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Introducción: El Coronavirus 2019 (COVID-19) es una enfermedad causada por el síndrome
respiratorio agudo severo coronavirus 2 (SARS-CoV-2). Tiene un riesgo significativo debido
a su alto número reproductivo básico, que puede traducirse en UCI sobrepobladas en el sis-
tema de salud, siempre que la infección no esté controlada. En la medida en que no hayan
vacunas disponibles para todos y todas, la única forma de controlar la pandemia es mediante
la prevención: aislamiento de casos, rastreo de contactos, cuarentenas, distanciamiento físico
y medidas de higiene.
Razón fundamental: En este artículo simulamos cómo el virus se propagó a través de
la población de la Región Metropolitana en Chile, usando una microsimulación. Utilizamos
muchas fuentes de datos, incluido el censo, para recrear las principales características de las
personas que viven en la región y sus desplazamientos. Para los desplazamientos utilizamos
datos de teléfonos celulares para rastrear el movimiento de las personas, midiendo su cambio
en sus desplazamientos con respecto a los mismos antes de la pandemia. Para evaluar las me-
didas de control, implementamos el mecanismo trazabilidad utilizado en Chile en diferentes
niveles, para identificar qué tan dura debe ser la medida para controlar la infección rápida.
Resultados: Desarrollamos una microsimulación donde los contagios ocurren agente por
agente. Pueden pasar por distintos estados que dependen (y corresponden) a su compor-
tamiento frente a la pandemia. También utilizamos un método de máxima verosimilitud a
través del tiempo para calibrar el modelo. El modelo estimó que trazabilidad realizada en
agosto-2020 equivale a testear y aislar al 20% (o 10%) de las personas y rastrear al 10%
(o 20%) de sus contactos. Además, descubrimos que la eficacia de la trazabilidad necesaria
para reducir a cero las nuevas infecciones es mayor a un 20% en ambas dimensiones.
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Abstract

Introduction: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). It carries significant risk because of its high basic
reproductive number, which can translates in overcrowded ICUs in the health system as long
as the infection is uncontrolled. While vaccines are not developed the only way to control the
pandemic is by prevention: case isolation, contact tracing, quarantines, physical distancing
and hygiene measures.
Rationale: In this paper we simulated how the virus spread through Región Metropolitana
population in Chile using a microsimulation. We used many source of data, including census,
to recreate the main characteristics of the people living in the region and their commuting
behavior. For the commuting we used cellphone data to track the movement of the people,
measuring their change in their commuting with respect to the same before to the pandemic.
To evaluate control measures we implemented the contact tracing mechanism used in Chile
at different levels, to identify how hard the measure need to be in order to control the rapid
infection.
Results: We developed a microsimulation where the contagions occur agent by agent. They
can pass through states which correspond to their behavior in the face of the pandemic.
We also used a maximum likelihood through time method to calibrate the model. The model
estimated that the contact tracing carried out in August-2020 is equivalent to test and isolate
20% (or 10%) of the people and trace 10% (or 20%) of their contacts. Moreover, we found
that the contact tracing effectiveness necessary to decrease new infections to zero is higher.

ii



Tabla de Contenido

Índice de Tablas iv

Índice de Ilustraciones v

Introducción 1

1. Transmission network model 3
1.1. Network structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Node states and infection transmission . . . . . . . . . . . . . . . . . . . . . 6

2. Data collection 9
2.1. Virus characteristics and assumptions . . . . . . . . . . . . . . . . . . . . . . 9
2.2. Case incidence data adjustments . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. Population characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4. Commuting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1. Mobility information during the pandemic . . . . . . . . . . . . . . . 14
2.4.2. Change in work mobility . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3. Change in social commuting . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.4. Changes in behavior due to the presence of symptoms . . . . . . . . . 17

3. Model estimation 19
3.1. Parameters to estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2. Estimation via Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . 20
3.3. Estimation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4. Evaluating mitigation strategies 23
4.1. Full lockdown strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2. Lockdowns with threshold policy . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3. Contact tracing and selective case isolation . . . . . . . . . . . . . . . . . . . 24

Conclusión 27

Bibliografía 29

iii



Índice de Tablas

1.1. States of the individuals through the infectious process. . . . . . . . . . . . . 7
1.2. Relative contact rate depending on the age of each individual. These factors

simulate how people with different ages interact with the community and were
taken from Ferguson (2020) [1] . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1. Distributions of time periods of node states, their means and their standard
deviations (if the time period is a random variable). . . . . . . . . . . . . . . 10

2.2. Decreasing contact rates for each state of individuals, for when they are in
quarantine and when they are not, for a certain week t. ht corresponds to con-
tact within households, wt to contact within workplaces and ct to community
contact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1. List of the best 50 likelihood-scored parameters evaluated by the model. . . . 22

iv



Índice de Ilustraciones

1.1. An example of four households belonging to a zone and having different num-
bers of inhabitants. Nodes inside the same household are connected to one
another, forming a clique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2. An example of six households in which their occupants are connected to their
neighbors by randomly generated edges. This allows connectivity among hou-
seholds over short distances. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3. figure 1.3a Nodes of different households are assigned to a workplace where
they meet one another. The system presented in Figure 1.3b is simplified by
eliminating workplaces but maintaining connections among nodes assigned to
them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4. The graphic indicates how nodes are connected. Green lines denote home con-
nections, blue lines denote work connections, red lines denote school connec-
tions and yellow lines denote social connections. . . . . . . . . . . . . . . . . 5

1.5. Dynamics of the virus spread. An individual starts as susceptible NI until he
or she is infected by a contagious source. They can become presymptomatic or
asymptomatic. After the latency period (virtual in the case of asymptomatic
individuals), they become contagious presymptomatic Icp and contagious asym-
ptomatic Ica, respectively, not yet presenting symptoms. The presymptomatic,
after a fixed amount of time, can become either symptomatic Ics , hospitalized
Ich or critical Iccr. When an individual is hospitalized, critical or asymptomatic,
after an amount of time different for each, they will be postsymptomatic P . In
the case of the symptomatic, they can either self-isolate, become quarantined,
or become postsymptomatic. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1. Source: icovidchile.cl. Positivity of tests conducted during the pandemic bet-
ween April 1 and August 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Probability that a test will be analyzed and delivered in less than 3 days . . 11
2.3. Correction of the case incidence series for underreporting. . . . . . . . . . . 12
2.4. Change in series through transformations. Cyan series are daily new cases

according to confirmation day. Blue series correspond to daily new cases ac-
cording to the onset of symptoms. Green series show daily new cases according
to contagion day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5. People are distributed among the communes of Región Metropolitana and con-
nected to one another. Each color shows that an agent can be in different states
over time, being susceptible first and postcontagious last. . . . . . . . . . . . 13

v



2.7. Source: Carranza (2020) [2]. Level of compliance of the people living in different
communes of Región Metropolitana. Large circles represent when a commune
was in lockdown. The acronym lowSEG in the legend represents the percentage
of individuals who belong to a low-income segment. . . . . . . . . . . . . . . 15

