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FECHA: 2021
PROF. GUÍA: JAVIER RUIZ DEL SOLAR SAN MARTÍN

BRIDGING THE GAP BETWEEN SIMULATION AND REALITY USING
GENERATIVE NEURAL NETWORKS

Los simuladores son herramientas fundamentales para el desarrollo de algoritmos. Sin em-
bargo, la mayoría de los simuladores no son representaciones certeras del mundo real lo que
implica que algoritmos entrenados únicamente en simulación tienden a tener bajo rendimiento
al ser usados en la realidad. El objetivo de esta tesis es resolver el problema de transformación
de imagen-a-imagen con particular enfoque en la transformación de imágenes de simulación-
a-realidad para disminuir la brecha que existe entre ambos. Con este fin se proponen dos
metodologías basadas en modelos generativos. Estos modelos consisten en redes neuronales,
los cuales son usados para reducir la brecha entre simulación y realidad de SimRobot, el simu-
lador más popular de la Standard Platform League de la Robocup. Los resultados demuestran
que ambos métodos son capaces de generar ambientes realistas los cuales pueden ser usados
para entrenar y evaluar detectores basados en redes convolucionales. FeatureGan también
es evaluado en la tarea más difícil de transformar imágenes de videojuegos-a-realidad. Una
red de segmentación semántica es entrenada de forma exitosa usando imágenes creadas por
el modelo generativo y entrega buenos resultados al ser evaluada en una base de datos de
imágenes reales.
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BRIDGING THE GAP BETWEEN SIMULATION AND REALITY USING
GENERATIVE NEURAL NETWORKS

Simulators are fundamental tools to develop algorithms. However, most simulators are not
accurate representations of reality and algorithms developed exclusively in simulation tend
to under-perform when deployed into real environments. The objective of this thesis is to
solve the image-to-image translation task, with a particular focus on simulation-to-reality
image translation and the ultimate goal of reducing the gap that separates simulation from
reality. To this end, two methodologies based on generative models are proposed. Both
approaches use neural network models to reduce the simulation-to-reality gap of SimRobot,
the most popular simulation environment of the Robocup Standard Platform League. The
results show that both methodologies are able to produce very realistic environments that
can be reliably used to train detectors based on convolutional neural networks. Additionally,
FeatureGan is also tested in a more challenging problem: the video game to reality image
translation task. A semantic segmentation network is successfully trained using the realistic
images provided by the generator and achieves good performance on a test dataset composed
of samples collected from reality.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 General overview

Simulators are fundamental tools to develop robotic applications since they provide an envi-
ronment to create and test algorithms without having to use a real robot. However, develop-
ing solutions in simulation is problematic since there is a mismatch between the samples gen-
erated in simulation and those collected in a real environment. This mismatch is commonly
referred to as the simulation-reality gap and usually results in the sub-optimal operation of
algorithms developed in simulation when deployed in real-world conditions. Furthermore,
if an algorithm is properly tuned to work in a real environment, for example by training it
with real data, then its behaviour cannot be accurately evaluated in a simulator because the
performance of the algorithm could be vastly different in a simulated environment compared
to a real environment, given the almost noise-free nature of simulators.

Recently, several methodologies have been proposed to bridge the gap between reality and
simulation [33][3], most notably in the image processing area. Among these approaches, the
ones based on generative models [8][28] usually require large training sets of aligned real-
simulated samples. Given an image A in the DomA domain and another image B in the
DomB domain, the pair of images (A, B) is defined as aligned if the geometric disposition
of the objects in both images is similar, meaning that both images share a common scene
layout. Achieving large datasets of aligned images is very time consuming and requires a lot
of manual labeling.

In this thesis two methodologies are proposed to perform image-to-image translation such
that the generated realistic image Â is aligned with the input image B. The generator can
then be used for the real-time generation of realistic images in simulation environments

The first of these methodologies consist on a supervised approach. The main challenge of
a supervised methodology is training the generative neural network in charge of outputting
realistic images. This requires a massive amount of training data, i.e. pairs of aligned

1



(simulated, real) images, which are difficult and time consuming to obtain. To address this
issue, the semantic segmentation of the images is used as an intermediate domain between
simulation and reality. More specifically, real images are segmented, and then the generator
is trained to transform segmented images into realistic ones. Once the generator is trained,
rendered simulated samples are first segmented and then fed to the generator, which produces
aligned realistic images.

In the here-proposed approach, the training image pairs composed of (segmented, real)
image pairs are obtained using the following procedure: First, a large amount of real images
of the target environment is acquired. Then, the relevant objects in each real image are
extracted using an instance segmentation neural network (e.g. a Mask R-CNN in this case).
Using these objects a large number of segmented images can be constructed which are of
similar nature than the segmented images generated in simulation. The generator is trained
using this database

However, training the instance segmentation network also requires a large amount of
training data of the target domain. In this work, this training process is addressed by using
a small number of labeled data together with transfer learning, active learning mechanisms
and domain randomization, thus avoiding the use of a manual labeling.

While this methodology allows to generate realistic images from simulated images, it
still requires some manual labeling and the approach is complex to implement and replicate,
particularly for complex domains, since it involves several steps which require different neural
networks.

The second of the proposed methodologies addresses this issue by using an end-to-end
training method called FeatureGan which was developed for this thesis. FeatureGan has the
advantage that it can be trained using unaligned images in an unsupervised manner, and
achieves consistently good results in the simulation-to-reality image translation task. During
training, FeatureGan uses a feature-Loss function to ensure that the generator, which is
based on a U-net or Resnet [29] architecture [50], produces a realistic output image Â that
is aligned to the input simulated image B. A classic GAN loss function is also used to steer
the generator into producing images that are part of the target domain DomA. To further
improve the quality of the generated images, a modified class based feature-Loss function is
developed, which takes into account the ground truth information provided by the simulator
and a feature pyramid discriminator is used.

As a proof of concept, both methodologies are tested in the soccer robotics domain,
specifically in the RoboCup Standard Platform League (SPL). In the SPL, a large part of the
development process of the required vision, self-localization and strategy modules are done
in simulation, since the robots are fragile and therefore are used only when strictly necessary.
The simulators used in the SPL (e.g., SimRobot [31]) suffer from the simulation-to-reality
gap. This thesis shows that by using the proposed methodologies, the simulation-reality
gap is significantly reduced, allowing to generate a realistic simulated environment. This
allows to train and test vision algorithms directly in simulation. Both FeatureGan as well as
the supervised approach are compared to the standard CycleGan implementation [71] as a
benchmark. Then, to prove the generality of FeatureGan, this approach is also tested in the
video game domain to drastically improve the visual fidelity of these rendered environments.
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Finally, FeatureGan is also tested in the real-to-real image translation task. All the figures
presented in this work are original and produced by the author unless stated otherwise.

1.1.2 Robotic soccer and the Robocup

The Robocup is an annual event where teams of different backgrounds compete against
each other in a series of robotic challenges with the overall objective of developing and
improving the software and hardware of robots. One of the most popular competitions on the
Robocup is the robotic soccer challenge, in which teams participate in a game of soccer played
autonomously by robots. By iteratively improving the quality of play, it is expected that “By
the middle of the 21st century, a team of fully autonomous humanoid robot soccer players
shall win a soccer game, complying with the official rules of FIFA, against the winner of the
most recent World Cup” [48]. This is a daunting challenge given the extreme complexity
of soccer. To properly play the game the robot needs to correctly sense its environment,
detect relevant objects in the field, self-locate, correctly navigate the field, take decisions in
a dynamic environment and coordinate with teammates. In this thesis we mainly focus on
the SPL league where two teams of five Nao robots compete in a soccer game without any
external processing or sensing, meaning that all relevant information and processing must be
done in the robot itself in real-time.

1.1.3 SimRobot simulator

To play a soccer game, several algorithms need to be developed and tested. While the process
can be performed on a real robot, simulation offers several advantages: First, constantly
using the real robot damages the hardware. This damage usually comes in the shape of
degradation in the joints, gears and motors which are difficult and expensive to repair or
replace. Second, collecting statistics and designing tests is an easier process in simulation
than in reality since the environment can be changed according to the needs of the user and
ground truth information is available. Third, better debugging tools are usually available
in simulation, which makes the development process far easier. Programs such as IDEs can
also be used to further streamline and facilitate the development process. Finally, simulators
offer an environment to quickly and reliably generate databases that can be used to fine-
tune parameters or train machine learning algorithms. Given such advantages simulators are
the defacto development tool for robotic applications. In the SPL league, several simulators
are currently in use by different teams, the most popular one by far being the Simrobot
simulator [31] developed by Bhuman. It is described as a single user, single workstation
simulator that is able to simulate a 3D environment. This simulator makes use of standard
dynamics and visual libraries such as the rigid body dynamics (ODE) and the OpenGl library.
While SimRobot is useful for prototyping algorithms, its simplistic rendering means that the
final stages of algorithm development must be done in a real environment since the visual
simulation does not accurately represent reality. This is apparent given the quality of the
simulated images that are projected to the simulated robot’s camera, examples of which
can be seen in Fig. 1.1 a), b). These are in stark contrast with the images collected from
a real environment shown in Fig. 1.1 c). Given the mismatch between these samples and
samples collected in a real environment, algorithms which were completely developed in
simulation tend to under-perform when deployed in reality. To tackle this problem, teams
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usually prototype in simulation and then fine-tune the algorithms in a real environment.
This finetuning process is very time consuming for the teams and requires extensive use of
the robot which translates in damaged hardware. Additionally, certain teams do not have
the required number of robots (five in each team) to test a game in real conditions which
means that certain parameters will not be accurate even when tuned in a real environment.
Ideally, all the development would be done in simulation, with only minor testing on reality.
However this is not possible with current simulators.

(a) (b)

(c)

Figure 1.1: a) images from SimRobot 2016, b) images from SimRobot 2018.

1.1.4 Video Game simulation

Video-games are currently one of the biggest entertainment industries on the planet. Much
of the development of traditional computational vision algorithms and custom hardware has
been spearheaded by the video-game community. This includes fundamental milestones such
as the creation of the first graphic processing units and frameworks such as Unreal engine
which is widely used by the robotics community and has recently found its way into movie
productions.

In the last 10 years video-games have seen a staggering improvement in the quality of
rendering. This is mainly due to the advancements in lighting techniques as well as better
models and textures. However achieving a visual presentation which is close to reality in
video-games is still not possible given the hardware constraints and the necessity of running
in real time. The difference between the rendered images in video games and samples collected
from similar environments in the real world is a form of simulation-to-reality gap. Solving
this gap would translate in more immersive experiences and would also provide excellent
environments to develop applications such as autonomous driving software.
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1.2 General objectives

The main objective of this thesis is to propose a methodology to decrease the simulation-to-
reality gap in the robotic soccer environment using generative neural networks to transform
simulated images into realistic images. When training and testing machine learning models
with images generated by using the proposed methodologies, the performance of the model
should be identical or similar to the performance achieved when testing and training the
same model with samples collected from a real environment.

1.3 Specific objectives

• Achieve real time simulator operation.
• Avoid using the robot to limit hardware damage.
• Achieve alignment between the original rendered simulated images and the generated

images provided by the proposed methodology.
• Avoid common generator problems such as mode collapse and artifacts.
• Reduce manual labeling to a minimum.
• The methodology must trainable and deployable on consumer-grade hardware.

1.4 Hypothesis

The main hypothesis is that it is possible to generate realistic images from rendered images in
real time by using a generative network. It is also hypothesised that by using the generated
realistic images, object recognition systems can be trained and will achieve similar quality as
those trained using real samples.

1.5 Main Contributions

The main contributions of this work are two different methodologies to generate realistic
looking simulated environments. The first method uses a reliable supervised training process
which uses a generative cascade refinement neural network model to generate realistic images
with high consistency and little to no artifacts. However, it requires labeled image pairs to
be trained and achieves low texture resolution. The second method uses a generative neural
network to produce very realistic images from unlabeled, unpaired data. The generative
model is trained using a combination of a feature-Loss and a GAN loss. The training process
is unsupervised meaning that it might become unstable and artifacts may appear in certain
circumstances. Once implemented, both methods can contribute greatly to streamline and
expedite the prototyping and testing of algorithms. Furthermore, both methodologies con-
tribute to offload most of the development from the robot to the simulator, which can be
invaluable in certain circumstances.
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Chapter 2

Related Work

In the last decade, robots have seen a major increase in their capabilities. In particular
vision algorithms have become increasingly reliable since the introduction of machine learning
based detectors and classifiers. The shift from heuristic methodologies to machine learning
approaches has been ubiquitous in the robotics community, and the standard platform league
of the Robocup is no exception. While some previous attempts to making CNN based
detectors were made, these did not operate in real time. In 2017 the UChile robotics team
introduced the first CNN based detector that was used in a real game (see appendix 2). The
approach is based on an heuristic region proposal followed by a classifier which estimates the
class of the extracted region. The detector was able to operate in real time on a Nao V5
robot. The performance of the detectors was further improved in [34] by substituting the
RGB images by grayscale images which greatly increases the speed of the detectors with only
minor penalties to accuracy (see appendix 1). Since then several other teams also transitioned
to using machine learning approaches, amongst them B-Human [49], the team with most wins
in the league.

While detectors that use CNN classifiers achieve far better results than heuristic ap-
proaches in challenging conditions, training the models is very time consuming since databases
need to be created in accordance to the problem requirements. Simulators are a fundamen-
tal tool in the robot development pipeline which theoretically offer a cheap solution to this
problem as they provide reliable virtual environments to develop algorithms. Recently, simu-
lators have been used to train and test machine learning algorithms [39][33][3][69][51][55][65],
which are then deployed to operate in real world conditions. One of the main challenges of
this approach is the simulation-reality gap: given the mismatch between samples obtained
from simulation and samples obtained in real conditions, algorithms which were developed
in simulation tend to under perform in real environments. Furthermore, this also means
that simulation is not a representative testing environment for algorithms developed using
real data. Given this, performance metrics calculated in simulated environments tend to be
misleading.

Several approaches have been proposed to reduce the gap between the development en-
vironment (simulation) and the operational environment (reality). Such techniques usually
involve domain transfer in order to generate realistic samples in simulation [5]. When the
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transformation involves changing the domain of images it is commonly referred as the image-
to-image translation task. This problem has received particular attention by the computa-
tional vision community with a wide range of proposed solutions. In [33], a collision avoidance
system for indoor service robots based on multimodal DRL was proposed. In this case, the
reality-gap is reduced by corrupting and post-processing the simulated depth images so they
resemble their real-world counterparts. In addition, both real and simulated images are deci-
mated (and subjected to an anti-aliasing filter) to reduce their dimensionality to 60x80 pixels.
The collision avoidance system was trained in simulation and then successfully transferred
to reality. Other approaches involve generative models. Isola et al. [28] proposed an unsu-
pervised architecture based on GAN networks [16] that is able to translate an image from an
input domain to a target domain. Pix2pix uses an encoder-decoder structure and is trained
using a combination of a GAN loss and an L1-norm loss. Chen and Koltun [8] reported that
a supervised approach based on a feature-Loss was able to achieve state of the art results in
the image-to-image translation task. This work uses a custom generator architecture called a
cascade refinement network (CRN) which works by generating increasingly higher resolution
features to produce spatially consistent output images. The input to CRN is a semantic map
where each class is represented by one channel in a one-hot encoded vector. One of the main
advantages of using a supervised approach is its very stable training process and its high
resilience to artifacts. Recently, image-to-image translation has also become mainstream in
video-games to improve visual fidelity, in the form of deep learning super-sampling (DLSS)
[12]. DLSS is a neural network generative model which produces an image which appears to
be of high resolution from a low resolution image. The model is trained using aligned samples
of low resolution and high resolution images from the same game. Then, at inference time
the model is used to improve the quality of the game with minimal cost in performance. To
further improve the speed of this methodology, Nvidia introduced machine learning oriented
processing units called Tensor cores to consumer GPU’s.

While domain transfer using CNN models offer state of the art results aligned image pairs
of (input, target) samples needs to be available for training purposes. An alternative ap-
proach is projecting both simulated and real samples to an intermediate domain[3][25]. This
is particularly useful when there are no aligned image pairs (input, target) but aligned pairs
to an intermediate domain Dominter, (input, inter) and (target, inter) are available. This is
known as the zero-pair image-to-image translation problem. In [39], DRL based visual navi-
gation for humanoid, biped robots in robotic soccer is proposed. Real and simulated images
were segmented and then down-sampled in order to make them look similar, thus reducing
the simulation-reality gap. The system was trained using the down-sampled, segmented im-
ages generated in the simulator, and then directly deployed in reality, where the robot is able
to navigate between static and moving obstacles (robots).

These approaches work excellently when aligned samples from the input to the target
domains are available, or when aligned samples to an intermediate domain are accessible.
However, if this is not the case, training a network to generate aligned samples using a
dataset of unaligned samples is still possible. Zhu et al. [71] proposed CycleGan which
uses a cycle consistency loss to preserve the layout of the input image across the different
domains in the cycle while a GAN-Loss is used to perform the domain transformation. Liu
et al. [38] proposed an unsupervised image to image framework based on GANs and the
assumption of a shared latent space. This network was later used in [4] to perform image-to-
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image translation from an input image corresponding to the SPL soccer field rendered using
unreal engine to realistic images. However samples generated using this approach failed to
significantly improve the results over basic data augmentation over the rendered image.

A third approach is domain randomization [58]. “Domain randomization involves ran-
domizing non-essential aspects of the training distribution in order to better generalize to
a difficult-to-model test distribution” [64]. The main goal of this approach is that the real
data distribution will be within the distribution of the training data. One of the main of
domain randomization is to select which parameters to randomize and to what degree [3].
Domain randomization is a promising research direction where different robotic problems are
being addressed [64][52][63][45]. However, a simulator based in domain randomization is not
suitable to accurately represent how the robot will perform in real environments since it is
not a good approximation of reality. This means that the applications of domain random-
ization are constrained to training machine learning models in simulation and other parts of
development must still be done in a real world environment.
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Chapter 3

Technical background

3.1 Simulators

Simulators are environments which mimic a certain system. This work tackles virtual sim-
ulators, which are computer programs that imitate the features of real-world environments.
This kind of simulators are ubiquitously used in robotics, autonomous driving as well as in
other areas of engineering for developing and testing algorithms. One of the advantages of
developing in simulators rather than in a real environment is that simulators offer a controlled
environment which is completely deterministic. Among other things that means that:

Observation 1 The location of each object in the scene can be known with certainty at all
times.

Observation 1 is a fundamental property of simulators that is difficult to achieve using
probabilistic models such as neural networks. Observation 1 also means that experimental
repeatability is easily achievable given that all the relevant parameters of a given configuration
are recorded.

Additionally, developing in simulation offers some major advantages in the form of a risk-
free environment for the operators and the autonomous system, meaning that there is no
wear of the hardware. This is important as this means that the simulated environment can
be used to obtain massive amounts of data without any cost and in a fraction of the time.

3.2 Neural network basics

3.2.1 Convolutional Neural Networks

A convolutional neural network is a particular type of neural network commonly used for
image processing. The input to the network is sequentially convolved with several kernels to
extract increasingly semantically rich features. The kernels, commonly referred as filters are
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learned using an optimization process such as backpropagation. One of the main advantages
of convolutional neural networks over fully connected networks are their decreased number
of tunable parameters and faster inference speeds which allows to design deeper and more
powerful networks.

3.2.2 Supervised Training

Supervised learning is the most common way of training neural networks. This method
requires an input x and a corresponding label y. Then, the network is tasked with learning
a model f such that f(x) = y. The function f can be found by making a prediction f(x) =
ŷ and comparing it with the real label y. The resulting error is then used by the learning
algorithm to update the model. This optimization process allows to minimize the error and
consequently the model becomes better at performing predictions.

3.2.3 Unsupervided Training

Unsupervised training is the process of training a neural network using only unlabeled data.
While in supervised learning 3.2.2, both the input x and the corresponding label y were
available, in the case of supervised learning only the input data x is available. Given this,
the model must be optimized without using any labels

3.2.4 Common vision problems

In computer vision, one of the main focus has been the identification of objects in an image.
Several types of algorithms allow to solve this problem, however this thesis mainly focus on
convolutional neural networks (CNNs)

Classification

The classification problem involves determining the presence or absence of one or more classes
of objects in an image. If the case of one object, this is a binary classification problem where
the CNN returns a probability (if softmax is used) between zero and one which indicates
its confidence that the relevant object is present in the image. For several object a vector
is used rather than a single number where each element j of the vector corresponds to the
probability that the object of class cj is present in the image. Current algorithms based on
very deep CNNs achieve close to human performance.

Detection

Detection is the task of determining the position and class of an object in an image. This
is achieved by assigning to each relevant object a bounding box and a class label. Note
that different objects of the same class will correspond to different detections, meaning that
detection not only determines class but also differentiates between instances of the same
object class.
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Semantic segmentation

Semantic segmentation corresponds to assigning a class label to each pixel of the image. This
provides relevant information on the shape of the objects in the scene. All the objects in the
image of the same class share the same label.

Instance segmentation

Instance segmentation corresponds to a mix between detection and semantic segmentation.
Instance segmentation gives information about the class, the shape and the position of each
individual object in the image by assigning an unique label to all of its pixels.

3.2.5 Receptive field

The receptive field corresponds to the region over an input tensor to which a neuron has
access. This region is defined by a size and its center. The receptive field can be increased
linearly by stacking more convolutions into the network, therefore making it deeper as ex-
plained by Szegedy et al. [60], or multiplicatively by using down-sampling methods such as
strided convolution or some sort of pooling. Receptive fields are a fundamental consideration
in the design of neural networks since they determine how spatially spread are the features
extracted by the neural network. Neural networks with large receptive fields will have global
knowledge of the input image and therefore will be able to find complex spatial relations. On
the other hand, smaller receptive field gives the network access to only local spatial informa-
tion which can be useful if there is a need to analyze details on the image such as specific
textures or small geometry. It is important to note that not all pixels in the receptive field
of a neuron are equally important. As described by Luo et al. [40], typically the relevance
of pixels in the receptive fields follow a Gaussian distribution with the maximum located at
the center of the receptive field. Given this, pixels at the borders of a receptive field have
almost no influence to the output since the Gaussian distribution decays exponentially. This
also means that the effective receptive field is much lower than the real receptive field.

3.2.6 Pooling layers

Pooling layers are commonly found in CNNs as they provide two key features to the network.
First, pooling operations offer invariance to small translations in the input tensor. This
means that if a relevant object in the input is shifted by a small number of pixels, the output
of the pooling layer would not change.

Pooling is also used to decrease the spatial size of the features in the network, effectively
compressing the information which in turns drastically reduces the computational cost of
subsequent layers in the network. The decreased spatial size also means neurons in the
subsequent layers will have larger receptive fields and as such the extracted features will be
more spatially spread.

