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Abstract. When considering multiple hypothesis tests simultaneously, standard
statistical techniques will lead to over-rejection of null hypotheses unless the
multiplicity of the testing framework is explicitly considered. In this paper
we discuss the Romano-Wolf multiple hypothesis correction, and document its
implementation in Stata. The Romano-Wolf correction (asymptotically) controls
the familywise error rate (FWER), that is, the probability of rejecting at least
one true null hypothesis in a family of hypotheses under test. This correction is
considerably more powerful than earlier multiple testing procedures such as the
Bonferroni and Holm corrections, given that it takes into account the dependence
structure of the test statistics by resampling from the original data. We describe
a Stata command rwolf that implements this correction, and provide a number
of examples based on a wide range of models. We document and discuss the
performance gains from using rwolf over other multiple testing procedures that
control the FWER.

Keywords: Bootstrap, familywise error rate, multiple hypothesis testing, permu-
tation methods, rwolf, step-down procedure.

1 Introduction

Advances in computational power and statistical programming languages such as Stata
mean that typically the testing of multiple hypotheses in an empirical analysis is easy
and quick to carry out. This often leads to a situation in which existing data sources or
experiments are used to examine a number of hypotheses. Although the computational
costs of such a situation are generally very low, there is a well-known statistical cost in
cases of multiple hypothesis testing. Namely, as the number of hypotheses considered
in a given analysis grows, so too does the probability of falsely rejecting true null
hypotheses. Starting from Bonferroni (1935), there has been considerable development
of techniques that account for multiplicity in hypothesis testing.

In this paper we discuss the implementation of one such procedure, the Romano-Wolf
multiple hypothesis correction, described in Romano and Wolf (2005a,b, 2016). This
procedure uses resampling methods, such as the bootstrap, to control the familywise
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error rate (FWER), that is, the probability of rejecting at least one true null hypothesis
in the family of hypotheses under test.1 The procedure is noteworthy given that in
addition to controlling the FWER, it also offers considerably more power compared
to earlier multiple hypothesis correction procedures such as Holm (1979); Bonferroni
(1935), where by “power” we mean the ability to correctly reject false null hypotheses.
What is more, the Romano-Wolf procedure is able to eliminate a key assumption
of previous resampling-based procedures such as the procedure described in Westfall
and Young (1993), namely the so-called subset pivotality assumption. We provide
a discussion of the general nature of the multiple hypothesis problem, as well as a
discussion of several multiple testing procedures, in Section 2 of this paper; a more
detailed overview can be found in Romano et al. (2010).

In this paper we focus on the control of the FWER, but this is certainly not the
only error rate that can be considered in multiple hypothesis testing. For example,
a series of alternative procedures focus on controlling the false discovery rate (FDR),
defined as the expected proportion of true null hypotheses rejected among all hypotheses
rejected. Details of a number of such procedures, such as Benjamini and Hochberg
(1995)’s procedure, as well as earlier less powerful techniques to control the FWER and
their implementation in Stata can be found in Newson and The ALSPAC Study Team
(2003); Newson (2010). In general, FDR techniques are less conservative than FWER
techniques, and are particularly common in genetic or bio-chemical applications where
often a huge number of null hypotheses are considered (in the thousands or even ten
thousands). An illustrative applied discussion is provided in Anderson (2008).

The Romano-Wolf procedure is increasingly used in a range of fields, given the
recognition of its relative power, computational efficiency, and generalizability. This
multiple hypothesis correction can be found in settings as diverse as finance (Liu
et al. 2015), early childhood interventions (Gertler et al. 2014), and the evaluation
of conditional cash transfers (Attanasio et al. 2014), to name but a few. Work by
List et al. (2019) intended for applied audience details how to implement the general
Romano-Wolf methodology for specific applications in experimental economics. In line
with the frequency of use of this procedure, this paper provides a program, rwolf, to
allow for its implementation simply in Stata in a broad range of circumstances.2 Along
with the theory underlying this program, we provide here a number of demonstrations
chosen to illustrate the broad range of situations to which the Romano-Wolf multiple
hypothesis correction, and the rwolf ado, is suited.

In what remains of this paper, we first provide a very brief description of multiple
hypothesis testing and the basic notation used here, before defining corrections for
multiple hypotheses, and the Romano-Wolf procedure in particular, in Section 2.
We then define the syntax of the rwolf command in Section 3, and provide a number

1. To be precise, the procedure only controls the FWER asymptotically, that is, as the sample size
goes to infinity while the family of hypotheses under test remains fixed. But this is also the case
for other multiple testing procedures, such as the Bonferroni and Holm procedures, unless very
strict distributional assumptions hold. Hence, for convenience of terminology, in this paper, we will
equate “control of the FWER” with “asymptotic control of the FWER”.

2. An earlier version of this program is available as Clarke (2016).
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of examples, both based on simulated as well as real data sets in Section 4. We briefly
conclude in Section 5.

2 Procedures

2.1 Multiple Hypothesis Testing Procedures and Definitions

Consider inference for a generic parameter θ. In what follows, we will refer to data used
to estimate this parameter as X, and the value estimated using this data as θ̂. When
a single null hypothesis H about θ is tested against a single alternative hypothesis H ′,
a decision rule can be defined based on the rate of a Type I error, defined as:

Prθ0{reject H|H is true}. (1)

The test could be a two-sided test, such as H : θ = θ0 versus H ′ : θ 6= θ0, or it could
be a one-sided test such as H : θ ≤ θ0 versus H ′ : θ > θ0. The quantity θ0 refers
to the “null value” of interest defined by the researcher and is often θ0 = 0.3 The
Type I error is defined when the null hypothesis is true, and as such Prθ0 refers to the
probability of (falsely) rejecting the null when θ0 is the actual value of the parameter. If
the probability in Equation (1) is bounded above by a value α, then α is the significance
level at the test. Often, a particular value of α is chosen in advance, such as α = 0.05,
and the testing procedure is ‘designed’ to meet this criterion. Alternatively, to avoid
somewhat arbitrary criteria, one can report a p-value, here p, which fulfills (at least
asymptotically):

Prθ0{p ≤ α|θ = θ0} ≤ α (2)

for every 0 ≤ α ≤ 1, and is defined as the smallest value of α at which H would
be rejected. Smaller values of p provide more evidence in favor of the alternative
hypothesis H ′.

The validity of this error rate of α assumes that a single null hypothesis is tested.
We now extend the setting to a family of S null hypotheses {Hs}Ss=1, which are related
to parameters {θs}Ss=1, versus respective alternative hypotheses {H ′s}Ss=1. If the error
rate in Equation (1) is only controlled at α one null hypothesis at a time, it is clear that
the probability of committing at least one Type I error across the S null hypotheses will
generally exceed α.4 Following Lehmann and Romano (2005b), we let I ⊆ {1, . . . , S}
denote the set of true null hypotheses, and the familywise error rate (FWER) is then
defined as:

FWER ..= Pr{Reject at least one Hs with s ∈ I}. (3)

To account for multiple hypothesis testing, we seek to control the FWER at level α.
Note that by definition, if all the null hypotheses are false, the FWER is equal to zero.

3. For example, many of Stata’s estimation, or e(), class of commands such as regress and ivregress

by default report two-sided hypothesis tests where θ0 = 0.
4. This is often illustrated with a simple example assuming (i) independence of individual p-values, ps,

(ii) equality instead of weak inequality in Equation (2), and (iii) all S null hypotheses being true, in
which case the probability of falsely rejecting at least one true null hypothesis is equal to 1−(1−α)S .
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A traditional solution has been to implement the Bonferroni procedure which
consists of rejecting any Hs for which the corresponding p-value, ps, satisfies ps ≤ α/S.
This procedure provides strong control5 of the FWER (see for example Lehmann
and Romano (2005a, p. 350)); however, it has often low power to detect false null
hypotheses, particularly when the number of hypotheses is large. Indeed, a procedure
that has greater power, while still maintaining control of the FWER was described
in Holm (1979). This is a “step-down” procedure which begins by ordering the
individual p-values such that p(1) ≤ p(2) ≤ · · · ≤ p(S), corresponding to hypotheses
H(1), H(2), . . . ,H(S); in this way, the hypotheses are ordered according to their
‘significance’. H(1) is rejected if and only if (iff) p(1) ≤ α/S, just as would be the
case for Bonferroni. But if it is rejected, then H(2) is rejected if p(2) ≤ α/(S − 1),
which is a more lenient criterion. The procedure proceeds in this manner until at some
step s, p(s) > α/(S − s + 1), and then stops. (If the ‘stopping criterion’ is never
met, the procedure rejects all S hypotheses.) Obviously, the Holm procedure rejects
all hypotheses rejected by the Bonferroni procedure but potentially also rejects some
further hypotheses in addition.

