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CONTINUOUS EIGENVALUES FOR REPETITIVE MEYER SYSTEMS.

In this Ph.D. thesis, we make some contributions to the study of continuous eigenvalues for
dynamical systems associated with some particular repetitive discrete sets: Meyer sets and
inter-model sets. Specifically, the main theorem (Theorem A) in Chapter 3 gives a dynamical
characterization of inter-model sets with Euclidean internal space. The characterization is
similar to previous results for general inter-model sets obtained independently by Baake, Lenz
and Moody, and Aujogue, but with an additional condition written in terms of the address
map introduced by Lagarias. Using our characterization and the characterization given by
Baake, Lenz, and Moody in [BLM07, Theorem 5], we obtain as a corollary a characterization
for regular model sets with Euclidean internal space (see Theorem B). Also as a corollary
of our characterization, we give another characterization for regular inter-model sets with
Euclidean internal space in terms of the minimal window (Theorem C).

For finitely generated Delone set in R
d, we can associate a coordinate map called the

address map [L99]. We use it to construct an equicontinuous morphism for the dynamical
hull system of a repetitive Meyer set. This construction is given in the proof of Proposition
A. From [KS14, Theorem 1.3] we know that the dynamical hull system associated with a
repetitive Meyer set in Rd has d continuous eigenvalues. Our construction of an equicontin-
uous morphism for this dynamical system gives us a method to find at least d continuous
eigenvalues for the hull system of a repetitive Meyer set.

In Chapter 4 we study linearly repetitive Meyer sets. In [So99] B. Solomyak proved that
for a Delone set constructed from a self-affine substitution with some additional properties,
its hull system has only continuous eigenvalues. For linearly repetitive Meyer systems we
find a sufficient condition for the dynamical hull system has only continuous eigenvalues.
This condition is about the algebraic structure of the return vectors, and some of their
combinatorial properties. This result is Theorem D, and it is the main theorem of §4.

In a similar way to Lagarias in [L99], we use almost linear sequences to construct Meyer
sets in the real line. We used Proposition A, to verify that there are Meyer sets in the real
line with two continuous eigenvalues rationally independent. Also, we show some examples
to check that some hypotheses in Theorem D are necessary.
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VALORES PROPIOS CONTINUOUS PARA EL SISTEMA DINÁMICO
ASOCIADO A UN CONJUNTO DE MEYER REPETITIVO.

Esta tesis doctoral realiza una contribución al estudio de valores propios para sistemas
dinámicos asociados a algunos conjuntos discretos y repetitivos en Rd: Delone, Meyer, inter-
model y model. Específicamente, el teorema principal en el Capítulo 3 (Teorema A), da una
caracterización de los conjuntos inter-model con espacio interno Euclidiano. Esta caracter-
ización es similar a los resultados previos obtenidos independientemente por Baake, Lenz y
Moody, y Aujogue, pero con una condición adicional escrita en términos de la address map in-
troducida por Lagarias. Usando nuestra caracterización y la caracterización dada por Baake,
Lenz y Moody en [BLM07, Theorem 5], obtenemos como un corolario una caracterización
para conjuntos model regulares con espacio interno Euclidiano (ver Teorema B). También
como un corolario de nuestra caracterización, es posible dar una para conjuntos inter-model
regulares con espacio interno Euclidiano en términos de una ventana minimal (Teorema C).

Para un conjunto de Delone finitamente generado de Rd, podemos asociar una función
coordenada llamada address map [L99]. Usaremos esta para construir un morfismo equicon-
tinuo del sistema dinámico asociado a un conjunto de Meyer repetitivo. Esta construcción
aparece en la demostración de la Proposición A. Por [KS14, Theorem 1.3], sabemos que el
sistema dinámico asociado a un conjunto de Meyer repetitivo en Rd tiene d valores propios
continuos. Nuestra construcción de un morfismo equicontinuo para este sistema dinámico, nos
da un método para encontrar al menos d valores propios continuos para el sistema dinámico
asociado a un conjunto de Meyer repetitivo.

El Capítulo 4 se refiere a sistemas dinámicos para un conjunto de Meyer linealmente
repetitivo. En [So99], B. Solomyak probó que para un conjunto de Delone construido a partir
de una substitución auto-afine con algunas propiedades adicionales, su sistema dinámico tiene
solo valores propios continuos. Para conjuntos de Meyer linealmente repetitivos el principal
resultado del Capítulo 4, Teorema D, da una condición suficiente para que su sistema dinámico
tenga solo valores propios continuos. Esta condición es sobre la estructura algebraica de los
vectores de retorno y algunas de sus propiedades combinatorias.

Similarmente a Lagarias en [L99], usamos secuencias casi-lineales para construir conjuntos
de Meyer en la recta real. Mediante la Proposición A, mostramos un conjunto de Meyer en la
recta real con dos valores propios continuos racionalmente independientes. También veremos
ejemplos para chequear que algunas hipótesis en el Teorema D son necesarias.
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Glossary of Notation

Sets
∅ empty set
N, Z the sets of natural and integers numbers
Zd cartesian product of d copies of integers numbers
Rd the d-dimensional Euclidean space
C, S1 the set of complex numbers, and its unit circle
Td the d-dimensional torus
B(x, r) open Euclidean ball centered at x with radius r
L2(X ;H) H-valued Lebesgue square-integrable functions over X
S, cl(S) the topological closure of S
S ′ ⊆ S S ′ is a subset of S
Sc the complement set of S
int(S), S◦ the topological interior of S
S − S the set of differences of S
S ⊔ S ′ the disjoint union of the sets S and S ′

Operations and Symbols
:= and =: equal by definition
∼ equivalence relation
[x]∼ the class of x in the equivalence relation ∼
X/ ∼ the quotient space of X with the equivalence relation ∼
X × Y the cartesian product of the spaces X and Y
‖ · ‖d, 〈·, ·〉 norm and inner product in the Euclidean space Rd

| · | norm in the complex space C

‖ · ‖op operator norm for bounded linear operators in L2(X ;H)
||| · ||| distance to the nearest integer
x → x̄ x converges to x̄

Functions and Mappings
exp(·), e(·) exponential function in C

supx∈I f(x) supremum of f(x) on I
f : X → Y map from X to Y
G(f) the graph of f
f ◦ g the composition of functions f and g
d(·), r(·) domain and range maps for groupoids
Ai,· ith row of the matrix A
A·,j jth column of the matrix A
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Chapter 1

Introduction

1.1 General Introduction.

In this thesis, we study the set of eigenvalues of some mathematical models for quasicrystals.
We start by modeling the atomic positions of a d-dimensional crystalline solid via a discrete
subset Λ of Rd. We can associate a dynamical system (X,Rd) that allows us to know Λ
and its translations via the topology on X. We are interested in the study of spectral
properties for the translation action of Rd on L2(X,C). We focus on the pure point part of
the spectrum, the eigenvalues for the associated dynamical system. Specifically, on the set
of continuous eigenvalues, when it is possible to choose the associated eigenfunction being
continuous. The set of continuous eigenvalues takes relevance, from the dynamical point of
view, because every continuous eigenvalue defines a topological factor from the associated
dynamical system into a rotation in a torus. This allows us to understand the dynamics of X
a little better. In the context of diffraction theory, the spectrum of the dynamical system is
related to a measure known as mathematical diffraction. This measure is the mathematical
version of X-ray diffraction in crystallography. To have a better understanding of the context,
we will start with a few words in crystallography: some of its history and its mathematical
point of view. After, we give the principal definitions to state the results of this thesis.

Figure 1.1.1: A picture of the sunstone from Getty images, and a picture of the cave in
Naica-Mexico from www.infobae.com
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1.1.1 Crystallography.

When the matter is in solid-state the atoms can be arranged from a regular geometric lattice
to the worse case; in a completely amorphous way (see Figure 1.1.2). Many people have
worked on this subject to understand how the atoms are arranged to form solids (or other
elements). One of them is the ancient Greek philosopher Plato. He proposed, in his dialogue
Timaeus, that the elements in nature were made of some convex, regular polyhedron. These
types of solids are known as Platonic solids and many people worked on this topic, for
example, Aristotle and Euclid. Later, the German astronomer Johannes Kepler used the
Platonic solids to give a model of the Solar System. But the initial idea of Plato has a flaw.
If we assume that the atoms in a solid are arranged to fill a portion of the space, we need
that the geometrical shapes have no overlaps and gaps. But the cube is the unique Plato
solid that ensure this.

Figure 1.1.2: Example of atoms arranged in 2-D (image from www.askiitians.com).

The pioneer in geology Nicolas Steno was the first to work on the symmetries of the
"crystals" by the year 1669. In 1801 the French priest and mineralogist René Just Haüy, who
is considered the founder of crystallography, publishes his "Traité de minéralogie", where he
wrote

"The observation I have just noted is that which has served to develop my ideas on the
structure of crystals. It presented itself in the case of a crystal that the citizen Defrance was
kind enough to give me just after it had broken off from a group this enlightened amateur
was showing me, and which formed part of his mineralogical collection. The prism had a

single fracture along one of the edges of the base, by which it had been attached to the rest of
the group. Instead of placing it in the collection I was then forming, I tried to divide it in

other directions, and I succeeded, after several attempts, in extracting its rhomboid nucleus."

For this reason, he proposed that a solid material is a crystal if it is composed of regular
polygon-shaped blocks in a regular way to construct the crystal figure. Later, the solids
material whose atoms are arranged to form a lattice that extends in all directions was called
crystalline solids. The word crystal comes from the Greek word krustallos and means ice or
rock crystal.

The most common example of a crystal is Sodium chloride (as a mineral: Halite) or

2



Figure 1.1.3: A picture of Halite in solid-state from crystal-information.com, an image of its
atoms arrange from www.123rf.com and an image of its diffraction pattern published by Ian
Freestone.

commonly known as salt. In Figure 1.1.3 we can observe the crystalline solid Halite, a
scheme of its atoms arrange, and its diffraction pattern. But we can find crystalline solids
everywhere, for example, some types of carbon, diamond, quartz, and the Iceland spar∗(a
variety of calcite). The Iceland spar has the property of being birefractive. The Vikings
knew the Iceland spar as Sunstone by this property. They used it to locate the sun in the
sky when it is cloudy, and thus orient themselves in the open sea during their travels around
the world. Another example of natural crystals can be found in Mexico, where there is a
cave with large crystals of selenite, see Figure 1.1.1. But there are also examples of crystals
that come from space. In 1971 in Haverö - Sweden, a meteorite crashed the earth and when
the researchers studied a piece of this they found two new forms of carbon. One of them is
similar to the diamond, and it was predicted to exist years ago but had never before seen in
nature. The hardness of the diamond is due to the carbon atoms inside it are arranged in a
tetrahedron-shaped lattice but the crystalline carbon found in Haverö has its atoms arranged
in a rhombohedral lattice (see Figure 1.1.4).

Figure 1.1.4: Bravais lattices in 3D (Image from https://www.quora.com).

∗http://www.bbc.com/earth/story/20150623-ten-crystals-with-magic-powers
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Consider regular polygon-shaped blocks, matching vertex to vertex, to construct the crys-
tal figure. If we used only one type of polygon, is clear that triangles, squares, or hexagons
can fill the whole Euclidean plane with no gaps and overlaps. But using different regular
polygons we have eight ways more to do this. A natural question about the crystal figure
is can this have symmetries? In the Euclidean plane, some geometric facts imply that crys-
talline solids can possess only two, three, four, and six-fold rotational symmetries, and thus
only finitely many ways to arranged the atoms are possible. This result is known as the
crystallographic restriction theorem.

In 1850, Auguste Bravais wrote his "Mémoire sur les systèmes formés par les points dis-
tribués régulièrement sur un plan ou dans l’espace". Where he studied lattices regularly
distributed on the Euclidean plane and the Euclidean space. Geometrical facts imply there
exist 7 different lattices that bond atoms in 2D. By symmetries, we obtain 14 possible lat-
tices, called Bravais lattices. In Figure 1.1.4 we see a representation of the Bravais lattices in
the Euclidean space. In 1891, Yevgrof Fedorov proved that for the 2-dimensional Euclidean
space there are only 17 symmetry groups. Although many years ago, ancient civilizations
knew about these symmetry groups. An example is the Alhambra Palace, where the Nasrid
architects and craftsmen used these groups to decorate de walls (see Figure 1.1.5). After the
study of the symmetries groups in the Euclidean plane, Fedorov together with Arthur Schön-
flies worked to obtain a classification of the symmetry group in the Euclidean space. They
used the Bravais lattices to conclude that the Euclidean space has 230 symmetry groups.

Figure 1.1.5: Some walls on Alhambra’s palace painted using symmetry groups.
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Specifically, the science of crystallography studies the mean position of the atoms in crys-
talline solids†. For certain crystalline solids, we can deduce from the mean atomic positions,
some chemical and physical properties of the solid. For example, chemical bonds or their
crystallographic disorder. To study the mean position of the atoms in crystalline solids, some
crystallographic methods consist of analyzing the Diffraction patterns. These patterns are
produced by a beam (commonly X-rays) of a crystalline solid sample. These methods are
used since 1895 when Wilhem Rontgen discovered X-rays. After studying and improving this
method, many contributions were obtained in different fields of science. For example, in 1952,
the chemist Rosalind Franklin‡ used the diffraction patterns analysis method to determine
the molecular conformations of DNA as a double helix.

Figure 1.1.6: Diffraction experiments.

In 1984 Dan Shechtman et al. [SBGC84] observe that certain alloys of aluminum and
manganese, rapidly cooled, produced an unusual diffraction pattern. Unusual because this
had ten-fold rotational symmetries (or five-fold rotational symmetries) and this is not possible
to crystals, see Figure 1.1.7. After this, a lot of effort was put into understanding the physical
and geometrical properties of solids without the usual symmetries of crystals. In 1992, for the
impact of Shechtman’s research, the International Union of Crystallography (IUCr) modified
the definition of cristal. They redefined crystal as solid having a discrete points diffraction
pattern with the possibility of it is ordered is periodically or not. Thus, when the solid has not
periodic diffraction pattern was called quasiperiodic crystal or quasicrystal. The diffraction
spectrum of a quasicrystal shows bright spots that are not compatible with the rotational
symmetries of crystals, and from this one deduces that the atomic positions are ordered but
not in a periodic way. By its discovery, Shechtman received the Nobel prize in 2011.

There are two types of quasicrystals known. The quasicrystals with some axis of symmetry
(8, 10, or 12-fold symmetry) and another axis quasiperiodic, and the quasicrystals that are
aperiodic in all directions. Until the year 2004, only about 100 solids are known to form

†https://www.britannica.com/science/crystallography
‡http://www.dnaftb.org/19/bio-3.html
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Figure 1.1.7: Pattern diffraction wasfound by Dan Shechtman and a picture of his notebook.

quasicrystals, and about 400,000 form periodic crystals. In 2009 we had the first evidence of
the existence of a possible natural quasicrystal, the Icosahedrite. This mineral (quasicrystal)
was found in the Khatyrka River in eastern Russia, but one year later some analysis indicates
it may be meteoritic in origin. The diffraction pattern of the icosahedrite is similar to the
first picture in Figure 1.1.7.

1.1.2 Mathematical point of view.

In the previous subsection, we comment that the atomic positions of a crystal in Rd can be
modeled by a discrete set Λ in Rd. But when we think about modeling the atomic position
for solids in Rd, we should have two physic considerations. First, each atom occupies a place
in space, and second, the atoms extend in all directions. For this reason, a model Λ in Rd to
the atomic position of a solid must be:

Uniformly discrete: there exists r > 0 such that for all x, y ∈ Λ with x 6= y we have
‖x− y‖d > r.

Relatively dense: there exists a radio R > 0 such that every open ball in Rd of radio R
contains at least one point of Λ.

The sets in Rd that are uniformly discrete and relatively dense are called Delone sets.
These types of sets can be used to model the atomic positions in a quasicrystals, amorphous
solids, and crystals too (since each lattice in Rd is a Delone set). These sets were called
Delone set in honor of the Russian mathematician Boris Delone (or Delauney).

In mathematics, a crystalline solid is a Delone set Λ in Rd such that its set of periods
{t ∈ R

d | Λ − t = Λ} is a co-compact discrete subgroup of Rd, i.e. Λ is a lattice in R
d. In

this case, we say that Λ is a periodic set. When the set of periods is just the null vector, i.e.
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{t ∈ Rd | Λ = Λ − t} = {0}, the set Λ is called aperiodic. In other cases, we say that Λ is
not periodic.

To study the structure of a cristal Λ we can study the lattice properties. But to study the
chemical and physical properties of the solid we need a mathematical notion of diffraction.
The mathematical diffraction of a solid modeled via a Delone set Λ in Rd can be described
following [H95, BLM07]. Let {An}n∈N be a van Hove sequence, this means that for all n in
N we have that An ⊆ Rd verifies for every compact set K in Rd that

lim
n→∞

Leb
(
((An +K) \ int(An)) ∪ ((Ac

n −K) ∩ An)
)

Leb(An)
= 0 .

For every van Hove sequence {An}n∈N in Rd, we consider the limit (in the weak∗-topology)

γ = lim
n→∞

1

Leb(An)

∑

x,y∈Λ∩An

δx−y , (1.1.1)

where δx−y denotes the Dirac measure supported in the set {x− y}. When this limit exists,
γ is called the autocorrelation measure of Λ associated with the van Hove sequence {An}n∈N.
Although there could be more than one accumulation point, thus each accumulation point
in the weak∗-topology, of the expression in (1.1.1) is called autocorrelation measure of Λ.

A Delone set Λ in Rd has uniform patch frequencies if for each finite subset P of Λ and
for all t0 ∈ Rd, we have that the expression

card{t ∈ Rd | t + P ⊆ Λ ∩ (t0 + An)}
Leb(An)

,

converges uniformly in t0 for every van Hove sequence {An}n∈N. If Λ has uniform patch
frequencies the autocorrelation measure exists and does not depend on the choice of the
van Hove sequence {An}n∈N. If the autocorrelation measure exists, its Fourier transform
γ̂ is a measure called mathematical diffraction. By Lebesgue’s decomposition theorem, this
measure can be decomposed into three parts: pure point, singular continuous, and absolutely
continuous.

γ̂ = γ̂pp + γ̂sc + γ̂ac .

Following the definition of crystal given by the IUCr in 1992, a good mathematical model to
quasicrystal should have mathematical diffraction being pure point, i.e. γ̂ = γ̂pp.

If Λ is a lattice, using the Poisson summation formula, we have

γ̂ = γ̂pp = I ·
∑

x∈Λ
δx ,

where I is the diffraction intensity (the number of lattice points per unit volume) see Sect.4
in [H95].

The mathematics of aperiodic Delone set is before quasicrystals. In the 1930s, the Russian
school proposed Delone set as the fundamental object to study in crystallography [DAP34].
Since for each tiling in R

d, we can construct a Delone set in R
d and using Voronoi cell (see
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[BBG06, Section 2.2]) it is possible to associate for each Delone set a tiling. The mathematical
development of the Delone set theory is related to tiling theory. In 1976 Roger Penrose
discover (using tilings) a two-dimensional aperiodic Delone set with five-fold symmetry. One
year later, Alan Mackay [Ma82] showed that the mathematical diffraction of this set is as in
the Figure 1.1.8.

Figure 1.1.8: Penrose tiling and its mathematical diffraction pattern.

One way to study the structure of a Delone set Λ, is done through the study of the
topology of its hull ΩΛ. It is the collection of all Delone sets whose patterns are up to
translation the same as Λ. See §2.2.1 for more details. The hull is a metric space, where
two sets are closed if they agree on a large closed ball up to small translation. On ΩΛ the
group Rd acts continuously by translation and it defines a dynamical system (ΩΛ,R

d) called
the hull system, see §2.2.1 for more details and references. If we suppose that we have a
homogeneous sample of the solid and without impurities, we can consider two additional
hypotheses for Λ. First, we assume that for every radio r > 0 exists only a finite number
(up to translation) of patterns of diameter at most r in Λ. This property is called finite local
complexity, or FLC for short. The metric space ΩΛ is compact if and only if Λ has the FLC
property. Second, we consider that every pattern that appears in Λ it appears with some
regularity in Λ. In other words, we suppose Λ is repetitive. It means, for every compact K
in Rd the set {t ∈ Rd | (Λ − t) ∩K = Λ ∩K} is relatively dense in Rd. When Λ has FLC,
repetitivity of Λ is equivalent to the minimality of the dynamical system (ΩΛ,R

d).

What is the relation between the mathematical diffraction of a solid with atomic position
given by a Delone set Λ and its hull system? The answer is related to the concept of the
eigenvalue for the dynamical system (ΩΛ,R

d) that we define below. Let µ be an Rd-invariant,
ergodic measure on ΩΛ. An eigenvalue for the measurable dynamical system (ΩΛ,R

d, µ) is a
vector λ in Rd such that there is a function f in L2(ΩΛ, µ,C) such that for every t in Rd and
µ-almost every x ∈ ΩΛ we have

f(x− t) = ei2π〈λ,t〉f(x).

The function f associated with the eigenvalue λ is called eigenfunction. We recall that the
dynamical system (ΩΛ,R

d, µ) has a pure point dynamical spectrum if the set of eigenfunc-
tions is dense in L2(ΩΛ, µ,C). The following relation between the dynamical spectrum of
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(ΩΛ,R
d, µ) and the mathematical diffraction was proved in 2002.

Theorem 1.1.1. [LMS02, Theorem 3.2] Let Λ be a Delone set with FLC and uniform patch
frequencies. Then γ̂ is a pure point measure if and only if the hull system has pure point
dynamical spectrum.

This is one of the motivations to study the set of eigenvalues and eigenfunctions of
(ΩΛ,R

d, µ). But Delone sets are a class so wild that we cannot ensure that autocorrelation
(and hence the diffraction) exists. As the diffraction is a limit of Dirac measures supported
in Λ−Λ, we could assume certain regularity in Λ−Λ. A Delone set Λ in Rd is called a Meyer
set if Λ − Λ is a Delone set too. In 1972, Yves Meyer defined these sets based on harmonic
analysis and proposed these as models for the atomic positions in a quasicrystals. There are
different ways to characterizes Meyer set, see for example [Me72, M97, L99]. For example, in
[KS14] the authors characterize the hull system of a Meyer set as the hull system of a Delone
set with some dynamical properties.

Thinking about modeling quasicrystals, Meyer sets have their complications. There exist
examples of Meyer sets where the autocorrelation does not exist [L99]. There are also exam-
ples such that the autocorrelation exists but this is not pure point diffractive [FS07]. Thus,
not all Meyer sets are good models for quasicrystals. Because of this, many authors study
model sets [Me72, H95, L99, S00, FHK02, LM97, A16b]. These sets are a sub-class of Meyer
sets that in particular are always pure point diffractive. This was proved by Hof [H95] for
repetitive regular inter-model sets with Euclidean internal space. These result, makes the
inter-model set a good candidate to model quasicrystals. Inter-model sets in Rd are a subset
of the projection of part of a lattice L in the embedding space R

d × H , injectively on the
physical space Rd. Where H is a locally compact, σ-compact Abelian group called internal
space and the projection of the lattice in H is dense. Meyer and model sets are related by
the following fact proved by Yves Meyer in 1972 [Me72]. A discrete set Λ in Rd is a Meyer
set if and only if exists a model set M such that Λ ⊆ M . In 1981 deBruijn proved that the
set of vertices of the Penrose tiling form an inter-model set and thus is a Meyer set [dB81].

1.2 Our contributions.

In the 70’s Meyer introduced some discrete sets in Rd in connection with his work in harmonic
analysis, and he observed that each one of these sets, now called Meyer sets can be embedded
into another type of discrete set called model set. This last collection is a sub-class of Meyer
sets and these sets are defined by a simple geometric construction: they are the projection
on the first coordinate of some part of a lattice in Rd×H where H , called the internal space,
is a locally compact Abelian group.

After the discovery of quasicrystals by D. Shechtman et al. [SBGC84], model sets with
Euclidean internal space was proposed as geometric models for the atomic positions in a
quasicrystal. Euclidean model sets and their associated dynamical systems played an impor-
tant role in the mathematical diffraction theory of quasicrystals. Hof in [H95] proved that
every repetitive regular inter-model set (see definition in §2) has pure point diffraction and
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then, Schlottmann in [S00] generalize this result to repetitive regular inter-model sets with
arbitrary locally compact Abelian group as internal space.

