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EFFICIENT SHEAR-FLEXURE INTERACTION MODEL FOR
NONLINEAR ANALYSIS OF REINFORCED CONCRETE STRUCTURAL

WALLS

A research was conducted to develop a macroscopic modeling approach that integrates ax-
ial, flexure, and shear interaction under cyclic loading conditions to obtain reliable predictions
of the nonlinear response of reinforced concrete (RC) structural walls. The model, named as
Efficient-Shear-Flexure-Interaction (E-SFI), is intended to provide accurate results for squat,
medium-rise, and slender walls, with a computationally efficient formulation that can be
used under generalized conditions. The E-SFI model, based on the Shear-Flexure Interac-
tion Multiple-Vertical-Line-Element-Model (SFI-MVLEM), incorporates a two-dimensional
RC panel behavior described with a fixed-crack-angle approach. The novel formulation re-
moves the internal degree of freedom per RC panel element of the SFI-MVLEM model by
incorporating a calibrated expression to compute the horizontal normal strain (εx), obtaining
only six degrees of freedom per element, similar to common fiber-based models. To validate
the model, an extensive shear strength database of 252 RC wall specimen tests reported in
the literature was used, obtaining an average ratio of the predicted over the experimentally
measured shear strength (Vmodel/Vtest) of 1.04 with a coefficient of variation of 0.24, indi-
cating an accurate estimation of the shear strength, as well as revealing a relatively small
dependence to wall parameters. Also, the predicted and experimentally measured hysteretic
response was compared for ten densely-instrumented RC wall specimens reported in the lit-
erature, for a shear span-to-depth ratio ranging from 0.44 to 3.0, under single or double
curvature conditions, obtaining an accurate prediction of the global, flexural, and shear dis-
placement responses. Finally, a benchmarking was developed to study the efficiency of the
E-SFI model, revealing that the novel model formulation allows an important improvement
in terms of runtime and convergence rate compared with the SFI-MVLEM.
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MODELO DE INTERACCIÓN FLEXIÓN-CORTE EFICIENTE PARA EL
ANÁLISIS NO LINEAL DE MUROS ESTRUCTURALES DE HORMIGÓN

ARMADO

Se llevó a cabo una investigación para desarrollar un modelo macroscópico que integra
la interacción axial, flexión y corte bajo condiciones de carga cíclica para obtener predic-
ciones precisas de la respuesta no lineal de muros estructurales de hormigón armado (HA). El
modelo, denominado Efficient-Shear-Flexure-Interaction (E-SFI), busca proveer de resultados
precisos para muros de baja, mediana, y alta esbeltez, con una formulación computacional-
mente eficiente que pueda ser usada en condiciones generalizadas. El modelo E-SFI, basado
en el Shear-Flexure Interaction Multiple-Vertical-Line-Element-Model (SFI-MVLEM), incor-
pora un panel de HA bi-dimensional descrito por un enfoque de modelo de ángulo fijo. La
nueva formulación remueve el grado de libertad interno por cada elemento panel de HA del
modelo SFI-MVLEM mediante la incorporación de una expresión calibrada para calcular la
deformación normal horizontal (εx), obteniendo solo seis grados de libertad por elemento,
similar a los modelos comunes basados en fibras. Para validar el modelo, una extensa base de
datos de 252 probetas de muro de HA reportadas en la literatura fue utilizada, obteniendo
un promedio de la razón entre la capacidad al corte predicha y medida experimentalmente
(Vmodel/Vtest) de 1.04 con un coeficiente de variación de 0.24, indicando una predicción precisa
de la capacidad al corte, como también revelando una relativamente baja dependencia del
modelo a los parámetros del muro. Además, se comparó la respuesta histerética predicha
y medida experimentalmente para diez probetas de muro de HA instrumentadas reportadas
en la literatura, para un rango de relación de esbeltez entre 0.44 a 3.0, bajo condiciones de
curvatura simple o doble, obteniendo una predicción precisa de la respuestas de desplaza-
miento global, flexural y de corte. Finalmente, se realizó una evaluación comparativa de la
eficiencia del modelo E-SFI, revelando que la nueva formulación permite una mejora impor-
tante en términos de tiempo de ejecución y tasa de convergencia comparado con el modelo
SFI-MVLEM.
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Chapter 1

Introduction

1.1. General
Properly detailed reinforced concrete (RC) walls are commonly used as part of the struc-

tural system to limit lateral deformations and resist the lateral loads imposed by earth-
quake ground motions and wind. Current design requirements of the ACI 318 code (ACI
Committee 318, 2019) promote flexural yielding of vertical reinforcement of walls; there-
fore, ductile flexural behavior is desirable over brittle shear failure. The global response of
RC walls is made up of flexural and shear deformation responses, and is usually classified
according to the wall aspect ratio (hw/lw) or shear-span-to-depth ratio (M/V lw), as shear-
controlled walls (M/V lw < 1.5), flexural-controlled walls (M/V lw > 2.5), and medium-rise
walls (1.5 ≤ M/V lw ≤ 2.5). Although it is a common practice to uncouple the axial-
flexural and shear behaviors, experimental test results of RC walls have shown that inelastic
axial-flexural and shear behaviors occur near-simultaneously (Oesterle et al., 1976), even for
slender walls dominated by flexural yielding (Massone et al., 2004), commonly referred to as
shear-flexure interaction (SFI).

Analytical modeling of the nonlinear response of structural RC walls can be accomplished
using microscopic (finite element) or macroscopic (behavioral) models. For models based on
the finite element method (FEM), shear-flexure interaction can be captured (Kolozvari et al.,
2019); however, due to high computational cost, and complexity in their implementation and
analysis of results, these type of models are currently less used than behavioral models. Most
of macroscopic models available nowadays do not account for shear-flexure interaction (flex-
ural models) as the Multiple-Vertical-Line-Element-Model (MVLEM; Orakcal et al., 2004),
which is adequate for relative slender walls; nevertheless, they lead to an overestimation
of the capacity and ductility of medium-rise and squat walls (Massone et al., 2006). Few
macroscopic models that include shear-flexure interaction exist nowadays (Kolozvari et al.,
2019) with various assumptions that increase the range of applicability compared to flexural
models; however, computational cost make these models actually less used in engineering
practice than uncoupled models.
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1.2. Scope
Although several analytical models are currently available to predict the nonlinear behav-

ior of RC walls, a simple yet effective macro-model that incorporates the axial-shear-flexure
interaction with accurate predictions of the global, flexural, and shear deformation responses,
from squat to slender walls, is a need. Even more, when performance-based methodologies
require for design a reliable prediction of the nonlinear response of structural members un-
der generalized loading conditions. The proposed model, based on the SFI-MVLEM model
(Kolozvari et al., 2015), incorporates a calibrated expression for computing the horizontal
normal strain (εx) in terms of local variables of the panel, such as the shear strain (γxy) and
the horizontal reinforcement ratio (ρh); therefore, the additional degree of freedom per RC
panel element is removed from the SFI-MVLEM formulation.

In summary, the primary objectives of this study are to:

1. develop a calibrated expression for the horizontal normal strain (εx) in terms of the
panel local variables without distinction between different boundary conditions and
global wall parameters, by using a database provided by a 2D-FEM RC wall analysis;

2. develop a macroscopic modeling approach for RC structural walls under reversed cyclic
loading conditions that includes the shear-flexure interaction with the proposed cali-
brated expression for computing the horizontal normal strain;

3. investigate the model sensitivity to different modeling parameters to assess its robust-
ness and accuracy, providing recommendations for its use;

4. assess the model capabilities to predict the shear strength of RC structural walls and
its dependence on wall parameters, by comparing the model prediction with the exper-
imentally measured shear strength for a database of 252 RC wall tests reported in the
literature;

5. assess the model capabilities to predict the nonlinear hysteretic behavior of RC walls
from squat to slender walls and different failure mechanisms, by comparing the pre-
dicted and experimentally measured hysteretic behaviors of ten heavily instrumented
wall specimens reported in the literature;

6. assess the model efficiency compared to the MVLEM and SFI-MVLEM models in terms
of runtime and convergence rate;

7. request the incorporation of the wall model to OpenSees for public use and future
development.

2



1.3. Organization
This dissertation is divided into five chapters. Chapter two provides a review of the

shear-flexure interaction phenomenon, the modeling approaches of structural systems, and
a general description of the principal macroscopic and microscopic models developed up to
date. Chapter three describes the proposed analytical model, the adopted reinforced concrete
panel model, and the constitutive models used for concrete and reinforcing steel. Chapter
four present a sensitivity analysis of the analytical model to shear resisting parameters and
mesh size, a comparison between the analytically predicted and experimentally measured
shear strength for a database of tests reported in the literature, a validation of the pre-
dicted hysteretic response of ten densely-instrumented reinforced concrete wall specimens
reported in the literature, and a benchmarking to assess the model efficiency. A summary
and conclusions are presented in chapter five.
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Chapter 2

Literature Review

At the beginning of this chapter, a review of the experimentally observed shear and axial-
flexural interaction is presented, followed by an overview of the main macroscopic modeling
approaches of RC structural walls with uncoupled and coupled shear and axial-flexural be-
haviors, as well as the main microscopic modeling approaches of RC structural walls reported
in the literature.

2.1. Experimental evidence of shear-flexure interaction
The coupled shear and axial-flexural behavior of RC walls was first observed by Oesterle et

al. (1976, 1979), indicating that shear yielding occurred in each specimen near-simultaneously
with flexural yielding. Further studies to assess deformation associated with flexure and shear
of RC wall specimen tests RW2 (Thomsen & Wallace, 2004) and SRCW1 (Sayre, 2003) was
developed by Massone & Wallace (2004). The applied lateral load versus flexural and shear
displacement responses of specimen RW2 is presented in Figure 2.1, indicating that inelastic
flexural and shear behaviors occur at a lateral load close to that associated with the load
to reach the wall nominal moment, despite a nominal shear capacity of approximately twice
the applied load, indicating an interaction between both deformation components, even for
slender walls dominated by flexure. Similar behavior was observed for specimen SRCW1.

(a) Flexure (b) Shear

Figure 2.1: Story deformations of specimen RW2 (Massone, 2006).
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Additional evidence of the shear-flexure interaction phenomenon in RC wall specimens
can be found in more recent researches as developed by Massone et al. (2006), Tran &
Wallace (2012), and Terzioglu et al. (2018), among others.

2.2. Modeling approaches of structural systems
Modeling approaches for nonlinear analysis of structural systems can be classified accord-

ing to the level of complexity of their formulation, which is directly related to the computa-
tional effort, from simple models such as those of concentrated plasticity to more complex
models such as those based on the finite element method. Simple uncoupled lumped plasticity
models, depicted in Figure 2.2(a), consider an equivalent linear elastic beam-column element
at the element centroidal axis with rotational, shear, and axial springs located at each end of
the element. The nonlinear behavior is described by an implemented moment-rotation and
force-deformation relationships for rotational and shear/axial springs, respectively. In dis-
tributed plasticity fiber-based models, illustrated in Figure 2.2(b), material nonlinearity can
occur at any selected section (quadrature points), which are integrated to obtain the element
response. The cross-section of a fiber-based model is simulated by a series of longitudinal
uniaxial fibers, the Bernoulli-Euler hypothesis is generally implemented at the element level,
and constitutive stress-strain relationships for materials are used, which enables coupling of
axial-flexure behavior. Fiber-based models are less computationally efficient than lumped
plasticity models; however, model resisting force is more accurate when the plastic hinge
region occurs into the element interior. Finally, the most sophisticated models are those
based on the finite element method, depicted in Figure 2.2(c), which consider a generalized
stress-strain relationship of materials with no kinematic assumptions, allowing them to be
used under more generalized conditions than the model types mentioned above. The selection
of a proper model type for a given application is based on a balance between reliability and
computational efficiency, where the reliability of the model is given by an accurate prediction
of the critical types of deformation.

Nonlinear 

hinge

(a) Lumped plasticity

Fiber

section

(b) Distributed plasticity

Finite

element

(c) Finite element

Figure 2.2: Modeling type of structural elements.
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2.3. Macroscopic models for RC structural walls
Macroscopic modeling approaches for RC structural walls can be divided into two mains

groups, models with uncoupled and coupled shear and axial-flexural behaviors. Uncoupled
models are generally accurate at both global and local response levels for relative slender
walls; however, they overestimate the lateral load capacity and ductility of medium-rise and
squat walls (Massone et al., 2006). On the other hand, coupled models can accurately predict
global and local responses from slender to squat walls, increasing the range of applicability
compared to flexural models, although its assumptions can limit the accuracy and range of
applicability.

2.3.1. Uncoupled models

2.3.1.1. Lumped plasticity models

As illustrated in Figure 2.3, lumped plasticity models consider an equivalent linear elastic
beam-column element at the wall centroidal axis with rotational, axial, and shear springs
located at each end of the element. The nonlinear behavior is described by an implemented
moment-rotation and force-deformation relationship for rotational and axial/shear springs,
respectively. Although these models are computationally efficient, they do not capture the
neutral axis along the wall cross-section and may not correctly consider the effects of rocking
of the wall and interaction with the connecting girders, in-plane of the wall and perpendicular
to the wall (Orakcal et al., 2004).

(a) Beam-column element (b) Model configuration

Figure 2.3: Beam-column element model (Orakcal et al., 2004).
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2.3.1.2. Multiple vertical line element model

The multiple vertical line element model (MVLEM) is similar to distributed plasticity fiber-
based models but with a single integration point. The model was proposed originally by
Vulcano et al. (1988), and subsequently calibrated and validated against extensive exper-
imental data at both local and global response levels by Orakcal & Wallace (2004), who
incorporated detailed cyclic stress-strain constitutive relationships for concrete and steel.
The model is available in the computational framework OpenSees (McKenna et al., 2010)
as implemented by Kolozvari et al. (2018). As shown in Figure 2.4, an MVLEM element is
described by six external degrees of freedom (DOFs) that represent horizontal and vertical
displacements and rotations at the top and bottom element nodes {δN}. Also, the kinematic
assumption of plane sections remain plane (Bernoulli-Euler hypothesis) is considered to ob-
tain the vertical strain of each one of the m uniaxial elements over the element length. A
horizontal spring placed at height ch is incorporated to account for shear response; therefore,
flexural and shear modes of deformation of the wall member are uncoupled.
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Figure 2.4: MVLEM element.

The curvature of an MVLEM element is assumed to be uniform, whereas displacement-
based element curvature is linear, and the resultant rotation is concentrated at height ch.
A value of c = 0.4 is recommended based on comparison with experimental test results
(Vulcano et al., 1988). Rotations and resulting flexural displacements are calculated based
on the wall curvature, as shown in Figure 2.5. A structural wall is modeled as a stack of n
elements placed one upon the other, resulting in a total number of N = 3(n + 1) degrees of
freedom. The global stiffness matrix [K] for a wall model is a square matrix of dimension
N × N , and the global force vector {Fint} is of dimension N × 1. The nonlinear problem
to solve consists of reaching force equilibrium in each one of the N degrees of freedom. The
MVLEM has shown to be an effective modeling approach for the flexural response prediction
of slender RC walls by contrasting the experimentally measured and predicted values of the
lateral load capacity and stiffness at different drift levels, yield point, cyclic properties of the
load-displacement response, displacement profile, average rotations and displacements over
the region of inelastic deformations (Orakcal et al., 2004).
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Figure 2.5: Flexural deformations of the MVLEM (Orakcal et al., 2004).

2.3.1.3. Force wall element

The force wall element (FWE) proposed by Vásquez et al. (2016) is a distributed plastic-
ity fiber-based beam-column model with a force-based element formulation. The kinematic
assumption of plane sections remain plane (Bernoulli-Euler hypothesis) is implemented at
element level. As depicted in Figure 2.6(a), axial and flexural behaviors are simulated by lon-
gitudinal fibers representing concrete and vertical reinforcing steel, whose properties at each
integration point are based on generalized cyclic stress-strain constitutive relationships. On
the other hand, as shown in Figure 2.6(b), the shear behavior is incorporated into the model
using a shear section characterized by a backbone relationship. The model was validated
against the cyclic response of slender shear walls (rectangular, U-shaped, and T-shaped) un-
der two-dimensional and three-dimensional conditions, obtaining accurate predictions of the
initial stiffness, peak strength, unloading/reloading stiffness, and ductility (Vásquez et al.,
2016).

(a) Simulation of flexural behavior (b) Simulation of shear behavior

Figure 2.6: Force wall element (Vásquez et al., 2016).

8



2.3.2. Coupled models

2.3.2.1. Shear-flexure interaction displacement-based fiber model

The shear-flexure interaction displacement-based fiber element model (dispBeamColumnInt)
implemented in the computational platform OpenSees was developed by Massone et al.
(2006) based on applying the methodology proposed by Petrangeli et al. (1999). As il-
lustrated in Figure 2.7, the model incorporates the shear-flexure interaction phenomenon by
replacing the m uniaxial elements of the MVLEM by two-dimensional RC panel elements
(also called strip) subjected to membrane actions. The constitutive panel element follows
the Rotating-Angle Softened-Truss-Model (RA-STM, Pang & Hsu, 1995) approach with a
more refined constitutive stress-strain model for concrete in compression. The model modifies
the original formulation of the MVLEM to accommodate displacement interpolation func-
tions and integration points for practical implementation of the model into computational
platforms, in which the displacement-based fiber model formulation is already built-in. The
vertical normal strain (εy) and shear distortion (γxy) are obtained for the entire section us-
ing the six external degrees of freedom, the kinematic assumption of plane sections remain
plane (Bernoulli-Euler hypothesis), and the assumption of constant shear strain, similar as
the MVLEM. The value of the horizontal normal strain (εx) is required to complete the
strain field of each panel element. In this formulation, a numerical procedure is implemented
to iterate over the unknown quantity of the horizontal normal strain (εx) to achieve zero
resultant horizontal normal stress within each strip (σx = 0) for trial values of the vertical
normal strain (εy) and the shear strain (γxy). When horizontal equilibrium is achieved within
each strip, global equilibrium is checked for the overall wall model by comparing the applied
and resisting forces. The analytical model prediction was contrasted with experimental test
results for monotonic loading conditions, revealing an accurate prediction of strength and
stiffness of RC structural walls with a shear-span to depth ratio greater than approximately
0.69, which is related to the assumption of zero resultant horizontal normal stress (Massone
et al., 2006).
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Figure 2.7: dispBeamColumnInt element.
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2.3.2.2. Nonlinear beam-truss model

The three-dimensional nonlinear beam-truss model implemented in the computational plat-
form OpenSees was proposed by Panagiotou et al. (2014) based on the strut-and-tie modeling
approach. The model incorporates the shear-flexure interaction phenomenon by using diag-
onal truss elements to resemble principal stress directions of concrete when approaching the
ultimate load. As seen in Figure 2.8, a structural wall model is composed of vertical and
horizontal truss elements to represent the reinforcing bars and their surrounding concrete,
and diagonal truss elements are used to represent the concrete behavior. Each truss ele-
ment is connected to two nodes, and refined cyclic constitutive stress-strain relationships for
concrete and steel are used. The analytical model was validated against RC wall specimen
tests subjected to reversed-cyclic loading conditions, obtaining accurate predictions for post-
cracking response in terms of strength and stiffness. Some shortcomings of the model are the
overestimation of the initial stiffness and strength due to the overlapping of elements, the
selection of the orientation for concrete struts, and a large number of degrees of freedom in
a wall model.

