pure E-mode.
This will have interesting consequences. A full-sky explanation of this phenomenon is also
illustrated in [5].
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Figure 3.8: In the upper panel a polarization pattern produced by a single plane-wave scalar
perturbation lying in the x-axis is illustrated. The perturbation produces a temperature
quadrupole pattern that changes in space as observed by electrons, drawn as dots. In three-
dimensional space, with the z-axis directed out of the page, this pattern is invariant under
rotations around the wave vector k̂, say, the x-direction, as pointed out by the round arrow
on the left. As a mental exercise, we can see the photons deviated by the electrons in the
z-axis, directed out of the page. Recalling Section 3.2, the polarization pattern is seen as the
one drawn in the lower panel. If we contrast this picture with Fig. 3.3, we realize that this
should be a pure E-mode. Figure from [4]. Reproduced with permission from Elsevier.

3.4 Boltzmann solution

In the previous section, we realized that the polarization field ΘP (k, µ, η) coincides with the
Q polarization for a wavevector k lying in the x-axis. Broadly speaking, ΘP = ΘE tells
the amplitude of the E-mode polarization. Since the scalar perturbations are rotationally
symmetric around the k̂-direction, the polarization is solely specified by a single function
ΘP (k, µ, η). We will need to introduce the Boltzmann equation to keep track of ΘP in order
to derive the predicted E-mode.

The LHS of the equation is specified by the free-streaming, i.e. the same as for the tem-
perature field Θ(k, µ, η). The RHS consists of the source and loss terms. From Eq.(3.28) we
know that (1−µ2)Θ2, with µ the cosine of the angle subtended from k̂ to n̂, is a multiplicative
factor of the outbound polarization, for k̂ lying in the x-z plane. The multiplicative factor
must include the number of scattering events per η interval, then A ∝ −τ ′, where we define
the Compton-scattering optical depth:

τ(η) ≡
∫ η0

η

dη′neσTa (3.31)

where σT is the Thomson cross-section and ne is the electron density. Then, the minus sign in
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A comes from the convention of the optical depth being measured in reverse direction in time.
Combining the two factors, we estimate a source term for ΘP with a multiplicative factor
−τ ′(1 − µ2)Θ2. Also, another worthy consideration is that, if polarization is not produced,
the photons reduce their polarization progressively due to the action of the Compton scat-
tering. Therefore, we can conjecture a loss term proportional to ΘP , say, τ ′ΘP . Combining
everything, we are left with the following equation,

Θ
′

P + ikµΘP = −τ ′[b(1− µ2)Θ2 −ΘP ] (3.32)

with b a constant estimated to be of order one. We are almost set. A pair of missing terms
here are needed to consider the polarization of the incident radiation, which we have supposed
without polarization in our expressions. From [73], the complete equation is,

Θ
′

P + ikµΘP = −τ ′
[
−ΘP +

3

4
(1− µ2)Π

]
(3.33)

With
Π(k, η) ≡ Θ2 + ΘP2 + ΘP0 (3.34)

After some computations and approximations, the solution of Eq.(3.33) is given by:

ΘP (k, µ) ' 3

4
Π(k, η∗)

(
1 +

∂2

∂(kη0)2

)
e−ikη0µ (3.35)

Where η∗ is the conformal time at the peak of the visibility function, g(η) ≡ −τ ′(η)e−τ(η).
To obtain the moments ΘP,`, we take the product of Eq.(3.35) with P`(µ) and then, we take
the integral spanning all the values of µ. It leads to,

E`(k) = ΘP,`(k) ' 3

4
Π(k, η∗)

(
1 +

∂2

∂(kη0)2

)
j`(kη0) (3.36)

Where we have replaced ΘP,` with E` since scalar perturbations produce pure E-mode po-
larization. In the tight-coupling regime, we can relate Π in terms of the quadrupole,

Π =
5Θ2

2
(3.37)

Using Eq.(3.37) and other approximations, we can write Eq.(3.36) as

E`(k) ' 15

8
Θ2(k, η∗)

`2

(kη0)2
j`(kη0) (3.38)

Furthermore, in the tight-coupling regime, we can express the quadrupole in terms of the
dipole,

Θ2 = − 4k

9τ ′
Θ1 (3.39)

Inserting Eq.(3.39) in Eq.(3.38), we have,

E`(k) ' 5k

6τ ′(η∗)
Θ1(k, η∗)

`2

(kη0)2
j`(kη0) (3.40)
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This is the equation for the polarization moments as seen nowadays sourced by a single
plane-wave scalar perturbation in the tightly coupled regime. There are three important
points to highlight. To begin, we realize that the spectrum of the polarization is expected
to be roughly k/τ ′ times smaller than the temperature anisotropy during the decoupling
era. This is due to the dual fact that polarization is sourced by a quadrupole moment while
the same quadrupole is damped before recombination by the action of Compton scattering.
Another point to remark is that we conjecture an oscillatory pattern for the spectrum of
polarization due to the relationship E` ∝ Θ1, which exhibits acoustic oscillations. More
concretely, we estimate the polarization oscillations, in the same way as the dipole, evaluated
out of phase with respect to the monopole Θ0. The maxima and minima in the temperature
anisotropy power spectrum, driven mainly by the oscillations in the monopole, should then
be out of phase with the maxima and minima in the polarization spectrum. To finalize this
highlighting, there is no such an integrated Sachs–Wolfe effect equivalent which affects the
temperature anisotropy power spectrum. Polarization is not produced or affected by light
particles moving across varying (small) gravitational fields. Hence, the polarization spectrum
nowadays is to say a more uncorrupted evidence of the early universe, unaffected by its late
evolution.

3.5 Polarization power spectra

The polarization moments originated from a single plane wave are expressed in Eq.(3.40),
but the universe exhibits a combination of several of such waves, with different amplitudes
ΘP (k, n̂). The E` angular power spectrum from a sum of plane waves can be obtained in a
similar fashion as how is usually derived the power spectrum of the temperature anisotropies.
Following the conventional way, we introduce

T E` (k) ≡ E`(k)

R(k)
(3.41)

And the power spectrum of polarization can be obtained in that way as,

CEE(`) =
2

π

∫ ∞
0

dk k2|T E` (k)|2PR(k) (3.42)

Another result we have in advance for scalar perturbations is,

CBB(`) = 0 (3.43)

The polarization power spectrum CEE(`) obtained numerically, along with is CTT (`) for
reference (line of dots; decreased by a factor of 50), are plotted in Fig. 3.9. As we anticipated
in the tight-coupling regime, the acoustic oscillations are boosted in CEE(`) and plotted out
of phase with respect to CTT (`). This pair of observations have their cause in CEE(`) being
dependent only in the dipole of the radiation distribution, remembering the proportionality
of the quadrupole with the dipole distribution in the tight-coupling regime, at the same time
as CTT (`) depends on both the monopole and dipole, with a predominance on the monopole.
Furthermore, the dipole is more unchanged by photon diffusion, deriving in a less suppressed
angular polarization spectrum toward small scales. This deduction can be checked in the
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plot.

Figure 3.9: Angular power spectra of temperature anisotropies and E-mode polarization
anisotropies, along with their cross-correlation, given a fiducial concordance cosmology. The
polarization anisotropies power spectra are of lower amplitude than those of the temperature
anisotropies by a factor of order 1/50, but less suppressed in smaller scales. Figure from [4].
Reproduced with permission from Elsevier.

In addition, the cross-correlation between temperature and polarization anisotropies is
plotted in Fig. 3.9, from the following expression depending on both the temperature and
E−mode moments:

CTE(`) =
2

π

∫ ∞
0

dk k2|T`(k)T E` (k)|PR(k) (3.44)

There is a predicted significant anticorrelation of T and E in the multipole range ` . 200,
that is evidenced as negative value for the cross-spectrum: it is a straight outcome of the
evidence that the primordial conditions were configured beyond the horizon causing only the
cosine mode of the acoustic oscillations to be produced. In the case that both sine and cosine
modes were produced, the successive coherent maxima and minima measured in both the
temperature and polarization anisotropies power spectrum would not be there [74]. Indeed,
the acoustic oscillations are well-measured in the temperature anisotropies power spectrum.
The first acoustic peak is approximately at multipole 200, corresponding to physical scales
that were inside the horizon at the recombination era. It is plausible to find a model to pro-
duce perturbations at the recombination epoch suitable to produce solely the cosine mode.
Anyway, the depression found in the TE cross-spectrum starts at a multipole around 30,
coincident with scales that have not entered the horizon yet during the recombination era.
Thus, for any suitable model for sub-horizon perturbation production, it would be impossible
to it, by construction, to explain a non-vanishing TE signal on these super-horizon scales.
The detection of this feature provides a compelling proof of an even earlier setup of the
primordial perturbations, mechanism already addressed by the theory of inflation. A highly
significant detection of this imprint in the measured CMB is shown in Fig. 3.10.

55



From CEE(`) and CTE(`) we can extract information about cosmological parameters, as
discussed in Section 1.1.4. In particular, the As-τrei degeneracy generated by the scattering
of CMB photons after reionization is broken by the polarization data. On scales within the
horizon at the reionization epoch (when electrons start to scatter again), roughly speaking,
` & 100, the temperature anisotropies are suppressed by a factor e−τrei , at the same time as
they remain the same on the very largest scales. Looking through the polarization window,
nevertheless, this late era of scattering in practice sources anisotropies. Once more, the
temperature quadrupole pattern left by the end of reionization and observed by the free
electrons is transformed into polarized radiation due to the action of Compton scattering.
As it is the same mechanism, we can still use Eq.(3.38), with the following substitutions:
η∗ → ηrei, and η0 → η0 − ηrei, with ηrei as the conformal time when reionization takes
place. Due to the photons free streaming from recombination to reionization, the quadrupole
Θ2(k, ηrei) at reionization is damped if the wavelength of the perturbation is smaller than
the horizon at that time, this is, for k � aH(ηrei). Due to this fact, the polarization
emission generated by reionization has a considerable significance only on very large angular
scales. This is appreciable as the bump located in the multipole range ` < 10 in Fig. 3.10,
with a more noticeability in CEE(`). The amplitude of this bump in CEE(`) depends on a
multiplicative factor τ 2

rei. Then, τrei is being able to be estimated in an independent way
from the temperature anisotropies spectrum.

Figure 3.10: Top panel: Angular cross power spectrum of temperature and E-mode po-
larization anisotropies as observed by the Planck experiment (drawn with points; DTE

` ≡
`(`+ 1)CTE(`)T 2

0 /2π, as plotted in Fig. 1.3). We must be aware that the scales of both the
multipole and spectrum axes changes at l = 30. The solid line illustrates the forecast for the
fiducial concordance cosmology. It is remarkable the values below zero in the multipole range
30 . ` . 200. Bottom panel: discrepancy of the theory with the measurements. Figure from
[3]. Reproduced with permission © ESO.
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3.6 Gravitational waves detection

Exists a key distinction between the scalar perturbations we have discussed in the previous
sections and tensor perturbations. There is only one direction that photons need to use as a
reference when dealing with a scalar plane-wave perturbation, the orientation of the wavevec-
tor k. After fixing this orientation, the photon moments are expressed solely in terms of the
angle subtended from the photon momentum vector to the wavevector. After fixing this
angle, the photon moments are rotationally symmetric around the wavevector. From Fig.
3.8, this is the cause of scalar perturbations to generate only E-modes. For the polarization
field we have two directions to keep track: the direction of the polarization and the direction
that makes to vary the polarization amplitude. In the case of scalar perturbations, from Fig.
3.3, we noticed that these orientations should be in parallel or orthogonal one with respect
to the other one. Naturally, each direction seeks the only direction available for orientation,
the wavevector. This configuration is the conspicuous aspect that defines the pure E-modes.

The azimuthal symmetry around the wavevector we had in the photon distribution pro-
duced by scalar perturbations is broken by tensor perturbations. This lack of symmetry is
caused by the salient pattern of the tensor metric perturbation sketched in Fig. 2.2. This
pattern leads a rotational dependence around the wavevector to the photon distribution. This
anisotropy in the photon distribution induced by a tensor perturbation given by Eq.(2.59)
can be shown to be,

ΘT (k, µ, φ) = ΘT
+(k, µ)(1− µ2) cos(2φ) + ΘT

×(k, µ)(1− µ2) sin(2φ)

= ΘT
+(k, µ) sin2 θ cos(2φ) + ΘT

×(k, µ) sin2 θ sin(2φ)
(3.45)

where φ is the azimuthal angle around the wavevector that points along the z-axis. In the
process of generation of the polarization field, the additional dependence on this azimuthal
angle with respect to the scalar case implies an extra direction to be specified. This suggests
that the direction of the polarization is not constrained to be parallel or perpendicular to
the orientation that makes the polarization amplitude to vary. It follows that gravitational
waves can generate B-modes [75,76], along with the E-mode polarization.

The relevance of the B-modes generated by tensor perturbations lies in the complication
of measuring the tensor imprints in the temperature anisotropies or the E-mode polariza-
tion. They receive a mixed contribution from scalar and tensor perturbations, so in order
to separate their contributions we need to consider the distinctive multipole dependence of
their imprints in the spectrum. Anyway, even in the utopian presence of a completely accu-
rate and precise (impossible by cosmic variance) measurement of the primordial temperature
anisotropies or the E-modes, the overlapping effects in the spectrum of many combinations
of the cosmological parameters lead to degeneracies in the parameter estimation, and so,
in the fitted cosmological contributions that makes impossible a definite estimation of the
tensor part. In contrast, B-modes do not have any coupling to scalar perturbations. That
means, any B-mode detection should be an indication of gravitational waves. In theory, this
method would not have any limitation in the detection of the inflationary tensor signal, since
there should not be any other signal fluctuation to which compare the relative size of the
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Hinf/mPl contribution. In reality, we have other sources of B-mode signal alteration during
its propagation from the last scattering surface, such as the foreground contamination caused
by dust and synchrotron emission from the Milky Way, or effects outside the linear regime
such as gravitational lensing (Section 3.8). However, CMB B-modes are the most precise
tool for the quest of inflationary gravitational waves for the next years or decades.

The polarization pattern calculation treatment from a single plane-wave of a tensor per-
turbation is the same used for the scalar case in Section 3.3. We must integrate over the
incident radiation distribution to predict the outbound polarization pattern in the proximi-
ties of the z-axis. We want to evidence that tensor perturbations source B-modes. We recall
that Eq.(3.17) tell us that for any k which projected into the sky plane lies in the x-axis,
solely the B-component produces the U -polarization contribution. Then, we are only left
with the goal of proving that tensor modes generate U polarization under this setup using
Eq.(3.25). We consider the wavevector,

k̂ = cosα êz + sinα êx (3.46)

with α as the angle subtended from the wavevector to the line of sight vector n̂. Let us
concentrate on the h× part in Eq.(3.45). For our argument, it suffices for one of these
components to produce the U -polarization contribution. To begin, we can write the angular
part as a function of the unit vector n̂′ that represents the orientation of the incoming photon:

ΘT (n̂′) ∝ sin2 θ′ cos(2φ′)

= 2n̂
′

xn̂
′

y

(3.47)

with n̂
′
x,y,z symbolizing the components of the incident photon direction. The next task is to

express this for a wavevector of the form Eq.(3.46). This can be achieved by a rotation of
the coordinate system about the y-axis by an angle −α. This keeps n̂

′
y untouched, but n̂

′
x

becomes
n̂
′

x → cosα n̂
′

x − sinα n̂
′

z (3.48)

Next, we insert the Eq.(3.45), with the angular dependence given in Eq.(3.46), in Eq.(3.25).
There is a cancellation of the angular integrals in the second term of Eq.(3.48). We are
left with the first term, that end to be of the same angular dependence as previous to the
rotation: ∝ n̂

′
xn̂
′
y = sin2 θ′ cos(2φ′). The equation is expressed now as,

U(êz) ∝ h× cosα

∫ −1

1

d cos θ′ sin4 θ′
∫ 2π

0

dφ′ sin2(2φ′)

= h× cosα

(
16

15

)(π
2

) (3.49)

We just have shown that for a tensor mode projected on the sky as parallel to the x-axis,
it induces a non-zero U -polarization, sourcing in this way B-modes. Middle panel of Fig.
3.8 can illustrate this if we extrapolate the diagram a little bit: the tensor mode induces
a quadrupole pattern that is in the same way as in the figure for scalar perturbations but
with a rotation of π/4 around the z-axis , which is directed out of the page. We remember
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that Fig. 2.2 for h× (that is basically of the form expressed in Eq.(3.45)) shows precisely a
configuration that is consistent with this rotated pattern. We note that Fig. 2.2 has k̂ along
the z-axis, and so this pattern only arises if k̂ has a component in this direction, i.e. it is
not totally contained in the x− y sky plane (α 6= 90◦). This is precisely what is coded in the
cosα factor present in Eq.(3.49). This temperature quadrupole pattern has as an outcome
that the polarization pattern illustrated in the lower panel of Fig. 3.8 is similarly rotated by
π/4. The crosscheck with Fig. 3.3 makes evident that we are in the presence of a B-mode.