Both the Bonferroni and the Holm procedures are easy to implement and only require
the ‘list’ of individual p-values {ps}Ss=1. But this ‘convenience’ comes at a (potentially)
severe loss in power. The two procedures achieve control of the FWER by assuming a
‘worst-case’ dependence structure among the p-values, which is ‘close’ to the individual
p-values being independent of each other. Clearly, if the FWER is controlled in the
worst case, it is always controlled. But if there is noticeable dependence among the
p-values, it would be possible to maintain control of the FWER while increasing power
at the same time.

We now illustrate this point by a simple example. There are S = 100 hypotheses
under test and one wants to control the FWER at level α = 0.05. The p-values ps are
based on test statistics Ts that have a joint normal distribution with common variance
one and common pairwise correlation ρ. The mean of all test statistics Ts for which Hs

is true is equal to zero. The tests are one-sided in the sense that

ps ..= Pr{Z ≥ ts} ,

where Z ∼ N (0, 1) and ts is the observed realization of Ts. We consider the following
single-step procedure: Reject Hs if and only if ps ≤ cρ, where cρ is a common cutoff
allowed to depend on ρ. The Bonferroni procedure uses cρ ..= 0.05/100 = 0.0005,
irrespective of ρ. But, as a function of ρ, the following, less conservative, cutoffs actually
suffice to guarantee control of the FWER:

ρ 0 0.25 0.5 0.75 0.9 0.95 1
cρ 0.0005 0.0006 0.0012 0.0032 0.0089 0.0149 0.05

5. Strong control of the FWER means that the FWER will be no greater than α regardless which of
the null hypotheses are true or not. This contrasts with weak control of the FWER, which refers
to the case where there is a guarantee that the FWER does not exceed α only in the case that
all null hypotheses are true. Unless otherwise noted, in the remainder of the paper, control of the
FWER is equated with strong control.
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(Note that, apart from ρ = 0 and ρ = 1, the cutoffs cρ need to be determined by
numerical simulations and are, therefore, subject to some small ‘simulation error’.) In
particular, when ρ = 1, all p-values are perfectly correlated, meaning that there really
is only a single ‘shared’ hypothesis under test, in which case it is allowed to use the
näıve cutoff α = 0.05 itself. In general, the larger is ρ, the larger is the cutoff cρ and,
thus, the easier it becomes to reject false hypotheses, which increases power. Similar
considerations carry over to the more general case when pairwise correlations are not
constant and to step-wise procedures.

Hence, to repeat, if there exists noticeable dependence among the p-values, it would
be possible to maintain control of the FWER while increasing power at the same time.
To this end, resampling-based multiple testing procedures have been proposed in the
literature. By resampling from the observed data one can ‘mimic’ the true dependence
structure of the p-values (or, equivalently, among the test statistics) and thus account
for it (in an implicit fashion). An early such proposal goes back to Westfall and Young
(1993) who use the bootstrap to account for the dependence structure of the p-values.
This procedure (described in Westfall and Young (1993, Algorithm 2.8) and summarized
in Appendix 1 of this paper), assumes a certain subset pivotality condition, which is used
in establishing FWER control. Roughly speaking, this condition means the following:
Take any nonempty, strict subset of hypotheses (out of all hypotheses under test) and
look at the random vector of corresponding test statistics. Then the joint distribution
of this random vector is ‘unique’ in the sense that it does not depend on whether the
remaining hypotheses (not under test) are true or false; for a precise definition, see
Romano and Wolf (2005b, Example 2).

Subset pivotality can be violated in certain applications and is thus undesirable
because in such instances the Westfall-Young procedure only offers weak control of the
FWER. An example where this condition is violated is given by jointly testing the entries
of a correlation matrix. Take the case of independent and identically distributed (i.i.d.)
multivariate observations of dimension three. The multiple testing problem concerns
the three (distinct) pairwise correlations:

Hij : ρij = 0 for 1 ≤ i < j ≤ 3 ,

where ρij denotes the correlation between components i and j of any of the observations.
The individual test statistics are the sample correlations, denoted ρ̂ij , and regularity
conditions are in place such that the (normalized) vector (ρ̂12, ρ̂13, ρ̂23)′ has an
asymptotic normal distribution. Now assume one is only interested in testing the subset
{H12, H13}. Then the asymptotic distribution of the vector (ρ̂12, ρ̂13)′ depends on ρ23,
so it depends on whether the remaining hypothesis (not under test) H23 is true or false;
see Romano and Wolf (2005b, Example 7) for further details.

Having said this, the procedure of Westfall and Young (1993) is available for Stata,
as provided in Reif (2017), with additional discussion in Jones et al. (2019).

More recently, the Romano-Wolf multiple hypothesis correction has been proposed,
as described in Romano and Wolf (2005b,a) as well as in the subsection below. This
procedure also uses resampling and step-down procedures to gain additional power by
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accounting for the underlying dependence structure of the test statistics. However, and
crucially, this procedure does not require the subset pivotality condition and is thus more
broadly applicable than the Westfall-Young procedure.

2.2 The Romano-Wolf Procedure(s)

Romano and Wolf (2005b) propose a procedure that controls the FWER at a given level
α; hence, this procedure leads to a decision to reject or not reject for each null hypothesis
Hs considered, for s = 1, . . . , S. In follow-up work, Romano and Wolf (2016) describe
how to compute p-values adjusted for multiple testing, which is a more flexible approach.
Having adjusted p-values, one immediately knows which hypotheses to reject for any
level α, as opposed to just for a specific level α. In other words, if one were to consider
a different level α compared to a prior analysis, one would have to rerun the procedure
of Romano and Wolf (2005b) with the new value of α; on the other hand, having
adjusted p-values at hand, no new analysis is needed. The rwolf command returns the
p-value adjustment documented in Romano and Wolf (2016), following Romano and
Wolf (2005b)’s “Studentized StepM Procedure” (Algorithms 4.1–4.2). Here we describe
the algorithms implemented, before turning to the precise syntax in the following
subsection.

Prior to describing the p-value adjustment algorithm implemented in rwolf, we first
describe the Romano and Wolf (2005b) procedure. The algorithm below is based on a
bootstrap procedure; by default rwolf is based on the standard Efron (1979) bootstrap
(see Romano and Wolf (2005b, Appendix B) for discussion). In Section 4 we discuss
extensions to alternative bootstrap methods, such as the block bootstrap.6

As above, suppose we wish to test S hypotheses, using data X. Each hypothesis
Hs is associated with a parameter of interest θs, an estimator of this parameter θ̂s, and
a corresponding standard error σ̂s.

7 For notational convenience, we generally assume
that θ0s = 0, for s = 1, . . . , S. We assume further that the alternative hypotheses are
either all one-sided of the type H ′s : θs > 0 or are all two-sided of the type H ′s : θs 6= 0.8

6. The Romano Wolf procedure can also be implemented using permutation methods rather than
bootstrap methods (Romano and Wolf 2005a); however, note that permutation tests of regression
coefficients can result in rates of Type I error which exceed the nominal size, and so these methods
are likely not ideal for such applications (DiCiccio and Romano 2017). Nevertheless, the rwolf

command can be used with permutation testing following a generalization of the procedures
described in Section 4.2. That is, permutation tests can be used whenever the model exhibits
a certain structure so that the so-called “randomization hypothesis” holds, as described in Section
15.2 of Lehmann and Romano (2005b).

7. In our terminology, a standard error of an estimator is an estimated standard deviation of the
estimator.

8. One-sided hypotheses of the type H′s : θs < 0 can be accommodated as well by properly pre-
processing the data. Both one-sided options are implemented in the rwolf command.
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A Studentized test statistic for Hs is given by9

ts ..=
θ̂s
σ̂s
. (4)

Next, consider M resampled data matrices of X, denoted by X∗1 , . . . , X
∗
M . They give

rise to estimators, denoted by θ̂∗,ms and corresponding standard errors, denoted by σ̂∗,ms ,
for m = 1, . . . ,M . For each resample m and for each hypothesis Hs, a Studentized “null
statistic” is given by

t∗,ms
..=

θ̂∗,ms − θ̂s
σ̂∗,ms

. (5)

Note that these statistics t∗,ms are centered around zero given that the numerator consists
of a resample estimate minus the original estimate (rather than the null parameter), and
as such, the distributions of t∗,ms will form the “null distributions” for the procedure.10

In case the alternative hypotheses are two-sided of the type H ′s : θs 6= 0, it is
important to work with the absolute values of the test statistics. To keep the notation
‘uniform’ in the algorithm outlined below, in slight abuse of notation, we will use the
following convention in the two-sided case (but not in the one-sided case):

ts ..= |ts| and t∗,ms
..= |t∗,ms |.