In a previous work [S98], Schlottmann gave a necessary and sufficient condition on a Delone
set for being a general non-singular model set (see definition in §2) in terms of the recurrence
structure of the separated net and he asked for a characterization of non-singular model sets
with well-behaved internal space for example R

n. We recall that every non-singular model
set is a repetitive inter-model set.

Dynamical characterization of repetitive regular inter-model sets was given by Baake,
Moody and Lenz in [BLM07] and then, Aujogue [A16] extended this characterization to
arbitrary repetitive inter-model sets not necessarily regular. Both results apply to general
repetitive inter-model sets but left open the question of characterizing repetitive inter-model
sets with Euclidean internal space.

In this thesis, we answer this question by adding an algebraic and a dynamical property
to the previous characterizations in [BLM07] and [A16]. The first condition is given in terms
of the rank of the Abelian group generated by the set of differences of the Delone set and the
second condition is written in terms of a flow on a torus constructed from the address map
introduced by Lagarias in [L99], we call this flow the address system.

We recall that every inter-model set is a Meyer set, and all the previous characterizations
of inter-model sets are written in the form of what we need to add to a Meyer set to have
an inter-model set. Our result state that all the information needed for being an inter-model
set with Euclidean internal space is encoded in the rank of the group of differences and the
dynamical relation between the dynamical system associated with the Meyer set and the
address system.

The results in this thesis are named with capital letters A, B, C, etc. In order to give a
more detailed statement of our results we recall some definitions, see §2 for details.

A discrete subset Λ of Rd is a Delone set if it is uniformly discrete and relatively dense.
It is finitely generated if the Abelian group generated by Λ − Λ is finitely generated, and it
is repetitive if every pattern in Λ appears with bounded gaps.

Given a Delone set Λ its hull ΩΛ is defined as the collection of all Delone sets whose local
patterns agree with those of Λ up to translation. If Λ has finite local complexity, then the
hull can be endowed with a topology that is metrizable and compact. The subset of the hull
of all Delone sets containing 0 is called the canonical transversal of ΩΛ and we denote it by
ΞΛ.

The group Rd acts on the hull continuously by translation, giving a (topological) dynamical
system (ΩΛ,R

d). Some combinatorial properties of the Delone set to translate into dynamical
properties. For example, repetitivity of Λ is equivalent to minimality of (ΩΛ,R

d).

It is well known in dynamical systems theory that there is a dynamical system with an
equicontinuous action of Rd that is a factor (semi-conjugacy) of (ΩΛ,R

d) and it is maximal
to these properties. This dynamical system is unique up to topological conjugacy and we call
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it the maximal equicontinuous factor of (ΩΛ,R
d).

It is known that repetitivity implies finite local complexity, see for instance [BG13], and
that finite local complexity implies finitely generated, see [L99]. A Delone set Λ in Rd is a
Meyer set if the set of difference Λ− Λ is a Delone set.

Let Λ be a finitely generated Delone set in Rd. The rank of Λ is the rank of the Abelian
group generated by Λ as a subset of Rd. We denote this group by 〈Λ〉, and by s its rank.
Let B be a basis of 〈Λ〉. The address map for Λ associated with B, is the coordinate map
from 〈Λ〉 to Zs with respect to the basis B. Notice that since 〈Λ〉 is an Abelian group and
〈Λ − Λ〉 ⊆ 〈Λ〉, we have that: 〈Λ〉 is finitely generated if and only if 〈Λ − Λ〉 is finitely
generated. Also, observe that if Λ is a repetitive Meyer set in R

d then for every Λ0 in ΞΛ we
have that

〈Λ0〉 = 〈Λ0 − Λ0〉 = 〈Λ− Λ〉.
Given a basis B of 〈Λ− Λ〉, let ϕ : 〈Λ− Λ〉 → Zs be the coordinate map with respect to the
basis B. We have that for every Λ0 in ΞΛ the address map of Λ0 is equal to ϕ.

Lagarias proved in [L99] that if Λ is a Meyer set then, there is a linear map from Rd to
Rs whose distance to the address map of Λ is uniformly bounded on the points of Λ. Indeed,
this property characterizes Meyer sets. Our first result gives the existence of one linear map
that approximates the address map of all Delone sets in ΞΛ, and it also gives a linear flow
on a torus that we use to characterize inter-model sets with Euclidean internal space.

Put ‖x‖s for the Euclidean norm of x in Rs, and [x]Zs to denote the equivalent class of
x ∈ Rs in Ts = Rs/Zs.

Proposition A (Address system). Let Λ be a repetitive Meyer set in R
d and let s be the

rank of 〈Λ−Λ〉. Let B be a basis of 〈Λ−Λ〉 and let ϕ : 〈Λ−Λ〉 → Zs be the coordinate map
with respect to the basis B. There are an injective linear map ℓ : Rd → Rs and a constant
C > 0 such that for every Λ0 in ΞΛ and every t ∈ Λ0 we have

‖ϕ(t)− ℓ(t)‖s ≤ C.

Moreover, there is a linear flow (Ts,Rd) defined by

(w, t) ∈ T
s × R

d 7−→ w + [ℓ(t)]Zs ,

and there is a homomorphism πAd : ΩΛ → Ts such that for every Λ′ in ΩΛ and every t in Rd

we have πAd(Λ
′ − t) = πAd(Λ

′) + [ℓ(t)]Zs .

Notice that the dynamical system (Ts,Rd) and the homomorphism πAd in Proposition
A depend on the basis B chosen, however, if we change the basis then the new system is
topologically conjugate to the previous one. We call any of these dynamical systems, the
address system of Λ, and to the map πAd the address homomorphism of Λ, which are well
defined up to topological conjugacy. Observe that each coordinate of πAd in Proposition A
gives a topological factor of (ΩΛ,R

d) onto the circle T, however, the address system is not
necessarily a topological factor of (ΩΛ,R

d). The minimality of (ΩΛ,R
d) implies that the

address system of Λ is a topological factor of (ΩΛ,R
d) if and only if the address system of
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Λ is minimal. Finally, notice that if we denote by A the representative matrix of ℓ in the
canonical basis and by AT the transpose then we have that the address system is minimal
if and only if Ker(AT ) ∩ Zs = {0}, which gives a simple way to check the minimality of the
address system.

The next theorem is the main result of §3, it characterizes inter-model sets with Euclidean
internal space.

Theorem A. A repetitive Meyer set Λ in Rd is an inter-model set with Euclidean internal
space if and only if rank(〈Λ− Λ〉) > d and the address system of Λ is a topological factor of
(ΩΛ,R

d) such that there is one point with a unique preimage under the factor map.

After some comments from J. Kellendonk and using a result of Paul [P73, Proposition
1.1], we can observe that the address system of a Euclidean inter-model set Λ, is the maximal
equicontinuous factor of (ΩΛ,R

d).

From Theorem A and [BLM07, Theorem 5], we obtain the following characterization for
regular inter-model sets with Euclidean internal space. Observe that if the address system
of Λ is minimal it is also uniquely ergodic.

Theorem B. A repetitive Meyer set Λ in Rd is a regular inter-model set with Euclidean
internal space if and only if rank(〈Λ − Λ〉) > d and the address system of Λ is a topological
factor of (ΩΛ,R

d) such that the set of points in the address system with unique preimages
under the factor map has full measure for the unique ergodic measure.

For the proof of Theorem A, given a Meyer set we construct a cut and project scheme
with a Euclidean internal space and a window, which we call the “Lagarias CPS” and the
“minimal window”, respectively. What we actually prove in Theorem A is that if Λ satisfies
the necessary condition then it is an inter-model set generated by the Lagarias CPS and the
minimal window. Using again [BLM07, Theorem 5] we can give a more explicit version of
Theorem B.

Theorem C. A repetitive Meyer set Λ in Rd is a regular inter-model set with Euclidean
internal space if and only if rank(〈Λ−Λ〉) > d, the address system of Λ is a topological factor
of (ΩΛ,R

d) such that there is one point with unique preimage under the factor map and the
boundary of minimal window of Λ has measure zero.

In order to put in context our results we mention an application to the theory of uni-
modular Pisot substitution tilings. In this setting, one can prove that the address system
corresponds to the canonical torus and it is a topological factor of the hull of the substitution
tiling. We can also prove that the minimal window is the image of the Rauzy fractal by
a linear isomorphism. Using Theorems A and C and the fact that the Rauzy fractal has
zero measure boundary (see for instance [BST10]) one can give another proof of the follow-
ing known characterization of pure point unimodular Pisot substitution tilings as regular
model sets with Euclidean internal space (see Theorem 7.3, Corollary 9.4, and Remark 18.6
in [BK06]).

Theorem 1.2.1. Let ΩΛ be the hull of a unimodular Pisot substitution tiling Λ in R. The
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following are equivalent:

(i) ΩΛ has pure point dynamical spectrum.

(ii) ΩΛ is the hull of a regular model set with Euclidean internal space.

(iii) There is a point in the address system of Λ with a unique preimage under the factor
map.

In Chapter 4 we restrict our attention to linearly repetitive Meyer systems. This is a
subclass of Meyer system where there exists a constant L > 1, such that each ball of radio
L × ρ contains each ρ-patch of Λ. We give a more detailed definition in §4.1. In general,
for Meyer systems, there are examples without continuous eigenvalues up to the trivial one.
Even in the case of linearly repetitive Meyer system. For example, by associating equal
lengths to the scrambled Fibonacci sequence, we can obtain a Meyer system that is pure
point diffractive with one continuous eigenvalue (see [KS14]). Also, it is possible to construct
another example of a linearly repetitive Meyer system assigning equal lengths in a symbolic
sequence constructed in [BDM05]. This system has no continuous eigenvalues up to the trivial
one. In general is very difficult to have only continuous eigenvalues for a large class of Delone
sets. In [So99], the author proved that each Delone system from a self-affine substitution
with some additional properties has only continuous eigenvalues. The main result in §4 is
Theorem D. It gives a sufficient condition for a linearly repetitive Meyer system has only
continuous eigenvalues. We give some definitions after we state the result in detail.

Let Λ be a repetitive Delone set in Rd. Denote by (ΩΛ,R
d) and ΞΛ its hull system and

transversal space, respectively. A clopen set in ΞΛ is a closed and open subset of ΞΛ. For
every Λ′ in ΩΛ and a clopen set C in ΞΛ, we define the set of return vectors of Λ′ to C as

RC(Λ
′) := {t ∈ R

d | Λ′ − t ∈ C}.

This set is a repetitive Delone set in Rd [C11], and if Λ′ is in ΞΛ then RC(Λ
′) ⊆ Λ′. In [C09]

it is proven the following facts.

Theorem 1.2.2. Let Λ be a linearly repetitive aperiodic Delone set in Rd containing 0 and
let µ be the unique invariant measure for (ΩΛ,R

d). For every Λ0 in ΞΛ, there is a decreasing

sequence of clopen sets (Cn)n∈N in ΞΛ containing Λ0 and a sequence of finite sets ( ~Fn)n∈N in
Rd verifying that for every n ∈ N the set

~Fn ⊆ RCn
(Λ0)−RCn

(Λ0) and RCn
(Λ0) ⊆ 〈 ~Fn〉,

such that the following property holds: If α in Rd is an eigenvalue for (ΩΛ, µ,R
d) then the

series ∞∑

n=1

max
v∈ ~Fn

|||〈α, v〉|||2

converges. Moreover, one can choose the sequences (Cn)n∈N and ( ~Fn)n∈N satisfying the fol-
lowing property: There is M in N such that for every n in N we have that every vector v in
~Fn+1 can be written as an integer linear combination with less than M vectors in ~Fn.

We used this result to proved the main theorem in §4.1. This theorem is stated below.
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Theorem D. Let Λ be a linearly repetitive aperiodic Meyer set in Rd and let µ be the unique
invariant measure for (ΩΛ,R

d). Let Λ0 be in ΞΛ and let (Cn)n∈N and ( ~Fn)n∈N be sequences
associated to Λ0 as in the statement of Theorem 1.2.2. If for every n in N there is a base of
the group 〈RCn

(Λ0)〉 included in ~Fn, then every eigenvalue of (ΩΛ, µ,R
d) is continuous.

Finally, we proved two corollaries from Theorem A. One of them characterizes the max-
imal equicontinuous factor of the hull system ΩMS associated with a repetitive inter-model
set with Euclidean internal space. See §2.3 and §2.2.1 for definitions about model set and
dynamical systems.

Proposition B. Let ΩMS be the hull of the repetitive inter-model sets generated by a Eu-
clidean cut and project scheme (Rn,Γ, sRn) over Rd and a window W . Then, for every Λ
in ΩMS we have that the group 〈Λ − Λ〉 is equal to Γ and its rank is d + n. Moreover, the
maximal equicontinuous factor of (ΩMS,R

d) is topologically conjugate to the address system
of Λ.

The last corollary is about the continuous eigenvalues for a repetitive Euclidean inter-
model set in Rd with rank s > d. Denote by ΩMS its associated hull. For Λ̃ in the transversal
space of ΩMS we denote by ℓ the linear map defined in Proposition A. Its matrix repre-
sentation is denoted by A. We use a result of minimality for torus flows (see Lemma J), to
obtain that the rows of A are rationally independent. Thus, we get the following consequence.

Corollary A. Let ΩMS be the hull of the repetitive inter-model sets generated by a Euclidean
CPS (Rn,Γ, sRn) over Rd. Consider Λ̃ in the transversal space of ΩMS and denote A the
matrix representation of ℓ. Then the rows of A are n + d rationally independent continuous
eigenvalues for (ΩΛ̃,R

d).

The fact that each rank s, repetitive, Euclidean inter-model set has s continuous eigen-
values is well known. For example, it can be obtained from Theorem 2.3.1. This corollary
adds an explicit description of these s continuous eigenvalues as the rows of the matrix A.

1.3 Outline of the text.

The text is organized as follows: In Chapter 2 we give some basic facts about Delone sets,
and we define some objects that we use in the text. In §2.1.1 we define the address map
associated with a finitely generated Delone set. After in §2.2.1, we recall the definition of a
dynamical system and how we can obtain a dynamical system from a Delone set. Particularly,
we define the dynamical hull system associated with a Delone set. In §2.3.1 we define the
torus parametrization for some dynamical systems.

In Chapter 3 the main results are stated: Theorem A and Proposition A. The proof of the
Proposition A is in §3.1. For its proof, we define the transverse groupoid in §2.2.1. We used
Proposition D, proved in §3.1.1, and the address map to define a cocycle in the groupoid. By
Lemma C, proved in §2.2.1, we have the minimality of the transversal groupoid. Then we
apply a version of the Gottschalk-Hedlund theorem for groupoids to obtain eigenvalues and
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eigenfunctions for the transverse groupoid. Using Lemma A we extend the eigenfunctions
to whole the hull. The proof of this lemma is in §2.2.2. The proof of the Theorem A is in
§3.2. The necessary condition uses a characterization of the maximal equicontinuous factor
for the hull of a Euclidean model set. This characterization is stated in Proposition B and its
proof is in §3.2. The proof of the sufficient condition is in §3.2.2 and it uses two construction:
the Lagarias CPS and the Main Technical Lemma. In §3.2.2, we explain the construction of
the Lagarias CPS. It associates for each Meyer set a model set that contains it. The Main
Technical lemma 3.2.2 is proved at the end of this chapter in §3.3.

In Chapter 4 the main result is Theorem D. The chapter begins with an introduction and
comments about Delone sets and topological pure point spectrum (pure point spectrum with
only continuous eigenfunctions). After that, we recall some definitions of linearly repetitive
Delone sets, and we mention a result that we use in the proof of Theorem D. This result was
proved by Daniel Coronel in his Ph.D. thesis [C09]. Finally, in §4.2 is the proof of the main
theorem of this chapter. To prove this we define returns vector for a decreasing sequence of
clopen in the associated hull system. Using the return vectors we define topological factors
of the hull system. To conclude the proof we assume α an eigenvalue of the hull system. We
used the recurrence structure and Proposition A to conclude that α is a continuous eigenvalue
for some of the topological factors, and then α is a continuous eigenvalue for the hull system.

We show some examples in Chapter 5. These illustrate the technique in Proposition A to
find continuous eigenvalues. In §5.1, we find continuous eigenvalues for a Meyer set in the real
line. They are obtained from associating rationally independent lengths to an almost linear
sequence in m symbols. After in §5.2, we associated lengths for an almost linear sequence
to obtain two examples of Meyer sets in R. One of them with one continuous eigenvalue,
and another with two rationally independent continuous eigenvalues. In §5.3, we consider a
Meyer set from associating lengths for a fixed point of a primitive substitution in m symbols.
Finally, we work two examples to show that hypotheses in Theorem D are necessary §5.4.

Some ideas for future work are stated in Chapter 6. Finally, in the appendix, we define a
Rd-flow in the s-torus §7. We characterize when this flow is minimal in Lemma J. In Corollary
A, we used this to prove that every repetitive, Euclidean inter-model set in Rd with rank
s > d has s continuous eigenvalues.
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Chapter 2

Notations and main concepts

Let Rd be the Euclidean d-space endowed with its Euclidean norm that we denote by ‖ · ‖d.

2.1 Delone sets.

A subset Λ of Rd is called a Delone set if it is uniformly discrete, meaning that there is r > 0
such that every closed ball of radius r intersects Λ in at most one point; and relatively dense,
which means that there is R > 0 such that every closed ball of radius R intersects Λ in at
least one point.

Let Λ be a Delone set in Rd. For every t ∈ Rd, we denote by Λ − t the Delone set
{x− t | x ∈ Λ}.

For every ρ > 0 and every t in Rd denote by B(t, ρ) the open ball in Rd of radius ρ and
center t. A ρ-patch of Λ centered at t ∈ Rd is the set Λ ∩ B(t, ρ). We consider two notions
of long-range order for Delone sets: The first one states that a Delone set Λ has finite local
complexity if for every ρ > 0 it has a finite number of ρ-patches up to translation; and the
second says that Λ is repetitive if for each ρ > 0 there is a number M > 0 such that each
closed ball of radius M contains the center of a translated copy of every possible ρ-patch of Λ.
Observe that every repetitive Delone set has finite local complexity (see [BG13, Proposition
5.6]).

A Delone set Λ is finitely generated if the Abelian group generated by Λ − Λ is finitely
generated. We denote by 〈Λ − Λ〉 this group. Observe that if 〈Λ − Λ〉 has finite rank the
group 〈Λ〉 also has finite rank. For every finitely generated Delone set, we define its rank as
the rank of the group 〈Λ〉. We recall the following proposition proved in [L99].

Proposition 2.1.1. Let Λ be a Delone set.

1. Λ has finite local complexity if and only if Λ− Λ is a discrete and closed subset of Rd.

2. If Λ has finite local complexity if and only if it is finitely generated.
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2.1.1 Meyer sets and address map.

Let Λ be a Delone set in Rd. We recall that Λ is a Meyer set if Λ − Λ is a Delone set.
Following [L96], it definition is equivalent to the fact that, there is a finite set F in Rd such
that

Λ− Λ ⊆ Λ + F. (2.1.1)

Let Λ be a Meyer set in Rd with rank s, and let B := {v1, . . . , vs} be a basis of 〈Λ〉. We
recall that the address map for Λ ( associated to the basis B) is the map ϕ : 〈Λ〉 → Zs such
that to every x in 〈Λ〉 assigns its coordinates in the basis B. The following characterization
of Meyer set is used in the proofs of Proposition A and Main Theorem.

Theorem 2.1.1. [L99, Theorem 3.1] A Delone set Λ in Rd is a Meyer set if and only if it
finitely generated and every address map

ϕ : 〈Λ〉 → Z
s,

is almost linear, that is, there are a unique linear map ℓ : Rd → Rs and a constant C > 0
such that for every x in Λ we have

‖ϕ(x)− ℓ(x)‖s ≤ C. (2.1.2)

Remark 2.1.2. In the proof of [L99, Theorem 3.1] it was proved that ℓ is some kind of “ideal
address map” in the sense that if {v1, . . . , vs} is the basis of 〈Λ〉 that we used to define the
address map of Λ then for every t in Rd we have

s∑

i=1

ℓi(t)vi = t, (2.1.3)

where ℓi(t) denotes the i-coordinate of ℓ(t) ∈ R
s.

2.2 Dynamical systems.

This section is about dynamical system theory. We define a dynamical system and some
basic concepts. We explain briefly, how to get a dynamical system from a Delone set. After
we give some comments on continuous eigenvalues for dynamical systems.

We consider a dynamical system (or topological dynamical system) as a couple (X,G)
where X is a compact metric space and G is an Abelian group acting on X continuously by
homeomorphisms. For each g in G, we denote by g∗ : X → X the homeomorphism that it
defines. This homeomorphism is defined by g∗(x) := x− g, where x− g denotes the action of
g in x. This notation is due to the fact that, in this text, we mainly use translation actions.
The dynamical system theory studies the set of orbits for this action, i.e. for every x ∈ X
the set {x− g | g ∈ G}.

A dynamical system (Y,G) is called a topological factor of (X,G) if there is an onto and
continuous map π : X → Y , such that for all g ∈ G and x ∈ X we have π(x− g) = π(x)− g.
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Let d be a metric on X. The dynamical system (X,G) is called equicontinuous if the
family G∗ := {g∗ | g ∈ G} is equicontinuous. This means that for every positive real number
ǫ there exists δ > 0 such that d(x, x′) < δ implies d(x− g, x′ − g) < ǫ for all g ∈ G.

We recall that every topological dynamical system admits a maximal equicontinuous factor.
That is, a topological factor with an equicontinuous action such that any other equicontinuous
factor is a topological factor of it (see for instance [K, BKS12, BK13]). For a topological
dynamical system (X,G) we denote by (Xme, G) its maximal equicontinuous factor. Given
two dynamical systems (X,G) and (Y,G), and a factor map π : (X,G) → (Y,G) we say that
π is an almost automorphic extension, or that (X,G) is an almost automorphic extension of
(Y,G), if there is a point in Y with a unique preimage under π.

2.2.1 Hull systems and transverse groupoid.

Let Λ ⊆ Rd be a Delone set with finite local complexity. The hull of Λ is the collection of all
Delone sets in Rd whose ρ-patches, for every ρ > 0, are also ρ-patches of Λ up to translation.
We denote this set by ΩΛ. There is a natural metrizable topology on ΩΛ. Roughly speaking,
two Delone sets are close in this topology if they agree on a large ball around the origin up
to a small translation. In particular, for every Λ′ in ΩΛ a basis of open neighborhoods for Λ′

is given by the following sets: First, for every R > 0 put

T (Λ′, R) := {Λ̃ ∈ ΩΛ | Λ̃ ∩ B(0, R) = Λ′ ∩B(0, R)},

and for every 0 < ε < R/2 we define the open neighborhood N(Λ′, ε, R) of Λ′ by

N(Λ′, ε, R) := {Λ′′ ∈ ΩΛ | ∃Λ̃ ∈ T (Λ′, R), ∃t ∈ B(0, ε),Λ′′ = Λ̃− t},

for more details see for example [S00, FHK02, LM97, KL13]. If Λ has finite local complexity
then its hull ΩΛ is compact. Observe that the action by translation of Rd on ΩΛ is continuous.
Thus, we obtain a topological dynamical system denote by (ΩΛ,R

d). The orbit of x in ΩΛ is
the set {x−t | t ∈ Rd}, and a subset A of ΩΛ is called invariant if it is invariant by the action
of Rd. The dynamical systems (ΩΛ,R

d) is minimal if and only if the only closed invariant
sets are the empty set and the whole space. It is well known that minimality is equivalent
to the fact every point has a dense orbit, and in the context of Delone sets repetitivity is
equivalent to minimality [LP03, Theorem 3.2].

The transversal of the hull is the closed subset

ΞΛ := {x ∈ ΩΛ | 0 ∈ x} ⊆ ΩΛ.

In general, the restriction of the action of Rd to ΞΛ is not defined. For this reason, to study
the dynamical properties of the transversal we introduce the transverse groupoid,

GΛ = {(x, t) ∈ ΞΛ × R
d | x− t ∈ ΞΛ} ⊆ ΞΛ × R

d.