Two of the most popular pooling layers are max-pool and avg-pool. Max-pool outputs
the maximum value over a region. By using max-pool over an input tensor the most salient
features of each region are preserved. In terms of signal processing this is the equivalent of
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a high pass filter, meaning that max-pool preserves the high frequency (details) features of
the input.

Avg-pool on the other hand averages the values over a defined region. By using avg-pool
over an input tensor, the high frequency features over a region are lost, meaning that in
terms of signal processing it acts as a low pass filter where the general structure of the input
is preserved while the details are lost.

3.2.7 Spatial information

As networks become deeper, the number of feature channels is usually increased in order to
extract more features. As the number of feature channels grows, performing convolutional
operations over these tensors can become prohibitively expensive in terms of computational
cost. To avoid this problem sub-sampling is commonly applied. This can be done either
by applying operations such as pooling or by applying strided convolutions, which in turn
increases the receptive filed as explained in Sec. 3.2.5. However, sub-sampling results in a loss
of information, which translates to decreased spatial accuracy most notably at the deepest
layers of the network. This has a twofold effect. First is that the spatial relations from
the input image are mostly lost. These relations are important since the relative position
of features contribute a great amount of information on the nature of the objects in the
input image. For example, the relative position of the eyes, the nose and the mouth are a
fundamental aspect in recognizing a human face in an image. By losing the relation between
these features any image with random positioned eyes, mouth and nose would be classified
as a face. The spatial relations between features in the image can be preserved to a limited
extent by using overlapping windows as proposed by Hinton et al. [20]. On the other hand,
the loss of spatial information translates in a loss of detail (high frequency information) in
the extracted features. This mean that small objects and small features in the input image
are lost in the deeper layers of the network and therefore very deep neural networks perform
poorly when faced with task that require processing small features. This is a problem since
increasing the depth of the network is usually associated with improved results given the
higher level of abstraction of the features that the deeper layers are able to extract. There
is then a trade-off between the level of abstraction that the network can achieve and the
capacity of the network to correctly maintain the spatial information of the input image
throughout the network.

3.2.8 Generalization

An important feature of neural networks it’s their ability to generalize to unseen samples
of the same domain. This means that from a training dataset the network is able to learn
relevant feature extractors that can be used to accurately predict the labels on a test dataset.
The generalization error is defined as the difference in the performance metrics between
the training and validation/test datasets. Zhang et al. [68] presented several insights to
the problem of generalization. First, deep neural networks tend to generalize even if they
generally have enough parameters to completely memorize the training dataset. Second, the
deep neural networks tend to generalize when they can and fit by brute force when they
must. Finally, regularization can improve the generalization capacities of the network it is
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not essential since the networks can achieve similar performance without any regularization
techniques.

3.2.9 Normalization

Normalization is a fundamental tool to train neural networks since it provides a more stable
training process. It is not completely understood why normalization is so beneficial and
several theories have been put forward. One of the most commonly accepted ideas was
put forward by Ioffe and Szegedy [26] and states that normalization reduces the internal
covariate shift. Covariate shift refers to the change in the activations that results from
modifying the weights of the network. Indeed, since weights in a layer are continuously
updated during training, this means that all subsequent layers will receive drastically different
inputs throughout the training process. Normalization helps to stabilize the activations and
thus make training easier. However, [54] shows in an experimental setup that there is little
to no relation between the amount of internal covariate shift and the implementation of
batch-normalization in a network. Indeed, networks with high covariate shift and with batch-
normalization still outperform networks with low covariance shift and no batch-normalization.
Instead they put forward the idea that normalization layers make the optimization landscape
smoother. In particular it makes the loss function have a smaller L-Lipschitz factor as defined
in Eq. 3.1:

|f(x1)− f(x2))| ≤ L ‖x1 − x2‖ . (3.1)

In practice a smaller L-Lipschitz factor means that the rate of change of the function
is reduced. Santurkar et al. [54] also point at the gradients of the loss having a smaller
L-Lipschitz factor as another reason for the increased performance of normalized over non-
normalized networks. The authors also point out that these beneficial properties are not
exclusive to batch-normalization but are shared by almost all normalization layers. Two
normalization layers are relevant to this thesis.

Layer normalization

The first one, layer normalization [2] (see Fig. 3.1 a) ), normalizes the input tensor across
channels, meaning that the values of the mean µ (see Eq. 3.2) and the variance σ2 (see Eq. 3.3
) are the same for all channels in the batch. Eq. 3.4 shows the layer normalization process:

µ =
1

c

c∑
j=1

xj, (3.2)

σ2 =
1

c

c∑
j=1

(xj − ui)2 , (3.3)

x̂j =
xj − u√
σ2 + ε

· γ + β, (3.4)
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where ε is a sanity parameter and γ and β are called the element-wise affine parameters
which are learnable parameters of gain and bias that are applied to each element after nor-
malization. This means that for an input tensor of size [c, w, h] there are c×w× h values of
γ and β.

Instance normalization

The second, called instance normalization [66] (see Fig. 3.1 b) ), normalizes each channel
independently, meaning that the values of mean µj (see Eq. 3.5) and the variance σ2

j (see
Eq. 3.6) are different for each channel j. Eq. 3.7 shows the normalization process:

µj =
1

w · h
w∑
l=1

h∑
k=1

xj,l,k, (3.5)

σ2
j =

1

w · h
w∑
l=1

h∑
k=1

(xi,l,k − µj), (3.6)

x̂j =
xj − uj√
σ2
j + ε

· γj + βj, (3.7)

where γj and βj correspond to channel-wise parameters meaning that for an input tensor
of size [c, w, h] there are c values of γ and β. This means that by just modifying these two
parameters the statistics of each feature can be changed in unison. However, in practice the
affine parameters of instance normalization are not normally used.
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(a) (b)

Figure 3.1: a) layer normalization, b) instance normalization.

3.2.10 Activation functions

The convolutions found in deep neural networks are linear operations. Since a combination
of linear functions results in a linear function that means that stacking convolutions together
is futile since the complete system could be compressed into a single convolutional layer
without any performance penalty. It also means that a neural network purely composed of
convolutional layers would only be able to solve linear problems. This is solved by using an
activation function between convolutions that is non-linear. Four activation functions are of
interest to this thesis.

Sigmoid

The sigmoid activation function (sig) is a non-linear activation function described in Eq. 3.8:

sig(x) =
1

1 + e−x
. (3.8)

The sigmoid outputs values between 0 and 1. It is not normally used in neural network
since tanh (described in Sec. 3.2.10) offers similar behavior but usually provides better results
[32].

Hyperbolic tangent

The hyperbolic tangent (tanh) is a non-linear activation function defined in Eq. 3.9:
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tanh(x) =
2

1 + e−2x
− 1. (3.9)

Tanh is in fact a scaled version of the classic sigmoid activation function but with better
properties as explained by LeCun et al. [32], such as possessing stronger gradients and since
it is centered in zero it also prevents biases in those gradients. However, tanh is normally
avoided since it is known to produce a vanishing of the gradient in the network. This is
caused by the bounded nature of tanh which can only output values in the range [−1, 1] even
for extremely large or small inputs. The result is that for large changes in the input x, the
change in the output tanh(x) could be very small, leading to a very small gradient.

Rectified Linear Unit

The rectified linear unit (ReLU) is an activation function which solves the vanishing gradient
problem by having an unbounded response to positive inputs. The definition of ReLU is
shown in Eq. 3.10:

ReLU(x) = max(0, x). (3.10)

ReLU has several additional properties which contribute to state-of-the-art results in deep
neural network and which have contributed to make it the most commonly used activation
function in the field. First, ReLU is very cheap to compute and is ideal to achieve models
that operate in real time. Most importantly, ReLU contributes to make the model sparse
which is a feature that biological neural networks also share. As shown in [15], model sparsity
provides several advantages such as having the capacity to represent inputs with different
levels of information by activating or deactivating neurons. Model sparsity also contributes to
sparse representations of data, meaning that clusters of information are easier to differentiate.
This property was used to create the inception module [59] which uses filters with different
kernel sizes to identify clusters of information at different spatial scales.

While having a sparse representation is beneficial, neurons that constantly output negative
values will not contribute to the learning process as the output of the ReLU activation
function will be a constant of value zero. Since the gradient is also equal to zero, then it is
very unlikely for the neuron to be reactivated. This is commonly known as the dying ReLU
problem. If a large enough number of neurons are in this state, then the network will not have
the necessary learning capacity to fit the target distribution. This will lead to sub-optimal
results or to a collapse in the training process altogether.

A common way to deal with this problem is to set a small learning rate but this results
in increased training times or can lead to the network falling into a local minimum in the
optimization landscape.

Leaky Rectified Linear Unit

The leaky rectified linear unit (leaky ReLU) solves the dying ReLU problem from a design
perspective rather than from a hyper-parameter perspective by adding a negative slope for
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negative values which provides a gradient in this region. The mathematical definition of
ReLU is shown in Eq. 3.11:

leaky ReLU(x) =
{
x, if x ≥ 0
n · x otherwise (3.11)

Leaky ReLU allows to train with higher learning rates and ensures that all the neurons
in the network contribute to the final result. However, sparsity in the network is lost.

3.2.11 Relevant Loss Functions

L1-Loss

The L1-Loss function, also called mean absolute error loss function is a pixel matching loss
which is calculated as the average of the absolute differences between a prediction ŷ and a
ground-truth y and is described in Eq. 3.12:

L1-Loss(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi| . (3.12)

If y and ŷ are two images, then yi and ŷi correspond to the i-th pixel of each image.

L2-norm loss

The L2-Loss function, also called mean squared error loss (MSE) function is a pixel matching
loss which consists on the average of the squared differences between a prediction ŷ and a
ground-truth y and is described in Eq. 3.13:

L2-Loss(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)2 . (3.13)

This results in an extra level of penalization for samples that are very different from the
ground truth.

Binary cross entropy loss

The binary cross entropy loss is a function tailored for classification and described in Eq. 3.14:

BCE-Loss(y, ŷ) = − 1

n

n∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)). (3.14)

The binary cross entropy loss is preferred over the L1 loss and the L2 loss when the
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problem is based on classes, since it heavily penalizes bad estimations, but is badly suited
for regression tasks.

Feature matching loss

Feature matching loss [6], [13], is a special type of loss function that is used when matching
features, rather than matching pixels, is required. Given a ground-truth image y and a
predicted image ŷ, features from both images are extracted by feeding each image to a pre-
trained classifier neural network and recording the resulting activation maps Mapl(y) and
Mapl(ŷ) from different layers of the network. The feature loss is defined in Eq. 3.15:

feature-Loss(y, ŷ) =
L∑
l=1

(γl · L1 − Loss(Mapl(y),Mapl(ŷ)), (3.15)

where l represents the layer, γl represents the assigned relevance of the features from the layer
l and L is the total number of layers. Features resulting from layers closer to the input are
commonly selected when a comparison of high resolution spatial information is desired while
features closer to the output are the common choice when a comparison of semantically
rich features is desired. Using feature matching loss instead of L1-Loss or L2-Loss offers
several advantages such as lighting and color invariance since the similarity of both images is
estimated based on high level semantic information rather than by pixel intensity which can
greatly change even for objects of the same class. This invariance has the effects of greatly
reducing oscillations of the model during training.

Identity loss

The identity loss is used as a regularizer in some neural network architectures. Given a
network G and an input y, the identity loss is defined in Eq. 3.16:

idt-Loss(y) = L1 − Loss(y,G(y)). (3.16)

Basically, the identity loss encourages the network to replicate the input at the output. It
also encourages the model to maintain the color of the input y at the output G(y)

3.2.12 Transfer Learning

Transfer learning refers to using the feature extractors that were learned for a certain domain
as a starting point to learn feature extractors for a second, different domain. In their paper,
Pan and Yang [42] introduced a formal definition of transfer learning.

Definition 3.2.1. (Domain) "A domain Dom consists of two components: a feature space
X and a marginal probability distribution P(X)"

Definition 3.2.2. (Transfer Learning) "Given a source domain DomS and learning task TS,
a target domain DomT and learning task TT , transfer learning aims to help improve the
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learning of the target predictive function fT (·) in DomT using the knowledge in DomS and
TS, where DomS 6= DomT , or TS 6= TT ."

Transfer learning is useful since it allows to drastically reduce training times as well as
reducing the necessary amount of necessary data to train a model. This is possible because
feature extractors which were already learned are simple re-purposed rather than learned
from scratch.

3.2.13 Tracing a model

Most machine learning frameworks, such as Pytorch [44] and TensorFlow [1] use Python as
the primary interface. Python is an excellent language for fast prototyping and offers great
flexibility to rapidly implement code. However, it is an interpreted language and as such
lacks the level of fast performance offered by other compiled, production-oriented languages
such as C++. This is a major obstacle to the integration of machine learning models into
simulators such as SimRobot Laue et al. [31] which are commonly written in C++ to optimize
performance.

Since its 1.0 version, Pytorch integrated a just in time (JIT) compiler that is capable of
recording all the native Pytorch operations of the network at runtime and re-write them in
a format that can then be imported into a C++ program using the Pytorch C++ frontend.
A traced model is optimized for runtime, meaning that it performs faster inference and is
more memory efficient. The process of recording and saving a model is called jit-tracing and
allows to easily export models which were written and trained in a Python environment to a
C++ environment.

3.3 Network architectures

3.3.1 Feature Pyramid network

One of the main challenges of detection networks is to be able to recognize objects at different
scales, in particular as stated in Sec. 3.2.7 detecting small objects has proven particularly
challenging for very deep CNN based detectors. This is an inherent problem of CNNs since
stacking additional layers into the detector usually results in better class estimation, but
increasing the depth of the network also results in a loss of spatial information which means
that the estimation of the position of the object in the image is negatively affected and that
small objects tend to disappear in later layers of the network. A possible solution is to analyze
the input image at different scales, but this is very computationally expensive. Lin et al. [37]
proposed to solve this problem by merging the information provided by feature maps at
different levels of the network into a single tensor. Feature maps from layers closer to the
input will have high resolution features while feature maps from deeper in the network will
have semantically rich features. The Feature Pyramid Network is composed of two pathways
called bottom-up, which corresponds to the classical feed-forward inference of a CNN, and
top-down, which consists in the up-sampling of features from higher levels of the network
which are semantically rich. Lateral connections between both pathways are used to merge
tensors of the same spatial dimensions by first compressing the information of the bottom-up
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pathway using a 1x1 convolution and then using an element-wise addition to combine the
compressed bottom-up tensor with the corresponding top-down tensor. The resulting feature
tensor can then be used as input to another neural network, such as a detector. Such is the
case of mask r-cnn [18], which uses pyramidal features to dramatically improve the results.

3.3.2 VGG network

In 2014, Simonyan and Zisserman [57] presented VGGNet, a network which achieved state of
the art results with a very simple structure. The main insight of this architecture is the use of
small convolutions of 3 × 3 rather than the larger convolutions used in previous approaches.
By stacking the 3 × 3 convolutions larger receptive fields are achieved as discussed in 3.2.5.
Max-pooling is used to reduce the spatial size of the features as the information flows through
the network. While other more modern networks achieve better results, VGG is still very
popular given its simplicity which makes it very easy to use, modify and implement.

3.3.3 Resnet

Given inputs xi with associated labels yi, it is possible to train a neural network F using
backpropagation, such that F (xi) = yi. Since neural networks are universal approximators
the ability of F to correctly predict a label yi given an input xi should depend mostly in the
number of parameters of the network. However, naively increasing the number of tunable
parameters in the network would make the model’s computational cost too high and since
data is limited it could also lead to overfitting. Given this, increasing the depth of the network
is the main choice when trying to increase accuracy. Indeed, state of the art models have
continuously followed a trend of becoming deeper. However, once traditional architectures
achieve a certain depth, accuracy actually starts to decrease instead of increasing. It is evident
that with all other things equal, a network with a higher number of layers should be at least
as good as an approximator as a shallower network. To prove this, let’s define a network N
composed of l layers trained on a supervised classification task. Then, any deeper network
M composed of k+ l layers should be at least as good at the classification task as N since the
first k layers of M can be defined as equal to the identity and the following l layers as equal
to the l layers of N . Given this, N(xi) = M(xi). However, in practice shallower networks
outperform their deeper counterparts when using classic architectures. This indicates that
an optimization problem in the training stage is responsible for the decreased performance in
deeper networks. In particular, the vanishing gradient was found to be the root cause of the
decrease in performance. The problem was finally solved by He et al. [17] by introducing the
residual block shown in Fig.3.2. The main idea behind its design is that instead of learning a
transformation from an input x to an output y by applying a function F such that F (x) = y,
the residual block is actually learning the residual F (x) defined as F (x) = y − x. Then,
instead of completely remapping an input to an output, the residual block is only calculating
a deviation from the input. This is not only easier to learn but it is also very beneficial to
propagate the gradient through the network, allowing to create much deeper neural networks
with more learning capacity without the gradient degrading.
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Figure 3.2: Residual block.

3.3.4 Mask R-CNN

Mask R-CNN [18] is a convolutional neural network designed to solve the instance segmen-
tation task. The method uses a Resnet based feature pyramid network (see Sec. 3.3.1) as a
backbone to extract a combination of semantically rich and spatially detailed features from
an input image. Then, a region proposal network is used to scan those features at certain
predefined locations and scales (called anchors) and find regions where relevant objects might
be located. Once a set of regions of interest has been constructed, a second networks scans
the features produced by the feature pyramid network at those locations and generates pre-
dictions for the bounding boxes, masks and classes for the objects inside the regions. By
using a feature pyramid network as a backbone the network is able to accurately detect both
large and small objects in an image and offer state of the art results.
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3.4 Generative Neural Networks

Generative neural networks are a special type of machine learning model. Contrary to tradi-
tional discriminative models which only learn a boundary between the different classes of the
problem, generative models trained on a dataset are able to infer new samples which belong
to the same distribution as the one used to train it. During training, the model samples from
an input distribution and given a set of parameters θ is able to generate a sample belonging
to the generated distribution (see Fig. 3.3). A loss function is used to estimate how well
this sample fits in the target distribution and the error is then backpropagated through the
network to update the parameters θ. The model should then become increasingly better at
generating new samples that closely resemble those of the target distribution, which means
that after several iterations the generated distribution will match the target distribution.

Figure 3.3: Training a generative model.

While some literature [41] puts forward the idea that the number of parameters in the
generator must be smaller than the number of samples to encourage generalization, in practice
even models which have a number of parameters orders of magnitude greater than the number
of training samples are able to generalize well. This is in line with what was mentioned in
Sec. 3.2.8. While the number of samples is not directly related to the quality of the generated
distribution, the quality of the samples is, which gives way to observation 2.

Observation 2 The samples in the training dataset must accurately represent the target
distribution.

Observation 2 means that not all samples are equally important which is better visualized
in Fig. 3.4. Independently of the number of points, datasets with low sample variance wont
accurately describe the target domain. Furthermore, generative models are prone to catas-
trophic forgetting [62], a phenomenon that occurs when the knowledge gained from previous
samples is destroyed by trying to learn from new samples. While not easily fixable, a uniform
distribution of the samples over the target distribution contributes to alleviate this problem,
since it ensures that all regions of the distribution are equally weighted during training.
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(a) (b) (c)

Figure 3.4: a) samples which do not accurately represent the target distribution, b) sam-
ples which accurately represent the target distribution but are not uniformly distributed, c)
samples which accurately represent the target distribution.

In literature, several generative models are described, the most popular being Generative
Adversarial Networks (GANs) introduced by Goodfellow et al. [16]. GANs are composed
of two different agents: the discriminator and the generator. The generator, which in its
traditional implementation takes a noise vector as an input has the objective of creating
samples that the discriminator is unable to distinguish from the real samples of the training
dataset. On the other hand, the discriminator’s role is to differentiate between real samples
from the training dataset and the fake samples coming from the generator network. Both
networks play in a zero-sum non cooperative game described by the min-max loss function
presented in Eq. 3.17:

minG maxD V(D,G) = Ex∼pdata(x) [log(D(x))] +

Ez∼zz(z) [log(1−D(G(z)))] .
(3.17)

The loss function achieves its optimum when the generator and discriminator achieve Nash
equilibrium. This happens when the generator becomes so good at generating realistic data
that the discriminator is unable to differentiate between real and generated samples.

While GANs achieve state of the art result regarding the quality of the generated images,
they are notably unstable and difficult to train. Common problems include the vanishing
gradient problem, which happens when the discriminator becomes too good at classifying
real from generated samples or when the generator becomes too good at generating images
and the discriminator is unable to differentiate between both. In practice, the generator and
discriminator must be in a delicate balance which is difficult to maintain. A second common
problem is called mode collapse. This problem occurs when the variety of samples produced
by the generator starts to collapse into a single output which is repeated for multiple inputs.
This is the result of a single output being particularly likely to the discriminator and the
generator learning to produce only that output. This problem is particularly difficult to solve
and most of the time it’s the result of a training dataset which is not representative or not
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uniformly distributed.

3.5 Conditional Generative Adversarial Networks

While classic adversarial neural networks take a noise vector as an input to the generator in
order to infer new samples, conditional neural networks use additional input information to
allow for a much higher control of the final generated output. This additional input usually
comes in the form of a one-hot encoded vector with information on the desired class of the
generated output. Further control over the output can be achieved by feeding the generator
with more information rich inputs such as segmented maps in order to control not only the
class of the objects on a scene but also their position and shape.

3.6 Image-to-image translation

Image-to-image translation is a particular problem in which the objective is generating an
image Â in a target domain DomA from an input image B in the DomB domain. Some
common examples of this are super-resolution [6] and style transfer [14]. Machine learning
approaches have recently seen an explosion in popularity for this task with many works
published on the subject. Generally, the idea consists on developing a generator G which is
able to map from the distribution of DomB to the distribution of DomA such that G(B) = Â.
Multiple methods exist to train the generator including a wide range of supervised and
unsupervised approaches as well as combination of both. Most approaches require a dataset
of aligned images from the DomA and DomB domains. The pair of images (A, B) aligned if
the geometric disposition of the objects in both images is similar, meaning that both images
share a common scene layout.

3.6.1 Generator architectures

Cascade refinement networks

Given a dataset composed of aligned pairs (A,B) of inputs samples B and targets samples A
the cascade refinement neural network aims to create spatially consistent images by extracting
features at different scales from the input image. The network’s general architecture is
presented in Fig. 3.5 and is based on analyzing an image pyramid constructed from the
original input. An image pyramid consists on a set of images with different sizes, all generated
by down-sampling the same original image by different factors. Starting from the smallest
image in the pyramid, convolutional filters are applied in order to extract features. Since the
input image is small, the convolutions can extract global features that describe the general
layout of the image. The resulting feature tensor is then up-sampled by a factor of two
and then concatenated with the next image in the pyramid. Convolutions are applied to the
resulting tensor to generate a new set of features, which are in turn up-sampled and once again
concatenated with the next image in the pyramid. This process of extraction, up-sampling
and concatenation is performed by a refinement module 3.6, and a cascade refinement network
has several of them. By following this process iteratively, global features extracted by the
first refinement blocks are concatenated with higher resolution local features extracted by
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later refinement blocks from larger, higher resolution images. In Fig. 3.5, the image pyramid
is presented at the left of the image, blocks (1) and (2) correspond to refinement modules,
while block 3 corresponds to the final convolution, which takes all the information extracted
at different scales by previous refinement modules, and by performing a series of convolutions
is able to generate a series of N images in the desired domain.