Figure 2.8: Schematic description of the beam-truss model approach for a T-shape
section wall (Lu & Panagiotou, 2014).
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2.3.2.3. Shear-flexure interaction multiple vertical line element model

The shear-flexure interaction multiple vertical line element model (SFI-MVLEM) available
in the computational platform OpenSees, was developed by Kolozvari et al. (2015) based
on the methodology proposed by Massone et al. (2006). The model incorporates the shear-
flexure interaction by replacing the m uniaxial elements of the MVLEM by two-dimensional
RC panel elements. The panel constitutive behavior follows the Fixed-Strut-Angle-Model
(FSAM, Orakcal et al., 2019) formulation. As shown in Figure 2.9, an SFI-MVLEM element
computes the vertical normal strain (εy) and the shear distortion (γxy) for the entire section
using the same six external degrees of freedom {δN} as the MVLEM model. The element
formulation considers the assumptions of plane sections remain plane and constant shear
strain across the element section. To complete the strain field of each RC panel element and
to improve computation efficiency compared to the model proposed by Massone et al. (2006),
an additional horizontal degree of freedom is added in each one of the m number of strips
{δx} to compute the unknown quantity of the horizontal normal strain (εx), by enforcing zero
resultant horizontal normal stress (σx = 0). The number of degrees of freedom in a complete
wall model is N = 3 ·(n+1)+m ·n, where n is the number of vertical SFI-MVLEM elements.
The global stiffness matrix [K] for a wall model is a square matrix of dimension N ×N , and
the global force vector {Fint} is of dimension N × 1, the nonlinear problem to solve consist
in reaching force equilibrium in each one of the N degrees of freedom. Comparisons between
the analytically predicted and experimentally measured responses for reversed-cyclic loading
conditions indicate an accurate prediction of lateral load versus top displacement response
for all considered wall specimens (with shear span-to-depth ratios between 1.5 and 3.0) in
terms of wall stiffness, lateral load capacity, and pinching behavior (Kolozvari et al., 2015).
Similar to the model developed by Massone et al. (2006), due to the assumption of zero
resultant horizontal stress, the model cannot accurately predict the behavior of squat walls.
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2.3.2.4. Shear-flexure interaction model with a calibrated expression for the
horizontal normal strain

A couple of researches were developed to include a calibrated expression for the horizontal
normal strain (εx) into a shear-flexure interaction model; therefore, no additional iterative
procedures or degrees of freedom are incorporated into a flexural model formulation, as
illustrated in Figure 2.10. The calibration performed by Massone (2010) was made over the
maximum magnitude of the average normal horizontal strain over the wall height (εx,max),
differentiating between double and single curvature conditions, and incorporating parameters
such as the horizontal reinforcement ratio (ρh); wall height (hw); wall length (lw); axial
load (N); concrete compressive strength (f ′c); wall cross-sectional area (Ag); and wall drift
(δ). Also, a shape function was incorporated for each boundary condition to represent the
distribution of the horizontal normal strain over the wall height (εx(y)). A database of two-
dimensional finite element analysis of RC walls was considered to perform the calibration.
For double curvature condition, the calibrated expression is presented in Equation 2.1. The
shape function is obtained considering that the maximum value of the horizontal normal
strain occurs at wall mid-height (εx,max = εx(hw/2)) and tends to reduce to zero at the wall
top and bottom ends, represented by Equation 2.2.

εx,max = 0.0033(100ρh + 0.25)−0.53
(
hw
lw

+ 0.5
)0.47(100N

f ′cAg
+ 5

)0.25

(100δ)1.4 (2.1)

εx(y)
εx,max

= sin0.75
(
y

hw
π
)

(2.2)

For cantilever configuration (single curvature), the calibrated expression obtained by Mas-
sone (2010) is presented in Equation 2.3. The shape function is obtained considering that
the maximum value of the horizontal normal strain occurs at height y = 0.38hw and tends
to reduce to zero at the wall top and bottom ends, represented by Equation 2.4.

εx,max = 0.0055(100ρh + 0.25)−0.44(100δ)1.4 (2.3)

εx(y)
εx,max

=


sin0.75

(
y

0.76hw
π
)

0 ≤ y ≤ 0.38hw

sin0.75
(

(y+0.24hw)
1.24hw

π
)

0.38hw ≤ y ≤ hw

(2.4)

The expressions obtained by Massone (2010) were incorporated into a shear-flexure inter-
action model. A comparison between the predicted and the experimentally measured shear
strength was performed for 252 RC wall specimen tests reported in the literature. The aver-
age shear strength ratio (Vmodel/Vtest) for all the wall specimens was 1.13, with a coefficient
of variation of 0.25. The maximum and minimum strength ratios were 1.97 and 0.56, respec-
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tively, although most of them range between 0.7 and 1.6 (89%). The shear-flexure model was
also validated against cyclic response of RC wall specimen tests reported in the literature
(Kolozvari et al., 2019), demonstrating an accurate prediction of the hysteretic behavior of
shear-dominated walls.
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Figure 2.10: SFI element with calibrated horizontal normal strain.

Another research was developed by Massone et al. (2020). In this approach, the calibra-
tion of the horizontal normal strain (εx) was performed based on the vertical normal strain
(εy) and the shear strain (γxy) of each panel element. The same database of two-dimensional
finite element analysis of RC walls used by Massone (2010) was considered to perform the cal-
ibration. A single expression was obtained without distinguishing between different boundary
conditions, nor wall parameters, as shown in Equation 2.5. The expression was incorporated
into a shear-flexure interaction model. The shear strength ratio (Vmodel/Vtest) was determined
for 252 RC wall test specimens reported in the literature. The average shear strength ratio
for all the wall specimens was 0.96, with a coefficient of variation of 0.26. The maximum
strength ratio was 1.82, whereas the minimum was 0.44; however, most of them range be-
tween 0.6 and 1.4 (90%). The analytical model was validated against the cyclic response of
two RC wall specimen tests reported in the literature, showing the ability of the model to
accurately reproduce the hysteretic behavior of squat and slender RC walls.

εx = −0.166 · |εy|+ 0.444 · |γxy| (2.5)
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2.4. Microscopic models for RC structural walls
Several microscopic analytical models for RC structural walls have been reported in the

literature over the past years, obtaining accurate predictions with fewer limitations in their
applicability than macroscopic models, due to a more generalized formulation. Some of the
more relevant micro-models that represent state of the art in modeling the nonlinear response
of RC structural walls include the VecTor2 wall element (Wong et al., 2013); the Fixed-
Strut-Angle Finite Element Model (FSAFE; Gullu & Orakcal, 2019); a four-node quadrilat-
eral curved shell element available in the commercial software DIANA (Diana, 2011); the
Quadrilateral Layered Membrane Element with Drilling Degrees of Freedom (QLMEDD;
Rojas et al., 2016); and a composite layered shell element available in the commercial soft-
ware LS-DYNA (Belytschko et al., 1984); among others. The main characteristics of the
aforementioned micro-models are summarized in Table 2.1, whereas the available strength
degradation mechanisms of the models are presented in Table 2.2, and a typical wall dis-
cretization for each formulation is presented in Figure 2.11. A benchmarking between the
five micro modeling approaches was developed by Kolozvari et al. (2019), revealing a rea-
sonably accurate prediction, at global and local levels, of the inelastic behavior of planar RC
walls for a wide range of walls characteristics regardless of the chosen formulation.

Table 2.1: Main characteristics of microscopic models for reinforced concrete walls.

Model
Acronym

Number
of DOFs
per node

Out-of-
plane
behavior

Number of
integration

points

Inter-
polation
function

Layered
section

Crack
orientation

Shear
resisting
mechanisms

Definition of
reinforcement

VecTor2 2 No 4 Linear No Rotating No Disc./Smear.
FSAFE 2 No 1 Linear No Fixed Yes Smeared
DIANA 2 Yes 12 Linear Yes Rotating No Discrete
QLMEDD 3 No 9 Blended Yes Rotating No Smeared
LS-DYNA 2 Yes 7 Linear Yes Fixed Yes Discrete

Table 2.2: Available strength degradation mechanisms of microscopic models.

Model
Acronym

Concrete
Crushing

Reinforcement
Buckling

Reinforcement
Fracture

Diagonal
Tension

Diagonal
Compresion

Shear
Sliding

Out-of-plane
inestability

VecTor2 Yes Yes Yes Yes Yes Yes No
FSAFE Yes No No Yes Yes Yes No
DIANA Yes No No Yes Yes Yes Yes
QLMEDD Yes Yes No Yes Yes No No
LS-DYNA Yes Yes No Yes Yes Yes Yes
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(a) VecTor2 (b) DIANA (c) FSAFE (d) QLMEDD (e) LS-DYNA

Figure 2.11: Typical wall discretization of micromodels (Kolozvari et al., 2019).
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Chapter 3

Proposed Analytical Model

3.1. General description
The novel model, referred to as Efficient-Shear-Flexure-Interaction (E-SFI), was devel-

oped based on the methodology proposed by Kolozvari et al. (2015) and implemented in an
in-house version of the OpenSees framework (McKenna et al., 2010). The model incorporates
the shear-flexure interaction phenomenon by replacing the m number of uniaxial elements of
the MVLEM by two-dimensional RC panel elements subjected to membrane actions following
the Fixed-Strut-Angle-Model formulation (FSAM; Orakcal et al., 2019). As illustrated in Fig-
ure 3.1, an E-SFI element is described by six degrees of freedom, and therefore no additional
degrees of freedom are incorporated into the original MVLEM formulation. The curvature
of an E-SFI element is assumed to be uniform, and the resultant rotation is concentrated
at height ch. A value of c = 0.4 is recommended based on comparison with experimental
test results (Vulcano et al., 1988). The kinematic assumption of plane sections remain plane
(Euler-Bernoulli hypotheses), as well as the assumption of constant shear strain along the
element length, are considered for computing the axial strain (εy) and the shear distortion
(γxy) for each panel over the entire section. To complete the strain field of a panel element,
a calibrated expression for the horizontal normal strain (εx) in terms of internal variables
of the panel, such as the shear strain (γxy) and the horizontal reinforcement ratio (ρh), is
derived in order to obtain accurate predictions from squat to slender RC walls.

ch
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δ3

x

y

. . . . . .

δ4

δ5

δ6

εx= f (ρh
,γ

xy)

εy

γxy

strip (i)

Figure 3.1: E-SFI model idealization.
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3.2. Element degrees of freedom
As shown in Figure 3.2(a), an E-SFI element is characterized by two nodes located at

the center of the rigid top and bottom beams, each node with three degrees of freedom that
represent horizontal and vertical displacements, and rotation. Based on the six prescribed
degrees of freedom {δ} = {δ1 δ2 δ3 δ4 δ5 δ6}T , the kinematic assumption of plane sections
remain plane (Euler-Bernoulli hypotheses), and the assumption of constant shear strain along
wall element, the vertical normal strain (εy) and the shear distortion (γxy) are computed for
each one of them number of RC panel elements (macro-fibers) along the element. To complete
the strain field of each panel element, a calibrated expression for the horizontal normal strain
(εx) is incorporated. Therefore, no additional degrees of freedom nor iterative procedures are
added to the original MVLEM formulation. As shown in Figure 3.2(b), a structural wall is
modeled as a stack of n E-SFI elements, which are placed one upon the other, resulting in a
total number of N = 3 · (n+ 1) degrees of freedom.
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(a) E-SFI element.
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(b) E-SFI wall model.

Figure 3.2: E-SFI model degrees of freedom.

3.3. Element stiffness matrix
Considering the six degrees of freedom located at the center of the rigid top and bottom

beams of an E-SFI element {δ}, the element stiffness matrix relative to these degrees of
freedom [Ke] is obtained as,

[Ke] = [β]T · [K] · [β] (3.1)
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where {β} denotes the transformation matrix converting the element degrees of freedom
{δ} to the element pure deformations of extension, relative rotation at the bottom, and rela-
tive rotation at the top of each wall element, as illustrated in Figure 3.3. The transformation
matrix is given by,

[β] =



0 −1 0 0 1 0

−1/h 0 1 1/h 0 0

−1/h 0 0 1/h 0 1


(3.2)

and [K] is the element stiffness matrix relative to the prescribed three pure deformations
degrees of freedom given by the matrix presented in Equation 3.3,

[K] =



m∑
j=1

ky,j −
m∑
j=1

ky,jxj
m∑
j=1

ky,jxj

kshc
2h2 +

m∑
j=1

ky,jx
2
j kshc(1− c)h2 −

m∑
j=1

ky,jx
2
j

symm. ksh(1− c)2h2 +
m∑
j=1

ky,jx
2
j


(3.3)

where ky,j is the vertical stiffness of the j-th RC panel, and ksh is the shear element
stiffness calculated as the sum of the shear stiffness of all m RC panel elements along the
wall element length, as shown in Equation 3.4.

ksh =
m∑
j=1

ksh,j (3.4)

For any prescribed strain field of the j-th RC panel, the axial vertical stiffness (ky,j) and
the shear stiffness (ksh,j) for the panel is obtained by,

ky,j =
(
∂Fy
∂uy

)
j

=
(
∂Fy
∂σy

)
j

·
(
∂σy
∂εy

)
j

·
(
∂εy
∂uy

)
j

=
(
∂σy
∂εy

)
j

· Ay,j
h

(3.5)

ksh,j =
(
∂Fsh
∂ush

)
j

=
(
∂Fsh
∂τxy

)
j

·
(
∂τxy
∂γxy

)
j

·
(
∂γxy
∂ush

)
j

=
(
∂τxy
∂γxy

)
j

· Ay,j
h

(3.6)
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where Ay,j is the cross-sectional area of the j-th RC panel, and the value of the partial
derivatives are obtained from the RC panel partial stiffness matrix [Kp]j shown in Equation
3.7.

[Kp]j =



∂σx
∂εx

∂σx
∂εy

∂σx
∂γxy

∂σy
∂εx

∂σy
∂εy

∂σy
∂γxy

∂τxy
∂εx

∂τxy
∂εy

∂τxy
∂γxy


(3.7)

Figure 3.3: Element pure deformations (Orakcal & Wallace, 2006).

3.4. Element force vector
For an E-SFI element, the resisting force vector relative to the six degrees of freedom is

obtained from equilibrium as,

{Fe} =
Fsh; −

m∑
j=1

Fy,j; − Fshch−
m∑
j=1

Fy,jxj; − Fsh;
m∑
j=1

Fy,j; − Fsh(1− c)h+
m∑
j=1

Fy,jxj


T

(3.8)

where Fsh is the resultant force in the horizontal direction obtained as the sum of the
shear force on each macro-fiber, as presented in Equation 3.9.

Fsh =
m∑
j=1

Fsh,j (3.9)
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The values of Fy,j and Fsh,j correspond to the force in the vertical and horizontal direction,
respectively, for the j-th RC panel element, given by,

Fy,j = σy,j · Ay,j (3.10)

Fsh,j = τxy,j · Ay,j (3.11)

where σy,j and τxy,j are the axial vertical and shear stresses, respectively, obtained from
the constitutive RC panel behavior for the applied strain field, and Ay,j is the panel tributary
area where the stresses are acting.

3.5. Vertical normal strain and shear strain acting on
RC panel elements

Considering the six nodal degrees of freedom {δ} of an E-SFI element in addition to the
Euler-Bernoulli hypotheses, the vector containing the values of vertical deformation at each
one of the m RC panel elements {uy} = {uy,1 uy,2 . . . uy,m}T is computed as,

{uy} = [a] · {δ} (3.12)

where [a] is the geometric transformation matrix that converts the nodal degrees of free-
dom to the element vertical deformations given by Equation 3.13.

[a] =



0 −1 −x1 0 1 x1
... ... ... ... ... ...
0 −1 −xj 0 1 xj
... ... ... ... ... ...
0 −1 −xm 0 1 xm


(3.13)

As shown in Equation 3.14, the vertical normal strain of the j-th RC panel (εy,j) is
calculated by dividing the vertical deformation of the j-th RC panel (uy,j) by the element
height (h).

εy,j = uy,j
h

(3.14)

The shear deformation of an E-SFI element (ush) is computed at height ch based on the
element degrees of freedom {δ} as,
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ush = {b}T · {δ} (3.15)

where {b} is the geometric transformation matrix that converts the nodal degrees of
freedom to the element shear deformation given by Equation 3.16.

{b}T = {1; 0; − c · h; − 1; 0; − (1− c) · h} (3.16)

Assuming a constant distribution of the shear strain along the wall cross-section, the
shear strain of the j-th RC panel (γxy,j) is calculated by dividing the shear deformation (ush)
by the element height (h), as shown in Equation 3.17.

γxy,j = −ush
h

(3.17)

To complete the strain field of the j-th RC panel element (εx,j, εy,j, γxy,j), a calibrated
expression for the horizontal normal strain (εx,j) is incorporated into the model formulation,
and therefore the resultant stress field (σx,j, σy,j, τxy,j) of the panel is obtained. The derivation
of the expression to compute the horizontal normal strain is discussed in Section 3.6.

3.6. Horizontal normal strain acting on RC panel ele-
ments

As mentioned in Section 2.3.2.3, a couple of work have been developed to include a cali-
brated expression for the horizontal normal strain (εx) into a shear-flexure interaction model.
The model proposed by Massone (2010) has the main disadvantage that its implementation
for general purpose is unclear (e.g., walls with openings; wall segments; walls with setbacks)
due to the use of the expression for each boundary condition, and the incorporation of global
wall parameters such as the wall height(hw); wall length (lw); axial load level (N/f ′cAg); and
wall drift (δ). The aforementioned issue was corrected by the model proposed by Massone
et al. (2020), by calibrating at panel level in terms of the vertical normal strain (εy) and the
shear strain (γxy); however, negative values of the horizontal normal strain (εx) are obtained
when the wall is flexural-dominated because the magnitude of the vertical normal strain (εy)
is more relevant than the magnitude of the shear strain (γxy), indicating a contraction of
the wall, which is inconsistent with the experimentally observed behavior. Furthermore, the
model is insensitive to changes in the horizontal reinforcement ratio (ρh). Based on both
prior experiences, a new calibration for the horizontal normal strain (εx) is proposed using
as the principal variable the shear strain (γxy) and incorporating the effect of the horizontal
reinforcement ratio (ρh). The expression is calibrated using a database of two-dimensional
finite element analysis of RC walls, with a unique expression to cover all boundary conditions
and wall parameters.
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3.6.1. Finite element analysis database
A database of finite element analysis (FEA) of RC walls is considered to perform the

calibration of the horizontal normal strain (εx). The database was developed by Massone
(2010) using a conventional two-dimensional finite element model (2D-FEM) formulation. A
wall element is discretized in a series of 4-node rectangular elements with linear interpolation
between the nodal displacements and a single Gauss integration point at element centroid.
The FEA database is comprised of 262 cases, including the traditional boundary conditions,
single and double curvature (131 cases for each one), and different parameters for a wide
range of values such as: aspect ratio (hw/lw = 0.33 to 1.4); vertical web distributed rein-
forcement ratio (ρwv = 0 to 1 %); horizontal web distributed reinforcement ratio (ρwh = 0
to 1 %); longitudinal boundary reinforcement ratio (ρb = 1 to 6 %); and axial load (N =
0 to 0.3f ′cAg, where f ′c is the compressive strength of concrete, and Ag correspond to the
wall cross-sectional area). A preliminary study of the importance of each parameter over
the horizontal expansion (εx) indicates that the impact of material properties (f ′c = 30 to 50
MPa, and fy = 280 to 420 MPa) is less important than the other parameters; therefore, the
database does not include variation in these parameters. The wall models were discretized
in eight horizontal and eight vertical panels, and the analysis was performed for monotonic
loading until achieving the shear strength of the wall. To validate the results, the 2D-FEM
model prediction was contrasted with the experimentally measured response of nine RC wall
specimen tests, yielding good overall predictions in terms of shear strength, stiffness and
horizontal normal strain profiles (Massone, 2010).

3.6.2. Sensitivity analysis of the relation between the horizontal
normal strain and the shear strain

A sensitivity analysis was performed to study the relation between the horizontal normal
strain (εx) and the shear strain (γxy) using the data provided by the finite element analysis
database until reach the wall shear strength. For this purpose, a base case under cantilever
configuration was selected with the following properties: hw = 1500 mm; lw = 3000 mm;
tw = 150 mm; f ′c = 30 MPa; fy = 420 MPa; ρh,web = 0.5 %; ρv,web = 0.5 %; ρb = 6.0 %;
and N = 0.15Agf ′c. The average horizontal normal strain was obtained at each vertical level,
and the maximum value over the height was stored for each step analysis (εx,max) with the
respective value of the shear strain (γxy). As shown in Figure 3.4, the ratio between the
maximum mean horizontal normal strain over the height (εx,max) and the shear strain (γxy),
referred to as strain-ratio, was plotted over the shear strain (γxy) for the base case (blue line),
and for different wall parameters. Figure 3.4(a) reveals that the axial load acting on the wall
affects the ductility; however, it has a reduced effect on the maximum strain-ratio. Figure
3.4(b) indicates that the effect of the vertical reinforcement ratio is not relevant to perform
the calibration. By contrast, Figure 3.4(c) reveals that the horizontal reinforcement ratio
plays a significant role in the maximum value of the strain-ratio; therefore, this variable is
incorporated to perform the calibration. Although external parameters are not intended to
be included in the calibration, the effect of the aspect ratio (hw/lw) was analyzed in Figure
3.4(d), indicating that maximum strain-ratio increases with the aspect ratio. The sensitivity
analysis was performed for different cases of the finite element analysis database, revealing a
similar trend for most of them. It must be noted that the relation between the strain-ratio
(εx,max/γxy) and the shear strain (γxy) is slightly nonlinear, described by an initial increasing
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zone and tend to be constant as the magnitude of the shear strain increase; this behavior is
incorporated to perform the calibration by the use of a shape function.
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Figure 3.4: Sensitivity analysis of the relation between the horizontal normal
strain and the shear strain.