This set, endowed with the induced topology from the product space ΞΛ×R
d, has the struc-

ture of a topological groupoid (see [R80] for the abstract definition of topological groupoids).
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Two elements (x, t) and (z, s) in GΛ are composable if and only if x− t = z, and the compo-
sition of (x, t) and (z, s) is defined by

(x, t) · (z, s) = (x, t+ s).

The inverse map ·−1 : GΛ → GΛ is defined by (x, t)−1 = (x− t,−t) and the domain d : GΛ →
ΞΛ and range r : GΛ → ΞΛ maps are defined by

d(x, t) = x and r(x, t) = x− t.

Notice that d(GΛ) = r(GΛ) = ΞΛ. In this context, the set ΞΛ is called the unit space of GΛ.

We say that a subset E of the unit space is invariant by the groupoid G if E = r(d−1(E)).
We recall the following definition from [R80].
Definition 2.2.1. A groupoid is minimal if the only open invariant subsets of its unit space
are the empty set and the unit space itself.

Some dynamical properties of the hull system can be set in terms of the transverse
groupoid. The following result states the minimality of (ΩΛ,R

d) from the minimality of
the transverse groupoid.

Proposition C. The topological groupoid GΛ is minimal if and only if the dynamical system
(ΩΛ,R

d) is minimal.

Proof. First, observe that for every subset E of ΞΛ we have

r
(
d−1(E)

)
= {x− t ∈ ΞΛ | x ∈ E, t ∈ x}. (2.2.1)

Assume that the dynamical system (ΩΛ,R
d) is minimal. Suppose, by contradiction, that

E ⊆ ΞΛ invariant by the groupoid GΛ. Define

Ê := {x− t ∈ ΩΛ | x ∈ E, t ∈ R}.

We have that Ê is open in ΩΛ and by (2.2.1) it is invariant for the Rd-action on ΩΛ. Then,
the complement of Ê is an invariant non-empty closed set strictly contained in ΩΛ which
contradicts the minimality of (ΩΛ,R

d).

Reciprocally, suppose that (ΩΛ,R
d) is not minimal. Let C ⊆ ΩΛ be an invariant non-

empty closed set strictly contained in ΩΛ. Put E = Cc ∩ ΞΛ. By (2.2.1) we have

E ⊆ r
(
d−1(E)

)
.

Since C is invariant Rd-action, we get r (d−1(E)) = E. So, E is a non empty open set strictly
contained in ΞΛ invariant by the groupoid and thus GΛ is not minimal.

2.2.2 Continuous eigenvalues.

We use continuous eigenvalues to define the factor map induced by the address map. In this
subsection we recall the definition of continuous eigenvalue for (ΩΛ,R

d) and for GΛ, and we
study the relationship between them.
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Denote by S1 the circle {z ∈ C | |z| = 1} and by 〈·, ·〉 is the Euclidean inner product on
Rd. We say that α in Rd is a continuous eigenvalue for the dynamical system (ΩΛ,R

d) if
there is a continuous function f : ΩΛ → S1 such that for all t ∈ Rd and x ∈ ΩΛ,

f(x− t) = e2πi〈α,t〉f(x). (2.2.2)

The function f is called the continuous eigenfunction for the eigenvalue α.

For the transverse groupoid GΛ, we say that α ∈ Rd is a continuous eigenvalue for GΛ, if
there is a continuous function f : ΞΛ → S1 such that for every (x, t) ∈ GΛ,

f ◦ r(x, t) = e2πi〈α,t〉f ◦ d(x, t).

In this case, we say that f is the continuous eigenfunction for α. Observe that each con-
tinuous eigenvalue for (ΩΛ,R

d) is also a continuous eigenvalue for GΛ, where the associated
eigenfunction is the same function restricted to the transversal. Indeed, we will prove in the
following lemma that the set of continuous eigenvalues of (ΩΛ,R

d) and GΛ are the same.

Some spectral properties can be extended from the transversal space to whole the hull
using the structure of transverse groupoid.

Lemma A. Let f : ΞΛ → S1 be a continuous eigenfunction on GΛ for the eigenvalue α ∈ Rd,
then f extends to a continuous eigenfunction f̂ : ΩΛ → S1 for α on the dynamical system
(ΩΛ,R

d).

Proof. Let α ∈ Rd be a continuous eigenvalue for GΛ with continuous eigenfunction f :
ΞΛ → S1. We extend this function to a function defined on all ΩΛ satisfying (2.2.2).

For all y ∈ ΩΛ, there are x ∈ ΞΛ and t ∈ Rd such that y = x− t. Define f̂ : ΩΛ → S1, by

f̂(y) := e2πi〈α,t〉f(x).

We prove that f̂ is well defined. Take y ∈ ΩΛ and suppose that there are x1, x2 ∈ ΞΛ and
vectors t1, t2 ∈ R

d such that y = x1− t1 = x2− t2. So, f̂(y) = f̂(x1− t1) = e2πi〈α,t1〉f(x1) and
since x2 − (t2 − t1) = x1 ∈ ΞΛ, we have

f̂(y) = e2πi〈α,t1〉f(x2 − (t2 − t1)) = e2πi〈α,t1〉e2πi〈α,t2−t1〉f(x2) = e2πi〈α,t2〉f(x2).

Therefore, f̂ is well defined. To prove the continuity of f̂ , consider a sequence (yn)n∈N ⊆ ΩΛ

converging to y ∈ ΩΛ. By definition of the topology on ΩΛ, there is a sequence (ǫn)n∈N of
positive real numbers converging to 0, and there is a sequence (tn)n∈N in Rd with tn ∈ B(0, ǫn)
such that

(yn − tn) ∩B(0, ǫ−1
n ) = y ∩ B(0, ǫ−1

n ).

In particular, there exist n0 ∈ N and t ∈ Rd such that for all integer n > n0 we have
yn − (tn + t), y − t ∈ ΞΛ and

(yn − (tn + t)) ∩ B(0, ǫ−1
n − ‖t‖d) = (y − t) ∩ B(0, ǫ−1

n − ‖t‖d).
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If we denote xn = yn− (tn+ t) and x = y− t, the previous argument implies that xn converge
to x in ΞΛ and as f is continuous in ΞΛ we have

lim
n→+∞

f(xn) = f(x).

Since xn ∈ ΞΛ we get f̂(xn) = f(xn) and

lim
n→+∞

f̂(yn) = lim
n→+∞

e2πi〈α,−(tn+t)〉f̂(xn) = e2πi〈α,−t)〉f(x) = f̂(x+ t) = f̂(y).

This concludes the continuity of f̂ . Finally, for all y ∈ ΩΛ and t′ ∈ Rd if we write y = x− t
for some x in ΞΛ and t in R

d then we have

f̂(y − t′) = f̂(x− (t+ t′)) = e2πi〈α,t
′〉e2πi〈α,t〉f(x) = e2πi〈α,t

′〉f̂(y).

Therefore, f̂ is a continuous eigenfunction for (ΩΛ,R
d) associated with the eigenvalue α.

2.3 Cut and project scheme and inter-model sets.

We recall that a model set is the projection on the first coordinate of some part of a lattice in
Rd ×H where H , called the internal space, is a locally compact Abelian group. Each model
set is a Meyer set [Me72], an example of a Meyer set that is not a model set can be found
in [K13]. In Theorem A we characterize repetitive Meyer set that are Euclidean model sets,
via dynamical properties.

A cut and project scheme (CPS) over Rd is the data (H,L) of a locally compact σ-compact
Abelian group H , a discrete set L ⊆ Rd ×H with compact quotient (Rd ×H)/L whose first
coordinate projection on Rd is one-to-one and whose second coordinate projection on H is
dense. A compact subset W of H that is the closure of its interior is called a window for
the CPS. In the CPS the space R

d is called the physical space, the locally compact Abelian
group H is called the internal space and the set L the lattice. Following [A16b], we have that
a CPS can also be described as a triple (H,Γ, sH) where H is a locally compact σ-compact
Abelian group, Γ a countable subgroup of Rd and sH : Γ → H a group morphism with range
sH(Γ) dense in H such that the graph

G(sH) := {(γ, sH(γ)) ∈ R
d ×H | γ ∈ Γ}

is a lattice, that is, a discrete and co-compact set. Recall that L is a co-compact set if
(Rd × H)/L is a compact set for the quotient topology. When H is a Euclidean space Rn,
for some positive integer n, we say that (H,Γ, sH) is a Euclidean CPS.

Let (H,Γ, sH) be a CPS with window W . For every w in H , the projection on Rd of the
set G(sH) ∩ (Rd × (w+W )) is called a model set. More generally, for every window W in H
and every w in H denote by f(w +W ) the model set

f(w +W ) := {t ∈ Γ | sH(t) ∈ w +W}.
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In general, for every subset V of H , we put f(V ) = {t ∈ Γ | sH(t) ∈ V }. Let (H,Γ, sH) be
a CPS and consider V ⊆ H a relatively compact set. By definition, there exists a compact
set C in H containing V . Recall that G(sH) is a lattice. For each closed ball of radius
r > 0, Br, the rectangle Br × C contains finitely many points of G(sH). Because G(sH) has
FLC, there are only a finite number of different patches (up to translations) in a rectangle
of the type Br × C. Hence for each r > 0, there is a finite number of different r-patches in
f(V ) (up to translations). Thus, for each relatively compact set V the set f(V ) has finite
local complexity (FLC). In particular, f(V ) is uniformly discrete.

Denote by p1 and p2 the projections in the first and second coordinate for the CPS. Let
V be an open set in H . By density of p2(G(sH)) in H , there is a compact set K ⊆ Rd

such that Rd × H = G(sH) + (K × V ). Hence Rd = f(V ) +K, and we have that f(V ) is
relatively dense. We will assume that V is relatively compact set, with non-empty interior.
Both conditions ensure that f(V ) is uniformly discrete and relatively dense (a Delone set).
Remark 2.3.1. For each Delone set Λ ⊂ f(V ) we have that Λ−Λ ⊆ f(V )−f(V ) ⊆ f(V −V ).
Since V is relatively compact, V − V is relatively compact and hence Λ − Λ is uniformly
discrete. In a similar way, any set of the form Λ ± · · · ± Λ (with finitely many terms) is
uniformly discrete.

Observe that for any Delone set Λ ⊆ f(V ), there exists a compact set K ⊆ Rd such that

Λ +K = R
d. (2.3.1)

Using Remark 2.3.1, the set F := (Λ−Λ−Λ)∩K is finite. By (2.3.1), for all x, y in Λ there
exist z ∈ Λ and k ∈ K such that x− y = z+k. Thus k = x− y− z, and so k is in Λ−Λ−Λ.
We conclude that for each pair of elements x, y in Λ there exist z ∈ Λ and k ∈ F such that
x− y = z + k. Thus Λ− Λ ⊆ Λ + F , and therefore Λ is a Meyer set.

If V is a closed set, sH(f(V )) ⊆ V = V . When V is the closure of its interior, we have
that sH(f(V )) = V . In fact, let V be a set that is the closure of its interior. As a consequence
V ◦ is non-empty. By definition of CPS we have sH(f(V )) = p2(G(sH)) ∩ V . This gives

p2(G(sH)) ∩ V ◦ = sH(f(V )) ∩ V ◦ ⊆ sH(f(V )).

Since V is the closure of its interior, we get V = p2(G(sH)) ∩ V ◦ ⊆ sH(f(V )). In what
follows we assume that V is compact and it is the closure of its interior. In particular f(V )
is a Meyer set such that sH(f(V )) = V .

Example 2.3.2. Let L be the lattice in R2 generated by vectors
[√

2
1

]
and

[
1

−
√
2

]
. Note that

the first coordinate projection is one-to-one and the second coordinate projection is dense.
Denote Γ = {n

√
2+m ∈ R | n,m ∈ Z} and W = [−1, 1] ⊆ R. Consider the group morphism

sR : Γ → R defined by sR(n
√
2 +m) = n−m

√
2. An example of model set is

f(W ) := {t ∈ Γ | sH(t) ∈ W}
=

{
n
√
2 +m ∈ R | −1 ≤ n−m

√
2 ≤ 1

}
.

If V = [1,∞) the set f([0,∞)) is non uniformly discrete and dense. We observe that f(V )
is not a Delone set.
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Definition 2.3.3. Let (H,Γ, sH) be a CPS over Rd with window W . A Delone set Λ ⊆ Rd

is called inter-model set if exist t ∈ Rd and w ∈ H such that

f(w + int(W ))− t ⊆ Λ ⊆ f(w +W )− t.

We say that an inter-model set Λ is non-singular or generic if there is (t, w) in Rd × H
such that

f(w + int(W ))− t = Λ = f(w +W )− t.

Observe that this is equivalent to the fact that the boundary of w+W does not intersect the
projection of G(sH) in H . Additionally, if the boundary of w+W has zero Haar measure we
say the inter-model set is regular.
Remark 2.3.4. Notice that ∂W has an empty interior, and thus for each γ∗ in SH(Γ) the
complement of γ∗ − ∂W is an open and dense set. Since sH(Γ) is countable, Baire Theorem
implies that for all t in Rd the set

NS := H \
⋃

γ∗∈sH (Γ)

γ∗ − ∂W =
⋂

γ∗∈sH(Γ)

(γ∗ − ∂W )c

is a dense Gδ-set in H . Moreover, for every w in H , the boundary of w+W does not intersect
the projection of G(sH) in H if and only if w ∈ NS. In particular, for every (t, w) in Rd×H ,
the set f(w +W )− t is a non-singular inter-model set if and only if w ∈ NS.

The following two results are folklore.

Proposition 2.3.5. Let (H,L, sH) be a CPS over Rd with window W . The class of generic
model sets generated by (H,L, sH) and window W gives a unique hull, denoted by ΩMS. Every
inter-model set generated by (H,L, sH) and the window W is repetitive if and only if it belongs
to ΩMS. In particular, for every repetitive inter-model set Λ generated by (H,L, sH) and the
window W we have that ΩΛ = ΩMS, and the dynamical system (ΩMS,R

d) is minimal.

Let (H,Γ, sH) be a CPS in Rd and consider the set TG := (Rd ×H)/G(sH) with an action
of Rd given by translation on the first coordinate. More precisely, for every u ∈ R

d and every
[(t, w)] ∈ TG the action of u on [(t, w)] is

[(t, w)] · u := [(t, w)] + [(u, 0)].

We say that W ′ is irredundant if the equation W ′ + w = W ′ holds only for w = 0 in H .

Theorem 2.3.1. Let (H,L, sH) be a CPS over Rd, let W be an irredundant window, and let
ΩMS be the hull of the repetitive inter-model sets generated by (H,L, sH) and W . Then, every
point in ΩMS is an inter-model set, and there exists a factor map π : ΩMS → TG such that
for every Λ′ in ΩMS there is (t, w) in Rd ×H such that π(Λ′) = [(t, w)] if and only if

f (w + int(W ))− t ⊆ Λ′ ⊆ f(w +W )− t. (2.3.2)

Moreover, the map π is injective precisely on the subset of non-singular inter-model sets in
ΩMS and the dynamical system (TG ,R

d) is the maximal equicontinuous factor of (ΩMS,R
d).
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The proof of the Theorem 2.3.1 is mainly in [S00]. The proof that (TG ,R
d) is the maximal

equicontinuous factor of (ΩMS,R
d) follows from the fact that (TG ,R

d) is an equicontinuous
factor and from the existence of points where π is injective (see for instance [ABKL15, Lemma
3.11]).

2.3.1 Torus parametrization.

The notion of torus parametrization was introduced in [BHP97]. Here, we recall its definition
and some properties we will use later. Let X be a compact space and let (X,Rd) be a topo-
logical dynamical system under the action of Rd by the homeomorphisms {ρt}t∈Rd . Consider
a compact Abelian group K with a minimal action of Rd by homeomorphisms {κt}t∈Rd . A
torus parametrization is a continuous map π : X → K such that for all t ∈ Rd and x ∈ X we
have

κt ◦ π(x) = π ◦ ρt(x).
For more details see [BLM07, S00]. We recall the following lemma.

Lemma 2.3.6. [BLM07, Lemma 1] If π : X → K is a torus parametrization then π is onto.

Let π : X → K be a torus parametrization. A section of π is a map s : K → X such that
π ◦ s is the identity on K. A point x ∈ X is called singular if the fiber π−1(π(x)) contains
more than one element. Otherwise, x ∈ X is called non-singular. The set of non-singular
points of X for π is denoted Rπ(X). The following proposition was proved in [BLM07].

Proposition 2.3.7. [BLM07, Proposition 3] Let π : X → K be a torus parametrization and
let s be a section of π. Then s is continuous at all points of π(Rπ(X)).
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Chapter 3

Euclidean Model sets and continuous

eigenvalues for Meyer sets

In this chapter, we prove Proposition A and Theorem A. The proof of the main result
(Theorem A) is in §3.2 and it uses two results: the Address system (Proposition A) and the
Main Technical Lemma in §3.3. In §3.1 we use the address map to define a continuous cocycle
in the transverse groupoid. Using Gottschalk-Hedlund’s Theorem for groupoids [R12], we
proved Proposition A. In §3.2.2 we describe the Lagarias CPS. In the last section §3.3, we
use the Lagarias CPS and some ideas from [A16b] to prove a general version of the Main
Technical Lemma.

3.1 The Address system.

In this section, we prove the following result.

Proposition A. Let Λ be a repetitive Meyer set in Rd and let s be the rank of 〈Λ−Λ〉. Let
B be a basis of 〈Λ−Λ〉 and let ϕ : 〈Λ−Λ〉 → Zs be the coordinate map for the basis B. There
are an injective linear map ℓ : Rd → R

s and a constant C > 0 such that for every Λ0 in ΞΛ

and every t ∈ Λ0 we have
‖ϕ(t)− ℓ(t)‖s ≤ C.

Moreover, there is a linear flow (Ts,Rd) defined by

(w, t) ∈ T
s × R

d 7−→ w + [ℓ(t)]Zs ,

and there is a homomorphism πAd : ΩΛ → Ts such that for every Λ′ in ΩΛ and every t in Rd

we have πAd(Λ
′ − t) = πAd(Λ

′) + [ℓ(t)]Zs .

Given a repetitive Meyer set Λ in Rd, we start defining a continuous and bounded cocycle
in the transverse groupoid of Λ. We use a version of Gottschalk-Hedlund’s theorem for
groupoids to show that this cocycle is a coboundary. This gives d continuous eigenvalues of the
transverse groupoid. We use these continuous eigenvalues and their associated eigenfunctions
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to construct an equicontinuous dynamical system and homomorphism from (ΩΛ,R
d) into this

equicontinuous system.

3.1.1 Defining a cocycle on the groupoid.

Let Λ ⊆ Rd be a repetitive Meyer set. If B = {v1, . . . , vs} ⊆ Rd be a basis for 〈Λ−Λ〉 ⊆ 〈Λ〉
and let ϕ : 〈Λ−Λ〉 → Zd be the coordinate map for the basis B. Recall that by the repetitivity
of Λ for every x ∈ ΞΛ we have that 〈x〉 = 〈x− x〉 = 〈Λ− Λ〉 and thus, the address map of x
associated to B is equal to ϕ. Note that for all t and t′ in 〈Λ− Λ〉 we have

ϕ(t + t′) = ϕ(t) + ϕ(t′). (3.1.1)

From Theorem 2.1.1, for every x ∈ ΞΛ there is a unique linear map ℓx : Rd → Rs approaching
the images of ϕ in the point of x, i.e. such that

ξx := sup
t∈x

‖ϕ(t)− ℓx(t)‖s < +∞. (3.1.2)

We define the maps Φ : GΛ → Z
s and L : GΛ → R

s as follows: for every (x, t) ∈ GΛ,

Φ(x, t) := ϕ(t) and L(x, t) := ℓx(t).

This subsection aims to show that L − Φ define a continuous cocycle on GΛ. For this, we
first prove that L does not depend on the first coordinate. The proof of the continuity is at
the end of the subsection.

Proposition D. There is a linear map ℓ : Rd → Rs such that for all (x, t) ∈ GΛ we have
L(x, t) = ℓ(t).

The proof of this proposition is given at the end of this subsection after some lemmas.

Lemma B. Let Λ′ be a relatively dense set in R
d. The set

{
t

‖t‖d | t ∈ Λ′
}

is dense in the

boundary of the Euclidean unitary ball centered on the origin. In particular, for all linear
map T : Rd → Rs we have that

‖T‖op = sup
t∈Λ′

∥∥∥∥T
(

t

‖t‖d

)∥∥∥∥
s

,

where ‖ · ‖op is the operator norm.

Proof. Put D :=
{

t
‖t‖d | t ∈ Λ′

}
. By contradiction suppose the set D is not dense in the

boundary of B(0, 1). So, there exists an open set in the relative topology which contains no
elements of D. If we project this open set towards infinity, it generates a cone that contains
Euclidean balls of size arbitrarily large and where there are no points of Λ′. This contradicts
the fact that Λ′ is relatively dense.
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Lemma C. For all (x, t) ∈ GΛ, we have ℓx = ℓx−t.

Proof. Fix (x, t) in GΛ. Let u ∈ Rd be such that u ∈ x − t. In particular, t + u ∈ x. By
(3.1.2) we have

‖ϕ(u)− ℓx−t(u)‖s ≤ ξx−t and ‖ϕ(u)− ℓx(t+ u)‖s ≤ ξx.

Using these inequalities and (3.1.1), we get

‖ℓx(t + u)− ℓx−t(u)‖s ≤ ‖ϕ(t+ u)− ℓx(t+ u)‖s + ‖ϕ(t+ u)− ℓx−t(u)‖s
≤ ξx + ‖ϕ(t) + ϕ(u)− ℓx−t(u)‖s

≤ ξx + ‖ϕ(t)‖s + ξx−t.

Dividing by ‖u‖d into both sides of this last inequality, we obtain
∥∥∥∥ℓx
(

t

‖u‖d

)
+ ℓx

(
u

‖u‖d

)
− ℓx−t

(
u

‖u‖d

)∥∥∥∥
s

≤ ξx + ‖ϕ(t)‖s + ξx−t

‖u‖d
.

Taking the limit when ‖u‖d → +∞ we have

lim
‖u‖d→+∞

u∈x−t

∥∥∥∥(ℓx − ℓx−t)

(
u

‖u‖d

)∥∥∥∥
s

= 0.

This together with Lemma B implies that ‖ℓx − ℓx−t‖op = 0, and thus, concludes the proof
of the lemma.

Proof of Proposition D. Fix y in ΞΛ. We prove that for every x in ΞΛ we have ℓx = ℓy. By
(3.1.1), (3.1.2) and Lemma C, for t′ in y we have

ξy−t′ = sup
t∈y−t′

‖ϕ(t)− ℓy−t′(t)‖s
= sup

t∈y−t′
‖ϕ(t)− ℓy(t)‖s

= sup
t+t′∈y

‖ϕ(t+ t′)− ϕ(t′)− ℓy(t)‖s (3.1.3)

= sup
t+t′∈y

‖ϕ(t+ t′)− ϕ(t′)− ℓy(t+ t′ − t′)‖
s

= sup
t+t′∈y

‖ϕ(t+ t′)− ϕ(t′)− ℓy(t+ t′) + ℓy(t
′)‖

s

≤ 2 ξy.

Fix x in ΞΛ. By minimality, there is a sequence (tn)n∈N in Rd such that y − tn converges
to x in ΞΛ. Fix t ∈ x and consider ǫ > 0 such that ‖t‖ ≤ 1

ǫ
. There is N ∈ N such that for all

n > N we have

(y − tn) ∩B
(
0,

1

ǫ

)
= x ∩B

(
0,

1

ǫ

)
.

In particular, for all n > N we get t ∈ y − tn. Then, using Lemma C and (3.1.3), for every t
in x we have

‖ϕ(t)− ℓy(t)‖s = ‖ϕ(t)− ℓy−tn(t)‖s ≤ 2 ξy.
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By uniqueness of the map ℓx, we conclude the proof of the proposition.

Let H be an Abelian group. A cocycle on the topological groupoid GΛ with values in H
is a map c : GΛ → H such that for all composable pairs (x, t) and (z, s) in GΛ one has

c((x, t) · (z, s)) = c((x, t)) + c((z, s)).

Lemma D. The map L− Φ is a continuous cocycle on GΛ.