3.1. Prediction of the daily contacts simulated with the microsimulation compared
with the contagion curve adjusted for underreporting. Each box represents 25
and 75 percentiles of data simulated for the corresponding day. Red squares
are the median of the samples for each day, and blue stars are daily infections
according to contagion day corrected for underreporting. The parameters se-
lected were βH = 11,75, βW = 14,1, and βS = 0,94 , βC = 3,375, η = 0,9,
xa = 0,45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1. Evolution of the new daily cases according to reporting day for the first cali-
bration. The yellow line represents social distancing assumptions and schools
closed. The blue line represents full lockdown of the region. . . . . . . . . . . 24

4.2. Daily infections in Región Metropolitana grouped by health services. The pink
area represents the period of time in which the population associated with a
health service is in lockdown. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3. Daily infection curve obtained by not applying contact tracing. . . . . . . . . 25
4.4. Course of the pandemic when applying different levels of contact tracing. β

denotes the proportion of people who trigger the tracing process once they
self-isolate (equivalent to the percentages of people who decide to take a PCR
test) and α the proportion of contacts from the infected source who will be
reached. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vi



Introducción

Coronavirus disease 2019 (COVID-19) is a rapidly spreading infectious disease caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has become a global
pandemic. It has a basic reproductive number of 2.2 to 2.5 as determined in Wuhan during
the first months of spreading [3] [4].

COVID-19 spread can be fought with both pharmaceutical and nonpharmaceutical in-
terventions (NPIs). The former concern vaccine immunity for the general population and
treatments to reduce mortality and critical rates for the infected population. The latter ca-
tegory is broad and can encompass personal protective equipment and hygiene plus social
distancing measures for the general population and confinement strategies and contact tra-
cing for the infected population. This work focuses on NPIs since these are the best way to
decrease virus spread in the absence of a vaccine.

Since the main goal is to develop a tool to evaluate alternative NPI mitigation strategies, 3
principal modeling approaches were identified. One alternative is to use machine learning [5],
which is flexible, maximizes predictive power, and optimally selects among multiple prediction
variables but is limited to extrapolating predictions under system interventions. Another
alternative are the well-known susceptible-infected-recovered (SIR) models [6] [7] [8], which
are parsimonious models to capture the structure of an epidemic and are feasible to estimate
with limited data but do not account for the structure of the social/geographic network and
the uncertainty and variability of the epidemic. The lasts alternatives are microsimulations [1]
[9] [10] that capture details of the patterns of the social/geographic network and incorporate
uncertainty and variability but require large datasets and careful construction, and they are
computationally intensive.

This work is a microsimulation with the objective of assessing different NPIs in Región
Metropolitana to mitigate COVID-19 propagation. Spread occurs from individual to indivi-
dual with a probability that depends on the contagion force and the regimen followed by
the infected, which changes according to the average mobility of their zone. A key aspect to
consider in the development of this model is the dynamics of contagion. The attributes used
to characterize this were incubation time [11], infectiousness over time and the serial interval
[12].

Given that the compliance of the population with lockdown policies is low and depends on
the income level of the people of each zone [2], cellphone data were used to quantify mobility
from one commune to another (i.e., lockdown policy compliance).

1



Calibration of the simulation is performed with maximum likelihood methods. To find
the parameters that provide the best fit, a single likelihood function is calculated for each
of the simulated days, and the sum of all day contributions is maximized. Once the model
is calibrated, a contact tracing system is implemented to test how many people would be
necessary to trace and how many of their contacts would be necessary to reach.

The principal contribution of this work is the development of a tool that allows to asses
the effect that different NPIs, like quarantines, testing and contact tracing measures, have
on the pandemic. From this tool, the principal finding is that virus spread can be controlled
by tracing 20% of the infected and reaching 20% of their contacts. Higher values of any of
those metrics lead to a substantial reduction in new cases.
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Capítulo 1

Transmission network model

The simulation of transmission is modeled through a network of individuals where connec-
tions represent physical contacts in the population and the evolution of the contagion process
follows Markov processes. States represent the health condition of each individual (suscepti-
ble, multiple stages of infection and recovered), and contagion from susceptible to infection
is probabilistic. This section describes the details of how the contact network is determined
and the probability model used to capture the stochastic behavior of the contagion process.

1.1. Network structure

The population is modeled through a graph (V,E), where the vertices (nodes) V represent
individuals and the set of undirected edges E capture potential physical contacts among them.
This contact network is partitioned into four superimposed sets of edges representing different
places where contact can occur: (i) household (EH); (ii) school (ES); (iii) work (EW ); and
(iv) other contacts, referred to as community (EC).

Each individual in V is characterized by their (i) age, which affects their severity of
infection, and (ii) geographic location, specified by coordinates, which determine the network
of contacts.

The population is located in zone z, which determines certain characteristics, such as
the population density, age and gender of individuals and number of inhabitants in each
household. All of this is simulated to match the patterns of the region studied.

Each individual i is assigned a gender, an age, a zone z (matching the number of inhabitants
of the corresponding zone) and a household h(i) belonging to that zone. Households become
a clique, forming a complete subgraph among individuals assigned to the same household.
The union of the household cliques forms the set of edges EH . Figure 1.1 shows an example
of connections within households.

Each individual associated with a household h can have social contact with his or her
neighbors, which are represented by the nodes located at d̄ kilometers as a maximum from
the origin node. Community contacts are generated through a random graph following a

3



Figura 1.1: An example of four households belonging to a zone and having different numbers
of inhabitants. Nodes inside the same household are connected to one another, forming a
clique.

power law. Two nodes are connected with probability fpow(d), specified in Section 1.2, which
depends on the geographic distance d between two nodes. These community connections form
the set of edges EC , with each node having an average connectivity of 10 edges. Figure 1.2
illustrates how nodes can be connected to one another regardless of the node an individual
inhabits.

Figura 1.2: An example of six households in which their occupants are connected to their
neighbors by randomly generated edges. This allows connectivity among households over
short distances.