Finally, as above, we will relabel hypotheses in order of ‘significance’ — but now
based on their test statistics ts instead of their p-values ps, as was done before by the
Holm procedure — such that H(1) refers to the hypothesis with the largest corresponding
test statistic (hereafter t(1)), and H(S) refers to that with the smallest (labelled t(S)).

In what follows, we denote by max∗,mt,j the largest value of the vector
(
t∗,m(j) , . . . , t

∗,m
(S)

)
:

max∗,mt,j
..= max

{
t∗,m(j) , . . . , t

∗,m
(S)

}
for j = 1, . . . , S and m = 1, . . . ,M, (6)

and, for a given j, we denote by ĉ(1−α, j) the empirical 1−α quantile of the statistics
{max∗,mt,j }Mm=1. For example, in a case where one is testing S = 4 hypotheses, max∗,mt,1
denotes the maximum value of (t∗(1), t

∗
(2), t

∗
(3), t

∗
(4)) whereas max∗,mt,2 denotes the maximum

value of the subvector (t∗(2), t
∗
(3), t

∗
(4)), that is the vector of test statistics corresponding

to the the three ‘least significant’ hypotheses only; and so on. At last, we simply have
max t∗,m(4) = t∗,m(4) . An important consequence is that ĉ(1−α, j) is weakly decreasing in j,

that is, ĉ(1− α, j) ≥ ĉ(1− α, j + 1), for j = 1, . . . , S − 1.

Based on the above, the principal step-down multiple testing procedure at level α
(based on Algorithm 3.1 from Romano and Wolf (2016)) can be summarized as follows.

9. This is assuming that each hypothesis test is of the form Hs : θs = 0. If instead the test is for a
non-zero value, Hs : θs = θ0s , Equation (4) should be changed to

ts ..=
θ̂s − θ0s
σ̂s

.

10. It is important to point out that Equation (5) is also valid if the test is for a nonzero value,
Hs : θ = θ0s , and therefore needs not to be changed in such a case.
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1. For s=1, . . . , S, reject H(s) iff t(s) > ĉ(1− α, 1).

2. Denote by R1 the number of hypotheses rejected. If R1 = 0 stop, otherwise, let
j = 2.

3. For s = Rj−1 + 1, . . . , S, reject H(s) iff t(s) > ĉ(1− α,Rj−1 + 1).

4. a. If no further hypotheses are rejected, stop.

b. Otherwise, denote by Rj the number of hypotheses rejected so far, and then
let j = j + 1. Then return to step 3.

As was the case with the procedure of Holm (1979), this correction is a step-down
procedure: ĉ(1−α, j) is weakly decreasing in j and as such, the criterion for rejection is
more demanding for more ‘significant’ hypotheses and becomes less demanding for less
‘significant’ hypotheses. Given that the null distributions based on max∗,mt,j are based
on resamples of the original data, they implicitly account for the underlying dependence
structure of the test statistics, leading to potentially considerable gains in power over
the Holm procedure, which assumes a worst-case dependence structure.

The above algorithm leads to a decision whether to reject or not reject for each null
hypothesis Hs at a given significance level α. However, additionally and perhaps more
conveniently, a multiple-testing-adjusted p-value can be directly computed for each Hs,
as defined in the algorithm below. This algorithm is a generalization of a resample-
based p-value for a single null hypothesis, which can be defined as (Romano and Wolf
2016; Davison and Hinkley 1997, p. 158):

p ..=
#{t∗,m ≥ t}+ 1

M + 1
; (7)

note that other definitions exist.11 To generalize this to a situation where multiple
hypotheses are considered, rwolf implements the following algorithm to compute the
p-values using the distribution of max∗,mt,j , following Algorithm 4.2 of Romano and Wolf
(2016).

1. Define

padj(1)
..=

#{max∗,mt,1 ≥ t(1)}+ 1

M + 1
.

2. For s = 2, . . . , S,

a. first let

pinitial(s)
..=

#{max∗,mt,s ≥ t(s)}+ 1

M + 1
,

b. then enforce monotonicity by defining

padj(s)
..= max{pinitial(s) , padj(s−1)}.

11. Another (somewhat less conservative) common definition is:

p ..=
#{t∗,m ≥ t}

M
. (8)

Either option can be implemented in the rwolf command, as described in the following section.
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3 The rwolf command

The Romano-Wolf multiple hypothesis correction is implemented using the following
syntax, returning the adjusted p-values described above, as well as the unadjusted
p-values according to Equation (7) (or Equation (8), if noplusone is specified) for
comparison.

rwolf depvars
[
if
] [

in
] [

weight
] [

, indepvar(varlist) method(string)

nobootstraps pointestimates(numlist) stderrs(numlist) stdests(varlist)

controls(varlist) nulls(numlist) seed(#) reps(#) verbose strata(varlist)

cluster(varlist) onesided(string) bl(string) iv(varlist) otherendog(varlist)

indepexog nullimposed noplusone nodots holm graph varlabels *
]

where depvars refers to the multiple outcome variables which are being considered.
There are two ways for this command to be used. First, either indepvar()

and method() must be specified if the complete Romano-Wolf procedure should be
implemented including the estimation of bootstrap replications and generation of
adjusted p-values. Alternatively, if the user is providing rwolf with pre-computed
bootstrap or permuted replications of the estimated statistic and standard errors
for each of their multiple hypothesis tests of interest, and only wishes for rwolf to
calculate the adjusted p-values, then nobootstraps and pointestimates(numlist),
stderrs(numlist) and stdests(varlist) should be indicated.

The first of these cases is provided for situations in which a single type of regression
model is implemented with a range of outcome variables. In this case, rwolf can take
care of the full procedure including estimating the baseline models, and few details
are required. The latter case is provided for more complex situations, such as cases
where different models are used to test each hypothesis, where both dependent and
independent variables change across models, or where more complicated resampling
schemes are desired. Examples of each of these modes of use is provided in Section 4 of
this paper.

3.1 Options

Standard Options

indepvar(varlist) Indicates the independent (treatment) variable which is included
in multiple hypotheses tests. This will typically be a single independent variable,
however it is possible to indicate various independent (treatment) variables which are
included in the same model, and the Romano-Wolf procedure will be implemented
efficiently returning p-values for each dependent variable of interest, corresponding
to each of the specified independent variables. This option must be specified, unless
the nobootstraps option is indicated (see below).

method(string) Indicates to Stata how each of the multiple hypothesis tests are
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performed (that is, the baseline models). Standard regression-based estimation
commands permitted by Stata can be specified, including logit, probit, ivregress,
regress and areg. If IV estimation is desired, ivregress must be indicated, rather
than ivreg2 or alternative IV regression models. This option must be specified,
unless the nobootstraps option is indicated (see below).

controls(varlist) Indicates additional controls which should be included in regressions
of each depvar on the indepvar of interest. Any variable format accepted by varlist
is permitted including time series operators and factor variables.

nulls(numlist) Indicates the parameter values of interest (θ0s in section 2.2) used in each
test. If specified, a single scalar value should be indicated for each of the multiple
hypotheses tested, and these should be listed in the same order that variables are
listed as depvars in the command syntax. In the case that multiple indepvars
are specified, null parameters should be specified grouped first by indepvars and
then by depvars. For example, if two independent variables are considered with
four dependent variables, first the four null parameters associated with the first
independent variable should be listed, followed by the four null parameters associated
with the second independent variable. If this option is not used, it is assumed that
each null hypothesis is that the parameter is equal to 0.

seed(#) Sets seed to indicate the initial value for the pseudo-random number generator.
# can be any integer between 0 and 231 − 1.

reps(#) Perform # bootstrap replication; default is reps(100). Where possible, a
larger number (by a magnitude) of replications should be used for more precise p-
values. Especially, in IV models, a considerably larger number of replications is
highly recommended.

verbose Requests additional output, including display of the initial (uncorrected)
models estimated. This will also result in the generation of a summary output
message indicating the number of hypotheses rejected in uncorrected models and
when implementing the Romano-Wolf procedure, as well as any dependent variables
for which the null is rejected in the Romano-Wolf procedure.

