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Simple Summary: Epstein–Barr virus is a ubiquitous persistent virus, which is involved in the
development of some human cancers. A licensed vaccine to prevent Epstein–Barr virus infection is
lacking. BamHI-A rightward frame 1 is a viral protein specifically detected in both nasopharyngeal
and Epstein–Barr virus-positive gastric cancers. It has been proposed that this viral protein confers
cancer properties to infected epithelial cells and is involved in the escape of cancer cells from immune
recognition. In this review, we summarize the properties of BamHI-A rightward frame 1 which confers
cancer characteristics to infected epithelial cells. Thus, BamHI-A rightward frame 1 is a potential
therapeutic target for the treatment of either Epstein–Barr virus (EBV)-positive nasopharyngeal or
gastric cancers.

Abstract: Epstein–Barr virus (EBV) infection is associated with a subset of both lymphoid and
epithelial malignancies. During the EBV latency program, some viral products involved in the
malignant transformation of infected cells are expressed. Among them, the BamHI-A rightward frame
1 (BARF1) is consistently detected in nasopharyngeal carcinomas (NPC) and EBV-associated gastric
carcinomas (EBVaGCs) but is practically undetectable in B-cells and lymphomas. Although BARF1
is an early lytic gene, it is expressed during epithelial EBV latency, mainly as a secreted protein
(sBARF1). The capacity of sBARF1 to disrupt both innate and adaptive host antiviral immune
responses contributes to the immune escape of infected cells. Additionally, BARF1 increases cell
proliferation, shows anti-apoptotic effects, and promotes an increased hTERT activity and tumor
formation in nude mice cooperating with other host proteins such as c-Myc and H-ras. These facts
allow for the consideration of BARF1 as a key protein for promoting EBV-associated epithelial tumors.
In this review, we focus on structural and functional aspects of BARF1, such as mechanisms involved
in epithelial carcinogenesis and its capacity to modulate the host immune response.
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1. Introduction

The human gammaherpesvirus-4 (HHV-4), commonly referred to as Epstein–Barr virus (EBV),
is a member of the Herpesviridae family and Lymphocryptovirus genus [1]. EBV establishes a latent
persistent infection affecting more than 90% of the human population worldwide [2]. Primary EBV
infection in children usually occurs without any symptoms. Conversely, during adolescence and
early adulthood primary EBV infection may produce infectious mononucleosis (IM) disease, which is
characterized by an IgM antibody response against EBV, the circulation of increased loads of latently
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infected B-cells, and the development of EBV-specific CD8 + T cells [3]. The circulating CD8 + T
cells recognizing lytic EBV antigens are detected approximately five days after the appearance of IM
symptoms and are responsible for the specific immune response against EBV-infected cells [4,5].

In 2018, an estimated 200,000 newly diagnosed cancers were related to EBV infection [2,6],
including both lymphoid and epithelial malignancies. According to the International Agency for
Research on Cancer (IARC), only three epithelial tumors (nasopharyngeal, gastric, and lymphoepithelial
carcinomas) have proved to be undoubtedly associated with EBV infection [7–9]. On the other hand,
this virus has been found in tumors of the oral cavity, breast, and uterine cervix, among others,
which indicates the need for further investigation. Among the EBV proteins involved in the malignant
transformation of epithelial cells, the BamHI-A rightward frame 1 (BARF1) is of utmost importance [10].
This lytic gene is highly expressed in nasopharyngeal carcinomas (NPC) and EBV-associated gastric
(EBVaGC) carcinomas during latency [11,12], but is virtually undetectable in B-cells and lymphomas,
in which it can mostly be found during the viral lytic cycle [13,14]. This fact allows for the consideration
of BARF1 as an epithelial-specific EBV oncogene as well as an attractive potential therapeutic target
for EBV-associated epithelial tumors [15]. Previously, the therapeutic potential of BARF1 has been
extensively reviewed [16]. In this review, the structure and biological functions of BARF1 which
explain its role in cancer have been summarized. Finally, a model of BARF1 mediated carcinogenesis
in epithelial cells is proposed.