A fraction of the nodes are assigned to a workplace w(i) with probability paz, depending
on the age a of the individual and the zone z to which they belong. Each individual i living
in zone zh(i) has a probability CommuteWzh(i)z of working in zone z given that they live in zone
zh(i). On that basis, an individual is assigned to a zone z and uniformly randomly assigned
to a workplace w(i) belonging to that zone. There are as many workplaces in each zone
as necessary to hold the people working in them. Each workplace has a certain number of
workers that follows a size distribution. Workplaces become cliques connecting all individuals
assigned to them: two individuals with workplaces w(i) = w(j) are connected, and the union
of these cliques forms the set of edges EW . Figure 1.3 shows how connections work.

Another fraction of nodes are assigned to schools. Each child with a home in zone zhi has
a probability CommuteSzh(i)z of studying in zone z given that they live in zone zh(i). They are
assigned to a zone z and then uniformly randomly assigned to a school s(i) in that zone.

4



(a) (b)

Figura 1.3: figure 1.3a Nodes of different households are assigned to a workplace where they
meet one another. The system presented in Figure 1.3b is simplified by eliminating workplaces
but maintaining connections among nodes assigned to them.

Schools are cliques connecting students, forming the set of edges ES.

Figure 1.4 shows an example of how different types of cliques with their edges E interact
with one another. This allows all nodes to be connected even if they are not in the same zone
or are far away.

Figura 1.4: The graphic indicates how nodes are connected. Green lines denote home con-
nections, blue lines denote work connections, red lines denote school connections and yellow
lines denote social connections.
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1.2. Node states and infection transmission
Nodes in the network may evolve through nine states described in Table 1.1 and illustra-

ted in Figure 1.5. All nodes are initialized in the susceptible state NI. Infected cases in the
contagious stage transmit the infection to susceptible individuals, who can move to an asym-
ptomatic Ia state, with probability 1− r or to a presymptomatic Ip state, with probability r.
Let T ci be the time that an individual i is infected.

Let TCi be the time at which individual i become infected, TLi be a random variable deno-
ting the incubation period of individual i and T I be the time before symptoms emerge when
contagiousness begins (fixed and equal for each). A presymptomatic individual will become
contagious presymptomatic Icp at time TCi +TLi −T I . In this state, individuals can infect other
people even if they do not present symptoms. Thereafter, the node may become symptomatic
(Ics), with probability psymp,a, hospitalized (Ich), with probability (1−psymp,a)phosp,a, or critical
(Iccr), with probability (1− psymp,a)(1− phosp,a) at time TCi + TLi . Symptomatic, hospitalized
and critical patients will remain in this state for T S, TH and T P days, respectively, until they
recover, becoming postsymptomatic P .

On the other hand, an asymptomatic individual has a virtual incubation period, which
is important because they become contagiously asymptomatic at time T ci + TLi − T I . conta-
gious asymptomatic nodes will remain in this state for TA days since symptoms would have
emerged. Finally, they recover, becoming postsymptomatic P .

NI Ip

Ia Ica

Icp

Ics

Ich

Iccr

Icq P

r

1− r

Figura 1.5: Dynamics of the virus spread. An individual starts as susceptible NI until he
or she is infected by a contagious source. They can become presymptomatic or asymptoma-
tic. After the latency period (virtual in the case of asymptomatic individuals), they become
contagious presymptomatic Icp and contagious asymptomatic Ica, respectively, not yet pre-
senting symptoms. The presymptomatic, after a fixed amount of time, can become either
symptomatic Ics , hospitalized Ich or critical Iccr. When an individual is hospitalized, critical or
asymptomatic, after an amount of time different for each, they will be postsymptomatic P .
In the case of the symptomatic, they can either self-isolate, become quarantined, or become
postsymptomatic.

Transmission rates depend on the demographics, state and contact network of each infected
node. Each node k that enters the infectious period can infect its connected nodes in the
susceptible state. We use the index p ∈ {H,W, S,C} to denote a place where infections may
occur, which is associated with a set of edges connecting nodes, Ep. In every period t, the
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State Notation Description

Susceptible NI Nodes that have not had the disease and are susceptible to
be infected

Asymptomatic Ia Nodes that are infected, will never present symptoms and
do not spread the virus.

Contagious asymptomatic Ica Identical to the asymptomatic except that they are capable
of spreading the virus.

Presymptomatic Ip Individuals who are infected and will present symptoms but
are not yet symptomatic

Contagious presymptomatic Icp Identical to the presymptomatic except that they are able
to spread the virus

Symptomatic Ics Individuals who are infected, present symptoms and spread
the virus.

Quarantined Icq Identical to the symptomatic except that they are self-
isolated, reducing contact with other people.

Hospitalized Ich Individuals who require special care in hospitals. Their con-
tact is considerably reduced, and they remain sick longer.

Critical Iccr Individuals who require critical care in hospitals. Their con-
tact is considerably reduced, and they remain sick longer
than the hospitalized.

Postcontagious P Individuals who have recovered or died after contracting the
disease. They do not affect nor are affected by the diseased.

Tabla 1.1: States of the individuals through the infectious process.

probability that infected node k transmits the infection to a susceptible node i connected
through an edge in Ep is given by:

Pr(k →p i) = 1− exp(−qpk(t)Tp) (1.1)

where qpk(t) is the infection rate and TP is the exposure interval of the contact, both of which
depend on the type of contact p = {H,W, S,C}.

For the home, work and school contact networks ({Ep}p∈{H,W,S}), the infection rate is
specified as:

qpk(t) =
βpφ(t− τk)ρk [1 + Ck (ω − 1)]

np(k)αp
· η{t≥t̄} (1.2)

where:

• βp is the parameter capturing the force of infection associated with the contact network
Ep.

• τk is the time of the onset of symptoms of the index case k.
• φ(t−τk) corresponds to the infectiousness decay function, which depends on the elapsed

time in which symptoms start.
• ρk represents the heterogeneity of the force of infection across individuals.
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• Ck is 1 if individual k is a critical infection and 0 otherwise.
• ω is the infectiousness of a critical infection relative to a mild one.
• np(k) is the number of connected individuals in the clique of the contact network Ep

associated with the infected case.
• αp is an external parameter to scale np(k), fixed as αH = 0,8 for households and
αW = αS = 1 for work and school.

• η is a factor that scales the force of contagion, representing the effect of full lockdown.
This begins to have consequences after time t̄, for example, η{t≥t̄} = 1− (1− η) · 1{t≥t̄}

• t̄ is the time at which full lockdown in Región Metropolitana started.