An illustration of the inflationary B-mode angular power spectrum for a pair of scalar-to-
tensor ratio r values, defined in Eq.(2.65), is displayed in Fig. 3.11. From the same equation,
it is evident that once As is fixed, CBB(`) has a linear proportionality with r). The bump at
about ` = 100 is generated from recombination. Also, another signal is visible on very large
scales, reaching its maximum at l < 10, which is sourced by the scattering off electrons after
the reionization epoch. A similar pattern, but induced by scalar perturbations, is visible in
the polarization E-mode angular power spectrum, as we have anticipated, letting us estimate
independently τrei. Recent observations set upper limits of approximately r < 0.05, limiting
the B-mode angular power spectrum to take values well below the CEE(`) magnitudes. The
inexistence of cosmic variance under the null hypothesis for inflationary B-modes let the
upper limits to be driven by the experimental precision along with the effectiveness of the
foreground subtraction methods. In the foreseen future, it is expected that the improvement
in experimental sensitivity and better understanding of foregrounds will set tighter constrains
to the inflationary B-modes.

There are other considerations we need to be aware. In Section 3.8, we will see that grav-
itational lensing alters the CMB, by remapping the apparent locations of CMB anisotropies.
Remapping the locations of a pure E-mode polarization pattern also produces B-modes
[77,78]. These expected “lensing B-mode” has already been confirmed in the measurements.
Auspiciously, Fig. 3.11 tell us that the power spectrum of these B-modes are both of lower
magnitude than the expected of the CMB anisotropies induced by scalar perturbations in the
linear regime and also exhibits a different pattern from that of the inflationary primordial
B-modes induced by tensor perturbations. This open a window of opportunity for the quest
of this primordial signal on large scales.

3.7 E- and B- modes Formalism

We realized in Eq.(3.7), that the complex combination Q + iU acts as a spin-2 field. Thus,
contrasted to a scalar (spin-0) function, polarization cannot be expanded in a spherical
harmonic basis on the surface of a sphere as we did in Eq.(1.22) with the temperature
field. The mathematical instruments needed to represent the angular distribution of the
polarization of the CMB on the sky are the spin-weighted harmonics sY `m. The full-sky
treatment can be found in [79] using the full spin spherical harmonic formalism. As we have
already mentioned, in this work we have been focusing on the easier and more intuitive flat
sky formalism. A handy introduction that contains the link between the spherical and flat
sky formalisms can be found in [80]. The flat-sky approximation can be adopted as a proxy
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of the full spherical harmonic expansion only in consideration of small patches in the sky,
that is the case for Polarbear. In this section, for completeness, we give a brief review of the
most fundamental definitions of both formalisms and refer the reader to the abovementioned
references for a deeper and more complete analysis of them along with the physics involved
that we have already analyzed only in the context of the flat-sky formalism.

Figure 3.11: Inflationary B-mode CMB polarization anisotropy angular spectrum induced by
tensor modes or gravitational waves, for a pair of the tensor-to-scalar ratio values r = 0.001,
and r = 0.05, as indicated. From recent constrains on the r value, the B-mode power
spectrum amplitudes are well below those of the E-mode polarization. On small scales, the B-
mode signal is produced by the gravitational lensing of the photons caused by the intervening
large-scale structure altering the primordial CMB E-mode polarization. The experimental
data, drawn as points with error bars, have unequivocally confirmed the presence of this
expected lensed emission. A signal surplus is also detected on large scales produced by
polarized galactic emission. This work presents a new measurement of the B-mode CMB
polarization anisotropy angular spectrum at large scales [6]. Figure from [4, 7]. Reproduced
with permission from Elsevier.

From Eq.(3.6), we need a weighting term that considers their spins as follows,

[Q± iU ](n̂) =
∞∑
`=0

∑̀
m=−`

±2a`m ±2Y `m(n̂) (3.50)

Eq.(3.7) can also be expressed as,

[Q± iU ](n̂) =
∞∑
`=0

∑̀
m=−`

[E`m ± iB`m] ±2Y `m(n̂) (3.51)
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where the real and imaginary components of the expansion have been separated since Q and
U are real quantities. The E- and B-modes can be derived as

E`m = −2a`m + −2a`m
2

B`m = −2a`m − −2a`m
2i

(3.52)

This let us define the E- and B-modes fields in real space,

E(n̂) =
∞∑
`=0

∑̀
m=−`

E`mY`m(n̂)

B(n̂) =
∞∑
`=0

∑̀
m=−`

B`mY`m(n̂)

(3.53)

These have the same properties of the flat-sky equivalents that we have already derived:
under transformation of parity the pattern of E(n̂) stay the same. In contrast, B(n̂) flips
sign under the same transformation. Hence, E- and B-modes can be considered as the elec-
tric (i.e. “gradient”) and magnetic (i.e. “curl’) modes of the polarization function Eq.(3.7),
whose patterns are shown Fig. 3.4.

In the case of the flat-sky approximation [81], the CMB anisotropy is characterized by
the distribution in two dimensions in terms of x ≡ (θ cosφ, θ sinφ), with

n̂ ≡ (sin θ cosφ, sin θ sinφ, cos θ) (3.54)

And the z−axis is chosen to be along the direction from the observer to the patch middle
point. Any vector field in two dimensions can be expressed in terms of a divergent and
a rotational part. Then, the linear polarization distribution characterized by the Stokes
parameters Q(x) and U(x) can be expressed in terms of two modes that are not dependent
between them. As a spin-2 field, linear polarization can be decomposed into derivatives of
second order applied to two scalar fields, the already introduced E− and B−modes, as

[Q± iU ](x) = (∂̄x + i∂̄y)
2[E ± iB](x)

= (∂̄2
x − ∂̄2

y)E(x)− 2∂̄x∂̄yB(x) + i[(∂̄2
x + ∂̄2

y)B(x) + 2∂̄x∂̄yE(x)]
(3.55)

Where we have defined a differential operator applied on a scalar function f(x) as

∂̄if(x) =

∫
d~̀

2π
f(~̀)

li
l
ei
~̀x (3.56)

For i = {x, y}, f(~̀) the Fourier transform of f(x) and ` = |~̀|.

From Eq.(1.21) and (3.53), we have three equations that fully characterize the temper-
ature and polarization fields of the CMB. It is viable to compute six unique spectra from
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temperature, E-mode and B-mode polarization. Such combinations are: TT , TE, TB, EE,
EB and BB. From these combinations, the pair of even-odd parity fields are in most cases
supposed to vanish because of parity arguments: if the universe is mirrored under a spatial
reflection, then the spectra combinations are invariant with the exceptions EB → −EB and
TB → −TB. If these two exceptions are non-vanishing spectra, then the global parity of the
universe will be broken. Subsequently, the three unique auto correlations are

CTT
` =

1

2`+ 1

∑
m

〈aT∗`maT`m〉

CEE
` =

1

2`+ 1

∑
m

〈aE∗`maE`m〉

CBB
` =

1

2`+ 1

∑
m

〈aB∗`maB`m〉

(3.57)

and the only cross spectrum,

CTE
` =

1

2`+ 1

∑
m

〈aT∗`maE`m〉 (3.58)

It is customary to use the flattened spectrum:

D` =
`(`+ 1)

2π
C` (3.59)

The maximum precision that a measurement of a power spectrum can achieve is statistically
given by the sample variance and it is a consequence of the finite number of modes that can
be sampled. The sample variance is given by

∆C`,sample = C`

√
2

(2`+ 1)∆`fsky
(3.60)

where ∆` is the multipole width and fsky is the fractional area of the sky observed (or not
masked) and where we have high confidence in the measurement of the signal. fsky is generally
below 1 because of Galactic foregrounds. The sample variance is also proportional to the
power spectrum itself.

3.8 Gravitational lensing

Massive intervening large-scale structures in the propagation of the CMB photons from the
last-scattering surface to us deflect their paths. This induces alterations in both the temper-
ature and polarization anisotropies. We are mostly interested in the alterations on polariza-
tion. Under the weak lensing regime, observed polarization on the celestial sphere represented
by Q(n̂) and U(n̂) from a specific direction n̂ can be linked to the polarized signal at last
scattering surface (Q̃ and Ũ) with the following expression [78],

[Q± iU ](n̂) = [Q̃± Ũ ](n̂ + d(n̂)) (3.61)
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where d(n̂) denotes the angle deviation of light coming from direction n̂, dubbed the lensing
deflection field. The deflection field keeps track of the successive deflections for each position
on the sky, that is linked to the integral along the line of sight over the gravitational potential
Ψ(Dn̂) by means of d(n̂) = ∇φ(n̂):

φ(n̂) = −2

∫
dD

Ds −D
DDs

Ψ(Dn̂) (3.62)

where D is the comoving distance in the direction of the line of sight and Ds is the distance to
the last-scattering surface along the line of sight [78]. From Eq.(3.61), we can see that these
slight deviations shuffle polarization on the celestial sphere but do not rotate it. In practice,
the interpretation of this phenomenon would be the redirection of a mode wavevector without
changing its polarization, which qualitatively indicates the reason for gravitational lensing to
produce B-mode polarization from early E-mode polarization.

Concretely, for a single primordial pure E-mode, the lensing E- and B- modes generated
are,

∆E(~̀) =
cos(2φ~̀~̀′)

(2π)2
W (~̀, ~̀− ~̀′)

∆B(~̀) =
sin(2φ~̀~̀′)

(2π)2
W (~̀, ~̀− ~̀′)

(3.63)

where we have defined φ~̀~̀′ ≡ φ~̀′ − φ~̀ and,

W (~̀, ~̀− ~̀′) ≡ −[~̀ · (~̀− ~̀′)]φ(~̀− ~̀′) (3.64)

Hence, broadly speaking, lensing will produce B-modes along with modified E-modes from
a single primordial pure E-mode, but with other distinctive patterns in Fourier space. We
can integrate over several primordial E-modes via Eq.(3.63) to produce the changes ∆E and
∆B that we observe. These modifications to E-modes and B-modes induced by gravitational
lensing correlate E-modes and B-modes over different regions of Fourier space, generating
non-Gaussianities. These non-Gaussianities greatly differences the B-modes induced by grav-
itational lensing from the B-modes induced by gravitational waves, mostly Gaussian.

The prediction for Cφφ
` =

〈
φ(~̀)φ(~̀)

〉
φ~̀

can be done theoretically via numerical methods

akin to those used to compute the predicted CMB power spectra, but we also need to consider
non-linear modifications for effects in later times [82]. φ(~̀) is predicted to be drawn from a
Gaussian distribution in like manner the other CMB fields. Cφφ

` depends on the sum of neu-
trino masses at the percent level. This enables the chance for highly sensitive measurements
of Cφφ

` to set tight limits in the sum of neutrino masses [83].

The predicted lensing potential estimates the angle deflections d(n̂) to be in the order of
a few arcminutes, although correlations of the deflection field are expected to be in the order

63



of several degrees. In Fig. 3.12, a theoretical computation for the correlations between the
amplitude of the deflections Cdd

L = [L(L+ 1)]2Cφφ
` /2π over different angular scales |~L|, where

~L = ~l +~l′, is plotted.

Using Cφφ
` and CEE

` as inputs, the generated CBB
` power spectrum can be estimated. In

Fig. 3.13, the concordance model computation for the CBB
` spectrum generated from the

gravitational lensing of pure E-modes is plotted. The detection of this signal was the main
goal of the first observation campaign of Polarbear.

Figure 3.12: The concordance model theoretical prediction for Cdd
L angular power spectrum,

where d is in units of radians, sourced by the LSS of the universe. Figure from [8].

Figure 3.13: The ΛCDM theoretical prediction for the CBB
` angular power spectrum produced

by gravitational lensing of pure E-mode polarization. Left panel: CBB
` on a logarithmic scale

to compare it to CTT
` and CEE

` . Right panel: CBB
` on a linear scale. Figure from [8].
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From Fig. 3.13, we note, again, that the emissions which Polarbear is intended to de-
tect, CBB

` , have magnitudes that are some orders below those that had been experimentally
characterized when the experiment started, CTT

` and CEE
` . This sets high standards for an

instrument that must be both precise and effective in mitigation of systematic errors.

3.9 The current status of CMB experiments

A snapshot for some of the most recent measurements for the four non-vanishing CMB spec-
tra is shown in Fig. 3.14.

The CMB E-mode polarization angular power spectrum was pioneer measured by the
DASI experiment [84] placed at the South Pole. The present best constraints on the E-mode
polarization angular power spectrum are given by the Planck collaboration at large scales
[2]. The best constraints on the E-mode spectrum at small scales are reported by ACT [15]
and SPT [10].

The B-mode polarization signal has been characterized in various independent ways. Var-
ious ancillary strategies have been applied, where a template for the gravitational lensing is
provided from a tracer that does not rely directly or uniquely on the CMB polarization, like
the cosmic infrared background (CIB) [23] or employing the corresponding CMB anisotropies
[85]. Then, the B-mode angular power spectrum can be inferred in an independent way or
in cross correlation with CMB polarization maps.

A detection of the B-mode angular power spectrum from only the CMB polarization was
pioneer announced by the Polarbear collaboration in [23]. Successive direct characterizations
of B-mode polarization have been published by Polarbear [17], BICEP2 [86], Keck Array
[87], SPTpol [11], and ACTPol [15].

To obtain tighter upper limits in the tensor to scalar ratio r is necessary to cross correlate
CMB observations with higher and lower frequencies for galactic foreground mitigation. That
kind of cross-correlation studies have been reported by the BICEP2 and KECK Array collab-
oration [14, 88] and the ABS collaboration [89]. The Polarbear collaboration also performed
such study using three seasons of data that is published along with the results obtained using
the implemented modifications presented in this thesis [6].
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Figure 3.14: Current measurements of the CMB temperature anisotropy and polarization.
The pair of models, the fine almost overlapping grey lines, comes from Planck (dashed line)
and from ACT+WMAP (derived from [9], solid line). Additionally, the primordial B-modes
auto spectrum with r = 0.1 is plotted with the dot-dashed line. For the Planck measurements,
the 2018 results are shown [3]. For SPT the measurements performed in the 150 GHz band
for TT ` < 2000, TE and EE spectra are shown [10], and from [11] for BB spectrum. For
the range ` > 2000 the SPT spectrum from [12] which has been revised for point source
contamination is shown. In practice, it is almost identical from the more precise but not
revised spectrum in [13]. For BICEP2/KECK Array data from [14] are shown. For ACT,
preliminary EE spectrum results for ` = [103, 150.5, 200.5, 250.5, 300.5], DEE

` = [1.14 ±
0.32, 1.40 ± 0.22, 0.70 ± 0.14, 2.02 ± 0.20, 9.74 ± 0.39](µK)2 reported but not used in their
analysis in [15] are shown. For Polarbear, EE spectrum from [16] and BB spectrum processed
by pipeline A in [17] are shown. This work presents a new measurement of the B-mode CMB
polarization anisotropy angular spectrum for Polarbear at large scales [6]. Each error bar is
1σ and data points which lack bottom bounds in TT and EE spectra are not shown at small
scales. More data for each survey have been omitted here, for instance, data contained in
other frequencies. Figure from [15].
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Chapter 4

The Polarbear Experiment

B-mode polarization at angular scales of degrees is virtually a distinctive prediction of in-
flation. The detection and subsequent analysis of this signal will allow us to address more
precisely the energy scale at which inflation happened and more about the extraordinarly
high-energy physics that caused it. With its high angular resolution, Polarbear is very well
placed to make a complete delineation of this signal.

The CMB photons are radiated at a redshift of z ∼ 1100 and are gravitationally lensed as
they travel along the intervening structure of the universe in direction to our telescopes; this
lensing is another cause of B-mode polarization which contaminates the inflationary B-mode
signal. If we want to analyse inflationary B-modes with high precision the removal of the
lensing signal becomes necessary; that can best be achieved with data from projects with
high angular resolution like Polarbear.

The POLARization of Background microwave Radiation (Polarbear) Experiment uses a
telescope with a primary mirror with its size optimized to cover the range of angular scales
indispensable to address both inflationary B−modes and lensing B−modes, and with optics
which are conceived to give a focal plane with large area and angle of view that permit the
utilization of a large number of detectors and reduce the observation noise.

The focus of this thesis is the improvement of the power spectrum estimator employed by
the collaboration to characterize the CMB polarization signal. Nevertheless, the polarization
maps do not spontaneously appear at the doors of our estimator. Contrary to these punish-
able beliefs, a large amount of time, manpower and funding is devoted to all the previous
steps, including of course the instrument designing, construction and maintenance, along
with the process of data acquisition and processing, and it is my duty to acknowledge those
efforts in this section.

This section is organized in the following way. In Section 4.1, I give a brief description of
the Polarbear Experiment and the data set employed in this work, focusing on the introduc-
tion of a continuously rotating half-wave plate (HWP) to the optical path for sky polarization
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modulation. In Section 4.2, I mention the pre-processing and low-level calibrations that the
data undergo. Finally, in Section 4.3, I summarize the process to transform raw bolometer
data stream of observations or time-ordered data (TOD) into polarization maps Q and U .
As mentioned before, my work focused primarily on the power spectra estimator discussed in
Chapters 5, and I did not make relevant contributions to this part of the project. However,
I present this section for completeness. Furthermore, also for completeness and documenta-
tion, in Section 4.3.2 I give a brief description of a parallel study carried out by me about
the glitch flagging statistics of the data selection pipeline as a revision of at that moment
available database, without any relevant or unexpected findings. Hence this study does not
form part of the final publication [6].

This chapter is mainly based on [6].

4.1 Experiment and Data Set

4.1.1 The Polarbear Instrument

Polarbear is a CMB experiment that uses a 2.5 m aperture telescope, dubbed Huan Tran
Telescope, which first light took place on 10 January 2012. The telescope is placed at the
James Ax Observatory. The place is located at an elevation of 5190 m in the Atacama
Desert, Northern Chile. The Polarbear receiver contains seven wafers that consist of 1274
transition-edge sensor bolometers across all the wafers, which temperature is kept to 0.3 K
while scans the sky by way of lenslet-coupled double-slot dipole antennas. The field of view
of the focal plane at any time is roughly 1◦.2 in radius. A schematic diagram of the receiver
is shown in Fig. 4.1. For a deeper description of the receiver and the telescope I refer the
reader to [90] and [91].