Proof. By (3.1.1) and Proposition D we have that L − Φ is a cocycle. Now we prove the
continuity of L − Φ. Consider a sequence {(xn, tn)}n∈N in GΛ that converges to (x, t) in
GΛ. By definition of convergence in the groupoid, we have that {xn}n∈N ⊆ ΞΛ converges to
x ∈ ΞΛ, and {tn}n∈N converges to t in Rd. Let ǫ be a positive real number less than the
uniformly discrete radius of Λ such that ‖t‖d < 1

2ǫ
. There is a positive integer N such that

for all n ≥ N we have

xn ∩ B
(
0,

1

ǫ

)
= x ∩ B

(
0,

1

ǫ

)
, ‖tn − t‖d < ǫ and ‖tn‖d <

1

ǫ
. (3.1.4)

By definition of the groupoid GΛ, for all n in N we have that tn ∈ xn, and also t ∈ x. By
(3.1.4), for every n ≥ N we get tn = t. Then, for every n ≥ N we have

L(tn) = ℓ(t) and Φ(xn, tn) = ϕ(tn) = ϕ(t) = Φ(x, t),

which implies the continuity of L− Φ.

3.1.2 Proof of Proposition A.

We use the following version of Gottschalk-Hedlund’s Theorem, due to Jean Renault, to find
continuous eigenvalues of GΛ. This version is adapted to our context from [R80, Theorem
1.4.10] and it appears in [R12].

Theorem 3.1.1. Let G be a minimal topological groupoid with compact unit space X. For a
continuous cocycle c : G→ Rd the following properties are equivalent:

1. There exists a continuous function g : X → Rd such that

c = g ◦ r − g ◦ d.

2. There exists x ∈ X such that c(d−1(x)) is relatively compact.

3. c(G) is relatively compact.
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Proof of Proposition A. Let Λ ⊆ Rd be a repetitive Meyer set. Let B = {v1, . . . , vs} ⊆ Rd

be a basis for 〈Λ− Λ〉 and let ϕ : 〈Λ− Λ〉 → Zd be the coordinate map for the basis B. Let
L and Φ be as in §3.1.1. We check that GΛ and the cocycle L − Φ : GΛ → Rs verify the
hypotheses of Theorem 3.1.1). By Proposition C the groupoid is minimal. By Lemma D,
the map L− Φ is a continuous cocycle. Let ℓ be the linear map given by Proposition D. By
(3.1.2), for every x ∈ ΞΛ the set

(L− Φ)(d−1(x)) = {ℓ(t)− ϕ(t) | t ∈ x}
is bounded. By Theorem 3.1.1, there is a continuous map F : ΞΛ → Rs such that for every
(x, t) in GΛ we have

ℓ(t)− ϕ(t) = L(x, t)− Φ(x, t) = F ◦ r(x, t)− F ◦ d(x, t) = F (x− t)− F (x). (3.1.5)

Since F is continuous and the space ΞΛ is compact there is a constant C > 0 such that the
inequality in the first part of Proposition A holds.

Now we check that ℓ is injective. By contradiction suppose that the kernel of ℓ has
dimension greater than one. Hence, there is an infinite subset of Λ such that the address
map is bounded on this infinite set, which gives a contradiction.

Finally, we construct the address system. Denote by Ts the torus Rs/Zs. Since ℓ is linear
the following map defines an equicontinuous action of Rd on Ts:

(w, t) ∈ T
s × R

d 7−→ w + [ℓ(t)]Zs .

Now we define πAd : ΩΛ → Ts as follows: For every y ∈ ΩΛ there exist x ∈ ΞΛ and t ∈ Rd

such that y = x− t, put
πAd(y) := [F (x)]Zs + [ℓ(t)]Zs .

We verify that πAd is well defined. Indeed, suppose that for y ∈ ΩΛ there are x1, x2 ∈ ΞΛ

and t1, t2 ∈ Rd such that y = x1 − t1 = x2 − t2. Thus, x1 = x2 − (t2 − t1), and by (3.1.5) we
have that

F (x1) = F (x2) + ℓ(t2 − t1)− ϕ(t2 − t1),

which is equivalent to

F (x1) + ℓ(t1) = F (x2) + ℓ(t2)− ϕ(t2 − t1).

Together with the fact that ϕ(t2 − t1) ∈ Zs, this implies that πAd is well defined. Now we
prove the continuity of πAd. Fix y ∈ ΩΛ and suppose that y = x − t for some x ∈ ΞΛ and
t ∈ Rd. For every y′ close to y there is x′ in ΞΛ close to x and there is t′ close to t such
that y′ = x′ − t′. By the continuity of F and ℓ, the map π̃Ad defined in a sufficiently small
neighborhood of y by π̃Ad(y

′) = F (x′)+ℓ(t′) is continuous. By the continuity of the canonical
projection of Rs onto Ts we conclude that πAd is continuous at y. It remains to check that for
every y in ΩΛ and every t in Rd we have πAd(y− t) = πAd(y) + [ℓ(t)]Zs . Fix y in ΩΛ and fix t
in Rd. There are x1 and x2 in ΞΛ and t1 and t2 in Rd such that y = x1− t1 and y− t = x2− t2.
Then, x2 = x1 − (t1 − t2 + t). Using this, (3.1.5) and the fact that ϕ(t1 − t2 + t) ∈ Zs we get
that

πAd(y − t) = [F (x2)]Zs + [ℓ(t2)]Zs

= [F (x1) + ℓ(t1 − t2 + t)− ϕ(t1 − t2 + t)]Zs + [ℓ(t2)]Zs

= [F (x1) + ℓ(t1)]Zs + [ℓ(t)]Zs = πAd(y) + [ℓ(t)]Zs,
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which concludes the proof of the proposition.

Remark 3.1.1. Since ℓ is injective, we have that image of ℓ has dimension d. Thus there
are at least d rows linearly independent of A, the representative matrix of ℓ. Let (ΩΛ.R

d)
be the hull system of a repetitive Meyer set Λ ⊆ Rd with rank s ≥ d. Each row of A is a
continuous eigenvalue of (ΩΛ,R

d). The number of continuous eigenvalues obtained from the
address system is the number of rationally independent rows of matrix A. In particular, since
the image of A has dimension d, we have that (ΩΛ,R

d) has at least d linearly independent
continuous eigenvalues.

3.2 Proof of Theorem A.

In this section, we prove the following theorem.

Theorem A. A repetitive Meyer set Λ in R
d is an inter-model set with Euclidean internal

space if and only if rank(〈Λ− Λ〉) > d and the address system of Λ is a topological factor of
(ΩΛ,R

d) such that there is one point with a unique preimage under the factor map.

After some comments from J. Kellendonk and using a result of Paul [P73, Proposition
1.1], we can observe that the address system of a Euclidean inter-model set Λ, is the maximal
equicontinuous factor of (ΩΛ,R

d).

First, we prove a characterization of the maximal equicontinuous factor for a Euclidean
CPS and then, we prove the necessary condition. After this, we use the address map to
construct a Euclidean CPS and that we use in the proof of the sufficient condition. Finally,
we prove the sufficient condition assuming the Main Technical Lemma. This lemma is stated
in §3.2.2, and it is proved in §3.3.

We assume in this section that Λ ⊆ Rd is a repetitive Meyer set and denote by (ΩΛ,R
d)

its associated dynamical system.

3.2.1 Necessary condition.

Let Λ be an inter-model set for a Euclidean CPS over Rd with internal space Rn, lattice L, and
window W . Denote by ΩMS the hull of the generic set generated by these data. Repetitivity
of Λ and Proposition 2.3.5 imply that ΩMS = ΩΛ. By [A16, Theorem 8.1], the associated
dynamical system (ΩMS,R

d) is almost automorphic (see also [S00, FHK02]). The remain-
ing part of the proof of the necessary condition follows directly from the following proposition.

Proposition B. Let ΩMS be the hull of the repetitive inter-model sets generated by a Eu-
clidean cut and project scheme (Rn,Γ, sRn) over Rd and a window W . Then, for every Λ
in ΩMS we have that the group 〈Λ − Λ〉 is equal to Γ and its rank is d + n. Moreover, the
maximal equicontinuous factor of (ΩMS,R

d) is topologically conjugate to the address system
of Λ.
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Proof of Proposition B

Denote by p1 and by p2 the orthogonal projections from Rd×Rn onto Rd and Rn, respectively,
and put L := G(sRn). Fix Λ in ΩMS. By [M97, Proposition 2.6 (ii)] for every w in Rn we
have that

〈f(w +W )〉 = Γ.

In particular, 〈f(w +W ) − f(w +W )〉 = Γ. By Proposition 2.3.5 there is w in NS such
that f(w +W ) is in ΩMS and thus, by repetitivity

〈Λ− Λ〉 = 〈f(w +W )−f(w +W )〉 = Γ.

Now we prove that the maximal equicontinuous factor of (ΩMS,R
d) is topologically con-

jugate to the address system of Λ. Fix a basis B = {ṽ1, . . . , ṽs} of L. Let ℓ be the linear
map given by Proposition A applied to Λ with the basis p1(B) for Γ and let (Ts,Rd) be the
address system. Denote by ψ : Rs → Rd × Rn the linear isomorphism sending the canonical
basis of Rs onto {ṽ1, . . . , ṽs}, i.e.

ψ(u1, . . . , us) = u1ṽ1 + · · ·+ usṽs.

By (2.1.3) for every t ∈ Rd we have

p1(ψ(ℓ(t))) = t. (3.2.1)

Define the map Ψ : Ts → TG by Ψ([w]Zs) = [ψ(w)]L. Note that Ψ is an homeomorphism.
By (3.2.1), for all t ∈ Rd and [w] ∈ Ts, we have

Ψ([w]Zs + [ℓ(t)]Zs) = Ψ([w + ℓ(t)]Zs)

= [ψ(w + ℓ(t))]L = [ψ(w)]L + [ψ(ℓ(t))]L

= [ψ(w)]L + [(p1(ψ(ℓ(t))), p2(ψ(ℓ(t))))]L
= [ψ(w)]L + [(t, p2(ψ(ℓ(t))))]L .

For proving that Ψ conjugates the address system with the maximal equicontinuous factor
(Rd × Rn/L,Rd), we need to show that for every t ∈ Rd,

p2(ψ(ℓ(t))) = 0.

By Remark 2.3.4 and the fact that the window W has a non-empty interior, there is w in
NS such that 0 ∈ w +W and the set f(w +W ) is non-singular. Put Λ0 := f(w +W ). We
have that Λ0 is in ΞΛ. Let ϕ be the address map for Λ0 associated to the basis p1(B). By
Proposition A there is a constant Ĉ > 0 such that for every t ∈ Λ0 we have

‖p2(ψ(ϕ(t)))− p2(ψ(ℓ(t)))‖d ≤ Ĉ.

Together with the fact that p2(ψ(ϕ(Λ0))) = p2(sRn(Λ0)) ⊆ w +W this implies that the map
p2 ◦ ψ ◦ ℓ is uniformly bounded on Λ0. Using that Λ0 is relatively dense in Rd and that
p2 ◦ψ ◦ ℓ is linear, we get that p2(ψ(ℓ(Rd))) is bounded, which implies that p2(ψ(ℓ(Rd))) = 0.
We conclude that (Ts,Rd) and (TG ,R

d) are topologically conjugated finishing the proof of
the proposition.
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3.2.2 Sufficient condition.

The Lagarias cut and project scheme

Let Λ be a Meyer set in R
d and suppose that 〈Λ − Λ〉 have rank s > d. Let B be a

basis of 〈Λ − Λ〉 formed by vectors {v1, . . . , vs} ⊆ Rd and let ϕ : 〈Λ − Λ〉 → Zs be the
coordinate map for the basis B. Fix Λ0 in ΞΛ. Remember that since 0 ∈ Λ0, we have
〈Λ− Λ〉 = 〈Λ0 − Λ0〉 = 〈Λ0〉 and that ϕ is also the address map for Λ0. Let ℓ : Rd → Rs be
the linear map given by Proposition A. Define φ : Rs → Rd by φ(u1, . . . , us) = u1v1+· · ·+usvs.
By (2.1.3) for every t ∈ Rd we have

φ ◦ ℓ(t) = t. (3.2.2)

In particular,
Ker(ℓ) = {0} and Im(φ) = R

d. (3.2.3)

Put n := s − d and note that the dimension of Ker(φ) is n. Let B′ := {k1, . . . , kn} be an
orthonormal basis for Ker(φ). Notice that for every 1 ≤ j ≤ s we have that the vector
wj := ℓ(vj)− ej belongs to Ker(φ), where ej is the jth-canonical coordinate vector. For every
j ∈ {1, . . . , s} denote by (αj,1, . . . αj,n) the coordinates of wj in the basis B′, and define for
every j ∈ {1, . . . , s} the vectors

v⋆j := (αj,1, . . . αj,n)
t and ṽj := (vj , v

⋆
j ).

In the proof of [L99, Theorem 3.1], Lagarias proved that the set B̃ := {ṽ1 . . . , ṽs} is Z-linearly
independent in Rd×Rn and it generates a full rank lattice. Denote by L̃ the lattice generated
by B̃. Denote by p1 and p2 the orthogonal projections of Rd×Rn onto Rd and Rn, respectively.
By construction, p1 is injective on L̃ and its image is 〈Λ− Λ〉. Denote by ψ : Rs → Rd × Rn

the linear isomorphism sending the canonical basis of Rs onto {ṽ1, . . . , ṽs}, i.e.

ψ(u1, . . . , us) = u1ṽ1 + · · ·+ usṽs.

In the proof of [L99, Theorem 3.1], it was proved that for every t in 〈Λ− Λ〉 we have

‖p2(ψ(ϕ(t)))‖n = ‖ϕ(t)− ℓ(t)‖s. (3.2.4)

Lemma E. Let Λ be a repetitive Meyer set in Rd. If the address system of Λ is a topological
factor of (ΩΛ,R

d), then p2(L̃) is dense in Rn.

Proof. The proof is by contradiction. Assume that p2(L̃) is not dense. Then, there is a
non-empty closed ball V ⊆ Rn such that p2(L̃) ∩ V = {∅}. In particular,

L̃ ∩ (Rd × V ) = {∅}. (3.2.5)

By Proposition A and (3.2.4) there is a constant Ĉ > 0 such that for every t ∈ Λ0 we have

max{‖p2(ψ(ϕ(t)))‖n, ‖p2(ψ(ϕ(t)))− p2(ψ(ℓ(t)))‖n} ≤ Ĉ.

Therefore the linear map p2 ◦ ψ ◦ ℓ is uniformly bounded on Λ0, which is relatively dense.
Then, for all t ∈ Rd we have

p2 ◦ ψ ◦ ℓ(t) = 0. (3.2.6)
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Consider the dynamical system defined on the space (Rd × Rn)/L̃ with the following Rd-
action: for every t ∈ Rd and every w ∈ (Rd × Rn)/L̃,

w · t := w + [(t, 0)]
L̃
.

Define the map Ψ : Ts → (Rd×Rn)/L̃ by Ψ([w]Zs) = [ψ(w)]L̃ for every [w]Zs in (Rd×Rn)/L̃.
By (3.2.6) the map Ψ is a topological conjugacy between the address system of Λ and the
dynamical system just defined ((Rd × R

n)/L̃,Rd). Let πAd be the address homomorphism
defined in Proposition A. Since we are assuming that πAd is a factor of (ΩΛ,R

d), we have that
the map Ψ ◦ πAd is also a factor from (ΩΛ,R

d) to ((Rd × Rn)/L̃,Rd). By the repetitivity of
Λ we have that (ΩΛ,R

d) is minimal and then, the factor ((Rd × Rn)/L̃,Rd) is also minimal.
But the set [Rd × V ]

L̃
is closed and Rd-invariant, and by (3.2.5), it is strictly contained in

(Rd × Rn)/L̃, which is a contradiction to the minimality of ((Rd × Rn)/L̃,Rd).

Put sRn := p2 ◦ψ ◦ϕ on 〈Λ−Λ〉. By Lemma E if the address system of Λ is a topological
factor of (ΩΛ,R

d) the triple (Rn, 〈Λ− Λ〉, sRn) is a CPS and we call it the Lagarias CPS for
Λ.

Recall that a window is irredundant if its redundancies group is trivial (see §2.3). By
definition, every compact set in Rn is irredundant. Using Theorem 2.1.1 and (3.2.4), the
set W = sRn(Λ0) ⊆ Rn is a compact and irredundant set. In particular, W is a relatively
compact set.

Assume that the address system of Λ is a topological factor of (ΩΛ,R
d). For each Λ0 ∈ ΞΛ,

the compact and irredundant set W = sRn(Λ0) ⊆ Rn, and (Rn, 〈Λ− Λ〉, sRn) form a CPS in
the sense of [S00]. From this, we can observe that W is the closure of its interior. By [S00,
Lemma 4.1], for each Λ′ in ΩΛ such that Λ′ ⊆ 〈Λ− Λ〉, the set

⋂
{sRn(t)−W | t ∈ Λ′}

contains exactly one element cΛ′ ∈ H and sRn(Λ′) = cΛ′ +W . For each Λ′ in ΩΛ there is s
in Rn such that Λ′ + s ⊆ 〈Λ − Λ〉. We use this to define a map β : ΩΛ → (Rd × Rn)/L̃ by
β(Λ′) = [(s, cΛ′+s)]L̃, where s is such that Λ′ + s ⊆ 〈Λ−Λ〉. From [S00, Proposition 4.3], β is
well-defined, continuous, and onto. Note that Rd×Rn is σ-compact and p2(L̃) is a countable
set in Rn, by Remark 2.3.4, there exists γ in Rn such that (γ + ∂W ) ∩ p2(L̃) = ∅. Because
β is onto, there is Λ′ in ΩΛ such that cΛ′ = γ. Hence sRn(Λ′) = γ +W . By construction,
sRn(Λ′) is contained in the interior of γ +W . This implies that W = W ◦, i.e. W equals the
closure of its interior.

Thus we obtain the following result.

Lemma F. Let Λ be a repetitive Meyer set in Rd and let 〈Λ − Λ〉 be the subgroup of Rd

generated by Λ−Λ. Put n = rank(〈Λ−Λ〉)−d and assume that n > 0. Also, assume that the
address system of Λ is a topological factor of (ΩΛ,R

d). Let (Rn, 〈Λ−Λ〉, sRn) be the Lagarias
CPS for Λ. For every Λ0 in ΞΛ the set sRn(Λ0) is an irredundant window.
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From the proof of Lemma E and by Lemma F we obtain the following lemma.

Lemma G. Let Λ be a repetitive Meyer set in R
d and let 〈Λ − Λ〉 be the subgroup of Rd

generated by Λ−Λ. Put n = rank(〈Λ−Λ〉)−d and assume that n > 0. Also assume that the
address system of Λ is a topological factor of (ΩΛ,R

d). Let (Rn, 〈Λ−Λ〉, sRn) be the Lagarias
CPS for Λ. For every Λ0 in ΞΛ, let ΩMS be the hull of the generic inter-model sets generated
by (Rn, 〈Λ − Λ〉, sRn) and the window sRn(Λ0). Then the maximal equicontinuous factor of
(ΩMS,R

d) is topologically conjugated to the address system of the Lagarias CPS for Λ.

Proof of sufficient condition

The main technical step in the proof of the sufficient condition is the following lemma that
we state below. Its proof will be given in §3.3. We recall that ΩMS,me denotes the maximal
equicontinuous factor of the dynamical system (ΩMS,R

d), see 2.2.

Main Technical Lemma. Let Λ ⊆ R
d be a repetitive Meyer set and let Γ be the subgroup

of Rd generated by Λ. Let (H ′,Γ, sH′) be a CPS and suppose that W ′ = sH′(Λ) is a window.
Let ΩMS be the hull of the generic model sets generated by (H ′,Γ, sH′) and W ′. Then, there
is a factor map

π̃ : ΩΛ → ΩMS,me,

such that if (ΩΛ,R
d) is an almost automorphic extension of (ΩMS,me,R

d) for π̃, then there
are Λ0 in ΩΛ and a non-singular inter-model set Λ1 in ΩMS such that Λ0 = Λ1.

Proof of sufficient condition in Theorem A. Let Λ be a repetitive Meyer set in R
d and let

〈Λ−Λ〉 be the subgroup of Rd generated by Λ−Λ. Assume that rank(〈Λ−Λ〉) = s > d, that
the address system is a topological factor (ΩΛ,R

d) and that (ΩΛ,R
d) is almost automorphic

extension of the address system.

Let (Rn, 〈Λ − Λ〉, sRn) be the Lagarias CPS for Λ where n = s − d. Fix Λ∗ in ΞΛ and
recall that by the repetitivity of Λ we have that ΩΛ = ΩΛ∗

. By Lemma F the set W ′ =
sRn(Λ∗) is an irredundant window. Denote by ΩMS the hull of generic inter-model sets
generated by (Rn, 〈Λ − Λ〉, sRn) and W ′. By Lemma G the maximal equicontinuous factor
of (ΩMS,R

d) is topologically conjugated to the address system of Λ which agrees with the
address system of Λ∗ by Proposition A. By hypothesis, the dynamical system (ΩΛ∗

,Rd) is
an almost automorphic extension of the address systems of Λ∗ and then, it is also an almost
automorphic extension of (ΩMS,me,R

d). By the Main Technical Lemma applied to Λ∗ and
(Rn, 〈Λ− Λ〉, sRn), there are Λ0 ∈ ΩΛ∗

and Λ1 ∈ ΩMS such that Λ0 = Λ1. By the minimality
of (ΩΛ∗

,Rd) we have that ΩΛ∗
is equal to the hull of Λ0 which is equal to the hull of the

generic model sets generated by a Euclidean CPS. Since W ′ is irredundant and ΩΛ = ΩΛ∗
by

Theorem 2.3.1 we conclude that Λ is an inter-model set generated by a CPS with Euclidean
internal space, finishing the proof of the sufficient condition.
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3.3 Proof of Main Technical Lemma.

In this section, we prove the Main Technical Lemma used in the proof of Theorem A. Indeed,
we prove a more detailed version of the Main Technical Lemma for future references.

Main Technical Lemma’. Let Λ ⊆ Rd be a repetitive Meyer set and let Γ the subgroup of
Rd generated by Λ. Let (H ′,Γ, sH′) be a CPS and suppose that W ′ = sH′(Λ) is a compact,
irredundant window in H ′.

Let ΩMS be the hull of the generic inter-model sets for the CPS (H ′,Γ, sH′) and window
W ′. Let π0 be the maximal equicontinuous factor map from ΩMS to ΩMS,me, and denote by
Rπ0(ΩMS) the set of non-singular points in ΩMS for π0. Then, there is a factor map

π̃ : ΩΛ → ΩMS,me.

Put Ω0
Λ := π̃−1(π0(Rπ0(ΩMS))). There is a continuous map

π1 : Ω
0
Λ → Rπ0(ΩMS)

such that for every Λ0 ∈ Ω0
Λ we have

π1(Λ0 − t) = π1(Λ0)− t and π̃(Λ0) = π0 ◦ π1(Λ0).

Moreover, for every Λ1 in Rπ0(ΩMS) we have

Λ1 =
⋃

Λ′∈π̃−1(π0(Λ1))

Λ′. (3.3.1)

Besides, if π̃ : ΩΛ → ΩMS,me is an almost automorphic extension then

π0(Rπ0(ΩMS)) ∩ π̃(Rπ̃(ΩΛ))

is a residual set in ΩMS,me, and for every Λ1 in Rπ0(ΩMS) such that π0(Λ1) ∈ π̃(Rπ̃(ΩΛ)) we
have that Λ1 is in Ω0

Λ.

The proof of the lemma will be given in §3.3.2 after recalling the definition of optimal
CPS of a Meyer set introduced in [A16].

3.3.1 The optimal CPS and the optimal window

Let Λ be a repetitive Meyer set in Rd and let Γ be the subgroup of Rd generated by Λ. Define
ΞΓ as the collection of all Λ′ ∈ ΩΛ having support into Γ,

ΞΓ := {Λ′ ∈ ΩΛ | Λ′ ⊆ Γ}.