strata(varlist) specifies the variables identifying strata. If strata() is specified,
bootstrap samples are selected within each stratum when forming the resampled
null distributions.

cluster(varlist) specifies the variables identifying resampling clusters. If cluster()
is specified, the sample drawn when forming the resampled null distributions is a
bootstrap sample of clusters. This option should always be specified when underlying
models require cluster-robust inference.

onesided(string) Indicates that p-values based on one-sided tests should be calculated.
Unless specified, p-values based on two-sided tests are provided, corresponding to
the null that each parameter is equal to 0 (or the values indicated in nulls()). In
onesided(string) string must be either positive, in which case the null is that
each parameter β ≥ 0, or negative in which case the null is that each parameter
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β ≤ 0.

bl(string) Allows for the inclusion of baseline measures of the dependent variable as
controls in each model. If desired, these variables should be created with some
suffix, and the suffix should be included in the bl() option. For example, if outcome
variables are called y1, y2 and y3, variables y1 bl, y2 bl and y3 bl should be created
with baseline values, and bl( bl) should be specified.

iv(varlist) only necessary when method(ivregress) is specified. The instrumental
variables for the treatment variable of interest should be specified in iv(). At least
as many instruments as endogenous variables must be included.

otherendog(varlist) If more than one endogenous variable is required in ivregress

models, additional endogenous variables can be included using this option. By
default, when ivregress is specified it is assumed that the variable specified in
indepvar(varlist) is an endogenous variable which must be instrumented. If this is
the case, the variable should not be entered again in otherendog().

indepexog If ivregress is specified, but indepvar() is an exogenous variable,
indepexog should be indicated. In this case all endogenous variables must be
specified in otherendog() and all instruments must be specified in iv().

noplusone Calculate the Resampled and Romano-Wolf adjusted p-values without
adding one to the numerator and denominator (that is, according to Equation (8)
rather than Equation (7)).

nodots Suppress replication dots.

holm Along with standard output, additionally provide p-values corresponding to the
Holm (1979) correction. These will be included in the command output, and stored
in the final column of the matrix e(RW) (described in Section 3.2 below).

graph Requests that a graph be produced showing the Romano-Wolf null distribution
corresponding to each variable examined. These graph the distribution of max∗,mt,j
from Equation (6) for each j in 1, . . . , S. Examples of such a graph are provided in
Section 4.

varlabels Name panels on the graph of null distributions using their variable labels
rather than their variable names.

* Any additional options which correspond to the baseline regression model. All options
permitted by the indicated method are allowed.

Options specific to cases where resampled estimates are user-provided

nobootstraps Indicates that no bootstrap replications need to be generated by the
rwolf command. In this case, each variable indicated in depvars must consist of
M bootstrap realizations of the statistic of interest corresponding to each of the
multiple baseline models. Additionally, for each variable indicated in depvars, the
corresponding standard errors for each of theM bootstrap replicates should be stored



12 Multiple Hypothesis Testing

as another variable, and these variables should be indicated as stdests(varlist).
Finally, the original estimates corresponding to each model in the full sample should
be provided in pointestimates(numlist), and the original standard errors should
be provided in stderrs(numlist). This option may not be specified if indepvar()
and method() are specified. For all standard implementations based on regression
models, indepvar() and method() should be preferred.

pointestimates(numlist) Provides the estimated statistics of interest in the full sample
corresponding to each of the depvars indicated in the command. These estimates
must be provided in the same order as the depvars are specified. This option
may not be specified if indepvar() and method() are specified. For all standard
implementations, indepvar() and method() should be preferred.

stderrs(numlist) Provides the estimated standard errors for each estimated statistic in
the full sample. These estimates must be provided in the same order as the depvars
are specified. This option may not be specified if indepvar() and method() are
specified. For all standard implementations, indepvar() and method() should be
preferred.

stdests(varlist) Contains variables consisting of estimated standard errors from each
of the M resampled replications. These standard errors should correspond to the
resampled estimates listed as each depvar and must be provided in the same order
as the depvars are specified. This option may not be specified if indepvar()

and method() are specified. For all standard implementations, indepvar() and
method() should be preferred.

nullimposed Indicates that resamples are centered around the null, rather than the
original estimate. This option is generally only used when permutations rather than
bootstrap resamples are performed.

3.2 Returned Objects

rwolf is an eclass program, and returns a number of elements in the e() list. It returns
scalars corresponding to each calculated Romano-Wolf p-value, which are available
as e(rw depvar), where depvar refers to the name of each dependent variable. In
the case that multiple independent variables are considered, a scalar for each p-value
corresponding to each independent variable–dependent variable pair will be returned,
as e(rw depvar indepvar). A matrix is also returned as e(RW) providing the full set
of Romano-Wolf corrected p-values. In the case that the holm option is indicated, p-
values according to Holm (1979) will be returned in column 4 of this matrix. Once
again, in the case that multiple independent variables are considered, a matrix named
e(RW indepvar) will be returned corresponding to each depvar.
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4 Some Examples

4.1 Regression-Based Examples and Performance

We begin by presenting a particularly simple case. Consider the following linear model,
in which ten outcome variables ys are regressed on a single independent variable, Treat.
Superscript-s terms refer to each of the multiple outcomes, of which there are a total
of S, or their determinants. The data generating process is simulated as:

ysi = βs0 + βs1Treati + εsi for s = 1, . . . , 10, (9)

for observation i. For each outcome i, the ten stochastic error terms εsi are drawn from
a multi-variate normal (MVN) distribution, following:

εi ∼ N




0
0
...
0

 ,


1 ρ . . . ρ
ρ 1 . . . ρ
...

...
. . .

...
ρ ρ . . . 1


 ,

with ρ ≥ 0, and the independent variable of interest, Treati is generated as Treati ..=
1{Ui>0.5}, where 1 denotes the indicator function and Ui ∼ U(0, 1). This is a highly
stylized setting, but allows us to vary the correlation between the multiple outcome
variables of interest (y1, y2, . . . , y10) via the parameter ρ, as well as the impact of
treatment via the parameter βs1. In particular, we can examine both the empirical
FWER and the empirical proportion of false null hypotheses that get rejected (that is,
“power”). We can examine this performance not only for the Romano-Wolf procedure
but also for Holm’s procedure and for näıve procedures that do not account for multiple
testing.

We consider a series of simulations based on N = 100 observations. Each null
hypothesis is that βs1 = 0, versus the two-sided alternative hypothesis βs1 6= 0. Across
simulations we vary the number of models in k = 1, 2, . . . , 10 for which βs1 = 0, as well
as ρ, the correlation between outcomes induced by the stochastic error terms. Below
we document one such simulation and resulting multiple hypothesis correction. In the
simulation below, each of the 10 βs1 terms is equal to 0, and the correlation between
draws in the MVN distribution is set at ρ = 0.25. In this simulation, we follow the
data generating process described above where first we simulate Treati (as treat), and
then generate εi as a draw from a MVN. This draw is generated using a transformation
of independent normal draws using a Cholesky decomposition of the desired covariance
matrix and Stata’s matrix score command to multiply row vectors.12

12. Further discussion of this is provided in Gould (undated). The use of the Cholesky decomposition
is a convenient way to generate a multivariate normal from a vector of uncorrelated random
variables of mean 0 and variance 1, given that an uncorrelated draw of a vector c ∼ N (0, I) can
be transformed following ε ..= µ+ Lc, resulting in a vector ε ∼ N (µ,LL′). Thus if Σ = LL′ is the
desired covariance matrix, the Cholesky decomposition can be taken to give L = cholesky(Σ), and
the resulting L used to generate the correlated random draws with desired mean µ and covariance
matrix Σ.
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.

. set obs 100
number of observations (_N) was 0, now 100

. gen treat = runiform()>0.5

. foreach num of numlist 1(1)10 {
2. gen c`num´ = rnormal()
3. }

. local r=0.25

. #delimit ;
delimiter now ;
. mat corr = (1,`r´,`r´,`r´,`r´,`r´,`r´,`r´,`r´,`r´ \
> `r´,1,`r´,`r´,`r´,`r´,`r´,`r´,`r´,`r´ \
> `r´,`r´,1,`r´,`r´,`r´,`r´,`r´,`r´,`r´ \
> `r´,`r´,`r´,1,`r´,`r´,`r´,`r´,`r´,`r´ \
> `r´,`r´,`r´,`r´,1,`r´,`r´,`r´,`r´,`r´ \
> `r´,`r´,`r´,`r´,`r´,1,`r´,`r´,`r´,`r´ \
> `r´,`r´,`r´,`r´,`r´,`r´,1,`r´,`r´,`r´ \
> `r´,`r´,`r´,`r´,`r´,`r´,`r´,1,`r´,`r´ \
> `r´,`r´,`r´,`r´,`r´,`r´,`r´,`r´,1,`r´ \
> `r´,`r´,`r´,`r´,`r´,`r´,`r´,`r´,`r´,1);

. #delimit cr
delimiter now cr
. mat corsim = cholesky(corr)

.

