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We present an approach to cumulant–moment relations and Wick polynomials based on

extensive use of convolution products of linear functionals on a coalgebra. This allows,

in particular, to understand the construction of Wick polynomials as the result of a Hopf

algebra deformation under the action of linear automorphisms induced by multivariate

moments associated to an arbitrary family of random variables with moments of all

orders. We also generalize the notion of deformed product in order to discuss how these

ideas appear in the recent theory of regularity structures.

1 Introduction

Chaos expansions and Wick products have notoriously been thought of as key steps in

the renormalization process in perturbative quantum field theory (QFT). The technical

reason for this is that they allow to remove contributions to amplitudes (say, probability
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transitions between two physical states) that come from so-called diagonal terms—

from which divergences in the calculation of those amplitudes may originate. Rota and

Wallstrom [19] addressed these issues from a strictly combinatorial point of view using,

in particular, the structure of the lattice of set partitions. These are the same techniques

that are currently used intensively in the approach by Peccati and Taqqu in the context

of Wiener chaos and related phenomena. We refer to their book [16] for a detailed study

and the classical results on the subject, as well as for a comprehensive bibliography and

historical survey.

Recently, the interest in the fine structure of cumulants and Wick products

for non-Gaussian variables has been revived, since they both play important

roles in Hairer’s theory of regularity structures [10]. See, for instance, references

[6, 9]. The progress in these works relies essentially on describing the underlying

algebraic structures in a transparent way. Indeed, the combinatorial complexity

of the corresponding renormalization process requires the introduction of group-

theoretical methods such as, for instance, renormalization group actions and

comodule Hopf algebra structures [3]. Another reference of interest on general-

ized Wick polynomials in view of the forthcoming developments is the recent

paper [13].

Starting from these remarks, in this article we shall discuss algebraic con-

structions related to moment–cumulant relations as well as Wick products, using Hopf

algebra techniques. A key observation, that seems to be new in spite of being elementary

and powerful, relates to the interpretation of multivariate moments of a family of

random variables as a linear form on a suitable Hopf algebra. It turns out that the

operation of convolution with this linear form happens to encode much of the theory

of Wick products and polynomials. This approach enlightens the classical theory, as

various structure theorems in the theory of chaos expansions follow immediately from

elementary Hopf-algebraic constructions, and therefore are given by the latter a group-

theoretical meaning. Our methods should be compared with the combinatorial approach

in [16].

Our approach has been partially motivated by similarities with methods that

have been developed for bosonic and fermionic Fock spaces by C. Brouder et al. [1, 2]

to deal with interacting fields and nontrivial vacua in perturbative QFT. This is not

surprising since, whereas the combinatorics of Gaussian families is reflected in the

computation of averages of creation and annihilation operators over the vacuum in QFT,

combinatorial properties of non-Gaussian families correspond instead to averages over

nontrivial vacua.
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The main idea of this paper is that the coproduct of a bialgebra allows to

deform the product and that this permits to encode interesting constructions such

as generalized Wick polynomials. In the last sections of this paper, we show how the

above ideas can be used in more general contexts, which include regularity structures.

Regarding the latter, we mention that these ideas have been used and greatly expanded

in a series of recent papers [3, 6, 10] on renormalization of regularity structures. These

papers handle products of random distributions which can be ill defined and need

to be renormalized. The procedure is rather delicate since the renormalization, which

we rather call deformation in this paper, must preserve other algebraic and analytical

structures. Without explaining in detail the rather complex constructions appearing in

[3, 6, 10], we describe how one can formalize this deformed (renormalized) product of

distributions by means of a comodule structure.

1.1 Generalized Wick polynomials

The main results of the 1st part of this paper (Theorems 5.1 and 5.3) are multivariate

generalizations of the following statements for a single real-valued random variable X

with finite moments of all orders.

We denote by H := R[x] the algebra of polynomials in the variable x, endowed

with the standard product

xn · xm := xn+m, (1)

for n, m ≥ 0. We equip H with the cocommutative coproduct � : H → H ⊗ H defined by

�xn :=
n∑

k=0

(
n

k

)
xn−k ⊗ xk. (2)

Product (1) and coproduct (2) together define a connected graded commutative and

cocommutative bialgebra, and therefore a Hopf algebra structure on H. On the dual

space H∗ a dual product α � β ∈ H∗ can be defined in terms of (2)

(α � β)(xn) := (α ⊗ β)�xn, (3)

for α, β ∈ H∗. This product is commutative and associative, and the space G(H) := {λ ∈
H∗ : λ(1) = 1} forms a group for this multiplication law.

We define the functional μ ∈ H∗ given by μ(xn) := μn = E(Xn). Then μ ∈ G(H),

and therefore its inverse μ−1 in G(H) is well defined.
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Theorem 1.1 (Wick polynomials). We define W := μ−1 � id : H → H, that is, the linear

operator such that

W(xn) = (μ−1 ⊗ id)�xn =
n∑

k=0

(
n

k

)
μ−1(xn−k) xk. (4)

Then

� W : H → H is the only linear operator such that

W(1) = 1,
d

dx
◦ W = W ◦ d

dx
, μ(W(xn)) = 0, (5)

for all n ≥ 1.

� W : H → H is the only linear operator such that for all n ≥ 0

xn = (μ ⊗ W)�xn =
n∑

k=0

(
n

k

)
μ(xn−k) W(xk).

We call W(xn) ∈ H the Wick polynomial of degree n associated to the law of X. If

X is a standard Gaussian random variable then the recurrence (5) shows that W(xn) is

the Hermite polynomial Hn. Therefore, (4) gives an explicit formula for such generalized

Wick polynomials in terms of the inverse μ−1 of the linear functional μ in the group

G(H).

The Wick polynomial W permits to define a deformation of the Hopf algebra H.

Theorem 1.2. The linear operator W : H → H has a composition inverse W−1 : H → H

given by W−1 = μ � id. If we define for n, m ≥ 0 the product

xn ·μ xm := W(W−1(xn) · W−1(xm)),

and define similarly a twisted coproduct �μ, then H endowed with ·μ, �μ and εμ := μ is

a bicommutative Hopf algebra. The map W becomes an isomorphism of Hopf algebras.

In particular,

W(xn1+···+nk) = W(xn1) ·μ W(xn2) ·μ · · · ·μ W(xnk),

for all n1, . . . , nk ∈ N.

We recall that in the case of a single random variable X with finite moments of

all orders, the sequence (κn)n≥0 of cumulants of X is defined by the following formal
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power series relation between exponential generating functions:

exp

⎛

⎝
∑

n≥0

tn

n!
κn

⎞

⎠ =
∑

n≥0

tn

n!
μn, (6)

where t is a formal variable and μn = E(Xn) is the nth-order moment of X. Note that

μ0 = 1 and κ0 = 0. Equation (6) is equivalent to the classical recursion

μn =
n∑

m=1

(
n − 1

m − 1

)
κmμn−m. (7)

In fact, equation (6) together with (7) provides the definition of the classical Bell

polynomials, which, in turn, are closely related to the Faà di Bruno formula [17].

We will show multivariate generalization of the following formulae that express

Hopf algebraically the moment–cumulant relations:

Theorem 1.3. Setting μ, κ ∈ H∗, μ(xn) := μn and κ(xn) := κn, n ≥ 0, we have the

relations

μ = exp�(κ) := ε +
∑

n≥1

1

n!
κ�n, (8)

κ = log�(μ) :=
∑

n≥1

(−1)n−1

n
(μ − ε)�n, (9)

where ε(xk) := 1(k=0).

Note that the n-fold convolution product κ�n = κ � · · · � κ (n times) is well defined

as the convolution product defined in (3) is associative. The above formulae (8) and (9)

are Hopf-algebraic interpretations of the classical Leonov–Shiryaev relations [12], see

(11) and (12) below.