3.6.3. Calibration of the horizontal normal strain
In this formulation, a unique calibrated expression for the horizontal normal strain (εx)

using internal data of each RC panel is generated. Although the database includes infor-
mation of the post-peak response of the 2D-FEM RC wall analysis, they were removed to
perform the calibration to avoid damage localization issues. Based on the observed behavior
in Section 3.6.2, the calibrated expression for the horizontal normal strain (εx) at panel level
has the form of εx = A(ρh) · Φ(γxy) · |γxy|, where A(ρh) is the amplitude of the calibrated
expression as a function of the horizontal reinforcement ratio ρh(-) to represent the maxi-
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mum strain-ratio, Φ(γxy) is a shape function as a function of the shear strain to represent
the observed nonlinear behavior, and γxy is the shear strain of the panel at the current step.
The best-fit curve analysis was performed by minimizing the mean squared error (MSE)
of approximately 400.000 data points. Subsequently, the numbers of the fitted curve were
rounded, obtaining the calibrated expression shown in Equation 3.18.

εx = 0.55 (1 + ρh)−60 ·
(
1− 3−800·|γxy |

)
· |γxy| (3.18)

As shown in Figure 3.5, the horizontal normal strain values obtained by evaluating the
calibration (εx,CAL) were plotted over those values provided by the finite element analysis
database (εx,FEM), obtaining an R-squared value of 0.83. Although a significant dispersion
is observed, it must be noted that the calibrated expression covers all possible RC wall
configurations and boundary conditions with a single expression.

Figure 3.5: Predicted versus expected values of the horizontal normal strain.

Figure 3.6 shows the average horizontal normal strain profile at different drift levels (δ)
obtained by the finite element analysis (FEM) and by evaluating the calibration (CAL) for
the base case wall configuration described in Section 3.6.2 under single and double curvature
conditions. The calibrated expression accurately reproduces the shape and magnitude of the
horizontal normal strain profiles; however, near the boundary condition zones, the magnitude
is generally overestimated. This behavior is observed in most 262 RC finite element analysis
of the database.
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Figure 3.6: Average horizontal normal strain profiles for the base case wall configu-
ration of the finite element analysis database under different boundary conditions.

3.7. Reinforced concrete panel model
The adopted constitutive reinforced concrete panel behavior is the so-called Fixed-Strut-

Angle-Model (FSAM; Orakcal et al., 2019) implemented in OpenSees by Kolozvari et al.
(2018). As depicted in Figure 3.7, the FSAM is described by three stages: uncracked, after
the formation of the first crack, and after the formation of the second crack. The initial
state is described by a rotating-angle approach until the formation of the first crack; then, a
fixed-angle approach that inherently sets the principal directions coincidentally with parallel
and perpendicular directions to the first crack is used. The concrete stresses are obtained
by applying a stress-strain uniaxial constitutive model in each principal direction (biaxial
directions), whereas the uniaxial stress developing in the reinforcing steel bars are obtained
using a uniaxial constitutive model in their longitudinal direction. Additionally, the panel
model incorporates shear stress transfer across cracks due to shear aggregate interlock and
dowel action, neglecting their effects in the principal stress directions of concrete.
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Figure 3.7: Concrete behavior in FSAM.
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3.7.1. Uncracked panel response
The initial state of concrete is defined by the uncracked panel response, following a

rotating-strut (rotating-crack) approach similar to the Modified Compression Field Theory
(Vecchio & Collins, 1986) and the Rotating Angle Softened Truss Model (Pang & Hsu, 1995).
In this stage, materials response is described by monotonic stress-strain relationships. Fur-
thermore, principal strain directions are assumed to coincide with principal stress directions.
For an applied strain field (εx, εy, γxy) on the panel element, the principal strain direction (θ)
and the principal strains (ε1, ε2) are computed as,

θ = 1
2 · arctan

(
γxy

εx − εy

)
(3.19)

ε1 = εx + εy
2 + γxy

2 · sin(2θ) (3.20)

ε2 = εx + εy
2 − γxy

2 · sin(2θ) (3.21)

The concrete principal stresses (σc1, σc2) are calculated based on the monotonic uniaxial
stress-strain model of the material for the principal strains (ε1, ε2). The uniaxial stress
developing in the reinforcing steel bars in x-y directions (σsx, σsy) are obtained using the
monotonic envelope of the material for the applied strains (εx, εy), and are smeared over the
panel based on the reinforcement ratios (ρsx, ρsy). The resultant stress field of the RC panel
in Cartesian coordinates is given by,

σx = σc1 + σc2
2 + σc1 − σc2

2 · cos(2θ) + ρsx · σsx (3.22)

σy = σc1 + σc2
2 − σc1 − σc2

2 · cos(2θ) + ρsy · σsy (3.23)

τxy = σc1 − σc2
2 · sin(2θ) (3.24)

3.7.2. Panel response after the formation of the first crack
The first crack (first fixed strut) is generated when the value of the principal tensile strain

exceeds the monotonic cracking strain of concrete (εt) for the first time. The direction parallel
to the crack (θcrA) is assigned as the first fixed strut direction. For the following load steps,
although principal strain direction continues to rotate based on the applied strain field, it is
considered that principal stress direction remains parallel and perpendicular to the first fixed
strut direction, implying a condition of zero shear stress developing along the crack. In this
stage, materials behavior is represented by uniaxial hysteretic stress-strain relationships. For
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an applied strain field (εx, εy, γxy) on the panel element, the strains in directions parallel and
perpendicular to the first crack (εx′ , εy′), and the shear strain along the crack surface (γx′y′)
are defined by,

εx′ = εx + εy
2 + εx − εy

2 · cos(2θcrA) + γxy
2 · sin(2θcrA) (3.25)

εy′ = εx + εy
2 − εx − εy

2 · cos(2θcrA)− γxy
2 · sin(2θcrA) (3.26)

γx′y′ = γxy · cos(2θcrA)− (εx − εy) · sin(2θcrA) (3.27)

The concrete principal stresses (σcx′ , σcy′) are computed based on the hysteretic stress-
strain behavior of the material for the strains in directions parallel and perpendicular to
the first crack (εx′ , εy′). The uniaxial stress developing in the reinforcing steel bars in x-y
directions (σsx, σsy) are obtained using the hysteretic stress-strain behavior of the material
for the applied strains (εx, εy), and are smeared over the panel based on the reinforcement
ratios (ρsx, ρsy). The resultant stress field of the RC panel in Cartesian coordinates is given
by,

σx = σcx′ + σcy′

2 + σcx′ − σcy′

2 · cos(2θcrA) + ρsx · σsx (3.28)

σy = σcx′ + σcy′

2 − σcx′ − σcy′

2 · cos(2θcrA) + ρsy · σsy (3.29)

τxy = σcx′ − σcy′

2 · sin(2θcrA) (3.30)

3.7.3. Panel response after the formation of the second crack

The second crack (second fixed strut) is formed when the perpendicular direction to the
first fixed strut reaches the cyclic cracking strain; therefore, this approach considers the first
and second strut perpendicular to each other due to formulation simplicity. In this stage, the
concrete is simulated by two independent struts (strut A and B), working under interchanging
compression and tension based on the applied strain field. Furthermore, materials behavior is
defined by uniaxial hysteretic stress-strain relationships. The direction parallel to the second
strut (θcrB) is given by θcrB = θcrA±π/2. For an applied strain field (εx, εy, γxy) on the panel
element, the uniaxial strains acting in direction parallel to the first and second crack (εx′ ,
εy′), and the shear strain along the two crack surfaces (γx′y′A, γx′y′B) are defined by,
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εx′ = εx + εy
2 + εx − εy

2 · cos(2θcrA) + γxy
2 · sin(2θcrA) (3.31)

εy′ = εx + εy
2 + εx − εy

2 · cos(2θcrB) + γxy
2 · sin(2θcrB) (3.32)

γx′y′A = γxy · cos(2θcrA)− (εx − εy) · sin(2θcrA) (3.33)

γx′y′B = γxy · cos(2θcrB)− (εx − εy) · sin(2θcrB) (3.34)

The concrete principal stresses (σcx′ , σcy′) are computed through the hysteretic constitu-
tive relationship of the material in directions parallel to the first and second crack (εx′ , εy′).
The stresses developed by concrete struts (A and B) are back-transformed in x-y coordinates
by using transformation equations as follow,

σcxA = σcx′ + 0
2 + σcx′ − 0

2 · cos(2θcrA) (3.35)

σcyA = σcx′ + 0
2 − σcx′ − 0

2 · cos(2θcrA) (3.36)

τcxyA = σcx′ − 0
2 · sin(2θcrA) (3.37)

σcxB = σcy′ + 0
2 + σcy′ − 0

2 · cos(2θcrB) (3.38)

σcyB = σcy′ + 0
2 − σcy′ − 0

2 · cos(2θcrB) (3.39)

τcxyB = σcy′ − 0
2 · sin(2θcrB) (3.40)

The uniaxial stress developing in the reinforcing steel bars in x-y directions (σsx, σsy) are
obtained using the hysteretic stress-strain behavior of the material for the applied strains
(εx, εy), and are smeared over the panel based on the reinforcement ratios (ρsx, ρsy). The
resultant stress field of the RC panel in Cartesian coordinates is given by,

σx = σcxA + σcxB + ρsx · σsx (3.41)
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σy = σcyA + σcyB + ρsy · σsy (3.42)

τxy = τcxyA + τcxyB (3.43)

3.7.4. Shear stress transfer across cracks
The shear aggregate interlock model along a crack is defined by simple hysteretic rules, as

depicted in Figure 3.8. The model starts with a linear loading/unloading behavior that relates
the sliding shear strain along a crack to the shear stress developing along the crack surface.
The constitutive model sets to zero the shear stress when the concrete normal stress in the
perpendicular direction to the crack is tensile (crack open); and is bounded by the product
of a friction coefficient (η) and the concrete normal stress in the perpendicular direction to
the crack (σcr) when the concrete normal stress perpendicular to the crack is compressive
(crack closed). The linear unloading/reloading slope of the shear stress versus sliding strain
relationship is taken as G = 0.4Ec, where Ec is the elastic modulus of concrete.
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Figure 3.8: Shear aggregate interlock model.

Figure 3.9 illustrates the adopted dowel action model, as proposed by Kolozvari (2018).
The contribution of reinforcing steel to shear resistance is modeled by a simple linear elastic
model that relates the shear strain acting in the horizontal plane of the wall (γxy) to the
resulting shear stress (τsxy). The model is characterized by an elastic modulus taken as
a fraction (α) of the elastic modulus of steel (Es). The optimal value of the the friction
coefficient (η) and the fraction coefficient (α) for the wall model is discussed in Chapter 4
(Section 4.3) based on comparisons between model prediction and experimental results of
RC wall specimen tests.
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3.8. Material constitutive models
A description of the uniaxial hysteretic models for concrete and reinforcing steel; com-

pression softening in concrete; tension stiffening effect on concrete and steel; and biaxial
damage on concrete, are summarized in the following sub-sections.

3.8.1. Constitutive model for concrete
The nonlinear hysteretic constitutive model developed by Chang & Mander (1994) was

selected in this study to represent the stress-strain behavior of concrete. The model is avail-
able in OpenSees as implemented by Kolozvari et al. (2018). The material model is a refined,
rule-based, and non-dimensional model that can simulate the hysteretic behavior under gener-
alized load conditions for ordinary or high-strength, confined or unconfined concrete, shown
in Figure 3.10. The constitutive model formulation incorporates some important features
such as continuous hysteretic response under cyclic compression and tension, the progressive
degradation of stiffness at unloading and reloading curves, and the effects of gradual crack
closure and tension stiffening. The model envelope is defined by the peak coordinate for com-
pression (εc, f ′c) and tension (εt, ft); the elastic modulus of concrete (Ec); the Tsai’s (Tsai,
1988) equation shape factor (r); and the critical strain (εcr) where the envelope curve starts
following a straight line. For cyclic response, several internal calibrated parameters and key
points (Esec, Epl, εpl, εc0,∆f,∆ε, etc.) allows to define the complete hysteretic behavior.
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Figure 3.10: Envelope of concrete constitutive model.

According to empirical relationships derived by Chan & Mander (1994), the parameters
Ec, ε′c and r for confined and unconfined concrete, can be calculated as a function of the
compressive strength f ′c (MPa) as,

Ec = 8200 · (f ′c)3/8 (MPa) (3.44)

ε′c = (f ′c)1/4

1150 (3.45)

r = f ′c
5.2 − 1.9 (3.46)

3.8.2. Constitutive model for reinforcing steel
The nonlinear hysteretic constitutive model of Menegotto & Pinto (1973) as extended by

Filippou et al. (1983) to incorporate the isotropic hardening effects and extended by Kolozvari
et al. (2018) to overcome stress overshooting, was selected in this study to represent the stress-
strain behavior of reinforcing steel. The model is available in OpenSees as implemented by
Kolozvari et al. (2018). It can be observed from Figure 3.11 that the constitutive model
is in the form of curved transitions, each from a straight-line asymptote with slope E0 to
another straight-line asymptote with slope E1 = b · E0. The model envelope is defined by
the yield strength (fy); the initial tangent modulus (E0); the strain hardening ratio (b);
and the initial value of the curvature (R0). To define the cyclic response, the curvature
degradation parameters (a1, a2) must be defined, and internally defined key parameters and
points (ξ1, ξ2, ε0, σ0, εr, σr, etc.) are used to define the complete hysteretic behavior. In this
study, two sets of values for parameters R0, a1 and a2 are used, based on prior research
studies of cyclic test on reinforcing steel bars, which are: (1) R0 = 20, a1 = 18.5, a2 = 0.15,
as suggested by Menegotto & Pinto (1973); and (2) R0 = 20, a1 = 18.5, a2 = 0.0015, as
suggested by Elmorsi et al. (1998).
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Figure 3.11: Hysteretic constitutive model of steel.

3.8.3. Compression softening in concrete
The compression softening effect is the experimentally observed (e.g., Vecchio & Collins,

1986) reduction in the strength and stiffness of the compressive principal direction of the
concrete, due to presence of tensile strains in the perpendicular principal direction; therefore,
as illustrated in Figure 3.12, the response of RC panel elements under membrane actions
could be substantially different that of plain uniaxially compressed concrete. Most compres-
sion softening models were formulated for monotonic loading; however, some of them were
implemented into cyclic analysis method (e.g., Belarbi & Hsu, 1995; Vecchio & Collins, 1993).

Figure 3.12: Deteriorated compression response in cracked reinforced concrete
elements (Vecchio & Collins, 1993).
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In this study, the so-called “Model B” by Vecchio & Collins (1993), which considers
only a reduction in the peak compressive stress, is used into the constitutive panel model
formulation, due to its simplicity in the implementation and, as observed by Vecchio & Collins
(1993), the use of more sophisticated models that also include the reduction in the strain at
peak stress does not significantly improve the prediction of the compression softening effect.
The softening coefficient βm for the reduction of the compressive stress along the principal
compressive direction is defined by,

βm = 1

1 + 0.27 ·
(
ε1

ε0
− 0.37

) (3.47)

where ε1 is the tensile strain in the principal tensile stress direction and ε0 is the strain
corresponding to peak stress of concrete in compression.

3.8.4. Tension stiffening effect on concrete and steel
In an RC member, the concrete between cracks, which still bonded to the reinforcing

steel bars, contributes to the tensile resistance of the member; therefore, the stress and
strain distribution of concrete and steel are not constant along element length as illustrated
in Figure 3.13. The phenomenon described above is known as the tension stiffening effect.
As proven by many researchers (e.g., Stevens, 1987; Belarbi & Hsu, 1994; Pang & Hsu,
1995; M. Y. Mansour, Hsu, & Lee, 2002; Bentz, 2005), the tension stiffening effect has a
significant role in the post-cracking stiffness, yield capacity and shear behavior of reinforced
concrete members. In this study, the model proposed by Belarbi & Hsu (1994) to represent
the tension stiffening effect is used, which considers an average (smeared) tensile stress-strain
behavior for cracked concrete, and an average stress-strain curve for steel bars stiffened by
concrete between cracks. The tensile stress-strain behavior of concrete is described using
a linear elastic relationship up to cracking (fcr, εcr), and a descending branch for the post-
cracked stress-strain. The complete average tensile stress-strain behavior (σc, εc) for concrete
is described by,

σc =
Ec · εc εc ≤ εcr

fcr · (εcr/εc)0.4 εc > εcr
(3.48)

where Ec = 3875
√
f ′c (MPa), fcr = 0.31

√
f ′c (MPa) and εcr = 0.00008.
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Figure 3.13: Schematic distribution of forces, strains, normal stress, and bond
stress along a cracked reinforced concrete member (Belarbi & Hsu, 1994).

3.8.5. Biaxial damage on concrete
The constitutive RC panel element incorporates a damage coefficient to represent the

cyclic damage on concrete, using the model proposed by Mansour & Hsu (2005). The model
considers the use of a damage coefficient for cyclic analysis (does not apply for monotonic
loading) and is applied as a multiplier to the compressive stress based on the cyclic strain
history of concrete. Accordingly to the model, the damage coefficient (βdamage) is computed
as a function of the ratio between the maximum value of the compressive strain experienced
in the direction perpendicular to the compressive strut direction considered (ε⊥max), to the
peak compressive strain (ε′c), and is given by Equation 3.49.

βdamage =
(

1− 0.4 · ε⊥max
ε′c

)
(3.49)
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Chapter 4

Analytical Model Validation

This chapter presents an extensive validation of the E-SFI model against experimental data
of RC wall specimen tests. A description of the selected specimens and calibration of material
models, along with calibration of the shear resisting parameters and mesh size, are presented
in this chapter. Furthermore, a large database of 252 RC wall specimen tests reported in
the literature is used to assess the capabilities of the model to predict the shear strength
and its dependence to wall parameters. Also, analytical model predictions are compared
with experimental results at both global and local levels for ten RC wall specimens. These
comparisons are used to evaluate the performance of the model to predict the hysteretic
response for various wall characteristics. Finally, the efficiency of the E-SFI model is analyzed
against the MVLEM and SFI-MVLEM models in terms of elapsed time and current tangent
convergence ratio.