Observe that ΞΛ ⊆ ΞΓ′

. We consider the combinatorial topology on ΩΛ, which is obtained
from the distance

dist(Λ′,Λ′′) =

{
1

R + 1
| Λ′ ∩ B(0, R) = Λ′′ ∩B(0, R)

}
.
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The combinatorial topology is always strictly finer than the usual topology on ΩΛ and on
the transversal ΞΛ both topologies coincide. We endow ΞΓ′ with the combinatorial topology.
We say that Λ′ and Λ′′ in ΩΛ are strongly regionally proximal, denoted Λ′ ∼srp Λ′′, if for each
R > 0 there are Λ1,Λ2 ∈ ΩΛ and t ∈ Rd such that

Λ′ ∩ B(0, R) = Λ1 ∩B(0, R)

Λ′′ ∩B(0, R) = Λ2 ∩B(0, R)

(Λ1 − t) ∩B(0, R) = (Λ2 − t) ∩ B(0, R).

Since Λ is a repetitive Meyer set we have that the strongly regionally proximal relation is a
closed Rd-invariant relation on ΩΛ. The quotient ΩΛ/ ∼srp gives the maximal equicontinuous
factor [BK13].

In Proposition 3.3.1 below, we recall some results in [A16] which allow us to introduce
the optimal CPS and optimal window for a Meyer set. More precisely, part (1) is deduced
by [A16, Proposition 4.4 and Lemma 4.5], part (2) comes from [A16, Proposition 6.1 and
Definition 6.2] and finally, part (3) is in [A16, Theorem 7.1].

Proposition 3.3.1. Let Λ be a repetitive Meyer set in R
d and let Γ the subgroup of R

d

generated by Λ.

1. If Λ′ ∈ ΞΓ then its equivalence class [Λ′]srp is contained into ΞΓ.

2. The set H := ΞΓ/ ∼srp with the quotient topology admits a structure of locally compact
abelian group such that [Λ]srp is the neutral element, the map sH : Γ → H defined by

sH(γ) = [Λ− γ]srp is a group morphism and sH(Γ) = H.

We remark that Aujogue defined sH in [A16] with a sign plus instead of a minus as we did.
So, some results that we use from [A16] and [A16b] look slightly different since we need to
do a correction in the sign. From Proposition 3.3.1, the triple (H,Γ, sH) is a CPS. Moreover,
by [A16, Theorem 6.3], the set [ΞΛ]srp is a window for (H,Γ, sH). The CPS (H,Γ, sH) and
the window [ΞΛ]srp are called the optimal CPS and the optimal window for Λ, respectively.
Indeed, in [A16b], the author proved that the model set that it defines,

Λ := {γ ∈ R
d | sH(γ) ∈ [ΞΛ]srp},

satisfies that for every model set M that includes Λ we have Λ ⊆ Λ ⊆M .

Finally, we recall some results in [A16b] that we use in the proof of the Main Technical
Lemma’. The first result allows us to prove that a compact and irredundant set is a window.

Proposition 3.3.2. [A16b, Proposition 3.3] Let Λ be a repetitive Meyer set in R
d and let Γ

the subgroup of Rd generated by Λ. Let (H,Γ, sH) and W be optimal CPS and window for Λ,
respectively. Suppose that (H ′,Γ, sH′) is a CPS such that the closure W ′ of the set sH′(Λ) is
compact and irredundant in H ′. Then, there is a continuous, open, and onto morphism

θ : H → H ′

such that sH′ = θ ◦ sH on Γ. Moreover, the set W ′ is a window in H ′ and W ′ = θ([ΞΛ]srp).
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In the following result, we recall the definition of a map that we use to construct the maps
π1 and π̃ in the statement of the Main Technical Lemma’.

Lemma 3.3.3. [A16b, Lemma 3.4, 3.5, 3.6] Let Λ be a repetitive Meyer set in Rd and let Γ
the subgroup of Rd generated by Λ. Suppose that (H ′,Γ, sH′) is a CPS such that the closure
W ′ of the set sH′(Λ) is compact and irredundant in H ′. We have that each Λ′ in ΞΓ defines
a unique element wΛ′ through

{wΛ′} =
⋂

γ∈Λ′

sH′(γ)−W ′.

Define the map
ω : ΞΓ → H ′

Λ′ 7→ wΛ′.

We have that ω is uniformly continuous for the combinatorial topology, and for all Λ′ ∈ ΞΓ

and γ ∈ Γ we have

1. ω(Λ′ − γ) = ω(Λ′)− sH′(γ).

2. ω(Λ′) = −θ([Λ′]srp), where θ is the morphism in Proposition 3.3.2.

3.3.2 Proof of Main Technical Lemma’

Let Λ ⊆ Rd be a repetitive Meyer set and let Γ be the subgroup of Rd generated by Λ. Let
(H ′,Γ, sH′) be a CPS and assume that W ′ = sH′(Λ) is a compact and irredundant window
in H ′. Let ΩMS be the hull of inter-model sets generated by (H ′,Γ, sH′) and W ′. Recall that
the maximal equicontinuous factor ΩMS,me can be obtained by the quotient (Rd×H ′)/G(sH′)
and denote by π0 be the maximal equicontinuous factor map from ΩMS to ΩMS,me.

Construction of π̃

Now we construct the map π̃ : ΩΛ → ΩMS,me. For every (t, w) in Rd × H ′ we denote by
[(t, w)] its equivalent class in ΩMS,me. For every Λ̃ in ΩΛ there is t ∈ Rd such that Λ̃− t is in
ΞΓ, define π̃(Λ̃) by

π̃(Λ̃) := [(−t, ω(Λ̃− t))] ∈ ΩMS,me.

We verify that π̃ is well defined. Assume that there is s in Rd such that Λ̃ − s is in ΞΓ.
Observe that t− s is in Γ. By part (1) in Lemma 3.3.3, we have that

(−t, ω(Λ̃− t)) = (−t + s− s, ω(Λ̃− (t+ s− s)))

= (−s− (t− s), ω(Λ̃− s)− sH′(t− s))

= (−s, ω(Λ̃− s))− (t− s, sH′(t− s)).

Since (t− s, sH′(t− s)) belongs to G(sH′), we have that

[(−t, ω(Λ̃− t))] = [(−s, ω(Λ̃− s))],

38



and hence π̃ is well defined.

Now we check that π̃ commutes with the Rd action on ΩΛ and on ΩMS,me. Let Λ̃ be in ΩΛ

and t be in R. There are s and s′ in Rd such that Λ̃− s and (Λ̃ − t)− s′ = Λ̃− (t + s′) are
in ΞΓ. Notice that t+ s′ − s belongs to Γ. Again, by part (1) in Lemma 3.3.3, we have

(−s′, ω((Λ̃− t)− s′)) = (−s′, ω((Λ̃− s)− (t+ s′ − s)))

= (−s′, ω(Λ̃− s)− sH′(t + s′ − s))

= (−s′ + (t+ s′ − s), ω(Λ̃− s))− (t+ s′ − s, sH′(t + s′ − s))

= (t− s, ω(Λ̃− s))− (t+ s′ − s, sH′(t + s′ − s)).

Since (t + s′ − s, sH′(t+ s′ − s)) is in G(sH′) we have

π̃(Λ̃− t) = [(−s′, ω((Λ̃− t)− s′))] = [(−s, ω(Λ̃− s))] + [(t, 0)] = π̃(Λ̃) + [(t, 0)].

Now we prove that π̃ is continuous. Let Λ′ be ΩMS and let U be a neighborhood of 0 in
ΩMS,me. We can assume that U = [B(0, r0)× UH′] where r0 > 0 and UH′ is a neighborhood
of 0 in H ′. There exists t′ ∈ Λ′ such that Λ′ − t′ ∈ ΞΛ ⊆ ΞΓ. For r > 0, denote

Cr =
⋂

γ∈(Λ′−t′)∩B(0,r)

sH′(γ)−W ′,

and observe that for r > r′ we have Cr ⊆ Cr′. By Lemma 3.3.3,
⋂

r>0

Cr = {ω(Λ′ − t′)}. (3.3.2)

Now we prove that there is r′ > 0 such that for every r ≥ r′

Cr ⊆ ω(Λ′ − t′) + UH′ . (3.3.3)

By contradiction suppose that there is an increasing sequence (ri)i∈N of positive real numbers
converging to infinity as i goes to infinity, such that (Cri − ω(Λ′ − t′)) ∩ U c

H′ 6= ∅. Then, for
every i ∈ N there is

xi ∈ (Cri − ω(Λ′ − t′)) ∩ U c
H′ .

Since for every i, j in N with j ≥ i we have Crj ⊆ Cri. By compactness of Cr1 there is an
accumulation point x̃ of (xi)i∈N in U c

H′ and thus, x̃ 6= 0. But x̃ also belongs to
⋂

r>0Cr −
ω(Λ′ − t′) which is {0} by (3.3.2), giving the desired contradiction.

Put R := ‖t′‖d + r′ + r0 and consider set

T := {Λ̃ ∈ ΩΛ | Λ′ ∩B(0, R) = Λ̃ ∩B(0, R)}.

For every ε > 0 sufficiently small the set

Vε := {Λ′′ ∈ ΩΛ | ∃Λ̃ ∈ T, ∃t ∈ B(0, ε),Λ′′ = Λ̃− t}

is an open neighborhood of Λ′. Fix ε < r0. By the definition of R, for every Λ′′ in Vε there
are t in B(0, ε) and Λ̃ in T such that

(Λ′′ − (t′ − t)) ∩ B(0, r′) = (Λ̃− t′) ∩B(0, r′) = (Λ′ − t′) ∩ B(0, r′).
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Put t′′ := t′ − t, we have ‖t′ − t′′‖d < r0 and since Λ′ − t′ is in ΞΛ we also have that Λ′′ − t′′

is in ΞΛ ⊆ ΞΓ. Then,
⋂

γ∈(Λ′′−t′′)∩B(0,r′)

sH′(γ)−W ′ =
⋂

γ∈(Λ′−t′)∩B(0,r′)

sH′(γ)−W ′.

Together with (3.3.3), this implies ω(Λ′′ − t′′) ∈ ω(Λ′ − t′) + UH′ . Therefore, π̃(Λ′′) =
[−t′′, ω(Λ′′ − t′′)] is included in

[−t′ + (t′ − t′′), ω(Λ′ − t′) + UH′ ] ⊆ [−t′ +B(0, δ), ω(Λ′ − t′) + UH′ ]

= [−t′, ω(Λ′ − t′)] + [B(0, δ), UH′],

showing the continuity of π̃ at Λ′ in ΩMS.

Finally, since the Rd-action on ΩMS,me is minimal we have that π̃ is surjective, which
concludes the proof that π̃ is a factor map.

Definition of π1

Recall that R(ΩMS) denotes the set of non-singular points of ΩMS for π0 as defined in §2.3.1.
By definition, all sections of π0 agree on π0(R(ΩMS)). Let s̃ : ΩMS,me → ΩMS be a section
of π0. Put Ω0

Λ := π̃−1(π0(R(ΩMS)), and define the surjective map π1 : Ω0
Λ → R(ΩMS) by

π1 := s̃ ◦ π̃.

By the continuity of π̃ and Proposition 2.3.7, the map π1 is also continuous. Since s̃ is a
section of π0, for every Λ′ in Ω0

Λ we have

π̃(Λ′) = π0 ◦ π1(Λ′). (3.3.4)

Since s̃ commutes with the action of Rd on the set π0(R(ΩMS)) we get that for every Λ′ in
Ω0

Λ and t in Rd,
π1(Λ

′ − t) = π1(Λ
′)− t.

Proof of (3.3.1)

Fix Λ1 in Rπ0(ΩMS). We prove that (3.3.1) holds. First, we assume that Λ1 is in π1(Ω0
Λ∩ΞΓ).

By Theorem 2.3.1 if π0(Λ1) = [(t, w)] then

f (w + int(W ′)) = Λ1 + t = f(w +W ′). (3.3.5)

Observe that by definition of π̃ for every Λ′ in Ω0
Λ ∩ ΞΓ we have π̃(Λ′) = [(0, ω(Λ′)]. In

addition, if Λ′ satisfies that π1(Λ′) = Λ1 then using (3.3.4), we get

π0(Λ1) = π0 ◦ π1(Λ′) = π̃(Λ′) = [(0, ω(Λ′))].

Together with (3.3.5) implies that for every Λ′ ∈ Ω0
Λ ∩ ΞΓ such that π1(Λ′) = Λ1, we have

Λ1 = {γ ∈ Γ | sH′(γ) ∈ ω(Λ′) +W ′}. (3.3.6)
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By Proposition 3.3.2 and part (2) of Lemma 3.3.3, we have

− ω(ΞΛ) = θ([ΞΛ]srp) = W ′. (3.3.7)

Since Λ′ ∈ ΞΓ, and for every γ ∈ Λ′ we have Λ′ − γ ∈ ΞΛ, using part (1) of Lemma 3.3.3, we
get ω(Λ′ − γ) = ω(Λ′)− sH′(γ). Together with (3.3.6) and (3.3.7) this implies that for every
γ in Λ′ we have

ω(Λ′ − γ) ∈ ω(ΞΛ) ⇐⇒ sH′(γ) ∈ ω(Λ′)− ω(ΞΛ)

⇐⇒ sH′(γ) ∈ ω(Λ′) +W ′ ⇐⇒ γ ∈ Λ1.

Therefore, for every Λ′ ∈ Ω0
Λ ∩ ΞΓ such that π1(Λ′) = Λ1 we have

Λ′ ⊆ Λ1. (3.3.8)

On the other hand, fix γ in Λ1. By (3.3.6) for every Λ′ ∈ Ω0
Λ ∩ ΞΓ such that π1(Λ′) = Λ1

we have
sH′(γ) ∈ ω(Λ′) +W ′ ⇔ ω(Λ′) ∈ ω(ΞΛ + γ).

Thus, there is Λ′′ in ΞΛ + γ ⊆ ΞΓ such that ω(Λ′′) = ω(Λ′). Then Λ′′ − γ is in ΞΛ, and hence
γ is in Λ′′. Therefore,

Λ1 ⊆
⋃

Λ′′∈Ω0
Λ∩ΞΓ s.t. ω(Λ′′)=ω(Λ′)

Λ′′. (3.3.9)

Observe that for every Λ′ ∈ Ω0
Λ ∩ΞΓ and every Λ′′ ∈ ΞΓ such that ω(Λ′) = ω(Λ′′) we have

that π̃(Λ′) = π̃(Λ′′) and thus, Λ′′ ∈ Ω0
Λ ∩ ΞΓ. In particular, π1(Λ′) = π1(Λ

′′), which together
with (3.3.9) implies

Λ1 ⊆
⋃

π1(Λ′′)=Λ1

Λ′′. (3.3.10)

Now we prove that for every Λ′ ∈ Ω0
Λ ∩ΞΓ, and every Λ′′ ∈ Ω0

Λ such that π1(Λ′) = π1(Λ
′′),

we have that
Λ′′ ∈ ΞΓ. (3.3.11)

First, observe that the definition of π1 for all Λ′ and Λ′′ in Ω0
Λ we have that π1(Λ′) =

π1(Λ
′′) ⇔ π̃(Λ′′) = π̃(Λ′). Now, let Λ′ ∈ Ω0

Λ ∩ ΞΓ and Λ′′ ∈ Ω0
Λ be such that π̃(Λ′′) = π̃(Λ′).

By definition of π̃ this holds if and only if there exists t in Rd such that Λ′′ − t ∈ ΞΓ and
[(−t, ω(Λ′′ − t))] = [(0, ω(Λ′))], which is equivalent to the existence of γ in Γ such that

(−t, ω(Λ′′ − t))− (0, ω(Λ′)) = (γ, sH′(γ)).

Then −t = γ ∈ Γ, and we get Λ′′ ⊆ Γ − γ = Γ, which proves (3.3.11). By (3.3.8), (3.3.10)
and (3.3.11) we conclude that

Λ1 =
⋃

π1(Λ′′)=Λ1

Λ′′,

which is equivalent to
Λ1 =

⋃

Λ′∈ π̃−1(π0(Λ1))

Λ′. (3.3.12)
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If Λ1 is not in π1(Ω
0
Λ ∩ ΞΓ), then there is t in Rd such that Λ1 − t is in π1(Ω

0
Λ ∩ ΞΓ). By

(3.3.12) we have that
Λ1 − t =

⋃

Λ̃∈ π̃−1(π0(Λ1−t))

Λ̃.

Since π̃(Λ̃) = π0(Λ1 − t) if and only if π̃(Λ̃− (−t)) = π0(Λ1), we conclude that

Λ1 =
⋃

Λ̃∈ π̃−1(π0(Λ1−t))

Λ̃− (−t) =
⋃

Λ′∈ π̃−1(π0(Λ1))

Λ′, (3.3.13)

which finishes the proof of (3.3.1).

(ΩΛ,R
d) almost automorphic extension of (ΩMS,me,R

d)

Finally, if π̃ is an almost automorphic extension of (ΩMS,me,R
d). By [V70, Lemma 4.1], we

have that the set

π̃(Rπ̃(ΩΛ)) = {x ∈ ΩMS,me | π̃−1(x) is a singleton}

is a residual set in ΩMS,me and by [A16], the set π0(Rπ0(ΩMS)) is also a residual set in ΩMS,me.
Then,

π0(Rπ0(ΩMS)) ∩ π̃(Rπ̃(ΩΛ))

is also a residual set in ΩMS,me. By (3.3.13) for every Λ1 in Rπ0(ΩMS) such that π0(Λ1) ∈
π̃(Rπ̃(ΩΛ)) we have that Λ1 is in Ω0

Λ, which concludes the proof of the Main Technical Lemma’.
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Chapter 4

Eigenvalues for linearly repetitive Meyer

systems

4.1 Introduction.

In this chapter, we give a condition on linearly repetitive aperiodic Meyer sets in Rd that
ensure that every eigenfunction can be chosen continuous. The condition is given in terms of
first return vectors to a decreasing sequence of clopen sets in the canonical transversal. The
condition is inspired in the work with towers systems and Bratteli diagrams [CDHM, BDM05,
AC11]. We also consider an additional condition relating first return vectors and the base of
the group generated by the first return vectors. The main result in this chapter is Theorem D.
For general repetitive Meyer sets in Rd it is not true that every eigenfunction can be choosen
continuous. In [KS14] a repetitive Meyer set in Z is constructed such that, it has a pure point
dynamical spectrum (or diffraction measure) but with some non-continuous eigenfunctions.
Also is constructed a Meyer set in Rd where each eigenfunction is non-continuous, except
those associated with the trivial eigenvalue.

We start recalling a result that we use in the proof of Theorem D. Let Λ be a repetitive
Delone set in R

d and let C be a closed and open set (clopen set) in ΞΛ. For every Λ′ in ΩΛ

we define the set of return vectors to C as

RC(Λ
′) := {t ∈ R

d | Λ′ − t ∈ C}. (4.1.1)

It is known that RC(Λ
′) is a repetitive Delone set in Rd (see [C11]), and if Λ′ is in ΞΛ then

RC(Λ
′) ⊆ Λ′.

Repetitivity of Λ implies that for each ρ > 0 there exists M > 0 such that each closed
ball of radius M contains the center of an occurrence of every ρ-patch of Λ. We denote by
MΛ(ρ) the smallest of such radius M > 0 for each ρ.

Definition 4.1.1. A repetitive Delone set Λ is called linearly repetitive if there exists L > 0
such that for each ρ > 0 we have MΛ(ρ) ≤ L ρ.
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Given v in R, we denote by |||v||| the distance of v to the nearest integer. For a vector
~v = (v1, . . . , vd) ∈ Rd we write

|||~v||| = max
1≤j≤d

|||vj |||.

In [C09] it is proven the following facts.

Theorem 1.2.2. Let Λ be a linearly repetitive aperiodic Delone set in Rd containing 0 and
let µ be the unique invariant measure for (ΩΛ,R

d). For every Λ0 in ΞΛ, there is a decreasing

sequence of clopen sets (Cn)n∈N in ΞΛ containing Λ0 and a sequence of finite sets ( ~Fn)n∈N in
Rd verifying that for every n ∈ N the set

~Fn ⊆ RCn
(Λ0)−RCn

(Λ0) and RCn
(Λ0) ⊆ 〈 ~Fn〉,

such that the following property holds: If α in Rd is an eigenvalue for (ΩΛ, µ,R
d) then the

series ∞∑

n=1

max
v∈ ~Fn

|||〈α, v〉|||2

converges. Moreover, one can choose the sequences (Cn)n∈N and ( ~Fn)n∈N satisfying the fol-
lowing property: There is M in N such that for every n in N we have that every vector v in
~Fn+1 can be written as an integer linear combination with less than M vectors in ~Fn.

Using the decreasing sequence of clopen in Theorem 1.2.2, we can define a sequence of
topological factors of (ΩΛ,R

d). Each one of them defines a finitely generated Abelian group.
Controlling the generators of these groups we proved that a measurable eigenvalue of (ΩΛ,R

d)
is a continuous eigenvalue for some of these factors. Thus we give a proof of Theorem D. It
gives a condition on Meyer sets which ensure that every continuous eigenvalue is continuous.

Theorem D. Let Λ be a linearly repetitive aperiodic Meyer set in R
d and let µ be the unique

invariant measure for (ΩΛ,R
d). Let Λ0 be in ΞΛ and let (Cn)n∈N and ( ~Fn)n∈N be sequences

associated to Λ0 as in the statement of Theorem 1.2.2. If for every n in N there is a base of
the group 〈RCn

(Λ0)〉 included in ~Fn, then every eigenvalue of (ΩΛ,R
d) is continuous.

We remark that Theorem D applies to every linearly repetitive aperiodic Delone set in Z
d

since in this case, the Meyer condition is automatically satisfied.

Now we give a more detailed version of Theorem 1.2.2 and Theorem D in dimension 1,
that are more suitable for applications. Let A = {1, . . . , q} be a finite alphabet and consider
AZ endowed with the product topology. Let X be a subset of AZ, closed an invariant for the
shift action. We denote by (X,Z) the dynamical system given by the shift action σ on X,
and we assume that it is minimal. We say that (X,Z) has a Kakutani-Rokhlin partition P
(KR-partition for short), if it has a partition that can be described for some positive integer
t by

P = {σ−jB(i) | i ∈ {1, . . . , t}, 0 ≤ j < h(i)},
where B(1), . . . , B(t) are clopen subsets of X and h(i) is a positive integer. The base of P is
the set B = ∪t

i=1B(i). For every i ∈ {1, . . . , t} the set T (i) = ∪h(i)−1
j=0 σ−jB(i) is called the ith

tower of base B(i). From [HPS92], the dynamical system (X,Z) has a sequence (Pn)n∈N of
KR-partitions

Pn = {σ−jBn(i) | i ∈ {1, . . . , tn}, 0 ≤ j < hn(i)},
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satisfying the following conditions,

[KR0 ] For n = 0 we have t0 = q, and for every 1 ≤ i ≤ q we have hn(i) = 1. The base
Bn(i) = [i]0 is the cilinder defined by the i symbol on the 0 coordinate.

[KR1 ] For each non-negative integer n we have Bn+1 ⊆ Bn,
[KR2 ] For all C in Pn+1 there exists C ′ in Pn such that C ⊆ C ′.
[KR3 ]

⋂
n∈NBn is a singleton.

[KR4 ] The sequence of partitions (Pn)n≥0 spans the topology of X.
[KR5 ] For all n ≥ 1, 1 ≤ k ≤ tn−1 and 1 ≤ l ≤ tn, there exists 0 ≤ j < hn(l) such that

σ−jBn(l) ⊆ Bn−1(k).
[KR6 ] For each n ≥ 1, we have Bn ⊆ Bn−1(1).

In particular we associate to (Pn)n∈N a sequence of incidence matrices (M(n))n≥1, where
M(n) is the tn × tn−1 matrix of positive integers given by

ml,k(n) = #{0 ≤ j < hn(l) | σ−jBn(l) ⊆ Bn−1(k)}.
For 0 ≤ m < n, we define

P (n,m) =M(n)M(n − 1) · · ·M(m+ 1) and P (n) = P (n, 0).