During February 2014, the collaboration inserted a continuously rotating half-wave plate
(HWP) in the focus of the primary mirror for low-frequency noise control [92]. The HWP
is composed of an antireflective-coated birefringent single crystal sapphire plate spinning at
two hertz. For a detailed description of the insertion of the HWP in the optical path of the
telescope and the evaluation of its operation in a sequence of trial observation I refer the
reader to [93].

4.1.2 Observation Strategy and Wide Sky Patch Observations

The maps considered in this study aim a 670 effective square degree patch of the sky whose
center is located on (RA,Dec) = (+0h12m0s,−59◦18′). This region of the sky overlaps in
great extent with the patches covered by the South Pole telescopes such as BICEP, the Keck
Array, and SPTPol. The map coverage is shown in Fig. 4.2. Routine CMB patch scans
with the HWP started on July 25, 2014 and were performed until December 30, 2016. The
collected data is divided in three seasons, as specified in Table 4.1.
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Season Number Beginning Date End Date

HWP commissioning 2014 May 4 2014 Jul 24

Third season 2014 Jul 25 2015 Mar 1

Fourth season 2015 Mar 2 2015 Dec 31

Fifth season 2016 Jan 1 2016 Dec 30

Table 4.1: List of observing seasons for the data set considered in this study. The seasons are
divided by interval periods of hardware maintenance. The first two seasons are detailed in
[17,23] and are not part of this study. Table from [6]. ©AAS. Reproduced with permission.

This map coverage differs from the one corresponding to the first two seasons of operations,
where three 3◦ × 3◦ patches of sky were observed targeting the sub-degree scale B-mode
polarization angular power spectrum and gravitational lensing imprints. The change of this
configuration will have unwanted consequences in the performance of the power spectrum
estimator due to the flat sky approximation adopted and will be the main motivation for the
changes in the estimator studied and implemented in the context of this work.

Figure 4.1: Sketch of the Polarbear receiver that illustrates the optical path, focal plant tower
and microfabricated antennae and TES bolometers. Figure from [18].
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Figure 4.2: Patch coverage centered at (RA,Dec) = (+0h12m0s,−59◦18′). The scan pattern
illustrates with red the nethermost center and with blue the poor weighted boundaries. The
nethermost region of the patch has a map depth as low as 16µK-arcmin and the average
of the effective map depth is 32 µ K-arcmin, both quantities in polarization. The vertical
lines correspond to an artifact of breaks in the low elevation observations to regularly tune
the detectors and execute the relative gain calibration. The horizontal lines correspond
to an artifact of the elevation offsets performed in the transit scan. The Polarbear depth
map is superimposed on the Planck 353 GHz temperature map to illustrate the Galactic
contamination pattern. Figure from [18].

The observation planning is composed by three series of observations done over each side-
real day. The telescope observes for a 4 hr 45 minute interval as the region ascends above
the horizon, a 3 hr 53 minute interval at high elevation as the region transits, and a 4 hr 45
minute interval as the region descends. The ascending and descending observations happen
at a boresight elevation of 30◦ and 35◦.2, respectively. The elevation of the high-elevation
observations is stepped across ten offsets from 45◦.5 to 65◦.5 to assure uniform coverage of
the region with one offset picked each day. Each scan interval is separated into observations
of one hour denoted as “constant elevation scans” (CESs). Right after that, the detectors
are retuned. The calibration steps will be briefly reviewed in Section 4.2. The telescope is
repointed from one four-hour long interval to the next one but not from one CES to the next
one.

In the course of the observations, the telescope scans at a constant speed of 0◦.4s−1

subtending 20◦ and 35◦ on the sky for the low elevation and high elevation observations, re-
spectively. The outcome is roughly 70 subscans (determined as one left-going or right-going
scan of the telescope) for every CES.

The total data set ended made up of 429 days. The ten high-elevation observation offsets
allowed a complete map to be generated only once each ten days of observations. An impor-
tant number of these ten-day scan subsets have been coadded in post-processing because of
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a low yield or incomplete coverage after the data is selected. The resulting splits serve as the
base for the cross-spectra implemented in the power spectrum estimation.

4.2 Calibration and Pre-processing

This section gives a brief overview of the steps performed to produce the inputs that are
fed into the data analysis pipelines. The lost data packets are afterward marked in the data
selection.

4.2.1 Reconstruction of HWP Angle

The HWP angle is recovered and interpolated to be equal to the bolometer readout time
records. The associated errors are subdominant to the total statistical error.

4.2.2 Pointing

The telescope pointing reconstruction uses exclusively assigned raster scans of bright point
sources chosen from PCCS [94] and ATCA [95] catalogs before every CMB observation. The
measured locations estimated from the azimuth and elevation encoder values of the tele-
scope are contrasted to the predicted locations. The azimuth and elevation offsets obtained
∆Az(Az,El), ∆El(Az,El) are modeled by an eight-parameter model that incorporates terms
for non-uniform heating of the instrument produced by the insolation [96]. The errors associ-
ated with the degrees of freedom of this calibration procedure are negligible for the multipole
range considered in this work.

The detector beam offsets are generated from detector array raster observations across
Jupiter. The reconstructed offsets are compatible with earlier measurements at the order of
several tens of arcseconds. Bolometers whose average modeled beam offset are discrepant
with previous analysis in [17] exceeding 1′, are not considered in subsequent analysis steps.
This cut does not have a significant repercussion in the total efficiency of the data selection.

4.2.3 Beam Profiles

The instrumental beam and the corresponding window function B` are obtained using ex-
clusively assigned raster scans across Jupiter. These are performed with the HWP spinning
nominally at two revolutions per second and at a scan speed of 0◦.2s−1 on the sky. The
HWP synchronous structure induced by the instrumental polarization of the primary and
differential transmission and emissivity of the HWP is subtracted. Then, the data stream
is mapped into 0′.5 pixels on the sky. The beam window function is the average of the 2D
Fourier transformed maps that are averaged in azimuth, after we have divided out the Jupiter
disk for every observation and corrected for the pixel window function in an analytical way.
The generated beam window function is plotted in Fig. 4.3, with a median Gaussian 3′.6 full
width at half maximum (FWHM).
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Figure 4.3: Generated beam window function from Jupiter raster scans. The statistical
uncertainty in the pointing model suppressed more power at small scales, as illustrated by the
dashed effective beam curve. The statistical uncertainty in the Jupiter beam window function
corresponds to the shaded area. Figure from [6]. ©AAS. Reproduced with permission.

Boresight and detector statistical pointing error suppress more power at small scales of
the maps. The pointing model estimates residual pointing uncertainties of 50′′ rms. A mul-
tipole dependence is fitted to the overall gain amplitude, in line with the broaden of the
effective beam induced by pointing error, and an extra broaden of the effective beam induced
by pointing uncertainty is not statistically preferred. Thus, a Gaussian associated with the
best-fit pointing model error generated from the E−mode polarization angular power spec-
trum is convolved with the beam window function, and the effective beam width uncertainty
is considered in the multiplicative error budget.

The detector beam window function is generated from temperature measurements but
used to estimate polarization angular power spectra. An effective beam discrepancy induced
by the detector crosstalk behaving dissimilarly in temperature and polarization and also
dissimilarly with the addition of a continuous HWP [97], is found to be statistically sub-
dominant. Also, a scalar component extracted from the polarization response to Jupiter is
subtracted to mitigate temperature-to-polarization leakage and higher order components are
found to be negligible.

4.2.4 Time Constants and Detector Gains

A three-step gain calibration procedure was adopted to convert the data stream into physical
temperature with an extra correction for polarization efficiency. A detector relative time-
dependent gain calibration is measured by the operation of a chopped thermal calibration
source before and after every block of four CESs. To obtain the time dependence of the
gain, these measurements are linearly interpolated in between. From that time these values
are converted to temperature on the sky by the use of the same Jupiter data employed to
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estimate the beam window function. The simulated systematic error in the CMB spectra
originated in the error of the measured gain are found to be statistically subdominant in all
the CMB fields.

The measurement of the detector time constants is obtained by stepping the frequency
of the chopped thermal source from four to forty-four revolutions per second. The source
amplitude as a function of chopper frequency is fit to a single pole low pass filter model.
The estimated time constants are interpolated linearly between the measurements and de-
convolved in the following data stream processing.

4.2.5 Angle of Polarization

The polarization angles of detectors and polarization efficiencies are measured from exclu-
sively assigned raster observations of Tau A. The raster observations are performed at 0◦.2s−1

scan speed on the sky with the HWP spinning nominally. The detector time constants ob-
tained from a chopped thermal source calibration right before and after the Tau A raster
observation is deconvolved. This is needed because a phase difference between the detector
data stream and the reconstructed HWP angle induced by the retarded response of the de-
tectors, encoded in the time constants, arises as a polarization angle error.

Subsequently correcting for detector time constants, the correlation between the mea-
sured polarization angle and the precipitable water vapor (PWV) measured at the close-by
Atacama Pathfinder Experiment1 (APEX) location was found to be insignificant. If such
time constant deconvolution is not performed, a correlation induced by the dependence of
the time constants on the atmospheric loading and hence on the local PWV is found. The
demodulated polarization data stream explained in Section 4.3.1 is modeled as polarization
map convolved with a beam of Tau extracted from a observation performed with the IRAM
30 m telescope [98]. The fluctuations of detector polarization angles between seasons was
found to be insignificant. The discrepancies in the measured polarization angle between de-
tectors in a pair are measured as 90◦.5 ± 1◦.2, compatible with the designed target of 90◦.
The simulated systematic error cause by the detector polarization angle error was found to
be statistically subdominant.

The estimated polarized flux extracted from these observations is employed to measure
the polarization efficiency of the telescope and receiver. The polarization efficiency estimation
is worsened in four manners: the non-ideality of the cold HWP (explained in [17, 23]), the
non-ideality of the rotating HWP, the breaking of the Mizuguchi–Dragone (MD) condition
[99, 100], and nonvanishing bolometer time constants. The first three are characterized by
polarization efficiency terms that are inherent to the detectors and telescope geometry and
are corrected by rescaling the data stream and noise weights with the predicted values from
coherent source lab measurements and design detector bandpasses [90] and physical optics
simulation [101]. The detector time constant behaves low-pass filter on the time domain

1http://www.apex-telescope.org/
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of the data stream, with a response below unity at the polarization modulation frequency.
Its polarization efficiency is related with the numerical value of the time constant, which at
the same time relies on the detector bias point and optical loading. In consequence, this
polarization efficiency term is corrected by deconvolving the estimated time constant from
the chopped thermal calibration source before and after every block of four CESs. The mean
contributions to the overall polarization efficiency from the four ways are, in the same order
as mentioned above, ε ≈ 0.98, 0.98, 0.93 and 0.98. The values extracted from the TauA cali-
bration are found to be compatible with the predictions, though showing a larger statistical
uncertainty, as we would expect.

The overall polarization angle is self-calibrated by requiring CEB
` = 0 as dictated in [102].

There is a degeneracy between the overall polarization efficiency and the absolute gain of
the polarization maps, and the overall polarization angle is fixed by making coincident the
Polarbear E-mode spectrum to the Planck 143 GHz E-mode spectrum on the Polarbear wide
patch.

4.3 Analysis of Data

The framework and processing steps used to convert the raw detector data stream into
polarization maps, that will be used in this work as inputs for the power spectrum estimator
(the focus of this work) will be reviewed in this section.

4.3.1 Processing of Data Stream

This stage uses a pre-processing and demodulation steps akin to those in [93,103]. The terms
corresponding to detector nonlinearity and instrumental polarization are not considered in
this review for clarity. The model for the raw detector data stream with respect to instrument
coordinates can be expressed as

dm(t) = I(t) + εRe{[Q(t) + iU(t)]e−i(4χ+2θdet)}+ A(χ, t) +Nm (4.1)

with χ ≈ ωt as the HWP angle, m(χ) ≡ e−i4χ characterizing the polarization modulation of
the HWP, ε as the polarization efficiency, θdet as the detector angle in the telescope frame,
Nm as the detector white noise, and A(χ, t) as a slow pace fluctuating HWP-synchronous
structure in the data stream.

Before demodulate the data stream, HWP-synchronous structure A(χ, t) is subtracted by
an iterative method akin to [104]. The HWP angle is reproduced from the encoder. The
HWP synchronous structure is obtained according to [92] and is separated into harmonics.
Discontinuities in the data stream are substituted with the HWP synchronous structure. The
data stream is bandpass filtered for each harmonic n ∈ {1, 2, ...7} with a frequency width of 1
Hz and demodulated to generate a time-dependent amplitude for the corresponding harmonic
of the HWP synchronous structure. The amplitude of each harmonic is modeled as a linear
trend. The sum of these n fits is subtracted from every data stream, and the procedure
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is repeated. Subsequently of the HWP structure subtraction, the polarization emission is
recovered by multiplying the data stream by two times the conjugate of the modulation
function 2m∗(χ) and is low pass filtered to reconstruct the polarization emission,

dd(t) = ε[Q(t) + iU(t)]e−2iθdet +Nd (4.2)

The remaining analysis steps will use the data stream saved at an 8 Hz frequency resolution.
This is because the elevated frequency resolution of the raw bolometer data stream and the
amount of Fourier Transform operations, such as the demodulation step in the essential sim-
ulations would be extremely resource intensive. The window function corresponding to the
8 Hz frequency resolution is negligible for our multipole domain. The detector time constant
is deconvolved from the data stream after the demodulation of the data stream polarization.

It is imperative to remark that the noise in the data stream after demodulation, Nd, is
complex and both the real and imaginary parts have two times the variance of the bolome-
ter white noise before demodulation Nm because of the need to consider twice the overall
processed data stream to properly reconstruct the stokes parameters Q and U . The polar-
ization precision obtained in this way has not an inherent discrepancy with the one obtained
by differencing the bolometer data streams within a pair. The noise Nd can be well char-
acterized as a noise floor plus a unique red noise component shared by all the bolometers.
The demodulation procedure supposes a proper isolation of temperature and polarization
signals in time domain frequency, that is, the HWP frequency is well above the numerical
value of the scan speed over the beam width. The effect of an improper isolation of both
temperature and polarization signals are quantified in real data and the impact was found to
be statistically subdominant. These demodulated data streams are fed to the following data
characterization and mapmaking steps.

The low-pass filtered HWP synchronous structure subtracted data stream (the 0f or tem-
perature component) and the demodulated data stream at two times the HWP frequency
(the 2f component) are subsequently considered for data characterization and selection.

4.3.2 Data Selection and Characterization

The data selection procedure performed in this pipeline is composed of several iterations of
progressively discriminatory data quality standards to describe red noise and suppress poten-
tial effects of systematic error. The rounds can be summarized in succinct words as rejecting
glitches and time well-defined singular events, rejecting data depending on the individual
detector noise attributes during the transit of an observation, rejecting data depending on
array noise attributes, and rejecting data depending on map domain noise.

For the purpose of every round, the elemental constituent of data treated is the bolometer
subscan. The data corresponding to the intervals when the telescope is accelerating (called
turnarounds) are totally cut. In Table 4.2, the efficiencies corresponding to the different
stages of data selection are shown and I refer the reader to [6, 18] for a better description of
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them. The main inputs to the end-to-end efficiency are the portion of time the observation
region is accessible to be scanned, incurred hardware pauses by maintenance and weather
conditions, and total focal plane yield generated by burned out bolometers and glitch rejec-
tions. An overall of 2985 CES observations are fed to the subsequent mapmaking pipeline
from the entire observation campaign ranging from July 25, 2014 to December 30, 2016.

Category Stage of Data Selection Efficiency

Operations Time spent observing patch 36.8%

and yield Focal plane yield 50.7%

Data Glitch cuts and off bolometers 29.2%

Selection Individual bolometer PSDs 76.6%

Common mode PSD and maps 79.6%

Overall data selection 17.8%

Table 4.2: Operations and data selection efficiency for this study. In total 2985 CESs of
one-hour extension have any portion of data fed in the final science pipeline. The focal plane
yield is normalized to the originally intended number of active optical detectors, that is 1274.
The overall data selection efficiency is the multiplicative result of the three rows above it.
Table from [6]. ©AAS. Reproduced with permission.

As a first task in my participation at the Polarbear Project, I was assigned to conduct
a glitch flagging statistics study of at that moment available data selection database. This
comprised a cross check of the main data selection efforts and did not arise any significant
finding. It was in line with the flagging statistics expectation and did not play any role in
the final data selection used in [6]. Furthermore, is not considered the main goal of this work
and so a deeper description of it is out of the scope of this thesis. Nevertheless, I briefly sum-
marize it here for completeness and documentation of my efforts devoted to the experiment.

There were roughly 600 active bolometers in the focal plane taking TOD of the intensity
or polarization. Each CES is associated with a set of parameters, for example, the elevation
angle and azimuth range (Fig. 4.4 shows the distribution of the database), time range, etc.,
and a flag array generated by the, at that moment, available pipeline containing a number
of elements corresponding to the number of subscans times the number of bolometers, rep-
resenting each element a bolometer subscan, which is a subscan for a certain bolometer. It
encodes unsigned 129-bit integers. Each bit of the flag set corresponds to a specific cut. If
one is active, the corresponding subscan is discarded for the respective bolometer. There are
different kinds of cuts associated with different sources of problems: inadequate scan param-
eters, presence of glitches in the TOD, rejection of the gain calibration or Power Spectral
Density (PSD), etc. With this database was possible to check some glitch statistics correlated
with others.
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Figure 4.4: Distribution of the data chosen for the performed glitch flagging statistics study
in the azimuth-elevation plane.