4.1. Description of the selected RC wall specimen tests
Ten RC wall specimen tests with rectangular cross-section, tested under constant axial

load and reversed-cyclic lateral loading conditions, were selected for the experimental vali-
dation of the E-SFI model, including a slender wall specimen (RW2) tested by Thomsen &
Wallace (2004), four medium-rise specimens (RW-A20-P10-S38; RW-A20-P10-S63; RW-A15-
P10-S51; RW-A15-P10-S78) tested by Tran & Wallace (2012), three squat walls specimens
(SW-T2-S3-4; SW-T4-S1-6; SW-T6-S1-8) tested by Terzioglu et al. (2018), and two squat
walls specimens (WP-T5-N0-S1; WP-T5-N5-S1) tested by Massone et al. (2009). All wall
specimens were tested under single curvature condition, except for both specimens tested by
Massone et al. (2009), which were tested under double curvature condition. The specimens
cover a wide range of wall properties, such as the horizontal web reinforcement ratio (ρh,web)
ranging from 0.27 to 0.73%; the vertical web reinforcement ratio (ρv,web) ranging from 0.23
to 0.73%; the longitudinal boundary reinforcement ratio (ρb) ranging from 1.33 to 9.75%;
the shear span-to-depth ratio (M/V lw) ranging from 0.44 to 3.0; and the axial load level
(P/Agf ′c) ranging from 0 to 10%. For walls tested under single curvature condition, the wall
height (hw) is measured from the top of the pedestal to the point where the load was ap-
plied, whereas for walls under double curvature condition, the wall height corresponds to the
length of clear span measured face-to-face of pedestals. The length (lw) and thickness (tw)
are obtained from the gross section of the walls. The main properties of the selected RC wall
specimens are summarized in Table 4.1.
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Table 4.1: Main properties of RC wall specimens

Specimen
ID

hw

(mm)
lw
(mm)

tw
(mm)

ρh,web

(%)
ρv,web

(%)
ρbound

(%)
M
V lw

P
Agf

′
c

Vmax

Acw

√
f ′

c

Vmax

Vn

Failure
Mode1

RW2 3660 1220 102 0.33 0.33 2.93 3.00 0.09 0.20 0.52 CB

RW-A20-P10-S38 2440 1220 152 0.27 0.27 3.23 2.00 0.10 0.36 0.98 CB/DT

RW-A20-P10-S63 2440 1220 152 0.61 0.61 7.11 2.00 0.10 0.56 1.02 CB/LI

RW-A15-P10-S51 1830 1220 152 0.32 0.32 3.23 1.50 0.10 0.46 0.93 CB/DT

RW-A15-P10-S78 1830 1220 152 0.73 0.73 6.06 1.50 0.10 0.61 0.89 DC/SS/LI

SW-T2-S3-4 950 1500 120 0.68 0.68 5.15 0.63 0.00 0.84 1.01 DC

SW-T4-S1-6 700 1500 120 0.68 0.68 3.95 0.47 0.00 0.82 0.99 DC

SW-T6-S1-8 1720 1500 120 0.68 0.68 9.75 1.15 0.00 0.86 1.03 DC

WP-T5-N0-S1 1220 1370 152 0.28 0.23 1.33 0.44 0.00 0.36 0.65 DT

WP-T5-N5-S1 1220 1370 152 0.28 0.23 1.33 0.44 0.05 0.55 1.02 DT
1 CB: concrete crushing/bar buckling; LI: lateral instability; DT: diagonal tension;
DC: diagonal compression; SS: shear sliding. (According to the authors).

4.1.1. Specimen tested by Thomsen and Wallace (2004)
The specimen RW2 was an approximately quarter-scale RC wall tested by Thomsen &

Wallace (2004) with a rectangular cross-section, 3660 mm tall, 1220 mm length, and 102 mm
thick, tested in an upright position under single curvature condition with an applied axial
load at the wall top of approximately 0.07f ′cAg. The specimen was part of an experimental
program to verify the proposed displacement-based design approach by Wallace (1994, 1995),
providing well-detailed boundary elements at the edges of the wall over the bottom 1.22 m.
The shear capacity was provided accordingly to the requirements of the ACI 318-89 Equation
21-6 to resist the shear that develops for the probable wall moment. The vertical reinforce-
ment was anchored within the pedestal at the base of the wall with sufficient development
length as well as 90-degrees hooks. Figure 4.1 shows the cross-section with the reinforcing
steel configuration.

Figure 4.1: Cross-sectional view of specimen RW2 (Orakcal et al., 2004).

As shown in Figure 4.2(a), the specimen RW2 was heavily instrumented to measure
displacements, loads, and strains at critical locations. The cyclic lateral displacement was
applied to the wall using a hydraulic actuator mounted horizontally to a reaction wall, reach-
ing drift levels of approximately 0.1%, 0.25%, 0.5%, 0.75%, 1.0%, 1.5%, 2.0%, and 2.5%. The
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failure mode of the wall was governed by concrete crushing and buckling of the longitudinal
boundary reinforcement, as observed in Figure 4.2(b).

(a) Instrumentation (Orakcal et al., 2004). (b) Failure mode (Thomsen &
Wallace, 2004).

Figure 4.2: Instrumentation and failure mode of specimen RW2 specimen.

4.1.2. Specimens tested by Massone et al. (2009)
An experimental program carried out at UCLA Structural/Earthquake Engineering Re-

search Laboratory (SEERL) was developed by Massone et al. (2009) to provide experimental
data of low-rise structural RC walls. The program included five different three-quarter scale
walls (two spandrels and three piers) to represent walls constructed in California between
approximately 1940 and 1970. An identical specimen was constructed for each wall configu-
ration, resulting in ten RC wall specimens. The wall spandrels were 1520mm tall, 1520mm
length, and 152mm thickness, whereas de wall piers were 1220 mm tall, 1370 mm length,
and 152 mm thick. The specimens were instrumented with DC-LVDTs (DC-excited linear
variable differential transducers) over the height to provide measurement of deformations
and rotations. The walls were tested in an upright position under double curvature condi-
tion (zero-rotation at wall top end), and were subjected to displacement-controlled cycles
with target drift levels of 0.2%, 0.3%, 0.4%, 0.6%, 0.8%, 1.2%, 1.6%, 2.0%, 2.4%, and 3.2%;
however, in some specimens, the cyclic protocol was modified.

Two wall piers of this program were selected for validation of the shear-flexure interaction
model, including the specimens WP-T5-N0-S1 and WP-T5-N5-S1, which differentiate in the
axial load level (0 and 5%, respectively). As shown in Figure 4.3, the distributed vertical
reinforcement of the piers was #4@330mm, the distributed horizontal reinforcement was
#4@305mm, and the longitudinal boundary reinforcement was 2#4 bars. It must be noted
that the self-weight of the steel reaction frame that generates the zero-rotation at wall top
end provides an extra vertical load of 53 kN.
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Figure 4.3: Layout of pier specimens tested by Massone et al. (2006).

The specimen WP-T5-N0-S1 reached its lateral load capacity at 0.8% drift due to the high
wideness of the principal diagonal crack. For the following drift cycles, as the crack widths
widened, sliding along the primary diagonal crack and lateral strength degradation were
observed, as well as concrete crushing at mid-height, indicating a diagonal tension failure.
Figure 4.4 shows the wall specimen at different drift levels.

(a) 0.8% drift (b) 3.2% drift

Figure 4.4: Observed damage for specimen WP-T5-N0-S1 (Massone, 2006).

The specimen WP-T5-N5-S1 reached its lateral load capacity at 0.8% drift due to a
combination of concrete crushing at mid-height at the center of the wall and widening of the
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primary diagonal cracks. For the following drift cycles, as the crack widths widened, sliding
along the primary diagonal crack and lateral strength degradation were observed, as well as
concrete crushing, indicating a diagonal tension type of failure. Figure 4.5 shows the wall
specimen at different drift levels.

(a) 0.8% drift (b) 3.2% drift

Figure 4.5: Observed damage for specimen WP-T5-N5-S1 (Massone, 2006).

4.1.3. Specimens tested by Tran and Wallace (2012)
An experimental program carried out at the University of California Los Angeles (UCLA)

was developed by Tran & Wallace (2012) to study the nonlinear cyclic response of moderate
aspect ratio RC structural walls. The program included five large-scale cantilever structural
wall specimens of 2440 mm or 1830 mm tall, 1220 mm length, and 152 mm thick, tested in
an upright position under constant axial load. The specimens were designed according to the
ACI 318-11 code to yield in flexure before loss of lateral load capacity; however, an important
contribution of nonlinear shear deformation was observed. Four of the five specimens were
selected to study the shear-flexure interaction model, including the specimens RW-A20-P10-
S38; RW-A20-P10-S63; RW-A15-P10-S51; and RW-A15-P10-S78, representing a large variety
of medium-rise walls configurations. A typical wall cross-section is shown in Figure 4.6,
whereas a typical detailing of the special boundary element (with alternated crosstie over the
height) is presented in Figure 4.7. Wall reinforcement details are presented in Table 4.2.
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Figure 4.6: Typical wall cross-section (Tran, 2012).

(a) (b)

Figure 4.7: Typical wall boundary detailing, Detail A (Tran, 2012).

Table 4.2: Wall reinforcement details.

Specimen ID "a" "b" "c" "d"

RW-A20-P10-S38 4#4 4#4 6D6a @ 140 mm D6b @ 140 mm

RW-A20-P10-S63 4#6 4#6 5#3 @ 152 mm #3 @ 140 mm

RW-A15-P10-S51 4#4 4#4 7D6a @ 114 mm D6b @ 114 mm

RW-A15-P10-S78 4#6 4#5 6#3 @ 127 mm #3 @ 127 mm

The specimens were heavily instrumented with Linear Variable Differential Transformers
(LVDTs) to measure wall foundation sliding and uplift, lateral wall displacement at various
height levels (including flexural, shear, and sliding shear components), and average concrete
strains over specified gauge lengths. Reinforcement strains were measured using strain gauges
affixed to the longitudinal boundary and transverse reinforcement, and the web vertical and
horizontal reinforcement, over a height of about lw/2 from the wall-foundation block interface
(length of expected plastic hinge region). The walls were subjected to displacement-controlled
cycles using a horizontal hydraulic actuator, applying the force at either 1830 mm or 2440
mm above the wall-foundation block interface. Displacement-controlled cycles were typically
performed at drift ratios of 0.5%, 0.75%, 1.0%, 1.5%, 2.0%, 3.0%, and 4.0%.
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(a) Face A, aspect ratio 2.0 (b) Face B, aspect ratio 1.5

Figure 4.8: LVDTs layout of wall specimens (Tran, 2012).

The specimen RW-A20-P10-S38 failed during the second positive cycle of 3.1% drift due
to concrete crushing and buckling of the longitudinal boundary reinforcement at the right
(south) wall boundary. Immediately, a sudden diagonal tension failure occurred, with frac-
ture of the horizontal web bars along a diagonal crack. Figure 4.9 shows the crack pattern
developed over the entire wall at different drift levels, whereas Figure 4.10 shows the wall
boundaries at the end of the test.

(a) Drift: 0.56% (b) Drift: 1.5% (c) End of test

Figure 4.9: Cracking pattern of specimen RW-A20-P10-S38 (Tran, 2012).
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(a) North boundary (b) South boundary

Figure 4.10: Boundaries at end of test of specimen RW-A20-P10-S38 (Tran, 2012).

The specimen RW-A20-P10-S63 failed during the second negative cycle of 3.0% drift due
to concrete crushing and buckling of the longitudinal boundary and some vertical web rein-
forcement at the north (left) wall boundary. Also, lateral instability (out-of-plane buckling)
of the boundary zone was observed. A similar failure mode occurred when the loading was
reversed. Figure 4.11 shows the crack pattern developed over the entire wall at different drift
levels, whereas Figure 4.12 shows the wall boundaries at the end of the test.

(a) Drift: 0.5% (b) Drift: 1.5% (c) End of test

Figure 4.11: Cracking pattern of specimen RW-A20-P10-S63 (Tran, 2012).
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(a) North boundary (b) South boundary

Figure 4.12: Boundaries at end of test of specimen RW-A20-P10-S63 (Tran, 2012).

The specimen RW-A15-P10-S51 failed during the first positive cycle of 4.0% drift due
to concrete crushing and buckling of the vertical boundary reinforcement at the south wall
boundary, which initiated diagonal tension failure along a mayor crack with fracture of several
horizontal web bars. When the loading was reversed, concrete crushing and buckling of the
vertical boundary reinforcement at north wall boundary was observed, along with fracture
of two longitudinal bars of the south wall boundary. Figure 4.13 shows the crack pattern
developed over the entire wall at different drift levels (indicating with a * the crack were
diagonal tension failure occurred), whereas Figure 4.14 shows the wall boundaries at the end
of the test.

(a) Drift: 0.5% (b) Drift: 1.5% (c) End of test

Figure 4.13: Cracking pattern of specimen RW-A15-P10-S51 (Tran, 2012).
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(a) North boundary (b) South boundary

Figure 4.14: Boundaries at end of test of specimen RW-A15-P10-S51 (Tran, 2012).

The specimen RW-A15-P10-S78 initiated its degradation during the first cycle of 3.0%
drift due to concrete spalling along diagonal compressive struts near the wall-foundation
block interface at the wall boundaries. As a result, the wall lost about 9% of its peak lateral
load in both directions. The wall failed during the second positive cycle of 3.0% drift due to
shear sliding, followed by out-of-plane buckling at south wall boundary. When the loading
was reversed, out-of-plane buckling at north wall boundary was observed. Figure 4.15 shows
the crack pattern developed over the entire wall at different drift levels, whereas Figure 4.16
shows the wall boundaries at the end of the test.

(a) Drift: 0.5% (b) Drift: 1.5% (c) End of test

Figure 4.15: Cracking pattern of specimen RW-A15-P10-S78 (Tran, 2012).
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(a) North boundary (b) South boundary

Figure 4.16: Boundaries at end of test of specimen RW-A15-P10-S78 (Tran, 2012).

4.1.4. Specimens tested by Terzioglu et al. (2018)
An experimental program carried out at Bogazici University Structural Engineering Lab-

oratory was developed by Terzioglu et al. (2018) to study the behavior of shear-controlled RC
walls designed to resist seismic actions and to provide experimental data for the development
of analytical modeling methodologies. The program included eleven squat wall specimens
of 1500 mm length and 120 mm thickness, with varying heights to attain different aspect
ratios. The specimens were instrumented with several LVDTs to measure displacements
and rotations over the height, and sliding shear deformations at the wall-pedestal interface.
Additionally, strain gauges were mounted on the reinforcing bars to monitoring yielding in
specific rebars. The walls were tested in an upright position under cantilever configuration,
and were subjected to displacement-controlled cycles with target drift levels of 0.05%, 0.1%,
0.15%, 0.2%, 0.3%, 0.4%, 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, 1.6%, 1.8%, 2.0%, 2.4%, and 3.2%,
however, in some cases additional drift levels were imposed.

Three of the eleven wall specimens were selected to study the shear-flexure interaction
model, including the specimens SW-T2-S3-4; SW-T4-S1-6; and SW-T6-S1-8, representing a
large variety of wall aspect ratios for shear-controlled walls under single curvature condition.
The geometry and reinforcement of the selected wall specimens are shown from Figure 4.17
to 4.19.
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Figure 4.17: Layout of specimen SW-T2-S3-4 (Terzioglu, 2011).

Figure 4.18: Layout of specimen SW-T4-S1-6 (Terzioglu, 2011).
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Figure 4.19: Layout of specimen SW-T6-S1-8 (Terzioglu, 2011).

The specimen SW-T2-S3-4 reached its lateral load capacity at 0.6% drift ratio; however,
strength degradation started at negative cycle of 1% drift due to crushing of concrete at the
bottom left corner. Crushing of concrete propagated along the width of the wall bottom for
the subsequent cycles, indicating a diagonal compression failure mode. Figure 4.20 shows
the wall specimen under different levels of damage.

(a) Medium damage level (b) High damage level

Figure 4.20: Damage levels for specimen SW-T2-S3-4 (Terzioglu, 2011).
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The specimen SW-T4-S1-6 reached its lateral load capacity at 0.6% drift; however,
strength degradation started at 1% drift due to crushing of the concrete at the wall bot-
tom corner and center. Crushing of concrete propagated along the width of the wall bottom
for the subsequent cycles, indicating a diagonal compression failure mode. Figure 4.21 shows
the wall specimen under different levels of damage.

(a) Medium damage level (b) High damage level

Figure 4.21: Damage levels for specimen SW-T4-S1-6 (Terzioglu, 2011).

The specimen SW-T6-S1-8 reached its lateral load capacity at 1.0% drift; however,
strength degradation started at 1.2% drift due to crushing of concrete at the bottom corner
of the wall. Crushing of the concrete propagated from the wall bottom corners toward the
bottom center for the subsequent cycles, indicating a diagonal compression failure mode.
Figure 4.22 shows the wall specimen under different levels of damage.

(a) Medium damage level (b) High damage level

Figure 4.22: Damage levels for specimen SW-T6-S1-8 (Terzioglu, 2011).
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4.2. Calibration of material models
The concrete compressive strength (f ′c) and the strain at compressive strength (ε′c) ob-

tained from monotonic test results on standard cylinder specimens of concrete used in the
construction of the walls and reported in the literature were used for the unconfined stress-
strain model of concrete in compression. For the confined stress-strain model of concrete
in compression, the confined concrete compressive strength (f ′cc) and the strain at confined
compressive strength (ε′cc) were obtained according to the model proposed by Mander et al.
(1988). The elastic modulus (Ec) and the shape factor in compression (rc), for both confined
and unconfined concrete, were obtained according to the empirical equations proposed by
Chang & Mander (1994). The post-peak slope of the model envelope for confined and uncon-
fined concrete in compression was adjusted to agree with the model proposed by Saatcioglu
& Razvi (1992). As suggested by Belarbi & Hsu (1994), the tensile strength for concrete was
computed as ft = 0.31

√
f ′c (MPa) for a tensile strain equal to εt = 0.00008. The shape factor

for concrete in tension was taken as rt = 1.2, as proposed by Orakcal & Wallace (2006). For
the reinforcing steel stress-strain model, the yield strength (fy) and the strain hardening ratio
(b) were adjusted to agree with the obtained properties of bare bars used in the construction
of the walls and reported in the literature. For reinforcing steel in tension, the yield strength
and the strain hardening ratio were modified to account for the tension stiffening effect, as
proposed by Belarbi & Hsu (1994). The elastic modulus for reinforcing steel was taken as
E0 = 200.000 MPa, and the curvature parameters were calibrated as R0 = 20, a1 = 18.5, and
a2 = 0.15, as proposed by Menegotto & Pinto (1973); however, for specimen RW2 a value of
a2 = 0.0015 was used based on a prior work (Orakcal & Wallace, 2006). The main materials
properties are summarized in Table 4.3.

Table 4.3: Materials properties of RC wall specimens

Specimen
ID

f ′
c (MPa)

unconf./conf.
ε′

c

unconf./conf.
ft

(MPa)
fyh,web

(MPa)
fyv,web

(MPa)
bweb fy,bound.

(MPa)
bbound.

RW2 42.8/47.6 0.0021/0.0033 2.03 448 448 0.020 434 0.020

RW-A20-P10-S38 47.1/62.2 0.0023/0.0060 2.13 516 450 0.020 473 0.010

RW-A20-P10-S63 48.6/65.4 0.0020/0.0055 2.16 443 443 0.020 477 0.010

RW-A15-P10-S51 48.8/63.9 0.0022/0.0056 2.16 516 450 0.020 473 0.010

RW-A15-P10-S78 55.8/72.2 0.0024/0.0059 2.31 443 443 0.020 476 0.010

SW-T2-S3-4 29.0/– – 0.0020/– – 1.67 584 584 0.008 473 0.008

SW-T4-S1-6 34.8/– – 0.0021/– – 1.83 584 584 0.008 519 0.008

SW-T6-S1-8 22.6/– – 0.0019/– – 1.47 584 584 0.008 528 0.008

WP-T5-N0-S1 29.9/– – 0.0025/– – 1.70 424 424 0.008 424 0.008

WP-T5-N5-S1 31.9/– – 0.0023/– – 1.75 424 424 0.008 424 0.008
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4.3. Sensitivity analysis to shear resisting parameters
A sensitivity analysis of model prediction to the shear aggregate interlock friction coeffi-

cient (η) and the dowel action coefficient (α) is performed to reveal their effects in the global
response, as well as their effect on the shear contribution to the global deformation. The
sensitivity analysis results are presented from Figure 4.23 to 4.27, considering only one cycle
per drift level. The analysis reveals that increasing the shear friction coefficient (η) as well
as the dowel action coefficient (α) leads to an increase in the shear strength of the wall, as
well as a reduction of the shear contribution to the global response, suggesting an optimal
value for the shear friction coefficient of η = 0.35 for all cases, whereas the dowel action
coefficient must be taken as α = 0.005 for medium-rise and slender walls (M/V lW ≥ 1.5),
and α = 0.0001 for squat walls (M/V lW < 1.5). The reduction of the dowel action coefficient
for squat walls is related to the fact of no dowel capacity degradation mechanism into the
model formulation, and therefore the dowel action contribution needs to be re-calibrated for
walls with a high shear demand.
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(a) Sensitivity to shear friction coefficient.
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(b) Sensitivity to dowel action coefficient.

Figure 4.23: Sensitivity of model response to shear resisting mechanisms for spec-
imen RW-A20-P10-S63.
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(a) Sensitivity to shear friction coefficient.
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(b) Sensitivity to dowel action coefficient.

Figure 4.24: Sensitivity of model response to shear resisting mechanisms for spec-
imen RW-A15-P10-S78.
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(a) Sensitivity to shear friction coefficient.
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(b) Sensitivity to dowel action coefficient.