Figure 3.5: Cascade refinement network architecture.
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Figure 3.6: Information flow through a refinement module.

The network is trained using a variation of the feature matching loss, which was described
in Sec. 3.2.11. First, the feature-Loss(B, Ân) for each image Ân with n = 1...N is calculated.
Then, the generator’s loss is calculated as stated in Eq. 3.18:

α ·min(feature-Loss(B, Â1), ..., feature-Loss(B, ÂN))+(1−α) ·1/f ·
N∑

n=1

(feature-Loss(B, Ân)),

(3.18)

where α is a user tunable parameter. By generating multiple output images and using
this particular loss function, the network is encouraged to diversify its outputs to cover the
multiple plausible solutions for any given input. For a large α parameter the penalization
of the network is given mostly by the image Â which was closer to the ground-truth image.
This is extremely useful when the input image is does not provide enough information to
completely determine the output. This is better represented in Fig. 3.7 where the network
is unable to determine the color of the robot’s shirt from a class segmented image where all
shirts are represented by a single value. The network then generates several plausible images
which ultimately contributes to a much more stable training process.
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Figure 3.7: Different generated images by the Cascade Refinement Network.

U-net

U-net [50] is a neural network architecture for image-to-image translation and is based on
an encoder-decoder architecture. As in traditional neural networks, the encoder is composed
of numerous instances of 3×3 convolutions with ReLu non-linearities. These convolutions
are organized in blocks which are followed by a strided convolutions which perform the
down-sampling process. This allows the network to reduce the spatial size and increase the
semantic value of the extracted features. The decoder is composed of several instances of 3
× 3 convolutional with Relu non-linearities uses transposed convolutions to up-sample layers
and iteratively increase the spatial dimensions of the features. The decoder is capable of
aggregating, processing and combining the features extracted by the decoder at several levels
as shown in Fig. 3.8. Much like the cascade refinement network, this architecture allows the
decoder to work with information at different spatial scales and as an added benefit also at
different levels of semantic richness in order to from a prediction.
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Figure 3.8: General structure of U-net.

Resnet generator

The Resnet generator [29] is a neural network to perform image-to-image translation which is
depicted in Fig. 3.9. First, several strided convolutions are used to extract important features
over the input image and spatially compress the information. The resulting tensor (called
the encoded tensor) is the fed to a series of Residual blocks (see Sec. 3.2) which perform the
image transformation. The tensor provided by the last residual block is then up-sampled to
the original resolution using transposed convolutions to generate the output image. Using
residual blocks rather than traditional convolutions offers some major advantages. First, a
small deviation over the input tensor is learned rather than a complete mapping from input
to output. Second, the identity path is fundamental in preserving the spatial information of
the encoded tensor through the transformation process. Following the guidelines presented
in [46] ReLu is the de-facto activation function in the network except in the last layer which
uses Tanh to generate the output image since it provides a bounded output.

Figure 3.9: Different generated images.

3.6.2 Cycle GAN

CycleGan [71] is an image translation architecture which is composed of four neural networks,
two generators and two discriminators, organized in two cycles (see Fig. 3.10). Given a
domain DomA and a domain DomB represented by two datasets, CycleGan allows to generate
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a sample B̂ in the DomB domain from a sample A in the DomA domain such that the A and
B̂ are aligned. CycleGan is also able to generate aligned samples in the DomA domain from
samples in the DomB domain.

While conditional adversarial networks are ideal candidates at the task image-to-image
transfer, a major problem still persists at the time of constructing a training database. This
is because in classical approaches a training database consisting of aligned (input, label)
images is required. However, generating aligned image pairs across domains is difficult and
time consuming. The CycleGan architecture addresses this problem by using unaligned image
pairs to train the networks.

(a)

(b)

Figure 3.10: The CycleGan pipeline, a) cycleA, b) cycleB.

During training, the generator GA takes an input A from the DomA domain and generates
a sample B̂ in the DomB domain. Then, B̂ is fed to the PatchGan discriminator [27] DB,
which scores the image as real or generated and corresponds to the GA-Loss. This is equivalent
to the classical implementation of GAN and by itself does not guarantee that the input and
output images are aligned. CycleGan uses the second generator GB to transform the image
B̂ into a new image Â in the DomA domain called the reconstructed image. Then, the the
cycleA-Loss is calculated as shown in Eq. 3.19 and is equivalent to Eq. 3.20:
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cycleA − Loss = L1-Loss(Â, A), (3.19)

cycleA − Loss = L1-Loss(GB(GA(A)), A). (3.20)

Minimizing the cycleA-Loss ensures thatA and Â are aligned and since Â=GB(B̂)=GB(GA(A))
this means that the information of the layout of the input A must be preserved throughout
the cycle to correctly generate the reconstructed image Â. By consequence, the generated
image B̂ must be theoretically aligned to A. The same process is repeated the opposite
direction, forming the second cycle such that B̂ = GA(Â)=GA(GB(B)). The quality of the
generated image Â is estimated by the second discriminator DA and corresponds to the GB-
Loss. Likewise, the estimation of the level of alignment between B and B̂ is judged using
the L1-Loss to which corresponds to the cycleB-Loss. The authors argue that using two
cycles greatly improve the quality of the results. From both cycles, the total loss to train the
generators is defined as shown in Eq. 3.21:

G-Loss = CycleA − Loss+ CycleB − Loss+GA − Loss+GB − Loss. (3.21)

Depending on the problem, identity loss can also be used to improve the results. The
identity loss was introduced by Taigman et al. [61] and in CycleGan [71] it is used to preserve
color between domains and acts as a regularizer for the generators.

The identity loss is defined for each cycle in Eq. 3.22 and 3.23. Then, the total loss for
CycleGan is presented in Eq. 3.24:

idt-Loss = L1-Loss(GB(A), A), (3.22)

idtB − Loss = L1-Loss(GA(B), B), (3.23)

G-Loss = cycleA − Loss+ cycleB − Loss+GA − Loss+
GB − Loss+ idtA − Loss+ idtB − Loss.

(3.24)
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Chapter 4

A supervised approach to bridge the
simulation-reality-gap using a Cascade
Refinement Network

As mentioned in Sec. 3.5 GANs are notoriously hard to train and are prone to produce
artifacts. Given this, an alternative approach based on a generator trained with a traditional
supervised approach represents and ideal candidate to perform the simulation-to-reality image
translation task. The extra degree of control from a supervised training should ensure that
the generated images Â are correctly aligned to the input rendered images B. This section
explores the necessary steps to train a supervised simulation-to-reality image translation
network.

The proposed methodology consists of two main stages. The first one allows the semi-
automatic generation of segmented/simulated-real image pairs using a state-of-the-art in-
stance object segmentation network. The second stage implements the translation of seg-
mented/simulated images onto realistic ones using a generative neural network. This network
is trained using the image pairs generated in the first stage.

4.1 Generation of segmented-real image pairs using an
instance object segmentation network

Supervised approaches require databases of aligned image pairs. For the simulation-to-reality
image translation task this means that aligned pairs of simulated and real images are required.
However, replicating the complete layout of a simulated scene in a real environment or the
layout of a real environment in simulation would be prohibitively expensive in terms of time.
Furthermore there is no clear way of precisely measuring the complete pose of all the objects
in a real environment. The solution explored in this section uses two main ideas to solve
this problem. The first one is to transform both datasets of real and simulated images
to an intermediate domain were samples that come from reality are indistinguishable from
samples collected from simulation. This intermediate domain corresponds to the semantic

31



Figure 4.1: Pipeline used to generate a database containing realistic images and the ground
truth (obtained from the segmented images) for the training of object recognition methods.

segmentation of the corresponding image. The second corresponds to using an active learning
methodology to quickly and effortlessly label samples collected from reality.

In the proposed methodology a generator G is trained using segmented S and real A
aligned image pairs to perform the segmented-to-reality image translation task. Then, to
generate a realistic image Â from a rendered simulated image B, the simulated image B is
first processed to form the segmented image SS which is then fed to the generator to be
transformed into the aligned realistic image Â.

By using this method, realistic images can be obtained in situations dynamically generated
by the simulator. Since the simulator also provides ground truth information, an automat-
ically labeled database can be obtained to train vision algorithms. The realistic simulator
also allows to collect metrics of the performance of the robot’s algorithms which accurately
represent the performance in real conditions. Fig. 4.1 shows how a database can be generated
using the realistic simulator.

In the proposed methodology aligned segmented-real image pairs are generated by first
obtaining real images from the target environment, and then by segmenting them using an
instance segmentation neural network. In this work the Mask R-CNN [18] was selected for
this task. Mask R-CNN is a CNN architecture designed to perform instance segmentation.
Further detail about this network can be found in 3.3.4. The network outputs a mask for
each object instance, alongside a bounding box, a label class and a confidence score. While
several architectures can be used as a backbone for this model, Resnet-50 [17] was chosen
due to its state-of-the-art performance. The basics of Resnet are presented in Sec. 3.3.3.
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Training Mask R-CNN for a new application from scratch normally requires a large amount
of labeled data. This problem is avoided by training the network using a three-step procedure.

First, Mask R-CNN is trained using the COCO dataset [36], which is a very large database
of labeled images. By training the network in this dataset, Mask R-CNN learns relevant
feature extractors which can then be re-purposed for other tasks.

Second, transfer learning is performed (see Sec. 3.2.12) to the target application domain.
To implement this, a database of real images of the environment in which the autonomous
robot will operate must be obtained. This database is called DataA. Then, a small subset
of around five images in this database are manually segmented by a human operator to
form aligned pairs of real images A and segmented images S. The annotated database
of real-segmented image pairs is named as DataAS. Using the segmentation information,
individual objects are extracted from each real image A. This dataset of objects is called
DataI and is used to perform domain randomization. Over a number of iterations some of
the objects of DataI are randomly selected. The same object can be chosen in two different
iterations. Then, the scale and rotation are randomly modified and the object is placed over
a background image in a random position. By using different permutations of randomly
placed objects to create new images, a large database of images can be obtained from a very
small DataI database. Given the sheer number of possible images the network that is trained
over this database cannot use brute-force to learn the complete dataset from the layout of
the scene, instead being forced to generalize. While the position of the object in the scene is
random, it can still be easily recognize given its color. Then, given the small total number
of objects in DataI the network could easily recognize them as the same object in each of
the different images. This is prevented by using color jittering for each object before being
placed in the image which involves randomly changing the brightness, contrast, saturation
and hue of the objects which once again prevents the network from using brute force to learn
the dataset. The set of images resulting from the domain randomization process is called
DataAS-augmented, and samples of the dataset are shown in Fig. 4.2.

(a)

(b)

Figure 4.2: Domain randomization, a) real image A, b) Aligned segmented image S.

Then, transfer learning for Mask R-CNN is carried out using the DataAS-augmented database.
In order to train the network with a different number of classes than the original COCO
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implementation, layers that are dependent on the number of classes are deleted and replaced.
During training data augmentation is used, images are randomly flipped and the values of
brightness, saturation hue and contrast are randomly changed. This process is different
than the one used during domain randomization since that method used per object data
augmentation, while during network training per image data augmentation is used, meaning
that the statistics of the whole image are changed. This increases the network’s resilience to
changes in global illumination as well as to changes in the camera settings of the robot.

Third, active learning is used to improve the instance segmentation results: in each itera-
tion, the trained Mask R-CNN network is used to perform automatic labeling of the unlabeled
images from a subset DataA-subset of the DataA database. In the first iterations, these pre-
dictions will be very unreliable since the network is trained over set of samples constructed
from only a few objects of DataI. The predictions of the network are manually corrected
by a human, and then added to the DataAS-subset database. Then, domain randomization is
performed as previously described and the resulting samples are added to the DataAS-augmented

dataset. The Mask R-CNN network is then retrained using this dataset using the weights
resulting from training in the COCO dataset as starting point. Thus, by following this ac-
tive learning procedure (see Algorithm 1), the performance of the Mask R-CNN model is
rapidly increased, while requiring minimal human interaction. The process is repeated until
the Mask R-CNN network achieves a satisfactory accuracy at labeling the DataA database.

Once this condition is met, Mask R-CNN is used to predict the segmentation of all the
images in the DataA database in order to obtain a large number of real-segmented pairs. After
discarding badly segmented images, the relevant objects of this database are extracted and
a final domain randomization step is employed to obtain the final DataAS-augmented database.

Algorithm 1 Active learning training process
1: obtain Dreal

2: DataAS-subset = ∅
3: DataAS-augmented = ∅
4: while Mask R-CNN accuracy 6 min-accuracy do
5: //choose a small number of new samples
6: DataA-subset(j) ⊆ DataA

7: for i ∈ Size(DataA-subset) do
8: Ai = DataA−subset[i]
9: Si = Mask R-CNNinfer(Ai)

10: Si = Manual-correction(Si)
11: DataAS-subset.add(Ai, Si)
12: for object ∈DataAS-subset do
13: DataI .add(object)
14: DataAS−augmented = Domain-randomization(DataI)
15: Mask R-CNNtrain(DataAS-augmented)
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4.2 Realistic image generation using a generative neural
model

As explained in Sec. 3.4, generative models trained on a dataset aim to generate new samples
following the distribution of such dataset. Two of the most popular approaches involve
using GANs (Generative Adversarial Networks) [16] and VAE (Variational Auto Encoders)
[30]. However, these approaches are prone to artifacts and suffer from unstable training
processes, problems such as mode collapse and high computational costs during training.
Given this, a supervised approach based on a supervised training methodology emerges as
an ideal candidate.

The chosen generator is the cascade refinement network (CRN) which was described is
described in length in 3.6.1 and was first introduced by Chen and Koltun [8].

The generative model is trained using the DataAS-augmented database without using any
saturation, hue or exposure data augmentation. This allows the model to be more temporally
consistent in terms of lighting. Then, once the model has achieved a high enough accuracy on
the DRS-augmented database, the model is fine-tuned by using the DRS-subset database in order
to be able to learn complex image features such as shadows and reflections.

Human labeling is only sparsely necessary to create the database DataAS-augmented and
DataAS-subset which are used to train the generator network. Once the network is trained,
no further human interaction is needed, and the network can be used to generate realistic
images. This is done by segmenting the simulated image and then feeding the segmented
image to the generative neural network that then outputs a realistic image. Given that all
the generated realistic images have a corresponding aligned segmented image, and therefore
the objects in that images are known, a database composed of realistic images with ground
truth can be quickly obtained without any human labeling in order to train machine learning
based algorithms (e.g. CNN based detectors).
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Chapter 5

Unsupervised approach

This section presents FeatureGan, a methodology developed for this thesis to train a generator
using unaligned images belonging to two different domains DomB and DomA. Once the
generator is trained, it can be used to perform aligned image to image translation from
DomB to DomA.

Figure 5.1: Pipeline used to train the Generator. The generator takes an image B in the
domain DomB as input and outputs a generated image Â in the DomA domain.

During training, FeatureGan makes use of three neural networks (see Fig.5.1). The gen-
erator network G is used to perform the domain transfer by taking an input image B in the
DomB domain and outputting a generated image Â in the DomA domain. The loss function
GAN-Loss scores the quality of the generated image by checking how close it is to the DomA

domain via a discriminator network D.

To preserve the layout of the input image B at the output image Â FeatureGan uses a
third network, the Feature Extraction Network, to calculate a feature-Loss between B and
Â. If the DomB and DomA domains are similar enough then the feature-Loss should be
minimized when B and Â are aligned, and maximized when B and Â are unaligned. The
GAN-Loss and the feature-Loss are combined into a single loss function which is used to
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train the generator G to produce realistic images in the DomA domain, while preserving the
geometric layout of the input image B. To further improve the quality of the results, the
ground truth information from the simulator is used to introduce labels into the training
process by adding them as extra channels to the generator during training.

5.1 Feature Extraction Network

The feature-Loss, defined in Sec. 3.15, is used to force the generator to preserve the layout of
the input image B at the output image Â and by consequence encourage image alignment.
Similar approaches have been used in the style transfer task [14], image to image to image
translation [38] and conditional image synthesis task [8]. Given a Feature extraction network,
which was pre-trained on some database, in this case imagenet [11], the alignment is measured
as feature-Loss(B, Â). Supposing that the DomA and DomB domains are similar, then if Â
and B are aligned, the corresponding activation maps and should be similar and the feature-
Loss should decrease. On the other hand, if Â and B are not aligned the difference between
the corresponding activation maps and the feature-Loss should increase.

Since classification CNN networks are trained to be invariant to changes in illumination,
then it can be assumed that the illumination information is mostly lost as the data flows
through the network. It follows that the activation maps of two aligned images with vastly
different illuminations should be approximately equal for deep layers of the network. Given
this property, the generator G is allowed to change the illumination of Â with respect to B
as necessary, since there is little to no penalization from the feature-Loss for doing so. The
same property allows the generator to make small adjustments to the color distribution of
the scene. The network of choice for feature extraction is a modified VGG-19 [57] which is
explained with more detail in Sec. 3.3.2. The traditional version of the network includes max-
pooling, which as shown in Sec. 3.2.6 can be interpreted as a high pass filter that preserves the
detail of the input. This is useful for task such as classification, however for this application
it is fundamental that two images that are similar in their layout but have a different level
of detail share similar responses from the VGG-19 network. This is accomplished by using
a low pass filter in the form of average pooling which replaces the max-pooling operations.
The size of the pooling window determines the level of detail that is preserve from input to
output. Using average pooling may also contribute to better preserve the spatial information
of the features in classifiers as stated in [70] which is beneficial for this use case. Another
constraint for the architecture of the network is that it must be able to preserve the relative
position of the objects in the image. This is of utmost importance given that the network is
used to check how well aligned both images are. However, as discussed in Sec. 3.2.6 pooling
operations are used, among other things, to make the network invariant to translations which
means that relevant spatial information is lost in the pooling layers. To accurately preserve
the spatial relations of the input through pooling layers coarse coding is used [20] in the form
of overlapping avg-pool windows. Alongside the strided convolutions, pooling operations
result in a loss of high resolution, high frequency features of the input image. Since the
high frequency features of the input images are lost in deeper layers of the network, the
generator G will be able to add small details to the generated image without any mayor
increase in feature-Loss. These additional details translate in more detailed textures and
better lighting. Performing layer normalization without affine parameters (see Sec. 3.2.9)
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over Â and B further helps to maintain alignment in images with low contrast by making
the boundaries between objects more visible. Furthermore, applying layer normalization to
the input images helps to increase resilience to changes in brightness.

Recently, it has been proven that mean and variance of the data hold significant infor-
mation about the nature of the input domain [23]. The objective of the feature-Loss is
to compare the layout of the scene between images of different domains which is done by
comparing the feature maps Mapl(Bj) and Mapl(Âj). However a large mean or variance
difference between Mapl(Bj) and Mapl(Âj) would mean a large feature-Loss and would be
the result of the difference in domains DomA and DomB rather than the different in layout
between Bj and Âj. Given this, the feature-Loss would penalize the generator for performing
a domain change from DomB to DomA. Then, it is fundamental to reduce difference in mean
and variance between Mapl(Bj) and Mapl(Âj) to a minimum. As proposed in [24] this is
done by applying instance normalization (see Sec. 3.2.9) to the feature maps without using
affine parameters.

Finally, using instance normalization over the feature maps Mapl(Â) and Mapl(B̂) can
lead to a better estimation of the difference between activation maps, since all the feature
channels will have similar magnitudes rather than having certain feature channels having
values orders of magnitude greater than others. With these changes the original feature-Loss
presented in Eq. 3.15 is modified to Eq. 5.1:

feature-Loss(B, Â) =
L∑
l=1

(γl · Lnorm − Loss(Map-Nl(B),Map-Nl(Â)), (5.1)

where Map−Nl(y) is defined as the instance normalization without affine parameters of
the features extracted by the feature extraction network from the input image y as shown in
Eq. 5.2:

Map-Nl(y) = Instance-norm(Mapl(y)). (5.2)

When generating images, certain regions of the generated image benefit from having a
lesser or higher degree of penalization from the feature-Loss. Classes that are similar be-
tween the DomB and DomA domains can be strictly penalized to avoid artifacts and ensure
alignment, while classes that are very different between the DomB and DomA benefit from
a lower level of penalization which allows the generator to do more changes and generate a
more realistic image. FeatureGan introduces a per class feature loss to have an extra degree
of control over the penalization of the generated image Â. Since the ground truth for each
image B is provided by the simulator, then this information can be used to separate both B
and Â into different images Bj and Âj, with j = 1...J , and J the number of classes in B as
shown in Eq. 5.3 and Eq. 5.4:

{
pix(Bj) = pix(B) if class(pix(B)) = j

pix(Bj) = 0 otherwise
(5.3)
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{
pix(Âj) = pix(Â) if class(pix(B)) = j

pix(Âj) = 0 otherwise
(5.4)

Then, the feature-Loss can be independently calculated for each class by slightly modifying
the original feature-Loss defined in Eq. 3.15. The per-class feature-Loss is defined in Eq. 5.5:

feature-Lossj(Bj, Âj) = αj

L∑
l=1

(γl · Lnorm − Loss(Map-Nl(Bj),Map-Nl(Âj)), (5.5)

where αj is a user tunable parameter which measures how similar an object of class j in
Âj must be to the corresponding object in Bj. By relaxing this parameter for a particular
class, the generator will be able to introduce more changes to the class, but the preservation
of the geometric layout constraint will also be relaxed. The value of norm represents how the
difference between the activation maps for B and Â are calculated, L1-norm (see Sec. 3.12)
and L2-norm (see Sec. 3.13) are used depending on the constraints for each class.

L1-norm tends to generate images with better texture quality while L2-norm results in a
higher penalization for outliers and is ideally used for classes which are prone to producing
artifacts or to generate unaligned results.