1.2 Deformation of products

Our Theorem 1.2 above introduces the idea of a deformed product ·μ in a polynomial

algebra. This idea is used in a very important way in the recent theory of regularity

structures [3, 6, 10], which is based on products of random distributions, that is,

of generalized functions on R
d. Such products are in fact ill defined and need to be

renormalized; this operation corresponds algebraically to a deformation of the standard
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pointwise product, and is achieved through a comodule structure that extends the

coproduct (2) to a much larger class of generalized monomials.

In the last sections of this paper we extend the notion of a deformed product

to more general comodules and we discuss one important and instructive example, the

space of decorated rooted trees endowed with the extraction–contraction operator. This

setting is relevant for branched rough paths [8], and constitutes the 1st step toward the

more complex framework of regularity structures [3].

We hope that this discussion may help the algebraic-minded reader becoming

more familiar with a theory that combines probability, analysis, and algebra in a very

deep and innovative way.

1.3 Organization of the paper

In Section 2 we briefly review classical multivariate moment–cumulant relations.

Section 3 provides an interpretation of these relations in a Hopf-algebraic context. In

Section 4 we extend the previous approach to generalized Wick polynomials. Section 5

is devoted to Hopf algebra deformations, which are applied to Wick polynomials in

Section 6. In Section 7 still another interpretation of Wick polynomials in terms of a

suitable comodule structure is introduced. Section 8 explains the deformation of the

pointwise product on functions. Section 9 addresses the problem of extending our

results to Hopf algebras of nonplanar decorated rooted trees. It prepares for Section 10,

which outlines briefly the idea of applying the Hopf algebra approach to cumulants and

Wick products in the context of regularity structures.

Apart from the basic definitions in the theory of coalgebras and Hopf algebras,

for which we refer the reader to Cartier’s Primer on Hopf algebras [5], this article

aims at being a self-contained reference on cumulants and Wick products both for

probabilists and algebraists interested in probability. We have therefore detailed proofs

and constructions, even those that may seem obvious to experts from one of these two

fields.

For convenience and in view of applications to scalar real-valued random

variables, we fix the field of real numbers R as ground field. Notice however that

algebraic results and constructions in the article depend only on the ground field being

of characteristic zero.

2 Joint Cumulants and Moments

We start by briefly reviewing classical multivariate moment–cumulant relations.
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2.1 Cumulants

If we have a finite family of random variables (Xa, a ∈ S) such that Xa has finite

moments of all orders for every a ∈ S, then the analog of the exponential formula (6)

holds

exp

⎛

⎝
∑

n∈NS

tn

n!
κn

⎞

⎠ =
∑

n∈NS

tn

n!
μn, (10)

where μn := E(Xn). Here we use a multivariable notation, that is, with N := {0, 1, 2, 3, . . .}
and (ta, a ∈ S) commuting variables, we define for n = (na, a ∈ S) ∈ N

S

tn :=
∏

a∈S
(ta)na , Xn :=

∏

a∈S
(Xa)na , n! :=

∏

a∈S
(na)! ,

and we use the conventions (ta)0 := 1, (Xa)0 := 1. This defines in a unique way the

family (κn, n ∈ N
S) of joint cumulants of (Xa, a ∈ S) once the family of corresponding

joint moments (μn, ∈ N
S) is given. When it is necessary to specify the dependence of κn

on (Xa, a ∈ S) we shall write κn(X), and similarly for μn.

Identifying a subset B ⊆ S with its indicator function 1B ∈ {0, 1}S , we can use

the notation κB and μB for the corresponding joint cumulants and moments. The families

(κB, B ⊆ S) and (μB, B ⊆ S) satisfy the so-called Leonov–Shiryaev relations [12, 20]

μB =
∑

π∈P(B)

∏

C∈π

κC (11)

κB =
∑

π∈P(B)

(|π | − 1)! (−1)|π |−1
∏

C∈π

μC, (12)

where we write P(B) for the set of all set partitions of B, namely, all collections π of

subsets (blocks) of B such that ∪C∈πC = B and elements of π are pairwise disjoint;

moreover, |π | denotes the number of blocks of π , which is finite since B is finite.

Formulae (11) and (12) have been intensively studied from a combinatorial perspective,

see, for example, [16, Chapter 2]. Regarding the properties of cumulants we refer the

reader to [20].

Formula (11) has in fact been adopted, for instance, in [9] as a recursive

definition for (κB, B ⊆ S). This approach does indeed determine the cumulants uniquely

by induction over the cardinality |B| of the finite set B. This follows from the right-hand

side containing κB, which is what we want to define, as well as κC for some C with

|C| < |B|, which have been already defined in a lower order.
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Although this recursive approach seems less general than the one via exponen-

tial generating functions as in (10), since it forces to consider only n ∈ {0, 1}S , it turns

out that they are equivalent. Indeed, replacing (Xa, a ∈ S) with (Yb, b ∈ S × N
∗), where

Yb := Xa for b = (a, k) ∈ S × N
∗, then for n ∈ N

S we have

κn(X) = κB(Y), B = {(a, k) : a ∈ S, 1 ≤ k ≤ n(a)}.

In this paper we show that the Leonov–Shiryaev relations (11) and (12) have an

elegant Hopf-algebraic interpretation that also extends to Wick polynomials. Notice that

a different algebraic interpretation of (11) and (12) has been given in terms of Möbius

calculus [16, 20]. Moreover, the idea of writing moment–cumulant relations in terms of

convolution products is closely related to Rota’s umbral calculus [11, 18].

3 From Cumulants to Hopf Algebras

In this section we explain how classical moment–cumulant relations can be encoded

using Hopf algebra techniques. These results may be folklore among followers of

Rota’s combinatorial approach to probability, and, as we already alluded at, there

exist actually in the literature already various other algebraic descriptions of moment–

cumulant relations (via generating series as well as more sophisticated approaches

in terms of umbral calculus, tensor algebras and set partitions). Our approach is

most suited regarding our later applications, that is, the Hopf-algebraic study of Wick

products. Since these ideas do not seem to be well known to probabilists, we believe

that they deserve a detailed presentation.

3.1 Moment–cumulant relations via multisets

Throughout the paper we consider a fixed collection of real-valued random variables

X = {Xa}a∈A defined on a probability space (
,F ,P) for an index set A. We suppose

that Xa has finite moments of all orders for every a ∈ A.

We do not assume that A is finite, but moments and cumulants will be defined

only for finite subfamilies. We extend the setting of (10), where S was a finite set, by

defining M (A) ⊂ N
A as the set of all finitely supported functions B : A → N. In the case

of B ∈ M (A)∩{0, 1}A, we have that B is the indicator function of a finite set S(B), namely

the support of B. For a general C ∈ M (A), we can identify the finite set S(C) given by

the support of C, and then C(a) ≥ 1 can be interpreted as the multiplicity of a ∈ S(C) in

C viewed as a multiset.
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This multiset context is motivated by the following natural definition for B ∈
M (A):

X∅ := 1, XB :=
∏

a∈A
B(a)>0

(Xa)B(a). (13)

For all B ∈ M (A) we also set

|B| :=
∑

a∈A
B(a) < +∞.

The set M (A) is a poset for the partial order defined by B ≤ B′ if and only if

B(a) ≤ B′(a) for all a in A. Moreover, it is a commutative monoid for the product

(A · B)(a) := A(a) + B(a), a ∈ A, (14)

for A, B in M (A), that is, the map (A, B) → A · B is associative and commutative. The

set M (A) is actually the free commutative monoid generated by the indicator functions

of the one-element sets {a}, a ∈ A (with neutral element the indicator function of the

empty set).

Definition 3.1. We call H the vector space freely generated by the set M (A).