Histograms of the different kinds of flagging criteria with the mentioned database were
generated and the fraction of glitchy data as a function of elevation angle and azimuth was
analyzed. Potential problematic elevations were considered. David Boettger took data with
accelerometers installed in the telescope and dedicated scans using them were performed
to check for elevation anomalies in the behavior of the telescope. I implemented a code to
analyze the accelerometer measurements of the telescope. With this was possible to check
the vibrational level for a given elevation. An example of an output of this script is shown
in Fig. 4.5. At higher elevation I found a higher vibrational response with respect to lower
elevations, as expected, but no significant pathological behavior was discovered.

4.3.3 Red Noise Model

Two noise models are considered for the simulation pipeline with a verified overall compat-
ibility. The red noise component in the time domain of the data can be characterized by a
unique common mode 1/fα term, implying that modes of higher order in the data stream
covariance are unimportant. The analysis pipeline is run from the beginning up to the end
in two arrangements: one where a data stream noise model is considered and other where
random sign coaddition of single CES maps are used to produce “signflip” noise realizations.

Referring to the data stream noise model, white noise is produced for each detector based
on the supposition of lack of correlations between detectors and the noise weights obtained in
the steps involved in Section 4.3.2. The common mode red noise is generated in the telescope
frame for the stokes parameters Q and U independently and is made to be coincident with
the amplitude and exponent power-law α fixed by the real data. Then, this noise mode is
rotated into the polarization angle of every detector and combined with the white noise that
is not correlated.
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Figure 4.5: An example of output generated by the code implemented to check the vibrational
level for a given elevation. In this case, El = 52◦. The vibrational response is represented as
the power of the measurements and the peaks were identified with vertical lines. Subsequent
analysis considered the distribution of peaks per elevation.

In the “signflip” pipeline, the noise realizations are produced by randomly giving a +1
or −1 factor to every map at the time of the coaddition of the CESs. This generates noise
realizations that match the power spectrum and correlation pattern of the real data, with
the supposition of lack of correlation between CESs noise fluctuations. This supposition does
not hold if coherent drift in the amplitude of the ground synchronous structure is present.
The impact of this effect is not relevant for the error budget.

A good compatibility between the “signflip” and the data stream noise realizations is
found using the cross-spectrum estimator presented in Section 5.1. In Fig. 4.6 the noise
bias extracted from both configurations is plotted. The full coadd and every null test split
that are mentioned in Section 6.4 coincide satisfactorily, apart from one null split. In the
“top versus bottom detectors” splits that separates paired bolometers, an extra variance and
anticorrelation is measured in map space between the two splits that is not possible to be
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replicated by the data stream noise model. Intensity noise aliasing into the polarization
frequencies in the data stream can reproduce a noise anticorrelation pattern in agreement
with the one mentioned above. This can be easily reproduced with the “signflip” noise
realizations.

Figure 4.6: A comparison for the noise bias estimation for the all the observation set between
the data stream noise model and the “signflip” coaddition configuration is shown. An overall
agreement between the two configurations is patent. The fiducial power spectrum pipeline
uses the “signflip” noise model as one of the inputs. These spectra are not corrected by the
filter transfer or beam window functions presented in Section 5.1. The shaded area illustrates
the standard deviation of the reproduced noise bias. Figure from [6]. ©AAS. Reproduced
with permission.

The random sign coaddition configuration is adopted to produce the noise realizations
fed in the fiducial null tests and error bar estimation.

4.3.4 Mapmaking Pipeline

In this pipeline stage, the MASTER mapmaker [105] is adopted where the data stream is
filtered to mitigate spurious red noise and mapped in the sky by an inverse variance noise
weighting.

The mapmaker is fed with the demodulated data streams explained in Section 4.3.1 which
undergone another pile of time domain filters. The order configuration of the filtering steps
is determined to prevent bias in the estimated coefficients of intensity leakage by artificial
modes in the intensity and polarization data stream.

The beginning filter step is performed in Fourier space and the demodulated data stream
is low pass filtered for frequencies higher than 1.2 Hz. A collection of notch filters is admin-
istered to Fourier space glitches marked in the data selection stage. For each detector on the
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focal plane a notch width of 10 mHz is applied if an evident glitch is detected in a number
above fifty bolometers for a specific hour-long CES. The same collection of notch filters is
administered to simulations.

The next filter step subtracts a second-order polynomial from every detector data stream
for the entire hour-long CES. Thermal variations of the focal plane and cryogenics are pre-
dicted to drive this mode.

The subsequent filter step removes a ground-fixed template in the measured Stokes pa-
rameters I, Q, and U . The filter is generated by averaging the data stream in telescope
coordinates using 14′.4 azimuth bins and removing the constructed template from the data
stream. Every detector undergone this process individually. Both back and forth subscans
are processed by an identical template. The ground synchronous structure is believed to be
sourced by far-sidelobe response of the nearby ground emission. For a conservative removal,
it is assumed that hour long CESs are not correlated between them, and a single ground-
fixed template is removed for every hour long CES although typically a steady ground-fixed
emission from one hour long CESs to others is measured. A maximum estimated for the
contribution in the error budget induced by potential time fluctuations of this signal during
every hour-long CES is estimated. The final estimated power spectrum undergone negligible
variations if the bin size is changed or a template that has been previously smoothed is re-
moved.

After the subtraction of these spurious modes, intensity-to polarization leakage produced
by bolometer nonlinearities and instrumental polarization generated from the off-axis tele-
scope architecture are subtracted out with the use of a PCA akin to that in [93]. The intensity
leakage coefficients are observed to slightly depend on frequency when it is lower than the
scan frequency of the telescope, and glitches in the data stream Fourier space are measured
at frequencies well above. The leakage coefficients are then predicted from a duplication of
the data stream that has been low pass filtered at 300 mHz and a first-order polynomial
has been removed from every subscan of it. Subsequently, from the data stream a three-
dimensional covariance square matrix linking the I, Q, and U Stokes parameters is estimated
and averaged over the subscans. The covariance matrix is then employed to compute the
leakage coefficients according to [93]. A steady behavior of the predicted leakage coefficients
is observed during the scans. The initial polarization data stream is then subjected to the
removal of the intensity leakage not considering the subscan polynomial and low-pass filter-
ing. The simulated error in the B-mode angular power spectrum generated by multiplicative
detector nonlinearity is estimated to be subdominant in the final error budget. It is worthy
to note that this PCA operation and leakage terms are not considered in the final simulation
pipeline, i.e., only are used for the real data pipeline.

Consecutively, red noise suppression is tackled by removing a first-order polynomial from
the data stream Stokes parameters Q and U for every subscan. As I have mentioned before,
the temperature data does not undergo any additional treatment because it is not required
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in the following steps of the pipeline. Moreover, is not part of the data products of the final
analysis.

The final step consists in the mitigation of the low frequency mode measured across all the
bolometers by a filtering operation. Every detector data stream in the telescope coordinates
has the low pass filtered representation of the Q and U array common mode removed out
from them. The low-pass filter is characterized by a spectral representation equivalent to
the reciprocal of the fit PSD of the stacked timestream extracted in the data selection stage.
Simulations undergo the same filtering. There is not an appreciable red noise contribution
after the unique focal plane common mode considered here, as noted in Section 4.3.3.

After all these operations, the data stream is mapped into 8′ pixels on the celestial sphere
by a Lambert Cylindrical equal area projection. Fig. 4.7 shows real data and a sample
noise realization converted into final maps. Corrections to account for the effect of the beam
window function and the filter operations of the data stream lead to an effective map depth
of 32 µK-arcmin.

Figure 4.7: Polarization maps corresponding to the Stokes parameters Q and U of the real
data (upper panel) and a sample noise realization generated by the “signflip” coaddition
noise model configuration (lower panel) are shown for Polarbear. The E-mode polarization
imprint of the CMB signal is appreciable in the real maps in the shape of a checkerboard
structure for both Q and U Stokes parameters. Figure from [6]. ©AAS. Reproduced with
permission.
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Chapter 5

Power Spectrum Estimator

The focus of this thesis are the modifications implemented in the B-mode pseudospectrum
stage of the power spectrum estimator. In Section 5.1, a description of the different stages
of the estimator, that was previously used in the context of the small patch analysis, is pro-
vided. In Section 5.2, a pair of analyses evidencing potential problems with this estimator
when applied to our wide patch analysis configuration are discussed, serving as motivation
for the work described in this thesis. Finally, in section 5.3, I describe my efforts performing
exploratory analyses of possible solutions or mitigations of such problems.

Section 5.1 is mainly based on [8, 106]. Section 5.2.1 takes from [107] and Section 5.2.2
takes from [108].

5.1 Background

The power spectrum estimator is mainly based on the previous work developed in the context
of the small patch analyses ([23] and “Pipeline A” in [17]), that was followed by several small
corrections implemented to mitigate numerical inaccuracies at large scales (low multipole
moments), that constitutes the hearth of this work. Nevertheless, I start giving an overview
of the preceding estimator that was used in the framework of the small patch analysis, before
the changes of this work (and other contributions developed in parallel) were implemented
in the context of the wide patch analysis, to understand the motivations and achievements
generated by these efforts.

The relevant aspects of this CBB estimation pipeline are summarized here, that are mainly
based on the Monte Carlo Apodized Spherical Transform Estimator (MASTER) method de-
scribed in [105]. The estimator is somewhat changed to employ cross-spectra between maps
observed in different days, as outlined in [109,110].

The MASTER method is essentially employed to consider that although power spectra
that represents the entire sky is intended to be characterized, we only have access to a partial
coverage of it. Also, the method considers the anisotropy in the maps produced by the filter
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operations applied to the TOD and the beam finite angular resolution. Considering a specific
full sky spectrum characterized by its ensemble average 〈C`〉, where the mean is computed
over a large number of sky realizations, the method models the measurements as

〈D̃`〉 =
∑
`′

K``′〈D`′〉+ 〈Ñ`〉

K``′ = M``′F`′B
2
`′

(5.1)

Where we have used the rescaled spectrum 〈D`〉 of 〈C`〉 using the definition Eq.(3.59), and
the same for 〈D̃`〉 with 〈C̃`〉. 〈D̃`〉 denotes the rescaled pseudo-spectrum that is effectively
measured at first instance in the partial observed sky maps, M``′ denotes the mode coupling
matrix, F` denotes the filter transfer function and B` is the instrument beam spectrum, which
measurement for the wide patch case is explained in Section 4.2.3, and 〈Ñ`〉 represents the
noise bias. The apodization produced by the partial patch coverage, along with the edge
taper applied to every map during the map preparation described in Section 5.1.1, correlates
different Fourier modes from the whole sky, that is modeled by the mode coupling matrix.
The filter transfer function F` models the reduction in power of the Fourier modes induced
by the filter operations applied to the TOD. The filtering can be understood as removing out
signal and noise in modes with exceptionally poor signal-to-noise ratio. This is equivalent
to down-weigh the modes that have been filtered, and the filter transfer function guarantees
the proper normalization of the total average.

Polarbear employs exclusively cross-spectra for the estimation of 〈C̃`〉. The advantage of
a cross-spectrum estimator is that it is unbiased in a way that the value expected for the
estimator is the signal 〈C̃`〉 [109], allowing to assume 〈Ñ`〉 = 0. In the other hand, considering
“auto-spectra” contributions using maps from individual days that are cross-correlated with
themselves, as is customary in other procedures such as the original outline of the MASTER
method, induces a noise bias that must be accounted by simulations and removed. The
exclusive consideration of cross-spectra averts this additional problem with the side effect
that the signal contained in the cross correlations of the same day is lost.

5.1.1 Preparation of Maps

The abovementioned same-day maps are fed to the power spectrum estimator. Apodization
must be applied to the maps before the Fourier transform of them are used to compute the
power spectra. This is done by the down-weighting of pixels with high levels of noise located
at the boundaries of the map, and the masking of point sources. The maps of temperature are
apodized using a cutoff of the inverse noise variance at the boundaries of the map, and with a
uniform function where the CMB anisotropies are detected with a high signal-to-noise ratio.
The maps of the Stokes parameters Q and U are apodized in the same way to each other
using a cutoff on an estimate of the highest noise level between the maps of Q or U . Pixels of
the map with an apodization function numerical value lower than 0.01 of the maximum value
of the apodization window are set to zero. There is also a masking of the point sources in the
map. The mitigation of the E → B leakage is performed by the change of the apodization
boundaries according to the method outlined in [111]. For each pixel in the map, its inverse
variance noise estimates are multiplied by the apodization mask. The estimation for the
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inverse variance noise associated with each pixel in the map is multiplied by the apodization
mask and integrated over the whole map to generate an individual numerical weighting value
associated with each map ωXk , where k denotes the observation day that corresponds to that
map and X ∈ [T,E,B].

5.1.2 Estimation of Pseudo-spectra

The measured CMB anisotropy can be expressed as a superposition of Fourier modes with
wavenumber ~̀, as outlined in Section 3.7. Two dimensional Fourier transforms associated
with the temperature, E-mode and B-mode anisotropies achieve this decomposition [112],

T̂k(~̀) =

∫
d2~xW T

k (~x)Ik(~x)e−i
~̀·~x

[Ê ± iB̂]k(~̀) = −
∫
d2~xW P

k (~x)[Q± iU ]k(~x)e∓2iφ`e−i
~̀·~x

(5.2)

where k is the single day map index, φ` is the multipole moment angle, and the apodization
window functions for the maps of temperature and polarization are denoted by W T

k (~x) and
W P
k (~x), respectively. Nevertheless, there is a mixing of E-modes and B-modes induced by

the gradient of the apodization window function, W P
k (~x), in Eq.(5.2). To mitigate this source

of contamination for B-modes, the pure-estimators are used [19]. The Fourier B-mode signal
is defined considering the flat-sky approximation as,

B̂k(~̀) =− sin 2φ`F
[
W P
k Q
]

(~̀) + cos 2φ`F
[
W P
k U
]

(~̀)

− 2i

`

(
sinφ`F

[
W P
k;xQ+W P

k;yU
]

(~̀) + cosφ`F
[
W P
k;yQ−W P

k;xU
]

(~̀)
)

+
1

`2
F
[
2W P

k;xyQ+
(
W P
k;yy −W P

k;xx

)
U
]

(~̀)

(5.3)

Where we have defined the Fourier transform operator as

F [A](~̀) =

∫
d~nA(~n)e−i

~̀·~n (5.4)

And the semicolons in the apodization window functions of Eq.(5.3) are followed by subscripts
that denotes partial derivatives of the corresponding window function. However, the E-mode
is not modified by this new definition in this pipeline because contaminations from B-modes
is imperceptible when contrasted to the original E-mode signal. Furthermore, this would
make the performance of the EE power spectrum estimator worse by rejecting ambiguous
modes that are helpful to determine the power of the E-modes [19]. We recall that the TOD
filtering and apodization of the maps changes the original Fourier modes and therefore from
these we will form pseudo-spectrum estimators and not spectrum-estimators. The outcome
of this step will be the Fourier transforms of the single day maps m̃A

k , where k denotes the
number of map and A ∈ [T,E,B].
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5.1.3 Power Pseudo-spectra

Solely the correlations that are from the same day are considered for the estimation of the
power pseudo-spectrum D̃`. This is done by average weighting the map products where each
map in the product comes from a different day. The estimator then is expressed as,

C̃XY
~̀ =

1∑
i 6=j ωiωj

∑
i 6=j

ωim̃
X
i ωjm̃

Y ∗
j (5.5)

where X, Y ∈ [T,E,B] and i and j corresponds to the map index and it ranges every day
where maps are available for each patch of the sky. An estimation of 2D Fourier pseudo-
spectra, purposely discarding the products where i = j that are equivalent to the auto-spectra
of single day maps, is obtained.

For each patch of the sky, two dimensional estimations of TT , EE, TE, TB, EB, and
BB are computed using Eq.(5.5). Subsequently, one dimensional pseudo-spectra of high-
resolution are obtained when these estimations are averaged across bins in the radial direction
of size ∆` = 40. The fine size of the bins and the patch of the sky signify a large correlation
between the signals of bins that are neighbors meaning that they are measurements that
cannot be considered as independent.

5.1.4 Power Spectra

The estimations of the underlying power spectra D̃AB
` now can be derived from the estima-

tions of DAB
` . This can be done by the formation of K``′ = M``′F`′B

2
`′ . The estimation of

B` in the context of the wide patch is already discussed in Section 4.2.3. The mode coupling
matrix M``′ is computed in an analytical way using the apodization masks computed for the
maps co-added across the full observation campaign [113] at the pseudo-spectra resolution,
i.e., ∆` = 40.

The filter transfer function F` is obtained from the Monte Carlo method. A set of hun-
dreds of random CMB map Gaussian realizations of one arcminute resolution using as input
cosmology the WMAP-9 best fit ΛCDM angular power spectra [114] are created. Then, ob-
servations and analysis are simulated for each map without the presence of noise, and finally
the output angular power-spectrum obtained from these simulations is contrasted with the
initial input cosmology to obtain F`. The value of this estimation does not depend heavily
on the input cosmology. In addition, E → B leakage can be induced by the filtering of the
ground template and polynomial component. The mitigation of this leakage is performed
using realizations of maps with solely TT and EE or TT and BB and removal of the leakage
is performed at the level of the pseudo-spectra,

D̃
BB(sub)
` = D̃BB

` − FE→B
`′

FE→E
`′

D̃EE
` (5.6)

M``′ , F`, and B` are computed with bins of high-resolution (∆` = 40). The narrowness and
large correlations of the bins computed in the pseudo-spectra stage makes singular, at the
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chosen resolution, the mode coupling matrix M``′ . This prevent us to make the inversion of
K``′ and directly use Eq.(5.1) to find the underlying D` for a measured D̃`.