There is a notion of linearly recurrent for sequences similar to Definition 4.1.1. We say that
x in AZ is linearly recurrent if there is L > 0 such that for every positive integer k, each
word of lenght k in x appears in a window of lenght Lk in x. By minimality, if there is a
linearly recurrent sequence in X then every sequence in X is linearly recurrent. In this case,
we say that (X,Z) is linearly recurrent. It is know that when the dynamical system (X,Z)
is linearly recurrent, there is a sequence of KR-partitions verifying [KR1]− [KR6] and also
the following property

[LR ] there exists L > 0 such that for all n ≥ 1, 1 ≤ l ≤ tn and 1 ≤ k ≤ tn−1 we have

hn(l) ≤ L hn−1(k). (4.1.2)

For each symbol a in A we asign a lenght la > 0 such that for different symbols a, a′ we
have la 6= la′ . Denote by L0 the set of lenghts {l1, . . . , lq}. For all x in X we put the
lenghts from L0 into the symbols in A, to obtain a finitely generated Delone set Λ(x) in the
real line. Fix x0 ∈ X and denote by ΩΛ(x0) its associated hull space defined in §2.2.1. We
recall that (ΩΛ(x0),R) is a dynamical system, and ΞΛ(x0) is the transversal space. If (X,Z) is
linearly recurrent, then Λ(x0) is linearly repetitive and thus (ΩΛ(x0),R) has a unique, invariant
probability measure µ.

Since the lenghts are all different, the process of assigning lenghts is reversible for Delone
set in ΞΛ(x0). This means that, for all Delone set Λ̃ in ΞΛ(x0) there exists a unique sequence xΛ̃
in X such that Λ(xΛ̃) = Λ̃. Indeed, the topological spaces X and ΞΛ(x0) are homeomorphic.

For all n ≥ 1 and 1 ≤ i ≤ tn, we define Cn(i) = {Λ̃ ∈ ΞΛ(x0) | xΛ̃ ∈ Bn(i)}, and denote

Cn =
tn⋃

i=1

Cn(i). (4.1.3)
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By [KR1], for each n we have Cn ⊆ Cn−1. In particular, {Cn}n∈N is a decreasing sequence of
clopen sets in ΞΛ(x0). Following (4.1.1), for every n there is a repetitive Delone set of finite
type called the set of return vectors RCn

(Λ(x0)) := {t ∈ R | Λ(x0)− t ∈ Cn}.

For all n ∈ N, i ∈ {1, . . . , tn} and for all x and y in Bn(i), we have

x[−(hn(i)−1),0] = y[−(hn(i)−1),0]. (4.1.4)

For all integer n ≥ 1 and i in {1, . . . , tn}, choose x ∈ Bn(i) and define

Ln(i) =

0∑

j=−(hn(i)−1)

lxj
.

By (4.1.4), we have that Ln(i) does not depend on x ∈ Bn(i). For all n ≥ 1, we define the
vectors of lenghts by

~L(n) =



Ln(i)

...
Ln(tn)


 and ~L(0) =



l1
...
lq


 .

Observe that for all n ≥ 1 we have ~L(n) =M(n)~L(n−1), and thus ~L(n) = P (n)~L(0). Denote
by Ln the set of lenghts {Ln(1), · · · , Ln(tn)}. Notice that

Ln ⊆ RCn
(Λ(x0))−RCn

(Λ(x0)) and RCn
(Λ(x0)) ⊆ 〈Ln〉.

Using the same strategy of the proof in [CDHM, Theorem 10], one can give a proof of the
following result.

Proposition 4.1.2. Let x0 be a linearly repetitive, aperiodic sequence in AZ, and denote by
ΩΛ(x0) the hull associated to the Delone set Λ(x0). Let µ be the unique invariant measure for
(ΩΛ(x0),R). Let (Pn)n∈N be a sequence of KR-partitions verifying [KR0] − [KR6] and [LR].

Let α be a real number. If α is an eigenvalue of (ΩΛ(x0),R, µ), then
∑

n≥2 |||αP (n)~L(0)|||2 <∞.

Using Proposition 4.1.2 we get the following theorem analogous to Theorem D.

Theorem D’. Let x0 be a linearly repetitive, aperiodic sequence in AZ. Denote by X =
{σn(x0) | n ∈ Z}, and by ΩΛ(x0) the hull associated to the Delone set Λ(x0). Let µ be the
unique invariant measure for (ΩΛ(x0),R). Let (Cn)n∈N the sequence of clopen associated to a
sequence of KR-partitions for (X,Z) satisfying the properties [KR0] − [KR6] and [LR]. If
Λ(x0) is a Meyer set and for every n in N there is a base of the group 〈RCn

(Λ(x0))〉 included
in Ln, then every eigenvalue of (ΩΛ(x0),R, µ) is continuous.

The proof of this result is the same of Theorem D.

4.2 Proof of Theorem D.

The idea of the proof is simple. We used a decreasing sequence of clopen in the transversal to
obtain topological factors of the hull system. Finally, we use the second part of Theorem 1.2.2
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and Proposition A to get that each eigenvalue of the hull system is a continuous eigenvalue
for some of these factors.

Let Λ be a linearly repetitive aperiodic Meyer set in Rd and let µ be the unique invariant
measure for (ΩΛ,R

d). Fix α in Rd being an eigenvalue for (ΩΛ, µ,R
d). We want to prove

that α is a continuous eigenvalue. We recall that for each Λ′ in ΩΛ and every clopen set C
in ΞΛ, the set of return vectors to C is defined as

RC(Λ
′) := {t ∈ R

d | Λ′ − t ∈ C}.

We used Theorem 1.2.2 for Λ0 in ΞΛ. Hence there is (Cn)n∈N a decreasing sequence of clopen
sets in ΞΛ containing Λ0, and a sequence of finite sets ( ~Fn)n∈N in Rd. These sets verify that
for every n ∈ N we have

~Fn ⊆ RCn
(Λ0)−RCn

(Λ0) and RCn
(Λ0) ⊆ 〈 ~Fn〉. (4.2.1)

By [AC11, Lemma 2.2] for each clopen set C in ΞΛ and Λ̃ ∈ ΩΛ, the set RC(Λ̃) is a repetitive
Delone set. Actually, RC(Λ̃) is a Meyer set because Λ is a Meyer set. Thus, for every n the
set RCn

(Λ0) is a repetitive Meyer set contained in Λ0. By hypothesis, we assume that ~Fn

contains a basis of the Abelian generated by RCn
(Λ0).

Repetitivity of Λ implies that the hull systems associated for Λ and Λ0 are conjugated. The
following result provides a factor of (ΩΛ,R

d), from the hull system associated with RCn
(Λ0).

Lemma H. Let C be a clopen in ΞΛ and fix Λ̃ in ΩΛ. The dynamical system (ΩRC (Λ̃),R
d)

is a topological factor of (ΩΛ,R
d). In particular, if α in Rd is a continuous eigenvalue for

(ΩRC(Λ̃),R
d) then α is a continuous eigenvalue for (ΩΛ,R

d).

Proof. By repetitivity of Λ the system (ΩΛ̃,R
d) is topologically conjugated to (ΩΛ,R

d). Thus
is sufficient to prove that (ΩRC(Λ̃),R

d) is a topological factor of (ΩΛ̃,R
d). Define the map

Π : ΩΛ̃ → ΩRC(Λ̃) by
Π(x) = {t ∈ R

d | x− t ∈ C}.
By definition we have Π(Λ̃) = RC(Λ̃). Observe that for each R > 0 big enough there is a
positive number r < R, such that for all x, y ∈ ΩΛ̃ with x ∩B(0, R) = y ∩ B(0, R) we have

Π(x) ∩ B(0, r) = Π(y) ∩B(0, r).

Moreover, r goes to infinity when R goes to infinity. Thus, Π is well-defined and clearly
continuous. For all x ∈ ΩΛ̃ and t in Rd we have

Π(x− t) = {w ∈ R
d | (x− t)− w ∈ C}

= {w ∈ R
d | x− (t+ w) ∈ C}

= {u ∈ R
d | x− u ∈ C} − t

= Π(x)− t.

In particular, since {Π(Λ̃)− t | t ∈ R} = ΩRC (Λ̃), this and the continuity of Π implies that Π is
surjective. We conclude that Π define a topological factor between (ΩΛ̃,R

d) and (ΩRC (Λ̃),R
d).
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Let α ∈ Rd be a continuous eigenvalue for (ΩRC(Λ̃),R
d). By definition, there exists a

continuous function f : ΩRC(Λ̃) → C such that for all x ∈ ΩRC(Λ̃) and t ∈ Rd, we have

f(x− t) = e2πiα·tf(x).

Using the factor map Π, define the continuous function f̂ : ΩΛ̃ → C by f̂(w) := f(Π(w)).
Clearly, for all w ∈ ΩΛ̃ and t ∈ R

d we have

f̂(w − t) = f(Π(w − t)) = f(Π(w)− t) = e2πiα·tf(Π(w)) = e2πiα·tf̂(w).

Concluding that α is a continuous eigenvalue of (ΩΛ̃,R
d).

For each n, denote by sn the rank of RCn
(Λ0). Using the hypothesis, there is a subset of ~Fn

with sn rationally independent vectors Vn = {vn,1, . . . , vn,sn} such that 〈RCn
(Λ0)〉 = Z[Vn].

Observe that ~0 ∈ Rd belongs to RCn
(Λ0), hence 〈RCn

(Λ0)−RCn
(Λ0)〉 = 〈RCn

(Λ0)〉, and by
(4.2.1), we have

〈RCn
(Λ0)〉 = 〈 ~Fn〉.

Note that, for every positive integer n we have that RCn+1(Λ0) ⊆ RCn
(Λ0). This implies

that there is a finite collection {z(n)i,j ∈ Z | 1 ≤ i ≤ sn, 1 ≤ j ≤ sn+1}, such that for every
index 1 ≤ j ≤ sn+1 we have

vn+1,j = z
(n)
1,j vn,1 + · · ·+ z

(n)
sn,j

vn,sn. (4.2.2)

We write V (n) = [vn,1 · · · vn,sn] the matriz of size d × sn whose columns are the vectors
{vn,1, . . . , vn,sn}, and by Z(n) the matrix of size sn × sn+1 with integer coefficients form by
the collection (z

(n)
i,j ) 1≤i≤sn

1≤j≤sn+1

. Then the following relation is satisfies

V (n+ 1) = V (n) · Z(n), in particular V (n) = V (1) · Z(1) · · ·Z(n− 1). (4.2.3)

Remark 4.2.1. From the hypothesis of Theorem D, for each n the basis Vn is contained in ~Fn.
The last part of Theorem 1.2.2, implies that each vector in Vn+1 is an integer linear combina-
tion with less than M vectors in ~Fn. From this and (4.2.1), each vector in Vn+1 is an integer
linear combination with less than 2M vectors in Vn. Hence the sequence {‖Z(n)‖op}n∈N is
bounded.

For any pair of positive integers 1 ≤ m < n, we denote by Q(m,n) the matrix with integer
coefficients of size sm × sn given by

Q(m,n) = Z(m) · Z(m+ 1) · · ·Z(n− 1), and Q(n) = Q(1, n).

Observe that by definition and (4.2.3), we have

Q(n) · Z(n) = Q(n + 1) and V (n) = V (1) ·Q(n).

Lemma 4.2.2. Let Λ be a linearly repetitive Delone set. Let u be a real vector such that
|||uT · Q(n)||| converges to zero as n → ∞. Then, there are m ∈ N, an integer vector w, and
a real vector v such that uT · Q(m) = wT + vT . The vector vT verifies that ||vT · Q(m,n)||
converges to 0 when n goes to infinity.
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Proof. By hypothesis, for all n ∈ N exist wn ∈ Zsn and ǫn ∈ Rsn such that

uT ·Q(n) = wT
n + ǫTn and ‖ǫn‖sn

n→∞−−−→ 0.

Note that ‖ǫTn ·Z(n)−ǫTn+1‖sn+1 ≤ ‖ǫn‖sn·‖Z(n)‖op+‖ǫn+1‖sn+1 . By 4.2.1, the set {‖Z(n)‖op}n∈N
is bounded. This implies that

‖ǫTn · Z(n)− ǫTn+1‖sn+1

n→∞−−−→ 0.

Thus ǫTn+1 + wT
n+1 = uT ·Q(n + 1) = uT ·Q(n) · Z(n) = ǫTn · Z(n) + wT

n · Z(n), and we have

ǫTn · Z(n)− ǫTn+1 = wT
n+1 − wT

n · Z(n) ∈ Z
sn+1 .

Hence, the sequence {ǫTn ·Z(n)−ǫTn+1}n∈N is eventually zero. Concluding that there is m0 ∈ N

such that for all m ≥ m0 we get ǫTm · Z(m) = ǫTm+1. This implies that for all n > m ≥ m0 we
have

ǫTn+1 = ǫTm ·Q(m,n) and ‖ǫTm ·Q(m,n)‖sn+1 = ‖ǫTn+1‖sn+1

n→∞−−−→ 0.

Finally, we conclude the lemma for w = wm0 and v = ǫm0 .

By definition, for every n in N, the set Vn+1 form a basis for 〈RCn+1(Λ0)〉 as Abelian
group. Thus, there is a unique way to write elements of 〈RCn+1(Λ0)〉 using vectors in Vn+1.
Hence, for every t in the group 〈RCn+1(Λ0)〉 there exists a unique collection {kj,n+1}1≤j≤sn+1

of integer numbers such that

t =

sn+1∑

j=1

kj,n+1 vn+1,j.

The address map ϕn+1 : 〈RCn+1(Λ0)〉 → Zsn+1 of RCn+1(Λ0), introduced in §2.1.1, is defined
by

t =

sn+1∑

j=1

kj,n+1 vn+1,j 7−→ ϕn+1(t) =




k1,n+1
...

ksn+1,n+1


 .

Observe that every t in the group 〈RCn+1(Λ0)〉 verifies that t = V (n + 1) · ϕn+1(t). For t in
〈RCn+1(Λ0)〉, by (4.2.2) we have

t =

sn+1∑

j=1

kj,n+1 vn+1,j =

sn+1∑

j=1

kj,n+1

(
sn∑

i=1

z
(n)
i,j vn,i

)
=

sn∑

i=1

(
sn+1∑

j=1

kj,n+1 z
(n)
i,j

)
vn,i,

which implies that ki,n =
∑sn+1

j=1 kj,n+1 z
(n)
i,j . Hence, for every n in N and each t in the Abelian

group 〈RCn+1(Λ0)〉 we have
ϕn(t) = Z(n) · ϕn+1(t). (4.2.4)

Since for all n the set RCn
(Λ0) is a repetitive Meyer set, there is a linear map ℓn : Rd → Rsn

that approximates the address map ϕn (see §2.1.1). By Theorem 2.1.1 this linear map is
unique, and we define

ξn := sup
t∈RCn (Λ0)

‖ϕn(t)− ℓn(t)‖sn < +∞.
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Denote by A(n) the real matrix of size sn×d, that represent the linear map ℓn in the canonical
bases. Recall that for each t ∈ RCn+1(Λ0) ⊂ RCn

(Λ0). By (4.2.4) we have

‖A(n) · t− Z(n) · A(n+ 1) · t‖sn ≤ ‖A(n) · t− ϕn(t)‖sn + ‖ϕn(t)− Z(n) · A(n + 1) · t‖sn
≤ ξn + ‖Z(n)‖op · ξn+1

Thus, dividing by the norm of t and using Lemma B, we have

‖A(n)− Z(n) · A(n+ 1)‖op ≤ sup
t∈RCn+1

(Λ0)

ξn + ‖Z(n)‖op · ξn+1

‖t‖d
.

From Remark 4.2.1 the sequence of real positive numbers {‖Z(n)‖op}n∈N is bounded. Hence
we have that

‖A(n)− Z(n) · A(n+ 1)‖op = 0, and A(n) = Z(n) · A(n+ 1).

Observe that for every n, we have V (n) ·A(n) = V (n) ·Z(n) ·A(n+1) = V (n+1) ·A(n+1).
For all x ∈ 〈RC1(Λ0)〉 we have that

‖x− V (1) · A(1) · x‖d = ‖V (1) ϕ1(x)− V (1) · A(1) · x‖d ≤ ‖V (1)‖op · ξ1.
Dividing by ‖x‖d, from Lemma B, we get that the sequence of matrices {V (n) · A(n)} is
constant and equal to the identity matrix Id = V (n) ·A(n) of size d× d. For all 1 ≤ m < n,
the following relation is satisfied.

A(m) = Q(m,n) · A(n). (4.2.5)

When Λ is linearly repetitive, we can prove that the family of matrices A(n) is bounded
in the operator norm. This is stated in the following result.

Lemma I. If Λ is a linearly repetitive Meyer set, then the family matrices {A(n)}n∈N defined
before has bounded coefficients.

Proof. We descompose Z(n) = Z(n)+ − Z(n)− and A(n) = A(n)+ − A(n)−, where the
matrices Z(n)+, Z(n)−, A(n)+, A(n)− has non-negative coefficients. Consider the matrices
Z̃(n) ∈M2sn×2sn+1(Z

+
0 ) and Ã(n) ∈M2sn×d(R

+
0 ), defined by

Z̃(n) =

[
Z(n)+ Z(n)−

Z(n)− Z(n)+

]
and Ã(n) =

[
A(n)+

A(n)−

]
.

Since A(n) = Z(n) · A(n+ 1) = (Z(n)+ − Z(n)−) · (A(n+ 1)+ − A(n+ 1)−) we have that

A(n)+ = Z(n)+ · A(n+ 1)+ + Z(n)− ·A(n + 1)−,

and A(n)− = Z(n)+ · A(n+ 1)− + Z(n)− · A(n + 1)+. Hence,

Z̃(n) · Ã(n+ 1) =

[
Z(n)+ Z(n)−

Z(n)− Z(n)+

]
·
[
A(n+ 1)+

A(n+ 1)−

]

=

[
Z(n)+ · A(n+ 1)+ + Z(n)− · A(n+ 1)−

Z(n)+ · A(n+ 1)− + Z(n)− · A(n+ 1)+

]

= Ã(n).
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Thus for all n ∈ N, the coefficients of Ã(n) are a positive integer linear combination of the
coefficients of Ã(n + 1). We conclude that the absolute value of the highest coeficient of
Ã(n) form a non-increasing sequence of positive real numbers. We conclude the lemma since
the highest coefficient of Ã(n) is equal to the highest absolute value of the coefficients of
A(n).

Finally, we prove Theorem D. We assume that α is an eigenvalue, possibly non-continuous
eigenvalue, for (ΩΛ,R

d). Using Theorem 1.2.2 and the structure of the Meyer sets RCn
(Λ0),

we will conclude that it must be a continuous eigenvalue for (ΩΛ,R
d).

Proof of Theorem D. Let α be an eigenvalue for (ΩΛ,R
d). We assume that for every integer

n ≥ 1 there is a basis Vn of the group 〈RCn
(Λ0)〉 included in ~Fn.

By definition of the matrices V (n), and since Vn ⊆ ~Fn we have

|||αT · V (1) ·Q(n)||| = |||αT · V (n)||| = max
v∈Vn

|||αT · v||| ≤ max
v∈ ~Fn

|||αT · v|||.

Theorem 1.2.2 applied to the linearly repetitive Meyer set Λ, implies that

lim
n→∞

max
v∈ ~Fn

|||αT · v||| = 0.

Using Lemma 4.2.2 for uT = αT · V (1), we have there is a positive integer m, an integer
vector w, and a real vector ǫ such that

αT · V (1) ·Q(m) = wT + ǫT , (4.2.6)

with limn→∞ ‖ǫT ·Q(m,n)‖ = 0. Recall that the sequence of matrices {V (n)·A(n)} is constant
and equal to the identity matrix. Multiplying (4.2.6) by the matrix A(m), and using (4.2.5),
we have

αT = αT · V (1) · A(1) = αT · V (1) ·Q(m) · A(m) = wt · A(m) + ǫt · A(m). (4.2.7)

Moreover, for each n > m+ 1 we have

‖ǫt · A(m)‖d = ‖ǫt ·Q(m,n) · A(n)‖d ≤ ‖ǫt ·Q(m,n)‖sn · ‖A(n)‖op.

Hence, by Lemma 4.2.2 and Lemma I, taking limit when n goes to +∞ we conclude that
ǫt · A(m) = 0. Thus, by (4.2.7) we have

αt = wt · A(m).

This implies that α is an integer linear combination of the rows of A(m). By Remark 3.1.1,
we have that α is a continuous eigenvalue of (ΩRCm (Λ0),R

d). Using Lemma H, we conclude
the proof.
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Chapter 5

Examples

In this chapter, we show some examples where we can compute the continuous eigenvalues
using the method of the address system. In the first example §5.1, we consider a sequence
in m + 1 symbols. We tile the real line with this sequence, by assigning lengths to each
symbol. We put a condition in the sequence to obtain a Meyer set, and we find some
continuous eigenvalues of its associated hull system. In §5.2, we used the previous example
to construct Meyer sets in the real line with different sets of eigenvalues. Specifically, in
§5.2.1 we construct a Meyer set whose associated hull system has two rationally independent
continuous eigenvalues. While in §5.2.2, we obtain a Meyer set with a hull system where the
continuous eigenvalue group has rank one. In §5.3 we used the fixed point of a primitive,
Pisot substitution to obtain a Delone set. Using a result of Adamczewski [A04] and Corollary
B, we describe some continuous eigenvalues for the associated dynamical system. In §5.4 we
give two examples to show that some hypotheses are necessary for Theorem D.

5.1 Almost linear sequences.

For this example, we construct Delone sets in R using sequence in m + 1 symbols and
associating lengths to each symbol. For some sequences, we obtain a Meyer set with rank
m + 1. This construction of Meyer sets from a sequence with two symbols can be found in
[L99]. Then we apply Proposition A, to construct m+ 1 rationally independent continuous
eigenvalues of the associated hull system.

Let s = (si)i∈Z be a sequence in m+ 1 symbols that we denoted by {0, . . . , m}. For every
i ∈ Z and each symbol a in {0, . . . , m}, we define

sign(i) :=





1 if n ≥ 1,
0 if n = 0,
−1 if n ≤ −1

and Si(a) :=





∑i−1
k=0 1{a}(sk) if i ≥ 1,

0 if i = 0,∑−1
k=i 1{a}(sk) if i ≤ −1.

Definition 5.1.1. A sequence s = (si)i∈Z ∈ {0, . . . , m}Z is almost linear if there exists a
finite collection of real positive numbers {γa}ma=0 and some constant C > 0 such that for all
i ∈ Z we have max0≤a≤m |Si(a)− i sign(i) γa| ≤ C.

52



Let {α0, . . . , αm} be a finite collection of real positive numbers. We define the Delone set
Dα0,...,αm

(s), as the collection of real numbers (ti)i∈Z defined by

ti = sign(i)
m∑

a=0

Si(a) αa.

In [L99], Lagarias proved (for m = 1) the following theorem that characterizes when
Dα0,α1(s) is a Meyer set.

Theorem 5.1.1. [L99, Theorem 5.1] Let s = (si)i∈Z ∈ {0, 1}Z be a symbol sequence. If s is
almost linear, then Dα0,α1(s) is a Meyer set for all pair of real positive numbers α0 and α1.
If s is not almost linear, then Dα0,α1(s) is a Delone set of finite type and satisfies:

1. If α0 and α1 are rationally dependent then Rank(Dα0,α1(s)) = 1, and Dα0,α1(s) is a
Meyer set.

2. If α0 and α1 are rationally independent then Rank(Dα0,α1(s)) = 2, and Dα0,α1(s) is not
a Meyer set.

We extend the first part of this result for m+1 symbols and using Proposition A we give
an explicit description of some rationally independent continuous eigenvalues for the hull
system (ΩDα0,...,αm(s),R).

Proposition E. If s = (si)i∈Z ∈ {0, . . . , m}Z is an almost linear sequence, then for every
finite collection of rationally independent positive numbers α0, . . . , αm, the set Dα0,...,αm

(s) is
a Meyer set with rank m+ 1.

Proof. By hypothesis, the numbers α0, . . . , αm are rationally independent. Thus the rank
of Dα0,...,αm

(s) is equal to m + 1, and the Delone set Dα0,...,αm
(s) is finitely generated. The

address map ϕ : 〈Dα0,...,αm
(s)〉 → Zm+1 obtained from the basis {α0, . . . , αm} is defined by

ϕ(ti) = sign(i)



Si(0)

...
Si(m)


 .