5.2 A Feature Pyramid Based Discriminator Approach

5.3 The discriminator architecture

An approach consisting of multiple PatchGan discriminators which [27] operate at different
scales is used. A traditional PatchGan discriminator, as proposed by Isola et al. [27], is
composed of a fully convolutional network with a narrow receptive field (usually 70x70),
which extracts local features from an the input-image to form a vector of predictions. The
small receptive field improves generalization and results in a more stable training since regions
of the image are rated independently, meaning that the generator is still rewarded for small
local improvements in image quality. Furthermore, by having a small receptive field, the
discriminator tends to estimate the quality of the input-image based on the quality of specific
textures. This is in line with the findings presented by Isola et al. [27]. Luo et al. [40]
introduced two important ideas. First, the effective receptive field of a neural network is
smaller than its theoretical receptive field. Second, regions closer to the center of the input
have more impact on the output than regions at the borders. These two properties further
help to explain why region-based discriminators achieve better texture quality than global
discriminators. Since each small region of the image is processed independently, then each
region of the image has the same impact in the final loss. Furthermore, since the PatchGan
discriminator uses overlapping regions, then each pixel of the input-image will be closer to the
center of a receptive field. Altogether, this means that when using a PatchGan discriminator
with a narrow receptive field, the relevance of each pixel in the input image contributes more
equally to the total loss function, while in the case of a discriminator with a large receptive
field, certain pixels contribute more to the total loss than others.
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In traditional neural network design, higher abstraction features are provided by the deeper
layers in the neural network, while high resolution features come from the layers closer to the
input. FeatureGan introduces an improved version of PatchGan loosely based on the idea
behind Feature Pyramid Networks (FPN), which were introduced by Lin et al. [37] to improve
the performance of image detectors and semantic segmentation networks. As explained in
Sec. 3.3.1 the feature pyramid network approach consists of upsampling the deeper feature
maps generated by a CNN. The upsampled features are then combined with feature maps
generated at layers closer to the input of the network. The tensors resulting from this process
contain both the high resolution features from layers close to the input as well as the high
level features from deeper layers of the network.

Figure 5.2: Proposed FPN discriminator.

The traditional implementation of a FPN includes a trainable CNN network. However,
the extra number of tunable parameters would mean that balance between generator and
discriminator would be broken since the learning capacity of the discriminator would greatly
increase. To avoid this problem, the input-image is fed to a VGG-19 network which was pre-
trained in imagenet [11]. Feature maps at different depths of the network are then extracted,
up-sampled to the input image size and then concatenated into a single Feature Pyramid
Tensor (FPT). Then a convolution with kernel size 5 × 5 and stride 1, followed by a leaky
ReLU activation function and finally an instance normalization layer is used to compress the
information of FPT into a tensor IT of N channels. As previously stated, the mean and
variance of a feature channel holds significant information about the nature of the domain.
The large kernel size of the convolution is designed to capture these statistics as well as
spatially spread features over FPT while the small number of filters acts as a bottleneck to
ensure that only the most relevant information is extracted. In Sec. 3.2.9 it is stated that
instance normalization changes the mean and variance of each feature channel. Consequently,
the normalization layer is placed after the leaky ReLU layer to ensure that this important
information is passed through the non-linearity and is preserved in the form of features.
This layer configuration is based on the same design principles that dictate the architecture
of the first layers of PatchGan. While it might seem logical to choose a traditional ReLU
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layer over leaky ReLU since the former could discard unnecessary information from FTP by
setting the corresponding outputs to zero, empirically it was found that the results actually
become worst. This is probably the result of the continuous change in the generated images.
Features from FPT which were useful to differentiate between real and generated images
in the first stages of training might not be useful in the later stages and vice-versa. This
means that to achieve good results throughout training the sparsity configuration of the
model should constantly change. However, as explained in 3.2.10 once the output of a ReLU
is set to zero it is very difficult to recover, since there is no gradient flowing through that
node. Given this, leaky ReLU arises as the natural choice. Then, the tensor at the output of
the leaky ReLU activation function is passed through the instance normalization layer with
affine parameters. The normalization brings all the features to the same magnitude as the
features present in Input-Image while the affine transformation allows the network to change
the statistics for each feature channel in the tensor by just tuning the affine parameters.
This is a responsive way of modifying the relevancy of each channel independently. Finally,
this tensor is concatenated to the Input-image and fed to the PatchGan discriminator which
corresponds to the rest of the FPN discriminator. The process is shown in Fig. 5.2. As
an example, the resulting compressed FPT from the 8th and 12th layers for the sim-to-real
image translation task is shown in Fig. 5.3.

(a)

(b)

Figure 5.3: (a) Input images, (b) compressed FPT tensor with N = 3.

From these images, it is apparent that the compressed features give the discriminator
important information on the shape and position of the relevant objects in the scene (robots,
lines and ball), which have a high contrast with the background information. Finally, the
compressed FPT is concatenated with the input-image to form the final input IT to the
discriminator. To ensure that the magnitudes of the compressed FPT are similar to those
of the input-image, instance normalization is performed over IT. Using IT as input to the
discriminator instead of the input-image offers several advantages. First, the features of
the FPT come from layers of different depth with different receptive fields, meaning that
the discriminator has access to spatially local and global features simultaneously. Second,
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the discriminator still works by classifying small regions and has access to the extracted
feature maps as well as to the original image, therefore, its ability to generate very realistic
textures is preserved. Third, in addition to texture information, each region classified by
the discriminator has also access to high level features. By using both simultaneously, the
discriminator can achieve better performance at classifying each individual region. Most
importantly, the features extracted by the pre-trained network are fixed through the training
process and are independent of the quality of the images inferred by the generator. This
helps to avoid overfitting of the discriminator to the current state of the generator and to
stabilize the training process. Finally, since the VGG-19 network has no tunable parameters
this means that the learning capacity of the discriminator is maintained. Specifically, the
total number of parameters specifically tuned to distinguish real from generated samples
remains the same which helps to maintain the balance of power between the generator and
the discriminator.

While local discriminators have the advantage of improved texture quality and a more
stable training function, they do have some major drawbacks, mainly their inability to extract
global spatial relations in the image. Isola et al. [27] found that small patch sizes lead to an
increase level of artifacts in the image, which can be attributed to the lack of spatial awareness
of a small region size discriminator. We also found that discriminators with larger region
sizes lead to spatial consistency in terms of illumination and object placement. Following
the guidelines of Wang et al. [67], we construct several discriminators to evaluate the input
tensor at different resolutions. Each discriminator is run over the IT with a different level of
down-sampling.

The combination of the loss GAN-Lossi provided by each discriminator i results in the
total discriminator loss shown in Eq. 5.6:

GAN − Loss =
I∑

i=1

(λi ∗GAN-Lossi), (5.6)

where λi is a parameter which indicates the relative importance of the i-th discriminator,
and I is the number of resolutions.

5.4 Training the discriminator

Given a discriminator D, a real image B and a generated image Â, a classical loss to train
the discriminator is defined as:

D-Loss = 0.5 ·MSE(D(A), 1)+

0.5 ·MSE(D(Â), 0).
(5.7)

To achieve smoother probabilities and avoid extremely confident predictions, one-sided
label-smoothing is used [53]. The final loss function for the discriminator is presented in
Eq. 5.8:
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D-Loss = 0.5 ·MSE(D(A), 0.9)+

0.5 ·MSE(D(Â), 0),
(5.8)

where the only change is a lower value as target for real samples.

In [19] the authors showed that GANs trained by using different learning rates for the gen-
erator and the discriminator converge to a local Nash equilibrium. Following this guideline,
the learning rate was selected accordingly all the discriminators to be equal to two times the
learning rate of the generator.

To prevent model oscillation and to avoid major changes in the discriminator, an historic
record pool of generated images is kept as suggested in [56]. Samples from this image pool
are randomly selected to train the discriminator.

Finally, the values of saturation, contrast, hue and brightness are slightly modified for A
and Â to avoid the discriminator from overfitting to the data. Bigger modifications of these
values will result in generated images with inaccurate colors.

5.5 The Generator

The generator is used for domain transfer and from an input image in the simulated domain
generates an output image Â in the real domain. In this work two architectures for the
generator were tested including Resnet [29] and U-net [50] (see. 3.6.1 and 3.8).

Empirically, U-net was found to produce the best overall results in the sim-to-real task
for the SimRobot simulator. This is in line with results from other works where U-net has
been found to "produce strong results in the unimodal image prediction setting when there is
a spatial correspondence between input and output pairs" [72]. Given the small variance of
the input and target domains, and the similarity between both U-net proves to be a perfect
fit for the task.

More complex domains require a different generator that is able to more aggressively
modify the input image. The Resnet generator was used with excellent results to solve the
real-to-real image translation task and the video game-to-reality task.

The generator is trained using gen-Loss (see Eq. 5.9), which is built using the feature loss
and the discriminator loss described by equations 5.5 and 5.6:

gen-Loss =
J∑

j=1

(feature-Lossj(Bj, Â)) +
I∑

i=1

(λi ∗GAN-Lossi), (5.9)

with J the number of classes and I the number of resolutions/discriminators.
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5.5.1 Introducing a supervised function for image alignment.

Since FeatureGan doesn’t use a Cycle-Loss as CycleGan does, the alignment between images
is preserved exclusively by the feature-Loss. There is a fine balance between the feature-Loss
and the GAN-Loss which determines the level of alignment between B and Â as well as the
level of domain change that the generator is able to perform. This balance between both
loss functions is difficult to properly tune. Furthermore, since the feature-Loss is calculated
based on the features extracted by a deep neural network, this means that small objects in
B might not be properly replicated in Â since as discussed in Sec. 3.2.7 details in the input
image are lost in the deeper layers of the network. The necessity of a loss function which
penalizes badly aligned images while being independent of the level of domain change is
apparent. In theory, a Cycle-Loss function could be used to achieve this objective. However,
a Cycle-Loss does not perform well in the sim-to-real image translation task, as shown in
Sec. 6.1.2. Furthermore, using a Cycle-Loss is very computationally expensive since a new
generator and a new discriminator are needed to compute the loss. Theoretically, providing
the semantic map S to the generator in addition to image B would give enough information
to precisely reconstruct the layout of the scene B in Â. This allows the generator to have
simultaneous access to the class and texture information in B which reduces the number of
plausible outputs Â for a given input B. The class information also gives valuable information
on the boundary between objects. However, there is no clear way of forcing the network to use
this information and to preserve it throughout the multiple layers of the generator. Given
this, a second alignment function called label-Loss is proposed based on the ideas behind
the identity loss discussed in 3.2.11. The function requires a modified architecture of the
generator. A version of the modified Resnet architecture is shown in Fig. 5.4.

Figure 5.4: Modified Resnet architecture.

Given a set of L class labels available in the form of a semantic map, these are encoded
into a tensor S composed of L one-hot encoded vectors, concatenated to the input image
B and fed to the generator. The last convolutional layer of the generator then produces an
output tensor of 3+L channels. The first three channels are passed through a tanh activation
function to generate the output image Â while the remaining L channels are passed through
a sigmoid activation function to generate the tensor Ŝ with L channels. Â is penalized as in
the classic FeatureGan using a combination of the feature-Loss and the GAN-Loss. On the
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other hand Ŝ is penalized using the binary cross entropy (see Sec. 3.2.11) loss between Ŝ and
S as shown in Eq. 5.10:

label-Loss(S) = BCE-Loss(S, Ŝ). (5.10)

This has several effects. First, the network is actively encouraged to preserve the semantic
information given by S throughout the network and since the last layer produces both the
predicted semantic map and the output realistic image then the layout of the scene must
be available in some form to all layers of the network. The encoder-decorder architecture
prevents the network from learning the identity function to map S into Ŝ since the information
is compressed. This loss also provides the encoder and the decoder with supervision to
properly compress and decompress the layout of the scene. Furthermore, this loss function
also takes into account small objects which the feature-Loss might not be able to properly
capture. For a multi-class classification problem of N classes, Lin et al. [35] proposed in the
architecture Network in Network (NiN) the novel idea of performing global average pooling
over the last N channels a classifier to determine the predicted class. According to the
original paper, this acts as a regularizer that encourages feature channels to correspond to
categories. This falls in line with an earlier design principle of the generator, that of sparsity
which states that only certain parts of the network are active for any given input. It is
expected that using L channels to predict the semantic map of the input will have a similar
effect of specializing certain feature extractors to certain inputs. In fact, by using global
average pooling over the Predicted Semantic labels the generator would effectively become a
classifier. Finally, label-Loss avoids some of the main problems of the identity-Loss. Since in
label-Loss the pixels in one channel can only take binary values then the number of plausible
outputs is orders of magnitude smaller than the number of outputs of a predicted RGB image
Â. Furthermore, the binary cross entropy loss maps pixels to one of the two values meaning
that pixels with high uncertainty are heavily penalized. This prevents the network from
outputting the mean of all plausible solutions to approximate the target distribution which
was a common problem of losses based in the L1 norm and lead to blurry images. Then, the
final loss function for the generator is described by Eq. 5.11.

gen-Loss =
J∑

j=1

(feature-Lossj(Bj, Â)) +
I∑

i=1

(λi ∗GAN-Lossi) + label-Loss(S). (5.11)

5.5.2 Preventing training collapse

Collapse is a usual occurrence during training particularly for very complex domains where
the generator is unable to correctly transform images from the DomB to the DomA domain
and consequently the discriminator is able to constantly differentiate real from generated
images. This section introduces a way to use the feature pyramid tensor to prevent training
collapse. Some approaches such as [21] propose using a GAN-Loss over the features extracted
by a feature extraction network. However, they also calculate a second GAN-Loss over
the input-image. The feature pyramid discriminator combines both the input image and
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the features extracted by the feature extraction network into a single tensor IT to provide
semantic information of the contents of the input-image. In this section a variation of the
Feature Pyramid Network is proposed where the input-image is completely discarded to avoid
training collapse. In a traditional GAN-Loss the input-image is analyzed by a discriminator
which provides a label which indicates if the image is real or generated. This encourages
the discriminator to learn very specific, highly detailed features over the input-image A and
Â rather than more semantically rich features. Examples of these highly specific features
might include the noise distribution of DomA or even small artifacts from the camera used
to capture the environment. It is arguable that such features are difficult to replicate by
the generator and contribute very little to generating realistic images. Traditional classifiers,
such as the feature extraction network based on VGG-19, are known to discard unnecessary
and noisy information while extracting increasingly semantically rich features as the depth
increases. This means that the feature maps of A and Â extracted from deeper layers of
feature extraction network would appear increasingly similar to a discriminator. It is then
theorized that training collapse can be potentially prevented by calculating a GAN-Loss over
a IT composed only of the feature maps resulting from A and Â and without using the
input-image. The modified architecture is shown in Fig. 5.5

+

Figure 5.5: Modified FPN discriminator.
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Chapter 6

Results in soccer robotics

6.1 Simulation-to-Reality Image Translation in Soccer Robotics

(a) (b)

Figure 6.1: a) simulation training samples, b) real training samples.

As a proof of concept, both FeatureGAN and CRN were used to solve the sim-to-real image
translation task in soccer robotics. Both methods were used to increase the realism of the
SimRobot simulator [31], widely used in the RoboCup SPL league. Additionally, CycleGan
was also trained to solve this problem. Both of the proposed methods are compared to
CycleGan.

To train FeatureGan, an unpaired training set was used. The dataset is composed by
3,579 images collected using the robot in a real environment, and 4,027 images collected
from simulation. The learning rate for the generator was set to 0.00005 and the learning
rate for the discriminator was set to 0.0001. A class based feature-Loss was used, with the
selected classes being robots and goal posts, background, field, lines and shirt. αj was set to
6 for the field class, to 4 for the robots and goal posts, 10 for the shirts, 8 for the lines and 0
for the background class, meaning that the network is free to produce unaligned backgrounds
since there is no background information in the simulator as shown in the first row of Fig.6.1
(the background is defined by a single constant value). Three feature pyramid discriminators
with receptive fields over the input image of 70 × 70 (local), 140 × 140 (medium) and 280
× 280 (global) were used to evaluate the quality of the generated images at different scales.
λi was set to 1

4
for the local discriminator, 2

4
for the medium discriminator and 1

4
for the

global discriminator. The network was trained for 80 epochs with a constant learning rate,
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and then for 150 epochs with linear decay at a resolution of 512 × 512 for three days in a
Nvidia RTX 2080 ti.

The standard version of CycleGan, as presented by Zhu et al. [71] and described in 3.6.2,
was trained on the same dataset as FeatureGan at a resolution of 512 × 512. A discriminator
with a receptive field of 140 × 140 was used. The same generator and learning parameters
were also employed to ensure a fair comparison. The identity loss was set to zero to diminish
the blur of the generated images.

Samples from the real training dataset DomA and the simulated training dataset DomB

are shown in Fig. 6.1. In these images, the simulation-to-reality gap is apparent, most notably
in terms of illumination and in the fine detail of the textures.

Finally, the Cascade Refinement Network (CRN) based on a supervised approach was
trained by following the methodology proposed in Sec. 4. The database consists of 2000 pairs
of aligned (real, segmented) images of size 512×512 which were obtained after performing
domain randomization using 125 images of robots and 56 images of balls. The learning rate
was set to a constant value of 0.0001.

Randomly selected pairs of simulated images B from the test dataset and the correspond-
ing realistic images Â generated by FeatureGan, the Cascade Refinement Network (CRN)
and CycleGan [71] are shown in Fig. 6.2. A video of realistic images being generated in real
time on the SimRobot simulator using FeatureGan and the different detectors being used
over the generated image can be found at the following link: https://youtu.be/faJifSb2c1E.

The SimRobot simulator achieved a framerate of 17 frames per second when using the
generators of CycleGan and FeatureGan while a framerate of 15 frames per second was
achieved using the CRN generator. All times were measured on a machine with a core
i7-8700K and an RTX 2080 ti video card. This is well within the constraints of real time
operation.
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Figure 6.2: Input and aligned samples generated by various methodologies.

6.1.1 Visual quality analysis of CRN

From these images, it is apparent that the CRN method results in images of lesser texture
and lighting quality than those produced by CycleGan and FeatureGan. This comes as a
result of the chosen loss function and the use of a traditional supervised approach to go from
DomB to DomA. Given an aligned pair of images (A,B) the network is trained by feeding
B to the generator G which outputs a generated image Â. Both Â and A are fed to the
feature-extraction network and the resulting the loss is then calculated as the L1 norm (see
Sec. 3.12) between the feature maps from generated image Â and the ground truth image
A as described in 3.15. However, this approach tends to produce blurry images [43]. This
can be explained because there is more than one plausible output Â for a given input B.
As shown in Fig. 6.3, most of the information of the rendered simulated image is lost after
being segmented to form the input image B. Then there is not enough information in B
to determine the rotation of the robots (front-facing or back-facing) or to determine what
texture to assign to the background in the generated image Â. There are then multiple
possible solutions for Â from a single input image B and the network is unable to determine
which one of the solutions is correct.

The penalization of a network trained using a L1-Loss function will be minimized when all
these possible solutions are averaged which results in blur in the predicted image Â [28]. In
other words, the network is trying to fit all plausible outputs for a given input B into a single
image Â by combining all the plausible solutions into one. It is important to note that by
using a feature loss the network, which is invariant to changes in color and illumination, tries
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(a) (b) (c)

Figure 6.3: a) Simulated rendered image, b) aligned segmented image B, c) aligned generated
image Â.

to match high level semantic features rather than specific pixels. Consequently, the network
is not penalized for producing images with illuminations and colors which differ from the
ground truth, which would produce additional blurring in the generated image. However,
blur is still be present given that the feature extraction network is not invariant to changes in
rotation or position and the input image B does not give enough information to the generator
G to estimate the pose of the objects in the scene.

6.1.2 Visual quality analysis of CycleGan

CycleGan achieves some very crisp images with detailed textures in all the objects, a realistic
background and realistic lighting conditions. However, artifacts (such as the one present in
the second row of Fig. 6.2 were quite common both during training and inference over the
test dataset. Images of the input rendered images B, generated realistic images Â which
present major artifacts and the reconstructed images B̂ are presented in Fig. 6.4.

The artifacts appear to be a problem that derives from the CycleGan architecture when
applied to the specific problem of the simulation-to-reality image translation task. As shown
in Sec. 3.6.2, CycleGan operates with two cycles. The first cycle works by generating a
realistic image Â from an input image B such that Â = GB(B). It then generates a second
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(a) (b) (c)

Figure 6.4: a) rendered image from simulation B, b) aligned images Â generated by GB, c)
aligned reconstructed images B̂ generated by GA.

image B̂ such that B̂ = GA(Â). The loss for a single cycle is defined as the sum of the
generator loss estimated by a discriminator over Â and the cycle-Loss which corresponds
to the L1-Loss between the reconstructed image B̂ and the input image B and is used to
maintain the alignment between B, Â and B̂. The second cycle works in a similar fashion
but from A to Â instead of from B to B̂.

The CycleGan methodology works very well for high variance, complex environments, with
several successful test cases shown in the original paper. However, this methodology does
not translate well for simpler environments. Indeed, the artifacts found in Fig. 6.4 are the
result of training CycleGan over a dataset of samples collected from a low variance, highly
structured environments such as the SimRobot simulated environment [31]. If the generator
GA has learned a very accurate representation of the simulated scene, which is easy given
the domain’s low complexity and low variance, then the generator GA can learn to generate
an image B̂ without artifacts in the simulated domain from an input realistic image Â with
artifacts. This is possible if the generator GA is able to accurately detect the artifacts in Â
and then eliminate them in the output recreated image B̂ by interpolating from known scene
features. It follows that the generator GA is not penalized by the cycle-Loss for generating
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artifacts in the Â image, since the generator GB learns to delete such artifacts in B̂. Then,
there is nothing preventing CycleGan from falling into a mode collapse. This translates into
the generator GA outputting images that are most plausible to the discriminator, minimizing
the generator loss. Then the optimal solution for CycleGan is to generate an image Â that
minimizes the generator loss estimated by the discriminator (for example by adding objects
to the scene that are not present in the input image) and then the generator GB can detect
these artifacts and delete them from the recreated image B̂ to replicate the input image B
almost perfectly. By doing so, both the generator loss estimated by the discriminator as well
as the cycle-Loss are minimized and by doing so the methodology encourages artifacts. This
phenomena is shown in the images presented in Fig. 6.4, which are real results obtained from
images in the test dataset and models resulting from later iterations of our training process.
This artifacts translate in false positives for most heuristic based detectors and render the
simulator basically unusable since it violates observation 1. Given this, it is apparent that
traditional methods are not well suited for generating realistic simulators.