As a vector space, H is isomorphic to the algebra of polynomials over the set

of (commuting) variables xa, a ∈ A (the isomorphism given by mapping B ∈ M (A) to

monomials
∏

a∈A
xB(a)

a ). Moreover, the product (14) is motivated, using the notation (13), by

XA·B = XAXB, A, B ∈ M (A),

and is therefore the multivariate analog of (1).

For n ≥ 1 and for B, B1, . . . , Bn ∈ M (A) we set

(
B

B1 . . . Bn

)
:= 1(B1·B2···Bn=B)

∏

a∈A

B(a)!

B1(a)! · · · Bn(a)!
,

where B1 · B2 · · · Bn is the product of B1, . . . , Bn in M (A) using the multiplication law

defined in (14). Note that for a given B ∈ M (A), there exist only finitely many B1, . . . , Bn ∈
M (A) such that B1 · B2 · · · Bn = B.
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Definition 3.2. For every B ∈ M (A), we define the cumulant Ec(XB) inductively over

|B| by Ec(X∅) = 0 and else

E
(
XB) =

|B|∑

n=1

1

n!

∑

B1,...,Bn∈M (A)\{∅}

(
B

B1 . . . Bn

) n∏

i=1

Ec

(
XBi

)
. (15)

Remark 3.3. If B ∈ M (A)∩{0, 1}A, then (15) reduces to the 1st Leonov–Shiryaev relation

(11), since on the right-hand side of (15) B1, . . . , Bn ∈ M (A) are also in {0, 1}A and, in

particular, the binomial coefficient (when nonzero) is equal to 1.

As we will show in (17) below, expression (15) is equivalent to the usual

formal power series definition of cumulants (whose exponential generating series is

the logarithm of the exponential generating series of moments). As for (11), expression

(15) does indeed determine the cumulants uniquely by induction over |B|. This is because

the right-hand side only involves Ec(XB), which is what we want to define, as well as

Ec(XB̄) for some B̄ with |B̄| < |B|, which is already defined by the inductive hypothesis.

3.2 Exponential generating functions

Define two linear functionals on H

μ : H → R

A �→ μ(A) := E(XA)

κ : H → R

A �→ κ(A) := Ec(XA),
(16)

where A ∈ M (A), μ(∅) := 1 and κ(∅) := 0.

Let us fix a finite subset S = {a1, . . . , ap} ⊂ A. For B ∈ M (S) we set

tB :=
p∏

i=1

(ti)
B(ai),

where the ti are commuting variables. Then we define for B ∈ M (A) the factorial

B! :=
∏

a∈A
(B(a))! ,

and the exponential generating function of λ ∈ H∗ (seen as a formal power series in the

variables ti)

ϕλ(t,S) :=
∑

B∈M (S)

tB

B!
λ(B).
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Then from Definition 3.2 we get the usual exponential relation between the exponential

moment and cumulant generating functions of μ and κ, analogous to (6) and (10):

ϕμ(t,S) =
∑

B∈M (S)

tB

B!
μ(B)

=
∑

n≥0

1

n!

∑

B∈M (S)

∑

B1,...,Bn∈M (S)

1

B!

(
B

B1 . . . Bn

) n∏

i=1

(
tBi κ(Bi)

)

=
∑

n≥0

1

n!

∑

B1,...,Bn∈M (S)

n∏

i=1

(
tBi

Bi!
κ(Bi)

)

=
∑

n≥0

1

n!

⎛

⎝
∑

B∈M (S)

tB

B!
κ(B)

⎞

⎠
n

= exp(ϕκ(t,S)).

(17)

From (17) we obtain another recursive relation between moments and cumulants. Let us

set 1(a)(b) := 1(a=b) for a, b ∈ A. Then we have

μ(A · 1(a)) =
∑

B1,B2∈M (A)

(
A

B1 B2

)
κ(B1 · 1(a)) μ(B2). (18)

This recursion is the multivariate analog of the one in (7).

3.3 Moment–cumulant relations and Hopf algebras

We endow now the space H from Definition 3.1 with the commutative and associative

product · : H ⊗ H → H induced by the monoid structure of M (A) defined in (14). The

unit element is the null function ∅ (we will also write abusively ∅ for the unit map—the

embedding of R into H: λ �−→ λ · ∅). We also define a coproduct � : H → H ⊗ H on H by

�A :=
∑

B1,B2∈M (A)

(
A

B1 B2

) [
B1 ⊗ B2

]
, (19)

recall (2). The counit ε : H → R is defined by ε(A) = 1(A=∅) and turns H into a

coassociative counital coalgebra. Coassociativity (� ⊗ id)� = (id ⊗ �)� follows from
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the associativity of the monoid M (A)

(� ⊗ id)�A =
∑

(B1·B2)·B3=A

(
A

B1B2B3

) [
B1 ⊗ B2 ⊗ B3

]

=
∑

B1·(B2·B3)=A

(
A

B1B2B3

) [
B1 ⊗ B2 ⊗ B3

]

= (id ⊗ �)�A.

Proposition 3.4. H is a commutative and cocommutative bialgebra and, since H is

graded by |A| as well as connected, it is a Hopf algebra.

Proof. Indeed, we already noticed that H is isomorphic as a vector space to the

polynomial algebra, denoted P, generated by commuting variables xa, a ∈ A. The latter

is uniquely equipped with a bialgebra and Hopf algebra structure by requiring the

xa to be primitive elements, that is, by defining a coproduct map �P : P → P ⊗ P

such that it is an algebra map and �P(xa) = xa ⊗ 1 + 1 ⊗ xa. Recall that since P is

a polynomial algebra, these two conditions define �P uniquely. The antipode is the

algebra endomorphism of P induced by S(xa) := −xa. We let the reader check that the

natural isomorphism between H and P is an isomorphism of algebras and maps � to �P.

The proposition follows. �

Recall that the dual of a coalgebra is an algebra, which is associative (resp.

unital, commutative) if the coalgebra is coassociative (resp. counital, cocommutative).

In particular, the dual H∗ of H is equipped with an associative and commutative unital

product written �, defined for all f , g ∈ H∗ and A ∈ H by:

(f � g)(A) := (f ⊗ g)�A. (20)

The unit of this product is the augmentation map ε. For later use, we also mention that

the associative product defined in (20) extends to linear endomorphisms f , g of H as well

as to the product of a linear form on H with a linear endomorphism of H, by the same

defining formula.

We denote �0 := id : H → H, �1 := � : H → H ⊗ H, and for n ≥ 2:

�n := (� ⊗ id)�n−1 : H → H⊗(n+1).
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Proposition 3.5. We have

μ = exp�(κ) = ε +
∑

n≥1

1

n!
κ�n. (21)

Proof. By the definitions of � and �n we find that

κ⊗n�n−1A =
∑

B1,...,Bn∈M (A)

(
A

B1 . . . Bn

) n∏

i=1

κ(Bi),

and, by (15), this yields the result. �

Remark 3.6. Formula (21) is the Hopf-algebraic analog of the 1st Leonov–Shiryaev

relation (11).

Since κ(∅) = 0, κ⊗n�n−1(A) vanishes whenever |A| > n. Similarly, under the same

assumption, (μ − ε)�n(A) = 0. It follows that one can handle formal series identities

such as log�(exp�(κ)) = κ or exp�(log�(μ)) = μ without facing convergence issues. In

particular,

Proposition 3.7. We have

κ = log�(μ) =
∑

n≥1

(−1)n−1

n
(μ − ε)�n. (22)

From Proposition 3.7 we obtain the formula

Ec(XB) =
∑

n≥1

(−1)n−1

n

∑

B1,...,Bn∈M (A)\{∅}

(
B

B1 . . . Bn

) n∏

i=1

E(XBi), (23)

which may be considered the inverse to (15).