Figure 4.25: Sensitivity of model response to shear resisting mechanisms for spec-
imen T2-S3-4.

51



-15 -10 -5 0 5 10 15
Lateral Displacement  (mm)

-1200

-900

-600

-300

0

300

600

900

1200
La

te
ra

l L
oa

d 
 (k

N
)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Drift (%)

Test

60

80

100

Sh
ea

r 
C

on
t. 

(%
) 0.1 0.3 0.5 0.7

Drift (%)

(a) Sensitivity to shear friction coefficient.
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(b) Sensitivity to dowel action coefficient.

Figure 4.26: Sensitivity of model response to shear resisting mechanisms for spec-
imen T4-S1-6.
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(a) Sensitivity to shear friction coefficient.
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(b) Sensitivity to dowel action coefficient.

Figure 4.27: Sensitivity of model response to shear resisting mechanisms for spec-
imen T6-S1-8.
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4.4. Sensitivity analysis to mesh size
A wall model can be defined by a user-defined number of E-SFI elements stacked one upon

the other (n), as well as a number of RC panel elements along an E-SFI element (m). To
understand the effect of discretization in a wall model, a sensitivity analysis is performed for
a squat wall specimen (SW-T2-S3-4) and a medium-rise wall specimen (RW-A20-P10-S63).
Figure 4.28(a) and 4.29(a), shows the sensitivity analysis to the number of equal-size vertical
E-SFI elements (n) for a constant number of m = 6 RC panel elements. The results reveal
that global response is almost objective in the hardening zone and becomes non-objective in
the softening zone; however, local response of the most-strained element is non-objective for
the whole range of behavior. Also, it is observed that change the number of equal-size E-SFI
elements over the height leads to differences in the peak resistance and deformation, as well
as the degradation rate due to differences in the local response. This behavior is a common
shortcoming in displacement-based elements, due to the formulation does not strictly satisfy
the equilibrium into element interior, as opposed to a force-based formulation,; therefore, the
element equilibrium is satisfied in an average sense. As described by Calabrese et al. 2010, a
typical regularization technique for displacement-based elements with one integration point
consist of adjusting the element size of the most strained element to the plastic hinge length
(Lp) to have an appropriate integration of the inelastic response. With regularization of the
most-strained (extremity) elements’ height, the wall global and local responses are objective
regardless of the number of elements over the height, as shown in Figure 4.28(b) and 4.29(b).
The adopted regularization technique is depicted in Figure 4.30.
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(b) Regularized response by plastic hinge length.

Figure 4.28: Sensitivity analysis of the model to the number of vertical wall
elements for specimen SW-T2-S3-4.
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(b) Regularized response by plastic hinge length.

Figure 4.29: Sensitivity analysis of the model to the number of vertical wall
elements for specimen RW-A20-P10-S63.
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Figure 4.30: Layout of wall model vertical discretization for n=6 E-SFI elements.

Figure 4.31 shows the effect of the number of RC panels along an E-SFI element (m) for
a constant number of n = 6 E-SFI elements over the height. For the cases of m = 4 and
m = 6 horizontal elements, one component was used for each boundary element, whereas
for the case of m = 12 panels, two components per boundary were used, and the remaining
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horizontal panels were equal-size distributed. The results indicate that the global response is
almost insensitive to the number of horizontal elements above m = 4, although increase the
number of RC panels leads to a more accurate distribution of strains over the wall length;
however, computational effort increases.

-25 -20 -15 -10 -5 0 5 10 15 20 25
Lateral Displacement  (mm)

-1000

-750

-500

-250

0

250

500

750

1000

La
te

ra
l L

oa
d 

 (k
N

)

-2 -1 0 1 2
Drift (%)

m=4, n=6
m=6, n=6
m=12, n=6

(a) SW-T2-S3-4.

-100 -80 -60 -40 -20 0 20 40 60 80 100
Lateral Displacement  (mm)

-1000

-750

-500

-250

0

250

500

750

1000

La
te

ra
l L

oa
d 

 (k
N

)

-4 -3 -2 -1 0 1 2 3 4
Drift (%)

m=4, n=6
m=6, n=6
m=12, n=6

(b) RW-A20-P10-S63.

Figure 4.31: Sensitivity analysis of the model to the number of RC panel elements.
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Figure 4.32: Layout of wall model horizontal discretization analysis.
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In this study a number of at least n = 6 E-SFI elements and m = 6 RC panel elements
are used to have an accurate representation of damage distribution, and the most strained
element size match with the expected plastic hinge length to have an objective response.
A plastic hinge length of Lp = 0.5Lw is adopted for walls with a shear span-to-depth ratio
greater than 1.0, whereas a value of Lp = 2.0tw is used for walls with a shear span-to-depth
ratio less than or equal to 1.0 based on the work developed by Arteta (2015).

4.5. Shear strength test database comparison
The shear strength predicted by the E-SFI model is compared to a large database of 252

RC wall specimen tests reported in the literature, including the publications by Hirosawa
(1975); Mohammadi-Doostdar & Saatcioglu (2002); Massone et al. (2009); Hidalgo et al.
(2002); Yamada et al. (1974); Antebi et al. (1960); Barda et al. (1977); Benjamin &Williams
(1957); Cardenas et al. (1980); and Galletly (1952). The database, described in Table A.1,
includes walls with an aspect ratio (hw/lw) and a shear span-to-depth ratio (M/V lw) ranging
from 0.29 to 2.0, tested under single curvature condition (cantilever configuration, 85%) or
double curvature condition (zero rotation at wall ends, 15%), and with enlarged end section
(flanged or barbell, 68%) or rectangular cross-sections (32%). The longitudinal boundary
reinforcement ratio for the wall specimens ranges between 0.7% and 11.0% measured over
the boundary cross-section, whereas the horizontal and vertical web reinforcement ratios
vary from 0% to 3.7%. The yield strength of all reinforcing bars ranges between 209 MPa
and 624 MPa, whereas the concrete compressive strength (f ′c) varies from 12.4 MPa to 63.4
MPa. A few cases of the wall specimens in the database were under axial load (28%),
reaching values up to 0.27f ′clwtw, where lw and tw are the length and thickness of the wall,
respectively. The shear strength is also estimated for the walls of the database using the
ACI 318-19 code (Equation 18.10.4.1) as Vn =

(
αcλ

√
f ′c + ρtfyt

)
· Acv, where λ is 1.0 for

normal-weight concrete; αc is 0.25 for hw/lw ≤ 1.5, 0.17 for hw/lw ≥ 2.0, and linearly
interpolated between the limit aspect ratios, Acv is the cross-sectional web area of the wall,
ρt is the transverse web reinforcement ratio, and fyt is the yield strength of the transverse
reinforcement. Furthermore, the nominal shear strength for individual walls cannot be greater
than 0.83Acw

√
f ′c, where Acw represents the entire cross-sectional area of the wall (SI units).

The cases where a flexural failure was expected were removed to avoid distortions in the
analysis of the ACI 318-19 equation. The flexural capacity (Mn) was estimated based on the
ACI 318-19 recommendations.

The analytical models were discretized in eight vertical elements and eight horizontal
fibers, and the material models were adjusted to match with the as-tested material properties.
To model a specimen under single curvature condition, the wall model is fully-fixed at the base
and free to rotate at the wall top end, whereas to model a specimen under double curvature
condition, the wall model is fully-fixed at the base and restrained to rotate at the wall top
end. A top displacement-control analysis was performed to reach the shear strength of each
computational model. As shown in Figure 4.33, the predicted shear stress by the model
(Vmodel/twlw) and by the ACI 318-19 code (VACI/twlw) is compared to the experimentally
measured shear stress (Vtest/twlw). Also, a trend line over the data is obtained for each case,
and a dotted line in 45 degrees is added to represent a perfect relationship between both
variables. The shear-flexure model trend line reveals that the model accurately reproduces
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the shear stress of the tests with a R-squared value of 0.73. On the other hand, the ACI 318-
19 code trend line reveals a more conservative prediction of the shear stress with a R-squared
value of 0.28, indicating a larger dispersion than the shear-flexure model.
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(a) Shear-flexure interaction model.
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Figure 4.33: Predicted vs. experimentally measured shear stress.

The ratio of the predicted over the experimentally measured shear strength, also called
strength ratio (Vmodel/Vtest), was computed for all cases. The average strength ratio obtained
using the shear-flexure model was 1.04, with a coefficient of variation (CV) of 0.23, indicating
a good correlation of the shear-flexure interaction model with test results, and a relatively
small dispersion. The maximum strength ratio was 1.83, whereas the minimum value was
0.54, however, most amount of them range between 0.6 and 1.4 (90%). A similar analysis
was performed using the ACI 318-19 code, although, as mentioned above, a reduced version
of the database is used to include only the cases were a shear failure was expected, obtaining
an average strength ratio of 0.77, with a coefficient of variation of 0.37, indicating a much
more conservative prediction and with a larger dispersion than the shear-flexure model. The
maximum and minimum strength ratios were 1.93 and 0.21, respectively, although, most of
them range between 0.3 and 1.3 (93%). The shear strength database used for the E-SFI
model is the same used by Massone (2010) and Massone et al. (2020). The results obtained
for each model are summarized in Table 4.4, revealing that the E-SFI formulation has a
better correlation with experimental test results than both prior models.

Table 4.4: Comparative analysis of the strength ratio (Vmodel/Vtest).

Model Average CV Maximum Minimum

Massone 2010 1.13 0.25 1.97 0.56
Massone et al. 2020 0.96 0.26 1.82 0.44
E-SFI 1.04 0.23 1.83 0.54
ACI 318-19 0.77 0.37 1.93 0.21
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Although the E-SFI model has shown an accurate correlation with experimental test
results, a sensitivity analysis of the shear strength ratio (Vmodel/Vtest) was performed to
investigate the performance of the model to variations in wall parameters. The sensitivity
analysis was developed using the prescribed database, considering variation in parameters
such as steel reinforcing ratios, concrete compressive strength, level of axial load, cross-section
type, boundary condition, shear span-to-depth ratio, and observed average shear stress. The
sensitivity analysis includes the strength ratio obtained by the shear-flexure model for all 252
cases, and by the ACI 31-19 code for the 210 shear controlled cases; furthermore, a trend
line is obtained for each case by a linear best-fit analysis of the data, and a horizontal dotted
line (Vmodel/Vtest = 1) is added into figures to represent a perfect correlation. The sensitivity
analysis is presented in the following sub-sections.

4.5.1. Sensitivity to horizontal web reinforcement
As shown in Figure 4.34, the shear strength ratio was plotted over the horizontal web rein-

forcing steel ratio times its yield strength, and therefore the horizontal axis indicates the force
that the reinforcing steel can develop per unit area. The general trend of the E-SFI model
shows a little dependence between the model prediction and the horizontal reinforcement,
with a variation of approximately 20% over the whole range and an increasing tendency.
The ACI 318-19 shear strength equation reveals a higher dependence to the horizontal rein-
forcement than the obtained by the shear-flexure model, with a variation of the prediction
of about 30% over the whole range and an increasing tendency.

E-SFI Model
E-SFI Trend
ACI 318 Trend

0 2 4 6 8 10 12

h . fyh (MPa)

0.5

1

1.5

2

V
m

od
el

 / V
te

st

Figure 4.34: Shear strength ratio vs. horizontal web reinforcement.
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4.5.2. Sensitivity to vertical web reinforcement
Figure 4.35 shows the model prediction sensitivity to the vertical web reinforcing steel

ratio times its yield strength. The trend line of the E-SFI model reveals a little dependence
between the model prediction and the vertical reinforcement, with a variation of approxi-
mately 15% over the whole range and an increasing tendency. On the other hand, the ACI
318-19 strength equation shows a higher dependence to the vertical reinforcement than the
obtained by the shear-flexure model, with a variation of the prediction of about 30% over
the whole range and an increasing tendency.
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Figure 4.35: Shear strength ratio vs. vertical web reinforcement.

4.5.3. Sensitivity to longitudinal boundary reinforcement
As shown in Figure 4.36, the shear strength ratio was plotted over the longitudinal bound-

ary reinforcing steel ratio times its yield strength. The general trend of the E-SFI model shows
a relatively small dependence between the model prediction and the longitudinal boundary
reinforcement, with a variation of approximately 10% over the whole range and an increas-
ing tendency. The ACI 318-19 shear strength equation reveals a higher dependence to the
longitudinal boundary reinforcement than the obtained by the shear-flexure model, with a
variation of about 15% over the whole range and a decreasing tendency.
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Figure 4.36: Shear strength ratio vs. longitudinal boundary reinforcement.

4.5.4. Sensitivity to concrete compressive strength
Figure 4.37 shows the model prediction sensitivity to the concrete compressive strength.

The trend line of the E-SFI model data shows a relatively small dependence between the
model and the concrete compressive strength, with a variation of approximately 10% over
the whole range and an increasing tendency. The ACI 318-19 shear strength equation reveals
a higher dependence to the concrete compressive strength than the obtained by the shear-
flexure model, with a variation of the prediction of about 30% over the whole range and a
decreasing tendency.
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Figure 4.37: Shear strength ratio vs. concrete compressive strength.
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4.5.5. Sensitivity to shear span-to-depth ratio
As shown in Figure 4.38, the shear strength ratio was plotted over the shear span-to-depth

ratio. The trend line of the E-SFI model shows a variation of approximately 20% over the
whole range, indicating a little dependence of the model with the shear span-to-depth ratio;
furthermore, the model tendency reveals an over-estimation of the shear capacity for small
values of the parameter under study. The ACI 318-19 shear strength equation shows a lower
dependence to the shear span-to-depth ratio than the obtained by the shear-flexure model,
with a variation of the prediction of about 10% and a decreasing tendency; furthermore, the
shear strength is underestimated over the whole range.
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Figure 4.38: Shear strength ratio vs. shear span-to-depth ratio.

4.5.6. Sensitivity to axial load
Figure 4.39 shows the model prediction sensitivity to the axial load level; however, it

must be noted that only a few cases have an axial load level grater than 0.01f ′ctwlw (15%
of the database). The general trend of the E-SFI model shows a variation of approximately
30% over the whole range, indicating a moderate dependence of the model with the axial
load level. On the other hand, the ACI 318-19 shear strength equation reveals a slightly
lower dependence to the axial load level than the obtained by the shear-flexure model, with
a variation of the prediction of about 25% and a decreasing tendency, furthermore, the shear
strength equation shows a conservative behavior over the whole range.
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Figure 4.39: Shear strength ratio vs. axial load level.

4.5.7. Sensitivity to wall shape and boundary condition
As shown in Figure 4.40, the shear strength ratio was plotted over the cross-sectional wall

shape (enlarged or rectangular) and the boundary condition (single and double curvature).
The E-SFI model results reveal an average slightly better prediction for walls with rectangular
cross-sectional shape and with single curvature boundary conditions; however, no-dependence
of the model with the cross-sectional shape nor the boundary condition of the wall is observed,
as well as for the ACI 318-19 shear strength equation.
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Figure 4.40: Shear strength ratio vs. cross-sectional shape and boundary condi-
tion.
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4.5.8. Sensitivity to average observed (experimental) shear stress
Figure 4.41a shows the model prediction sensitivity to the average observed (experimental)

shear stress. The general trend of the E-SFI model shows a variation of approximately 20%
over the whole range, indicating a little dependence of the model to the average observed
shear stress; furthermore, the model tendency reveals an over-estimation of the shear capacity
for small values of the parameter under study. The ACI 318-19 shear strength equation
shows a higher dependence to the average shear stress than the obtained by the shear-
flexure model, with a variation of the prediction of about 70% and a decreasing conservative
tendency. Figure 4.41b includes the analytical results for the ACI 318-19 strength equation
for all 252 specimens of the database, including those expected to have a flexural failure,
differentiating the cases where shear or flexural failure mode is expected. As can be seen
from Figure 4.41b, large over-predictions of the shear capacity (Vn) based on the ACI 318-19
shear strength equation are obtained for walls expected to have a flexural behavior; however,
they are partially corrected based on the flexural capacity (Mn). Therefore, over-prediction
is expected when a different failure mode governs the response.
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(a) Shear-flexure interaction model.
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Figure 4.41: Shear strength ratio vs. experimental shear stress.
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4.6. Comparison of model predictions with experimen-
tal data

The analytically predicted and experimentally measured responses, at both global and
local response levels, are compared for the ten selected RC walls described in Section 4.1.
The predicted cracking pattern is obtained using the orientation and strains of the concrete
struts from each RC panel model when a crack is formed. A blue line is used for compressive
strains (crack closed), whereas a red line is used for tensile strains (crack open). The line-
width represents the magnitude of the strains proportional to the width-scale presented in
each figure; however, a minimum line-width is used to facilitate the visualization.

4.6.1. Specimen RW2
As shown in Figure 4.42, the analytical model accurately replicates the shape of the

hysteretic loops of the global response for the slender wall specimen RW2. The stiffness is
initially overestimated and is well represented for drift levels greater than 0.2%. The lateral
load attained at each drift level is accurately estimated; however, the model does not predict
the initiation of lateral load capacity degradation, probably due to the absence of a rebar
buckling mechanism into the model formulation, as occurred in the experimental test. The
flexural and shear deformation responses at first story level (at the bottom quarter of the
wall) are presented in Figure 4.43. The analytical model slightly underestimates the shear
deformation component; however, due to their relatively small magnitude is not relevant
since the wall is flexural-dominated, indicating that the model captures reasonably well the
interaction between flexural and shear deformation components. The predicted cracking
pattern at drift level of 3.0% is shown in Figure 4.44, revealing typical crack orientations of
flexural-dominated walls.
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Figure 4.42: Lateral load vs. top displacement response for specimen RW2.
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(a) Flexural response.

-15 -10 -5 0 5 10 15
Lateral Shear Displacement  (mm)

-200

-150

-100

-50

0

50

100

150

200

La
te

ra
l L

oa
d 

 (k
N

)

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
Shear Drift Ratio (%)

Test
E-SFI

RW2
First Story

(b) Shear response.

Figure 4.43: Lateral load vs. first story flexural and shear displacement responses
of specimen RW2.
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Figure 4.44: Analytical cracking pattern for specimen RW2 at 3.0% drift.
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4.6.2. Specimen RW-A20-P10-S38
The global response for the medium-rise wall specimen RW-A20-P10-S38 is shown in

Figure 4.45, revealing an accurate analytical model prediction of the hysteretic loops with a
slight overestimation of the pinching behavior. The stiffness is initially overestimated and is
in reasonable agreement for drift levels greater than 0.5%. The lateral load attained at each
drift level is slightly underestimated for the major part of the test. The initiation of lateral
load capacity degradation during the last cycle is not captured, probably due to the absence
of a rebar buckling mechanism into the model formulation, as occurred in the experimental
test. The top flexural and shear displacement responses are presented in Figure 4.46. The
analytical model accurately replicates the flexural and shear deformation components at each
drift level. Figure 4.47 reveals that the analytical model developed flexural cracks at wall
boundaries and shear cracks towards the wall center, extended to approximately 3/4 of the
wall height, which is in agreement with the experimentally observed cracking pattern.
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Figure 4.45: Lateral load vs. top displacement response for specimen RW-A20-
P10-S38.
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(a) Flexural response.
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(b) Shear response.

Figure 4.46: Lateral load vs. top flexural and shear displacement responses for
specimen RW-A20-P10-S38.
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(a) Analytical cracking pattern. (b) Experimental cracking pattern
(Tran, 2012).

Figure 4.47: Analytical and experimental cracking patterns for specimen RW-
A20-P10-S38 at 1.5% drift.
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4.6.3. Specimen RW-A20-P10-S63
As shown in Figure 4.48, the analytical model accurately reproduces the shape of the

hysteretic loops of the global response for the medium-rise wall specimen RW-A20-P10-
S63. The stiffness and lateral load capacity are initially overestimated and are in reasonable
agreement for drift levels above 0.5%. The model does not predict the lateral load capacity
degradation at the last drift level, probably due to the absence of a rebar buckling mechanism
into the model formulation, as occurred in the specimen test. The top flexural and shear
responses are presented in Figure 4.49. The analytical model shows a reasonably accurate
prediction of the deformation components at each drift level, although the flexural component
is slightly overestimated for the last cycle. Figure 4.50 shows that the model developed
flexural cracks at wall boundaries and shear cracks along the wall web, extended over the
entire wall height, as occurred in the experimental test.
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Figure 4.48: Lateral load vs. top displacement response for specimen RW-A20-
P10-S38.
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(a) Flexural response.
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(b) Shear response.