By Theorem 2.1.1, Dα0,...,αm
(s) is a Meyer set if and only if Dα0,...,αm

(s) is finitely generated
and the address map is almost linear on Dα0,...,αm

(s). Hence, we consider a linear map
L : R → Rm+1 given by

L(t) =




β1 t
...

βm+1 t


 .

For every k in {1, . . . , m+ 1}, we define βk =
γk−1∑m

a=0 γa αa
. We proved that there is a constant

η > 0 such that for every integer number i we have

‖ϕ(ti)− L(ti)‖m+1 ≤ η. (5.1.1)
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For k ∈ {1, . . . , m+1}, note that the k-coordinate of ϕ(ti)−L(ti) is given by the expression

(ϕ(ti)− L(ti))k = sign(i) Si(k − 1)− βk sign(i)

m∑

a=0

Si(a) αa.

Hence, for every k in {1, . . . , m+ 1} we have

|(ϕ(ti)− L(ti))k| =

∣∣∣∣∣Si(k − 1)− γk−1∑m
b=0 γbαb

m∑

a=0

Si(a)αa

∣∣∣∣∣

=
1∑m

b=0 γbαb

∣∣∣∣∣Si(k − 1)
m∑

b=0

γbαb − γk−1

m∑

a=0

Si(a)αa

∣∣∣∣∣

≤ 1∑m
b=0 γbαb

m∑

a=0

|Si(k − 1)γaαa − γk−1Si(a)αa| (5.1.2)

Observe that

Si(k − 1)γaαa − γk−1Si(a)αa = γaαa{Si(k− 1)− i sign(i)γk−1} − γk−1αa{Si(a)− i sign(i)γa}.
Thus, by definition of an almost linear sequence, we have

|Si(k − 1)γaαa − γk−1Si(a)αa| ≤ {γa + γk−1}αaC.

Denote Θ := max{αa | 0 ≤ a ≤ m} and Υ := max{βk | 1 ≤ k ≤ m + 1}. By (5.1.2) we
conclude that

|(ϕ(ti)− L(ti))k| ≤
1∑m

b=0 γbαb

m∑

a=0

{γa + γk−1}ΘC ≤ 2(m+ 1)ΥΘC.

Thus we have that (5.1.1) is satisfied for η = 2(m+1)ΥΘC. It implies that the address map
of Dα0,...,αm

(s) is almost linear. By Theorem 2.1.1, we conclude that Dα0,...,αm
(s) is a Meyer

set.

Remark 5.1.2. In the previous proposition if α0, . . . , αm are not rationally independent, one
can prove that the set Dα0,...,αm

(s) is also a Meyer set but with rank strictly smaller than
m + 1. In fact, suppose that α0, . . . , αm are not rationally independent. In particular,
there are only k < m + 1 rationally independent values. We denote by α̃1, . . . , α̃k these k
values. Thus there exists a matrix M with integer coefficients, k rows, and m + 1 columns
such that changes coordinates in α0, . . . , αm to coordinates in α̃1, . . . , α̃k. The address map
ϕ̃ : 〈Dα0,...,αm

(s)〉 → Zk obtained from the basis {α̃1, . . . , α̃k}, and associated for the finitely
generated Delone set Dα0,...,αm

(s), is given by

ϕ̃(ti) =M · sign(i)



Si(0)

...
Si(m)


 .

Hence we used the same argument in Proposition E, for the linear map L̃ : Rd → Rk defined
by L̃(t) =M · L(t). It allows us to conclude that

sup
i∈Z

‖ϕ̃(ti)− L̃(ti)‖m+1 ≤ ‖M‖op · sup
i∈Z

‖ϕ(ti)− L(ti)‖m+1 ≤ ‖M‖op · 2(m+ 1)ΥΘC <∞.

This implies that if s = (si)i∈Z ∈ {0, . . . , m}Z is an almost linear sequence, then for every
finite collection of positive numbers α0, . . . , αm, the set Dα0,...,αm

(s) is a Meyer set.
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Observe that for sequences, repetitivity is not a consequence of almost linearity. An
example of this is the sequence (si)i∈Z ∈ {0, 1}Z defined by

si :=

{
1 if i · sign(i) ≥ 2 and i is even,
0 if not.

This sequence is represented by

. . . 010101010.0010101010 . . .

Clearly, this sequence is almost linear with γ0 = γ1 =
1
2
. Because the patch 000 appears once,

this sequence is not repetitive (and not linear repetitive). In general, for sequences, linearly
repetitive does not imply almost linearity. Although, from the Lagarias-Pleasants Theorem
[LP03], we have the following close relation.

Theorem 5.1.2. [AC11, Theorem 1.2] Let s a linearly repetitive sequence in m symbols.
There exist δ > 0 and a collection of real positive numbers {γ1, . . . , γm} such that for each
symbol a we have ∣∣∣∣

Si(a)

i sign(i)
− γa

∣∣∣∣ = O((i sign(i))−δ).

Assuming repetitivity of the sequence, we can use Proposition A to observe that for all
1 ≤ j ≤ m+ 1 the real numbers

βj =
γj−1∑m

a=0 γa αa

,

are continuous eigenvalue of the hull system (ΩDα0,...,αm (s),R). A consequence of this is the
following result.

Corollary B. Let s = (si)i∈Z ∈ {0, . . . , m}Z be a repetitive and almost linear symbol sequence.
Use this sequence to tile the real line associating rationally independent lengths α0, . . . , αm to
each symbol 0, . . . , m, respectively. Then we have that

1. The linear map approximating the address map of Dα0,...,αm
(s) is given by

ℓ(t) =




β1 t
...

βm+1 t


 ,

where for each j in {1, . . . , m+ 1} we have βj =
γj−1∑m

a=0 γa αa
.

2. The set of continuous eigenvalues of (ΩDα0,...,αm (s),R) contains the Abelian group

Z[β1, . . . , βm+1].

5.2 Two examples of Meyer sets in the real line.

In this section, we show two examples of Meyer set in R. We used a repetitive, and almost
linear sequence in {0, 1}Z to tile the real line, by assigning lengths to each symbol. By
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Theorem 5.1.1, the vertices of these tilings form Meyer sets. When the associated lengths
are rationally independent, these Meyer sets have rank equal 2.

Let x be a repetitive and almost linear sequence in two symbols such that γ1 is an irrational
number, and γ0 = 1−γ1. We assigned length 1 to the symbol 0, and length α for the symbol
1 to construct a Delone set D1,α(x). We used Theorem 5.1.1 and Proposition A to compute
some eigenvalues of (ΩD1,α(x),R).

For each real positive number α, Theorem 5.1.1 implies that D1,α(x) is a Meyer set. If 1
and α are rationally independent, D1,α(x) has rank equal 2 and it is finitely generated. Using
Corollary B, we have that the linear map approximating the address map of D1,α(x) is given
by

ℓ(t) =

[
β1 t
β2 t

]
,

where β1 = γ0
γ0+αγ1

and β2 = γ1
γ0+αγ1

. Thus Proposition A implies that the set of continuous
eigenvalues for (ΩD1,α(x),R) contains the set

{n · β1 +m · β2 | n,m ∈ Z}.

Now, we choose different values for γ1 (see Definition 5.1.1), to obtain a Meyer set with one
continuous eigenvalue, and another with two rationally independent continuous eigenvalues.

5.2.1 A Meyer set in the real line with two continuous eigenvalues.

In this example, we construct a Meyer set such that its hull dynamical system has two ratio-
nally independent continuous eigenvalues. Suppose that γ1 is a positive irrational number.
We want to show that β1 and β2 are rationally independent.

By contradiction, suppose that β1 and β2 are not rationally independent. This means that
there exist integer numbers A and B that are not null such that

A · γ0
γ0 + αγ1

+B · γ1
γ0 + αγ1

= 0. (5.2.1)

Observe that if A and B are equal, then they must be equal to zero. If A 6= B, then (5.2.1)
implies that

Aγ0 +Bγ1 = 0.

Since γ0 = 1 − γ1, we have γ1 = A
A−B

. This is a contradiction because γ1 is an irrational
number. We conclude that the set of continuous eigenvalues for (ΩD1,α(x),R) contains the
group {n · β1 +m · β2 | n,m ∈ Z}, and it has rank equal 2.

5.2.2 A Meyer set in the real line with one continuous eigenvalue.

In this example, we follow the same strategy in the previous example to construct a Meyer
set. But now, we suppose that γ1 is a positive rational number. We show that in this case,
β1 and β2 are not rationally independent.
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Suppose that γ1 = p

q
with p and q being coprime. Observe that β1 and β2 in §5.2 are not

rationally independent. Because γ0 = 1− γ1, and

(−p) · 1− γ1
γ0 + αγ1

+ (q − p) · γ1
γ0 + αγ1

= 0.

Thus, using A = −p and B = q− p, we observe that β1 and β2 are rationally dependent. By
Proposition A, the set of continuous eigenvalues for (ΩD1,α(x),R) contains the group of rank
1 given by

{m · β2 | m ∈ Z}.

5.3 Meyer sets from primitive, Pisot substitutions.

Consider u = (ui)i∈Z be a fixed point of a primitive substitution σ defined over the alphabet
A = {a0, . . . , am}, and denote by θ the highest eigenvalues of this substitution. Define

P := max{|θ2| | θ2 is an eigenvalue for the substitution with θ2 6= θ}.
A substitution is called Pisot if we have P < 1 < |θ|. In this context, Adamczewski proved
the following result [A04].

Theorem 5.3.1. Let u = (ui)i∈Z be a fixed point of a primitive substitution σ defined over
he alphabet A and θ the highest eigenvalue of σ. Consider µ the natural probability measure
associated with u and denotes 1a the characteristic function of the set {a}. If the substitution
is Pisot, then exists C > 0 such that

∆N (u) := max
a∈A

∣∣∣∣∣

N−1∑

k=0

1a(uk)−N · µ({a})
∣∣∣∣∣ < C.

If we tile the real line, using the method in the first example for the fixed point u of the
substitution, and associating lengths

a0 → 1 = α0, a1 → α1, . . . , an → αn

we obtain a finitely generated Delone set denoted by Λ̂(u) := Dα0,...,αm
(s).

Assuming the hypothesis in Theorem 5.3.1, we have that u is an almost linear sequence
in AZ. Thus, by Proposition E, the Delone set Λ̂(u) is actually Meyer. Hence, Corollary B
implies the following result.

Theorem E. Let u = (ui)i∈Z be a fixed point of a primitive substitution σ defined over
the alphabet A and denote by θ the highest eigenvalues of this substitution. If the substitu-
tion is Pisot, and the lengths {αi}0≤i≤m are rationally independent. Then set of continuous
eigenvalues for (ΩΛ̂(u),R) contains the set of real numbers

{
µ({k − 1})∑m
a=0 µ({a}) αa

| 1 ≤ k ≤ m+ 1

}
.
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5.4 Meyer sets from a sequence of substitutions.

This example is inspired by [BDM05, Section 6], where the authors exhibit a minimal Cantor
system with all their eigenvalues not continuous except the trivial one. We obtain Delone
sets in the real line from this system. In §5.4.1, we study the case of a Delone set with rank
2 with tile lengths rationally independent. We proved that the unique continuous eigenvalue
for this dynamical system is 0. From [KS14, Theorem 1.1], we have that this Delone set is
not Meyer. This implies that the hypothesis of a Meyer set is necessary for Theorem D. In
§5.4.2, we have a Meyer set with rank 1 and tile lengths rationally dependent. We prove that
the continuous eigenvalues are in Z and this system has non-continuous eigenvalues. This
implies that the hypothesis that relates the group of return vectors and the set of first return
vectors is necessary in Theorem D.

Consider the matrices A =

(
5 2
2 3

)
and B =

(
2 1
1 1

)
. Observe they commute, and

have a common basis of eigenvectors
{(

φ
1

)
,

(
−1
φ

)}
. If we denote the eigenvalues of A

by {αA, βA} and the eigenvalues of B by {αB, βB}, we have the following relations

0 < βB < 1 < βA < αB < αA.

For each of these matrices we can associate substitutions σA, σB : {1, 2} → {1, 2}⋆ defined by

σA :

{
σA(1) = 2211111
σA(2) = 22211

and σB :

{
σB(1) = 211
σB(2) = 21

.

In [BDM05], the authors used these substitutions to construct a sequence ξ ∈ {1, 2}Z. We
recall that construction. Define the sequence (vn)n∈N ⊆ R inductively by v1 = 1, and

vn+1 =

{
βA · vn ; if n · vn ≤ 1,
βB · vn ; if n · vn > 1.

This sequence verifies that for each positive integer n, we have βB ≤ n vn ≤ 2βA. Hence,
∑

n∈N
vn = ∞ and

∑

n∈N
v2n <∞. (5.4.1)

Now we used this sequence to define a new sequence of substitutions (σn)n∈N : {1, 2} → {1, 2}⋆
by σ1 = Id and σn+1 = σn ◦ σM(n), where

M(n + 1) =

{
A ; if n · vn ≤ 1,
B ; if n · vn > 1.

Observe that the words σn(1) and σn(2) satisfies that

σn+1(1) = σn ◦ σM(n)(1) = . . . σn(1),

σn+1(2) = σn ◦ σM(n)(2) = σn(2) . . . .
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The lengths of these words converges to infinity, and there exists ξ ∈ {1, 2}Z such that

lim
n→∞

∞1σn(1).σn(2)2
∞ = ξ.

For the dynamical system (Xξ,Z) there exists a sequence of KR-partitions such that for each
level we have only two towers. The bases of these towers are describe for each integer n ≥ 1
by

Bn+1(1) := [σn(1)σn+1(1).σn(2)] and Bn+1(2) := [σn(1)(σn+1(2).σn(2)].

The sequence of matrices (M(n + 1))n∈N agree with the sequence of incidence matrices that
defines the sequence of KR-partition.
Remark 5.4.1. Briefly, we will discuss informally an idea of the proof that the linearly re-
current sequence ξ, is linearly repetitive. By the linearly recurrent property, there exists a
sequence of Kakutani-Rokhlin partitions verifying some topological and combinatorial prop-
erties. We denote by hk(i) the height of the ith tower of kth level of the partition, and L the
linear recurrent constant. By definition of towers system, for each integer n > 0, there is a
positive integer number k such that each tower of kth level we have n ≤ hk(i), and there is
some tower of (k − 1)th level with hk−1(i0) < n. Let k0 the smallest of these k. Thus, for
each word w in ξ of length n, we have two possibilities. If a translated copy of w is in some
tower of k0th level, then it appears in a ball of radius maxi∈I hk0+1(i). If each translated copy
of w is in the concatenation of towers of k0th level, then w is in some tower of (k0 + 1)th
level. This implies that w appears in a ball of radius maxi∈I hk0+2(i). Recall that Mξ(n) is
the smallest radius M > 0 such that each closed ball of radius M contains the center of an
occurrence of every n-patch of ξ. Hence, using [LR] property that appears in (4.1.2), we have

Mξ(n) ≤ max
i∈I

hk0+2(i) ≤ L3hk0−1(i0) ≤ L3 · n.

We conclude that the sequence ξ is linearly repetitive.

Put lengths l1 and l2 in the configuration ξ to obtain a linearly repetitive Delone set which
we will denote by Λl1,l2(ξ).

5.4.1 Rationally independent lengths.

In this example we associate rationally independent lengths l1 = 1 and l2 = φ = 1+
√
5

2

for symbols in ξ, to obtain a Delone set Λl1,l2(ξ). We recall that the Delone set Λl1,l2(ξ) is
linearly repetitive and the dynamical system (ΩΛl1,l2

(ξ),R) is minimal. Since the determinants
of the matrices A and B are non zero, the associated lengths at each level n of the return
vectors are rationally independent. Thus at each level, the generators of the Abelian group
〈RCn

(Λl1,l2(ξ))〉 generated by return vectors are contained in the finite set Ln of lengths
of level n. We will prove that the dynamical system (ΩΛl1,l2

(ξ),R) has only a continuous
eigenvalue 0, and the set of eigenvalues is given by

E =

{
α ∈ R | α =

(
1

2
,
φ− 1

2

)
· A−l · w, l ≥ 0, w ∈ Z

2

}
.

By [KS14, Theorem 1.1] Λl1,l2(ξ) is not Meyer. This will show that the hypothesis Λl1,l2(ξ)
is a Meyer set in Theorem D is necessary
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For n > m ≥ 0 we denote P (n,m) = M(n)M(n − 1) · · ·M(m + 1) and P (n) = P (n, 0).
The authors in [BDM05] proved the following lemma that we have written in our context.

Lemma 5.4.2. Take v ∈ R2 such that limn→∞‖P (n)v‖ = 0. Then v is orthogonal to the
vector µ(0) = (µ1, µ2), where µ1 + µ2φ = 1.

Proof. Let v ∈ R2 such that limn→∞‖P (n)v‖ = 0. Denote by µ(n) := (µ(Bn(i)))1≤i≤tn the
vector of measures of the bases at level n, and observe that µ(0) = P t(n)µ(n). For n ≥ 1 we
have |〈µ(0), v〉| = |〈P t(n)µ(n), v〉| = |〈µ(n), P (n)v〉| ≤ ‖P (n)v‖.

Consider the vector of initial lengths ~L(0) =
(

1
φ

)
, and denote ~L(m) = P (m)~L(0). Us-

ing the previous lemma we proved the following.

Proposition 5.4.3. Take α ∈ R. In the previous context are equivalents:

1. limn→∞ |||P (n)(α~L(0))||| = 0.

2. α ∈ E.

Moreover, if α ∈ E there exists a constant c > 0 sucht that for every positive integer n we
have |||P (n)(α~L(0))||| = c‖P (n)v‖.

Proof. Suppose that limn→∞ |||P (n)(α~L(0))||| = 0. Using [CDHM, Lemma 12], there exist
m ∈ N, w ∈ Z2 and v′ ∈ R2 sucht that P (m)(α~L(0)) = w + v′ and limn→∞ ‖P (n,m)v′‖ = 0.
In particular when n goes to infinity, we have that ‖P (n,m)v′‖ = ‖P (n)P (m)−1v′‖ goes to
0. By Lemma 5.4.2, P (m)−1v′ is orthogonal to µ. On the other hand, the vector

v = −(φ − 2)

(
−1
φ

)
=

(
φ− 2
φ− 1

)

verifies that P (n)v = vn · v. Since
∑

n∈N
‖P (n)v‖2 =

∑

n∈N
‖vnv‖2 = ‖v‖

∑

n∈N
|vn|2 <∞,

we have limn→∞ ‖P (n)v‖ = 0. By Lemma 5.4.2, v is orthogonal to µ. Thus, there exists a
constant k ∈ R such that P (m)−1v′ = kv.

We write P (m)(α~L(0)) = P (m)kv + w. If k = 0, then α~L(m) = P (m)(α~L(0)) = w ∈ Z
2.

Since det(A) and det(B) are not zero, for all m ∈ N the coordinates of ~L(m) are rationally
independent. Hence, we have α = 0. If k 6= 0, we write P (m)(α~L(0)) = P (m)[kv+P (m)−1w].
Thus we get the equation

α~L(0) = kv + P (m)−1w. (5.4.2)

Replacing ~L(0) =
(

1
φ

)
, v =

(
φ− 2
φ− 1

)
and P (m)−1w =

(
a
b

)
∈ Z2, we obtain

k =
1

2
(φ(a− b) + a).
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Using this value in (5.4.2), we can write

α~L(0) :=

(
α
αφ

)
=

(
1
2

φ−1
2

φ

2
1
2

)(
a
b

)
.

The determinants of the matrices A and B are 11 and 1 respectively. In particular, B−1 has
integers coefficients. If we write P (m) = AlmBqm, for some positive integers lm and qm. We
conclude that for some w′ ∈ Z2 we have

α =

(
1

2
,
φ− 1

2

)
· A−lmB−qmw =

(
1

2
,
φ− 1

2

)
· A−lmw′.

Hence, α is in E.

Reciprocally, suppose that α ∈ E. Thus, there exist l ≥ 0 and w ∈ Z2 such that

α~L(0) =

(
α
αφ

)
=

(
1
2

φ−1
2

φ

2
1
2

)
A−lw.

Let u = φ

(
φ
1

)
be an eigenvector of A and B and recall that v =

(
φ− 2
φ− 1

)
verifies that

P (n)v = vn · v. Note that the real number k = 1
2
〈u,A−lw〉 verifies

1

2

(
1 φ− 1
φ 1

)
A−lw = kv + A−lw.

Hence, P (n)(α~L(0)) = P (n)
{
kv + A−lw

}
= kP (n)v + P (n)A−lw. Since P (n)A−lw ∈ Z2 for

n large enough, we conclude

lim
n→∞

|||P (n)(α~L(0))||| = lim
n→∞

‖kP (n)v‖ = k lim
n→∞

‖P (n)v‖ = 0.

Finally, let α be an eigenvalue of (ΩΛl1,l2
(ξ),R). By Theorem 1.2.2, we have

∑

n≥2

|||P (n)(α~L(0))|||2 <∞.

In particular limn→∞ |||P (n)(α~L(0))||| = 0, and by Proposition 5.4.3, we have α ∈ E.

Again by Proposition 5.4.3, if α ∈ E then limn→∞ |||P (n)(α~L(0))||| = 0. Thus, by (5.4.1)
we have ∑

n≥2

|||P (n)(α~L(0))|||2 =
∑

n≥2

k‖P (n)v‖2 = k
∑

n≥2

‖vnv‖2 <∞.

But by (5.4.1),
∑

n≥2

|||P (n)(α~L(0))||| =
∑

n≥2

k‖P (n)v‖ = k
∑

n≥2

‖vnv‖ = ∞.

We conclude that Λl1,l2(ξ) is a linearly repetitive Delone set, such that a base of the group
〈RCn

(Λl1,l2(ξ))〉 is contained in Ln, and all eigenvalues are not continuous except for the
trivial one. This proves that the hypothesis that the set Λl1,l2(ξ) is a Meyer set, is necessary
for Theorem D.
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5.4.2 Rationally dependent lengths.

Consider the same context as the previous example with ~L(0) =
(

1
2

)
. This means that the

associated initial lengths are integer numbers. Thus the Delone set Λl1,l2(ξ) ⊆ Z is actually
a Meyer set. The Abelian group generated by return vectors at each level is isomorphic to
Z. And for big enough levels, the set of returns vector not contains the generator of Z.

In this case, clearly, all α ∈ Z is a continuous eigenvalue. Moreover, in the same way, that
in the previous example, we have that the set of eigenvalues is given by

Ẽ = Z ∪
{
α ∈ R; α =

(
2φ− 1

5
,
3− φ

5

)
· A−lw, l ≥ 0, w ∈ Z

2

}
.

Where the only continuous eigenvalues are α ∈ Z. Thus the hypothesis that the generators
of the Abelian groups at each level are contained in the set of returns vector, is necessary for
Theorem D.
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Chapter 6

Future work

In this chapter, we discuss some ideas on the topic of eigenvalues for dynamical systems.
Principally, about Bratteli diagram systems §6.1 and a groupoid associated with some dy-
namical system §6.2. We give definitions, relations with the work in this thesis, and what we
want to study soon about these contexts.

6.1 Eigenvalues for Bratteli diagrams from hull systems.

In this section we refer to Bratteli diagrams. These diagrams was introduced in [Br72] to
classify some operators algebras. We define a Bratteli driagram, and we comment a necessary
and sufficient condition to be a measurable eigenvalue in Bratelli-Vershik system. This condi-
tion appears in [DFM19]. After this, we give an idea about how we can obtain these diagrams
from a hull space. Another construction of Bratteli diagrams from dynamical systems can
be found in [BJS10]. Our goal is to obtain a similar condition for Bratteli diagrams from a
hull space, and thus obtain a necessary a sufficient condition to be a measurable eigenvalue
of a hull system. A necessary a sufficient condition to be a continuous eigenvalue for some
hull system from tilings can be found in [FS14].

A Bratteli diagram is a graph B = (V,E) with set of vertices V and edges E that are
partitioned into disjoint, and finite subsets

V = ∪n≥0Vn and E = ∪n≥0En.

The set V0 is a single point called the root of the diagram. There exist a range map r : E → V
and a source map s : E → V such that, for every integer positive number n we have

r(En) = Vn and s(En) = Vn−1.