2. EBV Structure and Replication

The EBV genome is a linear double-stranded DNA of approximately 172 kilobase pairs in length,
enclosed by a nucleocapsid formed by 162 capsomers. Tegument proteins fill the space between the
inner icosahedral capsid and the envelope which contains virus-encoded glycoproteins that form
surface spikes [17,18]. EBV primarily infects two different cell types, B-cells and epithelial cells.
EBV entry in B-cells is mediated by an interaction between the viral glycoprotein gp350 and either
CD21 or CD35 lymphocyte receptors. This interaction also involves EBV gp42 binding with B-cell
MHC-II [2,19]. In epithelial cells, the membrane fusion is initiated by an interaction of the viral
glycoprotein H (gH) and glycoprotein L (gL) heterodimer (referred to as gH/gL) and αvβ6, αvβ8,
or αvβ5 cell surface integrins [20,21]. Besides, EBV expresses the BMRF2 glycoprotein, which binds
to α3, α5, and β1 integrins promoting infection of polarized epithelial cells through their basolateral
membrane domain [22]. Moreover, it was also reported that ephrin receptor tyrosine kinase A2 (EphA2)
mediates the EBV entry into epithelial cells [23]. After EBV binding to cell receptors, the viral envelope
and cell membrane are fused, the viral genome traffics to the nucleus where the virus establishes latent
or lytic phases of infection. EBV can establish a long-term latency with eventual lytic reactivations in
B-cells, while EBV only establishes lytic infections in normal epithelial cells. In fact, latent forms of EBV
are almost not detected in normal nasopharyngeal or oral epithelial cells where EBV only establishes a
lytic cycle [24]. It has been reported that latently infected epithelial cells are detected in tonsil explants
in the presence of acyclovir, although in less than 0.01% of cells [25]. The EBV replicative cycle in
epithelial cells is less understood, at least in part due to the historical absence of an in vitro model
for efficient viral replication. However, a model for EBV replication based on organotypic epithelial
cell cultures was described, which demonstrated that EBV replicates in primary stratified epithelium
without cells exclusively expressing latency genes [26–28].

The switch from latency to lytic cycle involves the expression of BZLF1 and BRLF1 genes,
which encode for the immediately early (IE) Zta and Rta proteins, respectively [29,30]. Both Zta
and Rta proteins are transcription factors that regulate EBV early lytic cascade, being actively
transcribed previously to lytic viral replication. Zta and Rta expression is regulated by the Zp and Rp
promoters. It has been suggested that Blimp1, expressed during terminal differentiation of epithelial
cells, is important for Zp promoter activation allowing lytic cycle activation [31]. Additionally,
it has been described that some chemicals such as 12-O-tetradecanoylphorbol-13-acetate (TPA),
sodium butyrate and calcium ionophores induce the EBV lytic cycle. Epigenetic modifications such
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as DNA methylation and histone deacetylation are related to inhibition of IE gene transcription [32].
Anyhow, the expression of both Zta and Rta proteins is ever required for subsequent expression of
lytic early genes [33]. There are some early promoters regulated by these IE proteins such as BMRF1,
SM, BHLF1, and BHRF1. The genes that are currently translated at this stage are the viral DNA
polymerase (BALF5) [34], DNA polymerase processivity factor (BMRF1) [35], helicase (BBLF4) [36],
primase (BSLF1) [36], and others. BMRF1 and BRRF1 are transcription factors that activate the oriLyt
(lytic replication origin). This oriLyt has a complex structure that contains multiple regions required
for DNA replication which is achieved by the viral BALF5 DNA polymerase [37]. The viral DNA
replication occurs through a rolling circle-mechanism conducting to the formation of concatemers
which are finally cleaved and packaged [38,39]. Once the viral DNA is replicated, late lytic genes are
expressed, but little is known about how EBV late promoters are regulated. The late genes encode for
structural proteins including nucleocapsid and glycoproteins of the viral envelopment (gp350/220,
gp85, gp42, and gp25). In epithelial cells, late gene expression and viral maturation (lytic cycle) occur
in the upper differentiated layer of stratified epithelia [28]. In the lytic phase, all of the EBV products
are expressed with virions being assembled and released. Then, viral progeny can display cell-to-cell
spread to infect new hosts [40]. In latency, the EBV genome persists in an episomal form in the nucleus
of memory B-cells with a restricted production of viral proteins and transcripts [41,42]. This silent
mode of infection reduces the potential host immune response against viral proteins [43]. Specifically,
the Epstein-Barr-nuclear antigens (EBNA) 1, 2, 3A-C, and LP; the latent membrane proteins (LMP)
1 and 2A-B as well as the non-polyadenylated Epstein-Barr-encoded small RNAs (EBER) 1 and 2 can be
expressed during EBV latent program (reviewed in [2,44,45]). Additionally, approximately 44 different
mature miRNAs are expressed from an EBV genome region located in two opposite regions named
BamHI fragment H rightward open reading frame 1 (BHRF1) and BamHI A rightward transcripts
(BART) (Reviewed in: [44,45]).