6.1.3 Visual quality analysis of FeatureGan

Finally, FeatureGan achieves an arguably superior image quality than CycleGan. One of the
most salient difference between both corresponds to the illumination quality. In terms of
global illumination, the results achieved by FeatureGan in Fig. 6.2 closely resemble those of
the real images shown in Fig. 6.1 b), with several shadows and spotlights across the image
as seen in see Fig. 6.5 a). Contact shadows are also present in the correct places. On the
other hand, CycleGan produces results that are almost uniformly lit with very few shadows
in general and sparse contact shadows (see Fig. 6.5 b)), which is not consistent with the
several punctual lighting sources in the real world. This difference in the lighting quality can
be attributed to two factors. In the case of CycleGan, the discriminator has a fixed receptive
field of 140 × 140 which means that the discriminator has only access to spatially local
information. Thus, since each observation of the discriminator is classified independently
from the others, the GAN-Loss provided by the discriminator is minimized if the generator
produces the most plausible texture that still guarantees alignment between the generated
and input image. This results in the same texture being repeated whenever is possible, which
gives the impression of uniform lighting in the scene. FeatureGan fixes this problem by using
discriminators at three different scales. The global discriminator in particular has a receptive
field of size 280 × 280 over the RGB image which provides spatially spread features. This
allows the discriminator to check the global consistency of the lighting in the image, which in
turn improves the results significantly. A second important factor to generate realistic images
is the pyramid discriminator. Given that most objects in the scene (lines, goal posts, robots
and balls) share somewhat similar textures at the local scale (white without much relief) and
since not all of these objects cast shadows (lines don’t) then it becomes fundamental for the
discriminator to have access to semantically rich features, in particular to the object class.
This information is provided by the features present in the compressed Feature Pyramid
Tensor which means that the discriminator can accurately estimate which objects should
cast contact shadows.

FeatureGan also presents only a minimal number of artifacts, which don’t affect the perfor-
mance of the respective detectors. Table 6.1 summarises the advantages of each methodology.
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(a)

(b)

Figure 6.5: a) cropped FeatureGan images, b) cropped CycleGan images.

Table 6.1: Advantages and disadvantages of the respective methodologies.
Feature FeatureGan CycleGan CRN

Image sharpness High High Low
Light quality High Average Low
Reliability High Low Very high
Texture quality High High Low

6.1.4 Training CNN based classifiers in Simulation

During our participation in the RoboCup SPL our team developed some of the first CNN
based robot and ball detectors [10] [34]. To achieve real-time operation, these detectors have
two main parts. In a first step, a heuristic based region proposal extracted a region of interest.
Then in a second step, the region is classified by a CNN that is designed to achieve real time
operation while running in a Nao humanoid robot. This procedure is used to detect the robots
(teammates and opponents) as well as the ball in real-time. The detection of such objects is
essential to play the game and to develop correct strategies. The architectures for the CNNs
can be found in [34] and the design principles are further expanded on [10]. Training these
models involves creating a manually annotated database which is time consuming.

To test the capabilities of FeatureGAN, a robot detector and a ball detector were trained
using five different sets of images: (1) real images collected using a real robot in a real field,
(2) images generated using FeautureGAN, taking as input the SimRobot images, (3) images
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generated using the standard implementation of CycleGan [71], taking as input the SimRobot
images (4) images generated using a Cascade Refinement Networks (CRN) trained using the
methodology presented in Sec. 4, taking as input the SimRobot images and (5) simulated
images rendered directly by SimRobot. It must be stressed that training the CRN requires
aligned pairs of images (see Sec. 4), which is time consuming and involves manual labeling.
For a fair comparison, all sets of images have the exact same size and no post processing over
the images, such as image augmentation, was performed. All trained detectors (models) were
tested using a test database composed purely of real samples collected using the real robot:
760 images for the ball detector and 960 images for the robot detector. By comparing the
performance of the detectors in this real dataset the amount of simulation-reality gap can be
estimated for each training dataset.

Table 6.2: Robot and ball models trained in different datasets and evaluated using real data.
Testing data type Robot detector accuracy (%) Ball detector accuracy (%)

Real images 90.7 98.2
FeatureGan images 89.3 95.4
CycleGan images 87.4 95.1
CRN images 83.7 95.3
SimRobot images 66.4 51.4

Table 6.2 shows the obtained results. Models trained using real samples achieve very high
accuracy. Models trained using images generated by FeatureGan result in metrics that are
similar to those achieved by the models trained with real data. CRN also shows a good
performance while detecting the ball, but it decreases for the robot detection case. CycleGan
has a slightly lower performance than our method, even while producing numerous artifacts
in our tests. This is simply explained by the nature of the artifacts, which are a result of a
bias in the generator network and by consequence have very little diversity. In practice, these
samples are almost uni-modal and thus the classifier network can learn to classify the artifacts
as outliers. In contrast, models trained using samples collected from the classical SimRobot
simulator and tested with real data achieve close to random results for the ball classifier
model while the robot classifier model achieves 24.3% less accuracy than the corresponding
model trained using real samples. From these results, it is clear that FeatureGAN, CRN
and CycleGan are bridging the gap between reality and simulation, and that best results
are obtained by FeatureGAN. The use of these methods allows to fully train algorithms in
simulation, which can then be deployed to a real environment with only a marginal loss in
performance.

6.1.5 Testing CNN classifiers in Simulation

Robot simulators can serve as tools to evaluate the performance of robotics algorithms by
offering a testing environment where they can run under real conditions. An evaluation for
several simulation environments of how closely the metrics obtained for two detectors match
the metrics obtained from reality is performed. To analyze this, robot and ball detectors were
trained using images of the real-world, and then evaluated in five different environments: (1)
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real images collected using a real robot in a real field, (2) images generated using Feauture-
GAN, (3) images generated using the CycleGan, (4) images generated using CRN, and (5)
simulated images rendered directly by SimRobot. Table 6.3 show the obtained results. It
can be observed that simulated environments generated using FeatureGan and CRN are very
good approximation of the real-world conditions, allowing to close the visual simulation-to-
reality gap. The main advantage of FeatureGAN over CRN is the use of unpaired, unlabeled
images to train the network. In the case of CycleGan, the robot detector tested using the
generated images presented a notable decrease of 14.2% in accuracy, when compared to its
accuracy in a real environment. This is a direct consequence of the artifacts produced by the
generator, which translate in a large number of false positives for the Robot classifier. This
resulted in false positives in the obstacle map and inaccurate path planning and behaviors.
Given this, a CycleGan based simulation environment is not a good candidate for a simula-
tion environment. Finally, testing in the classic rendered SimRobot environment resulted in
sub-optimal performance for the robot model given the large simulation-reality-gap between
the real and simulated domains. Surprisingly, the ball model achieved good performance in
all testing environments. This can be attributed to the simplicity of the problem and argue
that the CNN based model has learned to generalize even to other domains.

Table 6.3: Robot and ball models trained with real data and evaluated in different datasets.
Testing data type Robot detector accuracy (%) Ball detector accuracy (%)

Real images images 90.7 98.2
FeatureGan images 95.2 98.7
CycleGan images 76.5 94.3
CRN images 95.7 98.8
SimRobot images 66.2 97.0
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Chapter 7

Results in CityScapes

7.1 Simulation to Reality Image Translation in CityScapes

This section examines if using FeatureGan can improve the graphics quality of video-games.
In particular, it examines if by training the model to perform image-to-image translation
from the rendered simulated domain to the real domain could result in more realistic looking
images than those provided by the rendering engine. In particular, FeatureGan is trained
using images from Grand Theft Auto 5 (GTA) [47] as the input domain DomB and images
from CityScapes Cordts et al. [9] as the target domain DomA. Grand Theft Auto is an
open-world game which simulates a real city environment with great accuracy. The world
is populated by several agents such as driving cars, trucks, pedestrians, cyclist and others.
The static elements of the world, such as building, bridges and terrain have good geometrical
complexity and great variety. CityScapes on the other hand is a dataset composed of real
samples taken from several cities. Importantly, both datasets have available and compatible
ground truths in the form of semantic maps with 32 classes. Given the number of different
objects, different textures and extremely complex lighting conditions, this problem is orders
of magnitude more challenging than the simulation-to-reality problem for the SimRobot
simulator that was developed in Sec. 6.

FeatureGan was trained using 24.807 images from the Grand Theft Auto 5 database as
well as 23.417 samples of the Cityscapes dataset. Randomly selected samples from both
datasets can be seen in Fig. 7.1.

(a) (b)

Figure 7.1: a) simulation training samples, b) real training samples.
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Since video-games are simulations, the ground truth class information of all the relevant
objects in the input image B can be easily obtained. The classes road, sidewalk, person, rider,
car, truck, bus, train, motorcycle, bicycle, building, wall, fence, pole, traffic sign, traffic light,
vegetation, terrain and sky were each assigned to a one-hot encoded vector which was then
concatenated to the input image B. A class based feature-Loss was used to ensure alignment
between B and Â. The classes terrain, sky, pole, traffic light and traffic sign which were
more prone to artifacts were assigned an αj of 2 while the rest of the classes were assigned
an αj of 6 to encourage domain transfer. The GAN-Loss was estimated using two pyramid
discriminators with receptive fields over the input tensor of 70 × 70 (medium) and 140 ×
140 (global). As proposed in Sec. 5.5.2 the input image was not used to generate IT . This
prevents the training from collapsing. λi was set to 2

3
for the medium discriminator and to

1
3
for the global discriminator. A label-Loss was used to further encourage the alignment

between B and Â and to preserve small features in the input image. The U-net generator
was trained for 10 epochs with an initial learning rate of 0.0001 and with linear decay at a
resolution of 256 × 256. The learning rate for the discriminator was set to × 1.5 the learning
rate of the generator during the complete training process.

Randomly selected simulated images B from the test dataset alongside the corresponding
realistic images Â generated by FeatureGan are shown in Fig. 7.2. A video can also be found
at the following link: https://youtu.be/rR6oCqOwZrw.

(a)

(b)

Figure 7.2: (a) input images, (b) aligned images generated with FeatureGan.

7.1.1 Training Semantic segmentation models in simulation

Semantic segmentation models are a common choice when detecting the precise shape of the
objects in the scene is needed. This has relevant applications for autonomous systems such
as robots or self-driving vehicles. One of the most popular semantic segmentation models is
DeepLab [7]. In this section, DeepLabv3+ with a mobileNet [22] backbone and a learning
rate of 0.1 is trained using three different sets of images: (1) real images of a city from
the CityScapes database, (2) realistic images generated by FeatureGan and (3) rendered
images from the GTA database. All the datasets have 3000 samples The models were then
evaluated on a the CityScapes test dataset, composed of real samples. Fig. 7.3 shows the
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results of segmenting real samples of CityScapes with models trained with GTA samples and
FeatureGan samples.

Figure 7.3: Segmentation results of DeepLabv3+ trained with different simulated datasets
and applied to real samples.

Table 7.1: Semantic segmentation models trained in different datasets and tested using real
data.

Training data type Pixel accuracy (%)

Real images images 91.4
FeatureGan images 83.7
Rendered images 69.5

Table 7.1 show the results of this test. DeepLabv3+ achieves excellent results at the
semantic segmentation task when trained and tested using the CityScapes dataset. However,
the same architecture trained using synthetic data shows from the GTA dataset shows a
significant reduction in performance of 21.9 % when tested with real samples. Training with
samples generated by FeatureGan brings this difference to only 7.7 %, a massive improvement
which shows that FeatureGan is able to significantly reduce the gap between simulation and
reality.
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7.1.2 Testing Semantic segmentation models in simulation

In this section, DeepLabv3+ is trained using real samples from the CityScapes dataset. The
model is evaluated with three different sets of images: (1) real images of a city from the
CityScapes database, (2) realistic images generated by FeatureGan and (3) rendered images
from the GTA database. Fig. 7.4 shows some of the segmented simulated samples.

Figure 7.4: Segmentation results of DeepLabv3+ trained with real samples applied to simu-
lated samples.

Table 7.2: Semantic segmentation model trained with real samples and tested in different
datasets.

Testing data type Pixel accuracy (%)

Real images images 91.4
FeatureGan images 84.0
Rendered images 81.0

Table 7.1 show the obtained results. Surprisingly, a model trained using real data has
similar performance in the simulated data from the GTA database as well as in the generated
realistic samples. A similar result was achieved in Sec. 6.1.5. A probable explanation is that
the variance of the real dataset is enough to encapsulate the samples from the simulated
dataset, meaning that a model trained with real data can extrapolate to simulated domains.
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7.1.3 Ablation study

Importance of the Feature Pyramid Discriminator

To evaluate the importance of the Feature Pyramid Discriminator, FeatureGan was trained
using a traditional PatchGan discriminator [27]. Fig. 7.5 shows the total feature-Loss and
the GAN-Loss through the first three epochs of the training process. It is apparent that
the training quickly collapses at around 1.6 epochs with the generator learning the identity
function while the discriminator constantly outputs a value of close to 0.8 for the generated
image Â. Interestingly, a network trained using the standard implementation of the Feature
Pyramid Discriminator also collapses. It is only when using the guidelines proposed in
Sec. 5.5.2 and deleting the input-image from IT that the training stabilizes and the generator
actually learns to map from DomB to DomA. It appears that matching features rather than
matching pixels is paramount in preventing the training process from collapsing.

Figure 7.5: red) Gan-Loss, brown) total feature-Loss.

Importance of the feature-Loss and label-Loss

The importance of the feature-Loss in generating aligned images was evaluated by training
FeatureGan without using the feature-Loss. A dataset of realistic samples was created with
the resulting generator and then used to train the Deeplabv3+ semantic segmentation model.
Similarly, a version of FeatureGan was trained without using the label-Loss and the resulting
generator was used to produce a database with which a Deeplabv3+ model was trained.
The performance of these semantic segmentation models was compared to the performance
of DeepLabv3+ trained using samples produced by a generator resulting from the classic
implementation of FeatureGan which was developed in Sec. 7.1.1. The semantic segmentation
models were then tested with a dataset composed of real annotated samples. Results are
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shown in tab. 7.3. From this, it is clear that the feature-Loss is essential to achieve proper
alignment between Â and B. However, the label-Loss doesn’t seem to provide any benefit
to the overall performance of the generator since training the network without it results in a
variation in the accuracy of the semantic segmentation model of less than 1% which indicates
that the class based feature-Loss is enough to ensure alignment.

Table 7.3: Semantic segmentation models trained in datasets produced by different imple-
mentations of FeatureGan and tested using real data.

FeatureGan losses Pixel accuracy (%)

Standard implementation 83.5
Without feature-Loss 76.2
Without label-Loss 84.3
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Chapter 8

Image-to-image translation in real
domains

8.1 FeatureGan for real-to-real image translation

In previous chapters it was shown that FeatureGan is able to perform image to image trans-
lation in domains where ground truth data is available in the form of labels. This chapter
shows that FeatureGan can also be used to perform image to image translation from one
real domain to another without the need of ground truth information and discusses the
implications.

8.1.1 Horse to zebra image translation task.

FeatureGAN is used to successfully train a generator to solve the horse-to-zebra transfigura-
tion task solved in CycleGan [71]. Since no class information is available the feature-Loss was
calculated over the whole image as described in Eq. 5.1 rather than by using the per-class
feature-loss described in Eq. 5.5. The training database was composed of 1.067 images of
horses as the input domain DomB and 1.334 images of zebras as the target domain DomA.
The Resnet generator reviewed in Sec. 3.6.1 was used to transform the images from DomB

to DomA. CycleGan was also trained using the same database and using the same genera-
tor architecture. Both networks were trained for 80 epochs with a constant learning rate of
0.00005 and for 80 additional epochs with decreasing learning rate.

Results obtained using FeatureGan and CycleGan are presented in Fig. 8.1 and samples
of the features from the compressed Feature Pyramid Tensor are shown in Fig. 8.2.
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(a)

(b)

(c)

Figure 8.1: (a) input images, (b) aligned images generated with FeatureGan. (c) aligned
images generated with CycleGan.

(a)

(b)

Figure 8.2: (a) input images, (b) compressed FPT tensor with N = 3.

Both methods achieve results of similar visual quality which indicates that FeatureGan
is not limited to the simulation-to-reality image translation task but can also be used to
solve classic problems. A video generated using FeatureGan which depicts the horse to zebra
translation task is shown at the following link: https://youtu.be/KoY6hfojSQM
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8.1.2 Horse to elephant image translation task.

A different problem is addressed: the horse-to-elephant image translation task. This problem
is more complex than horse-to-zebra since the system needs to learn to change the shape of the
relevant objects in addition to the textures. Indeed, while horses and zebras are geometrically
very similar, there is no clear way of mapping the geometry of a horse to an elephant. Both
FeatureGan and CycleGan are trained using the same database consisting of 2.000 images of
horses and 3.634 images of elephants for 80 epochs with a constant learning rate of 0.00005
and 80 epochs with decreasing learning rate. A Resnet generator was chosen to perform the
image translation.

Results obtained with FeatureGan and CycleGan are presented in Fig. 8.3 b) and c)
respectively. Additionally, a video generated using FeatureGan which depicts the horse-to-
elephant translation task is shown at the following link: https://youtu.be/9CAol4XoN4k.
Samples of the features from the compressed Feature Pyramid Tensor are shown in Fig. 8.4.

From Fig. 8.3 b) it is clear that FeatureGan is capable of solving the horse-to-elephant task,
given that the method produces visually realistic images. This is a problem that CycleGan
cannot solve since according to the original paper, one of the main constraints of CycleGan
[71] is that the objects involved in the transfiguration task must share similar geometries.
This is reinforced by the results achieved with CycleGan, which are shown in Fig. 8.3 c).
This is once again the result of the CycleGan architecture, in particular of the cycle loss.

Let’s examine an image translation task that requires to go from a domain DomB to a
domain DomA where the domains DomA and DomB have drastically different geometries, such
as the case of the horse to elephant image translation task. Given a relevant object belonging
to the DomB domain in the input image B, to successfully generate an image Â in the DomA

domain the geometry of the object needs to be modified. This means that the shape of the
original object in B is lost in the generated image Â. However, that information is essential
to generate the reconstructed image B̂ and minimize the cycle loss which measures the L1
norm between B and B̂. Given this, the problem has no evident solution for CycleGan since
if the weight of the cycle loss is high then the network will learn to preserve the geometry of
the input image B across all the images in the input cycle. On the other hand, if the weight
of the cycle loss is decreased then the generated images Â and B̂ will not be aligned to the
input image B.

While FeatureGan also measures the loss between a generated image Â and the input image
B, it uses a radically different approach which allows the network to do mayor geometrical
changes. Indeed, while in CycleGan each pixel of the image B̂ is compared against each
pixel of B using the L1 loss function, the same is not true for FeatureGan, where each
pixel is first analyzed to estimate its relevance by the Feature-Extraction network and then
only the relevant pixels of Â are compared to the relevant pixels of B. This means that
FeatureGan uses a difference of relevant features rather than a difference of pixels to estimate
the alignment of both images. In intermediate layers of the network these features come in
the form of local high-level features, such as the position of the eyes, legs, etc. Then, by
ensuring that the position of these high level features is preserved from B to Â and since the
discriminator encourages the generator to create consistent images in the DomA domain, then
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the result is that the generator is guided to produce images in the target domain that retain
as much alignment as possible while doing the necessary geometrical changes to comply with
the requirements of the discriminator.

(a)

(b)

(c)

Figure 8.3: (a) input images, (b) aligned images generated with FeatureGan. (c) aligned
images generated with CycleGan.

(a)

(b)

Figure 8.4: (a) input images, (b) compressed FPT tensor with N = 3.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

This work introduces two different methodologies that successfully bridge the simulation-to-
reality gap by transforming rendered simulated images into realistic images using generative
models. The first approach uses a cascade refinement neural network to generate realistic
images from simulated images. The approach uses a supervised training regime which is very
reliable but can only be used in simple environments. The second method is based on an
unsupervised training regime and does not need aligned image pairs to be trained. It employs
a combination of a feature-Loss and a GAN-Loss to train a generative neural network model
which is then used to generate realistic images from simulated images. It can be applied to
a much larger scope of problems than the first methodology, however the training might be
unstable and can generate artifacts in the image.

The hypothesis of this thesis was validated in an experimental setup which proved that
realistic images, which are aligned with the rendered images provided by the simulator,
can be generated in real time and that vision algorithms developed in realistic simulated
environments can be successfully deployed to real environments with only marginal loses in
performance. Both methodologies can be easily replicated and trained in consumer-grade
hardware at high resolutions. Furthermore, since these realistic simulated environments
provide ground truth information they are ideal to test algorithms, quickly collect relevant
metrics and generate databases. This allows to reduce or in the case of FeatureGan to
completely eliminate the need of manual image labeling.

9.2 Future work

While the results of the experiments performed for this thesis validated the proposed ap-
proaches, several key areas of potential improvement were found.

• An important area in which this work can be improved is by encoding the domain
information in the affine parameters of the normalization function to achieve multi-
domain image to image translation. This could allow the generator to create samples
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in multiple domains which could be very useful to generate a variety of simulated
environments according to the experimental needs.
• The feature-Loss function needs to be revisited to perform a better estimation of the

alignment between the input and output image. Feature maps from the earlier layers
tend to have too much domain information which hinders the training process, while
later layers lack the spatial resolution to correctly align the input and output image.
• An important area of potential improvement is sample variety. It is apparent that the

variance of the realistic generated dataset is lower than that of the target real dataset.
To further increase the performance of models trained in simulation, a method to match
the variance of the target dataset is needed.
• Achieving temporal consistency between samples generated in simulation is a funda-

mental feature that must be addressed by implementing a cost function for the optical
flow between consecutive frames.
• Create a generator architecture specifically designed to work with labels and which

encourages the generation of aligned images.
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Abstract The goal of this paper is to describe a vision
system for humanoid robot soccer players that does not

use any color information, and whose object detectors
are based on the use of convolutional neural networks.
The main features of this system are the following: (i)

real-time operation in computationally constrained hu-
manoid robots, and (ii) the ability to detect the ball, the
pose of the robot players, as well as the goals, lines and
other key field features robustly. The proposed vision

system is validated in the RoboCup Standard Platform
League (SPL), where humanoid NAO robots are used.
Tests are carried out under realistic and highly demand-

ing game conditions, where very high performance is
obtained: a robot detection accuracy of 94.90%, a ball
detection accuracy of 97.10%, and a correct determina-

tion of the robot orientation 99.88% of the times when
the observed robot is static, and 95.52% when the robot
is moving.

Keywords Soccer Robotics · Deep Learning ·
Convolutional Neural Networks · Robot Detection ·
Ball Detection · Robot Orientation Determination

1 Introduction

Robotic soccer promotes robotics and artificial intelli-
gence research by offering a formidable challenge: “By
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the middle of the 21st century, a team of fully au-
tonomous humanoid robot soccer players shall win a

soccer game, complying with the official rules of FIFA,
against the winner of the most recent World Cup”
(RoboCup, 2020a). Soccer is a real-time, distributed

decision-making problem, where players need to per-
ceive and understand the environment, make collective
decisions, and execute these decisions with the final ob-

jective of winning the match; i.e. scoring goals against
the opponent team and avoiding goals from it.

The perception of the environment is one of the key
abilities for playing soccer; without an adequate vision
system it is not possible to determine robustly the po-

sition of the ball and the pose of the other players, to
identify key field features (e.g. goals and field lines) and
to self-localize, which are essential abilities to play prop-

erly. Given that the soccer environment has a prede-
fined physical setup, and that robots used in RoboCup
soccer leagues normally have limited processing capa-
bilities, most of the current vision systems used in soc-

cer robotics are based on the use of color information.
However, the use of color information has some draw-
backs such as (i) the need for calibration of the cam-

era and tuning of the color-segmentation’ parameters
to achieve a properly color segmented image and/or
the calibration of perception algorithms employed due

to the fact that color perception depends on the envi-
ronmental illumination, and (ii) the need of a soccer
field with predefined colors (e.g. lines need to be white,
field/carpet needs to be green).