. foreach num of numlist 1(1)10 {
2. matrix eps`num´ = corsim[`num´,1..10]
3. matrix score epsilon`num´ = eps`num´
4. gen y`num´ = 1 + 0*treat + epsilon`num´
5. }

.

. rwolf y1 y2 y3 y4 y5 y6 y7 y8 y9 y10, indepvar(treat) reps(1000) nodots holm
Bootstrap replications (1000). This may take some time.

Romano-Wolf step-down adjusted p-values

Independent variable: treat
Outcome variables: y1 y2 y3 y4 y5 y6 y7 y8 y9 y10
Number of resamples: 1000

| Model Resample Romano-Wolf Holm
Outcome Variable | p-value p-value p-value p-value

+
y1 0.1142 0.1009 0.5534 0.8072
y2 0.8906 0.8931 0.9940 0.8931
y3 0.2750 0.2797 0.7872 1.0000
y4 0.0292 0.0280 0.1938 0.2517
y5 0.1914 0.1818 0.6883 1.0000
y6 0.8683 0.8741 0.9940 1.0000
y7 0.0137 0.0100 0.1009 0.0999
y8 0.8337 0.8372 0.9940 1.0000
y9 0.3849 0.3966 0.8382 1.0000
y10 0.1199 0.1149 0.5534 0.8042

Once we have simulated the N×S matrix Y in the above code, we apply the Romano-
Wolf step-down correction. Here we are considering the S = 10 outcome variables
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y1–y10, and the single independent variable treat. We request that the command
perform 1,000 bootstrap repetitions, which, given the lack of other arguments, will
be performed by resampling observational units with replacement. By specifying the
nodots and holm arguments, we request that no dots be displayed on the Stata output
to indicate the degree to which the resample procedure has advanced, and also for rwolf
to return p-values corrected using Holm’s procedure (which will be listed in the final
column of tabular output and saved in the e(return) list).

The command returns a list of p-values associated with each of the multiple
outcomes. The column “Model p-values” lists the analytical p-values coming directly
from the estimated regression model based, in each case, on the t-statistic and the
(inverse) cumulative distribution function of a t-distribution with appropriate degrees
of freedom. The column “Resample p-values” lists the resampling-based p-values as per
Equation (7)), which also do not correct for multiple testing. In the case of both of
these uncorrected procedures, despite the fact that all true β1 values were 0, a number
of the hypotheses that β1 = 0 are rejected at α = 0.05. In particular, the variables y4

and y7 have p-values below 0.05 for both uncorrected procedures. The third column
displays the Romano-Wolf adjusted p-values, where we note that now no null hypothesis
is rejected (even at α = 0.10).

This simulated example above provides one example of a multiple hypothesis
correction based upon a known data generating process (DGP). In order to examine the
performance of the rwolf command (and the Romano-Wolf correction in this context)
more generally, we can examine the error rates and proportion of hypotheses correctly
rejected when we vary the number of values of βs1 = 0, and the correlation between
outcomes, ρ. We consider such an example in Tables 1–2.13 The first of these Tables
considers the proportion of times at least one null hypothesis is rejected when the null
hypothesis is actually true (the FWER), and the second of these Tables considers the
proportion of hypotheses that are correctly rejected when the null hypothesis is false
(the power of the tests).

In these Tables we consider a series of models where (i) each of the βs1 terms are
equal to 0 (presented in Panel A of Table 1), (ii) a series where half of the βs1 terms
are equal to zero, and the other half are equal to 0.5 (presented in panel B of Table
1 when considering FWERs and panel A of Table 2 when considering power),14 and
finally (iii) a series where each of the βs1 terms are equal to 0.5 (presented in panel B of
Table 2). Note that case (i) is not considered in Table 2 given that all null hypotheses
are true and so cannot be ‘correctly rejected’, and case (iii) is not considered in Table
1 given that all null hypotheses are false, and so the FWER is trivially equal to zero
given that they cannot be ‘incorrectly rejected’. Across columns, we vary the degree of
correlation between outcomes, from ρ = 0 in the first two columns, to ρ = 0.75 in the
final two columns. The nominal levels for the FWER are set at α = 0.05 and α = 0.10,
respectively.

13. The replication code of this, and all results displayed in this paper, is available at
http://www.damianclarke.net/replication/multHypRWolf.zip.

14. Specifically, β1
1 = β2

1 = . . . = β5
1 = 0, and β6

1 = β7
1 = . . . = β10

1 = 0.5.
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Table 1: Simulated Error Rates

ρ = 0 ρ = 0.25 ρ = 0.50 ρ = 0.75

5% 10% 5% 10% 5% 10% 5% 10%

Panel A: All β1 = 0
FWER Uncorrected 0.396 0.642 0.365 0.602 0.281 0.492 0.197 0.341
FWER Holm 0.035 0.094 0.036 0.084 0.029 0.068 0.021 0.046
FWER Romano-Wolf 0.048 0.100 0.049 0.097 0.046 0.097 0.047 0.096

Panel B: Half β1 = 0.5
FWER Uncorrected 0.222 0.408 0.212 0.390 0.180 0.335 0.147 0.258
FWER Holm 0.024 0.065 0.028 0.061 0.025 0.052 0.025 0.049
FWER Romano-Wolf 0.029 0.067 0.033 0.067 0.034 0.075 0.040 0.083

Notes: Error rates are documented familywise over all outcomes. Uncorrected error rates are displayed
at the top of each panel, where the proportion refers to the proportion of simulations where at least
1 true null hypothesis was falsely rejected. Below, similar rates are displayed when p-values are
corrected using Holm’s and Romano-Wolf’s procedure. The correlation between outcomes is varied
across columns, and error rates at α = 0.05 and α = 0.10 are displayed. The number of repetitions is
1,000 per scenario and the number of bootstrap resamples in each case is equal to M = 5, 000.

Tables 1–2 are in the spirit of Tables 1–3 in Romano and Wolf (2005a). Here we
briefly discuss the performance of the rwolf command, and note a number of important
features of the Romano-Wolf hypothesis correction. In particular, we always present the
performance criteria for three testing procedures: the ones corresponding to the näıve
case, where no correction for multiple hypothesis testing is made, the ones corresponding
to Holm’s procedure, and the ones corresponding to the Romano-Wolf procedure. In
panel A of Table 1 where all values for βs1 = 0, it is clear in the uncorrected case
the empirical FWERs greatly exceed nominal levels of α = 0.05 and 0.10. When all
outcomes are uncorrelated these values are 0.396 and 0.642 respectively, suggesting
a large proportion of families in which a null hypothesis is incorrectly rejected, in line
with that predicted in theory.15 As the correlation between outcomes grows, these näıve
values fall closer to the nominal levels, but still considerably exceed desired error rates.
When undertaking the Holm correction, we now observe that the FWER is controlled
at both the 5% and 10% levels. This is observed regardless of the degree of correlation
considered, between ρ = 0 and ρ = 0.75. Similar control is observed in the case of
the Romano-Wolf procedure. Indeed, in each case the empirical FWER is very close to
desired nominal rate of 0.05 or 0.10, respectively. In panel B of Table 1 where 5 of the 10
hypotheses should not be rejected, we again observe that the FWER without multiple
hypothesis correction still substantially exceeds desired error rates, but is successfully

15. As discussed in the Procedures section, where outcomes are uncorrelated, the probability of falsely
rejecting at least one hypothesis is 1 − (1 − α)S . In this case in particular, we would thus expect
the proportion to be 1 − (1 − 0.05)10 = 0.401 and 1 − (1 − 0.10)10 = 0.651 at the 5% and 10%
levels, very close to the empirically observed values.



Damian Clarke, Joseph P. Romano and Michael Wolf 17

controlled at no more than α with both the Holm and Romano-Wolf procedures.