3. Structure of BARF1 Protein

BARF1 gene encodes a 221 amino acid protein which is structured in two domains and is included
in the immunoglobulin fold family [46–48]. The N-terminal domain ranges from residues 21 to
123 and the C-terminal domain from residues 125 to 220 [46] (Figure 1). BARF1 is cleaved after
the first 20 amino acids and mostly secreted by EBV-infected epithelial cells as a soluble hexameric
molecule (sBARF1). The hexameric rings are formed by three head-to-tail dimers of the BARF1
protein arranged in two layers [46]. In culture media from NPC-derived BARF1-expressing HEK-293
cells, BARF1 monomer was detected as a 27–29 kDa band by Western blot analysis under reducing
conditions. Also, non-reducing conditions revealed the hexameric form of BARF1 ranges between
160 and 180 kDa [48]. BARF1 is synthesized in the endoplasmic reticulum and post-translationally
modified in the Golgi complex with a high mannose (GlcNac2-Man9) N-linked glycosylation on the
asparagine 95 (Asn95) residue. N-glycosylation of BARF1 plays a crucial role in folding, subcellular
translocation, and final secretion [47]. Besides, BARF1 contains an O-linked glycosylation site located at
threonine 169 (Thr169) and represented by a trisaccharide sugar structure [46]. It is also phosphorylated
on serine and threonine residues [49,50]. The sequence of BARF1 is highly conserved, although some
variations patterns have been reported. In northern Chinese samples, the BARF1 gene sequencing
revealed 13 amino acid mutations, among them V29A, V46A, D79G, V113I, and D138Y, which were the
most frequent. Interestingly, the V29A mutation was mostly evidenced in NPC samples (25.3%, 20/79)
compared to EBVaGC cases (0/45) or healthy donors (4.3%, 2/46) [51]. NPC cases from northern China
showed a higher frequency of V29A variant than NPC cases from southern China. A similar result
was obtained when the groups of healthy donors were compared [52]. In 80.3% of NPC samples from
Indonesian patients, 3 main substitutions (V29A, W72G, H130R) in the BARF1 gene sequence were
evidenced; these were considered unable to alter the tertiary structure or function of this protein [53].
In fact, none of these sequence variations are located in relevant functional domains of BARF1 [50].
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detected on the cell surface of NPC and GC cells [15]. BARF1 is secreted via the endoplasmic 
reticulum-Golgi apparatus (ER-GA) classical pathway [48], which supports the cytoplasmic and 
membrane localization. Interestingly, the cellular uptake of purified secreted BARF1 (sBARF1) and 
subsequent nuclear localization was evidenced in human keratinocytes although a weak amount of 
BARF1 was found in the nucleus [55]. The trafficking of sBARF1 from extracellular media to the cell 
nucleus could be a mechanism by which this protein exerts some intracellular functions. However, 
the absence of BARF1 nuclear localization was reported in NPCs [54]. 
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of LMP1, suggesting that BARF1 is the most important EBV oncogene in these malignant tumors [50]. 