Remark 3.8. The formula (22) is the Hopf-algebraic analog of the 2nd Leonov–Shiryaev

relation (12). Moreover, for B ∈ M (A) ∩ {0, 1}A, then (23) also reduces to the 2nd Leonov–

Shiryaev relation (12), since on the right-hand side of (23) B1, . . . , Bn ∈ M (A) are also in

{0, 1}A.
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3.4 A sub-coalgebra

If one prefers to work in the combinatorial framework of the Leonov–Shiryaev formulae

(11) and (12) rather than with (15)–(23), then one may consider the linear span J of M (A)∩
{0, 1}A (namely of all finite subsets of A, or of their indicator functions).

Then J is a linear subspace of H, which is not a sub-algebra of H for the product

· defined in (14). The coproduct � defined in (19) coacts however nicely on J since for all

finite subsets A of A

�A =
∑

B1·B2=A

B1 ⊗ B2 ∈ J ⊗ J.

Moreover, the restriction of ε to J defines a counit for (J, �). Therefore, J is a sub-

coalgebra of H. With a slight abuse of notation we still write � for the dual product

on J∗

(f � g)(A) := (f ⊗ g)�A,

for A ∈ J and f , g ∈ J∗. If we denote as before

μ : J → R

A �→ μ(A) := E(XA)

κ : J → R

A �→ κ(A) := Ec(XA),

with A ∈ M (A) ∩ {0, 1}A, μ(∅) := 1 and κ(∅) := 0, then the Leonov–Shiryaev relations (11)

and (12) can be rewritten in J∗ as, respectively,

μ = exp�(κ) = ε +
∑

n≥1

1

n!
κ�n

and

κ = log�(μ) =
∑

n≥1

(−1)n−1

n
(μ − ε)�n.

4 Wick Products

The theory of Wick products, as well as the related notion of chaos decomposition, play

an important role in various fields of applied probability. Both have deep structural

features in relation to the fine structure of the algebra of square integrable functions

associated to one or several random variables. The aim of this section and the following

ones is to revisit the theory on Hopf-algebraic grounds. The basic observation is that the

formula for the Wick product is closely related to the recursive definition of antipode

in a connected graded Hopf algebra. This approach seems to be new, also from the
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point of view of concurring approaches such as umbral calculus [11, 18] or set partition

combinatorics à la Rota–Wallstrom [19].

4.1 Wick polynomials

We are going to use extensively the notion of Wick polynomials for a collection of (not

necessarily Gaussian) random variables which is defined as follows.

Definition 4.1. Given a collection X = {Xa}a∈A of random variables with finite

moments of all orders, for any A ∈ M (A) the Wick polynomial : XA : is a random

variable defined recursively by setting : X∅ : = 1 and postulating that

XA :=
∑

B1,B2∈M (A)

(
A

B1B2

)
E(XB1) : XB2

: . (24)

As for cumulants, (24) is sufficient to define : XA : by recursion over |A|. Indeed,

the term with B2 = A is precisely the quantity we want to define, and all other terms

only involve Wick polynomials : XB : , for B ∈ M (A) with |B| < |A|.
It is now clear that formula (24) can be lifted to H as

A =
∑

B1,B2∈M (A)

(
A

B1B2

)
E(XB1) : B2 : , (25)

and written in Hopf-algebraic terms as follows:

A = (μ � W)(A) = (μ ⊗ W)�A, (26)

for A ∈ M (A). We have set W : H → H, W(A) := : A : and call W the Wick product map

(see Theorem 5.3 for a justification of the terminology). Notice that it depends on the

joint distribution of the Xas. Formula 26 is the Hopf-algebraic analog of the definition of

the Wick polynomial : XB : used in references [9, 13]. Moreover, introducing the algebra

map ev : A �−→ XA from H to the algebra of random variables generated by (Xa, a ∈
A), one gets by a recursion over |A| that ev( : A : ) = : XA : (for that reason, from now

on we will call slightly abusively both : A : and the random variable : XA : the Wick

polynomial associated to A).
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4.2 A Hopf-algebraic construction

We want to present now a closed Hopf-algebraic formula for the Wick polynomials

introduced in Definition 4.1. We define the set G(H) := {λ ∈ H∗ : λ(∅) = 1}. Then it is

well known that G(H) is a group for the �-product. Indeed, any λ ∈ G(H) has an inverse

λ−1 in G(H) given by the Neumann series

λ−1 =
∑

n≥0

(ε − λ)�n. (27)

As usual, this infinite sum defines an element of H∗ since, evaluated on any A ∈ H, it

reduces to a finite number of terms.

Theorem 4.2. Let μ ∈ G(H) be given by μ(A) = E(XA), then for all A ∈ M (A)

: A : = W(A) = (μ−1 � id)(A) = (μ−1 ⊗ id)�A. (28)

Proof. The identity follows from (26) and from the associativity of the � product. �

From (27) and (28) we obtain

Proposition 4.3. Wick polynomials have the explicit expansion

: A : =A+
∑

n≥1

(−1)n
∑

B∈M (A)

∑

B1,...,Bn∈M (A)
Bi �={∅}

(
A

B1 . . . BnB

)
μ(B1) · · · μ(Bn) B.

5 Hopf Algebra Deformations

The group G(H) = {λ ∈ H∗ : λ(∅) = 1} equipped with the � product acts canonically on H

by means of the map φλ : H → H

φλ(A) := (λ ⊗ id)�A, (29)

for λ ∈ G(H) and A ∈ H. In other words, φλ = λ � id = id � λ, the latter identity following

from cocommutativity of �. This is a group action since one checks easily using the

coassociativity of � that

φλ1�λ2
= φλ1

◦ φλ2
,

so that, in particular,

(φλ)
−1 = φλ−1 .
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Being invertible, the maps φλ allow to define deformations of the product · defined in

(14), as well as of the coproduct � defined in (19) and of the counit. Namely we define

·λ : H ⊗ H → H, �λ : H → H ⊗ H and ελ by

A ·λ B := φ−1
λ (φλ(A) · φλ(B)),

�λA := (φ−1
λ ⊗ φ−1

λ )�φλA,

ελ(A) := ε ◦ φλ(A) = λ(A).

(30)

Although ελ = λ, we find it useful to introduce the notation ελ to feature the new role of

λ as a counit.

Notice that, as λ(∅) = 1, we have φλ(∅) = ∅ and A ·λ ∅ = A. Dually,

(ελ ⊗ id) ◦ �λ(A) = (ε ⊗ φλ−1)�φλ(A) = A.

Then we have

Theorem 5.1. For any λ ∈ G(H), the quintuple (H, ·λ, ∅, �λ, ελ) defines a Hopf algebra.

The map

φ−1
λ : (H, ·, ∅, �, ε) → (H, ·λ, ∅, �λ, ελ)

is an isomorphism of Hopf algebras.

Proof. Although the Theorem follows directly from the properties of conjugacy, we

detail the proof. Associativity of ·λ and coassociativity of �λ follow directly. First,

(A ·λ B) ·λ C = φ−1
λ (φλ(A) · φλ(B) · φλ(C)) = A ·λ (B ·λ C),

which shows associativity. Coassociativity is simple to see as well

(�λ ⊗ id)�λA = (φ−1
λ ⊗ φ−1

λ ⊗ φ−1
λ )(� ⊗ id)�φλA

= (φ−1
λ ⊗ φ−1

λ ⊗ φ−1
λ )(id ⊗ �)�φλA

= (id ⊗ �λ)�λA.
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We check now the compatibility relation between ·λ and �λ

(�λA) ·λ (�λB) = (φ−1
λ ⊗ φ−1

λ )
((

(φλ ⊗ φλ)�λA
) · (

(φλ ⊗ φλ)�λB
))

= (φ−1
λ ⊗ φ−1

λ )
(
(�φλA) · (�φλB)

)

= (φ−1
λ ⊗ φ−1

λ )�
(
φλA · φλB

)

= �λ(A ·λ B).