Figure 4.49: Lateral load vs. top flexural and shear displacement responses for
specimen RW-A20-P10-S63.
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(a) Analytical cracking pattern. (b) Experimental cracking pattern
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Figure 4.50: Analytical and experimental cracking patterns for specimen RW-
A20-P10-S63 at 1.5% drift.
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4.6.4. Specimen RW-A15-P10-S51
The global response for the medium-rise wall specimen RW-A15-P10-S51 is shown in

Figure 4.51, revealing an accurate analytical model prediction of the hysteretic loops with
a slight overestimation of the pinching behavior. The stiffness is initially overestimated and
is in reasonable agreement for drift levels greater than 0.5%. The lateral load level attained
at each drift level is slightly overestimated. The initiation of lateral load degradation during
the last cycle is not captured, probably due to the absence of a rebar buckling mechanism
into the model formulation, as occurred in the experimental test. The top flexural and shear
displacement responses are presented in Figure 4.52. The analytical model reasonably repli-
cates the flexural and shear components at each drift level, although the flexural component
is slightly overestimated for the last negative cycle. Figure 4.53 reveals that the analytical
model developed flexural cracks at wall boundaries and shear cracks towards the wall center,
extended over the entire wall height, which agrees with the experimentally observed cracking
pattern.
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Figure 4.51: Lateral load vs. top displacement response for specimen RW-A15-
P10-S51.
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(a) Flexural response.
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(b) Shear response.

Figure 4.52: Lateral load vs. top flexural and shear displacement responses for
specimen RW-A15-P10-S51.
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Figure 4.53: Analytical and experimental cracking patterns for specimen RW-
A15-P10-S51 at 3.0% drift.
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4.6.5. Specimen RW-A15-P10-S78
As shown in Figure 4.54, the analytical model accurately reproduces the shape of the

hysteretic loops of the global response for the medium-rise wall specimen RW-A15-P10-S78.
The stiffness is initially overestimated and is in reasonable agreement for drift levels greater
than 0.5%. The lateral load attained at each drift level is slightly overestimated. The model
does not predict the lateral load capacity degradation during the first cycle to 3.0% drift
caused by diagonal compressive concrete struts at the wall bottom boundaries; furthermore,
the model does not capture the abrupt strength degradation during the second cycle to
3.0% drift associated with lateral instability and shear sliding mechanisms because of the
inability of the model to simulate such failure modes. The top flexural and shear displacement
responses are presented in Figure 4.55. The analytical model shows a reasonably accurate
prediction of the deformation components at each cycle, although the flexural component is
overestimated for the last drift level. Figure 4.56 shows that the model developed flexural
cracks at wall boundaries and shear cracks along the wall web extended over the entire wall
height, as occurred in the specimen test.
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Figure 4.54: Lateral load vs. top displacement response for specimen RW-A15-
P10-S78.
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(a) Flexural response.
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Figure 4.55: Lateral load vs. top flexural and shear displacement responses for
specimen RW-A15-P10-S78.

Tensile Strain

   ε=2.0E-02

   ε=1.0E-02

   ε<1.5E-03

Compressive Strain

   ε=2.0E-03

   ε=1.0E-03

   ε<1.2E-04

(a) Analytical cracking pattern. (b) Experimental cracking pattern
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Figure 4.56: Analytical and experimental cracking patterns for specimen RW-
A15-P10-S78 at 2.0% drift.
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4.6.6. Specimen SW-T2-S3-4
The global response for the squat wall specimen SW-T2-S3-4 is shown in Figure 4.57,

revealing a reasonably accurate analytical model prediction of the hysteretic loops. The
stiffness is initially underestimated and in reasonable agreement for drift levels greater than
0.5%. The lateral load attained at each drift level is slightly underestimated. The average
shear strength (including positive and negative direction) is underestimated by approximately
12%. The asymmetric response is accurately replicated by the model, including the initiation
of lateral load degradation for each direction. The model strength degradation was initiated
by concrete crushing at the wall bottom and propagated over the element length for the
following cycles, indicating a diagonal compression failure, as occurred in the experimental
test. The top flexural and shear deformation responses are presented in Figure 4.58. The
analytical model accurately replicates the contribution of the flexural and shear deformation
components at each drift level. The asymmetry of the shear response is not captured by
the model, causing a slight overestimation of the shear component for positive direction.
Figure 4.59 reveals that the analytical model developed principally shear cracks over the
entire wall with a slight contribution of flexure toward wall bottom boundaries, as occurred
in the experimental test.
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Figure 4.57: Lateral load vs. top displacement response for specimen SW-T2-S3-4.
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(a) Flexural response.
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(b) Shear response.

Figure 4.58: First story lateral load vs. flexural and shear displacement responses
for specimen SW-T2-S3-4.
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(a) Analytical cracking pattern. (b) Experimental cracking pattern
(Terzioglu, 2011).

Figure 4.59: Analytical and experimental cracking patterns for specimen SW-T2-
S3-4 at 0.6% drift.
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4.6.7. Specimen SW-T4-S1-6
As shown in Figure 4.60, the analytical model accurately reproduces the shape of the

hysteretic loops of the global response for the squat wall specimen SW-T4-S1-6. The stiffness
is initially underestimated and is in reasonable agreement for drift levels greater than 0.5%.
The lateral load attained at each drift level is slightly underestimated. The average shear
strength (including positive and negative direction) is underestimated by approximately 7%.
The asymmetric response is accurately captured by the model, as well as the initiation
of lateral load capacity degradation for each direction. The model capacity degradation
was initiated by concrete crushing at the wall bottom and propagated over the element
length for the subsequent cycles, indicating a diagonal compression failure, as occurred in
the experimental test. The top flexural and shear deformation responses are presented in
Figure 4.61. The analytical model shows a reasonably accurate prediction of the deformation
components at each cycle. The asymmetry of the flexural and shear components are not
captured by the model, causing a slight overestimation of the shear component for positive
direction. Figure 4.62 shows that the model developed shear cracks over the entire wall height
with slight contribution of flexure toward bottom boundaries.
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Figure 4.60: Lateral load vs. top displacement response for specimen SW-T4-S1-6.
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(a) Flexural response.
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Figure 4.61: First story lateral load vs. flexural and shear displacement responses
for specimen SW-T4-S1-6.
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Figure 4.62: Analytical and experimental cracking patterns for specimen SW-T4-
S1-6 at 0.6% drift.
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4.6.8. Specimen SW-T6-S1-8
The global response for the squat wall specimen SW-T6-S1-8 is shown in Figure 4.63,

revealing an accurate analytical prediction of the hysteretic loops. The stiffness is initially
underestimated and is in agreement for drift levels above 0.4%. The lateral load level at-
tained at each drift level is slightly underestimated for the major part of the test. The average
shear strength (including positive and negative direction) is underestimated by approximately
11%. The analytical model prematurely initiates lateral load capacity degradation for pos-
itive direction, whereas capacity degradation initiation is reasonably replicated for negative
direction. The model strength degradation was initiated by concrete crushing at the wall
bottom and propagated over the element length for the subsequent cycles, indicating a di-
agonal compression failure, as occurred in the experimental test. The top flexural and shear
deformation components are presented in Figure 4.64. The analytical model replicates rea-
sonably well the contribution of flexural and shear deformation components at each drift
level. The model overestimates the shear contribution for positive cycles, which caused the
premature initiation of lateral load capacity degradation for this direction, whereas, for nega-
tive cycles, the flexural and shear contributions are reasonably captured. Figure 4.65 reveals
that the analytical model developed principally shear cracks over the entire wall with a slight
contribution of flexure toward wall bottom boundaries, as occurred in the experimental wall
test.
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Figure 4.63: Lateral load vs. top displacement response for specimen SW-T6-S1-8.
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(a) Flexural response.
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Figure 4.64: First story lateral load vs. flexural and shear displacement responses
for specimen SW-T6-S1-8.
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(Terzioglu, 2011).

Figure 4.65: Analytical and experimental cracking patterns for specimen SW-T6-
S1-8 at 1.0% drift.
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4.6.9. Specimen WP-T5-N0-S1
As shown in Figure 4.66, the analytical model accurately reproduces the shape of the hys-

teretic loops of the global response for the squat wall specimen WP-T5-N0-S1. The stiffness
is initially overestimated and is in reasonable agreement for drift levels greater than 0.4%.
The predicted lateral load attained at each drift level is generally in concordance with exper-
imental test results. The average shear strength (including positive and negative direction)
is overestimated by less than 1%. The analytically predicted load capacity degradation was
initiated by large shear strains, causing concrete crushing and yielding of the horizontal rein-
forcement, indicating a diagonal tension failure, as occurred in the experimental test. The top
flexural and shear deformation responses are presented in Figure 4.67. The analytical model
shows a reasonably accurate prediction of the flexural and shear deformation components
at each cycle. The model tends to slightly overestimate the shear contribution, whereas the
flexural contribution is generally underestimated. Figure 4.68 shows that the model devel-
oped shear cracks over the entire wall with a marginal flexural contribution toward bottom
boundaries, similar to the experimentally observed cracking pattern.
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Figure 4.66: Lateral load vs. top displacement response for specimen WP-T5-N0-
S1.
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Figure 4.67: First story lateral load vs. flexural and shear displacement responses
for specimen WP-T5-N0-S1.
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(a) Analytical cracking pattern. (b) Experimental cracking pattern
(Massone, 2006).

Figure 4.68: Analytical and experimental cracking patterns for specimen WP-T5-
N0-S1 at 0.8% drift.
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4.6.10. Specimen WP-T5-N5-S1
The global response for the squat wall specimen WP-T5-N5-S1 is shown in Figure 4.69,

revealing a reasonably accurate prediction of the hysteretic loops. The stiffness is initially
overestimated and is reasonably represented for drift levels greater than 0.2%. The lateral
load attained at each drift level is slightly overestimated for the major part of the test. The
average shear strength (including positive and negative direction) is overestimated by ap-
proximately 8%. The model reasonably replicates the initiation of load capacity degradation
for both directions. The analytically predicted load capacity degradation was initiated by
large shear strains, causing concrete crushing and yielding of the horizontal reinforcement,
indicating a diagonal tension failure, as occurred in the experimental test. The top flexural
and shear deformation responses are presented in Figure 4.70. The model underestimates
the flexural component at each drift level, whereas shear contribution is reasonably captured.
Figure 4.71 reveals that the analytical model developed principally shear cracks over the en-
tire wall, with a marginal contribution of flexure toward bottom boundaries, similar to the
experimentally observed cracking pattern.
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Figure 4.69: Lateral load vs. top displacement response for specimen WP-T5-N5-
S1.
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Figure 4.70: First story lateral load vs. flexural and shear displacement responses
for specimen WP-T5-N5-S1.
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Figure 4.71: Analytical and experimental cracking patterns for specimen WP-T5-
N5-S1 at 0.8% drift.
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4.6.11. Horizontal normal strain profiles
As mentioned by Massone et al. (2009), the average horizontal normal strain distribu-

tion accurately correlates the model prediction with the experimentally measured response
at global and local level; thus, as shown in Figure 4.72, the experimentally measured and
analytically predicted average horizontal strain profiles were plotted at different drift lev-
els (δ) for specimens RW-A15-P10-S78 and SW-T2-S3-4 to study the model effectiveness.
The results indicate that although the horizontal expansion predicted by the model does not
perfectly match with those values experimentally measured, the prediction of the horizontal
expansion is in reasonably agreement, strengthening the proposed calibration at panel level.
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Figure 4.72: Average horizontal normal strain profiles.
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4.6.12. Cyclic response comparison summary
To quantify the difference between analytical and experimental responses, a comparison

between the average (including positive and negative directions) maximum attained shear
strength (Vmax), average maximum flexural response (uf,max), average maximum shear re-
sponse (ush,max), and energy dissipated (ED), was developed for the ten selected RC wall
specimens. The ratio between the model prediction and the experimentally measured re-
sponse for the aforementioned metrics is presented in Table 4.5, indicating that the E-SFI
model, with a reasonable level of accuracy, captures the wall response at both global and
local levels. To improve the correlation between model predictions and experimental results,
a rotational spring at the wall-end interfaces can be incorporated into the model to account
for the extension of the longitudinal reinforcing bars within the pedestals. This effect is
specially important for squat walls, where the flexural contribution of the extension of the
longitudinal bar within the pedestal (foundation) is relevant, as observed by Massone et al.
(2009).

Table 4.5: Cyclic response comparison summary

Specimen ID Vmax,model

Vmax,test

uf,max,model

uf,max,test

ush,max,model

ush,max,test

ED,model

ED,test

RW2 1.00 0.93 0.57 1.07

RW-A20-P10-S38 0.98 1.05 0.81 1.15

RW-A20-P10-S63 1.09 1.00 0.98 1.17

RW-A15-P10-S51 1.14 1.08 0.86 1.15

RW-A15-P10-S78 1.18 1.22 0.81 1.24

SW-T2-S3-4 0.88 0.76 1.07 0.75

SW-T4-S1-6 0.93 0.40 1.24 1.11

SW-T6-S1-8 0.89 0.57 1.44 1.05

WP-T5-N0-S1 1.00 0.34 1.08 0.74

WP-T5-N5-S1 1.08 0.40 1.03 1.11

Average 1.02 0.78 0.99 1.05

CV 0.10 0.42 0.25 0.16
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4.7. Model Efficiency Benchmarking
A benchmarking between the E-SFI, SFI-MVLEM, and MVLEM models was developed

to study the efficiency of the novel model in terms of elapsed time and current tangent conver-
gence rate for the specimens RW2, RW-A15-P10-S78, and SW-T2-S3-4, using a standardized
displacement-controlled iterative solution strategy. The iterative procedure uses a unique
displacement increment step value (Dincr) and a norm displacement increment test |∆U | to
determine if convergence has been reached. The implemented solution strategy starts with
the Newton-Raphson algorithm with a maximum value of 500 iterations to achieve a toler-
ance of |∆U | < 10−4 mm. If the convergence test is not reached, the maximum number of
iterations is increased to 1000, the tolerance is increased to |∆U | < 10−3 mm, and several
algorithms are used to solve the nonlinear problem, including Newton-Raphson with initial
tangent and Krylov-Newton (Scott et al., 2010) algorithms. The simulations were conducted
on a computer with an Intel Core i7-8700 CPU @ 3192MHz; 2x16GB @ 2400MHz memory
RAM DDR4; 1Tb 7200RPM 6.0Gb/s HDD; running on Microsoft Windows 10 Pro version.
The benchmarking results are summarized in Table 4.6, whereas the predicted global re-
sponses are shown in Figure 4.73. The analysis reveals an increase in the current tangent
convergence rate and a reduction of the runtime of the E-SFI model in contrast to the SFI-
MVLEM model for all cases, which is related to the reduction in the degrees of freedom. On
the other hand, the E-SFI model has shown to be slower than the MVLEM model with a
similar current tangent convergence rate, which is related to the use of the panel element
in the E-SFI element. The RC panel element duplicates the number of uniaxial concrete
elements (two-struts) compared to using a simple uniaxial element per fiber, as well as in-
corporates the compression softening effect in concrete, tension stiffening effect on concrete
and steel, and biaxial damage on concrete. As shown in Figure 4.73(a), all models have a
similar predicted response for the slender wall RW2 with accurate results. Figure 4.73(b)
reveals that for the mid-rise wall RW-A15-P10-S78, the hysteretic loops are similar in the
shear-flexure models, which are in concordance with the experimental results, whereas the
flexural model shows a less pinched behavior. For the squat wall SW-T2-S3-4, the results
presented in Figure 4.73(c) reveals that the flexural model highly overestimates the capacity
and ductility of the wall, whereas the shear-flexure models are in more concordance with
experimental results.

Table 4.6: Model Efficiency benchmarking results

Specimen
ID

Model Dincr
(mm)

No. of
Analysis Steps

Current Tangent
Convergence Rate (%)

Runtime
(mm:ss)

RW2
E-SFI 0.25 4104 99.1 00:43
SFI-MVLEM 0.25 4104 73.2 02:27
MVLEM 0.25 4104 99.8 00:13

RW-A15-P10-S78
E-SFI 0.25 2756 99.4 01:10
SFI-MVLEM 0.25 2756 13.1 06:37
MVLEM 0.25 2756 100.0 00:07

SW-T2-S3-4
E-SFI 0.10 4200 99.9 02:47
SFI-MVLEM 0.10 4200 3.0 11:29
MVLEM 0.10 4200 99.9 00:11
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Figure 4.73: Predicted global response comparison.
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Chapter 5

Summary and Conclusions

A novel macroscopic element named Efficient-Shear-Flexure-Interaction (E-SFI) was devel-
oped for simulating the nonlinear response of RC walls subjected to reversed cyclic load-
ing conditions. The element formulation, based on the Shear-Flexure Interaction Multiple-
Vertical-Line-Element-Model (SFI-MVLEM), replaces the uniaxial vertical springs of the
Multiple-Vertical-Line-Element-Model (MVLEM) formulation by two-dimensional RC panel
elements (macro-fibers) to capture the interaction between shear, axial and flexural behav-
iors. The vertical normal and shear strains at each macro-fiber are computed based on the
element degrees of freedom, together with the assumptions of plane sections remain plane
and constant shear strain across the section. In this approach, the horizontal normal strain
at each macro-fiber is computed using a calibrated expression in terms of the shear strain
and the horizontal reinforcement ratio at panel level. Therefore, no additional degrees of
freedom nor iterative procedures are incorporated into the original MVLEM formulation.
The adopted constitutive RC panel behavior is described by the Fixed-Strut-Angle-Model
(FSAM), in which the principal strain and stress directions are set coincidentally with par-
allel and perpendicular directions to the first crack orientation. Simple shear stress transfer
mechanisms across cracks are incorporated into the RC panel formulation, including shear
aggregate interlock and dowel action models. Uniaxial cyclic stress-strain relationships are
used to represent the behavior of concrete and steel. Furthermore, the effects of compression
softening in concrete, tension stiffening effect on concrete and steel, and biaxial damage on
concrete, are also incorporated into the RC panel formulation.

Shear resisting parameters were calibrated based on comparisons with experimental test
results, suggesting a value of η = 0.35 for the shear aggregate interlock model, and a value
of α = 0.0001 for squat walls and α = 0.005 for medium-rise and slender walls for the
dowel action model. Also, a modeling methodology was proposed based on adjusting the end
elements’ height by the plastic hinge length, as well as the use of at least six wall elements
over the height and six RC panels across wall length to have an accurate distribution of
strains in the wall model.

The shear strength predicted by the model was contrasted with a database of 252 RC
wall specimen tests reported in the literature. The average ratio of the predicted over the
experimentally measured shear strength (Vmodel/Vtest) for all cases was 1.04 with a coefficient
of variation of 0.23, indicating an accurate prediction of the model with a relatively small
dispersion. Furthermore, a sensitivity analysis was developed for variation in wall parameters
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based on a linear trend estimation of the database specimens. The model has shown a little
dependence to the horizontal and vertical web reinforcement, and shear span-to-depth ratio,
with a variation of less than 20% over the whole range; a relatively small dependence to the
longitudinal boundary reinforcement, concrete compressive strength, cross-sectional shape,
and boundary condition, with a variation of less than 10% over the whole range; and a
variation to the axial load of 30% over the whole range. Indicating that the E-SFI model
accurately captures the physical dependence of the response to wall parameters.

The analytically-predicted hysteretic response was validated against ten well-instrumented
RC wall specimen tests reported in the literature. The selected wall specimens cover a wide
range of wall characteristics and responses, with a shear span-to-depth ratio ranging from
0.44 to 3.0, tested under single and double curvature conditions. Model results have shown
an accurate prediction of the hysteretic loops, stiffness, and load capacity at each drift level.
The predicted shear and flexural contributions to the global response are generally in agree-
ment with experimental results, as well as the cracking pattern. The model was capable of
capturing degradation mechanisms associated with diagonal tension and compression fail-
ure. Initiation of degradation in specimens that presented rebar buckling, shear sliding, and
lateral instability was not captured since the model did not incorporate such failure modes.
Furthermore, a benchmarking was developed by contrasting the runtime and current tan-
gent convergence ratio for three wall specimens using the E-SFI, SFI-MVLEM, and MVLEM
models, revealing a considerable improvement of the efficiency of the E-SFI model compared
to the SFI-MVLEM model.