BARF1 mRNA was detected in 74.4% of nasopharyngeal brushings from NPC patients [62] as 
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Figure 1. Schematic representation of BamHI-A rightward frame 1 (BARF1) protein.

It was reported that stable transfection of HEK-293 or gastric cancer (GC) cells with BARF1
encoding vector allows secretion of this protein to the culture medium [10,48]. The transient expression
of BARF1 in NPC and GC cells also leads to the same results [48]. In contrast, perinuclear localization of
BARF1 was observed in BARF1-Flag-transfected HaCaT cells, while in NPC, this protein was evidenced
in both cytoplasm and plasma membrane [54,55]. Moreover, BARF1 was detected on the cell surface of
NPC and GC cells [15]. BARF1 is secreted via the endoplasmic reticulum-Golgi apparatus (ER-GA)
classical pathway [48], which supports the cytoplasmic and membrane localization. Interestingly,
the cellular uptake of purified secreted BARF1 (sBARF1) and subsequent nuclear localization was
evidenced in human keratinocytes although a weak amount of BARF1 was found in the nucleus [55].
The trafficking of sBARF1 from extracellular media to the cell nucleus could be a mechanism by which
this protein exerts some intracellular functions. However, the absence of BARF1 nuclear localization
was reported in NPCs [54].

4. Expression of BARF1 in EBV-Related Epithelial Tumors

During epithelial latency, some early lytic genes, but rarely late genes, are detected which contribute
to abortive lytic infection [56–58]. The potential contribution of lytic genes to viral tumorigenesis
has previously been reviewed [59]. Besides, antibody levels for lytic proteins were associated with
TNM (tumor, node, metastasis) stages in NPCs, supporting the role of abortive lytic infection in the
progression of epithelial malignancies [60]. BARF1 is an early lytic gene and its expression is activated
by the immediate early proteins Zebra and Rta [61]. However, in latency, this lytic gene is consistently
expressed in EBV-associated epithelial tumors but not in lymphomas, which allows the consideration
of BARF1 as a carcinoma-specific EBV protein [11,12]. In NPC, both BARF1 and LMP1 proteins are
commonly detected. However, in EBVaGC BARF1 is detected in the absence of LMP1, suggesting that
BARF1 is the most important EBV oncogene in these malignant tumors [50].

BARF1 mRNA was detected in 74.4% of nasopharyngeal brushings from NPC patients [62] as well
as in 69.2%–87% of NPCs [56,63,64]. In these studies, the expression of some latent proteins such as
EBNA1, LMP1, and LMP2 was also detected, although the presence of lytic proteins was not assessed.
Seto et al. reported BARF1 expression in 93.4% and 83.3% of EBV-positive NPC and GC samples,
respectively, in the absence of some lytic genes such as BZLF1, BMRF1, and BLLF1 [65]. In another
study, BARF1 and BZLF1 were detected in 75.0% and 77.5% of GCs, respectively, while BcLF1 (a late
EBV protein) levels were slightly decreased (62.5%) [66]. Wang et al. detected BARF1/BZLF1 and
BHRF1 transcripts in 46% and 15.4% of EBVaGCs, respectively [63]. Similar results were described by
Lu et al. [64]. Furthermore, BcLF1 mRNA was found in 63.6% of GCs, but not when other lytic genes
(BRLF1 and BLLF1) were analyzed. In EBVaGC, the expression of BARF1 was evidenced along with
EBNA1 and LMP2A latent genes, reaching 100% and 36.4% of positivity, respectively [64].