In consequence, D̃` and K``′ are binned into larger bins and D̃b and Kbb′ are obtained,
respectively. The benefit to choose bins with high-resolution at the beginning of the power
spectrum estimator pipeline is that the expensive steps in terms of computational resources
has to be done only for one time, and the choice of other bin widths can performed at the end
of this pipeline with little cost. The choice of four even spaced bins between 500 < ` < 2100
implemented in this analysis leads to ∆` = 400. This has two advantages: the correlation
reduction that are estimated between the bins and the error shrinkage on each bin. This
binning is expressed as,

〈D̃b〉 =
∑
b′

Kbb′〈Db′〉 (5.7)

An unbiased estimation in each bin b of the band power Db can be solved from Eq.(5.7) as,

Db =
∑
b′

K−1
bb′ D̃b (5.8)

Considering this binning resolution, the correlation between bins is small enough to make
feasible the inversion of Kbb′ to derive K−1

bb′ needed for Eq.(5.8).

5.2 Previous Studies and Motivation

The primary goal of these efforts was the validation of the power spectrum estimator described
in Section 5.1 to be implemented in the context of the wide patch configuration, at that point
validated only for the small patch configuration. Previous studies carried by members of the
collaboration, first by Satoru Takakura [108], and later replicated by David Boettger [107],
seemed to shed lights on possible problems that were affecting the behavior of the BB power
spectrum estimator. An excess of the expected power at low multipole moments (large
scales) was the first indication. In this section I describe these studies to better understand
the motivations and possible solutions that I was assigned to study and finally implement to
mitigate them.

5.2.1 Boettger’s Study

David Boettger replicated previous Takakura’s work showing that there is a detectable bias
in our implementation of the MASTER algorithm that shows up at low multipole moments,
or large scales, when using a wide patch configuration [107]. The idea was to run the full
pipeline for a set of simulations drawn from a given cosmology and compare it with the final
power spectrum estimation. A set of 48 maps characterized by a two arcminute resolution
and a 79◦ apodization mask size using Gaussian realizations of the power spectra plotted
with dashed lines in Fig. 5.1 were generated. The mode coupling matrix M``′ is computed
at an initial resolution ∆` = 20, same resolution chosen for the output power spectra.
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Figure 5.1: Power spectra estimation output for set of 48 maps characterized by a two
arcminute resolution and a 79◦ apodization mask size using Gaussian realizations. Top panel:
Angular power spectrum. Shown in dashed lines, the input cosmology for the simulations.
In solid lines, the estimated values obtained from the power spectra estimator are shown.
Middle panel: BB absolute bias defined as the absolute value of the discrepancy between the
input and output BB power spectrum shown in the top panel. Bottom panel: The bias as a
fraction of the error on the bias. The error on the bias is computed as the standard deviation
of all the simulations divided by the square-root of the number of simulations. Courtesy of
D. Boettger.

From Fig. 5.1, it is worthy to emphasize that the highest BB bias is not at low multipole
moments, though as a fraction of the error it does increase more at low multipole moments.
Nevertheless, the lowest multipole moment bin does not have the highest relative bias, hence
the picture is potentially more complicated than just a low multipole moment problem. The
distribution of the error relative bias in Fig. 5.2 looks Gaussian, apart from evident outliers
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which are clearly the highest on the BB spectrum.

Figure 5.2: The distribution of the error relative bias shown in Fig. 5.1. Courtesy of D.
Boettger.

The BB estimator and pure-B counter terms as implemented in Eq.(5.3) are expanded
in ` around ` → ∞ so that the terms in Eq.(25) of [19] are approximated as N

′

ell =
2/
√

(`− 1)(`+ 2) ≈ 2/` and Nell = 1/
√

(`− 1)`(`+ 1)(`+ 2) ≈ 1/`2. Although this should
not actually bias the spectrum because it will be corrected by the filter transfer function,
Boettger tried adding the terms back into the estimator without these approximations to see
if it would affect the results, with the quantified modifications of Eq.(5.3) shown in Fig. 5.3.
He confirmed that adding this modification into the estimator does not modify the level of
bias observed in the output. Anyway, it slightly rises the scatter in the simulations.

The behavior of the BB → BB filter transfer function at low multipole moment is greatly
different than EE → EE or TT → TT due to its fast change. The power spectrum estimator
implementation smooths the computed filter transfer function by the convolution of a kernel
with it. This does not impose problems where the transfer filter function is changing slowly,
but the rapid changes in the BB → BB filter transfer function at low multipole moment
are smoothed away by this process and leads to a roughly 30% discrepancies between the
unsmoothed and smoothed F`, as shown in Fig. 5.4.
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Figure 5.3: Fractional correction to the standard term of Eq.(5.3) if N
′

ell = 2/
√

(`− 1)(`+ 2)

and Nell = 1/
√

(`− 1)`(`+ 1)(`+ 2) in Eq.(25) of [19] are not approximated for ` → ∞ in
the implementation of our power spectrum estimator. Courtesy of D. Boettger.

Figure 5.4: Top panel: Smoothed version of the filter transfer function implemented in our
estimator. Bottom panel: Fractional difference of the smoothed version of the filter transfer
function with one where the smoothing is not applied. Courtesy of D. Boettger.
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These significant discrepancies between the smoothed and unsmoothed versions of the
filter transfer function directly bias the BB spectrum at low multipole moments. If the
smoothing is disabled in the simulations used for the power spectrum estimator output shown
in Fig. 5.1, the BB bias at low multipole moments is reduced by more than an order of
magnitude, while the TT and EE bias are still present at a similar (slightly reduced) level
as compared to before and shown in Fig. 5.5.

Figure 5.5: Same as Fig. 5.1, but without the application of the smoothing in the filter
transfer function. Courtesy of D. Boettger.

Boettger mentioned that simply removing the convolution may not be the correct way to
solve this problem, as the reason of why the smoothing was implemented in the first place
was not well documented. The behavior of the BB → BB filter transfer function was clearly
anomalous, exceeding the unity at low multipole moments what would mean an excess of
power at the pseudo spectrum level for those multipole moments, instead of the loss of power
expected by the TOD filtering and processing that motivates the implementation of such
operation. The reason of this behavior was unclear. Boettger concluded that if there is
a resolvable problem with the BB behavior that keeps the filter transfer function smooth,
it seemed it would also fix the low ` bias problem. The application or not of the leakage
subtraction expressed in Eq.(5.6) did not make a significant difference in the abovementioned
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conclusions. The BBBB mode coupling matrix exhibited the same anomalous behavior as
the filter transfer function at low multipole moments, as plotted in Fig. 5.6.

Figure 5.6: For the mode coupling matrices involved in the power spectrum estimation shown
in Fig. 5.1, the total contribution of the mode couplings with every other multipole moments
for a given multipole moment ` as a fraction of the total mode coupling contributions for
that multipole moment, including the mode coupling from the same multipole moment, is
shown. Courtesy of D. Boettger.

The detected problem is that the mode coupling matrix M``′ as computed either ana-
lytically (as described in 5.1.4) or using Monte Carlo simulations showed strong coupling
between sky power (`′) at almost any multipole moment into observed pseudo-power at low
multipole moment (`). This excess of power is only present when the counter terms in
Eq.(5.3), that correct for E → B leakage produced by the presence of the apodization win-
dow function, are used. It is worthy to mention that both the analytic expression for the
mode mixing and the Monte Carlo simulations use the same expression for the counter terms.

Using the Monte Carlo (MC) implementation instead of the analytic one for the calcula-
tion of the mode coupling matrix makes it easier to explicitly test these effects term by term.
The MC code works by generating a map of Q and U with pure B-mode power in a given
band of multipole moments, passing it through the chosen apodization window functions,
and measuring the resulting B-mode power including the counter term corrections.

In Fig. 5.7 there is a demonstration of this, where the two-dimensional spectrum out-
put is plotted after injecting Gaussian pure B-mode power into a multipole moment ring
400 < ` < 420. The left plot shows the result without applying the counter terms, and
the right shows the counter terms applied. It can be noted for the corrected case that the
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Figure 5.7: A two-dimensional power spectrum estimation output is shown after injecting
Gaussian pure B-mode power into a multipole moment ring 400 < ` < 420. Left panel:
without the application of the counter terms in Eq.(5.3). Right panel: with the application
of the counter terms in Eq.(5.3). Courtesy of D. Boettger.

magnitude of power measured in the multipolar ring is effectively unchanged; the counter
terms just add extra power into the center at low multipole moments, implying that the total
power is not correctly restored at the end of this process. Simulations injecting normalized
power at ` = 410 as before, but with varying mask size and taper are shown in Fig. 5.8.
Also, the power in the ` = 410 bin and few adjacent bins is plotted in Fig. 5.9 to check if
it sums to one, independent of the kernel size. This demonstrates that the counter terms
are producing the low multipole moment power and not mixing it from somewhere else in
multipole moment space.

The final conclusion posed by Boettger is that, although using pure B-modes reduces the
E → B leakage produced by the presence of the apodization window functions, it induces
a new source for B → B mixing that should be corrected. Pure B-modes would be not
orthogonal and not normalized. Independent computations carried by Boettger and me to
obtain Eq.(5.3) from [19] under the flat sky approximation using the basis identification
Y`m → ei`m, leads to Eq.(5.3) multiplied by a `2 factor. A normalization 1/`2 to obtain
Eq.(3.14) in the case of full sky (W (~x) = 1 and so no counter terms) seems to be applied,
but this should not be the case for the partial sky coverage. The idea to redefine this
normalization is proposed.
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Figure 5.8: The resulting two-dimensional spectra for simulations injecting normalized power
at ` = 410 is collapsed into the normalized one-dimensional spectra, and the ratio of power at
low multipole moment (below ` = 20) to the power in the ` = 410 bin is shown. Since power
is only injected into the simulations at 400 < ` < 420, this ratio should be as low as possible.
The different curves are using circular window functions convolved with kernels labeled by
their sizes. Each point on the plot represents the average of 20 realizations. Courtesy of D.
Boettger.

5.2.2 Takakura’s Study

On a parallel study conducted by Satoru Takakura [108] and based on [19, 112, 115], he
considered the definition of the mixed estimator (in the sense that is not a pure estimator):

[Ê ± iB̂]mixed(~̀) = −
∫
d2~x

2π
[Q± iU ](~x)W (~x)∂̄∓2

[
e−i

~̀·~x
]

(5.9)

And the pure estimator :

[Ê ± iB̂]pure(~̀) =

∫
d2~x

2π
[Q± iU ](~x)∂̄∓2w(~x)

= −
∫
d2~x

2π
[Q± iU ](~x)∂̄∓2

[
W (~x)e−i

~̀·~x
] (5.10)
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Figure 5.9: The resulting power spectrum estimation in the ` = 410 bin and few adjacent bins
for simulations injecting normalized power at ` = 410 is shown for the same configuration
illustrated in Fig. 5.8. Courtesy of D. Boettger.

Where we have defined a differential operator applied on a function f(x) as:

∂̄∓1 [f(x)] =

∫
d2~̀

2π
f(~̀)e∓iφ~̀ei

~̀~x (5.11)

Where the function f(x) can be expressed as:

f(~x) =

∫
d2~̀

2π
f(~̀)ei

~̀~x (5.12)

Takakura posed that, under the flat sky approximation, the operator ∂̄ takes the following
form:

∂̄∓1
[
ei
~̀·~x
]

=
∂x ∓ i∂y

i`

[
ei
~̀·~x
]

=
`x ∓ i`y

`
ei
~̀·~x

= e∓iφ~̀ei
~̀~x

(5.13)

If we naively expand the operator ∂̄ following the same rule as in the first line of Eq.(5.13)

but considering the function W (~x)e−i
~̀·~x instead of ei

~̀·~x in Eq.(5.10), it becomes,

[Ê ± iB̂]pure(~̀) ≈−
∫
d2~x

2π
[Q± iU ](~x)e−i

~̀·~x[
e∓2iφ~̀W (~x) +

2i

`
e∓iφ` [∂x ∓ i∂y]W (~x)− 1

`2
e∓iφ` [∂x ∓ i∂y]2W (~x)

] (5.14)

The first term in Eq.(5.14) is the usual expression that we obtain from Eq.(5.9), that we
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denote as the mixed term and from where the first term in Eq.(5.3) comes, and the second
and third term in Eq.(5.14) correspond to the first and second counter terms in Eq.(5.3), and
therefore this derivation corresponds to the estimator implemented in our pipeline, Eq.(5.3).
Nevertheless, Takakura claimed that there is a second approximation apart from the flat
sky assumption in Eq.(5.14) and hence Eq.(5.14) is already an approximation of the expres-
sion that we would obtain only using the flat sky formalism. This follows from considering
Eqs.(5.12) and (5.13) in the operator evaluated in Eq.(5.3),

∂̄∓1
[
W (~x)e−i

~̀·~x
]

= ∂̄∓1

[∫
d2~̀′

2π
W (~̀′)ei(

~̀′−~̀)~x

]

=

∫
d2~̀′

2π
W (~̀′)

∂x ∓ i∂y
i|~̀′ − ~̀|

[
ei
~̀·~x
] (5.15)

If we assume that the apodization window function lacks of small scale structure, that would
be the case, for example, of well enough smoothed window functions, then we can adopt the
approximation `� `′:

∂̄∓1
[
W (~x)e−i

~̀·~x
]

=

∫
d2~̀′

2π
W (~̀′)

∂x ∓ i∂y
i`

[
ei
~̀·~x
]

=
∂x ∓ i∂y

i`

[
W (~x)e−i

~̀·~x
] (5.16)

And then we have shown that the expression used in Eq.(5.14) is another approximation
under the flat sky assumption. Nevertheless, it is important to note that Eq.(5.13) is not

an approximation, as for such case, we can evaluate W (~x) = 1, meaning W (~̀) = δ(`) in
Eq.(5.15) and the first line of Eq.(5.13) is obtained consistently without any further use of

approximations. A precise expansion of ∂̄∓2
[
W (~x)e−i

~̀·~x
]

in Eq.(5.10) can be obtained is we

use (5.11) instead:

∂̄∓2
[
W (~x)e−i

~̀·~x
]

=

∫
d2~̀′

2π
W (~̀′)e∓2iφ~̀′−~̀ei(

~̀′−~̀)~x

= e∓2iφ~̀e−i
~̀~x

∫
d2~̀′

2π
W (~̀′)e∓2i(φ~̀′−~̀−φ−~̀)ei

~̀′~x

(5.17)

Where we can expand

φ~̀′−~̀ − φ−~̀ = arctan

[
`′ sin ∆φ

`− `′ cos ∆φ

]
=
∞∑
n=0

1

n

(
`′

`

)n
sin(n∆φ)

(5.18)

Where we have defined ∆φ ≡ φ−~̀ − φ−~̀′ . Hence, terms with n > 2 are needed to improve
the accuracy of Eq.(5.14). Takakura concluded that the strange behavior observed in Fig.
5.7 could be caused in the cases when ` ∼ `′ allowed by the mode contributions from the
apodization window function.
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5.3 Possible solutions

Considering the studies described in Section 5.2, the collaboration considered the evaluation
of the following mitigations for the problems found [116]:

(A) Compute ∂̄∓2
[
W (~x)e−i

~̀·~x
]

directly.

(B) Raise order of the Taylor expansion in Eq.(5.18).

(C) Smooth the apodization window function to only allow contributions from `′ small in
Eq.(5.15).

(D) Mask lowest multipole moment bin properly.

(E) Change the 1/`2 normalization used in Eq.(5.10) as suggested in Section 5.2.1.

An even more general solution that one can propose to solve all this sort of problems is to con-
sider a curved sky implementation of the whole pipeline and abandon the flat-sky framework.
Nevertheless, at this stage of development of the pipeline, and considering the extension of
the flat-sky consideration through all the stages of the pipeline, including the ones mentioned
in Chapter 4, it is not convenient at this point to focus our efforts in that direction without
a considerably delay in the analysis timeline and a substantial deviation of human resources
from other parallel projects that are much promising in the long term by the development
of state of the art instrumentation. Instead, a mitigation of such effects is preferred for a
timely accomplishment of this project and build on these results and experience for the most
exciting long-term projects such as Simons Array or Simons Observatory.

I was assigned to study and possibly implement one of the options between (A) and
(E), where (A) is a generalization of the possible solution (B). Mitigation (C) was later
implemented by the member of the collaboration Neil Goeckner-Wald [18], and regarding
(D) the code masks all the terms with `, `′ < 10 in Eq.(5.1). Here I give a description of the
exploratory studies evaluating the behavior of both (A) and (E) proposed solutions that I
performed.