Currently, there are different robot soccer leagues,

which use different kinds of real or simulated mobile
robots (RoboCup, 2020a). In this work we are inter-
ested in playing soccer with real humanoid robots. We

choose to work in the RoboCup Standard Platform
League (SPL) given that it uses a standard platform,
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the NAO humanoid robot (RoboCup, 2020b), which
allows to compare and share developments with other
teams, and to focus on the cognitive aspects of the prob-
lem.

The RoboCup SPL started in 2008, and the first vi-
sion systems used by the competing teams were based

on those developed in the former Four-Legged League,
which used SONY-AIBO four-legged robots as its stan-
dard platform. In both leagues, the first generation of
vision systems was based on the segmentation, detec-

tion, and analysis of colored objects of interest: the ball,
lines, beacons, goals, players and the field/carpet. Year
by year, the restriction of having colored objects in the

field was relaxed: (i) the number of colored beacons
(used for the robot’s self-localization) was first reduced
from six to four, then to two, and then beacons were

removed in 2008, (ii) the goals were first colored and
solid, then composed by three colored cylinders (goal-
posts and crossbar) and a white net, and finally com-
posed by three white cylinders (goalposts and crossbar)

and a white, gray or black net (since 2015), (iii) the ball
used to be orange, and since 2016, black and white.
However, still most of the teams use color information

to detect some field features (the lines, goal posts and
penalty marks), the players, and the ball.

Recently, Convolutional Neural Networks (CNNs)
have been used for detecting the robots and/or the ball
(Albani et al., 2017; Speck et al., 2017; Cruz et al., 2018;
Javadi et al., 2018; Menashe et al., 2018; Gabel et al.,

2019; Speck et al., 2019; Felbinger et al., 2019; Kuk-
leva et al., 2019; Poppinga and Laue, 2019; Teimouri
et al., 2019). Most of these CNN-based detectors re-

quire object proposals, which are currently obtained us-
ing color information of the field/carpet (green) and the
lines (white). There have also been efforts to use end-
to-end trained CNNs to detect all field’s objects with-

out relying on object proposals (Szemenyei and Estivill-
Castro, 2019a,b). However, considering the limited pro-
cessing capabilities of the NAO’s CPUs (the NAO v4

and v5 models are powered with an ATOM Z530 1.6
GHz CPU), these vision systems are still unable to run
in real-time while playing soccer, and, at the same time,

to obtain the required performance for highly compet-
itive matches.

Therefore, to the best of our knowledge, color-free

vision systems have not been used in real robot soc-
cer games, at least not in the SPL. Some of the main
reasons underlying this are the following: (i) the chal-

lenge of achieving real-time operation when using lim-
ited computational resources, (ii) the problem of train-
ing deep detectors without having very large databases,
which are difficult to create when real-world soccer con-

ditions are taken into account, and (iii) the challenge of

developing efficient and reliable color-free object pro-

posal generators.

We believe that using color-free vision systems in

soccer robotics is relevant, because this eliminates the
constraint of having objects on the field with specific
colors (e.g. the lines), and because it eliminates the need

for calibration of the vision systems (before and/or dur-
ing the games), making it possible to play soccer under
variable lightning conditions (e.g. indoors near big win-

dows or outdoors).

The goal of this paper is to propose a color-free vi-

sion system for humanoid soccer robotics, which will be
validated in the SPL. The main features of this system
are (i) real-time operation in humanoid robots (specifi-

cally in the NAO v5 robots that are part of the official
platform for the SPL), and (ii) the ability to detect the
ball position, the robots’ pose, the lines, and key field
features very robustly. In fact, as it will be shown in Sec-

tion 5, the proposed ball, robots and robots’ orientation
detectors are highly performant; they achieve very high
detection rates, measured under realistic RoboCup SPL

game conditions.

To the best of our knowledge, the proposed system
is the first color-free vision system for humanoid soccer
robotics that is able to run in real-time, with a per-
formance that allows its use in robotics world champi-

onships. It is very important to stress this point, be-
cause in images acquired under real-world conditions,
the objects are much difficult to detect than in standard

databases. For instance, ball perception is prone to have
image blurring produced by the fast movement of the
ball and the unstable walking of the robots. The pro-
posed vision system was used by our team, UChileRT,

in the RoboCup 2018 Word Competition, and its robot
detector in the RoboCup 2017 Word Competition.

The main technical contributions of this paper are
the following: (i) the proposal of a vision framework

that combines concepts of deep learning and cascade
classification to obtain, at the same time, high detec-
tion rates and fast processing, (ii) the use of a training
methodology based on bootstrap and active learning,

and (iii) the proposal of a method that is able to ac-
curately determine the orientation of an opponent hu-
manoid robot player by using a combination of heuris-

tics and CNNs.

A preliminary version of this work was presented

in Leiva et al. (2019). In this extended version a much
deeper explanation of the proposed color-free vision sys-
tem and its main modules is provided, as well as a better

description of the design and training of the CNN-based
detectors. The structure of all of the proposed CNN de-
tectors is explicitly described, as well as new detection

results in real soccer fields. In addition, in this extended
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version the proposed framework is also validated in a
different domain (detection of human soccer players in
thermal images) to show its applicability beyond soccer
robotics.

The paper is organized as follows: related work is
presented in Section 2; the proposed color-free vision

system is described in Section 3. Section 4 describes the
design and training of the proposed CNN-based detec-
tors. The experimental validation and results are shown

in Section 5; and finally, conclusions and suggestions for
future work are presented in Section 6.

2 Related work

Since 2016, CNNs have been used for detecting the
robots and/or the ball in the SPL and humanoid
RoboCup leagues (Albani et al., 2017; Speck et al.,

2017; Cruz et al., 2018; Javadi et al., 2018; Menashe
et al., 2018; Gabel et al., 2019; Speck et al., 2019; Fel-
binger et al., 2019; Kukleva et al., 2019; Poppinga and
Laue, 2019; Teimouri et al., 2019).

In Albani et al. (2017), the first CNN-based robot
detector for the SPL league was proposed. In this sys-

tem, robot proposals are first computed by using color-
segmentation based techniques, and then, a CNN is
used for validating the robot detections. Different archi-

tectures with three, four, and five layers are explored. In
the reported experiments, the 5-layer architecture was
able to obtain 100% accuracy in the SPQR NAO image

data set, also proposed in Albani et al. (2017). However,
evaluating a detector using this dataset is different from
evaluating it in real game conditions, which have much
harder requirements. The detector was able to run at

11-19 fps on a NAO robot when all non-related pro-
cesses (such as self-localization, decision-making, and
body control) were disabled. Because of the latter, this

detector could not be used to play soccer in real soccer
games.

In Javadi et al. (2018), the performance of
three well-known CNN architectures (namely LeNet,
GoogLeNet, and SqueezeNet) was analyzed in the task
of detecting humanoid robots. In this study, however,

no real-world deployment was presented.

In Poppinga and Laue (2019), a proposal-free robot

detector based on CNNs was presented. The proposed
network has an adaptable architecture, it is multi-scale,
and uses separable convolutional blocks (Howard et al.,

2017). The authors also proposed a novel training pro-
cedure inspired in the generator-discriminator adver-
sarial learning paradigm, which allowed training the

networks using real and simulated images at the same
time. The trained detectors were able to detect robots

under realistic conditions, and the obtained detection

time was 9.0 ms for a single image. In case that a sim-
ilar approach is used to detect other objects (e.g. the
ball), it is not clear that those detectors would be able

to run simultaneously in real-time.

In Cruz et al. (2018), we presented a CNN-based
robot detector, capable of operating in real-time. The

system was based on the classification of color-based
robot proposals generated by B-Human’s robot percep-
tor (Röfer et al., 2017). This was modeled as a binary

classification problem, where proposals could be labeled
as robots or non-robots. The system processed robot
proposals in ∼1 ms while playing soccer, with an aver-
age accuracy of ∼97%. Although this detector achieved

a very high performance, it possessed some drawbacks.
While the CNN classifier was robust to noise and varia-
tions of the illumination, the same did not apply to the

color-based robot proposal generator. Adverse environ-
mental conditions could lead the algorithm to produce
an excessive amount of object hypotheses, or none at
all. The second drawback derived from the CNN ∼1

ms inference time. While such a network is deployable
on a NAO robot, it is much slower than alternative al-
gorithms based on heuristics or shallow classifiers, and

can be prohibitively slow when too many robot pro-
posals are generated. In this paper we address both
problems by changing the robot proposals generation

approach, and by further reducing the inference times
while maintaining the detection accuracy.

In Speck et al. (2017), the first CNN-based ball de-

tector for the RoboCup humanoid league was proposed.
The detector used two CNNs, which were able to obtain
a localization probability distribution for the ball over

the horizontal and vertical image axes, respectively.
Several non-linearities were tested, with the soft-sign
activation function generating the best results. Process-
ing times in the robot platforms were not reported in

that work, and the obtained accuracy was about 80%.

In Teimouri et al. (2019), a CNN-based ball detector

for the humanoid league was presented. The proposed
architecture is multi-scale and uses separable convo-
lutional blocks (Howard et al., 2017). The detector is
not color-free, because the ball proposals are generated

considering the white and green patterns of the soc-
cer field. The obtained performance of the detector is
70.9%, and it decreases with variable lighting conditions

and blurred images.

In Menashe et al. (2018), ball detection using differ-
ent machine learning methods is analyzed. The system

considers several heuristic stages used for generating
the ball proposals, and a final classification stage im-
plemented using either a SVM or a CNN based classi-

fier. The performance of both systems is analyzed, but
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the analysis was focused on the transferability between
different soccer environments.

In Felbinger et al. (2019), a genetic design approach
for optimizing the hyper-parameters of a CNN designed
to detect the ball is presented. The focus is not on the

real-world deployment, but on the genetic based design
of the network. Nevertheless, an average runtime of 8
ms was obtained in the NAO robots.

Some other authors have proposed CNN based ball

detectors that requires a GPU for running in real-time
(Gabel et al., 2019; Speck et al., 2019; Kukleva et al.,
2019). Obviously, these detectors cannot be used in

robots that just rely on CPU-based processing (such
as the NAO robots).

In a different research line, some authors have pro-
posed end-to-end trained CNNs to detect all field’s ob-
jects without using object proposals (Szemenyei and

Estivill-Castro, 2019a,b). In Szemenyei and Estivill-
Castro (2019a), the use of two networks, one to perform
semantic segmentation of the images, and a second one

to propagate class labels between consecutive frames,
is proposed. Authors reported that the fully neural vi-
sion pipeline runs at 6 frames per second, which from
our point of view is not enough for playing soccer at

a competitive level. In Szemenyei and Estivill-Castro
(2019b), ROBO, a new CNN model inspired in the pop-
ular Tiny YOLO (Redmon and Farhadi, 2017), is pro-

posed. ROBO is able to detect all relevant objects in
the soccer field. The processing time of the different
versions of the CNN, which consider different levels of

pruning, range from 2.3 frames per second to 13 frames
per second, which obtains a Mean Average Precision
(mAP) of about 83%.

We believe that the limited processing capabilities
of humanoid robots currently used in robotic soccer,

are not sufficient to use end-to-end trained CNNs to
reliably detect all field objects in real time while playing
soccer.

3 Playing Soccer without Color Information

In this section we describe the proposed vision system.
Section 3.1 broadly explains the general characteristics

and functioning of the vision framework, while Sections
3.2 - 3.9 describe the operation of each of its main mod-
ules.

3.1 The General Framework

As already mentioned, the main feature of the proposed
vision system is that it manages to detect the ball, the

robot players, their orientations, and key features of

the field without using any color information, i.e. the

whole processing is performed using grayscale images
rather than on a color segmented image. Removing the
color segmentation step from the pipeline offers several
advantages such as reduced operation times, reduced

points of failure for the vision modules, easier pre-game
calibration, and larger range of valid camera parame-
ters since our object and field feature detectors are more

resilient to changes in illumination than color-based ap-
proaches.

The key design components that allow the ro-

bust detection of all these objects in real-time (using
robots with processing limitations) are the following: (i)
custom-made object proposals generators for each kind
of object, which are based on the characteristics of the

soccer problem, (ii) CNN-based object detectors using
a light CNN architecture specially designed for this ap-
plication (Cruz et al., 2018), (iii) a cascade classification

methodology inspired in Viola and Jones (2001), which
implements the detection of some objects (e.g., the ball)
using a two-stage classification cascade of CNN-based

detectors, where the first stage discards, very quickly,
non-objects that are very different from the objects be-
ing detected, and the second stage performs the final
classification, and (iv) the use of the detection results

of some object detectors for constraining the search of
the others. In summary, we follow a pragmatic approach
that combines classical algorithms widely used in robot

vision with modern CNN-based classifiers.
The proposed vision framework is illustrated in Fig.

1. While the detection of lines and field features is done
by using a set of rules and heuristics commonly em-

ployed in the SPL community (modules in yellow), the
detection of the ball, the robot players and their ori-
entation is done by means of object proposals (mod-

ules in green) and their subsequent classification using
CNNs (modules in blue). The ball and robot orienta-
tion detectors are implemented as a two-stage cascade

of classifiers.

3.2 High Contrast Regions Detection

Given the environmental conditions in which RoboCup
soccer matches take place (soccer field and players’
characteristics), an appropriate heuristic to speed up
the process of finding the soccer ball and other play-

ers is to search for them in high contrast regions of
the images. Accordingly, the grayscale input images are
scanned using 16x16 pixels windows to find those re-

gions. Any window laying outside the field boundary
(determined using a priori knowledge of the field di-
mensions and the pose of the robot’s camera) is au-

tomatically discarded. Windows containing body-parts
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Fig. 1 Block diagram of the proposed vision system.

of the observer robot are also discarded. Over each of
the remaining windows, a threshold for binarization is

estimated using Otsu’s method (Otsu, 1979). Only win-
dows with a corresponding binarization threshold that
is greater than a predefined value are considered to have

high-contrast properties. Since the value utilized to se-
lect those windows may leave out image regions contain-
ing objects of interest, a dilation operation is applied

on the selected windows. That is, all adjacent windows
to any window considered to have high contrast prop-
erties, according to its binarization threshold, is also
considered to have high contrast.

3.3 Robot Proposals Generator

The robot proposal generation applies vertical scan
lines (y direction) over all the image’s x-coordinates

where high contrast regions were detected. The scan
lines search for vertical abrupt contrast changes. De-
pending on the y coordinate of contrast changes found
by the scan lines, a check is performed to see if enough

of these detections have roughly the same y coordinate
across the x-direction. If this is the case, the midpoints
(in image coordinates) of all the sets of detections that

fulfill this condition are considered to be the midpoints
of the bottom segments of the bounding boxes contain-
ing the observed robot players. Then, by performing ge-
ometric sanity checks using a priori information of the

other robot players (such as their height), the proposal
generator provides a set of bounding boxes which may
contain other robots’ bodies. These sanity checks are

similar to some of the rules used in Röfer et al. (2017),
but adapted to be applied on a grayscale image. More-
over, all the rules that only rely on color information

(such as checking for a player’s jersey color, or counting
colored pixels to get specific features) are not utilized.

This approach is more robust to changes in lighting
conditions, since it relies on local contrast information

rather than on heuristic color segmentation. However, it
may produce a much larger set of proposals since it has
less filtering steps than the original pipeline proposed
in Röfer et al. (2017).

3.4 Deep Robot Detector

The obtained robot proposals are then fed to a CNN
that classifies the proposals as robots or non-robots.
This CNN is based on the architecture proposed in

Cruz et al. (2018), which will be described in Section
4.1. Using grayscale image regions allows the network
to process in real-time a large number of robot propos-

als, since the reduction of input channels from 3 (color
space) to 1 (grayscale) greatly reduces the CNN’s in-
ference time. The trained robot detection CNN will be
called RobotNet in the experiments reported in Section

5. The team of each robot in the image is determined
by analysing the region corresponding to the robot’s
shirt, which can be estimated given that the robot’s

position in the image is known, and using bounds over
the standard RGB image to determine the color of the
shirt. This approach works well since the shirts have a

very high color saturation following the official rules of
the SPL. It is important to note that this analysis does
not require the color segmented image and its computa-
tional cost is very small given that only a small region

of the image is analysed.

3.5 Lower-leg Region Proposals Generator

Inspired on the work presented in Mühlenbrock and
Laue (2018), we propose an improved orientation deter-

mination method, which makes use of CNNs in order to
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achieve much better prediction accuracy than the origi-
nal approach. The proposed method uses the bounding
boxes of the detected robots as inputs, finds the regions
that contain the lower-legs of each detected robot, and

determines the body orientation of each robot by ana-
lyzing each lower-leg region. The lower-leg of each robot
is characterized by two lines: the so-called major and

minor lines. “The major line is defined from toe to toe
and from heel to heel, while the minor line is defined as
a side line of a foot” (Mühlenbrock and Laue, 2018). Ex-

amples of both lines in different robot poses are shown
in Fig. 2.

Fig. 2 Major and minor lines depiction.

As a first step, the set of points that compose

the robots’ lower silhouette is calculated (Mühlenbrock
and Laue, 2018). Then, a region corresponding to the
robot’s feet is extracted and its Contrast-Normalized

Sobel (CNS) image (Müller et al., 2012) is analyzed by
using vertical scan lines. Over each scan line pixel an
horizontal median filter is applied and its response is

compared to a threshold. Pixels with a filter response
below the threshold are considered as part of the lower
silhouette. Then, by iterating for each scan line, the
subset of points that make up a closed convex region

can be obtained by using Andrew’s convex hulls al-
gorithm (Andrew, 1979). For each consecutive pair of
points of the convex set, a line model in field coordi-

nates is calculated. Each line model is then validated
with the set of points of the lower silhouette, by using
a voting methodology akin to the RANSAC algorithm
(Fischler and Bolles, 1981). The line with the highest

number of votes is selected as the major line. Once the
linear model has been chosen, the minor line may be
generated by iterating over the remaining pairs of con-

vex points. This line must fulfill a series of conditions
such as a minimum and maximum length, and to be
approximately orthogonal to the major line in order to

be accepted as valid. Finally, the so-called “lower-leg”
proposal is built based on the major and minor lines.

3.6 Deep Robot Orientation Detector

While the major and minor lines can be used to calcu-

late a rotation, the uncertainty on the direction of the
robot means that there could be an error of 180 degrees
in the orientation estimation. Indeed, a major or minor

line can correspond to both the front or the back of the
robot. To solve this problem, the robot orientation is
determined using a two-stage classification cascade of
CNNs, where the first CNN discards low-quality lower-

leg regions, and the second CNN determines the robot
orientation.

Thus, for each lower-leg proposal, a CNN that mea-
sures its quality, OriBoostNet, is first applied. Proposals
with too much motion blur or that do not correspond to

the robots’ feet are discarded. This results in a reduc-
tion on the number of wrong orientation estimations,
since outliers’ region proposals are discarded.

If a proposal is not discarded in the first stage of the
cascade, it is then analyzed by a second CNN, OriNet,

which classifies the lower-leg proposal as a side, front
or back region. Examples of the proposed regions and
their labels are shown in Fig. 3.

Fig. 3 Lower-leg proposals and labels depiction.

After the lower-leg proposals are classified, a con-

sistency check is carried out by imposing that no more
than one region of each class must exist for any given
robot. This further reduces the number of incorrect

orientation estimations. The rotation determination is
performed by applying the inverse tangent from two
points belonging to the major or minor lines. Then, by
using the classes (side, front, back) assigned to each

line, the direction of the line can be determined in or-
der to tackle the symmetry problem and to estimate
the correct robot orientation.

Finally, the temporal consistency of the orientation
estimation is verified; the resulting orientation is added

to a buffer that stores the last 11 estimations, and a
circular median filter is applied over it. Moreover, in
order to avoid invalid results, we consider that the ori-

entation estimation as valid only for a small period of
time if no new samples are added to the buffer.
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3.7 Ball Proposals Generator

Our ball proposal generator is inspired on the hypothe-
ses generator proposed in (HTWK, 2018). The main

differences between both approaches are the following:
(i) we only use grayscale images, (ii) we use a different
method to estimate high contrast regions (see Section

3.2), and (iii) we use the robot detections to improve
the generation of proposals.

The proposal generator uses both the detected high

contrast regions and the detected robots’ bounding
boxes to generate ball hypotheses. The high contrast
image regions are utilized because of the soccer ball’s

high contrast properties (black and white pattern),
whilst the robot detections are utilized to discard some
of the regions in which a ball detection would be highly

unlikely. This way, the detected robot’s bounding boxes
are used to filter out any high contrast region that
would lie on a detected robot’s body, keeping those re-
gions lying on the robot’s feet.

The filtered image regions are then scanned in a
pixel-wise fashion, and the radius that the soccer ball
would have for all of the traversed image coordinates is

calculated (considering prior knowledge of the field, the
ball size, and the robot’s camera pose). These radii are
used to set the support region of Difference of Gaus-

sians (DoG) filters, which are constructed and applied
for every image coordinate where a ball radius was cal-
culated. Only the highest filter responses are considered

as a ball proposal. This process follows the same prin-
ciples that the blob search performed to find keypoints
in the SIFT algorithm (Lowe, 2004).

3.8 Deep Ball Detector

The ball detection is carried out using a two-stage cas-
cade of CNNs-based classifiers, where the first CNN dis-

cards region containing objects that are very different
from balls, and the second CNN takes the final decision.

In order to speed up the detection process, the num-

ber of detected balls by the first CNN, BoostBallNet, is
limited to a maximum of five, and then, they are sorted
based on their confidence. Then, the second CNN, Ball-

Net, analyzes the sorted ball hypotheses to detect the
ball. Once the second CNN detects a ball, the remaining
hypotheses are discarded.

3.9 Field Lines & Special Features Detection

The field lines and features detection is based on the

algorithm proposed in Röfer et al. (2017). The main
difference with respect to the original approach, is that

in the proposed framework no color information is used.

To do this, a set of vertical and horizontal scan lines are
used, which save transitions from high-to-low and low-
to-high pixel’s values. This allows the detection of a set

of points which are then fed to the algorithm described
in Röfer et al. (2017), in order to associate them with
lines and other field features, such as the middle circle,
the corners, and line intersections. More details about

the algorithm can be found in Röfer et al. (2017).

4 Design and Training of the CNN-based
Detectors

In this section we describe the design and training

methodologies used to obtain the CNN based classi-
fiers used in the proposed vision framework. Section
4.1 presents the network architecture of the classifiers,
and Section 4.2 describes the active learning procedure

used to train them.