For community contacts, the infection rate depends on the Euclidean distance dki between
the index case (k) and the contact (i) and is specified as:

qCki(t) = βCς(ak)φ(t− τk)ρk [1 + Ck (ω − 1)]
fpow(dki)∑

(k,j)∈EC ,d≤d̄ fpow(dkj)
η{t≥t̄} (1.3)

where:

• ς(ak) is a relative contact rate that depends on the age ak of individual k. The values
of this function are specified in Table 1.2.

• fpow(dki) = 1

1+
(

dki
a

)b , with a = 4km and b = 3,8 [13].

• dki corresponds to the Euclidean distance between case k and contact i

• d̄ is the maximum distance at which a case can be linked to a contact, with d̄ = 0,5km

Age ak Relative contact rate ς(ak)

0 to 5 years 10%

5 to 10 years 25%

10 to 15 years 50%

15 to 20 years 75%

20 to 65 years 100%

65 to 70 years 75%

70 to 75 years 50%

75 or more years 10%

Tabla 1.2: Relative contact rate depending on the age of each individual. These factors
simulate how people with different ages interact with the community and were taken from
Ferguson (2020) [1]
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Capítulo 2

Data collection

To precisely characterize the way the virus spreads, data were used to represent the main
qualities of COVID-19 and the qualities of the population exposed. The population has
demographic attributes and certain social interaction patterns, which influence the progress
of the outbreak.
The main objective of identifying population characteristics is to make a graph G = (V,E)
where the vertices V and the edges E model the position of each person and his or her
connections, respectively. On the other hand, the properties of the virus help us to model
how fast the virus spreads and for how long an individual can spread it.

2.1. Virus characteristics and assumptions

SARS-CoV-2, the causative virus of COVID-19, has some characteristics that directly
affect the way the disease spreads. It has been shown that its reproductive number was
between 2.2 and 2.5 in Wuhan [3] [4] and 2.6 in the Republic of Korea and Italy [14].

The main assumptions on COVID-19 used in this model are listed below. The mean durations
of states of the infection are shown in Table 2.1.

1. The incubation period is log-normally distributed with a mean of 5.2 days and the 95th
percentile of the distribution at 12.5 days [12].

2. Infectiousness starts 2.3 days before symptom onset and peaks at 0.7 days before sym-
ptom onset, with an estimated proportion of presymptomatic transmission (area under
the curve) of 44%. This is modeled with a gamma density distribution [12].

3. According to Ferretti et al.[15], the relative infectiousness of asymptomatic with respect
to symptomatic patients is 0.1.

4. Infection and infectiousness will last for 10 days after the onset of symptoms for sym-
ptomatic patients and 10 days after the virtual onset of symptoms for asymptomatic
patients. This is based on He et al. [12], who state that infectiousness declines signifi-
cantly 8 days after the onset of symptoms, which is consistent with our infectiousness
function. For standard hospitalized and critical hospitalized patients, their infection
will last for 20 and 29 days, respectively [16].
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5. A total of 45% of the cases will be asymptomatic. We also assumed an asymptomatic
proportion of agents of 45% [17].

Time period Symbol Mean
(std.dev.)

Distribution

Time at which contagion occurs TCi − −

From contagion to onset of symptoms TLi 5,2
(3,91)

Log-normal

Time before onset of symptoms in which con-
tagiousness starts

T I 2,3 Deterministic

From onset of symptoms to self-isolation T SIi 2,0
(1,15)

Log-normal

From virtual onset of symptoms to recovered
for asymptomatic

TA 10 Deterministic

From onset of symptoms to recovered for
symptomatic

T S 10 Deterministic

From onset of symptoms to recovered for hos-
pitalized patients

TH 20 Deterministic

From onset of symptoms to recovered for cri-
tical patients

T P 29 Deterministic

Tabla 2.1: Distributions of time periods of node states, their means and their standard de-
viations (if the time period is a random variable).

2.2. Case incidence data adjustments

During the pandemic, there were two sources of data that suggested that there were some
problems with the case incidence data. The first is that positivity was highest between May
and June of 2020 (see Figure 2.1). This demonstrates that the probability of finding a new
case among people who took a test is high, suggesting that there could be more infected
people than detected. The second piece of evidence is the probability that the results of a
PCR test being ready before 3 days since the onset of symptoms was the lowest (see Figure
2.2) during the same period. This is evidence that there was an important delay in reviewing
the tests and the data reported were not the most accurate.

To correct the positivity issue, we applied the methods used in Russel (2020) [18]. We
assumed that the base case fatality ratio (CFR) is 1.4%, based on the reported average in
China and Korea (1.38% and 1.4%, respectively) [17] [19].

Typically, a naive CFR is calculated by:
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Figura 2.1: Source: icovidchile.cl. Positivity of tests conducted during the pandemic between
April 1 and August 31.

Figura 2.2: Probability that a test will be analyzed and delivered in less than 3 days

nCFRt =

∑t
i=1 dt∑t
i=1 ci

where dt and ct denote cumulative deaths and cumulative case incidence until date t, res-
pectively. Instead, we used delayed CFR to correct for the time within which a person who
became sick would have died. This is given by:

dCFRt =

∑t
i=1 dt∑t

i=1

∑∞
j=1 ci−jgj

where gj is the distribution of the delays from the onset of symptoms to death. Having
this indicator, we can define

ut =
1,4 %

dCFRt

, which shows the underreporting rate, assuming that the actual CFR is equal in all countries
and that the CFR estimated in China and South Korea is taken into account in the actual
case incidence number. With these factors, we can correct the Chilean case incidence series
for underreporting, taking ĉt = ct

ut
. We used data reported for the ICOVID Chile team [20] as

input. They used statistical models to estimate the number of daily infections based on the
onset of symptoms. Figure 2.3 shows the change in the new daily infection rate according to
the curve for the day of the onset of symptoms after adjusting for underreporting.
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Figura 2.3: Correction of the case incidence series for underreporting.

To correct the test lag issue, we used the number of infected people according to the
day of infection instead of the day of the onset of symptoms. This allowed us to avoid the
lag between the time of infection and reporting. This also provides flexibility in the model
calibration process.

To this end, we used data reported by the ICOVID Chile team [20]. They used statistical
models to estimate the number of daily infections based on the onset of symptoms. To shift
to contagion according to infection day, we defined the following relation:

TLi = TCi + TLi + Ui = TCi + TUi

where Ui is a canonical uniform random variable representing the day when the contagion
occurred and TUi is the convolution between incubation time and Ui. Thus, we construct the
contagion curve. Figure 2.4 shows the changes in the series to obtain the one that will be
used for calibration.