5.3.1 Direct computation of ∂̄∓2
[
W (~x)e−i

~̀·~x
]

Considering the pure B-mode presented in Section 5.2.2, from Eq.(5.10) the pure B-mode
can be expressed as,

B̂pure(~̀) =

∫
d2~x

2π

[
Q(~x)

1

2i

(
∂̄+2 − ∂̄−2

)
− U(~x)

1

2

(
∂̄+2 + ∂̄−2

)] [
W (~x)e−i

~̀·~x
]

=

∫
d2~x

2π

[
Q(~x)QP

B(~x, ~̀) + U(~x)UP
B (~x, ~̀)

] (5.19)
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Where I have defined,

QP
B(~x, ~̀) ≡ 1

2i

(
∂̄+2 − ∂̄−2

) [
W (~x)e−i

~̀·~x
]

UP
B (~x, ~̀) ≡ −1

2

(
∂̄+2 + ∂̄−2

) [
W (~x)e−i

~̀·~x
] (5.20)

So that the proposed pure multipole B̂pure(~̀) is defined as the sum of the overlap integrals

between the Stokes maps Q(~x) and U(~x) with the “Stokes pure B-modes” QP
B(~x, ~̀) and

UP
B (~x, ~̀), respectively. In the same way, we can define these “Stokes pure B-modes” QI

B(~x, ~̀)

and U I
B(~x, ~̀) corresponding to the existing pipeline implementation from Eq.(5.3) as

QI
B(~x, ~̀) ≡ 2

ei
~̀·~x

`2

[
∂2W

∂x∂y
(~x)− i` sin(φ`)

∂W

∂x
(~x)− i` cos(φ`)

∂W

∂y
(~x)− `2

2
sin(2φ`)W (~x)

]
U I
B(~x, ~̀) ≡ ei

~̀·~x

`2

[
∂2W

∂2y
(~x)− ∂2W

∂2x
(~x) + 2i` cos(φ`)

∂W

∂x
(~x)− 2i` sin(φ`)

∂W

∂y
(~x) + `2 cos(2φ`)W (~x)

]
(5.21)

These definitions will be useful in the following analysis discussed in Section 5.3.2. The idea
is to compare in real space the behavior of both estimators. To make this comparison more
illustrative, let us consider the toy model example used, for example, in the tests performed
in [19], of a cosine apodization window function

W (θ, ϕ) =


1 for θ ≤ r − r∗

1
2
− 1

2
cos
(
π r−θ

r

)
for r − r∗ ≤ θ ≤ r

0 for θ ≥ r
(5.22)

The parameter r is the window size, and tha parameter r∗ is the apodization length. For this
comparison, we will choose r = 15◦ and r∗ = 5◦, also tested in [19], with other parameters akin
to our final wide patch configuration. The apodization window function for this configuration
is shown in Fig. 5.10.

Figure 5.10: The cosine apodization window function defined in Eq.(5.22), for r = 15◦ and
r∗ = 5◦ centered in a 30◦ × 30◦ sky patch, with a 8’ pixel size.
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We can evaluate these “Stokes pure B-modes” given this apodization window function.
The resulting real space patterns are shown in Figs. 5.11 and 5.12, for ` = 30 and ` = 60, re-
spectively. As we expect from a pure pseudo-C` estimator behavior, in both cases the counter
terms are effectively smeared over an area close to the edges of the apodization window func-
tion [19]. Nevertheless, it is evident that the proposed modes QP

B(~x, ~̀) and UP
B (~x, ~̀) spill an

appreciable amount of power outside the boundary of the apodization window function, as
compared with the current implemented modes QI

B(~x, ~̀) and U I
B(~x, ~̀). The phenomenon is

more patent at low multipole moments, comparing Figs. 5.11 and 5.12. This means that
directions in the sky from the Q(~x) and U(~x) maps already masked out by the apodization
window function, would be introduced in the analysis anyway in Eq.(5.19). The sky patch
coverage is optimized to reduce the polarized foreground contamination to the measured
B-modes [117]. The behavior of the proposed estimator can introduce contamination from
polarized diffuse Galactic synchrotron and thermal dust emissions, or from unexpected, po-
larized point sources, located outside of our targeted sky patch, to our measurements. This
deformation of the effective mask, in the sense of the final spatial contributions injected from
the Q(~x) and U(~x) maps to our analysis, was considered unacceptable and so no further
studies were considered in this direction. This also affects the consideration of the solution
(B), as the analyzed solution in this section is a generalization of it. Furthermore, for the
solution analyzed in this study, the number of Fourier transform operations involved per
multipole moment makes this estimator computationally expensive for our current analysis
pipeline.
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Figure 5.11: The ` = 30 and φ~̀ = 0 peak-normalized “Stokes pure B-mode” QX
B (~x, ~̀) and

UX
B (~x, ~̀) patterns as defined in Eqs.(5.20) and (5.21), for X ∈ {P, I} respectively, given the

cosine apodization window function shown in Fig. 5.10. Left panels are for X = I and
right panels are for X = P . From top to bottom panels, the real component of QX

B (~x, ~̀),

the imaginary component of QX
B (~x, ~̀), the real component of UX

B (~x, ~̀) and the imaginary

component of UX
B (~x, ~̀).
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Figure 5.12: The ` = 60 and φ~̀ = 0 peak-normalized “Stokes pure B-mode” QX
B (~x, ~̀) and

UX
B (~x, ~̀) patterns as defined in Eqs.(5.20) and (5.21), for X ∈ {P, I} respectively, given the

cosine apodization window function shown in Fig. 5.10. Left panels are for X = I and
right panels are for X = P . From top to bottom panels, the real component of QX

B (~x, ~̀),

the imaginary component of QX
B (~x, ~̀), the real component of UX

B (~x, ~̀) and the imaginary

component of UX
B (~x, ~̀).
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5.3.2 Change of Normalization

There are two independent problems that conspire to make the situation difficult to be solved
using a single method. The partial-sky coverage, in one side, induces an E → B leakage and
also a B → B mode mixing at low multipole moments induced by the loss of orthogonality of
the B-modes that motivates the introduction of the pure-B power spectrum estimator. On
the other hand, the use of this estimator under the flat sky approximation induces an excess
of BB power in the reconstructed power spectrum. The truncation of the low multipole
moments in Eq.(5.1), as finally implemented for ` < 10, sounds a very tempting solution to
be extended to higher multipole moments to recover, for example, the 50 < ` < 100 bin.
Actually, the low ` < 10 truncation already bias the very low ` power spectrum, as the loss
of orthogonal modes induced by partial sky coverage also spreads to neighboring multipole
moments the information contained in the low multipole moments, and the direct masking of
a portion of the low multipole moment range will also produce a loss of information on the
higher modes, including the ones in the 50 < ` < 100 bin if this truncation cutoff is naively
raised, producing another source of biasing. In the other way, if we just let the things as
they are, we will have the spurious excess of BB power already mentioned. In this section,
an intermediate solution is proposed.

The choice of a set of pure modes w = `−2We−i
~̀·~x in Eq.(5.10) is suggested to be faster but

a suboptimal solution for the problem of the E → B leakage [112]. Instead, motivated by the
conclusions of Section 5.2.1, and as already stated in item (E), we define the “unnormalized
Stokes pure B-modes”, using Eq.(5.21) as:

QB(~x, ~̀) ≡ `2QI
B(~x, ~̀) = 2ei

~̀·~x
[
∂2W

∂x∂y
− i` sin(φ`)

∂W

∂x
− i` cos(φ`)

∂W

∂y
− `2

2
sin(2φ`)W

]
(~x)

UB(~x, ~̀) ≡ `2U I
B(~x, ~̀) = ei

~̀·~x
[
∂2W

∂2y
− ∂2W

∂2x
+ 2i` cos(φ`)

∂W

∂x
− 2i` sin(φ`)

∂W

∂y
+ `2 cos(2φ`)W

]
(~x)

(5.23)

Then, using this modes we redefined Eq.(5.19) for “unnormalized pure B-modes”,

B̂up(~̀) ≡
∫
d2~x

2π

[
Q(~x)QB(~x, ~̀) + U(~x)UB(~x, ~̀)

]
(5.24)

We can evaluate this expression injecting an unnormalized pure ~̀′ B-mode,

B̂up
~̀′ (~̀) ≡

∫
d2~x

2π

[
Q∗B(~x, ~̀′)QB(~x, ~̀) + U∗B(~x, ~̀′)UB(~x, ~̀)

]
(5.25)

This is analogous to the case for some subset Ω of the sky for polarization fields lying in it
that defines a normed vector space with the inner product,∫

Ω

(QQ′ + UU ′)dΩ (5.26)

That is presented on [115], for the polarization fields P (n̂) = (Q + iU)(n̂) and P ′(n̂) =
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(Q′ + iU ′)(n̂), Eq.(3.7). And it is assumed that these two fields are orthogonal if their inner
product is zero. In such case, Q,Q′, U and U ′ correspond to the usual Stokes parameters
that are real by definition. In this case, we are dealing with Stokes modes and so we take the
complex conjugate of those parameters. This allow us to define a new normalization,

N (~̀) = N (`, φ~̀) ≡

∑
~̀′

B̂up
~̀′ (~̀)B̂up∗

~̀′ (~̀)

− 1
4

(5.27)

This expression can be evaluated numerically. Nevertheless, it is computationally expensive
considering that the pipeline should be run for a large number of simulations. Instead, an
analytic expression can be obtained,

N (~̀) =

∑
~̀′

A(~̀, ~̀′) +B(~̀, ~̀′)−B(~̀′, ~̀) + C(~̀) + C(~̀′) +D(~̀, ~̀′) + E(~̀)− E(~̀′) + F

− 1
4

(5.28)
Where, for simplicity, I have omitted the dependence on the apodization window function
W (~x), its derivatives and ∆~̀= ~̀− ~̀′ that are present in the following definitions

A(~̀, ~̀′) = `2`′2 cos
[
2
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W 2
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(5.29)
For the full sky case, Eq.(5.27) for both the numerical and analytical computations reduces
to the standard 1/`2, up to a numerical error. We are interested in a modification of the
behavior of such normalization at low multipole moments, so that it does not blow up when
the flat sky approximation breaks at `→ 0 creating spurious B-mode power that can couple
to high multipole moments even after mode-coupling corrections. Let us start evaluating
both implementations for the case presented in Section 5.3.1, the cosine apodization window
function, and phi~̀ = 0. These are shown in Fig. 5.13. We can appreciate that both
expressions behave ∝ 1/`2 for ` & 75, up to an imperceptible positive offset due to the
loss of power induced by the small scale features of the apodization window function, being
the analytical expression closer than the numerical implementation to desired behavior at
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high multipole moments. Despite several checks, the source of this discrepancy between
both implementations has not been found in either the implementation of the numerical
normalization nor the computation of the analytical normalization, but it is limited to a
percent fractional error level in the worst case, being in some cases orders of magnitude
below this, as shown in the bottom panel of Fig. 5.13. At low multipole moments, the
normalization does not explode, as desired.

Figure 5.13: The normalization N (`, φ~̀ = 0◦) for the apodization window function presented
in Section 5.3.1. Top panel: The standard 1/`2, the numerical as defined in Eq.(5.27) and
the analytical as defined in Eq.(5.28) normalizations are shown as a function of multipole
moment. Bottom panel: The absolute value of the fractional error between the numerical
and analytical normalizations for the same multipole moment range.

We can now do the same analysis considering a more realistic case, such as the final
apodization window function used for the wide patch analysis, implemented by Goeckner-
Wald [18], that is described and shown in Fig. 5.14 and will be adopted for the rest of the
analysis considered in this thesis. We can evaluate again the normalizations for φ~̀ = 0◦ in
Fig. 5.15 and we arrive to the same conclusion as with Fig. 5.13, with the positive offset more
evident. Nevertheless, we realize that there is also a multipole moment angle dependence
φ~̀, and so I show this dependence for two fixed ` corresponding to the multipole moment
region of interest for possible modifications: ` = 50 in Fig. 5.16 and ` = 100 in Fig. 5.17.
There are three important observations regarding these two cases. First, the shape of the
normalization and fractional error for both cases seems to be similar. Second, in both cases
the previous observation regarding the percent level upper bound of the fractional error be-
tween the two implementations of the normalization still applies. Extrapolating from these
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two cases it is easy to convince ourselves that the highest fractional error in this multipole
moment range is in the vicinity of φ~̀ = 90◦. We plot the normalization for this case in 5.18
and we verified our previous conclusions without further corrections. Third, we also notice
that the fractional change of both normalizations as a function of multipole moment angle
φ~̀ is within the percent level.

We are interested in reduce the number of operations for computationally efficiency, and
given that the fractional error between the two implementations is already within this range,
we decide to fix the multipole moment angle to φ~̀ = 0, that is in the range of lowest fractional
discrepancies between the two implementations, as inferred from Figs. 5.16 and 5.17, that
also can be seen as a trade-off decision between the normalization uncertainty in the definition
and the fluctuations of them as a function of multipole moment angle. For the same reasons,
the analytical implementation is adopted in the subsequent analysis. The impact of this
multipole moment angle fixing within the context of the analytical implementation will be
assessed in Section 6.2 and assumed for the rest of this chapter.

Figure 5.14: The final apodization window function used in the pseudo spectrum stage of
the wide patch analysis with an 8’-pixel size. The smoothing employed with this mask
is considerably more aggressive than the small patch analysis. To fulfill the pure-B mode
estimator requirements regarding the vanishing of both the apodization window function and
its derivatives on the sky patch edge [19], a 8◦ cosine square edge taper is applied, along with
a 8◦ Hamming window to the map of pixel weights. Point sources are not masked in the
power spectrum estimation to avert sharp features in the apodization window function or an
important sky area reduction [18].

As in Section 5.2.1, another test that we can perform is inject Gaussian pure B-mode
power into a multipole moment ring 400 < ` < 420. The two-dimensional pseudo spectrum
outputs are shown in Fig. 5.19. There, we can see that the spurious B-mode power introduced
in the low multipole moments for the standard pure estimator is removed with the use of the
analytical normalization. Furthermore, we can check if the goal of the pure estimator, that
is the mitigation of the E → B leakage induced by the gradient of the apodization window
function, is still achieved with the introduction of this new normalization. A Gaussian E-
mode power is injected into a multipole moment ring 400 < ` < 420. The two-dimensional
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pseudo spectrum outputs are shown in Fig. 5.20. We confirm that the good behavior of
the pure estimator is conserved when using the proposed normalization. Furthermore, a low
multipole moment leakage still present in the standard pure estimator is again removed by
the substitution of the standard normalization.

Figure 5.15: The normalization N (`, φ~̀ = 0◦) for the apodization window function presented
in Fig. 5.14. Top panel: The standard 1/`2, the numerical as defined in Eq.(5.27) and
the analytical as defined in Eq.(5.28) normalizations are shown as a function of multipole
moment. Bottom panel: The absolute value of the fractional error between the numerical
and analytical normalizations for the same multipole moment range.

Nevertheless, this is a very specific choice of multipole moments to have a broad view
of the performance of this normalization. For a more general view of the spurious B-mode
contamination at low multipole moments and the E → B leakage, the mode mixing matrix
M``′ is useful. We use the Monte Carlo (MC) implementation described in Section 5.2.1,
where nMC noise realizations are used to compute their pseudo spectrum using fine multipole
moment bins to estimate the mode-coupling. For realistic performance evaluation, we use
the final desired configuration of the pipeline, bins of width ∆` = 2 and nMC = 10.

The outputs for the BBBB term, and the EEBB component that represents the E → B
leakage, are shown in Fig. 5.21. In the case of the mixed estimator, the BBBB matrix is
diagonal. A clearly non vanishing and diagonal EEBB component is observed. In the case
of the pure estimator, the BBBB shows a large correlation of low multipole moments of the
spectrum with all multipole moments of the pseudo-spectrum, but the EEBB component
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is substantially reduced. This “low ell foot” structure allows the mitigation of the E-to-B
leakage [20], but the use of the implemented analytical normalization reduces the off-diagonal
feature in the mode coupling matrix, improving at some level the numerical stability of the
estimator [18]. There is a slight rise in the EEBB contribution, but still far below the levels
of the mixed estimator. Furthermore, the observed off-diagonal structure in the case of the
BBBB component for the standard pure estimator is also observed in the EEBB term at
some level and is consequently removed with the use of the proposed normalization, helping
with the numerical stability of the estimator as well.

Figure 5.16: The normalization N (` = 50, φ~̀) for the apodization window function presented
in Fig. 5.14. Top panel: The standard 1/`2, the numerical as defined in Eq.(5.27) and the
analytical as defined in Eq.(5.28) normalizations are shown as a function of multipole moment
angle. Bottom panel: The absolute value of the fractional error between the numerical and
analytical normalizations for the same multipole moment angle range.

The outcomes of these exploratory tests are promising but need to be verified in the con-
text of a more realistic application of these modifications, mimicking the treatment that real
data would undergone to produce science results. End-to-end pipeline executions, from sim-
ulated observations of mock maps generated with an input cosmology to estimated spectra,
are used in Chapter 6 to validate the performance of these pseudo-spectrum modifications.
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Figure 5.17: The normalizationN (` = 100, φ~̀) for the apodization window function presented
in Fig. 5.14. Top panel: The standard 1/`2, the numerical as defined in Eq.(5.27) and the
analytical as defined in Eq.(5.28) normalizations are shown as a function of multipole moment
angle. Bottom panel: The absolute value of the fractional error between the numerical and
analytical normalizations for the same multipole moment angle range.