4.1 Base CNN

The proposed vision system is composed of several sta-
tistical classifiers. Each of these classifiers, RobotNet,

the robot detector, BoostBallNet and BallNet, the two
cascade-stages of the ball detector, and OriBoostNet
and OriNet, the two cascade-stages of the robot orienta-
tion estimation network– uses as base the same CNN ar-

chitecture. The preliminary version of this architecture
(miniSqueezeNet) was described in Cruz et al. (2018),
while in this work slight variations are incorporated to

achieve higher processing speeds, while maintaining ac-
curacy.

The main component of miniSqueezeNet is the ex-

tended Fire module, which was proposed in Cruz et al.
(2018), inspired by the original Fire module (Iandola
et al., 2016) and on GoogleNet’s inception module. This
module uses a 1×1 filter placed at the beginning of each

extended Fire module to compress the size of the repre-
sentation into a feature tensor with less channels. This
compressed representation is then fed to filters of differ-

ent sizes; small filters are used to extract spatially local
information, while bigger filters obtain global informa-
tion which is more spatially spread out. The features

obtained from these filters are then combined into a
single tensor by means of channel wise concatenation
and then fed to the next layer. Following this approach
allows the training of performant models whose use is

computationally inexpensive.

In Cruz et al. (2018) guidelines for designing CNN
architectures to be used in embedded systems with low

processing capabilities are proposed. The main design
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Fig. 4 Modified MiniSqueezeNet network structure.

variables are the depth of the network and the num-
ber of filters in each layer. In addition, it is proposed
to use max-pooling operations implemented using non-

overlapping windows to reduce the inference time. Fol-
lowing these guidelines and using the extended Fire
module, the so-called miniSqueezeNet was designed for

the detection of robots in real-time while playing soccer
(Cruz et al., 2018).

In this work the miniSqueezeNet is further im-
proved. First, grayscale images instead of color images
are used as inputs, which reduces the number of in-

put channels from three to one, and modifies the whole
structure of the network. Second, leaky ReLU (Maas
et al., 2013) instead of ReLU is used as activation func-

tion. Previously, we used ReLU in most layers, however,
this sometimes resulted in the “dying ReLU” problem
while training (no gradients flow backward through the
neurons). The use of leaky ReLU solves this, while in-

curring in no accuracy losses. Further fine-tuning was
performed on the networks’ structure in order to esti-
mate the correct input size and the required number of

parameters. This was done by manually modifying the
number of filters in accordance with the requirements
of the problem.

A diagram of the new base CNN structure is pre-
sented in Fig. 4. All CNN based classifiers were devel-

oped using the Darknet library (Redmon, 2013–2016),
and trained according to the methodology described in
the next section. Taking into account the specific needs

of the problem, variations on the number of convolu-
tional filters were used for each of the CNN classifiers.
The exact parameters used for each convolutional and
maxpooling layer of the trained CNNs can be found

in Table 1. Each one of this layers is then followed by
batch-normalization and a leaky ReLu activation func-
tion.

4.2 Active Learning Training Methodology

The use of an appropriate methodology for the training
of the classifiers, which considers realistic game condi-

Fig. 5 First row: robot samples, second row: ball samples,
third row: feet side samples.

tions, is crucial to obtain high performant classifiers.
We implemented an active learning procedure that se-
lects and annotates unlabeled data obtained under real-

istic conditions. The training process has several stages
which are described in the following paragraphs.

As a first step, the different CNNs are trained us-
ing publicly available soccer-robotics datasets, e.g., the

SPQR dataset (Albani et al., 2017). However, when
the trained CNNs are used for processing images ob-
tained under realistic soccer conditions, the classifiers
will likely behave poorly because there is a distribution

mismatch between this kind of images and the samples
present in the public datasets.

To address this problem, the classifiers must be fine-
tuned using the same kind of samples that would ac-

tually reach the networks during games. Examples of
such images are shown in Fig. 5. To accomplish this,
the vision system is deployed on the NAO robot and
data is collected using the objects proposal algorithms.

Each obtained proposal is classified and stored in the
robot’s memory with its corresponding label. To get
uncorrelated data, we set a constraint for the object’s

hypotheses to be saved: for the robot proposals and
lower-leg proposals for orientation determination, data
is acquired periodically in accordance to a predefined

time step; for the ball proposals, samples can only be
saved if no other proposals with the same position and
estimated radius were previously collected. The next
stage consists of actively checking the data saved by

the observer robot, and manually annotating only the
samples that were incorrectly labeled. We then aggre-
gate this data to the original data set and re-train the

models.

The above process is repeated until each CNN
reaches a high performance. By doing this, we are pro-
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Table 1 Structure of the trained CNNs.

Layer RobotNet BoostBallNet BallNet OriBoostNet OriNet

Conv 3× 3
Size 3×3 3×3 3×3 3×3 3×3
Filters 12 4 10 4 12
Stride 2 2 2 2 2

Max Pool
Size 3×3 3×3 3×3 3×3 3×3
Stride 2 2 2 2 2

Squeeze 1×1
Size 1×1 1×1 1×1 1×1 1×1
Filters 6 2 4 4 6
Stride 1 1 1 1 1

Expand 1×1
Size 1×1 1×1 1×1 1×1 1×1
Filters 6 2 4 4 6
Stride 1 1 1 1 1

Expand 3×3
Size 3×3 3×3 3×3 3×3 3×3
Filters 3 3 2 4 3
Stride 1 1 1 1 1

Expand 5×5
Size 5×5 - 5×5 - 5×5
Filters 3 - 2 - 3
Stride 1 - 1 - 1

Max Pool
Size 3×3 3×3 3×3 3×3 3×3
Stride 2 2 2 2 2

Conv 1×1
Size 1×1 1×1 1×1 1×1 1×1
Filters 2 2 2 2 3
Stride 1 1 1 1 1

Avg Pool Size Global Global Global Global Global

gressively aggregating correctly labeled samples to ac-
quire enough training data for robust feature learning,
but we are also aggregating samples which the mod-

els fail to correctly infer, to encourage changes in the
decision boundaries of the classifiers.

After we obtain proficient models by following the
described methodology, we further enhance them by
switching to a bootstrap procedure. To do this, we add

confidence-based constrains to collect new training data
in environments where the objects we want to detect
are absent. For instance, if we are getting false pos-
itives from the ball detector, we would set the NAO

robot to collect data in environments were no balls are
present, and we would store every high confidence de-
tection, relabelling them afterwards as non-balls. The

samples collected would then be used to re-train the ball
classifiers. Likewise, if the orientation detector is label-
ing a front region as a back region, generating a false

positive, we would set the NAO robot to collect data
in an environment where only back lower-leg regions
are visible to re-train the classifier. Notice that the fine
tuning procedure is applied over the detector, which

means that when a cascade of CNNs is utilized, a sam-
ple is stored based on the compound performance of the
CNNs, being the confidence constrain only considered

for the last network involved in the classification. This
active learning-bootstrap procedure results in a dra-

matic improvement in the performance of the classifiers
after only a few iterations, and also allows the fine tun-
ing of the CNN parameters by means of using data ag-

gregation when an abrupt domain change occurs. Since
the inputs to our models have relatively low dimension-
ality, the space used in the NAO memory during the
data collection process is very small, for instance, 1,000

robot proposal samples weight about 3 MB. This proce-
dure, combined with the semi-supervised selection and
labeling of the new samples, makes the training process

extremely time-wise efficient.

5 Results

5.1 CNN Classification

All classifiers were trained using the methodology de-
scribed in the previous section. Table 2 shows the ob-

tained model complexity (number of CNN parameters),
average inference time (on the NAO robot), and accu-
racy calculated over a balanced database with a 50% of

positive and 50% negative samples for each developed
CNN.

Results show that the classifiers achieve very high

performance while maintaining low inference times,
which proves that their use is suitable for real time ap-
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Table 2 Performance of the developed CNNs (Leiva et al., 2019).

Model RobotNet BoostBallNet BallNet OriBoostNet OriNet

Input size 24×24×1 12×12×1 26×26×1 12×12×1 24×24×1
No of parameters 884 125 444 246 657
Inference time (ms) 0.382 0.043 0.343 0.059 0.329
Accuracy 0.969 0.965 0.984 0.962 0.984

Fig. 6 Example images from our dataset. First row: robot
samples, second row: ball samples.

plications, such as robotic soccer. This also validates
the effectiveness of the proposed methodology for the
design and training of the classifiers. Finally, this also

shows that the use of color information is not necessary
to detect robots or balls when using classifiers such as
CNNs. In fact, the CNN used in the robot detector
achieves a similar accuracy rate that the model pro-

posed in Cruz et al. (2018), while being approximately
2.75 times faster.

5.2 Robots, Ball and Field Features Detection Systems

In order to evaluate the designed robot/ball proposal

generators and classifiers, we acquire about 600 frames
by a humanoid robot player under typical and challeng-
ing game conditions. Several lighting conditions were

imposed while collecting these frames in order to test
the robustness and reliability of our modules. Some
examples of the cropped samples obtained from these
frames can be found in Fig. 6. The complete database

will be public after paper acceptance. The analysis of
these frames allowed the extraction of empirical results
in relation to the performance of the proposals genera-

tors and the CNN based classifiers, which are shown in
Table 3. Examples of robot and ball detections can be
found in Figures 7 and 8.

Results show that the robots and ball proposals gen-
erators achieve high recall rates, while producing an av-
erage number of proposals per frame that can be pro-
cessed in real time by the subsequent classifiers. Given

the recall rate of the ball proposals module and the
percentage of true positives of the boosting stage, the
overall detection module has a very high detection rate.

In fact, our ball detector outperforms B-Human’s im-
plementation (Röfer et al., 2017), which achieves an

Fig. 7 Examples of robot detections, showing robots’ bound-
ing boxes.

Fig. 8 Examples of ball detections, showing ball bounding
boxes and confidence estimations.

overall accuracy rate of 0.697 when testing it under the
same conditions. Similarly, the robot detector achieves

high recall for the proposal generation and an overall
very high accuracy.

Finally, the field lines and features detector was
tested by comparing the difference between the real and
the estimated robot pose. The estimation was obtained

by using the field lines and features detected by our
module. By using this approach we calculated a mean
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Table 3 Performance of the robots and ball detection sys-
tems (Leiva et al., 2019).

Module Robot Detector Ball Detector

Proposals per Frame 3.05 10.3
Proposals Recall 0.972 0.993
Overall Accuracy 0.949 0.971

squared error of 40.07 mm, which indicates a suitable
accuracy and reliability.

5.3 Robot Orientation Determination

The proposed robot orientation determination system

is compared with the one proposed in Mühlenbrock and
Laue (2018) (BH: B-Human), which is the only orien-
tation determination system for NAO robots reported

in the literature. We analyzed two flavors of our sys-
tem: the proposed base orientation determination sys-
tem (UCh), and its output after applying a circular me-
dian filtering (UChF). Some examples of the detected

rotations as well as the corresponding major and minor
lines are shown in Fig. 9.

Fig. 9 Top number: confidence minor line. Middle number:
estimated rotation. Bottom number: Confidence mayor line.

In the first experiment (static robot), whose results
are shown in Fig. 10, the observer and the observed
robot are static and placed at a distance of 120cm from
each other. For each measurement the observed robot

was rotated 22.5◦ around its axis. As in Mühlenbrock
and Laue (2018), we define a false positive as any es-
timation that deviates more than a tolerance angle of

11.25◦ from the ground-truth. The orientation is classi-
fied as semi perceived when the rotation can be deter-

mined but the facing direction is unknown. The class
not perceived corresponds to any frame where the ori-
entation could not be calculated, while an orientation
estimation is perceived if it does not deviate more than

a tolerance angle of 11.25◦ from the ground-truth ori-
entation.

In the second experiment (moving robot), whose re-

sults are shown in Fig. 11, the observed robot is mov-
ing at a speed of 12.0 cm/s, while the observer remains
static. The observed robot is rotated in 45◦ around its

axis for each measurement. We define the same classes
for the orientation estimations as in the static experi-
ment, but using a tolerance angle of 22.5◦.

As shown in Fig. 10 and in Fig. 11, the proposed

method outperforms the baseline system (Mühlenbrock
and Laue, 2018). The orientation estimation is com-
pletely perceived 99.88% of the time in static condi-

tions, and 95.52% of the time in the dynamic experi-
ment. It is clear that the algorithm proposed is better at
determining the facing direction of the observed robots.

This results in an increased number of completely per-
ceived orientations while sharply decreasing the num-
ber of semi perceived orientations. Also, noise filtering
techniques such as the median filter and RANSAC al-

gorithm, combined with the utilization of a CNN con-
tribute to lowering the number of false positive esti-
mations. Finally, the integration of the circular median

filter further reduces the number of false positives.

5.4 Profiling

Table 4 shows the maximum and average execution
times for the different modules of the proposed vision
framework when deployed on the NAO v5 platform.

The results obtained show that the proposed color-free
vision system is deployable on platforms with limited
processing capacity (such as the NAO robot). In addi-

tion, they prove the importance of the dimensionality
reduction of CNN-based classifier inputs, and how this
design decision impacts the performance of the system
from a time-efficiency point of view.

5.5 Approach Comparison

To further validate our approach, we compare the pro-
posed detectors to those included in the latest re-
lease of the B-Human soccer code (Röfer et al., 2019).

The comparison is performed on a realistic simulator
(Cruz and Ruiz-del Solar, 2020) able to produce im-
ages that closely match reality by using a generative
model, trained with images collected from real soccer

environments. Samples from the realistic simulator are
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Fig. 10 Results obtained for the first experiment. Graph shows a performance comparison between raw (UCh) and filtered
(UChF) estimations for our orientation detector and a B-Human system replication (BH). (Leiva et al., 2019)
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Fig. 11 Dynamic experiment results. Graph shows a performance comparison between raw (UCh) and filtered (UChF)
estimations for our orientation detector. (Leiva et al., 2019)

Table 4 Vision framework profiling. Maximum (Max.) and
Average (Avg.) processing time in a NAO v5 platform (Leiva
et al., 2019).

Module Max. (ms) Avg. (ms)

High Contrast Regions Detector 2.755 1.478
Field Lines & Features Detector 2.909 1.300
Robot Proposals Generator 2.692 1.083
Robot Detector 2.417 0.939
Robot Orientation Detector 4.537 1.366
Ball Proposals Generator 2.506 1.132
Ball Detector 6.959 2.452

show in Fig. 12. The simulator is able to randomly shift
the pose of the robot in the field as well as the pose of
all the other objects in the scene (opponent robots and

ball). Moreover, the simulator is also able to provide
ground truth information to calculate precise statistics.

We use this simulator to evaluate the performance

of the proposed ball and robot detector systems as well
as the performance of the robot (Javadi et al., 2018)
and ball detectors systems of the B-Human team. Given

that teams use different pipelines to detect objects, we
define a detection system as the combination of modules
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Fig. 12 Image samples generated by the realistic simulator and used to estimate performance metrics.

Table 5 Performance of the robots detection systems.

Robot detector system Ours B-Human

Detector recall 0.847 0.702
Detector precision 0.985 0.962
Average time (ms) 2.0 4.5

that are used to detect an object in the scene. For our
framework this means a combination of the region pro-

posal extractor and the region classifier. Other teams
use different approaches such as B-Human’s robot de-
tector system which is composed of an end-to-end de-

tection model.

All four systems were trained using a data set com-
posed of real samples. In the case of our ball and robot

detectors we use the exact same models that were used
to achieve the results presented in Table 2. Table 5
presents the metrics collected for both robot detec-

tors systems, while Table 6 presents the results of the
ball detector systems. The reported recall and precision
metrics correspond to the detection system as a whole,

in accordance to how results are presented in (Javadi
et al., 2018). The module’s average times are measured
on a NAO v5 robot.

From Table 5 it can be seen that our method offers
better recall than its B-Human counterpart. We found
that this difference is the result of a better detection

rate of robots facing sideways to the camera. Further-
more, our proposed methodology is less computation-
ally expensive when tested on a NAO v5 robot, running

at more than double the average speed when compared
to the B-Human approach, as reported in (Javadi et al.,
2018). We attribute this to the simplicity of our CNN
model, which achieves state of the art performance with

fewer computations.

Table 6 shows the corresponding metrics for the ball

detector systems. Both approaches are very similar and
consist on a region proposal extractor followed by a
CNN classifier that takes as input the proposed region

in gray scale and outputs the probability that the sam-
ple corresponds to a ball. This is then followed by an

Table 6 Performance of the ball detection systems.

Ball detector system Ours B-Human

Detector recall 0.806 0.831
Detector precision 0.987 0.986
Average time (ms) 3.4 −

estimation of the ball’s position in the image. Given

the similarity of the approaches, it is not surprising
that both methods achieve very similar performances
in terms of recall and precision. We report the average

time of our proposed methodology on a NAO V5, how-
ever the average time in a NAO V5 for the B-Human
detector is not reported in the literature.

The above results show that the proposed vision
framework is competitive with the ones of other teams
that consistently reach top spots on the SPL, such as
B-Human. This speaks to the overall quality of the pro-

posed system.

5.6 Applicability in Other Domains

We hypothesize that the effectiveness of a vision sys-
tem built using the proposed approach in a different
domain, would depend on the availability of exploitable

patterns and regularities in that domain. Furthermore,
for such system to function in real-time, its applica-
bility would be restricted to domains in which hand-

engineering computationally inexpensive proposal gen-
erators is feasible.

Such domains correspond, for instance, to struc-
tured environments in which the lighting conditions

and the overall geometrical layout of the scene are sta-
ble over time. This kind of environments usually corre-
sponds to some indoor spaces, such as industrial plants,

and warehouses. Stores and hotels are also viable candi-
dates for this kind of approach. In recent years, robots
have begun to become more ubiquitous in this kind of

working environments to offload some work from hu-
man operators by performing tasks such as greeting cos-
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tumers, and delivering room service. Since these kind
of robots are often low cost, they usually have low com-
putational capacity, which renders them an ideal target
to implement vision systems similar to those proposed

on this paper.

Unstructured environments may also be approach-
able when using images that contain information re-
garding their state that simplify their complexity. For

instance, the problem of generating proposals for object
detection in a complex indoor scene may be simplified
if depth or thermal information is available, and the
target objects have a known shape and size.

As a proof of concept of these ideas, we implemented

a detector for human soccer players as observed by
thermal cameras (see Fig. 13). The detector consists
of a proposal generator similar to that described in
Section 3.7, and a CNN-based classifier that has the

RobotNet architecture (see Table 1).

For training and evaluating this detector, the data
set presented in Gade and Moeslund (2018) was uti-
lized. This data set is constructed by stitching three
simultaneously obtained thermal images from an AXIS

Q1922 thermal camera, resulting in 1920×480 pixels
images. These images contain between six to eight soc-
cer players in and indoor field (Gade and Moeslund,

2018).

As a proposal generator of the human players, the
ball proposal generator described in Section 3.7 was
modified so that the support region of the DoG fil-
ters applied would coarsely match the silhouette of the

players. Moreover, these non-square filters were applied
using two different scales. Contrary to the approach
adopted for ball detection, the proposal generator this

time was applied over the entire image. The produced
proposals are resized to 32×32 pixels, and fed to a CNN-
based classifier that was trained using labeled proposals
from a fraction of the data set.

Figure 13 shows the results provided by the detector

over two image samples. The performance metrics for
the detector are displayed in Table 7. The performance
of the detector could be further improved using track-

ing, which integrates information over time and thus
reduces the number of false negatives by propagating
information between consecutive frames, as proposed in
Gade and Moeslund (2018). Including more heuristics

to the region proposal generator could also improve the
overall detector’s performance. However this falls out-
side the scope of this paper. Overall, these results sup-

port our hypothesis regarding the applicability of the
proposed approach to domains beyond the RoboCup
SPL, as suitable solutions can be obtained by construct-
ing systems based on some of the processing pipelines

of our detectors and their CNN-based classifiers.

(a)

(b)

Fig. 13 Human soccer players’ detection in thermal cameras.
(a) Correctly detected players, (b) a false negative detection,
and two players incorrectly grouped as one.

Table 7 Performance of the human soccer players detector.

Module Detector

Proposals per Frame 15.2
Detector System Recall 0.806
Detector System Precision 0.935

6 Conclusions

This paper describes a new vision framework that does
not use any color information. This is a novel ap-
proach for vision systems designed for the RoboCup

SPL, achieving very high performance while being com-
putationally inexpensive.

The proposed vision system we present introduces
four new modules: a redesigned robot detector, a visual

robot orientation estimator, a brand new ball detector,
and finally, a color-free field lines and features detector.
All modules developed for this paper are able to run
simultaneously in real-time when deployed on a NAO

robot playing soccer.

Moreover, we demonstrate that CNN-based classi-
fiers are a useful tool to solve most of the perception
requirements of humanoid soccer robotics, and gener-

ally translate in an overall better performance of the
corresponding modules when coupled with good region
proposal algorithms, and a proper use of design and

training techniques.

Furthermore, the proposed framework is success-
fully validated in a different domain, where human soc-
cer players are detected using thermal images. This

shows the applicability of the proposed framework be-
yond soccer robotics.
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Abstract. The main goal of this paper is to analyze the general problem of 

using Convolutional Neural Networks (CNNs) in robots with limited 

computational capabilities, and to propose general design guidelines for their 

use. In addition, two different CNN based NAO robot detectors that are able to 

run in real-time while playing soccer are proposed. One of the detectors is 

based on the XNOR-Net and the other on the SqueezeNet. Each detector is able 

to process a robot object-proposal in ~1ms, with an average number of 1.5 

proposals per frame obtained by the upper camera of the NAO. The obtained 

detection rate is ~97%. 

Keywords: Deep learning, Convolutional Neural Networks, Robot Detection 

1 Introduction 

Deep learning has allowed a paradigm shift in pattern recognition, from using hand-

crafted features together with statistical classifiers, to using general-purpose learning 

procedures to learn data-driven representations, features, and classifiers together. The 

application of this new paradigm has been particularly successful in computer vision, 

in which the development of deep learning methods for vision applications has 

become a hot research topic. This new paradigm has already attracted the attention of 

the robot vision community. However, the question is whether or not new deep 

learning solutions to computer vision and recognition problems can be directly 

transferred to robot vision applications. We believe that this transfer is not 

straightforward considering the multiple requirements of current deep learning 

solutions in terms of memory and computational resources, which in many cases 

include the use of GPUs. Furthermore, we believe that this transfer must consider that 

robot vision applications have different requirements than standard computer vision 

applications, such as real-time operation with limited on-board computational 

resources, and the constraining observational conditions derived from the robot 

geometry, limited camera resolution, and sensor/object relative pose. 