Interestingly, it has been reported that the BARF1 promoter region remains highly methylated
in both epithelial and B-cells [61]. A similar result was found in EBVaGC tissues [67]. Conversely,
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BARF1 was expressed regardless of the promoter methylation status in NPC cells as well as in the
latently EBV-infected C15 and C17 NPC xenografts. In line with this, transfection of NPC cells with
a vector expressing the Rta protein was able to increase BARF1 mRNA levels. These facts suggest
that BARF1 transcription can revert the silencing induced by its promoter methylation by Rta protein
activation [61]. Additionally, the capacity of ∆Np63α isoform to specifically transactivate the BARF1
promoter was evidenced in GC cells [68]. ∆Np63α is a factor of epithelial cell differentiation, which is
found to be overexpressed in both NPC and GC [51,69]. Interestingly, BARF1 promoter transactivation
induced by ∆Np63α was irrespective of its methylation status, shedding light on a potential mechanism
by which BARF1 protein is expressed in epithelial cells during EBV latent infection [68]. However,
evidence concerning BARF1 protein expression in NPC and GC is scarce, probably due to the rapid
secretion of this protein to the extracellular medium. BARF1 protein was detected in 2/7 (28.6%) [65]
and 23/27 (85.2%) [54] of NPC biopsies. Conversely, other studies failed to demonstrate BARF1 protein
in NPC or GC tissues, which in turn were positive for BARF1 mRNA expression [50]. Additionally,
it was reported that BARF1 transcripts are almost exclusively expressed in the nucleus of SNU719
GC cells [70]. In this respect, further studies addressing BARF1 protein expression in EBV-positive
epithelial tumors are warranted.

5. BARF1 and Cell Proliferation Rates

BARF1 interacts with some cell cycle-regulating proteins, promoting epithelial cell proliferation.
In fact, the mitogenic activity of BARF1 was demonstrated in primary epithelial cells treated with
sBARF1 which showed increased cell proliferation when compared to control cells [71]. An increased
proliferation rate was also evidenced in BARF1-transfected HaCaT cells compared with the mock
control. Moreover, exogenous BARF1 treatment of HaCaT cells increased its transition from G1 to
S-phase [55]. Nevertheless, no significant differences in the percentage of S-phase cells were evidenced
between BARF1-transfected GC cells and controls [47]. In HaCaT cells, BARF1 was demonstrated
to increase the expression of cyclin D1 at transcriptional and protein levels [72]. After activation,
cyclin D1 forms complexes with cyclin-dependent kinases (CDK) 4 and 6 mediating the progression
from G1 to S-phase, whereas the tumor suppressor p21WAF1 can arrest the cell cycle transition by
inhibiting CDKs [73,74]. Additionally, increased cell proliferation was evidenced in EBV-negative
cells stably transfected with a BARF1 encoding vector [10]. Notably, in GC cells, transfection with the
BARF1 gene promoted a reduction in p21WAF1 expression [75], suppressing one of the most important
regulatory mechanisms of cell proliferation. The main effects of BARF1 in cell cycle deregulation are
summarized in Table 1.

Table 1. Contribution of BARF1 expression to epithelial cell carcinogenesis and impaired host
immune response.

Target Molecule/
Pathway Biological Effect Cell Line and Origin Ref.

BARF1 Increases Cell Proliferation Rates

Cyclin D1 Increases cyclin D1 on both transcriptional and
protein level

HaCaT immortalized human
keratinocytes

[72]

p21WAF1 Reduce the expression of the tumor suppressor p21WAF1 SNU601 GC cells [75]

NFκB RelA Increases NF-κB RelA upregulating the
microRNA-146a-5p and downregulating SMAD4
Increases NF-kB RelA/cyclin D1 signaling augmenting
the phosphorylated form of NF-kB inhibitor IkBα

SNU601 GC cells [10]

[75]

BARF1 protects cells from apoptosis

Bcl-2 Increases the expression of the anti-apoptotic Bcl-2 NP69 NPC cells [12]

Bcl-xL Increases the expression of the anti-apoptotic Bcl-xL HaCaT cells [72]

Bcl-2/Bax Increases the Bcl-2 to Bax ratio BGC283 GC cells [47]
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Table 1. Cont.