Figura 2.4: Change in series through transformations. Cyan series are daily new cases accor-
ding to confirmation day. Blue series correspond to daily new cases according to the onset of
symptoms. Green series show daily new cases according to contagion day.
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2.3. Population characteristics
The agents in the model were built to recreate real characteristics and commuting pat-

terns of the population from Región Metropolitana in Chile. To do so, data from the 2017
census [21] were used to describe the population density for each commune, age and gender
of each agent (see Figure 2.6a) and number of residents in each household (see Figure 2.6b).
Due to data availability, only 34 of the 52 communes were used, corresponding to the com-
munes where public transport is available and resulting in 6, 386, 006 individuals simulated.
An example of how people are located and connected to one another is shown in Figure 2.5.
Each color denotes one of the states explained in Section 1.2.

Figura 2.5: People are distributed among the communes of Región Metropolitana and con-
nected to one another. Each color shows that an agent can be in different states over time,
being susceptible first and postcontagious last.

Households were created with a minimum of 1 person and a maximum of 8, following the
distribution of household size of each commune. Figure 2.6b shows the distribution for the
whole region. Thus, people are assigned randomly to a household that has coordinates inside
the region and its number of inhabitants, allowing people who live in the same household to
be connected.

(a) Distribution of ages within the population of
the region

(b) Distribution of the size of the households lo-
cated in the region

Although every person belongs to a household, he or she can either go to a workplace,
university, school or none of these. A node has probability Occuppai of being associated with
a place p = {H,W, S,C}, which depends on the age ai of the agent. First, a node is assigned
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to a workplace with probability OccupWai . If not, the node can be assigned to a university
with probability

(
1−Occuppai

)
· Occupuai . If not, the node can be assigned to a school with

probability
(
1−Occupwai

)
·
(
1−Occupuai

)
·Occupsai . If not, the node remains unemployed with

probability
(
1−Occupwai

)
·
(
1−Occupuai

)
·
(
1−Occupsai

)
. The probabilities of what people

do depend on age. Census and Education Ministry data [22] [23] indicate the proportion
of people working for each age from 15 to 100. The same is true for universities for people
between 15 and 40 years of age and for schools for people aged between 6 and 18 years.
To simplify the model, people who attend universities are considered workers, which means
that they are assigned to a workplace as any other worker.

Workplace sizes were built from the taxes office survey of Chile [24], and school size
was taken from Education Ministry data [22]. In both cases, a probability distribution over
the sizes was used to simulate the number of people who work or study in each establishment.

Households, workplaces and schools were placed across Región Metropolitana and uni-
formly distributed to match the number of persons that work and study in each commune.
Work commuting is explained in Section 2.4

2.4. Commuting
Región Metropolitana has a particular behavior in terms of work commuting. It is normal

to have persons who work at places far from their home, even if they have to travel 2 hours
to reach their destinations. To model this, we separate public from private transportation. In
the first case, we used travel patterns to describe the probability of a person who works in j
given that they live in i (TRAV ELw,publici,j ) estimated from smart card data [25], considering
public buses and metro. For the second, we used an origin-destination survey [26] to estimate
private travel patterns TRAV ELw,privatei,j , considering cars, motorcycles, taxis, bicycles and
walking transportation. We also estimate the proportion of people who use public transport
PUBLIC and private transport 1−PUBLIC from this survey, through which we were able
to estimate a weighted sum of the proportion TRAV ELwi,j = PUBLIC ∗ TRAV ELw,publici,j +

(1− PUBLIC) ∗ TRAV ELw,privatei,j

The patterns estimated allowed us to recreate how many people work in each commune and
thus generate as many workplaces as necessary for people to have a place to work.

As in the case of work, school commuting is characterized by considerable movement. It
is normal to have children who study in communes different from those where they live. We
used data from the school choice system [27], which provides the exact coordinates of every
public school and every child that studies in it. This allowed us to estimate a distribution
over where a child studies given where he or she lives.

2.4.1. Mobility information during the pandemic

Mandatory (announced by the government) and voluntary social distancing changed peo-
ple’s commuting since the first case of COVID-19 was reported in Región Metropolitana on
March 4, 2020. These changes can be seen in people who ceased going to work or school, peo-

14



ple who stopped visiting their relatives or even people who stopped leaving their households.

This phenomenon cannot be captured by simply turning lockdowns on and off and adding
a certain effect to them because in Región Metropolitana, a system of partial quarantines by
commune was implemented. This can produce a person who lives in a commune in lockdown
who works in another without a lockdown continuing to go to work. Additionally, a person
who is not in a commune in lockdown but a work commune in lockdown could stop going to
work. This depends on the industry the person is associated with and his or her socioecono-
mic level [28].

To identify the uncertainty of lockdown compliance, we used cellphone data, which record
where a person is each time they use any type of internet connection. This reveals the actual
commuting of people despite their workplaces being either in quarantine or not. Figure 2.7,
taken from Carranza (2020) [2], shows that mobility could be much lower in communes with
a lower percentage of the low-income segment. Thus, controlling for changes in mobility only
by setting or removing quarantines would introduce bias.

Figura 2.7: Source: Carranza (2020) [2]. Level of compliance of the people living in different
communes of Región Metropolitana. Large circles represent when a commune was in lockdown.
The acronym lowSEG in the legend represents the percentage of individuals who belong to
a low-income segment.

Cellphone data can be understood as indicating exact coordinates and time and were used
to estimate where a person lives and works. Data on overnight stays represent where a per-
son lives, and data from the afternoon (between 13:00 and 17:00) corresponds to where the
person works.

Using the previous information, the sum of all people who live in census zone i and work
in census zone j in week t can be represented as Rt

ij, providing us with a matrix for every
origin and destination for every week since the first week of 2020. Henceforth, we will use
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R̂ij =
R9

ij+R10
ij

2
as a tool to normalize the change in mobility, since weeks 9 and 10 correspond

to the 2 weeks before mobility changed drastically.

2.4.2. Change in work mobility

To characterize the change in work mobility M t
c of commune c in week t, we summed the

departures from a commune and normalized them with respect to the average of departures
in weeks 9 and 10.

Let Zc be the set of census zones that belong to commune c. The departures are given by:

Stc =
∑
i∈Zc

∑
j 6=i

Rt
ij

and change in mobility is given by:

M t
c =

Stc

Ŝc

with Ŝc =
∑

i∈Zc

∑
j 6=i R̂ij

Thus,M t
i represents the proportion of people who continue going to their workplaces, while

1 −M t
i remain at home, equivalent to being unemployed or working from home while the

lockdown is in place. For the purposes of the model, this translates into taking a proportion
M t

i of the working edges EW .