Figure 5.18: The normalizationN (`, φ~̀ = 90◦) for the apodization window function presented
in Fig. 5.14. Top panel: The standard 1/`2, the numerical as defined in Eq.(5.27) and
the analytical as defined in Eq.(5.28) normalizations are shown as a function of multipole
moment. Bottom panel: The absolute value of the fractional error between the numerical
and analytical normalizations for the same multipole moment range.
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Figure 5.19: A two-dimensional pseudo spectrum output is shown after injecting Gaussian
pure B-mode power into a multipole moment ring 400 < ` < 420. The upper panels are
the E-modes. The second row are the B-modes and the bottom panels are the same as the
second row but zoomed in the low multipole moment range. The left panels show the result
with the use of mixed estimator with the standard 1/`2 normalization, the middle panels
show the use of the pure estimator with the standard 1/`2 normalization and the right panels
show the use of the pure estimator with the analytical normalization Eq.(5.28) for φ~̀ = 0◦.
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Figure 5.20: A two-dimensional pseudo spectrum output is shown after injecting Gaussian
E-mode power into a multipole moment ring 400 < ` < 420. The upper panels are the E-
modes. The second row are the B-modes and the bottom panels are the same as the second
row but zoomed in the low multipole moment range. The left panels show the result with
the use of mixed estimator with the standard 1/`2 normalization, the middle panels show the
use of the pure estimator with the standard 1/`2 normalization and the right panels show
the use of the pure estimator with the analytical normalization Eq.(5.28) for φ~̀ = 0◦.
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Figure 5.21: Mode-mode mixing matrices log10M``′ with multipole moment bins of size
∆` = 2 for the wide patch window apodization function shown in Fig. 5.14 for the cases of
the mixed estimator (left panels), the pure estimator with the standard 1/`2 normalization
(middle panels), and the pure estimator with the analytical normalization (right panels). The
first row shows the BBBB term, and the second row shows the cross component EEBB
that represents the E → B leakage. In the case of the mixed estimator, the BBBB matrix
is diagonal along with the EEBB component. In the case of the pure estimator, the BBBB
case shows a large correlation of low multipole moments of the spectrum (horizontal `′)
with all multipole moments of the pseudo-spectrum (vertical `), but the EEBB component
is substantially reduced. This structure allows the minimization of the E → B leakage
[20]. The introduction of the implemented analytical normalization removes most of the off-
diagonal structure that can cause problems to the numerical stability of the estimator [18],
at the price of a slightly increased EEBB component, but still far below the levels of the
mixed estimator.
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Chapter 6

Evaluations of the Modifications to
the B-Mode Pseudo-Spectrum

The purpose of this chapter is to assess the performance of the implemented modifications
that I have introduced to the B-mode pseudo-spectrum related with the change of the nor-
malization explained in Section 5.3.2 and the parameters chosen for its implementation using
simulations fed to end-to-end runs of the analysis pipeline. In Section 6.2 I evaluate the
impact of the use of the multipole angle choice in the proposed normalization with both the
use of a multipole angle dependent normalization and the standard 1/`2 normalization. In
Section 6.3 I explain the tests that I performed to prove the resilience of my proposed modi-
fications to input spectrum variations. Finally, in Section 6.4 I describe the efforts performed
by the collaboration in the introduction of these modifications to the main data analysis
pipeline in the context of the null tests and final cross checks of the impact of this plugging,
along with the final validation of the fiducial data analysis pipeline including these modi-
fications. My prime efforts are focused on Sections 6.2 and 6.3, while Section 6.4 describe
the efforts performed primarily by the member of the collaboration Neil Goeckner-Wald with
minor inputs from my side.

Section 6.1 takes from [18] and Section 6.4 is chiefly based on [6].

6.1 Final Pipeline Configuration

In this section I describe aspects of the power spectrum estimator configuration used for
both the end-to-end pipeline tests employed to evaluate the performance of the proposed
modifications, as well as for the data analysis presented in [6], that has not been mentioned
previously in this manuscript. The structure of the estimator greatly follows the one outlined
in Section 5.1, with minor modifications implemented to mitigate numerical inaccuracies at
large scales (low multipoles). I will highlight these modifications, along with the configuration
choices not mentioned in Section 5.3.2, emphasizing the aspects relevant to the changes here
evaluated. A deeper review of the final configuration used for the power spectrum estimator
employed for science results can be found in [6, 18].
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The observations are arranged into 38 stacks of roughly same weight and coverage of
the sky. These stacks are generated from the sequence of ten days caused by the strategy
of observation. During the post-processing steps several sequences of ten days are merged
owing to an uneven sky coverage or poor weighting. To reduce the bias produced by noise, the
computation of cross spectra between these stacks using Eq.(5.5) is performed. The pseudo
spectrum is binned with bins of width ∆` = 2. The window apodization function and the
computation of the mode coupling matrix M``′ considered in this analysis display the same
configuration described in Section 5.3.2. The filter transfer function is obtained using an
iterative process,

F n
` = F n−1

` +
C̃` −

∑
`′M``′F

n−1
`′ C`′B

2
`′

C`B2
`

and F 0
` = 1. (6.1)

During this analysis, I pointed out the existence of negative values in the implemented filter
transfer functions for BB and EE at low multipoles. This issue was later investigated by
Goeckner-Wald who attributed these findings to fluctuations in the iterative procedure de-
fined in Eq.(6.1) induced by the overfitting in the pseudo spectra of simulations. To avoid
this issue, the iterative procedure is stopped at n = 3. This numerical instability is produced
when the not well conditioned mode mixing matrix M``′ is inverted to solve F` from Eq.(5.1).
An appreciable but not significant bias is introduced in the lowest multipole bin of the esti-
mated power spectrum when this cutoff in the iteration process is adopted. As realized in
Section 5.2.1, previous configuration of the pipeline had adopted a direct smoothing of the
filter transfer function F`. Nevertheless, as we have detected in Section 5.2.1, a consequence
of this is a more patent bias found in the low multipole bins where the filter transfer function
is fast decreasing. Simulated sky maps of 1’ pixels generated from EE-only and BB-only
Planck 2018 best fit ΛCDM [3] input power spectra are used to compute the filter transfer
function.

One difference with the previous configuration of the small patch analysis outlined in
Section 5.1 is the use bins of width ∆` = 50 instead of ∆` = 400 for the estimation of the
power spectra. Their statistical error is represented by the standard error of the Monte Carlo
(MC) simulations.

With the introduction of the changes to the B-mode pseudospectrum normalization pro-
posed in Section 5.3.2, Goeckner-Wald noticed that the code was considerably slower than
without these changes, even with the fixing of the multipole angle φ~̀ = 0◦ in Eq.(5.28).
To achieve a reasonable computation time and considering that we are interested only in a
modification of the estimator behavior at low multipoles, the new normalization for ` < 100
is computed using my implementation and Goeckner-Wald rescaled it to merge the new cal-
culation smoothly with the 1/`2 standard normalization for ` > 100 using a simple splicing.
This is done for every purpose of the pipeline runs, including the fiducial power spectrum
pipeline for science results.

For the purposes of the tests here described, one year of simulated observations from
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October 06, 2015 to October 06, 2016, are used, in contrast with the two years of data used
for the fiducial power spectrum pipeline. The filter transfer function and mode mixing matrix
are estimated from simulated 8 TT + EE and 8 TT + BB signal-only Planck 2018 ΛCDM
input sky maps for each test. For the reconstructed spectra, 16 TT + EE +BB signal-only
simulations are used per test, using the same input cosmology as the filter transfer function
and mode mixing matrix. Any other configuration or input needed for these tests can be
found described in Chapters 4 and 5, or in [6,18], as these tests try to replicate the conditions
of the fiducial power spectrum pipeline at a smaller computational scale due to computational
cost.

6.2 Multipolar angle dependence

In this section I compare the behavior of the power spectrum estimator using the proposed
normalization defined in Eq.5.28 as implemented in the data analysis pipeline and described
in Section 6.1, i.e, with φ~̀ = 0◦ and the standard normalization for ` > 100, with the cases
where the standard 1/`2 normalization is used for every multipole, and where more angles
are evaluated in Eq.5.28 for the implemented normalization. More concretely, all the angles
for ` < 110 are evaluated and then the same stitching with the standard 1/`2 normalization
is applied for ` > 110. A full evaluation of the multipolar angle dependence for a larger
multipolar region is not feasible computationally for the configuration outlined in Section
6.1, even for a one time execution.

The BB pseudo-spectrum output for the three cases is shown in Fig. 6.1. We realize that
the spurious excess of power at low ` as compared with the BB input cosmology represented
with the black dashed line in Fig. 6.4, emerges when the standard normalization is used.
Furthermore, this is not present when both modified normalizations are used. These two
modified normalizations act as an effective low ` pass filter for ` < 50. Our lowest science
multipolar spectrum bin is 50 < ` < 100, so this can be understood as a partial masking
of multipoles lower than our target multipolar bands reducing the possibilities that those
multipoles contaminate our results by mode-mode mixing, that is in fact what happens when
spurious power is present in those multipoles, as found when the standard normalization is
used. For ` > 110, the three cases are coincident, as expected by construction. Finally, both
modified normalizations are mostly compatible for all the multipole range, confirming our
early conjectures from Section 5.3.2.

Regarding the mode-coupling matrices corresponding to this test, these are shown in Fig.
6.2 for BBBB and EEBB, in the same way as in Fig. 5.21. The difference of its structure
when the standard or the implemented normalization without multipolar angle dependence
are used is consistent with our previous discussion in Section 5.3.2 regarding Fig. 5.21. Ad-
ditionally, now we can confirm that the multipolar angle-dependent case exhibits the same
behavior as the fixed multipolar angle case, as expected.

Considering the filter transfer functions corresponding to this test, these are shown in
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Fig. 6.3 for BB → BB and EE → BB. For BB → BB case, we can see that both modified
versions reduce somewhat the rapid fall of the filter transfer function at low ` when the
standard normalization is used. Also, from the EE → BB case we noticed a clear reduction
of the E → B leakage present in the pseudo-spectra at low `, that helps in the lessening of
the leakage propagation and its variance through further stages of the pipeline when both
modified estimators are used. Finally, the use of both modified normalizations leads to a
similar behavior, as intended.

Figure 6.1: The uncalibrated BB pseudo-spectrum output with ∆` = 2. The curves are
shown for the pure estimator when the standard 1/`2 normalization is used (blue line), when
the proposed normalization as described in Section 6.1 is employed (orange line) and when this
proposed normalization is modified with a full evaluation of the multipolar angle dependence
in Eq.5.28 for ` < 110 and the standard normalization for ` > 110 is used (green line). The
error bars are obtained from the standard error of the Monte Carlo (MC) simulations.

Finally, we can analyze the estimated spectra of this test, that, at the end, are the goal
of any power spectrum estimator. We present the two most important cases, BB is shown
in Fig. 6.4, and EB is shown in Fig. 6.5, for our science multipole bins. There, we define
the significance as,

t =
|D̄b −Dtheory

b |
σ̄b

(6.2)

Where D̄b is the average binned rescaled spectrum outputs Eq.3.59 of the simulations, Dtheory
b

is the binned rescaled spectrum input from where the simulations are drawn and σb̄ is the
standard error of the binned rescaled spectrum outputs.

For the case of the estimated spectrum for BB, we see an overall slightly better perfor-
mance of the implemented normalization with φ~̀ = 0◦ over the other two implementations
of the normalization. This is because for most of the bins the three implementations behave
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Figure 6.2: Mode-mode mixing matrix log10M``′ outputs with multipole bins of size ∆` = 2,
for the cases of the pure estimator when the standard 1/`2 normalization is used (left panel),
when the proposed normalization as described in Section 6.1 is employed (middle panel) and
when this proposed normalization is modified with a full evaluation of the multipolar angle
dependence in Eq.5.28 for ` < 110 and the standard normalization for ` > 110 is used (right
panel). The first row shows the BBBB term, and the second row shows the cross component
EEBB that represents the E → B leakage.
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similarly, but the differences are concentrated in the lowest bin, where the mentioned normal-
ization is more than 2σ closer to the underlying spectrum than the standard normalization,
and surprisingly more than 1σ closer than the multipolar angle dependent normalization.
This is of extremely importance, as most of our bias problems where focused in the lowest
bin, and in terms of science goals, this represents the most unexplored and challenging bin,
where the recombination bump is expected at ` ∼ 100.

Finally, for the case of the estimated power spectrum for EB, we see an overall slightly
better performance for both proposed normalizations over the standard normalization. Again,
this is because for most of the bins the three implementations behave similarly, but the dif-
ferences are concentrated in the lowest multipole bin, where the modified normalizations are
roughly 0.3σ closer to the underlying spectrum than the standard normalization. Although
the difference is not of remarkably significance, as they are below the statistical error, they
help somewhat with the reduction of the E → B leakage and the introduction of variance into
the B-mode estimator, as can be noted above. The modified normalizations exhibit totally
compatible performances for this case. We conclude that the fixing choice of φ~̀ = 0◦ does not
have a negative impact in the goal of our modifications when compared to a more extended
evaluation of the multipolar angle and, even more, it could have a better performance in
the measurements of the underlying B-modes. Also, we observe a better performance of the
proposed modifications of the estimator when compared with the standard normalization,
but we need to confirm these results for a more realistic scenario, when the underlying cos-
mology is not totally known beforehand, i.e., when perturbed input spectra are fed into the
estimator.
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Figure 6.3: Filter transfer function outputs for the cases of the pure estimator when the
standard 1/`2 normalization is used (blue line), when the proposed normalization as described
in Section 6.1 is employed (orange line) and when this proposed normalization is modified
with a full evaluation of the multipolar angle dependence in Eq.5.28 for ` < 110 and the
standard normalization for ` > 110 is used (green line). The first row shows the BB → BB
term, and the second row shows the cross component EE → BB that represents the E → B
leakage.
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Figure 6.4: BB estimated power spectrum outputs for the cases of the pure estimator when
the standard 1/`2 normalization is used (blue line), when the proposed normalization as
described in Section 6.1 is employed (orange line) and when this proposed normalization is
modified with a full evaluation of the multipolar angle dependence in Eq.5.28 for ` < 110 and
the standard normalization for ` > 110 is used (green line). Top panel: The binned power
spectrum is shown as points with their error bars. The dashed black line corresponds to the
underlying input power spectrum. The black points and their error bars correspond to their
binned version. Bottom panel: The significance of the discrepancy of the three estimated
power spectra with respect to the binned theory as defined in Eq.6.2. The dashed lines cor-
respond to the average significance over all the multipole range. The multipole bin width is
∆` = 50 and the multipole centers are ` = [75, 125, 175, 225, 275, 325, 375, 425, 475, 525, 575].
The vertical error bars are obtained from the standard error of the Monte Carlo (MC) sim-
ulations and the horizontal bars are defined by the bin width.
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Figure 6.5: EB estimated power spectrum outputs for the cases of the pure estimator when
the standard 1/`2 normalization is used (blue line), when the proposed normalization as
described in Section 6.1 is employed (orange line) and when this proposed normalization is
modified with a full evaluation of the multipolar angle dependence in Eq.5.28 for ` < 110 and
the standard normalization for ` > 110 is used (green line). Top panel: The binned power
spectrum is shown as points with their error bars. The dashed black line corresponds to the
underlying input power spectrum. The black points and their error bars correspond to their
binned version. Bottom panel: The significance of the discrepancy of the three estimated
power spectra with respect to the binned theory as defined in Eq.6.2. The dashed lines cor-
respond to the average significance over all the multipole range. The multipole bin width is
∆` = 50 and the multipole centers are ` = [75, 125, 175, 225, 275, 325, 375, 425, 475, 525, 575].
The vertical error bars are obtained from the standard error of the Monte Carlo (MC) sim-
ulations and the horizontal bars are defined by the bin width.
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6.3 Robustness to spectrum variation

As part of the validation of the implementation of the proposed normalization, I perform a
sequence of tests that uses simulations with changing BB input spectrum comparing the case
where the implemented pure spectrum estimator makes use of the proposed normalization
and when the standard normalization is used in its place. Basically, I was interested to see
if the normalization makes the estimator more resilient to input spectra changes than just
allowing the transfer function to fix the problem on its own. To do that, I make a slight
modification to the pipeline configuration outlined in Section 6.1. As implied here, instead of
using the exact fiducial power spectra mentioned in Section 6.1 and used for Section 6.2 and
for most of the applications of the fiducial pipeline to feed the simulation inputs, their BB
component is perturbed before. The input spectrum is varied introducing Gaussian noise
with a multipolar semi-dependent level on each multipole `. More precisely, I consider the
following perturbation,

δC` =

{
N
(

(N−`)
5N

σn,
`2

N2σ
2
n

)
for ` < N

N (0, σ2
n) for ` ≥ N

(6.3)

Where N (µ, σ2) is the normal distribution with mean µ and variance σ2, and should not
be confused with the normalization introduced in Section 5.3.2. The multipole cutoff is set
to N = 150, and σn is related with the level of Gaussian noise introduced in each test and
multipole `. The perturbation is modeled in this way for many reasons. First, to make it
independent of any preconceived cosmology. Second, it allows slightly increased level of non-
triviality for the perturbation at low multipoles, where we are more interested to challenge
our modifications. This is done with an increasing variance and a positive decreasing offset
from the lowest multipoles up to ` = N , where the offset is set to zero and the variance is
kept constant for higher multipoles. Finally, this form of the perturbation and the param-
eter values considered for these tests avoid the presence of negative input spectrum values
at low multipoles for the results shown here. We considered five different variations, from
σn = 1.0 · 10−3µK2 to σn = 1.4 · 10−3µK2 with increments of 10−4µK2.

The filter transfer function for the two normalization cases is fixed to the fiducial input
cosmology described in Section 6.1 (indeed, they are the same used for Section 6.2), and
hence are not re-computed for each perturbed input spectrum test, in line with the goal of
this procedure. The rest of the configuration follows the one delineated in Section 6.1.