Table 2: Simulated Rejection Rates

ρ = 0 ρ = 0.25 ρ = 0.50 ρ = 0.75

5% 10% 5% 10% 5% 10% 5% 10%

Panel A: Half β1 = 0.5
Rejected Uncorrected 0.687 0.791 0.689 0.797 0.681 0.789 0.693 0.798
Rejected Holm 0.324 0.460 0.325 0.457 0.325 0.453 0.340 0.468
Rejected R-W 0.373 0.486 0.382 0.492 0.401 0.519 0.469 0.594

Panel B: All β1 = 0.5
Rejected Uncorrected 0.683 0.792 0.689 0.794 0.681 0.788 0.694 0.797
Rejected Holm 0.384 0.547 0.406 0.558 0.409 0.552 0.432 0.564
Rejected R-W 0.416 0.558 0.436 0.576 0.458 0.593 0.519 0.651

Notes: The rate of correctly rejected (false) null hypotheses is displayed, where rates refer to
the proportion of all hypotheses rejected across all simulations where the null hypothesis is false.
Uncorrected rejection rates refer to the case where näıve p-values are used for each test, Holm refers
to rejection rates based on Holm’s p-value correction, and “R-W” refers to rates based on Romano-
Wolf’s p-value correction. The correlation between outcomes is varied across columns, and rejection
rates at α = 0.05 and α = 0.10 are displayed. The number of repetitions is 1,000 per scenario and the
number of bootstrap resamples in each case is equal to M = 5, 000.

In Table 2 we can additionally examine the relative power of the Holm and Romano-
Wolf procedures for rejecting false null hypotheses. In panel A of Table 2 we return to
the case considered in panel B of Table 1, however here considering the power of the tests.
In this setting. the näıve case of no multiple hypothesis correction of course allows us to
reject a large proportion of false null hypotheses (at the cost of the FWER documented
in Table 1). In the case of Holm and Romano-Wolf, we observe relatively similar rates
of correct rejection when the correlation between outcomes is 0, but as expected, as the
correlation between outcomes grows, the Romano-Wolf procedure substantially improves
relative to Holm’s procedure. For example, in the final column of panel A, we observe
that we reject 59.4% of false null hypotheses using the Romano-Wolf procedure, versus
only 46.8% using Holm’s procedure, a 27% improvement in rejection rate. A similar
pattern is observed in Table 2, panel B where all null hypotheses are false. Initially
when the correlation between outcomes is 0, Holm and Romano-Wolf’s procedures have
similar power, but to the degree that ρ increases, the Romano-Wolf procedure becomes
relatively more powerful.

In Table 2 we consider the relative power of testing procedures for rejecting false
null hypotheses with a particular value for βs1, in this case βs1 = 0.5 for all cases where
βs1 6= 0. The relative power of these procedures will depend on the actual value of βs1.
In Figure 1 we consider how these rates of rejection vary with βs1 values. In this
figure we consider a particular example, namely that corresponding to Table 2 panel B
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(where all βs1 6= 0), and where ρ = 0.5. In this figure we present values of βs1 varying
from 0.01 to 1, in steps of 0.03. All other details follow the DGP in Equation (9).
For each value of β1, we run 1,000 simulations, in each case calculating the unadjusted
p-values, and the Holm and Romano-Wolf p-values using the rwolf command. Across
the 1,000 simulations we examine the proportion of null hypotheses correctly rejected.
As expected, the power when not conducting any multiple hypothesis correction is
greatest (at the cost of exceeding the FWER in the case that the null hypothesis were
true). To the degree that the correlation between outcomes approaches ρ = 1, the
power of the Romano-Wolf procedure will approach the power of the procedure with no
multiple hypothesis correction. Of interest is the relative performance of Romano-Wolf
versus Holm’s correction. Here, given that ρ = 0.5, the power of the Romano-Wolf
correction dominates the power of the Holm correction across each value for β1. This
difference is particularly notable at values of β1 between 0.4 and 0.6, and all disappear
as β1 becomes large, implying sufficient power to reject all null hypotheses regardless
of the correction procedure. When β1 = 1, each of the procedures results in rejection
rates of around 100%.

Figure 1: Comparative power to reject false null hypotheses.
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Notes to Figure 1: For each value of β1 in {0.01, 0.04, 0.07, . . . 0.97, 1} we conduct 1,000 simulations

following the DGP laid out in Equation (9), where each βs
1 is set to the value indicated on the x-axis,

and ρ = 0.5. In each case N = 100 observations are simulated, and we calculate p-values using the

rwolf command, with 200 bootstrap resamples.
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The simulated examples based on rwolf displayed previously provide a standard
implementation where multiple outcome variables are regressed on a single independent
(treatment) variable, each using an OLS regression. However, the standard command
syntax of rwolf allows for many extensions of this baseline implementation. This
includes the use of alternative estimation methods (for example IV regression, probit,
and other Stata estimation commands), the implementation of one-sided tests, or the
use of alternative bootstrap routines (for example, block and stratified bootstraps). To
document a number of such extensions, we turn to an alternative example below, based
on a simple instrumental variables regression example. This example is a standard
Stata IV regression example based on system data, as described in the help file of
Stata’s ivregress. Here, we extend to a case with multiple outcomes, and examine
both a one- and a two-sided test.

We begin with a (default) two-sided test, where we follow the implementation of the
2SLS estimate from the ivregress help file.16 We use the same specification, where
along with the outcome variable rent, we also consider three other variables: popden,
popgrow and hsng. Here we do not make any claim to causality or consistency of the
resulting estimates. These are simply shown as an illustration of the rwolf command
with an IV regression. In each case, the “independent” variable of interest is hsngval,
and this is instrumented with the variables indicated in the iv() option. We include
pcturban as an additional control, as per the example. In this case we use 10,000
bootstrap replications (bootstrapping on observational units), and request a graph of
the null distributions used in testing to be reported (as discussed below). The setup and
output of this Romano-Wolf correction is displayed below. In this example, the p-values
from the original IV models are quite low, suggesting evidence against the null that each
coefficient on the variable hsngval is zero. The Romano-Wolf correction displayed in
the final column results in inflated p-values (as designed), though the adjusted p-values
are still relatively low.

. use http://www.stata-press.com/data/r13/hsng, clear
(1980 Census housing data)

. rwolf rent popden popgrow hsng, indepvar(hsngval) method(ivregress) /*
> */ iv(faminc i.region) reps(10000) graph nodots /*
> */ controls(pcturban)
Bootstrap replications (10000). This may take some time.

Romano-Wolf step-down adjusted p-values

Dependent variable: hsngval
Outcome variables: rent popden popgrow hsng
Number of resamples: 10000

Outcome Variable | Model p-value Resample p-value Romano-Wolf p-value
+

rent 0.0000 0.0157 0.0157
popden 0.0654 0.0848 0.0848
popgrow 0.0019 0.0119 0.0200

hsng 0.0236 0.0120 0.0515

16. The implementation there is: ivregress 2sls rent pcturban (hsngval = faminc i.region).
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Below we document the same procedure, but here conducting one-sided hypothesis
tests. In each case, the null hypothesis in these tests will be of the form H0 : β1 ≤ 0,
versus the alternative H1 : β1 > 0, where β1 refers to the coefficient on hsngval in
the second stage of the IV regression. For the sake of illustration, we multiply two
outcomes by −1, such that the sign on β̂1 estimated in each IV regression is greater
than zero. Along with the syntax described previously, the implementation of one-sided
tests requires the use of the argument onesided(). If onesided(negative) is specified,
the null will be H0 : β1 ≤ 0, that is, negative values will provide more support for the
null, whereas if onesided(positive) is specified, the null will be H0 : β1 ≥ 0 in each
case, such that positive values will provide more support for the null.

. replace popden=-popden
(50 real changes made)

. replace hsng =-hsng
(50 real changes made)

. rwolf rent popden popgrow hsng, indepvar(hsngval) method(ivregress) /*
> */ iv(faminc i.region) reps(10000) graph onesided(negative) nodots /*
> */ controls(pcturban)
Bootstrap replications (10000). This may take some time.