One of the main application areas of deep learning in robot vision is object 

detection and categorization. These are fundamental abilities in robotics, because they 

enable a robot to execute tasks that require interaction with object instances in the 

real-world. State-of-the-art methods used for object detection and categorization are 

based on generating object proposals, and then classifying them using a 
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Convolutional Neural Network (CNN), enabling systems to detect thousands of 

different object categories. But as already mentioned, one of the main challenges for 

the application of CNNs for object detection and characterization in robotics is real-

time operation. On the one hand, obtaining the required object proposals for feeding a 

CNN is not real-time in the general case, and on the other hand, general-purpose 

object detection and categorization CNN based methods are not able to run in real-

time in most robotics platforms. These challenges can be addressed by using task-

dependent methods for generating few, fast and high quality proposals for a limited 

number of possible object categories. These methods are based on using other 

information sources for segmenting the objects (depth information, motion, color, 

etc.), and/or by using non general-purpose, but object specific weak detectors for 

generating the required proposals. In addition, fast and/or lightweight CNN 

architectures can be used when dealing with a limited number of object categories.   

Preliminary CNN based object detection systems have been already proposed in 

the context of robotic soccer. In [1], a CNN system is proposed for detecting players 

in RGB images. Player proposals are computed by using color-segmentation based 

techniques. Then, a CNN is used for validating the player detections. Different 

architectures with 3, 4, and 5 layers are explored, all of them using ReLU. In the 

reported experiments, the 5-layer architecture is able to obtain 100% accuracy when 

processing images at 11-19 fps on a NAO robot, when all non-related processes such 

as self-localization, decision-making, and body control are disabled. In [2], a CNN-

based system for detecting balls inside an image is proposed. Two CNNs are used, 

consisting of three shared convolutional layers, and two independent fully-connected 

layers. Both CNNs are able to obtain a localization probability distribution for the ball 

over the horizontal and vertical image axes respectively. Several nonlinearities were 

tested, with the soft-sign activation function generating the best results. Processing 

times in NAO platforms are not reported in that work. From the results reported in [1] 

and [2], it can be concluded that these object detectors cannot be used in real-time by 

a robot with limited computational resources (e.g. a NAO robot) while playing soccer, 

without disturbing other fundamental processes (walk engine, self-localization, etc.). 

In this context the main goal of this paper is to analyze the general problem of 

using CNNs in robots with limited computational capabilities and to propose general 

design guidelines for their use. In addition, two different CNN based NAO robot 

detectors that are able to run in real-time while playing soccer are proposed. Each of 

these detectors is able to analyze a robot object-proposal in ~1ms, and the average 

number of proposals to analyze in the presented system is 1.5 per frame obtained by 

the upper camera of the NAO. The obtained detection rate is ~97%. 

2 Deep Learning in Robots with limited Computational 

Resources 

The use of deep learning in robot platforms with limited computational resources 

requires to select fast and lightweight neural models, and to have a procedure for their 

design and training. These two aspects are addressed in this section. 
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2.1 Neural Network Models 

State-of-the-art computer vision systems based on CNNs require large memory and 

computational resources, such as those provided by high-end GPUs. For this reason, 

CNN-based methods are unable to run on devices with low resources, such as 

smartphones or mobile robots, limiting their use in real-world applications. Thus, the 

development of mechanisms that allow CNNs to work using less memory and fewer 

computational resources, such as compression and quantization of the networks, is an 

important research area. 

Different approaches have been proposed for the compression and quantization of 

CNNs. Among them, methods that compute the required convolutions using FFT 

[16], methods that use sparse representation of the convolutions such as [17] and [18], 

methods that compress the parameters of the network [19], and binary approximations 

of the filters [5]. This last option has shown very promising results. In [5], two binary-

based network architectures are proposed: Binary-Weight-Networks and XNOR-

Networks. In Binary-Weight-Networks, the filters are approximated with binary 

values in closed form, resulting in a 32x memory saving. In XNOR-Networks, both 

the filters and the input of convolutional layers are binary, but non-binary non-

linearities like ReLU can still be used. This results in 58x faster convolutional 

operations on a CPU, by using mostly XNOR and bit-counting operations. The 

classification accuracy with a Binary-Weight-Network version of AlexNet is only 

2.9% less than the full-precision AlexNet (in top-1 measure); while XNOR-Networks 

have a larger, 12.4%, drop in accuracy. An alternative to compression and 

quantization is to use networks with a low number of parameters in a non-standard 

CNN structure, such as the case of SqueezeNet [3]. Vanilla SqueezeNet achieves 

AlexNet accuracy using 50 times fewer parameters. This allows for more efficient 

distributed training and feasible deployment in low-memory systems such as FPGA 

and embedded systems such as robots. In this work, we select XNOR-Net and 

SqueezeNet for implementing NAO robot detectors, and to validate the guidelines 

being proposed. 

2.2 Design and Training Guidelines 

We propose general design guidelines for CNNs to achieve real-time operation and 

still maintain acceptable performances. These guidelines consist on an initialization 

step, which sets a starting point in the design process by selecting an existing state-of-

the-art base network, and by including the nature of the problem to be solved for 

selecting the objects proposal method and size, and an iterative design step, in which 

the base network is modified to achieve an optimal operating point under a Pareto 

optimization criterion that takes into account inference time and the classification 

performance. 

Initialization 

- Object Proposals Method Selection: A fast method for obtaining the object 

proposals must be selected. This selection will depend on the nature of the problem 

being solved, and on the available information sources (e.g., depth data obtained by a 

range sensor). In problems with no additional information sources, color-based 
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proposals are a good alternative (e.g., in [12]). 

- Base Network Selection: As base network a fast and/or lightweight neural 

model, as the ones described in sub-section 2.1 must be selected. As a general 

principle, networks already applied in similar problems are preferred. 

- Image/Proposal Size Selection: The image/proposal size must be set accordingly 

to the problem’s nature and complexity. Large image sizes can produce small or no 

increases in classification performance, while increasing the inference times. The 

image size must be small, but still large enough to capture the problem’s complexity. 

For example, in face detection, an image/window size of 20x20 pixels is enough in 

most state-of-the-art detection systems. 

Sequential Iteration 

A Pareto optimization criterion is needed to select among different network’s 

configurations with different classification performances and inference times. The 

design of this criterion must reflect the importance of the real-time needs of the 

solution, and consider a threshold, i.e. a maximum allowed value, in the inference 

time from which solutions are feasible. By using this criterion, the design process 

iterates for finding the Pareto’s optimal number of layers and filters: 

- Number of layers: Same as in the image size case, the needed number of layers 

depends on the problem complexity. For some classification problems with a high 

number of classes, a large number of layers is needed, while for two-class 

classification, high performances can be obtaining with a small number of layers (e.g. 

as small as 3). One should explore the trade-off produced with the number of layers, 

but this selection must also consider the number of filters in each layer. In the early 

stages of the optimization, the removal of layers can largely reduce the inference time 

without hindering the network’s accuracy. 

- Number of filters: The number of filters in each convolutional layer is the last 

parameter to be set, since it involves a high number of correlated parameters. The 

variations in the number of filters must be done iteratively with slight changes in each 

step, along the different layers, to evaluate small variations in the Pareto criterion. 

The proposed guidelines are general, and adaptations must be done when applying 

them to specific deep models and problems. Examples of the required adaptations are 

presented in Section 3.1 and 3.2 for the SqueezeNet and XNOR-Net, respectively. 

3 Case Study: Real-time NAO Detection while Playing Soccer 

The detection of other robots is a critical task in robotic soccer, since it enables 

players to perceive both teammates and opponents. In order to detect NAO robots in 

real-time while playing soccer, we propose the use of CNNs as image classifiers, 

turning the robot detection problem into a binary classification task, with a focus on 

real-time, in-game use. Under this modeling, the CNN based detector will be fed by 

object proposals obtained using a fast robot detector (e.g. the one proposed in [12]). 

Since the main limitation for the use of CNNs in robotic applications is the 

memory consumption and the execution time, we select two state-of-the-art CNNs to 

address the NAO robot detection problem: SqueezeNet [3], which generates 

lightweight models, and XNOR-Nets [5], which produces fast convolutions. NAO 
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robot detectors using each of those networks are designed, implemented and 

validated. In both cases, the proposed design guidelines are followed, using the same 

Pareto criterion, with a maximum processing time of 2ms to ensure real-time 

operation while playing soccer. 

One important decision when designing and training deep learning systems is the 

learning framework to be used. We analyzed the use of three frameworks with focus 

on deployment in embedded systems: Caffe [13], TensorFlow [14], and Darknet [15]. 

Even though Caffe is implemented in C++, its many dependencies make the 

compatibility in 32-bit systems highly difficult. Tensorflow is also written in C++ (the 

computational core), but it offers a limited C++ API. Hence, we chose Darknet, which 

is a small C library with not many dependencies, which allows an easy deployment in 

the NAO, and the implementation of state-of-the-art algorithms [5].  

For the training and validation of the proposed networks we use the NAO robot 

database published in [1], which includes images taken in various game situations and 

under different illumination conditions. 

3.1 Detection of NAO Robots using SqueezeNet  

In the context of implementing deep neural networks in systems with limited 

hardware, such as the NAO robot, SqueezeNet [4] appears as a natural candidate. 

First of all, the small model size allows for network deployment in embedded systems 

without requiring large portions of the memory to store the network parameters. 

Second, the reduced number of parameters can lead to faster inference times, which is 

fundamental for the real-time operation of the network. 

These two fundamental advantages of the SqueezeNet arise from what the authors 

call a fire module (see Figure 1 (a)). The fire module is composed of three main 

stages. First, a squeeze layer composed of 1x1 filters, followed by an expand layer 

composed of 1x1 and 3x3 filters. Finally, the outputs of the expand layer are 

concatenated to form the final output of the fire module. 

The practice of using filters of different sizes and then concatenating their outputs 

is not new, and has been used in several networks, most notably in GoogLeNet [6], 

with its inception module (see Figure 1 (c)). This module is based on the idea that 

sparse neural networks are less prone to overfitting due to the reduced number of 

parameters and are theoretically less computationally expensive. The problem with 

creating a sparse neural network arises due to the inefficiency of sparse data 

structures. This was overcome in GoogLeNet by approximating local sparse structures 

with dense components as suggested in [7], giving birth to the naïve inception 

module. This module uses a concatenation of 1x1, 3x3, and 5x5 filters; 1x1 filters are 

used to detect correlation in certain clusters between channels, while the larger 3x3 

and 5x5 filters detect more spatially spread out of the clusters. Since an 

approximation of sparseness is the goal, ReLu activation functions are used to set 

most parameters to zero after training. The same principle is at the core of the fire 

module, which concatenates the outputs of 1x1 and 3x3 filters, but eliminating the 

expensive 5x5 filter. While concatenating the results of several filter’s sizes boost 

performance, it has a serious drawback: large convolutions are computationally 
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expensive if they are placed after a layer that outputs a large number of features. For 

that reason both, the fire module and the inception module, use 1x1 filters to reduce 

the number of features before the expensive large convolutions. The 1x1 filter was 

introduced in [9] as a way to combine features across channels after convolutions, 

while using very few parameters. 

 
 

(a) (b) 

 
(c) 

Figure 1. (a) Fire module from SquezeNet [3]. (b) Extended fire module (proposed here). (c) 

Inception module from GoogLeNet [6]. 
 

The main difference between the inception module and the fire module 

approaches to dimension reduction lies in the structure. The inception module has 

each of the 1x1 filter banks feeding only one of the large convolutional filters of the 

following layer, so there are as many 1x1 filter banks in the feature reduction layer as 

there are large convolutions in the next layer. However, if we assume a high 

correlation between the outputs of each of the 1x1 filter banks in the feature reduction 

layer, all filters in this layer could be condensed into only one 1x1 filter bank that 

feeds all the filters in the next layer. This approach was taken by the creators of the 

SqueezeNet. In our experiments, we found that adding a 5x5 filter bank to the expand 

layer of the fire module, in what we called an extended fire module (proposed here), 

can boost performance. The extended fire module was developed for this paper, and is 

shown in Figure 1 (b). In this modified structure one 1x1 filter bank of the squeeze 

layer feeds the 1x1, 3x3 and 5x5 filters, further confirming the idea that the 1x1 filter 

banks of the inception module are heavily correlated in some cases, and can be 

compressed in just 1 bank. 

In order to adapt the SqueezeNet to embedded systems some changes need to be 

made to the vanilla architecture of SqueezeNet, in particular to the depth of the 

network and the number of filters in each layer. We recommend resizing the network 

in order to achieve optimal inference time by following the guidelines postulated in 
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Section 2. However, the size reduction usually comes with reduced network accuracy. 

To solve this problem, we propose to use the following two strategies. First, in case of 

reduced accuracy due to network resizing, we propose replacing the ReLu activation 

function with a PreLu activation function in early layers as suggested in [10]. If this 

approach fails to deliver extra accuracy, then replacing standard fire modules with 

extended fire modules can increase the quality of the network. The overall inference 

time can be further diminished without reducing accuracy by implementing all 

maxpool operations using non-overlapping windows as suggested in [11]. The 

proposed iterative algorithm to produce an optimal network is presented in Figure 2. 
 

reduce image size 

make maxpool windows non-overlapping 

while network can be improved according to a Pareto criteria do 

    resize the network in term of layers and filters following the guidelines in Section 2 

    if the accuracy is lower than desired do 

        replace the ReLu activation functions of initial layers by PreLu 

    end if 

    if the accuracy is lower than desired and using PreLu doesn’t improve accuracy do 

        replace fire modules by extended fire modules 

    end if 

end while 

end optimization 
Figure 2. Guidelines for real-time SqueezeNet implementation in embedded systems. 

 

Table 1 presents execution times and classification performances achieved by 

different variants of the Squeeze network obtained by following the design procedure 

shown in Figure 2. First, the SqueezeNet, designed originally for the ImageNet 

database, was modified (NAO adapted SqueezeNet) to provide the correct number of 

output classes, and the size of the input was changed to match the size of the used 

region proposals. This network was further changed by reducing the number of filters 

and layers according to the guidelines in Section 2, substituting ReLu with PreLu 

activation function in the first convolutional layer of the network, and using maxpool 

operations with non-overlapping windows, giving birth to the miniSqueezeNet2 

variant. For miniSqueezeNet3 several image input sizes were tested and 24x24 was 

found to have the right dimensions to achieve low inference time while preserving 

accuracy. To further reduce inference time, the number of filters was also diminished. 

Finally, in the miniSqueezeNet4 variant the number of layers and filters was further 

reduced, and the remaining fire module was replaced by the newly developed 

extended fire module. The structure of miniSqueezeNet4 is shown in Figure 3.  

Interestingly as the inference time and number of free parameters decreases the 

network becomes more accurate. It is important to note that simply reducing the 

number of filters and layers is not a good method to achieve real-time inference, since 

following this simple approach will result in very poor network accuracy. Instead, by 

methodically and iteratively applying the proposed guidelines and testing the network, 

one can achieve very low inference time while retaining or even increasing accuracy. 

Another factor to take into account is that the network’s size reduction can lead to a 

higher accuracy for small datasets due to the overfitting reduction, given the smaller 

number of tunable parameters. In the context of the RoboCup this characteristic 
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becomes extremely relevant since datasets are small, because the building process is 

slow. 
 

Table 1. Inference times and classification results for different SqueezeNet networks. 

Name of the network Inference time on the NAO [ms] Classification Rate [%] 

NAO adapted SqueezeNet 68.4 51.25 

miniSqueezeNet2 3.5 92.5 

miniSqueezeNet3 1.55 96.33 

miniSqueezeNet4 1.05 98.30 

 

 
Figure 3. Diagram of the miniSqueezeNet4 network designed in Section 3.1. 

3.2 Detection of NAO Robots using XNOR-Net  

Since the use of deep learning approaches in robotic applications becomes limited by 

memory consumption and processing time, many studies have been conducted trying 

to compress models or approximate them using various techniques. In [4] it is stated 

that 70-90% of the execution time of a typical convolutional network is used in the 

convolution layers, so it is natural to focus the study in how to optimize or 

approximate those layers. From the many options that have been proposed in the last 

few years, XNOR-Nets [5] becomes an attractive option due to its claim to achieve a 

58x speedup in convolutional operations. This speedup is produced since both the 

input representation in each layer, and the associated weights, are binarized. Hence, a 

single binary operation can replace up to 64 floating point operation (in a 64-bit 

architecture). However, since not all operations are binary, the theoretical speedup is 

around 62x, and in [5] a practical 58x speedup is achieved. 

However, even if these results are promising, implementations on embedded 

systems need to consider the target architecture, which affects directly the speedup 

obtained by the binary convolutions. For example, in CPU implementations, two 

critical aspects are the word length and the available instruction set. In the specific 

case of the NAO, which uses an Intel Atom Z530, the word length is 32-bits, which 

halves the theoretical speedup, and the instruction set does not support hardware bit-

counting operations, which are needed for an optimal implementation, since counting 
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bits is an important factor in XNOR layers, as they replace sums in convolutions. 

Since the authors of [5] do not release their optimized CPU version of XNOR-

Nets, we use our own, by implementing the binary counterparts of the popular gemm 

and im2col algorithms, obtaining an asymptotic speedup of 15x in the convolutional 

operations, with the bottleneck being the bit counting operations, which are computed 

by software algorithms. 

The design of convolutional networks using XNOR layers for specific, real-time 

applications must follow the design procedure explained in Section 2. However, since 

the XNOR layers are approximations of normal convolutions, in each design step, 

both the XNOR and the full precision versions of the used CNN architecture must be 

considered, in order to perform the next step, since some architectures take more 

advantage than others of the binarization. Furthermore, it is important to remark that 

even though XNOR layers can substitute any convolutional layers, it is not convenient 

to replace the first and the last convolution layers, since binarization in those layers 

produces high information losses. 

To validate the proposed design methodology for the specific XNOR-Net 

architecture, we consider as base networks the following three, as well as their 

binarized versions: AlexNet, the convolutional network proposed in [15] for the 

CIFAR-10 database (here called Darknet-CIFAR10), and another network for the 

CIFAR-10 database, also proposed in [15] (here called Darknet-CIFAR10-v2). The 

performances of these three base networks, and their binarized counterparts, are 

shown in Table 2. We chose Darknet-CIFAR10-v2 for applying our design guidelines, 

since it achieves high classification performance, using much less computation 

resources than the other two networks. As a result of applying the proposed design 

guidelines, the miniDarknet-CIFAR10 network shown in Figure 4 is obtained, which 

achieves a slightly lower classification performance than Darknet-CIFAR10-v2, but 

has an inference times of less than one millisecond (see last two rows in Table 2). 

 
Figure 4. Diagram of the miniDarknet-CIFAR10 network designed in Section 3.2. 

Table 2. Inference times and classification results for XNOR-Networks 

Name of the network Inference time on the 

NAO [ms] 

Classification 

Performance [%] 

Alexnet Full precision 7400 97.2 

XNOR 1500 97.8 

Darknet-CIFAR10 Full precision 4400 99.2 
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XNOR 400 93.8 

Darknet-CIFAR10-

v2 

Full precision 48 98.6 

XNOR 11.5 98.1 

miniDarknet-

CIFAR10 

Full precision 0.9 97.6 

XNOR 0.95 96.6 

 

3.3 Robot Detection while Playing Soccer 

The two deep learning based detectors described in the two former sub-sections need 

to be fed using region proposals. As region proposals generator we choose the 

algorithm described in [12]. This algorithm scans the NAO image using vertical 

scanlines, where non-green spots are detected and merged into a bounding-box, which 

constitutes a region proposal. This algorithm runs in less than 2ms in the NAO [12], 

and although it shows excellent results on simulated environments, it fails under 

wrong color calibration and challenging light conditions, generating false detections, 

which is why a further classification step is needed. 

The computation time of the whole NAO robot detection system (proposal 

generation + deep based robot detector) is calculated by adding the execution time of 

the region proposal algorithm, and the convolutional network inference time 

multiplied by the expected number of proposals. To estimate the expected number of 

proposals, several realistic game simulations where run using the SimRobot simulator 

[12], and then the number of possible robot proposals was calculated for each of the 

cameras. The final execution times are presented in Table 3. It is important to note 

that we use the average number of proposals in the upper camera, since the lower 

camera rarely finds a robot proposal.  
Table 3. Execution time of the robot detection system. 

Regions proposal time 0.85 [ms] 

Selected network inference time (XNOR-Net) 0.95 [ms] 

Average number of proposals (in the upper NAO camera) 1.5 

Average total detection time 2.275 [ms] 

3.4 Discussion 

The XNOR-Net and SqueezeNet design methodologies have been validated, 

obtaining inference times and classification performances that allow deployment in 

real robotic platforms with limited computational resources, such as the NAO robot. 

The main common principles derived from the proposed methodologies are:  
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1. To select a base network taking as starting point fast and/or lightweight deep 

models used in problems of similar complexity - XNOR-Net and SqueezeNet 

seems to be good alternatives for object detection problems of a similar 

complexity than the robot detection problem described here. 

2. To select an image/proposal size according to the problem’s complexity (24x24 

pixels was the choice in the described application). 

3. To follow an iterative design process by reducing the number of layers and 

filters, following a Pareto optimization criterion that considers classification 

performance and inference time. 

In the described NAO robot detection problem, the best detectors for each network 

type (XNOR-Net and SqueezeNet) are comparable, obtaining a very similar 

performance. While the XNOR-Net based detector achieves a marginally lower 

inference time (0.95 ms against 1.05 ms), the SqueezeNet based detector gives a 

better classification performance (98.30% against 96.6%). We also validate the 

hypothesis that hybrid systems that use handcrafted region proposals that feed CNN 

classifiers are a competitive choice against end-to-end methods, which integrate 

proposal generation and classification in a single network such as Faster R-CNN, 

since the use of the first kind of methods (handcrafted proposals + deep networks) 

make possible the application of the final detector in real-time. 

It must be noted that while the reported network inference times are the ones of a 

network running in a real NAO robot, the reported classification performances 

correspond to the test results when using the SPQR database [1]. The performance 

using this database may differ from the performance in real-world conditions, since 

the data distribution in this database might be different from the one expected in real 

games. 

4 Conclusions 

In this paper two deep neural networks suited for deployment in embedded systems 

were analyzed and validated. The first one, XNOR consists on the binarization of a 

CNN network, while the second one, SqueezeNet, is based on a lightweight 

architecture with a reduced number of parameters. Both networks were used for the 

detection of NAO robots in the context of robotic soccer, and obtained state-of-the-art 

results (~97% detection rate), while having very low computational cost (~1ms for 

analyzing each robot proposal, with an average of 1.5 proposal per image). 

With this work, we show that using deep learning in NAO robots is indeed 

feasible, and that it is possible to achieve state-of-the-art robot detection while playing 

soccer. Similar neural network structures to the ones proposed in this paper can be 

used to perform other detections tasks, such as ball detection or goal post detection in 

this same context. Moreover, since the methodologies presented in this work to 

achieve real-time capabilities are generic, it is possible to implement the same 

strategies in applications with similar hardware restrictions such as smartphones, x-

rotors and low-end robot systems. 
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