The results for the BB output spectra are shown in Fig. 6.6. There is a slightly better
overall performance of the use of the proposed normalization over the use of the standard
normalization in 4 of the 5 cases exposed here. Furthermore, in all of the variations, the
lowest bin spectrum is much better reconstructed with the use of the proposed normalization,
with 4 out of 5 of them with a significant difference between 3σ and 4σ with respect to
the standard normalization scenario. We verify the improved resilience in the use of the
proposed normalization by the pure B-mode spectrum estimator over the use of the standard
normalization under variations of the BB input spectrum for the estimation of the lowest
multipole spectrum bin.
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Figure 6.6: Same as Fig. 6.4 for the tests described in Section 6.3. Left panels: Same as top
panel of Fig. 6.4 . Right panels: Same as bottom panel of Fig. 6.4. From top to bottom
panels, the Gaussian noise levels are associated with σn = [1.0 · 10−3, 1.1 · 10−3, 1.2 · 10−3, 1.3 ·
10−3, 1.4 · 10−3]µK2.
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6.4 Null Tests and Power Spectrum Validation

A map split null test framework has been implemented to check for internal consistency of our
data to understand the noise properties, and to find overlooked systematic contamination in
the angular power spectrum. Normally, the map pair differences contain traces of the signal
owing to the effects caused by the filter process and the anisotropic scan pattern, that is
more patent at large scales. Hence, the method at first implemented in the context of the
QUIET experiment [118], and later employed in previous analyses of Polarbear, is adopted
for our main analysis. In the definition of the null spectrum, the mode-coupling and filtering
are considered,

Ĉnull
` = ĈA

` + ĈB
` − 2ĈAB

` (6.4)

where we have introduced ĈA
` and ĈB

` to denote the estimated auto spectrum corresponding
to each map split half. In the same manner, we denote ĈAB

` as the cross spectrum between
the map halves. The spectra is estimated from the same procedure outlined in Section 5.1.

The computation of the mode-mixing matrix and filter transfer function is performed in
the same manner used in the fiducial angular power spectrum pipeline, where 92 EE-only
and 92 BB-only Planck 2018 ΛCDM simulated input maps are used in each test. The di-
rections in the sky present in both halves of the map splits are the only ones considered to
generate the mode-coupling matrix and pseudo-spectrum. The multipole binning is the same
mentioned in Section 6.1. The EE, EB, and BB real data null spectra are contrasted to
192 simulations with EE + BB signal and noise. This number of simulations is enough to
achieve a percent-level precision on the filter transfer functions and the PTE values of the
null spectrum in our targeted ` range.

Noise simulations produced by the “signflip” pipeline mentioned in Section 4.3.3 are used
for the fiducial null test statistics, that is not significantly discrepant from the PTE values
extracted with the data stream noise model also discussed in Section 4.3.3, except for the
“top versus bottom detectors” null splits that directly divides detector pairs,. This is caused
by the existence of an extra anticorrelated noise component that shows up when detector
pairs are put apart that is not considered in the data stream noise model presented in Sec-
tion 4.3.3.

The final null test configuration separates the data in 18 mostly uncorrelated split types
aimed to test an ample variety of possible sources of systematic biases. The data set is sepa-
rated into halves of the same weight when it is feasible. The statistic χnull ≡ Ĉnull

b /σ(Ĉnull
b )

is calculated for every bin and null spectrum, where the standard deviation of the MC null
spectra is denoted as σ(Ĉnull

b ). χnull is used due to its sensitivity to systematic contamination
and χ2

null is also used to find outliers. To check for systematic biases and congruence of the
noise model, five statistics are calculated using the χnull values. These statistics were defined
before real data was used to estimate the power spectra. For each statistic, a PTE value is
calculated contrasting the real data to the same statistic calculated from the MC simulations.
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A direct comparison between data and realizations takes for any correlations that shows up
between multipole bins and split types in the calculation of the PTE values. An extra statis-
tic Plow corresponding to the lowest of the five PTE values is considered. The PTE of Plow
must be above 5% for a given test to be considered as passed. Also, a Kolmogorov–Smirnov
(KS) test is used to prove that the PTE values of the χ2

null values by test, by bin, and overall
correspond to a uniform distribution and discard any systematic discrepancy between the
simulated and real uncertainties. All these performed tests were considered successful. For a
specification of the 18 null test axes, the statistics used and the quantitative results obtained
from these tests I refer the reader to [6, 18].

Regarding the relationship with the evaluation of the performance of the proposed modifi-
cations presented in this work, the process to arrive to the final null test framework configura-
tion described above is more relevant than the outcomes. The null test campaign was mainly
lead by the member of the collaboration Goeckner-Wald. It consisted of ten consecutive and
evolutive rounds before the final version was used to evaluate the internal consistency of the
real data. During the progression of the rounds, the configuration of the null test framework
was improved to better reflect the possibilities to catch systematic sources of contamination
(such as the definition of the split null tests, the statistics or the choice of the noise model
pipeline), the changes and updates of the fiducial data analysis pipeline were progressively
introduced, artificial biasing introduced by the data analysis and not present in the real data
was removed or mitigated and the whole code was debugged.

Particularly relevant for us consists the ninth round, where the proposed changes in the B-
mode pseudo-spectrum described in this work were formally introduced in the main pipeline,
along with other changes such as the introduction of new gain templates and Fourier Fast
Transform notch filtering. A cross-check execution with and without the use of the proposed
normalization was performed, as we have done in Sections 6.2 and 6.3. The pseudo-spectrum
code was found to run slightly slower with the changes than with the standard pure B-
estimator implementation, but not in a way to become a rate limiting step. The most
evident power spectrum estimation issues were declared solved [119]. The introduction of
these changes did not introduce significant systematic contamination related with any of the
null test splits or amplified some existing ones. Since then, all the rest of the road until the
publication of the results [6] included the use of the modifications proposed and implemented
in the context of this thesis.

Finally, the end-to-end data analysis pipeline including the mentioned modifications were
validated with both HEALPix [120] curved sky and flat sky inputs [18].
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Chapter 7

Polarbear BB Power Spectrum
Results

In this section, based on [6, 18], I briefly describe the main results of the experiment’s wide
patch analysis, where the modifications presented in the context of this manuscript are used.
Fig. 7.1 illustrates the reconstructed B-mode angular power spectrum of the real data. A
moderate surplus of power above the predictions from the ΛCDM lensing model in the lowest
two multipole binds is measured. This remarks the importance of the high accuracy needed
for the lowest bin that we have promoted in the context of this work. Current measurements
of the B-mode angular power spectrum such as the ones shown in Fig. 3.14 along with the
one reported in this work are summarized in Fig. 7.2.

Figure 7.1: The result of the B-mode angular power spectrum measurement using the fiducial
cross-spectrum pipeline described in Section 6.4. The error bars are only from the statistical
uncertainties. The dashed line is obtained from foreground best-fit dust power at 150 GHz
described in [6]. The outlier measurement present at ` = 375 has a PTE of 9% as described
in [6], meaning that this deviation is not significant. Figure from [6]. ©AAS. Reproduced
with permission.
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Figure 7.2: Current measurements of the B-mode angular power spectrum, where the mea-
surements reported in Fig. 7.1 are labeled as “PB (wide)”. Courtesy of Y. Chinone.

An estimation of the total amplitude of the measured B-mode signal compared to earlier
measurements is calculated. For this estimation, it is assumed a sky with an underlying
foreground contribution that follows a power law D`,dust = 9× 10−3(`/80)−0.6µK2 extracted
from the BICEP2 and Keck Array spectral decomposition at 150GHz measured from the
same sky region [88] and an underlying lensing CMB contribution matching the Planck 2018
ΛCDM lensing B-mode angular power spectrum. A reduced χ2 = 11.6/11 relative to this
model is estimated showing a good consistency. If we naively fit a total B-mode amplitude
to rescale this template, then ABB = 1.8±0.8 is obtained, dismissing the null BB hypothesis
at 2.2σ. This estimation ignores the small non-Gaussianity of the band power distributions
shape. Nevertheless, this is considered in a subsequent cosmological parameter constraints
analysis described in [6]. Finally, a naive uncertainty on r from realizations of ΛCDM with
only lensing (r = 0) is calculated, finding a σ(r) = 0.34, ignoring the non-Gaussianity of the
likelihood shape.

I have given this final description for completeness, but more about other results, such
as cross-correlation analysis with Planck maps, contamination from polarized point sources
and parameter constraints, that are beyond the scope of this work, can be found in [6].
Additionally, other intermediate steps of the wide patch analysis campaign not mentioned
here such as the quantification of the low-` statistical performance, the map level calibration
or the simulation of systematic uncertainties can be found there and in [18].
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Chapter 8

Conclusions, Discussions, and
Overview

In the first three chapters, I give a non-specialized review starting from the basics of the early
universe science to methodically introduce the reader to the motivations, first, of the whole
experiment where this thesis is framed, and then, to the specific goals of my efforts described
in this work. Due to the wide spectrum of areas involved in these collaborative projects, from
experimental physics to data analysis to theoretical physics, it is important to keep in mind
that most of the readers will have more expertise in some aspects of the experiment than in
others, motivating me to don’t be a miser of words for those chapters.

In Chapter 4, I describe the Polarbear experiment and the early stages of the analysis that
the data must undergone to be converted from raw data streams measured by the detectors,
to polarization sky maps.

In Chapter 5, a description of the power spectrum estimator, that was previously used
in the context of the small patch analysis, that greatly follows the MASTER pipeline, is
provided. Due to the E → B leakage induced by the partial sky coverage of the experiment,
the pseudo-spectrum of this estimator, called here the mixed estimator, is modified to be
a pure B-mode estimator, in the sense that the estimator vanishes for a realization of the
CMB without noise which is comprised of only E-modes [19]. Previous studies [107, 108] of
the viability of the application of this estimator to the new analysis involved in this work,
that comprises a wider patch of the sky than in the previous analyses, shown an excess of
reconstructed BB power spectrum, along with an abrupt change of the filter transfer func-
tion, at low multipole moments. I show that the mode-mixing matrix of the estimator also
exhibits a remarkable off-diagonal structure associated with the pseudo-spectrum low mul-
tipole moments, that allows the mitigation of the E → B leakage [20] but can affect the
numerical stability of the estimator [18]. These studies also show that the smoothing of the
filter transfer function to reduce artificially its pathological structure only worsen the low `
BB bias of the reconstructed power spectrum.

An exploratory study of potential solutions is performed. A direct computation of a
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non-expanded version of the ladder operator used to obtain the pure B-modes in the power
spectrum estimator Eq.(5.10) is evaluated. A deformation of the effective window apodiza-
tion function, in the sense of the pixels finally considered for the analysis and their relative
weights, is found. The polarization mask is optimized in order to reduce the polarized fore-
ground contamination to the measured B-modes [117], and so this alteration was considered
unacceptable.

There are two independent problems that conspire to make the situation difficult to be
solved using a single method. The partial-sky coverage, in one side, creates an E → B
leakage and also a B → B mode mixing at low multipole moments induced by the loss of
orthogonality of the B-modes that motivates the introduction of the pure-B power spectrum
estimator. In the other hand, the use of this estimator under the flat sky approximation in-
duces an excess of BB power in the reconstructed power spectrum. An increase of the cutoff
for the truncation of the low multipole moments in the power spectrum estimation Eq.(5.1)
can bias the reconstructed spectrum in the lowest ` bins, ruling out this as an alternative
solution.

Another option initially considered was a phenomenological change of the 1/`2 normaliza-
tion in the pure B-modes pseudo spectrum Eq.(5.3) to avoid the pathological excess of power
at very low ` due to the breaking of the flat-sky approximation. Both a numerical Eq.(5.27)
and analytical Eq.(5.28) expression are obtained, with a discrepancy between them corre-
sponding at most to a percent fractional error level in the 50 < ` < 100 multipole moment
region, without a known cause. Nevertheless, this level of discrepancy is considered accept-
able and the analytical expression is contemplated for further evaluations given its reduced
computational costs relative to the numerical implementation. At high `, both expressions
are found to behave as the standard 1/`2 normalization. At high `, a flattener normalization
when compare with the 1/`2 normalization is obtained.

Using the window apodization function used for our main analysis, the variations of the
normalization N (`, φ~̀) when φ~̀ is varied for a fixed ` are found to be at the percent fractional
error level for the ` region of interest. Hence, this dependence is fixed at φ~̀ = 0, that is in
the vicinity of minimum fractional error discrepancy between the numerical and analytical
normalizations, for any subsequent use of this implementation justified by computational
reasons. Qualitatively, for the pure B-mode pseudo spectrum it is found a reduction of the
spurious excess of power at low ` when relative high ` power is injected, either from B-modes
or E-modes, when comparing the proposed N (`, φ~̀ = 0◦) normalization with the standard
1/`2 normalization. Furthermore, for the implementation of this proposed normalization, we
do not observe a noticeable growth of the E → B leakage, that is the primarily reason to
use the pure-B estimator. Finally, it is observed an important reduction of the off-diagonal
feature in the mode coupling matrix M``′ for BBBB and EEBB, when the modified nor-
malization is used. This somewhat improves the numerical stability of the estimator, with
a slight increment in the E → B leakage as compared with the standard normalization, but
still well below the levels of the mixed estimator.
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In Chapter 6, more strict and quantitative tests are performed to evaluate the perfor-
mance of the implemented modifications introduced to the B-mode pseudo-spectrum and
the parameters chosen for its implementation by the use of simulated observations fed to
end-to-end runs of the analysis pipeline. In Section 6.2, the impact of the use of the multi-
pole angle choice in the proposed normalization is tested, which discrepancy is not significant
with respect to a dependent multipole angle normalization at the pseudo spectrum level. Nev-
ertheless, at the level of the reconstructed spectra, the proposed normalization is more than
2σ closer to the underlying spectrum than the standard normalization, and surprisingly more
than 1σ than the multipolar angle dependent normalization. This is of extremely importance,
as most of our bias problems where focused in the lowest bin, and in terms of science goals,
this represents the most unexplored and challenging bin, where the recombination bump is
expected at ` ∼ 100.

We conclude that the fixing choice of φ~̀ = 0◦ does not have a negative impact in the goal
of our modifications when compared to a more extended evaluation of the multipolar angle
and, even more, it could have a better performance in the measurements of the underlying
B-modes. Also, we observe a better performance of the proposed modifications of the esti-
mator when compared with the standard normalization for the unperturbed input spectra
case.

In Section 6.3, a sequence of tests that uses simulations with changing BB input spec-
trum comparing the case where the implemented pure spectrum estimator makes use of the
proposed normalization and when the standard normalization is used in its place is carried.
The goal was to prove if the normalization makes the estimator more resilient to input spec-
tra changes than just allowing the transfer function to fix the problem on its own. The
filter transfer function for the two normalization cases were fixed to the fiducial Planck 2018
ΛCDM input cosmology. The input spectrum variations shown that the lowest bin spectrum
is much better reconstructed with the use of the proposed normalization, with 80% of the
tests in the perturbation regime presented in this work with a significant difference between
3σ and 4σ when comparing to the standard normalization case. An improved resilience under
variations of the BB input spectrum for the estimation of the lowest multipole spectrum bin
when comparing the use of the implemented modifications in the power spectrum estimator
with the case where these changes are not applied is obtained.

In Section 6.3, these conclusions are reinforced by noticing that the overall end-to-end data
analysis pipeline including the mentioned modifications were validated with both HEALPix
curved sky and flat sky inputs.

Finally, in Chapter 7, the final measured B-mode angular power spectrum of the Po-
larbear data obtained with the estimator changes discussed in this work shows a moderate
excess of power above the predictions from the ΛCDM lensing model in the lowest two mul-
tipole bin. This remarks the importance of the high accuracy needed for the lowest bin that
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we have pushed in the context of this work.

Despite the success in the mitigation of the power spectrum estimator problems that
motivated the realization of the presented work, the implementation employed here should
not be considered as a rule of thumb solution to any low ` BB bias emerged in the context
of a flat sky approximation implementation of the pure-B estimator. Instead, this should
be regarded as an ad hoc mitigation for the wide sky patch configuration of the Polarbear
data analysis. An alternate use of this implementation should consider an acute evaluation
of its performance applied to the specific experiment configuration, including, for example,
the sky patch size, the pseudo-spectrum and spectrum bin sizes ∆`, or the methods used for
the computations of the mode mixing matrices M``′ .

Other approaches emerged in the context of this work that are suggested to deal with
potential power spectrum low ` BB biases while using a pure-B estimator are, first, the
consideration of a sky coordinate system that closely represents the actual curved geometry.
If this is not possible, and the flat sky formalism is employed, then a direct computation of
a non-expanded version of the ladder operator used to obtain the pure B-modes should be
evaluated. This would be the case if the potential foreground contamination introduced by
the alteration of the effective window apodization functions in polarization are found to be
subdominant relative to the reduction of the flat-sky induced BB bias, and the computational
costs are considered affordable.
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M. Maris, P. G. Martin, E. Mart́ınez-González, S. Masi, P. Mason, S. Matarrese, K. G.
Megerian, P. R. Meinhold, A. Melchiorri, L. Mendes, A. Mennella, M. Migliaccio,
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P. G., Mart́ınez-González, E., Masi, S., Massardi, M., Matarrese, S., Matthai, F.,
Mazzotta, P., McGehee, P., Meinhold, P. R., Melchiorri, A., Mendes, L., Mennella,
A., Migliaccio, M., Mitra, S., Miville-Deschênes, M.-A., Moneti, A., Montier, L.,
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