Finally, we check that φ−1
λ : (H, ·, ∅, �, ε) → (H, ·λ, ∅, �λ, ελ) is a bialgebra morphism

φ−1
λ (A · B) = φ−1

λ (A) ·λ φ−1
λ (B),

(φ−1
λ ⊗ φ−1

λ )�A = �λφ
−1
λ A.

We have proved until now that φ−1
λ is a isomorphism of bialgebras. Since

(H, ·λ, ∅, �λ, ελ) is a graded connected bialgebra, it has an antipode. Since moreover

the antipode of a Hopf algebra is unique, we obtain that φ−1
λ preserves the antipode

as well. �

Remark 5.2. The construction of (30) and Theorem 5.1 works also if we replace φλ

with any linear invertible map φ : H → H such that φ(∅) = ∅. Indeed, in the above

considerations we have never used the formula (29) which defines φλ.

In the particular case of λ = μ, where μ is the moment functional defined in (16),

we obtain by Theorems 4.2 and 5.1:

Theorem 5.3. The Wick product map W(A) = : A : is equal to φμ−1 . Therefore, W :

(H, ·, ∅, �, ε) → (H, ·μ, ∅, �μ, εμ) is a Hopf algebra isomorphism, in particular,

: A1 · A2 : = : A1 : ·μ : A2 : ,

for A1, A2 ∈ H.

More generally, we obtain for any A1, . . . , An ∈ H that

: A1 · · · An : = : A1 : ·μ · · · ·μ : An : . (31)
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We notice at last an interesting additional result expressing abstractly compat-

ibility relations between the two Hopf algebra structures on H (see also Proposition 7.3

below). We recall that a linear space M is a left comodule over the coalgebra (H, �, ε) if

there is linear map ρ : M → H ⊗ M such that

(� ⊗ idM)ρ = (idH ⊗ ρ)ρ, (ε ⊗ idM)ρ = idM . (32)

A left-comodule endomorphism of M is then a linear map f : M → M such that

ρ ◦ f = (idH ⊗ f )ρ.

In particular, the coalgebra (H, �, ε) is a left comodule over itself, with ρ = �.

Proposition 5.4. If we consider H as a left comodule over itself, then φλ is a left-

comodule morphism for all linear λ : H → R, namely

�φλ = (id ⊗ φλ)�. (33)

In particular, the Wick product map W is a left-comodule endomorphism of (H, �, ε).

Proof. We have

�φλ = (λ ⊗ id ⊗ id)(id ⊗ �)�

= (λ ⊗ id ⊗ id)(� ⊗ id)�

= (id ⊗ λ ⊗ id)(� ⊗ id)�

= (id ⊗ λ ⊗ id)(id ⊗ �)�

= (id ⊗ φλ)�,

where we have used, in this order, coassociativity, cocommutativity, and then coasso-

ciativity again. �

6 Wick Products as Hopf Algebra Deformations

Let a ∈ A. We define now the functional ζa : H → R given by ζa(A) := 1(A={a}), for every

A ∈ M (A). Then we define the operator ∂a : H → H as ∂a := ζa � id = φζa
in the notation

(29), namely

∂aA = (ζa ⊗ id)�A.
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It is simple to see that ∂a acts as a formal partial derivation with respect to a, namely it

satisfies for A, B ∈ M (A) and a, b ∈ A

∂a{b} = 1(a=b)∅, ∂a(A · B) = ∂a(A) · B + A · ∂a(B),

since ζa satisfies ζa(∅) = 0 and ζa(A · B) = ζa(A)ε(B) + ε(A)ζa(B), namely ζa is an

infinitesimal character. Recall that the product A · B has been defined in (14) and that

{b} is identified with 1{b} ∈ H.

Then the following result is a reformulation in our setting of [13, Proposition 3.4].

Theorem 6.1. The family of polynomials ( : A : , A ∈ M (A)) is the only collection such

that : ∅ : = ∅ and for all non-null A ∈ M (A) and a ∈ A

∂a : A : = : ∂aA : and μ( : A : ) = 0. (34)

Proof. Since μ ∈ G(H) equation (28) implies

μ( : A : ) = (μ−1 � μ)(A) = ε(A) = 1(A=∅).

Using (33) for λ = ζa we obtain

�∂a = (id ⊗ ∂a)�.

We conclude from (28) that

∂a : A : = (ζa � μ−1 � id)(A) = (μ−1 � ζa � id)(A) = : ∂aA :

by the associativity and commutativity of �. Therefore, : A : satisfies (34). The converse

follows from the fact that (34) defines by recurrence a unique family. �

6.1 Back to simple subsets

As in Section 3.4, we can restrict the whole discussion to Wick polynomials associated to

finite sets B ∈ M (A) ∩ {0, 1}A and their linear span J. Indeed, if A ∈ J then : A : = W(A)

also belongs to J and is defined by the recursion

A =
∑

B1·B2=A

E(XB1) : B2 : .
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As in Theorem 4.2, we have W = μ−1 � id and id = μ � W, and, as in Proposition 4.3,

: A : = A +
∑

n≥1

(−1)n
∑

B∈M (A)

∑

B1,...,Bn∈M (A)\{∅}
1(B·B1···Bn=A) μ(B1) · · · μ(Bn) B

for all A ∈ M (A) ∩ {0, 1}A.

However, as we have seen in Section 5 above, it is more interesting to work on

the bialgebra H than on the coalgebra J, see, in particular, Theorem 5.3.

7 On the Inverse of Unital Functionals

As we have seen in Theorem 4.2, the element μ−1 ∈ G(H) plays an important role

in the Hopf-algebraic representation (28) of Wick products. From (27) we obtain a

general way to compute μ−1. Let us consider now a linear functional λ : H → R

which is also a unital algebra morphism (or character), namely such that λ(∅) = 1 and

λ(A · B) = λ(A)λ(B) for all A, B ∈ H. Then there is a simple way to compute its inverse:

namely as λ−1 = λ ◦ S, where S : H → H is the antipode, that is, the only linear map

such that

S � id = id � S = ∅ ε,

where ∅ is the unit and ε the counit of H. However, the functional μ we are interested

in is not a character (moments are notoriously not multiplicative in general) and this

simple representation is not available.

The aim of this section is to provide an alternative antipode formula, allowing to

write μ−1 as μ̂◦ Ŝ, where Ŝ : Ĥ → Ĥ is the antipode of another Hopf algebra Ĥ, μ̂ : Ĥ → R

is a suitable linear functional and H is endowed with a comodule structure over Ĥ, see

(36) for the precise formulation. This way of representing μ−1 by means of a comodule

structure is directly inspired by [3, 6], see Section 10.

Definition 7.1. Let Ĥ be the free commutative unital algebra (the algebra of polynomi-

als) generated by M (A). We denote by • the product in Ĥ and we define the coproduct

�̂ : Ĥ → Ĥ ⊗ Ĥ given by �̂(ιA) = (ι ⊗ ι)�A and

�̂(A1 • A2 • · · · • An) = (�̂A1) • (�̂A2) • · · · • (�̂An),
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where ι : H → Ĥ is the canonical injection (which we will omit whenever this does not

cause confusion). The unit of Ĥ is ∅ and the counit is defined by ε̂(A1 • A2 • · · · • An) =
ε(A1) · · · ε(An).

Since Ĥ is a polynomial algebra, �̂ is well defined by specifying its action on

the elements of M (A), and requiring it to be multiplicative. It turns the space Ĥ into a

connected graded Hopf algebra, where the grading is

|A1 • A2 • · · · • An| := |A1| + |A2| + · · · + |An|.