2.4.3. Change in social commuting

For changes in social commuting, we used a different formula. Our aim here is to estimate
the change in the number of people a person will meet if he or she is in a certain commune
with respect to the control weeks. To achieve this, let:

• Nc be the population of commune c
• Popi be the population of census zone i

Thus, the proportion of the total flux that goes from census zone i to census zone j is given
by:

f tij =
Rt

ij∑
k R

t
ik

The probability of going to j given that one lives in commune c is:
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P t
cj =

∑
i∈Zc\{j} f

t
ij · Popi

Nc

The number of people who go to j from any zone i:

Dt
j =

∑
i

f tij · Popi

The weighted sum of people who visit each commune c:

EDt
c =

∑
j

Pcj ·Dt
j

EDt
c represents how many people one would meet if one were to go to or remain in com-

mune c.

As with work mobility, we normalized with weeks 9 and 10 to obtain the change in social
commuting across weeks using ÊDc = ED9

c+ED10
c

2
.

Finally, we obtain the change in social commuting:

Dt
c =

EDt
c

ÊDc

Unlike changes in work mobility M t
c , changes in social commuting Dt

c were used to weight
the contagiousness of an infected agent belonging to the corresponding commune. This is
equivalent to slowing contacts of the infected agent with uninfected agents, reducing the
probability of contagion.

2.4.4. Changes in behavior due to the presence of symptoms

Health officials mandate that individuals consult with a physician and isolate experiencing
symptoms, changing individuals’ behavior when they find that they are sick. To recreate this,
we assume that individuals stay at home at random, depending on the severity of the illness
and the importance they accord to self-care and caring for others. Some individuals cease
contact because of the severity of their symptoms, while others do not change their behavior,
even if they present symptoms. To achieve this, we estimated a distribution over self-isolation
time, the time after symptom onset during which a person stops having contact with others
(e.g., leaving home). Recognizing that self-isolation has an effect over serial intervals (the
period between symptom onset of successive cases), we simulate different self-isolation times
for individuals during the spread of the virus. Our objective was to maintain the same serial
interval estimated in Xi et al. [12], where we find that the best approach was a self-isolation
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time represented by a log-normal distribution with a mean at 2 days and mode at 1,3 days.

In summary, the changes in mobility are shown in Table 2.2. The default is 1, and changes
are represented by a decrease factor belonging to [0, 1). Each factor represents the weight
that is multiplied by the infection rate (see equation 1.2). The self-isolated individuals are
represented as quarantined.

State Normal Lockdown
Susceptible NI
Asymptomatic Ia
Contagious asymptomatic Ica ht = 1 ht = 1
Presymptomatic Ip wt = Mt wt = α ·Mt

Contagious presymptomatic Icp ct = Dt ct = α ·Dt

Symptomatic Ics

Quarantined Icq
ht = 0,25
wt = 0
ct = 0

ht = 0,25
wt = 0
ct = 0

Hospitalized Ich ht = 0,01 ht = 0,01

Critical Iccr
wt = 0
ct = 0

wt = 0
ct = 0

Postinfectious P
ht = 0
wt = 0
ct = 0

ht = 0
wt = 0
ct = 0

Tabla 2.2: Decreasing contact rates for each state of individuals, for when they are in quaran-
tine and when they are not, for a certain week t. ht corresponds to contact within households,
wt to contact within workplaces and ct to community contact.
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Capítulo 3

Model estimation

To ensure that the model performs the simulations in a way that replicates reality, it is
necessary to set certain conditions and calibrate some parameters.

3.1. Parameters to estimate

First, we defined the calibration period Σ between March 08, 2020 and July 31, 2020. To
ensure a starting point similar to reality, we randomly infect 139 nodes located in the same
communes as the actual infected available on March 17.

Second, we need to calibrate different types of parameters θ belonging to the family of all
parameters Θ that determine how the virus spreads in the microsimulation. Each of them
has its own characteristics:

• The contagion force βp increase the probability of contagion within place p = {H,W, S,C},
as shown in equations 1.2 and 1.3.

• The proportion of the initial number of asymptomatic with respect to symptomatic
patients xa.

• The decrease in the contagion force η from the day the total quarantine began.

Once the model is set with a group of arbitrary parameters θ ∈ Θ to begin the calibration
process, it iterates over every infected individual and his or her contacts to implement the
infection transmission mechanism explained in Section 1.2. This simulates contagion for a
certain day t and repeats it L times, saving these data as yt = (yt1, yt2, . . . ytl, . . . ytL) and
retaining the simulation that minimizes the distance between the real and simulated data.
When the simulation of the calibration period is complete, we have a matrix Y = {yt}t∈Σ as
an output, which will be used for the selection of the best set of parameters θ. This process
and calibration process are developed in the next section.
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3.2. Estimation via Maximum Likelihood
The data are represented by a vector time series yt = (yt1, yt2, . . . ytl, . . . ytL), t = 1 . . . T ,

where l represents a single simulation for day t. We seek to build a likelihood function for
these data. To facilitate exposition, consider for now yt as a random variable (not vector)
representing the number of accumulated infections.

The simulation model is specified as a function:

hθ(s0, ξ, t
∗) = (s1, . . . , st∗),

where s0 is the initial condition, st represents the state at time t (where t∗ is the simulation
horizon) and ξ is the seed of the simulation. Starting from the same state s0, multiple si-
mulation runs r can be generated with different seeds ξ(r), generating states {s(r)

t }t
∗
t=1. The

simulation model is also determined by the vector of parameters θ. The function φ(s
(r)
t ) maps

each simulated state to a simulated value ŷ(r)
t .

The data generating process is defined by the density function fθ(y1, y2, . . . yT ), where θ
is the parameter vector to be estimated. The log-likelihood can be written as:

logL(θ|y1 . . . yT ) =
T∑
t=1

log fθ(yt+1|yt, . . . y1).

For a given value of θ, the conditional density function is generated via simulation using
the following algorithm.

• Initialize: t = 1, and build an initial set of origin states S1 = {so1 : φ(so1) ≈ y1}.
• From each origin state sot ∈ St, generate many (R) one-step simulations hθ(sot , ξ(r), 1) =

s
(r)
t+1.

• Using all the simulated states, construct the sample ŷ(r)
t+1 = φ

(
s

(r)
t+1

)
.

• Based on the simulated sample {ŷ(r)
t+1}, use nonparametric methods (e.g., kernel) to

construct an empirical density function evaluated at yt+1 (the observed value in the
data): f̂θ(yt+1|yt).

• Choose the next set of origin states St+1 = {s(r)
t+1 : φ

(
s

(r)
t+1

)
≈ yt+1}.

• Set t← t+ 1 and repeat until t = T .