Based on the presented research, it was proven that the E-SFI model, with a simple
and efficient macroscopic formulation, accurately captures the shear-flexure interaction phe-
nomenon from squat to slender RC walls, reinforcing the effectiveness of the horizontal normal
strain calibration used in the E-SFI model. Futures studies can be focus on the validation of
the model in other structural elements, as well as an extension of the formulation to include
out-of-plane behavior.
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Appendix A

Shear strength test database

Table A.1: Shear strength test database.

No. Author hw

(mm)
lw

(mm)
tw

(mm)
lbe

(mm)
tbe

(mm)
f ′

c

(MPa)
ρv,web

(%)
fyv,web

(MPa)
ρh,web

(%)
fyh,web

(MPa)
ρbound

(%)
fy,bound

(MPa)
Paxial

(N)
Vtest

(N)
Curvature
Condition

1 Endo 750.0 2250.0 80.0 250.0 250.0 26.0 0.493 623.7 0.474 623.7 0.811 358.9 369720 654104 single

2 Endo 750.0 2250.0 80.0 250.0 250.0 24.6 0.160 623.7 0.135 623.7 0.811 358.9 367524 558979 single

3 Endo 750.0 2250.0 80.0 250.0 250.0 26.0 0.160 623.7 0.135 623.7 0.811 358.9 369720 524656 single

4 Endo 750.0 2250.0 50.0 250.0 250.0 24.6 0.255 623.7 0.217 623.7 0.811 358.9 368078 466797 single

5 Endo 750.0 2250.0 50.0 250.0 250.0 26.0 0.789 623.7 0.758 623.7 0.811 358.9 368550 783551 single

6 Hirosawa 625.0 600.0 30.0 100.0 100.0 23.5 0.231 293.2 0.213 293.2 2.512 208.9 0 49033 single

7 Hirosawa 625.0 600.0 30.0 100.0 100.0 27.2 0.231 293.2 0.213 293.2 2.512 208.9 29376 66195 single

8 Hirosawa 625.0 600.0 30.0 100.0 100.0 26.9 0.231 293.2 0.213 293.2 2.512 208.9 62946 76002 single

9 Hirosawa 625.0 600.0 30.0 100.0 100.0 25.7 0.231 293.2 0.213 293.2 2.512 208.9 125365 86299 single

10 Hirosawa 575.0 600.0 30.0 100.0 100.0 18.6 0.238 261.8 0.239 261.8 2.524 212.8 0 34323 single

11 Hirosawa 575.0 600.0 30.0 100.0 100.0 18.6 0.238 261.8 0.240 261.8 2.524 212.8 0 36775 single

12 Hirosawa 625.0 600.0 30.0 100.0 100.0 29.9 0.231 293.2 0.213 293.2 2.524 208.9 62969 58840 single
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13 Hirosawa 625.0 600.0 30.0 100.0 150.0 25.2 0.209 475.6 0.201 475.6 2.719 276.2 0 72569 single

14 Hirosawa 625.0 600.0 30.0 100.0 150.0 28.3 0.209 475.6 0.201 475.6 2.612 221.1 41261 68647 single

15 Hirosawa 625.0 600.0 30.0 100.0 150.0 28.0 0.209 475.6 0.201 475.6 2.612 221.1 82152 78453 single

16 Hirosawa 625.0 600.0 30.0 100.0 150.0 29.0 0.209 475.6 0.201 475.6 2.612 221.1 123714 101989 single

17 Ryo 1200.0 2300.0 75.0 250.0 250.0 23.2 0.188 335.4 0.188 335.4 2.550 467.8 0 965955 single

18 Ryo 1200.0 2300.0 80.0 250.0 250.0 33.0 0.177 335.4 0.177 335.4 2.550 467.8 0 931632 single

19 Ryo 1200.0 1550.0 80.0 250.0 250.0 17.4 0.168 485.4 0.177 485.4 2.550 467.8 0 608012 single

20 Kokusho 150.0 430.0 30.0 30.0 150.0 22.5 0.000 0.0 0.000 0.0 0.680 382.5 0 24909 single

21 Kokusho 150.0 430.0 30.0 30.0 150.0 22.5 0.360 382.5 0.411 382.5 0.680 382.5 0 20692 single

22 Kokusho 150.0 430.0 30.0 30.0 150.0 16.9 0.360 382.5 0.411 382.5 0.680 382.5 0 17358 single

23 Kokusho 150.0 430.0 30.0 30.0 150.0 16.9 0.368 333.4 0.418 333.4 0.680 382.5 0 19123 single

24 Kokusho 150.0 430.0 30.0 30.0 150.0 16.9 0.360 382.5 0.411 382.5 0.680 382.5 0 22751 single

25 Kokusho 150.0 430.0 30.0 30.0 150.0 16.1 0.360 382.5 0.411 382.5 0.680 382.5 0 19025 single

26 Kokusho 150.0 430.0 30.0 30.0 150.0 16.1 0.360 382.5 0.411 382.5 0.680 382.5 0 20790 single

27 Kokusho 150.0 430.0 25.0 30.0 145.0 26.5 0.432 402.1 0.493 402.1 0.710 402.1 0 28439 single

28 Kokusho 150.0 430.0 23.0 30.0 145.0 17.9 0.470 402.1 0.536 402.1 0.710 402.1 0 24517 single

29 Kokusho 150.0 430.0 25.0 30.0 145.0 17.9 0.441 323.6 0.501 323.6 0.710 402.1 0 25988 single

30 Kokusho 150.0 430.0 20.0 30.0 145.0 15.4 0.551 323.6 0.627 323.6 0.710 402.1 0 25988 single

31 Kokusho 150.0 430.0 23.0 30.0 145.0 19.9 0.702 323.6 0.728 323.6 0.710 402.1 0 29420 single

32 Kokusho 150.0 430.0 24.0 30.0 145.0 18.6 0.672 323.6 0.697 323.6 0.710 402.1 0 27459 single

33 Kokusho 355.0 430.0 23.0 30.0 145.0 14.2 0.000 0.0 0.000 0.0 1.520 407.3 0 18142 single

34 Kokusho 355.0 430.0 24.0 30.0 145.0 14.2 0.000 0.0 0.000 0.0 1.520 407.3 0 16377 single

35 Kokusho 355.0 430.0 27.0 30.0 145.0 14.2 0.400 402.1 0.385 402.1 1.520 407.3 0 24517 single

36 Kokusho 355.0 430.0 24.0 30.0 145.0 14.2 0.450 323.6 0.433 323.6 1.520 407.3 0 23536 single

37 Kokusho 355.0 430.0 22.0 30.0 145.0 16.2 0.501 323.6 0.483 323.6 1.520 407.3 0 20006 single
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38 Kokusho 355.0 430.0 16.0 30.0 145.0 13.8 0.689 323.6 0.664 323.6 1.520 407.3 0 19123 single

39 Kokusho 355.0 430.0 22.0 30.0 145.0 17.9 0.733 323.6 0.723 323.6 1.520 407.3 0 24713 single

40 Kokusho 355.0 430.0 22.0 30.0 145.0 16.8 0.733 323.6 0.723 323.6 1.520 407.3 0 25890 single

41 Kokusho 200.0 420.0 20.0 60.0 60.0 13.7 0.000 0.0 0.000 0.0 1.790 342.8 0 36677 single

42 Kokusho 200.0 420.0 20.0 60.0 60.0 13.7 0.523 323.6 0.523 323.6 1.790 342.8 0 48739 single

43 Kokusho 200.0 420.0 20.0 60.0 60.0 19.1 0.000 0.0 0.000 0.0 3.180 334.5 0 37265 single

44 Kokusho 200.0 420.0 20.0 60.0 60.0 18.0 0.000 0.0 0.000 0.0 3.180 334.5 0 37461 single

45 Kokusho 200.0 420.0 20.0 60.0 60.0 19.1 0.523 323.6 0.523 323.6 3.180 334.5 0 43149 single

46 Kokusho 200.0 420.0 20.0 60.0 60.0 18.0 0.523 323.6 0.523 323.6 3.180 334.5 0 48445 single

47 Kokusho 200.0 420.0 20.0 60.0 60.0 16.7 0.000 0.0 0.000 0.0 4.620 294.2 0 35304 single

48 Kokusho 200.0 420.0 20.0 60.0 60.0 15.2 0.000 0.0 0.000 0.0 4.620 294.2 0 34323 single

49 Kokusho 200.0 420.0 20.0 60.0 60.0 15.2 0.000 0.0 0.000 0.0 4.620 294.2 0 32362 single

50 Kokusho 200.0 420.0 20.0 60.0 60.0 29.4 0.257 372.7 0.258 372.7 3.080 294.2 0 45111 single

51 Sugano 1200.0 2300.0 74.0 250.0 250.0 24.1 0.184 549.2 0.184 549.2 2.540 418.7 0 833565 single

52 Sugano 1200.0 2300.0 83.0 250.0 250.0 25.2 0.074 460.9 0.074 460.9 2.540 418.7 0 804145 single

53 Hirosawa 1600.0 1700.0 160.0 170.0 160.0 17.3 0.505 407.0 0.263 419.2 5.680 418.7 0 809049 single

54 Hirosawa 1600.0 1700.0 160.0 170.0 160.0 20.8 0.505 407.0 0.263 419.2 5.680 376.6 531814 725692 single

55 Hirosawa 1600.0 1700.0 160.0 170.0 160.0 20.8 0.505 407.0 0.568 421.6 5.680 376.6 531814 813952 single

56 Hirosawa 1600.0 1700.0 160.0 170.0 160.0 13.7 0.505 407.0 0.568 421.6 5.680 376.6 532875 813952 single

57 Hirosawa 1600.0 1700.0 160.0 170.0 160.0 14.7 0.505 407.0 1.083 415.2 5.680 376.6 531787 804145 single

58 Hirosawa 1600.0 1700.0 160.0 170.0 160.0 18.3 0.505 407.0 1.083 415.2 5.680 376.6 532603 912018 single

59 Hirosawa 1600.0 1700.0 160.0 170.0 160.0 20.8 0.505 407.0 0.611 420.7 2.510 382.3 531814 686466 single

60 Hirosawa 1600.0 1700.0 160.0 170.0 160.0 13.7 0.505 407.0 0.611 420.7 2.510 382.3 532875 617819 single

61 Hirosawa 1600.0 1700.0 160.0 170.0 160.0 14.7 0.505 407.0 1.083 415.2 2.510 382.3 531787 706079 single

62 Hirosawa 1600.0 1700.0 160.0 170.0 160.0 18.3 0.505 407.0 1.083 415.2 2.510 382.3 532603 760015 single
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63 Hirosawa 1600.0 850.0 160.0 85.0 160.0 20.8 0.404 407.0 0.568 421.6 9.910 380.4 265907 321168 single

64 Hirosawa 1600.0 850.0 160.0 85.0 160.0 17.8 0.404 407.0 0.568 421.6 9.910 380.4 266288 333426 single

65 Hirosawa 1600.0 850.0 160.0 85.0 160.0 17.8 0.404 407.0 1.083 415.2 8.440 377.6 266288 323619 single

66 Hirosawa 1600.0 850.0 160.0 85.0 160.0 23.2 0.404 407.0 1.083 415.2 8.440 377.6 268192 367749 single

67 Tanabe 300.0 420.0 20.0 60.0 40.0 63.4 0.000 0.0 0.000 0.0 7.010 315.8 0 38638 single

68 Tanabe 300.0 420.0 40.0 42.0 40.0 63.4 0.000 0.0 0.000 0.0 10.020 315.8 0 50406 single

69 Tanabe 450.0 570.0 20.0 60.0 60.0 32.1 0.000 0.0 0.000 0.0 4.700 367.7 0 50995 single

70 Tanabe 450.0 570.0 30.0 60.0 60.0 32.2 0.000 0.0 0.000 0.0 4.700 367.7 0 39227 single

71 Tanabe 450.0 570.0 40.0 60.0 60.0 33.3 0.000 0.0 0.000 0.0 4.700 367.7 0 58840 single

72 Tanabe 450.0 570.0 10.0 60.0 60.0 31.9 3.667 284.4 3.667 284.4 4.700 367.7 0 46081 single

73 Tanabe 450.0 570.0 20.0 60.0 60.0 34.3 1.833 284.4 1.833 284.4 4.700 367.7 0 62763 single

74 Tanabe 450.0 570.0 20.0 60.0 60.0 30.1 1.833 284.4 1.833 284.4 4.700 367.7 0 74531 single

75 Tanabe 450.0 570.0 20.0 60.0 60.0 34.9 1.833 284.4 1.833 284.4 4.700 367.7 0 62763 single

76 Tanabe 450.0 570.0 30.0 60.0 60.0 35.6 1.222 284.4 1.222 284.4 4.700 367.7 0 94144 single

77 Tanabe 450.0 570.0 30.0 60.0 60.0 34.3 1.222 284.4 1.222 284.4 4.700 367.7 0 89633 single

78 Tanabe 450.0 570.0 30.0 60.0 60.0 33.8 1.222 284.4 1.222 284.4 4.700 367.7 0 86299 single

79 Tanabe 450.0 570.0 40.0 60.0 60.0 32.9 0.917 284.4 0.917 284.4 4.700 367.7 0 98067 single

80 Tanabe 450.0 570.0 40.0 60.0 60.0 35.3 0.917 284.4 0.917 284.4 4.700 367.7 0 97086 single

81 Tanabe 450.0 570.0 40.0 60.0 60.0 35.8 0.917 284.4 0.917 284.4 4.700 367.7 0 101989 single

82 Tanabe 450.0 570.0 10.0 60.0 60.0 45.8 1.833 294.2 1.833 294.2 4.700 292.7 0 42659 single

83 Tanabe 450.0 570.0 10.0 60.0 60.0 43.4 1.833 294.2 1.833 294.2 4.700 292.7 0 43836 single

84 Tanabe 450.0 570.0 20.0 60.0 60.0 43.0 1.833 294.2 1.833 294.2 4.700 292.7 0 68647 single

85 Tanabe 450.0 570.0 20.0 60.0 60.0 48.7 1.833 294.2 1.833 294.2 4.700 292.7 0 70608 single

86 Tanabe 450.0 570.0 30.0 60.0 60.0 40.0 1.222 294.2 1.222 294.2 4.700 292.7 0 70608 single

87 Tanabe 450.0 570.0 30.0 60.0 60.0 46.1 1.222 294.2 1.222 294.2 4.700 292.7 0 76492 single
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88 Tanabe 450.0 570.0 40.0 60.0 60.0 45.3 0.917 294.2 0.917 294.2 4.700 292.7 0 78453 single

89 Tanabe 450.0 570.0 40.0 60.0 60.0 42.6 0.917 294.2 0.917 294.2 4.700 292.7 0 77473 single

90 Tanabe 450.0 570.0 10.0 60.0 60.0 46.3 2.444 294.2 2.444 294.2 4.700 292.7 0 55211 single

91 Tanabe 450.0 570.0 10.0 60.0 60.0 46.9 2.444 294.2 2.444 294.2 4.700 292.7 0 57075 single

92 Tanabe 450.0 570.0 10.0 60.0 60.0 45.6 2.444 294.2 2.444 294.2 4.700 292.7 0 58055 single

93 Tanabe 450.0 570.0 20.0 60.0 60.0 43.7 2.444 323.6 2.444 323.6 4.700 292.7 0 81886 single

94 Tanabe 450.0 570.0 20.0 60.0 60.0 43.9 2.444 323.6 2.444 323.6 4.700 292.7 0 76492 single

95 Tanabe 450.0 570.0 20.0 60.0 60.0 45.1 2.444 323.6 2.444 323.6 4.700 292.7 0 79924 single

96 Tanabe 450.0 570.0 30.0 60.0 60.0 45.4 1.630 323.6 1.630 323.6 4.700 292.7 0 74531 single

97 Tanabe 450.0 570.0 30.0 60.0 60.0 43.1 1.630 323.6 1.630 323.6 4.700 292.7 0 83945 single

98 Tanabe 450.0 570.0 30.0 60.0 60.0 44.4 1.630 323.6 1.630 323.6 4.700 292.7 0 84533 single

99 Tanabe 450.0 570.0 40.0 60.0 60.0 43.8 1.222 323.6 1.222 323.6 4.700 292.7 0 86299 single

100 Tanabe 450.0 570.0 40.0 60.0 60.0 43.1 1.222 323.6 1.222 323.6 4.700 292.7 0 78453 single

101 Tanabe 450.0 570.0 40.0 60.0 60.0 40.8 1.222 323.6 1.222 323.6 4.700 292.7 0 91888 single

102 Tuboi 813.0 507.0 67.0 120.0 107.0 30.2 1.966 296.2 1.891 296.2 3.960 260.9 0 101008 single

103 Tuboi 813.0 507.0 67.0 120.0 107.0 31.4 1.966 296.2 1.891 296.2 8.260 302.0 0 161810 single

104 Tuboi 813.0 507.0 67.0 120.0 107.0 29.9 2.528 296.2 2.583 296.2 3.960 260.9 0 108854 single

105 Tuboi 813.0 507.0 67.0 120.0 107.0 32.2 2.528 296.2 2.583 296.2 8.270 302.0 0 174558 single

106 Tuboi 813.0 507.0 67.0 120.0 107.0 29.7 1.966 296.2 1.894 296.2 3.960 260.9 0 195152 double

107 Tuboi 813.0 507.0 67.0 120.0 107.0 28.6 1.966 296.2 1.894 296.2 8.260 302.0 0 184365 double

108 Matui 840.0 1000.0 40.0 80.0 80.0 15.8 0.331 236.8 0.331 236.8 0.830 286.1 0 45111 single

109 Matui 840.0 1000.0 40.0 80.0 80.0 15.8 0.457 334.9 0.457 334.9 0.830 286.1 0 50504 single

110 Matui 840.0 1000.0 30.0 80.0 80.0 12.3 0.442 433.0 0.442 433.0 3.750 294.2 0 74776 single

111 Matui 840.0 1000.0 30.0 80.0 80.0 12.3 0.610 531.0 0.610 531.0 3.750 294.2 0 70608 single

112 Sugano 1440.0 3960.0 120.0 360.0 360.0 20.6 0.663 571.7 0.663 571.7 1.770 397.2 1174694 2353596 single
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113 Sugano 1440.0 3960.0 120.0 360.0 360.0 20.8 0.663 571.7 0.663 571.7 1.770 397.2 2253588 2941995 single