The antipode Ŝ : Ĥ → Ĥ of Ĥ can be computed by recurrence with the classical

formula

ŜA = −A −
∑

B1,B2∈M (A)\{∅}

(
A

B1 B2

) [
ŜB1

]
• B2,

where we dropped the injection ι for notational convenience. A closed formula for Ŝ

follows

ŜA = −A +
∑

n≥2

(−1)n
∑

B1,...,Bn �=∅

(
A

B1 . . . Bn

)
B1 • B2 • · · · • Bn. (35)

We denote by C(Ĥ) the set of characters on Ĥ. This is a group for the �̂ convolution, dual

to �̂.

Proposition 7.2. The restriction map R : C(Ĥ) → G(H), Rλ̂ := λ̂|H defines a group

isomorphism.

Proof. The map is clearly bijective, since a character on Ĥ is uniquely determined by

its values on H, and every λ ∈ G(H) gives rise in this way to a λ̂ ∈ C(Ĥ) such that Rλ̂ = λ.

It remains to show that R is a group morphism. This follows from

R(α̂ �̂ β̂)(A) = (α̂ ⊗ β̂)�̂A = (α̂|H ⊗ β̂|H)�A = (Rα̂) � (Rβ̂)(A),

where α̂, β̂ ∈ C(Ĥ) and A ∈ H. �

For all λ ∈ G(H) we write λ̂ for the only character on Ĥ that is mapped to λ by the

isomorphism R. By the previous proposition we obtain, in particular, that (λ̂)−1|H = λ−1

for all λ ∈ G(H). Since λ̂ is a character on Ĥ, we have (λ̂)−1 = λ̂ ◦ Ŝ. Therefore,

λ−1 = ( λ̂ ◦ Ŝ )|H . (36)

Hopf-algebraic Deformations of Products and Wick Polynomials 10085

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/24/10064/5231876 by U
niversidad de C

hile user on 16 June 2021



This formula can be used specifically to compute the inverse μ−1 of the functional μ

in (28).

7.1 A comodule structure

The above considerations suggest that we can introduce the following additional

structure: if we define δ : H → Ĥ ⊗ H, δ := (ι ⊗ id)�, where ι : H → Ĥ is the canonical

injection of Definition 7.1, then H is turned into a left comodule over Ĥ, namely we have

(�̂ ⊗ idH) δ = (idĤ ⊗ δ) δ, idH = (ε̂ ⊗ idH) δ, (37)

see (32) above. Note that (37) is in fact just the coassociativity and counitality of � on H

in disguise.

Then we can rewrite the Hopf-algebraic representation (28) of Wick polynomials

as follows:

: A : = (μ̂ ◦ Ŝ ⊗ id) δA, (38)

for A ∈ H, where μ̂ is the •-multiplicative extension of μ from H to Ĥ. Expanding

this formula by means of the closed formula for Ŝ, one recovers, by different means,

Proposition 4.3.

From Proposition 5.4 above, we obtain

Proposition 7.3. We define the action of C(Ĥ) on H by

ψ
λ̂

: H → H, ψ
λ̂
(A) = (λ̂ ⊗ id) δA, λ̂ ∈ C(Ĥ),

for A ∈ H. Then ψ
λ̂

is comodule morphism for all λ̂ ∈ C(Ĥ), namely

δ ◦ ψ
λ̂

= (idĤ ⊗ ψ
λ̂
) δ.

8 Deformation of Pointwise Multiplication

We show now that the ideas of the previous sections can be generalized and used

to define deformations of other products. The main example for us is the pointwise

product on functions f : Rd → R, and we explain in the next sections how these ideas

appear in regularity structures.

Let us consider a fixed family T = (τi, i ∈ I). We denote by T the free

commutative monoid on T, with commutative product � and neutral element ∅ ∈ T \ T.

We define also (C, �, ∅) as the unital free commutative algebra generated by T; then C is

the vector space freely generated by T .
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Elements of T are commutative monomials in the elements of T, that is, a generic

element in T is of the form

τ = τi1 · · · τik ,

where τi1 , . . . , τik ∈ T and juxtaposition denotes their commutative product in T . The

empty set ∅ plays the role of the unit. Elements of the free commutative algebra C are

simply linear combinations of these monomials. In this context the � product is the

bilinear extension to C of the product in the monoid T .

We denote now by C := C(Rd) the space of continuous functions f : R
d → R,

for a fixed d ≥ 1. We endow C with the associative commutative product · given by the

pointwise multiplication and consider the spaces

CT := {� : T → C}, C T := {� : T → C},

of functions from T, respectively, T , to C. Any function � ∈ C T can be uniquely extended

to a linear map � : C → C. One can think of CT as a space of T-indexed functions: this

is typically what happens in perturbative expansions indexed by combinatorial objects

(sequences, in usual Taylor expansions or in Lyons’ classical theory of geometric rough

paths, or more complex objects such as trees or forests, as in Gubinelli’s theory of non-

geometric rough paths or in Hairer’s theory of regularity structures, for example).

When deforming perturbative expansions parametrized by combinatorial

objects, it is useful and often necessary to keep track of the combinatorial indices

since the deformation of the various terms of the expansion will depend in practice on

both the terms themselves and on their indices. To implement this idea, we will, for

� ∈ CT and � ∈ CT , use the physicists’ notation

〈�, τ 〉 ∈ C, τ ∈ T,

〈�, α〉 ∈ C, α ∈ T .

for the evaluation of � and � on τ , respectively, α (so that 〈�, τ 〉 and 〈�, α〉 are simply

elements of C). We use instead, for a given � ∈ CT , the classical functional notation

�(α) := (〈�, α〉, α) ∈ C × T , α ∈ T ,

to denote a copy of the function 〈�, α〉 indexed by α.
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Definition 8.1. For every � ∈ CT we denote by C� the vector space freely generated by

(�(α), α ∈ T ).

By definition, C� is isomorphic to C as a vector space (through the projection

map �(α) �→ α). We also have an evaluation map ev : C� → C

C� �
n∑

i=1

ci �(αi) �→ ev

(
n∑

i=1

ci �(αi)

)
:=

n∑

i=1

ci 〈�, αi〉 ∈ C. (39)

Concretely, the aim of Definition 8.1 is to use deformations of the algebraic

structure of C, in particular, its product, and the isomorphism between C and C�, to

transfer the deformations of C to C� and ultimately to the associated functions in C.

We insist on the fact that, in general, the way such a function (or products

thereof) will be deformed will depend on its index. A key point to keep in mind is

indeed that the vector space C� is not isomorphic, in general, to the linear span of

(〈�, α〉, α ∈ T ) in C. To take a trivial example, we might choose 〈�, α〉 = 0 ∈ C for some (or

all) α ∈ T , while �(α) is always a nonzero element of C� for all α ∈ T . In practice,

C� is isomorphic to the linear span of (〈�, α〉, α ∈ T ) in C if and only if the family

(〈�, α〉 : α ∈ T ) is linearly independent in C, that is if and only if the evaluation map ev

is injective.

Definition 8.2. We define the commutative and associative product M� on C� as the

only linear map M� : C� ⊗ C� → C� such that

M�(�(α) ⊗ �(β)) := �(α � β), ∀ α, β ∈ T .

Then (C�,M�, 〈�, ∅〉) is a commutative unital algebra. In other terms, we have

extended the canonical isomorphism from C to C� to an isomorphism of algebras

(C, �) → (C�,M�).

Definition 8.3. If � ∈ CT is a unital algebra morphism from (T , �) to (C, ·), namely if

〈�, ∅〉 = 1, 〈�, τ1 � τ2〉 = 〈�, τ1〉 · 〈�, τ2〉, (40)

for all τ1, τ2 ∈ T , where · is the pointwise multiplication on C, then � is called a

character.
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Definition 8.4. Since C coincides with the free algebra generated by T, for each map

� in CT there is a unique character R� ∈ CT , called the canonical lift of �, with

〈�, τ 〉 = 〈R�, τ 〉, ∀ τ ∈ T.