This process is repeated for different values of θ, forming a set of possible parameters Θ. The
MLE estimate is defined as:

θ̂ = argmáx
θ∈Θ

T∑
t=1

log f̂θ(yt+1|yt)

Note that the empirical density is only conditional on yt and not the whole history. Ho-
wever, the simulation used to construct f̂ is based on a path of states s1 . . . st that attained
y-values at all the observed values y1 . . . yt, thereby implicitly conditioning on the whole
vector.
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3.3. Estimation results
In the first instance, we calibrated the model using data from March 15 until April 6.

We used cumulative infection according to confirmation day, which was the only information
available to that date. For this process, the estimated R0 was approximately 1,6 with schools
closed and social distancing, while R0 was approximately 2,75 with no restrictions. This
calibration was used later to predict the future spread of the virus under different scenarios
(see Section 4.2).

After all the changes made to the contagion curve, to avoid underreporting biases and to
work with the contagion date, a more sophisticated calibration process was implemented, as
shown in Section 3.2.

For every day, we simulated L = 1000 states, given the last day’s state. Thus, we calculated
medians to compare with the real data and calculated the likelihood contribution for each
day. We ran the model with several sets of parameters to achieve the best fit. As we can see
in Table 3.1, the model is very sensitive to varying any of the parameters, not following a
particular pattern.

Figure 3.1 shows the performance of the best parameters, and we can see that the model
fits quite well except between May 05 and May 26, matching the period when the positivity
of the test and reporting delay were the highest (see Section 2.2). The existing break at
the peak of the curve is due to the influence of a city-wide lockdown, represented by ν. At
this point, infections began to decrease quickly, which is overillustrated when we take the
medians.

Figura 3.1: Prediction of the daily contacts simulated with the microsimulation compared
with the contagion curve adjusted for underreporting. Each box represents 25 and 75 percen-
tiles of data simulated for the corresponding day. Red squares are the median of the samples
for each day, and blue stars are daily infections according to contagion day corrected for
underreporting. The parameters selected were βH = 11,75, βW = 14,1, and βS = 0,94 ,
βC = 3,375, η = 0,9, xa = 0,45.
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xa βc βh βw ν LL

0.45 45.0 25.0 30.0 0.9 -1195.97
0.45 45.0 20.0 30.0 0.9 -1208.46
0.45 40.0 20.0 30.0 1.0 -1216.9
0.45 35.0 15.0 35.0 1.0 -1219.58
0.45 40.0 25.0 30.0 0.9 -1238.02
0.3 40.0 10.0 35.0 1.0 -1254.56
0.45 30.0 10.0 40.0 1.0 -1267.25
0.45 35.0 20.0 35.0 0.9 -1281.72
0.3 30.0 10.0 40.0 1.0 -1284.71
0.3 30.0 10.0 40.0 1.0 -1284.71
0.45 45.0 20.0 30.0 1.0 -1295.76
0.3 30.0 10.0 35.0 1.0 -1302.06
0.45 10.0 30.0 40.0 1.0 -1326.65
0.05 30.0 20.0 50.0 1.0 -1334.33
0.05 30.0 20.0 50.0 1.0 -1334.33
0.45 10.0 10.0 50.0 1.0 -1348.75
0.05 15.0 15.0 55.0 1.0 -1352.7
0.05 30.0 40.0 40.0 1.0 -1353.97
0.05 30.0 40.0 40.0 1.0 -1353.97
0.45 35.0 20.0 35.0 1.0 -1358.98
0.3 30.0 20.0 35.0 1.0 -1368.3
0.1 20.0 10.0 50.0 1.0 -1374.23
0.05 10.0 15.0 55.0 1.0 -1377.66
0.05 40.0 20.0 40.0 1.0 -1377.85
0.05 40.0 20.0 40.0 1.0 -1377.85
0.05 60.0 20.0 40.0 1.0 -1377.88
0.05 60.0 20.0 40.0 1.0 -1377.88
0.05 20.0 30.0 50.0 1.0 -1378.23
0.05 20.0 30.0 50.0 1.0 -1378.23
0.05 30.0 30.0 50.0 1.0 -1380.86
0.05 30.0 30.0 50.0 1.0 -1380.86
0.45 30.0 40.0 30.0 1.0 -1385.85
0.05 20.0 20.0 50.0 1.0 -1388.74
0.05 20.0 20.0 50.0 1.0 -1388.74
0.45 10.0 20.0 50.0 1.0 -1390.86
0.05 60.0 30.0 40.0 1.0 -1391.02
0.05 60.0 30.0 40.0 1.0 -1391.02
0.05 20.0 50.0 50.0 1.0 -1391.06
0.05 20.0 50.0 50.0 1.0 -1391.06
0.05 30.0 40.0 50.0 1.0 -1393.75
0.05 30.0 40.0 50.0 1.0 -1393.75
0.45 10.0 40.0 40.0 1.0 -1395.81
0.05 30.0 30.0 40.0 1.0 -1398.93
0.05 30.0 30.0 40.0 1.0 -1398.93
0.05 15.0 10.0 55.0 1.0 -1402.14
0.05 50.0 20.0 30.0 1.0 -1404.6
0.05 50.0 20.0 30.0 1.0 -1404.6
0.05 60.0 50.0 40.0 1.0 -1413.11
0.05 60.0 50.0 40.0 1.0 -1413.11
0.05 30.0 20.0 40.0 1.0 -1415.8

Tabla 3.1: List of the best 50 likelihood-scored parameters evaluated by the model.
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Capítulo 4

Evaluating mitigation strategies

Having calibrated the model, we were able to predict how the future of the pandemic would
change given certain nonpharmaceutical mitigation strategies. According to the Centers of
Disease Control and Prevention, nonpharmaceutical interventions (NPIs) are actions, apart
from being vaccinated and taking medicine, that people and communities can take to help
slow the spread of illnesses such as COVID-19 [29]. The NPI applied by default was social
distancing (according to the approach established in Ferguson (2020) [1]) and schools closed,
given that those were suggested by the government in the early stage of the pandemic. The
NPIs evaluated in this work are full lockdown, lockdowns with a threshold policy and contact
tracing and selective case isolation.

4.1. Full lockdown strategy

At the beginning of the pandemic, there was resistance to establishing quarantines in
Región Metropolitana. Therefore, a question to answer was: what would be the impact of
imposing a total quarantine? According to our first calibration and its predictions (see Figure
4.1, the virus would get out of control if the city had maintained the status quo, with more
than 10,000 new daily cases in June. On the other hand, under a full-lockdown policy, it
would have been possible to combat the spread of the virus by June. This was achieved by
reducing contact at the same rate as done in Ferguson (2020) when people followed voluntary
home quarantine.