We assume that for all v ∈ V and v′ ∈ V \ V0, we have that s−1(v) 6= ∅ and r−1(v′) 6= ∅.
We say that the Bratteli diagram is of finite rank if there exists a positive integer number
d such that for each n we have #Vn ≤ d. A Bratteli diagram B′ = (V ′, E ′) is a telescoping
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or contraction of B = (V,E), if there exists a strictly increasing sequence of integers (nk)k≥0

such that V ′
k = Vnk

and E ′
k = Enk

.

An infinite path in a Bratteli diagram B = (V,E) is a sequence of edges (en)n≤0 such that
for every positive integer number n we have en ∈ En and r(en) = s(en+1). We assume that
for every v ∈ V there are at least two distinct infinite paths through v. We denote by XB

the set of infinite paths in B, starting at the root of B. There is a natural topology on XB

generated by the cylinder sets

Ue1,...,ek = {x ∈ XB | xn = en for every 1 ≤ n ≤ k},

where (e1, . . . , ek) is a finite path in B. In [BJS10, Proposition 3.4], the authors comment
that XB doted with this topology is a Cantor set. If we put an order ≺ in the edges, and
thus an order in the finite paths, there is a natural map T : XB → XB called Vershik map.
Denote by (XB, T ) this dynamical system that we called Bratteli-Vershik system. Using the
Vershik map, we can construct for each n ≥ 0 a Kakutani-Rohklin partition of XB that we
denote by

Pn = {T−jBn(v) | v ∈ Vn, 0 ≤ j < hn(v)}.
Where Bn(v) is a clopen set in XB, and hn(v) is the length of the tower v of Pn. Associated
to these partitions we have, for each n ≥ 1, a sequence of matrices Mn and maps τn and ρn
called the tower map and the first entrance vector map to the base, respectively.

For 0 ≤ m < n, denote by Pm,n = Mm ·Mm+1 · · ·Mn and by Em,n the set of finite paths
in XB from a vertex u in Vm to a vertex v in Vn. For each x ∈ XB and integers 0 ≤ m < n,
we denote the suffix vector at coordinate u ∈ Vm by

sm,n(x, u) = #{e ∈ Em,n | (xm+1, . . . , xn) ≺ e, s(e) = u}.

For each 0 ≤ m < n, u ∈ Vm and v ∈ Vn we define

Sm,n(u, v) = {sm,n(x) | τm(x) = u and τn(x) = v}.

If B has finite rank, by [BKMS13, Theorem 3.3], there is a contraction of B and δ > 0 such
that

1. for any ergodic, invariant measure µ on XB there exists Iµ ⊆ {1, . . . , d} verifying:
• for every v ∈ Iµ and n ≥ 1 we have µ(τn = v) ≥ δ, and
• for each v /∈ Iµ we have limn→∞ µ(τn = v) = 0.

2. If µ and ν are different ergodic, invariant measures, then Iµ ∩ Iν 6= ∅.

A Bratteli diagram with this property is called clean. In this context, there exists a necessary
and sufficient condition to be a measurable eigenvalue for (XB, T ).

Theorem 6.1.1. [DFM19, Theorem 11] Let (XB, T ) be a clean Bratteli-Vershik system of
finite rank. Let µ be an ergodic invariant measure in (XB, T ). For some Bratteli-Vershik
systems called propers we have the following. The value λ = e2πiα is an eigenvalue of (XB, T )
for µ if and only if one of the following conditions holds:
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1. for all v ∈ Iµ,

∑

u∈Iµ

hm(u)

hn(v)

∣∣∣∣∣∣

∑

s∈Sm,n(u,v)

λ〈s,hm〉

∣∣∣∣∣∣
m→∞−−−→ 1,

uniformly for n > m.

2. For all u ∈ {1, . . . , d} and v ∈ Iµ,

hm(u)

hn(v)


Pm,n(u, v)−

∣∣∣∣∣∣

∑

s∈Sm,n(u,v)

λ〈s,hm〉

∣∣∣∣∣∣


 m→∞−−−→ 1,

uniformly for n > m.

We knew that the transversal in the hull system has a structure of Bratteli diagram.
Hence, we want to prove a similar condition to be a measurable eigenvalue but in the context
of hull systems.

Let Λ be a Delone set in R
d and denote by (ΩΛ,R

d) its associated hull system. We con-
struct a Bratteli diagram from this hull system in the following way. Denote by ΞΛ the
transversal of ΩΛ.

Theorem 6.1.2. [AC11, Theorem 3.6] Let Λ′ be a repetitive aperiodic Delone set in Rd. The
hull system (ΩΛ,R

d) admit a Kakutani-Rohlin towers system.

From this result, there exists a towers system in ΞΛ that we denote

(Pn = {Cn,i + v | i ∈ {1, . . . , tn}, v ∈ Rn,i})n≥0.

Recall that for every index i ∈ {1, . . . , tn} and each index j in {1, . . . , tn−1} we denote by

Rn,i,j = {v ∈ Rn,i | Cn,i − v ⊆ Cn−1,j}.

For every n ≥ 1, we define the finite sets

Vn = {1, . . . , tn} and En = ∪i∈{1,...,tn} ∪j∈{1,...,tn−1} Rn,i,j.

Denote by BΛ = (V,E) the associated Bratteli diagram to the Delone set Λ. Observe that,
by definition of towers system, each infinite path x = (xn)n≥0 in XBΛ

defines a unique Delone
set Dx in ΞΛ by

Dx = ∩n≥1Cn,r(xn) + xn.

It is possible to prove that ψ : XBΛ
→ ΞΛ defined by φ(x) = Dx is a homeomorphism. This

implies that the associated Bratteli diagram is a representation of the transversal space ΞΛ.
But in this context (at least for d > 1) we don’t have a Vershik map. We have only an
equivalent relation. We say that x = (xn)n≥0 and y = (yn)n≥0 in XB are tail equivalent if
there exists a positive integer number n0 such that for all n ≥ n0 we have xn = yn. This
defines an equivalence relation in XB called tail or cofinal equivalence relation. Since the
edges of BΛ is a subset of Rd, we represent the elements in E by vectors in R

d. We use this
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structure to represent in the space XBΛ
, the groupoid action of Rd in ΞΛ. The tail equivalent

class of each x in XBΛ
is equal to the orbit of the groupoid action of Rd in XBΛ

.

We want to use the Bratteli diagram XBΛ
with this groupoid action of Rd to prove a

necessary and sufficient condition to be a measurable eigenvalue of GΛ (and by Lemma A, a
measurable eigenvalue for the hull system (ΩΛ,R

d)). To use Theorem 6.1.1 we need to prove
or assume conditions such that XBΛ

is a proper, clean, and of finite rank Bratteli diagram.

6.2 Eigenvalues for Groupoids.

This section intended to motivate our investigation of eigenvalues for groupoids. The concept
of groupoid was introduced implicity by H. Brandt in the decade of the 20s via semigroups
[B27]. This concept generalizes the notion of a group in many ways. The groupoid theory
provides us a general frame to understand the action of a subset of a group in some space. This
context is weaker than the context of dynamical system, because we don’t have necessarily
a group action. That is the case of the restricted action of Rd in the transversal of a hull
system. For this reason, we think that it is the natural context to work in the transversal of
a hull system. We give definitions about groupoids and we explain what we want to study.
See [R80, Mac66] for more details about the groupoid theory.

A groupoid is a set G endowed with

1. a product map (x, y) → x ·y ∈ G from a subset G2 of G×G called the set of composable
pairs,

2. and an inverse map x→ x−1 from G to G such that the following relations are satisfied,
(a) (x−1)−1 = x,
(b) for all (x, y), (y, z) in G2 we have (x · y) · z = x · (y · z),
(c) if (x−1, x) and (x, y) are in G2, then x−1 · (x · y) = y,
(d) if (x, x−1) and (y, x) are in G2, then (y · x) · x−1 = y.

Associated with the groupoid G we have two maps defined from G in itself. For each x in
the groupoid the domain map d(x) = x · x−1, and the range map r(x) = x−1 · x. The image
of these maps G0 = d(G) = r(G) is a subset of G called the unit space. Observe that every
group is a groupoid with G2 = G×G. Each equivalence relation in a set X has a structure of
groupoid. Some works used groupoid to study properties of Bratteli diagrams and dynamical
systems (see [R12, BJS10, FHK02]).

In the context of hull dynamical systems, let Λ be a Delone set in Rd. Denote by (ΩΛ,R
d)

its hull system, and ΞΛ its transversal space. If we restrict the action of Rd on ΩΛ at the
transversal space, we obtain a structure of groupoid. This groupoid was defined in §2.2.1 and
its denoted by

GΞ = {(x, t) ∈ ΞΛ × R
d : x− t ∈ ΞΛ} ⊂ ΞΛ × R

d.

It is endowed with the induced topology from ΞΛ × Rd. In this context, the first coordinate
of each (x, t) in the groupoid denotes an element x in the transversal space. The second
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coordinate, t denotes the homeomorphism

ηt : A→ ΞΛ defined by ηt(y) = y − t,

and where A is a clopen set in ΞΛ containing x. Thus, the range map in (x, t) in GΞ is the
image of x by the homeomorphism ηt, and the domain map in (x, t) is the preimage of ηt(x)
by the homeomorphism ηt. This means that r : GΞ → GΞ and d : GΞ → GΞ are defined by

r(x, t) = (x− t, 0) and d(x, t) = (x, 0).

We can identify the transversal space with the unit space G0 = r(GΞ) = d(GΞ) via

G0 = {(x, t) ∈ GΞ | t = 0} = ΞΛ × {0} ⊆ GΞ.

We inspire in this way to write the action in the transversal space, to study some types
of groupoids. Let X be a compact metric space. Suppose that (G, ⋆) is a group acting by
homeomorphism {ηt}t∈G on X. Let C be a closed subset of X. To study the dynamics that
the action of G defines in C we have some problems. Principally, the action of some t ∈ G
at x ∈ C may not be in C. Or maybe, the orbit of x by the elements of G never come back
to C. For this reason, for each t in G, we need to consider an open subset Ot of C where
the action by t is well defined. It is related to the partial action of a group in a set. These
types of actions were used in [GGS17, Ex94] to study dynamical properties and are related
to C∗-algebras associated with dynamical systems [Ex98]. A partial action of G in C is a
pair θ = ({Ot}t∈G, {ηt}t∈G), where for each t in G, we have that Ot is an open set in C and
ηt : Ot−1 → Ot is a homeomorphism such that:

1. for e the identity in G, the set Oe = C and ηe is the identity map on C,
2. ηt(Ot−1 ∩ Os) = Ot ∩ Ot⋆s for all t, s in G.
3. ηt(ηs(x)) = ηt⋆s(x) for all x in Os−1 ∩ Os−1⋆t−1 and t, s in G.

Consider that (G, ⋆) defines a partial action in C. This defines a groupoid by

GC = {(x, t) ∈ C ×G : ηt(x) ∈ C} ⊂ X ×G.

In effect, a pair of elements (x, t) and (y, s) are composable if and only if ηt(x) = y. The
composition is defined by

(x, t) · (y, s) = (x, t ⋆ s).

The inverse map (·)−1 : GC → GC is defined by (x, t)−1 = (ηt(x), t
−1). If we identify the

topological space C with the pairs (x, 0) in GC we have that the range and domain maps are
defined by

r(x, t) = ηt(x) and d(x, t) = x.

Observe that for a dynamical system (X,G), the restricted action of G in a compact subset
C ⊆ X defines a partial action and then a groupoid in the sense above. We want to study
what information we can obtain from the dynamical system from this groupoid. In particular,
we will study the relationship between the eigenvalues of (X,G) and the eigenvalues of the
groupoid GC for some particular set C where the dynamic is concentrated. After, we want to
use this groupoid to associate groups and/or algebras to the dynamical system. These groups
and algebras give us some information that we want to study, about topology or measurable
structure of the dynamical systems.
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6.3 Dynamical systems and C*-algebras.

In this section, we explain how we can obtain a groupoid G from a dynamical system (X,G).
After, we define C∗-algebras and specifically some C∗-algebras associated with groupoids.
Finally, we establish some relationships between dynamical systems and C∗-algebras that we
want to study with more details in the future.

Let (X,G) be a dynamical system and denote by e the identity element in G. Then the
set

G = {(x, h−1g, x′) | x, x′ ∈ X, g.x = h.x′},
is a topological groupoid where the unit space G0 may be identified with X via the map
x 7→ (x, e, x). The range and source map r, s : G → X are defined respectively by

r(x, g, x′) = x and s(x, g, x′) = x′.

The composition of (x, g, x′) and (y, h, y′) is possible when x′ = y, and it is given by the
formula (x, g, x′) · (y, h, y′) = (x, hg, y′). The inverse map is (x, g, x′)−1 = (x′, g−1, x), and for
each x ∈ G0 we denote

Gx = r−1(x), Gx = s−1(x) and Gx
x = s−1(x) ∩ r−1(x).

Now we define a C∗-algebra, and we construct a C∗-algebra for the groupoid G. After, we
define a state of a C∗-algebra. These algebras were introduced by I. E. Segal in 1947 to
describe some subalgebras of B(H), the space of bounded operators on a Hilbert space H .
A C∗-algebra A is a Banach algebra over the complex field, with an involution map x 7→ x∗

that verifies for all x, y ∈ A and λ ∈ C

• (x∗)∗ = x,
• (x+ y)∗ = x∗ + y∗,
• (xy)∗ = y∗x∗,
• (λx)∗ = λx∗,
• ‖xx∗‖ = ‖x‖2.

The Gelfand-Naimark-Segal theorem characterizes each C∗-algebra as a closed in norm, self-
adjoint, algebra of bounded operators on a Hilbert space. Where self-adjoint means a subal-
gebra of bounded operators that is invariant by the adjoint map x 7→ x∗.

Let G be a topological groupoid and consider Cc(G) the space of continuous and compactly
supported function on G. An involution for f in Cc(G) is given for each g in the groupoid G

by f ∗(g) = f(g−1). The product is defined by

(f1 · f2)(g) =
∑

h∈Gr(g)

f1(h)f2(h
−1g).

The full groupoid C∗-algebra C∗(G) is the completion of Cc(G) for the norm

‖f‖ = sup
π

‖π(f)‖,
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where the supremum is taken over all ∗-representations π of Cc(G) on a Hilbert space.

Let A be a C∗-algebra, a linear and bounded functional ω : A → C is called state if it
verifies that for each a in A we have ω(aa∗) ≥ 0, and ‖ω‖ = 1. Denote by Aut(A) the set
of automorphisms of A. Let α : R → Aut(A) be a strongly continuous action, i.e. for each
t in R the map αt : A → A is an automorphism, and for every a in A the map t 7→ αt(a) is
continuous. An element a in A is called analytic (or entire) for α, if the function t 7→ αt(a)
has an extension to an analytic function ξ 7→ αξ(a) with ξ in C.

Definition 6.3.1. Let A be a C∗-algebra and consider α : R → Aut(A) be a strongly
continuous action. For a real number β 6= 0, a state ω : A → C satisfies the KMS-condition
for α at inverse temperature β if ω(bαiβ(a)) = ω(ab) for all a, b in A with a analytic for α.

When the C∗-algebra comes from a dynamical system, this condition gives us some dy-
namical information. Let (X,Z) be a dynamical system given by a local homeomorphism
T : X → X. Denote by G the associated groupoid. Every φ in C(X,R) defines a continuous
one-cocycle by the formula

cφ(x,m− n, y) =
m−1∑

i=0

φ(T i(x))−
n−1∑

j=0

φ(T j(y)). (6.3.1)

Each continuous one-cocycle c defines a strongly continuous action αc : R → Aut(C∗(G))
defined for t ∈ R and f in C∗(G) by

(αc
t(f))(x) = exp(itc(x))f(x) for x ∈ G.

A continuous surjection T : X → X is called positively expansive if there is an ǫ > 0 such
that if x 6= y, then the distance between T n(x) and T n(y) is greater than ǫ for some integer
n. In this context, A. Kumjian and J. Renault proved the following result that relates KMS
states of the full groupoid C∗-algebra of (X,Z) and the topological pressure of (X,Z).

Theorem 6.3.1. [KR06] Let T : X → X be a local homeomorphism that is positively expan-
sive and exact∗. Consider φ in C(X,R) and let α be the strongly continuous action associated
with the cocycle cφ, see 6.3.1. Then there is a KMS state for α at inverse temperature β in
R if and only if P (T,−βφ) = 0. Where P (T, ·) denotes the topological pressure

In the context of quadratic maps, Klaus Thomsen related the KMS states with conformal
measures [T12]. For hyperbolic diffeomorphisms on a compact metric space, David Ruelle
related the KMS states with Gibbs states [R88]. Clearly, there are more relations between
C∗-algebras and dynamical systems. We want to study these relations to understand in a
better way how we can use these tools in operator algebras to solve problems in dynamical
systems or vice versa.

∗
T is called exact if for every non-empty open set U ⊆ X there is a positive integer number n such that

T
n(U) = X
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Chapter 7

Appendix

In this chapter, we explain previous results in dynamical systems theory, that we use to
understand some consequences of the results in this thesis.

Minimality of flows on the torus.

We recall that a finite family of vectors {v1, . . . , vn} in Rs is rationally independent, if for
any nonzero integer vector (k1, . . . , kn) we have

∑n
i=1 ki vi 6= ~0. Recall that Ts denotes the

s-dimensional torus
R

s/Zs = S
1 × · · · × S

1

︸ ︷︷ ︸
s times

.

Let γ = (γ1, . . . , γs)
t be a vector in Rs.The translational flow {T t

γ}t∈R in the s-torus is defined
for t ∈ R and w ∈ Ts by

T t
γ(w) := w + [γ · t]Zs .

The next result characterizes minimality of the translational R-flow T t
γ in the s-torus.

Proposition 7.0.1. [KH, Proposition 1.5.1] The flow {T t
γ}t∈R in Ts is minimal if and only

if for any nonzero integer vector (k1, . . . , ks) we have
∑s

i=1 ki γi 6= 0.

For a repetitive, Euclidean inter-model set in R with rank s. The previous result and
Proposition A implies that its hull dynamical system has s continuous eigenvalues rationally
independent in R. Now, we give an idea of how to prove this. After, for 1 ≤ d ≤ s, we state
a similar result for minimal Rd-flows on the s-torus and we give the proof.

Let Λ be a repetitive, Euclidean inter-model set in R with rank s > 1. By Proposition A,
there is an address system (Ts,R). The action is defined for t ∈ R and w in Ts by

w •ℓ t := w + [A · t]Zs ,

70



where A is the s× 1 matrix that represents the linear map ℓ in the canonical bases. On the
proof of Proposition A, we saw that the rows of A are continuous eigenvalues for (ΩΛ,R).
Proposition B implies that (Ts,R) is actually a minimal factor of (ΩΛ,R). Using Proposition
7.0.1 we have that the rows of A are rationally independent. This implies that the rows of A
give us s continuous eigenvalues rationally independent of (ΩΛ,R).

Now, for integer numbers 1 ≤ d ≤ s we define an R
d-flow on the torus T

s. Fix integer
numbers 1 ≤ d ≤ s and consider a matrix A with real coefficients of size s× d. For every t
in Rd we can define a translation TA·t on the s-torus. It is defined, for every w ∈ Ts by

TA·t(w) := w + [A · t]Zs .

If the kernel of A is bigger than {~0}, this translation has many fixed points. We are interested
in minimal translation flows on Ts. Thus, we assume that the kernel of A is {~0}. For every
1 ≤ i ≤ s, denote by ~αi the i-row of A.

Lemma J. The flow {TA·t}t∈Rd on Ts is minimal if and only if the rows of A are rationally
independent, i.e. for any nonzero integer vector (k1, . . . , ks) we have

∑s

i=1 ki ~αi 6= ~0 ∈ R
d.

Recall that the flow defined by TA·t is minimal if for some t0 ∈ Rd the map TA·t0 is minimal
in Ts. By [KH, Proposition 1.4.1] this is equivalent to that, for every nonzero integer vector
(k1, . . . , ks) we have

s∑

i=1

ki 〈~αi, t0〉 /∈ Z.

Observe that if for some t in Rd there are integer numbers k1, . . . , ks, k such that

s∑

i=1

ki 〈~αi, t〉 = k.

Then t belongs to the hyperplane Hk1,...,ks,k defined by the equation
〈

s∑

i=1

ki ~αi , t

〉
= k.

Note that
∑s

i=1 ki ~αi 6= ~0 implies that the hyperplanes Hk1,...,ks,k are not empty. Otherwise,
if
∑s

i=1 ki ~αi = ~0 then the hyperplanes Hk1,...,ks,k are empty except for k = 0 where we have

Hk1,...,ks,k = R
d.

Proof of Lemma J.. For sufficient condition, suppose that the rows of A are rationally inde-
pendent and TA·t is not minimal. By rationally independent condition of the rows of A, the
hyperplanes Hk1,...,ks,k are not empty. Since TA·t is not minimal, for every t ∈ Rd there are
integer numbers k1, . . . , ks, k (depending on t) such that

s∑

i=1

ki 〈~αi, t〉 = k.
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This implies that every t in Rd belongs to some hyperplane Hk1,...,ks,k ⊆ Rd. Then,

R
d =

⋃

k1,...,ks,k∈Z
Hk1,...,ks,k.

For each finite collection of integer numbers k1, . . . , ks, k, the complement of Hk1,...,ks,k is an
open and dense set in Rd. Then, Baire’s theorem implies that the set

⋂

k1,...,ks,k∈Z
Hc

k1,...,ks,k
,

is an open and dense set in Rd. This implies a contradiction, because

⋂

k1,...,ks,k∈Z
Hc

k1,...,ks,k
=

[
⋃

k1,...,ks,k∈Z
Hk1,...,ks,k

]c
= [Rd]c = ∅.

For the necessary condition, suppose that there is a nonzero integer vector ~K = (k̂1, . . . , k̂s)

such that ~K · A =
∑s

i=1 k̂i ~αi = ~0 ∈ Rd. Define φ : Ts → R, for w ∈ Ts by

φ(w) = sin

(
2π

s∑

i=1

k̂iwi

)
= sin(2π〈 ~K , w〉).

Note that φ is a continuous and nonconstant map. For every t ∈ R
d and each w ∈ T

s we
have

φ(TA·t(w)) = φ(w + [A · t]Zs) = sin(2π〈 ~K , w + [A · t]Zs〉).
But 〈 ~K , [A · t]Zs〉 = ~Kt · A · t = 〈∑s

i=1 ki ~αi , t〉 = 0. Hence, φ is invariant by the flow
defined by TA·t, which contradicts the minimality of the flow.

As a consequence of this, we can prove Corollary A.

Proof of Corollary A.

Let ΩMS be the hull of the repetitive inter-model sets generated by a Euclidean CPS (Rn,Γ, sRn)

over R
d. Fix Λ̃ in ΩMS with rank n + d.

By Proposition B the address system (Ts,Rd) is topologically conjugated to the maximal
equicontinuous factor of (ΩMS,R

d). From Theorem 2.3.1, this maximal equicontinuous factor
is given by the dynamical system (TG ,R

d). Where the set TG is equal to (Rd × Rn)/G(sRn),
and the action of Rd is defined for all u ∈ Rd and [(t, w)] ∈ TG by

[(t, w)] · u := [(t, w)] + [(u, 0)].

Let Λ̃ in the transversal space of ΩMS. Since Λ̃ is a Meyer set with rank s the address
map is almost linear, and there is a matrix A with s rows and d columns that represent
the linear approximation ℓ of the address map. By repetitivity and Proposition 2.3.5 we
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have that ΩΛ̃ = ΩMS. Thus the address system is topologically conjugated to the maximal
equicontinuous factor of (ΩΛ̃,R

d). Recall that the address system of (ΩΛ̃,R
d) is given by an

action of Rd on the torus Ts. This action is defined by

(w, t) ∈ T
s × R

d 7−→ w + [ℓ(t)]Zs .

Observe that for the matrix A, the flow TA that it defines is topologically conjugated to the
maximal equicontinuous factor of (ΩΛ̃,R

d). In particular, the flow defined by TA is minimal.
Using Lemma J, we have that the rows of A are rationally independent. By Remark 3.1.1
we have s rationally independent continuous eigenvalues of (ΩΛ̃,R

d). Thus (ΩMS,R
d) has s

rationally independent continuous eigenvalues.
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