Target Molecule/
Pathway Biological Effect Cell Line and Origin Ref.

Caspase 3 Downregulates the executor of apoptosis caspase 3 BGC283 GC cells [47]

BARF1 induces cell immortalization

hTERT Increases telomerase activity in cooperation with c-Myc

Increase telomerase activity binding to initiator elements
at positions +13 and +43 in hTERT promoter region

PATAS primary monkey kidney
epithelial cells
PATAS and HeLa cervical cells

[12]

[12]

BARF1 modulates the host immune response

M-CSF Sequesters M-CSF reducing the macrophage
differentiation markers CD14, CD11b, CD16 and CD169
Sequesters M-CSF reducing the production of IFN-α

Sequesters M-CSF inhibiting the phosphorylation of
M-CSF receptor, Akt and MAPK

PBMC isolated
monocytes-derived
macrophages
Adherent human mononuclear
cells from PBMC
M-CSF-dependent MUTZ-3 cells

[61]

[76]

[61]

Increased proliferation rates were associated with activation of nuclear factor kappa B (NF-κB)
RelA/cyclin D1 signaling pathway in GC cells expressing BARF1 [75]. Furthermore, the phosphorylated
form of NF-κB inhibitor IκBα was increased in these transfected cells, promoting NF-κB nuclear
translocation to initiate transcription ofκB-dependent genes [77]. BARF1 also promotes cell proliferation
by increasing NF-κB RelA and upregulating the microRNA-146a-5p, which in turn downregulates
SMAD4 [10]. The inactivation of SMAD4, a critical mediator of the growth-inhibiting TGFβ signaling
pathway, reduces the expression of some CDK inhibitors (e.g., p15, p21, and p27), resulting in
uncontrolled cell proliferation [78]. Also, reduced cell proliferation was observed when EBV+ GC cells
were transfected with a small interfering RNA (siRNA) for BARF1 knockdown [10].

6. Anti-Apoptotic Effects of BARF1

BARF1 protects epithelial cells from the intrinsic cell death pathway by regulating anti-apoptotic
(e.g., Bcl-2, Bcl-xL) and pro-apoptotic (e.g., Bax) pathways. In fact, it was previously reported that the
N-terminal region of BARF1 protein (codons 1 to 54) is responsible for activation of the anti-apoptotic
Bcl-2 [79]. Transfection of primary epithelial and NPC cells with the BARF1 gene induces increased
Bcl-2 levels [12]. Similarly, Bcl-xL upregulation was evidenced in HaCaT BARF1-transfected cells
when compared with BARF1-negative control cells [72]. Furthermore, BARF1-mediated Bcl-2 and
Bcl-xL upregulation was associated with activation of c-Jun N-terminal protein kinase (JNK) 1/2/3,
p38 mitogen-activated protein kinase (MAPK), and extracellular signal-regulated protein kinases 1
and 2 (ERK1/2)/c-Jun cascades in GC cells [80]. Another study reported the capacity of BARF1 to
protect GC cells from apoptosis by increasing the Bcl-2/Bax ratio [47]. Pro-apoptotic Bax is directly
activated by p53 in response to DNA damage and acts to neutralize the anti-apoptotic effect of Bcl-2.
In fact, this protein can depolarize the mitochondria, inducing Cytochrome-C release, which then
activates the caspase cascade (reviewed in [81]). Moreover, a transcriptomic approach showed caspases
downregulation, including caspase 3, in GC cells ectopically expressing BARF1 [47]. The increase
in the Bcl-2/Bax ratio was similarly evidenced in GC cells expressing BARF1 after Taxol (paclitaxel)
exposure. Likewise, a significant reduction in the percentage of these cells showing late apoptosis
events (nuclear fragmentation) was evidenced in the same conditions [47], suggesting a potential
contribution of BARF1 to apoptosis-based therapy resistance in EBVaGC.