114 Sugano 1440.0 3960.0 120.0 360.0 360.0 21.3 0.663 571.7 0.663 571.7 1.770 397.2 1568873 3138128 single

115 Sugano 1440.0 3960.0 120.0 360.0 360.0 19.6 0.331 571.7 0.331 571.7 1.770 397.2 903450 1814230 single

116 Sugano 1440.0 3960.0 120.0 360.0 360.0 20.8 0.333 571.7 0.333 571.7 1.770 397.2 958764 1912297 single

117 Sugano 1440.0 3960.0 120.0 360.0 360.0 20.5 0.687 284.4 0.663 284.4 1.770 397.2 1071576 2137850 single

118 Sugano 1440.0 3960.0 120.0 360.0 360.0 19.6 0.687 284.4 0.663 284.4 1.770 397.2 987276 1980943 single

119 Sugano 1440.0 3960.0 120.0 360.0 360.0 20.9 0.770 397.2 0.742 397.2 1.770 397.2 1152075 2304563 single

120 Aoyagi 1200.0 2720.0 80.0 320.0 320.0 19.7 0.712 353.0 0.764 353.0 1.740 362.8 0 931632 single

121 Aoyagi 1200.0 2720.0 80.0 320.0 320.0 25.9 0.712 353.0 0.764 353.0 1.740 362.8 0 1029698 single

122 Aoyagi 1200.0 2720.0 160.0 320.0 320.0 29.4 0.580 339.4 0.623 339.4 1.740 362.8 0 1552393 single

123 Aoyagi 1200.0 2720.0 80.0 320.0 320.0 23.8 0.712 353.0 0.764 353.0 6.480 272.2 0 1495514 single

124 Aoyagi 1200.0 2720.0 160.0 320.0 320.0 29.2 0.580 339.4 0.623 339.4 6.480 272.2 0 2309466 single

125 Ohono-Arakawa 700.0 900.0 100.0 100.0 100.0 30.0 0.097 224.1 0.097 224.1 5.030 297.1 0 249089 double

126 Ohono-Arakawa 700.0 900.0 100.0 100.0 100.0 28.6 0.097 224.1 0.097 224.1 5.030 297.1 0 200056 double

127 Yoshizaki 800.0 800.0 60.0 80.0 60.0 23.5 0.219 433.5 0.233 433.5 5.290 332.9 0 101989 single

128 Yoshizaki 800.0 800.0 60.0 80.0 60.0 23.5 0.729 433.5 0.817 433.5 5.880 342.9 0 147100 single

129 Yoshizaki 800.0 800.0 60.0 80.0 60.0 23.5 0.438 433.5 0.408 433.5 8.290 342.7 0 135332 single

130 Yoshizaki 800.0 800.0 60.0 80.0 60.0 23.5 0.729 433.5 0.817 433.5 8.880 345.4 0 158868 single

131 Yoshizaki 800.0 800.0 60.0 80.0 60.0 23.5 1.167 433.5 1.167 433.5 8.880 345.4 0 174558 single

132 Yoshizaki 800.0 1200.0 60.0 120.0 60.0 24.5 0.243 433.5 0.233 433.5 3.530 332.9 0 159848 single

133 Yoshizaki 800.0 1200.0 60.0 120.0 60.0 24.5 0.778 433.5 0.817 433.5 3.920 342.9 0 235360 single

134 Yoshizaki 800.0 1200.0 60.0 120.0 60.0 24.5 0.438 433.5 0.408 433.5 5.530 342.7 0 219669 single

135 Yoshizaki 800.0 1200.0 60.0 120.0 60.0 24.5 0.778 433.5 0.817 433.5 5.920 345.4 0 259876 single

136 Yoshizaki 800.0 1200.0 60.0 120.0 60.0 24.5 1.167 433.5 1.167 433.5 5.920 345.4 0 274586 single

137 Yoshizaki 800.0 1600.0 60.0 160.0 60.0 25.5 0.219 433.5 0.233 433.5 2.650 332.9 0 199075 single

100



138 Yoshizaki 800.0 1600.0 60.0 160.0 60.0 25.5 0.802 433.5 0.817 433.5 2.940 342.9 0 321560 single

139 Yoshizaki 800.0 1600.0 60.0 160.0 60.0 25.5 0.365 433.5 0.408 433.5 4.440 345.4 0 318716 single

140 Yoshizaki 800.0 1600.0 60.0 160.0 60.0 25.5 0.802 433.5 0.817 433.5 4.440 345.4 0 382459 single

141 Yoshizaki 800.0 1600.0 60.0 160.0 60.0 25.5 1.167 433.5 1.167 433.5 4.730 350.9 0 421686 single

142 Hidalgo 2000.0 1000.0 120.0 100.0 120.0 19.4 0.251 392.0 0.131 392.0 8.500 382.5 0 198094 double

143 Hidalgo 2000.0 1000.0 120.0 100.0 120.0 19.6 0.251 402.0 0.246 402.0 8.500 382.5 0 269683 double

144 Hidalgo 2000.0 1000.0 120.0 100.0 120.0 19.5 0.251 402.0 0.381 402.0 10.583 382.5 0 323619 double

145 Hidalgo 1800.0 1300.0 120.0 130.0 120.0 17.7 0.259 314.0 0.131 314.0 6.538 480.5 0 308909 double

146 Hidalgo 1800.0 1300.0 120.0 130.0 120.0 17.8 0.125 471.0 0.246 471.0 6.538 480.5 0 363827 double

147 Hidalgo 1800.0 1300.0 120.0 130.0 120.0 15.7 0.259 471.0 0.246 471.0 6.538 480.5 0 374614 double

148 Hidalgo 1800.0 1300.0 100.0 130.0 100.0 17.6 0.255 366.0 0.255 366.0 7.000 485.0 0 257915 double

149 Hidalgo 1800.0 1300.0 80.0 130.0 80.0 16.4 0.250 367.0 0.250 367.0 7.308 485.0 0 186326 double

150 Hidalgo 1400.0 1400.0 100.0 140.0 100.0 16.3 0.255 362.0 0.127 362.0 5.714 482.5 0 234379 double

151 Hidalgo 1400.0 1400.0 100.0 140.0 100.0 17.0 0.127 366.0 0.255 366.0 5.714 482.5 0 304006 double

152 Hidalgo 1400.0 1400.0 100.0 140.0 100.0 18.1 0.255 370.0 0.255 370.0 5.714 482.5 0 288316 double

153 Hidalgo 1200.0 1700.0 80.0 170.0 80.0 17.1 0.250 366.0 0.125 366.0 4.412 482.5 0 255954 double

154 Hidalgo 1200.0 1700.0 80.0 170.0 80.0 19.0 0.125 366.0 0.250 366.0 4.412 482.5 0 367749 double

155 Hidalgo 1200.0 1700.0 80.0 170.0 80.0 18.8 0.250 366.0 0.250 366.0 4.412 482.5 0 361865 double

156 Hidalgo 1800.0 1300.0 100.0 130.0 100.0 24.2 0.000 0.0 0.000 0.0 4.615 482.5 0 257915 double

157 Hidalgo 1800.0 1300.0 100.0 130.0 100.0 17.2 0.000 0.0 0.000 0.0 4.615 482.5 0 221630 double

158 Hidalgo 1800.0 1300.0 100.0 130.0 100.0 24.2 0.000 0.0 0.250 431.0 8.538 482.5 0 333426 double

159 Hidalgo 1800.0 1300.0 100.0 130.0 100.0 23.9 0.250 431.0 0.000 0.0 4.615 482.5 0 232418 double

160 Hidalgo 1400.0 1400.0 100.0 140.0 100.0 23.9 0.000 0.0 0.000 0.0 4.286 482.5 0 352059 double

161 Hidalgo 1400.0 1400.0 100.0 140.0 100.0 17.7 0.000 0.0 0.000 0.0 4.286 482.5 0 261838 double

162 Hidalgo 1400.0 1400.0 100.0 140.0 100.0 23.9 0.000 0.0 0.250 431.0 6.500 482.5 0 491313 double
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163 Hidalgo 1400.0 1400.0 100.0 140.0 100.0 23.3 0.250 431.0 0.000 0.0 4.286 482.5 0 257915 double

164 Hidalgo 1050.0 1500.0 80.0 150.0 80.0 23.2 0.000 0.0 0.000 0.0 5.000 482.5 0 399131 double

165 Hidalgo 1050.0 1500.0 80.0 150.0 80.0 17.9 0.000 0.0 0.000 0.0 5.000 482.5 0 355981 double

166 Hidalgo 1050.0 1500.0 80.0 150.0 80.0 23.1 0.000 0.0 0.250 431.0 6.667 482.5 0 391285 double

167 Hidalgo 1050.0 1500.0 80.0 150.0 80.0 23.3 0.250 431.0 0.000 0.0 5.000 482.5 0 344213 double

168 Yamada 475.0 1325.0 40.0 125.0 125.0 35.6 0.233 286.0 0.312 286.0 2.020 330.0 0 373000 single

169 Yamada 475.0 1325.0 40.0 125.0 125.0 30.4 0.467 286.0 0.467 286.0 2.020 330.0 0 370000 single

170 Yamada 475.0 1325.0 40.0 125.0 125.0 31.5 0.934 286.0 1.091 286.0 2.020 330.0 0 438000 single

171 Yamada 475.0 1325.0 30.0 125.0 125.0 32.8 0.622 286.0 0.623 286.0 2.020 330.0 0 276000 single

172 Yamada 475.0 1325.0 20.0 125.0 125.0 30.1 0.467 286.0 0.623 286.0 2.020 330.0 0 211000 single

173 Yamada 475.0 1325.0 20.0 125.0 125.0 33.7 0.934 286.0 0.935 286.0 2.020 330.0 0 213000 single

174 Wiradinata 1000.0 2000.0 100.0 200.0 100.0 24.8 0.800 434.4 0.250 424.7 0.800 434.4 14892 573792 single

175 Wiradinata 500.0 2000.0 100.0 200.0 100.0 22.1 0.800 434.4 0.250 424.7 0.800 434.4 8824 680544 single

176 Saatcioglu 1500.0 2000.0 100.0 200.0 100.0 45.0 0.800 449.9 0.800 449.9 0.800 449.9 0 380685 single

177 Saatcioglu 1500.0 1500.0 100.0 150.0 100.0 45.0 0.800 449.9 0.800 449.9 0.800 449.9 0 225405 single

178 Saatcioglu 500.0 2000.0 100.0 200.0 100.0 35.0 0.800 479.9 0.390 248.2 0.800 479.9 0 908634 single

179 Saatcioglu 1000.0 2000.0 100.0 200.0 100.0 35.0 0.800 479.9 0.800 479.9 0.800 479.9 0 529953 single

180 Saatcioglu 1000.0 2000.0 100.0 200.0 100.0 33.0 0.800 479.9 0.800 479.9 0.800 479.9 0 419755 single

181 Saatcioglu 1000.0 2000.0 100.0 200.0 100.0 27.0 0.800 479.9 1.200 479.9 0.800 479.9 0 587056 single

182 Antebi 1016.0 1803.0 50.8 127.0 190.5 21.8 0.250 271.0 0.250 271.0 2.090 324.1 1996 360288 single

183 Antebi 1016.0 1803.0 50.8 127.0 190.5 23.2 0.250 271.0 0.250 271.0 4.720 305.4 2122 453696 single

184 Antebi 1016.0 1803.0 50.8 127.0 190.5 18.4 0.500 393.0 0.500 393.0 2.090 296.5 5059 413664 single

185 Antebi 1016.0 1803.0 50.8 127.0 190.5 41.2 0.500 331.0 0.500 331.0 2.090 275.8 3770 409216 single

186 Antebi 1016.0 1803.0 50.8 127.0 190.5 26.8 0.500 344.8 0.500 344.8 2.090 344.8 2450 444800 single

187 Antebi 1016.0 1803.0 50.8 127.0 190.5 25.6 0.500 344.8 0.500 344.8 2.090 344.8 2343 404768 single

102



188 Antebi 1016.0 1803.0 50.8 127.0 190.5 28.3 0.500 344.8 0.500 344.8 2.090 344.8 2589 360288 single

189 Antebi 1016.0 1803.0 50.8 127.0 190.5 22.8 0.500 323.4 0.500 323.4 4.720 337.9 2090 471488 single

190 Antebi 1016.0 1803.0 76.2 127.0 190.5 20.3 0.250 313.0 0.250 313.0 2.090 295.8 2794 409216 single

191 Antebi 1016.0 1803.0 76.2 127.0 190.5 14.0 0.250 319.2 0.250 319.2 2.090 313.7 3847 400320 single

192 Antebi 1016.0 1803.0 76.2 127.0 190.5 16.4 0.500 306.1 0.500 306.1 2.090 319.2 4509 409216 single

193 Antebi 1016.0 1803.0 76.2 127.0 190.5 17.0 0.500 343.4 0.500 343.4 2.090 318.5 4679 502624 single

194 Antebi 1016.0 1803.0 76.2 127.0 190.5 14.4 0.500 346.1 0.500 346.1 2.090 312.3 3960 427453 single

195 Antebi 1016.0 3327.0 50.8 127.0 190.5 22.8 0.500 360.6 0.500 360.6 2.090 320.6 3857 493728 single

196 Antebi 1016.0 3327.0 50.8 127.0 190.5 20.0 0.500 348.2 0.500 348.2 2.090 335.8 6760 489280 single

197 Antebi 1016.0 3327.0 50.8 127.0 190.5 19.6 0.500 350.3 0.500 350.3 2.090 318.5 6618 600480 single

198 Barda 952.5 1906.0 101.6 101.6 609.6 29.0 0.500 543.3 0.500 495.8 1.830 525.4 28040 1218307 single

199 Barda 952.5 1906.0 101.6 101.6 609.6 16.3 0.500 551.6 0.500 499.2 6.460 486.8 18985 978471 single

200 Barda 952.5 1906.0 101.6 101.6 609.6 27.0 0.500 544.7 0.500 513.0 4.170 413.7 26172 1108219 single

201 Barda 952.5 1906.0 101.6 101.6 609.6 21.2 0.250 496.4 0.500 496.4 4.170 528.8 20566 876345 single

202 Barda 476.3 1906.0 101.6 101.6 609.6 25.7 0.500 530.9 0.500 501.3 4.170 539.2 14942 1139667 single

203 Barda 1905.0 1906.0 101.6 101.6 609.6 23.4 0.500 527.5 0.500 495.8 4.170 488.9 27235 885552 single

204 Benjamin 508.0 610.4 50.8 101.6 127.0 20.0 0.500 341.3 0.500 341.3 2.210 312.3 0 88960 single

205 Benjamin 508.0 915.2 50.8 101.6 127.0 21.4 0.500 341.3 0.500 341.3 2.210 312.3 0 154790 single

206 Benjamin 508.0 1220.0 50.8 101.6 127.0 19.5 0.500 341.3 0.500 341.3 2.210 312.3 0 201494 single

207 Benjamin 508.0 1778.8 50.8 101.6 127.0 26.2 0.500 341.3 0.500 341.3 2.210 312.3 0 293568 single

208 Benjamin 850.9 1727.2 50.8 127.0 95.3 21.4 0.500 341.3 0.500 341.3 4.190 312.3 0 186816 single

209 Benjamin 850.9 1727.2 50.8 127.0 190.5 20.0 0.250 341.3 0.250 341.3 2.090 312.3 0 249088 single

210 Benjamin 850.9 1727.2 50.8 127.0 190.5 22.1 0.500 341.3 0.500 341.3 2.090 312.3 0 462592 single

211 Benjamin 850.9 1727.2 50.8 127.0 190.5 24.1 0.500 341.3 0.500 341.3 2.090 312.3 0 373632 single

212 Benjamin 850.9 1727.2 50.8 127.0 304.8 22.8 0.500 341.3 0.500 341.3 1.310 312.3 0 293568 single

103



213 Benjamin 508.0 915.2 44.5 101.6 127.0 24.8 0.500 341.3 0.500 341.3 3.310 312.3 0 204608 single

214 Benjamin 508.0 915.2 44.5 101.6 127.0 19.3 0.250 341.3 0.250 341.3 3.310 312.3 0 137888 single

215 Benjamin 425.5 864.6 25.4 63.5 95.3 21.4 0.500 341.3 0.500 341.3 2.010 312.3 0 90294 single

216 Benjamin 425.5 864.6 25.4 63.5 95.3 20.7 0.500 341.3 0.500 341.3 2.010 312.3 0 88960 single

217 Benjamin 1276.4 2591.8 76.2 190.5 285.8 20.7 0.500 341.3 0.500 341.3 2.000 312.3 0 684992 single

218 Benjamin 698.5 1651.0 50.8 127.0 127.0 26.9 0.500 341.3 0.500 341.3 1.760 312.3 0 301130 single

219 Benjamin 952.5 1143.0 50.8 127.0 127.0 24.8 0.500 341.3 0.500 341.3 4.960 312.3 0 222400 single

220 Benjamin 539.8 1955.8 50.8 127.0 127.0 20.7 0.500 341.3 0.500 341.3 1.760 312.3 0 373632 single

221 Benjamin 850.9 1727.2 50.8 127.0 190.5 21.4 0.500 341.3 0.500 341.3 2.090 312.3 0 302464 single

222 Benjamin 850.9 1727.2 50.8 127.0 190.5 20.7 0.250 341.3 0.250 341.3 2.090 312.3 0 315808 single

223 Benjamin 501.7 1778.8 44.5 101.6 127.0 21.4 1.000 341.3 1.000 341.3 2.210 312.3 0 311360 single

224 Benjamin 501.7 1778.8 44.5 101.6 127.0 22.8 1.000 341.3 1.000 341.3 2.210 312.3 0 366960 single

225 Benjamin 501.7 1778.8 44.5 101.6 127.0 20.7 1.500 341.3 1.500 341.3 2.210 312.3 0 329152 single

226 Benjamin 863.6 1575.5 50.8 120.7 190.5 22.1 0.250 358.5 0.250 358.5 2.250 324.1 0 214386 single

227 Benjamin 863.6 1575.5 50.8 120.7 190.5 21.4 0.250 358.5 0.250 358.5 2.250 324.1 0 178321 single

228 Benjamin 419.1 1644.7 44.5 127.0 127.0 19.9 0.250 358.5 0.250 358.5 3.200 324.1 0 245441 single

229 Benjamin 419.1 1644.7 44.5 127.0 127.0 14.4 0.250 358.5 0.250 358.5 3.200 324.1 0 245441 single

230 Benjamin 584.2 1220.0 50.8 101.6 101.6 16.1 0.500 293.0 0.500 293.0 2.750 293.0 0 178321 single

231 Benjamin 584.2 1220.0 50.8 101.6 101.6 16.1 0.500 293.0 0.500 293.0 2.750 293.0 0 178321 single

232 Benjamin 584.2 1220.0 50.8 101.6 101.6 16.1 0.500 293.0 0.500 293.0 2.750 293.0 0 160288 single

233 Cardenas 1905.0 1905.0 76.2 190.5 76.2 43.0 0.860 448.2 0.270 413.7 8.270 448.2 12490 519082 single

234 Cardenas 1905.0 1905.0 76.2 190.5 76.2 42.5 2.890 448.2 0.270 465.4 2.890 448.2 12330 569789 single

235 Cardenas 1905.0 1905.0 76.2 190.5 76.2 43.0 2.890 448.2 1.000 413.7 2.890 448.2 12490 679210 single

236 Cardenas 1905.0 1905.0 76.2 190.5 76.2 40.3 1.630 448.2 0.000 448.2 1.630 448.2 0 306551 single

237 Cardenas 1905.0 1905.0 76.2 190.5 76.2 43.4 2.890 448.2 1.000 455.1 2.890 448.2 12612 632061 single
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238 Galletly 508.0 915.2 44.5 101.6 101.6 35.9 0.790 344.8 0.790 344.8 4.910 317.2 0 273552 single

239 Galletly 508.0 915.2 44.5 101.6 101.6 29.7 1.570 344.8 1.570 344.8 4.910 312.3 0 318032 single

240 Galletly 508.0 915.2 44.5 101.6 101.6 33.8 0.790 344.8 0.790 344.8 2.760 342.7 0 226848 single

241 Galletly 508.0 915.2 44.5 101.6 101.6 34.5 1.570 344.8 1.570 344.8 2.760 342.7 0 284672 single

242 Galletly 508.0 915.2 44.5 101.6 101.6 31.7 0.790 344.8 0.790 344.8 5.510 368.9 0 191264 single

243 Galletly 508.0 915.2 44.5 101.6 101.6 29.7 1.570 344.8 1.570 344.8 5.510 366.8 0 244640 single

244 Massone 1524.0 1524.0 152.4 168.3 152.4 25.5 0.428 424.0 0.278 424.0 3.119 448.2 53324 633840 double

245 Massone 1524.0 1524.0 152.4 127.0 152.4 31.4 0.400 424.0 0.278 424.0 1.700 448.2 51001 453918 double

246 Massone 1524.0 1524.0 152.4 127.0 152.4 31.0 0.400 424.0 0.278 424.0 1.700 448.2 50335 491504 double

247 Massone 1524.0 1524.0 152.4 168.3 152.4 43.7 0.428 424.0 0.278 424.0 3.119 448.2 50760 749933 double

248 Massone 1219.2 1371.6 152.4 127.0 152.4 28.3 0.227 424.0 0.278 424.0 1.333 424.0 644117 753936 double

249 Massone 1219.2 1371.6 152.4 127.0 152.4 31.4 0.227 424.0 0.278 424.0 1.333 424.0 708192 820656 double

250 Massone 1219.2 1371.6 152.4 127.0 152.4 31.9 0.227 424.0 0.278 424.0 1.333 424.0 386993 649408 double

251 Massone 1219.2 1371.6 152.4 127.0 152.4 32.0 0.227 424.0 0.278 424.0 1.333 424.0 387842 682768 double

252 Massone 1219.2 1371.6 152.4 127.0 152.4 29.9 0.227 424.0 0.278 424.0 1.333 424.0 56288 405213 double
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