Romano-Wolf step-down adjusted p-values

Dependent variable: hsngval
Outcome variables: rent popden popgrow hsng
Number of resamples: 10000

Outcome Variable | Model p-value Resample p-value Romano-Wolf p-value
+

rent 0.0000 0.0003 0.0003
popden 0.0327 0.0193 0.0193
popgrow 0.0010 0.0012 0.0017

hsng 0.0118 0.0060 0.0110

In each of these examples, we have specified the graph option, which means that
we request as output the null distributions used to calculate the p-value in each case.
Examining these distributions is useful insofar as it allows us to empirically observe how
much more demanding the Romano-Wolf correction is compared with an uncorrected
test. In Figure 2 panel (a) we display these distributions in the case of the two-sided case.
Here the histogram presents the absolute value of each (Studentized) estimate from the
bootstrap replications where the null is imposed, and the black dotted line presents
an exact half normal distribution. The actual Studentized value of the regression
coefficient is displayed as a solid vertical line. In the top left panel, the first null
distribution is considerably more demanding than the theoretical distribution given
that it accumulates that maximum coefficient estimated across each outcome. These
null distributions become increasingly less demanding in the top right and bottom
left panels as previously tested variables are removed from the pool to form the null
distributions. Finally, in the bottom right corner (for the least significant variable),
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the null distribution is based on bootstrap replications from only this variable, and as
such, the null distribution closely approximates the theoretical half normal distribution.
In Figure 2 panel (b) we present the same null distributions, however now based on
the one-sided tests. Here the histogram documents the maximum values across the
multiple variables in each bootstrap replication, and the black dotted line presents the
theoretical normal distribution. Once again, when we consider outcomes for which
‘more significant’ relationships are observed, the empirical distribution which is used to
calculate the corrected p-value is considerably more demanding than the black dotted
distribution which would be used under no correction and a normality assumption. In
the case of the least significant variable (popden), these two distributions are similar
given that the null distribution is based only on Studentized regression estimates of the
single regression where this is the outcome variable.

Figure 2: Null distributions for one- and two-sided tests with IV models.
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Notes to Figure 2: Panel (a) documents the null distributions used to calculate the Romano-Wolf

adjusted p-values for each of the four outcome variables of interest in the ivregress command, using

a two-tailed test where the null is that β1 = 0 in each case. Panel (b) documents the null distributions

for the same regressions, however now based on the one-tailed test where each null is that β1 ≤ 0.

4.2 A Non-Standard Studentized Example

Each of the previous examples has been based on the simple rwolf command syntax
where a single independent variable is regressed on multiple outcome variables. This
is frequently sufficient for a large number of implementations, such as cases where a
single experimental treatment is assigned, and various outcomes are measured. In this
case, the rwolf command can be implemented in one line, and takes care of everything,
including the full process of bootstrap draws, estimation of regression coefficients and
standard errors, as well as the generation of null distributions and p-values. However,
Romano-Wolf p-values can also be calculated for more complex set-ups, if the user
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wishes to pass the command the already bootstrapped (or permuted) statistics and
standard errors which have been calculated from the underlying models of interest. In
what remains of this section, we document this flexibility, using a bootstrap approach
where our statistics of interest are a series of correlations.

To do so, we use an example and data documented in Westfall and Young (1993),
which was also previously used to demonstrate the effectiveness of the Romano-Wolf
procedure in Romano and Wolf (2005a). Although we refer to this as a “Non-standard”
example, it is only non-standard in the way it interacts with the syntax of rwolf,
given that the multiple tests are based on a number of independent variables, and as
such do not allow for a single independent variable to be indicated using the indepvar()
option. This example considers pairwise correlations between state-average standardized
Scholastic Aptitude Test (SAT) scores and a number of other state-level measures for
the 48 mainland US states plus Hawaii. These data — consisting simply of state-level
measures of a number of variables of interest — are provided in Table 6.4 (p. 197)
of Westfall and Young (1993) as well as in the replication materials for this paper.
The precise variables considered are the “SATdev” (generated as the residuals from a
regression of state level SAT scores on the square root of the percent of students taking
the exam in a given state), the student/teacher ratio in the state, the teacher salary,
the percent of the population which is black, and the crime rate of each state.

In this case, the statistics of interest refer to simple correlations between pairs of
variables of interest, and p-values will be corrected for the fact that we are testing
10 hypotheses. In order to construct null distributions following Equations (5)–(6),
the rwolf command requires an estimate of the original parameter of interest in each
case (the pairwise correlation) along with a standard error. These values are used to
construct ts (as defined in Section 2.2) for each of the s multiple hypotheses, and order
the hypotheses in terms of their relative significance. It additionally requires the results
from M bootstrap replicates, where in each case a resampled estimate of each statistic
and its standard error is provided. We document such a case below, where in each of
the multiple hypotheses the parameter of interest is the correlation between variables
ρ (which can be simply calculated using corr in Stata), and its standard error which,
assuming normality, is calculated as (Bowley 1928; Zar 2010)17:

seρ̂ ..=

√
1− ρ̂2
N − 2

. (10)

To generate the various components that rwolf uses to implement the multiple
hypothesis correction we first open the data and define the pairs to be tested one-by-
one in locals var1 and var2. The idea in these locals is that we wish to calculate the
correlation between the first two variables in each local, the second two variables in each
local, and so forth, until reaching the tenth two variables in each local. We calculate
these correlations one by one in the foreach loop in the below code. To do so we loop
over elements of the local var1, and take elements one-by-one from local var2 using

17. In Appendix 2 we document how this test can be implemented using regression, rather than
correlation.



Damian Clarke, Joseph P. Romano and Michael Wolf 23

Stata’s tokenize command.18 These correlations and standard errors from the original
data are then saved respectively as locals c‘i’ and s‘i’ to be later passed to the rwolf
command. Finally, we generate a series of ten empty variables rho1–rho10 and std1–
std10 which will later be populated by resample-based correlation estimates and their
standard errors.

. use "SATgenerated", clear

. set seed 13032019

. local var1 satdev salary black satdev satdev ratio ratio satdev salary ratio

. local var2 black crime crime ratio crime crime black salary black salary

.

. tokenize `var2´

. local i=1

. foreach var of varlist `var1´ {
2. qui corr `var´ ``i´´
3. local c`i´=r(rho)
4. local s`i´=sqrt((1-r(rho)^2)/(r(N)-2))
5. local ++i
6. }

.

. foreach num of numlist 1/10 {
2. qui gen rho`num´=.
3. qui gen std`num´=.
4. }

.

A bootstrap procedure is then implemented, based on 5,000 resamples. We initially
expand the data-set to have 5,000 observations to store each of the bootstrap estimates,
however prior to calculating the correlations and standard errors in each replicate,
we work only with the 49 state-level observations with SAT data. Each replicate is
implemented in the main forvalues loop below. Within each of these 5,000 iterations
we first issue a preserve command to later restore the data towards the end of each
iteration, as this way the bootstrap resample (bsample) begins with the original data
in each iteration. Within each loop, lines 7–12 calculate the bootstrap correlations
and corresponding standard errors, which are then filled in line-by-line in the variables
rho1–rho10 and std1–std10 at the end of each loop.

. local M=5000

. set obs `M´
number of observations (_N) was 49, now 5,000

. forvalues m=1/`M´ {
2. preserve
3. qui keep if sat!=.
4. bsample
5. tokenize `var2´
6. local s=1
7. foreach var of varlist `var1´ {
8. qui corr `var´ ``s´´
9. local cor`s´ = r(rho)

18. Using the tokenize command means that we can refer to the variables in var2 as ‘1’, ‘2’, . . . ,
‘10’ in each iteration of the loop.
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10. local std`s´ = sqrt((1-r(rho)^2)/(r(N)-2))
11. local ++s
12. }
13. restore
14. foreach s of numlist 1/10 {
15. qui replace rho`s´=`cor`s´´ in `m´
16. qui replace std`s´=`std`s´´ in `m´
17. }
18. }

Once we have stored the original estimates and their standard errors, and have
variables containing resampled estimates along with their resampled standard errors
we can simply request the multiple hypothesis correction from rwolf, as laid out in
Section 3. This is implemented below. We pass the command the varlist consisting
of resampled estimates, and then in the option stdests() the varlist consists of
bootstrap standard errors. Finally, the original correlations and standard errors from
the (original) data are passed as numlists in pointestimates() and stderrs(). The
graph option requests for a graph to be produced documenting the null distributions
used in each test, and noplusone suggests that the p-value should be calculated following
Equation (8) rather than following the ‘standard’ Equation (7).

. local allcorrs `c1´ `c2´ `c3´ `c4´ `c5´ `c6´ `c7´ `c8´ `c9´ `c10´

. local allserrs `s1´ `s2´ `s3´ `s4´ `s5´ `s6´ `s7´ `s8´ `s9´ `s10´

.