The anti-apoptotic effects of BARF1 were also evaluated in NPC cells transfected with recombinant
EBV (rEBV) carrying the BARF1 gene (BARF1-rEBV) [82]. Interestingly, an increase in the resistance to
apoptosis was evidenced in BARF1-rEBV-infected NPC cells measured as nuclear fragmentation upon
serum depletion. In contrast, no anti-apoptotic effect of BARF1 was detected in CNE-1 cells using the
same system. Additionally, no changes in the percentage of cells showing early apoptotic events were
reported when GC cells expressing BARF1 were analyzed [75]. This fact suggests that BARF1 exerts



Biology 2020, 9, 461 7 of 14

its anti-apoptotic effects in a cell type-dependent manner, although further studies are necessary to
elucidate these controversial results.

7. Immortalization and Tumorigenic Properties of BARF1

Telomere elongation by the telomerase enzyme is a prerequisite by which cells can reach unlimited
replicative potential and also contributes to tumorigenic properties [83]. Increased telomerase
activity was reported in BARF1-transfected epithelial cells, which was comparable to that obtained in
human telomerase reverse transcriptase (hTERT)-transfected cells, allowing these cells to escape from
senescence [12]. In the same study, it was demonstrated that hTERT activation in BARF1-transfected
cells is accompanied by c-Myc upregulation [12]. It is known that c-Myc is an important transcriptional
regulator of hTERT, which can directly increase its expression through its interaction with binding
motifs located in the TERT promoter [84]. This fact suggests a potential synergism between BARF1 and
c-Myc to induce hTERT activation, leading to epithelial cell immortalization. Moreover, BARF1 directly
binds to initiator elements located at positions +13 and +43 in the hTERT promoter, which induces
telomerase expression in epithelial cells [12]. The potential involvement of BARF1 in the protection of
telomeres to prevent their shortening was also suggested [85], although further studies are needed to
prove this hypothesis. On the other hand, BARF1 was able to induce anchorage-independent growth
in soft agar as well as altered migration of HEK-293 cells [50]. Furthermore, the infection of NPC cells
with EBV carrying the BARF1 gene induced tumor growth in nude mice, but not in EBV-infected cells
lacking BARF1 [82]. However, in other NPC cells (NP69) the transfection with BARF1 only provided
proliferative advantages and increased anchorage-independent growth in cooperation with H-ras [12].

In fact, normal nasopharyngeal cells coexpressing BARF1 and H-ras were capable of inducing
tumor formation in nude mice but this effect was not observed in cells expressing BARF1 or H-ras alone.
Similarly, BARF1 expression in primary epithelial cells was insufficient to induce tumor formation
in nude mice [86]. Taken together these data suggest that BARF1 tumorigenic properties depend
on its cooperation with other oncogenes. BARF1 expression was detected in xenografts from NPC
and GC cells which were grown in nude mice [54,65]. Interestingly, EBNA1 was undetectable in
NPC xenografts [87], although this viral product was detected in GC xenografts [88]. Altogether,
these results suggest a central role for BARF1 in the tumorigenicity of NPC and GC cells in vivo,
although other factors are required for malignant transformation.