4.2. Lockdowns with threshold policy

As the government was not willing to apply a total quarantine strategy due to the negative
impact it could have had on the economy, we evaluated a less strict measure that consisted of
a system of intermittent quarantines. The Región Metropolitana has 6 health services, which
consist of the hospitals belonging to the area of each service. This characteristic offers the
potential of working in a coordinated manner in terms of capacity and medical personnel.
Thus, we aggregate the communes belonging to a certain health service to use a threshold po-
licy. Once the communes belonging to a health service exceed 50 daily infections per 100,000

23



Figura 4.1: Evolution of the new daily cases according to reporting day for the first calibration.
The yellow line represents social distancing assumptions and schools closed. The blue line
represents full lockdown of the region.

inhabitants, they will go into quarantine. To ensure the efficacy of the policy, it would be
necessary to have an approximate number of 2.5 million people quarantined at the same time
across the communes in lockdown.

Figura 4.2: Daily infections in Región Metropolitana grouped by health services. The pink
area represents the period of time in which the population associated with a health service
is in lockdown.

Figure 4.2 shows daily infections over time grouped by health service and the percentage
of time that they would be in quarantine following this strategy. With this strategy, the
pandemic was under control, approximating a reproduction number of Rt = 1. We also can
see that, on average, Región Metropolitana would be in lockdown approximately 30% of the
time, avoiding health systems collapsing and maintaining a low impact on the economy.

4.3. Contact tracing and selective case isolation

In addition to the strategies evaluated above, as suggested by Ferretti (2020) [15], a key
measure to curb the spread of the virus is contact tracing.
How does Chilean contact tracing work?
Once a person is declared infected, by confirmation of a PCR test, the contact tracing process
is triggered. Every contact of the individual is notified to take a test. This lasts an average of
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2 days until the results are ready. If a test is positive, that contact will remain quarantined
until he or she is healthy, while in parallel, the process starts again, but now the focus of the
monitoring is the contact detected. We implement this mechanism in the model from August
1, following the behavior of the Chilean government. Despite contact tracing beginning ear-
lier, an interview with Health Ministry personnel revealed that a robust strategy of contact
tracing was developed in mid-July[30].

To provide flexibility to the model, there are two parameters to control the effectiveness
of contact tracing:

1. α-tracing: the proportion of contacts of an infected individual who are traced
2. β-tracing: the proportion of infected presenting symptoms who decide to take a PCR

test and, therefore, trigger the contact tracing process.

First, we can see in Figure 4.3 that if we set α-tracing = 0 and β-tracing = 0, the pandemic
cannot be controlled. This is equivalent to performing no contact tracing.

Figura 4.3: Daily infection curve obtained by not applying contact tracing.

We varied α-tracing and β-tracing ∈ {0,1, 0,2, 0,3, 0,4, 0,5} to estimate different outcomes.
We can see in Figure 4.4 that real data can be fitted by setting (α-tracing, β-tracing) =
(0,1, 0,2) or (α-tracing, β-tracing) = (0,2, 0,1). This is because only 20% (or 10%) of infected
people trigger the process, and only 10% (or 20%) of the infected contacts are traced. Those
are low levels of contact tracing, presenting considerable room for improvement. Furthermore,
higher values of α and β lead to substantial reductions in the new cases.
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Conclusión

First, because new infection data were biased by reporting delays and high positivity levels,
it was necessary to adjust the data by using the contagion day and correcting for underre-
porting. This is relevant because using biased data would have led to incorrect conclusions,
such as underestimating the contagion force or delaying its effect. As long as governments
do not achieve reliable data tracking, supported by indicators such as low positivity and an
absence of lags in reporting, there is a possibility of underreporting in the new daily infection
curve. Here, it was key to take into account that in Wuhan, China, during the first days of
the pandemic, there was a good record of the virus spread, which allows us to use it as a
baseline for the actual CFR and compare it to ours.

On the other hand, it was also important to include mobility data from cellphones to mea-
sure changes in the behavior of the population. The lockdown policy implemented in Región
Metropolitana hindered the measurement of its effects, since there were many people living in
communes that were in quarantine but working in communes that were not (and vice versa).
That is why mobility data present a good alternative, providing individual information on
the change in commuting of every citizen and, thus, enabling the measurement of the effects
of lockdowns throughout the pandemic.

A new and novel technique was implemented to measure the goodness of fitting the model.
The model runs many simulations per day, providing a large amount of data over time. This
led to the idea of estimating via maximum likelihood for each day, and the total contribution
is given by the sum of likelihoods. This is different from distance-based approaches (such as
the Euclidean norm), and this was our aim. Considering this is a simulation, comparing the
mean or median with real data does not account for the dispersion of the simulated data. On
the other hand, using the maximum likelihood estimator computes how likely it is that we
will obtain the real data in our simulation, which does account for dispersion.

Full lockdown is an effective alternative according to the model. Our estimations show
that if a full lockdown regime had been mandatory for all individuals living in Región Me-
tropolitana and they complied responsibly, the spread of the virus could have been slowed
and controlled over time. As of May 15, a total quarantine regime was established in Región
Metropolitana but was not as effective as our model suggests. Mobility data used to measure
the real effect of quarantine showed that the level of compliance by people was between 20%
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and 50% depending on the income level of individuals living there. This could have been due
to many reasons, but it is useful as evidence that lower levels of mobility were necessary to
accomplish the goal of combating COVID-19.

Lockdowns with threshold policies were proven to be an effective alternative to fight SARS-
CoV-2 according to the model. In addition, having 70% of the population not quarantined
allows economic activity to not be as affected as in the case of full lockdown. This policy must
be applied to at least 2.5 million people to maintain a reproduction number R0 close to 1.
This measure is insufficient to eradicate the virus but is an alternative to ensure that health
services will not collapse. Unfortunately, this strategy was only partially realized in reality.
The government implemented partial quarantines by communes but not grouped by health
services and also failed to achieve the quantity of people needed to control the pandemic.

Considering that full lockdown was an overly strong measure for Región Metropolitana in
terms of people’s compliance and that the threshold policy does not eradicate the virus but
maintains it at a stable level, contact tracing represents as a feasible option. We could see that
low levels of contact tracing (less than 20% of confirmed infected traced and less than 20%
of their contacts called) emulate reality, and any higher level would curb the spread radically.
This measure is subject to the quality of the contact tracing system and the effectiveness
on people willing to take a PCR test after being traced. We recommend strengthening the
contact tracing system to achieve more people being traced and more of their contacts being
reached.
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