. #delimit ;
delimiter now ;
. rwolf rho1 rho2 rho3 rho4 rho5 rho6 rho7 rho8 rho9 rho10,
> nobootstraps stdests(std1 std2 std3 std4 std5 std6 std7 std8 std9 std10)
> pointestimates(`allcorrs´) stderrs(`allserrs´) graph noplusone;

Romano-Wolf step-down adjusted p-values

Outcome variables: rho1 rho2 rho3 rho4 rho5 rho6 rho7 rho8 rho9 rho10
Number of resamples: 5000

Outcome Variable | Model p-value Resample p-value Romano-Wolf p-value
+

rho1 . 0.0000 0.0040
rho2 . 0.0010 0.0062
rho3 . 0.0002 0.0066
rho4 . 0.0008 0.0434
rho5 . 0.0158 0.1704
rho6 . 0.1468 0.4130
rho7 . 0.1640 0.6026
rho8 . 0.4790 0.8490
rho9 . 0.8220 0.9712
rho10 . 0.9798 0.9798

. #delimit cr
delimiter now cr

The output of this command is provided above. In the case of this “non-standard”
implementation, no “Model p-value” is returned given that rwolf itself does not estimate
the original correlations, simply working with the estimates provided from the above
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code. In this case we observe the “Resample p-value” (which is not corrected for multiple
hypothesis testing) and consists of comparing each original estimate with the null
distribution, and the “Romano-Wolf p-value”, where the multiple hypothesis correction
has been implemented as indicated in Section 2.2. These results are similar to those
observed in Romano and Wolf (2005a, Table 4), and would result in rejecting the same
hypothesis in the case that standard cut-offs (such as α = 0.01, α = 0.05 or α = 0.10)
were used.

Finally, we also present the graph of null distributions, based on Equation (6), for
each hypothesis in Figure 3. As implied by the multiple hypothesis testing algorithm,
we observe that the null distributions become less demanding as moving from the most
significant variable (top left-hand panel) to the least significant variable (left-hand panel
in the final row).

Figure 3: Null distributions and original t-statistics from the SAT-Deviation data.
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Notes to Figure 3: Each panel documents the null distributions used to calculate the Romano-Wolf

adjusted p-values (following Equation (6)) for each of the ten outcome variables of interest. The

histogram in each panel plots the step-down resampled null distribution, the dashed line represents the

theoretical half-normal, and the solid vertical line represents the original t-statistic corresponding to

each correlation.
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5 Conclusions

This paper describes the Romano-Wolf multiple hypothesis correction which is a flexible
and versatile procedure to (asymptotically) control the familywise error rate (FWER)
when testing a family of hypotheses at the same time, which occurs frequently in applied
work in economics, finance, and many other fields. The paper documents the rwolf

command which returns (multiple-testing) adjusted p-values that (a) do not suffer from
inflated rates of Type I error and (b) take into account the dependence structure of
test statistics via resampling. The latter feature, together with the stepwise nature
of the procedure, results in improved ability to correctly reject false null hypotheses
(that is, “power”) compared to more traditional multiple testing procedures, such as
the Bonferroni procedure and the Holm procedure.

We document the syntax of the command, and provide a number of illustrative
examples, both with simulated and with real data. We document how this command can
be used very simply in cases where multiple dependent variables are regressed on a single
independent variable (in a broad class of regression models). In this case implementing
the Romano-Wolf multiple hypothesis correction in Stata is a one-line endeavor, as
the command interacts directly with Stata’s estimation commands to implement the
p-value adjustment. We also document a more complex case, where the statistics of
interest are not based on regression models, and where multiple independent variables
are also considered. It is envisaged that this code can be used in a wide variety of
circumstances where multiple hypothesis testing occurs, avoiding the well-known and
undesirable pitfalls of the phenomenon interchangeably called “data mining”, “cherry
picking”, or “p-hacking”.
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Appendices

1 Westfall and Young’s “Free Step-Down Resampling
Method”

For background related to the multiple hypothesis testing procedures discussed in
Section 2 of this paper, we describe the step-down resampling procedure of Westfall
and Young (1993) here. This procedure is described as Algorithm 2.8 in Westfall and
Young (1993, pp. 66–67) and we largely follow their notation, however adapted to fit
the notation laid out in section 2 of this paper.

This procedure begins with S multiple hypotheses, each associated with their own
(unadjusted) p-value. These p-values are labelled such that p1 ≤ p2 ≤ · · · ≤ pS . It then
proceeds as described below.

1. Begin with a counter, COUNTs = 0 for each s = 1, . . . , S.

2. Using a bootstrap sample, generate a vector of analogous p-values, (p∗1, p
∗
2, . . . , p

∗
S).

These will not necessarily follow the same ordering as the original p-values.

3. Define the successive minima:

q∗S = p∗S

q∗S−1 = min(q∗S , p
∗
S−1)

q∗S−2 = min(q∗S−1, p
∗
S−2)

...

q∗1 = min(q∗2 , p
∗
1)

4. If q∗s ≤ ps, then increment COUNTs by 1 unit.

5. Repeat steps 2–4 N times, and compute p̃s = COUNTs/N

6. Enforce monotonicity using successive maximization:

padjWY,1 = p̃1

padjWY,2 = max(padjWY,1, p̃2)

...

padjWY,S = max(padjWY,S−1, p̃S)

The vector of adjusted p-values (padjWY,1, p
adj
WY,2, . . . , p

adj
WY,S) are the p-values corrected for

multiple hypothesis testing, where subscriptWY refers to the Westfall-Young procedure.
These p-values provide strong control of the FWER under the assumption of subset
pivotality.
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2 Regression-Based Examples

Below we replicate the example from section 4.2, however here rather than calculating
correlations directly, regressions are estimated (see for example line 2 of the first loop,
and line 8 of the final principal loop). Given that t-statistics calculated from each
regression are identical to those calculated using the estimate of the correlation and
its standard error in equation 10, the Studentization can be similarly performed by
regression. This is documented below, where apart from the regressions themselves, all
other details follow those described in section 4.2.

. use "SATgenerated", clear

. set seed 13032019

. local var1 satdev salary black satdev satdev ratio ratio satdev salary ratio

. local var2 black crime crime ratio crime crime black salary black salary

.

. tokenize `var2´

. local i=1

. foreach var of varlist `var1´ {
2. qui reg `var´ ``i´´
3. local c`i´=_b[``i´´]
4. local s`i´=_se[``i´´]
5. local ++i
6. }

.

. foreach num of numlist 1/10 {
2. qui gen rho`num´=.
3. qui gen std`num´=.
4. }

.

. local N=5000

. set obs `N´
number of observations (_N) was 49, now 5,000

. forvalues n=1/`N´ {
2. preserve
3. qui keep if sat!=.
4. bsample
5. tokenize `var2´
6. local xvar=1
7. foreach var of varlist `var1´ {
8. qui reg `var´ ``xvar´´
9. local bta`xvar´ = _b[``xvar´´]
10. local std`xvar´ =_se[``xvar´´]
11. local ++xvar
12. }
13. restore
14. foreach num of numlist 1/10 {
15. qui replace rho`num´=`bta`num´´ in `n´
16. qui replace std`num´=`std`num´´ in `n´
17. }
18. }

. local allcorrs `c1´ `c2´ `c3´ `c4´ `c5´ `c6´ `c7´ `c8´ `c9´ `c10´
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. local allserrs `s1´ `s2´ `s3´ `s4´ `s5´ `s6´ `s7´ `s8´ `s9´ `s10´

.

. #delimit ;
delimiter now ;
. rwolf rho1 rho2 rho3 rho4 rho5 rho6 rho7 rho8 rho9 rho10,
> nobootstraps stdests(std1 std2 std3 std4 std5 std6 std7 std8 std9 std10)
> pointestimates(`allcorrs´) stderrs(`allserrs´) graph noplusone;

Romano-Wolf step-down adjusted p-values

Outcome variables: rho1 rho2 rho3 rho4 rho5 rho6 rho7 rho8 rho9 rho10
Number of resamples: 5000

Outcome Variable | Model p-value Resample p-value Romano-Wolf p-value
+

rho1 . 0.0000 0.0046
rho2 . 0.0010 0.0074
rho3 . 0.0016 0.0084
rho4 . 0.0054 0.0470
rho5 . 0.0268 0.1740
rho6 . 0.1428 0.3928
rho7 . 0.1350 0.5848
rho8 . 0.4844 0.8480
rho9 . 0.8242 0.9726
rho10 . 0.9788 0.9788

. #delimit cr
delimiter now cr
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