In particular, for every � ∈ CT , MR� is mapped by the evaluation map (39) to the

canonical pointwise product on C.

8.1 Constructing deformations

We want now to define deformations of the products of Definition 8.2, taking inspi-

ration from Section 5. We suppose that C is a left comodule over a Hopf algebra

(Ĉ, •, ∅, �̂, ε̂), with coaction δ : C → Ĉ ⊗ C satisfying the analog of (37). We stress that

the coaction δ is not supposed to be multiplicative with respect to the � product in C.

We say that λ : Ĉ → R is unital if it is a linear functional such that λ(∅) = 1.

Then we define, as in the previous section,

ψλ : C → C, ψλ := (λ ⊗ id)δ, (41)

for every unital λ : Ĉ → R. It is easy to see that

ψλ ◦ ψλ′ = ψλ′ �̂ λ,

where �̂ is the convolution product with respect to the coproduct �̂ : Ĉ → Ĉ ⊗ Ĉ. We then

define the product �λ on C as

α �λ β := ψ−1
λ [(ψλα) � (ψλβ)], α, β ∈ C, (42)

where ψ−1
λ = ψλ−1 and λ−1 : Ĉ → R is the inverse of λ with respect to the �̂ convolution

product. It is easy to see that the product �λ is associative and commutative, arguing

as in the proof of Theorem 5.1. The product �λ is in general different from �.

Definition 8.5. By analogy with the Hopf-algebraic interpretation of Wick products,

the map ψ−1
λ = ψλ−1 is called the generalized Wick λ-product map.

We can now define deformations of the product M� on C�.
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Definition 8.6. For every � ∈ CT and every unital λ : Ĉ → R we can define a product

Mλ
� on C� by

Mλ
�(�(α) ⊗ �(β)) := �(α �λ β), ∀ α, β ∈ C, (43)

such that � : (C, �λ) → (C�,Mλ
�) is an algebra isomorphism.

We say that Mλ
� is a λ-deformation of M�; if λ is the counit ε̂ of Ĉ, the counitality

property (37) of δ implies that ψε̂ is the identity map on C; hence, Mε̂
� coincides with M�.

In particular, we have

Definition 8.7. For every � ∈ CT we can define a λ-deformation ·λ := Mλ
R� of the

canonical product MR� on CR�, such that

�(τ1) ·λ · · · ·λ �(τn) := R�(τ1 �λ · · · �λ τn), (44)

where τ1, . . . , τn ∈ T.

We stress again that, unlike the pointwise multiplication ·, the λ-deformation

·λ = Mλ
R� is not defined on C but rather, for every fixed � ∈ CT , on CR�. As stated below

Definition 8.6, the deformation Mε̂
R� coincides with the canonical product MR� on CR�.

Lemma 8.8. For every unital λ : Ĉ → R and � ∈ CT the map

�λ : C → C�, �λ := � ◦ ψ−1
λ (45)

defines an algebra isomorphism from (C, �) to (C�,Mλ
�).

Proof. By (43)

Mλ
�(�λ(α) ⊗ �λ(β)) = �λ(α � β), ∀ α, β ∈ C, (46)

and the claim follows. �

In particular, for � = R� we obtain by (44)

�λ(τ1) ·λ · · · ·λ �λ(τn) := �λ(τ1 � · · · � τn), (47)

which is reminiscent of (31).
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Example 8.9. In the setting of the previous sections, we can consider T = A with

C = C(RA), so that in this case, up to a canonical isomorphism, C = H and Ĉ = Ĥ.

Then the most natural choice of � ∈ Hom(A, C(RA)) is given by < �, a >:= ta, where

ta : RA → R is the evaluation of the a-component, and R� : H → C is

〈R�, xa1
. . . xan

〉 := ta1
· · · tan

, a1, . . . , an ∈ A,

Then (47) is the analog of (31) in this context, while (44) defines a deformation ·λ of

the pointwise product of ta1
, . . . , tan

. This point of view will be generalized in the next

section.

We conclude this section with a remark. The above construction allows to

construct families of deformed products on a vector space C�. In the general case, the

outcome of the product between �(τ1) and �(τ2) is not a function in C but an element of

C�, namely a formal linear combination of functions in C indexed by elements of T . One

may prefer a genuine function in C as an outcome.

If the family (〈�, α〉 : α ∈ T ) is linearly independent in C, then we can canonically

embed C� in C by means of the evaluation map (39) and the product

ev ◦Mλ
�(ev−1 ·, ev−1 ·) : ev(C�) ⊗ ev(C�) → ev(C�)

is then a commutative and associative product on the linear subspace of C spanned by

(〈�, τ 〉, τ ∈ T).

In the general case, one can still compute ev ◦Mλ
�, which indeed belongs to C,

and obtain a linear map

ev ◦Mλ
� : C� ⊗ C� → C.

In this case, ev ◦Mλ
� is a weaker notion than a genuine product. We refer to the

discussion on “multiplication” in regularity structures at the beginning of [10, Section 4].

9 Wick Products of Trees

We now discuss the main example we have in mind of the general construction in

Section 8, namely rooted trees, that are a generalization of classical monomials as we

show below. With the application to rough paths in mind [8], we denote by T the set of

all nonplanar nonempty rooted trees with edges (not nodes) decorated with letters from

a finite alphabet {1, . . . , d}. We stress that all trees in T have at least one node, the root.
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The set T is a commutative monoid under the associative and commutative tree

product � given by the identifications of the roots, for example

see also [3, Definition 4.7].

The rooted tree • with a single node and no edge is the neutral element for this

product. The set of monomials in d commuting variables X1, . . . , Xd can be embedded

in T as follows: every primitive monomial Xi is identified with and the product

of monomials with the tree product. In this way every monomial is identified with a

decorated corolla, for instance

See the discussion around Lemma 9.3 below for more on this identification.

We denote by T ⊂ T the set of all nonplanar planted rooted trees. We recall that

a rooted tree is planted if its root belongs to a single edge, called the trunk. For example,

in the left-hand side of (48), the 1st tree is not planted, while the 2nd is.

We also denote by F the set of nonplanar rooted forests with edges (not nodes)

decorated with letters from the finite alphabet {1, . . . , d}, such that every nonempty

connected component has at least one edge. On this space we define the product • given

by the disjoint union, with neutral element the empty forest ∅.

We perform the identification

between the rooted tree • ∈ T and the empty forest ∅ ∈ F . Then we obtain canonical

embeddings

T ↪→ T ↪→ F , (51)

and moreover

� (T , �) is the free commutative monoid on T,

� (F , •) is the free commutative monoid on T .

In both cases the element • = ∅ is the neutral element. We denote by

� V the vector space generated freely by T,
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� C the vector space generated freely by T ,

� Ĉ the vector space generated freely by F .