8. BARF1 Expression and Modulation of Host Immune Response

BARF1 also contributes indirectly to epithelial carcinogenesis by promoting evasion of both
innate and adaptive immune responses. This viral protein is responsible for the sequestration of
the macrophage colony-stimulating factor (M-CSF, also known as CSF-1), inducing a disruption
in the differentiation and activity of macrophages [89,90]. For instance, the hijack of M-CSF by
sBARF1 induces a reduction in the expression of a variety of macrophage differentiation-specific
markers such as CD14, CD11b, CD16 and CD169 [61]. This fact also interferes with the function of
mononuclear cells, by inhibition of interferon-alpha (IFN-α) production and release [76]. IFN-α is
an early cytokine that plays an important role in the host anti-viral immune response. Moreover,
M-CSF pre-incubation with sBARF1 inhibited M-CSF receptor, Akt, and MAPK phosphorylations in
myeloid leukemia cells, which attributes a role of BARF1 in the survival and proliferation capacity of
macrophages [61]. A close relationship between BARF1 structure and CD80 (costimulatory molecule
expressed by antigen-presenting cells) was also reported. This homology could allow sBARF1 to
interfere with T-cell activation mediated by the co-stimulatory effect of CD80, which is expressed
by pro-inflammatory macrophages (M1) [50]. A low density of M1 tumor-associated macrophages
correlated with a decreased oxidative stress (OS) of GC patients [91], while low expression of CD80 in
NPC was also associated with poor survival [75]. Taken together, evasion of macrophage-mediated
innate antitumor response constitutes a central role of sBARF1.
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The gene expression profile of HaCaT BARF1-transfected cells revealed the downregulation of
some human cytokines also related to the host immune response such as human interleukin 1-alpha
(IL-1α) and interleukin 8 C-terminal variant (IL-8) [72]. IL-1α is a pro-inflammatory cytokine usually
produced by cells of the immune system but also by epithelial cells, including NPC [92]. Although,
the functions of IL-1α are diverse, when this cytokine is expressed in the cytoplasmatic membrane
it can induce an anti-tumor immune response [93]. Similarly, IL-8 can be released by epithelial cells,
resulting in polymorphonuclear neutrophils and other immune cells recruitment to the infection
site [94]. Although the capacity of CD4+ and CD8+ lymphocytes to specifically react to BARF1
protein in NPC patients was found, this immune response was 5–8-fold lower compared with those
generated for EBNA1, other immunodominant EBV protein [95,96]. Moreover, humoral immune
response against BARF1 (IgA and IgG) found in NPC patients was lower when compared with other
EBV-related proteins and also similar to the antibody response obtained in healthy EBV-seropositive
persons [97,98]. This lower immunogenicity of BARF1 could also contribute to tumor escape from
the host immune system. Figure 2 summarizes some mechanisms by which BARF1 contributes to
epithelial cells carcinogenesis and immune evasion.
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Figure 2. BARF1-mediated carcinogenesis in epithelial cells. During epithelial Epstein–Barr virus (EBV)
latency (I/II), some lytic genes such as BARF1 are expressed (abortive lytic infection), cooperating with
latent genes for carcinogenesis. (1) BARF1 synergizes with c-Myc to promote hTERT activation,
avoiding replicative senescence and leading to epithelial cell immortalization; (2) BARF1 also
increases cyclin D1 levels promoting the progression from G1 to S-phase of the cell cycle. Moreover,
BARF1 induces a reduction in p21WAF1 levels disrupting one of the most important regulatory
mechanisms of cell proliferation; (3) BARF1 rescues epithelial cells from apoptosis reducing the
expression of the pro-apoptotic Bax and increasing the anti-apoptotic proteins Bcl-2 and Bcl-xL.
Furthermore, BARF1 is secreted as a hexameric protein (sBARF1) which contributes to immune evasion.
In fact, sBARF1 sequestrates the macrophage colony-stimulating factor (M-CSF), inducing a disruption
in the differentiation and activation of these cells. Created by BioRender.com.

9. Conclusions

During EBV abortive lytic infection, both latent and lytic genes are expressed to contribute to viral
carcinogenesis. BARF1 is an early lytic viral protein highly expressed in latently EBV-infected epithelial
cells, but it is less frequently detected in lymphomas. BARF1 protein is almost completely secreted
by EBV-infected epithelial cells, although intracellular BARF1 confers increased proliferation rates,
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apoptosis protection, and tumor properties, synergizing with other oncogenes such as H-ras. The fact
that BARF1 is expressed in the absence of LMP1 in EBVaGC could indicate that this protein plays a
central role in the carcinogenesis of EBV-infected epithelial cells. Nonetheless, the function of BARF1
in other epithelial malignancies where EBV infection has been detected needs further investigation.
Based on the structure and role of BARF1, immunotherapeutic approaches raised against this protein
could impact the biological behavior of EBV-associated epithelial tumors.
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