Then we have

� (C, �) is the free commutative unital algebra generated by T,

� (Ĉ, •) is the free commutative unital algebra generated by T ,

and again in both cases the element • = ∅ is the neutral element. Finally, by (50) and (51)

we also have canonical embeddings

V ↪→ C ↪→ Ĉ. (52)

On Ĉ we also define the coproduct �̂, given by the extraction–contraction operator of

arbitrary subforests [4]:

�̂τ =
∑

σ⊆τ

σ ⊗ τ/σ , τ ∈ F , (53)

where a subforest σ ∈ F of τ is determined by a (possibly empty) subset of the set of

edges of τ , and τ/σ is the tree obtained by contracting each connected component of σ

to a single node. We recall that by (50) the empty forest and the tree reduced to a single

node are identified and called ∅. For example,

If ε̂ : Ĉ → R is the linear functional such that ε̂(σ ) = 1(σ=∅) for σ ∈ F ,

then (Ĉ, •, ∅, �̂, ε̂) is a Hopf algebra [4]. Note that, unlike (Ĥ, �̂) in Section 7, (Ĉ, �̂)

is not cocommutative; moreover, the canonical embedding C ↪→ Ĉ in (52) is not an

algebra morphism from (C, �) to (Ĉ, •). We could also endow C with a coproduct �C

(the extraction–contraction operator of a subtree at the root, which plays an important

role in [3] and is isomorphic to the classical Butcher–Connes–Kreimer coproduct), but

we do not need this for what comes next.
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We now go back to the construction of Section 8. With the embedding C ↪→ Ĉ,

the coaction

δ : C → Ĉ ⊗ C, δ(τ ) := �̂τ ,

makes C a left comodule over Ĉ by an analog of Proposition 7.3. Then we can define

ψλ : C → C as in (41), for λ : Ĉ → R unital, and a deformed product �λ on C as in (42)

which is in general truly different from �.

For � ∈ CT and � := R� ∈ CT as in Definition 8.3, the map �λ = (R�) ◦ ψλ−1

defines by Lemma 8.8 an algebra isomorphism from (C, �) to (C�,Mλ
�), so that in

particular, we have the analog of (47).

This idea is very important in regularity structures, where the pointwise

product of explicit (random) distributions is ill defined, while a suitable deformed

product is well defined as a (random) distribution. The above construction allows to

recover a precise algebraic structure of such deformed pointwise products, in the same

spirit as Theorem 5.3. See Section 10 below for a discussion.

We show now how these ideas can be implemented concretely, that is how a

character λ can be constructed in practice in some interesting situation, generalizing

the construction of Wick polynomials in the previous sections of this article.

Let us now consider a CT-valued random variable X, such that

� 〈X, ∅〉 = 1,

� X is stationary, that is, 〈X, τ 〉(· + x) has the same law as 〈X, τ 〉 for all x ∈ R
d

and τ ∈ T

� 〈X, τ 〉(0) has finite moments of any order for all τ ∈ T.

Then we can define

μ : C → R, μ(τ) := E(〈RX, τ 〉(0)). (54)

There is a unique extension of μ to a linear μ̂ : Ĉ → R, which is a character of (Ĉ, •), and

we denote by μ̂−1 : Ĉ → R its inverse with respect to the �̂ convolution product.

Theorem 9.1. Let X be as above. The map λ = μ̂−1 is the unique character on (Ĉ, •)

such that

E(〈RX, ψλτ 〉(0)) = 0, ∀ τ ∈ T \ {∅}.
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Proof. We note first that for every character λ on (Ĉ, •) we have

E(〈RX, ψλτ 〉(x)) = (λ ⊗ μ)�̂τ = (λ �̂ μ) τ , ∀ τ ∈ T .

In particular,

E(〈RX, ψμ̂−1τ 〉(x)) = (μ̂−1 ⊗ μ̂)�̂τ = 0, ∀ τ ∈ T \ {∅}.

On the other hand, since λ and μ̂ are characters on (Ĉ, •), if for all τ ∈ T

(λ �̂ μ̂) τ = 1(τ=∅),

then the same formula holds by multiplicativity for all τ ∈ F and we obtain that

λ = μ̂−1. �

Remark 9.2. By stationarity, the function RX ◦ ψμ̂−1 ∈ CT has the additional property

E(〈RX, ψμ̂−1τ 〉(x)) = 0, ∀ τ ∈ T \ {∅}, x ∈ R
d.

In other words, RX ◦ ψμ̂−1 : C → C gives a centered deformed product. This

important example is the exact analog in this context of the Bogoliubov–Parasiuk–Hepp–

Zimmermann renormalization in regularity structures, see [3, Theorem 6.17].

We now show that the construction on decorated rooted trees generalizes in

a very precise sense the Wick products of Section 4. We use the identification between

monomials in d commuting variables X1, . . . , Xd and corollas decorated with letters from

{1, . . . , d} that we have explained in (49). Choosing A := {1, . . . , d} we obtain a canonical

embedding of H ↪→ C, where H is defined in Definition 3.1; we call Cor the image of H

in C by this embedding. Then a simple verification shows that

Lemma 9.3. The embedding H ↪→ C is a Hopf algebra isomorphism between

(H, ·, ∅, �, ε) and (Cor, �, • , �̂, ε̂), where �̂ is defined in (53).

We obtain that every deformation �λ for a unital λ : Ĉ → R defines a product

on Cor which is isomorphic to the deformed product defined in (30) by restricting λ to a

map from Cor to R.
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10 Connection with Regularity Structures

It would go beyond the scope of this work to introduce and explain the algebraic and

combinatorial aspects of seminal theory of regularity structures [10]; we want at least to

explain how the concept of renormalization, which plays such a prominent role there,

is intimately related to the deformation of the standard pointwise product described

in the previous sections. These ideas can also be found in the theory of rough paths

[7, 8, 14, 15], which has largely inspired the theory of regularity structures.

We denote by D′(Rd) the classical space of distributions or generalized functions

on R
d. The recent papers [3, 6] introduce a Hopf algebra Ĥ together with a linear

space H, which is moreover a left comodule over Ĥ with coaction δ : H → Ĥ ⊗ H.

This framework is then used to describe in a compact way a number of complicated

algebraic operations, related to the concept of renormalization. The space H in [3] is

an expanded version of the linear span of decorated rooted trees V defined in Section 9

above; more precisely it is the vector space freely generated by a more complicated set of

decorated rooted trees, which is aimed at representing monomials of generalized Taylor

expansions. The space Ĥ in [3] is a Hopf algebra of decorated forests with a condition of

negative homogeneity.

In [3, 6], the linear space H codes random distributions, which depend on a

regularization parameter ε > 0. As one removes the regularization by letting ε → 0,

these random distributions do not converge in general. More precisely, we have (random)

linear functions �ε : H → D′(Rd) which are well defined for all ε > 0, but for which

there is in general no limit as ε → 0. In fact, we even have �ε : H → C(Rd), and �ε

is constructed in a multiplicative way as in Lemma 8.3 above. Indeed, although H is

not an algebra, it is endowed with a partial product, that is, some but not all pairs

of its elements are supposed to be multiplied. We try to make this idea more precise

in the next

Definition 10.1. A partial product on H is a pair (M, S) where S ⊆ H ⊗ H is a linear

space and M : S → H is a linear function.

Therefore, if τ and σ are elements of H, their product M(τ ⊗ σ) is well defined

if and only if τ ⊗ σ ∈ S. For example, in regularity structures one has an element � ∈ H

such that �ε� = ξε := ρε ∗ ξ , where ξ is a white noise on R
d (a random distribution in

D′(Rd)) and (ρε)ε>0 is a family of mollifiers. Although (ξε)
2 is well defined as a pointwise

product in C(Rd), as ε → 0 there is no limit in D′(Rd) and indeed, we do not expect to

multiply ξ by itself in D′(Rd). We express this by imposing that � ⊗ � /∈ S.
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The divergences that arise in this context are due to ill-defined products; this

is already clear in the example of � ⊗ � and (ξε)
2. Another more subtle example is the

following: we consider ξε := ρε ∗ ξ again, and a (possibly random) function fε : Rd → R

which, as ε → 0, tends to a non-smooth function f . Then the pointwise product fε · ξε

does not converge in general, since the product f · ξ is ill defined in D′(Rd). However, a

proper deformation of this pointwise product may still be well defined in the limit.

Let (τi, i ∈ I) ⊂ H be a family that freely generates H as a linear space. We can

now give the following.

Definition 10.2. Let � : (τi, i ∈ I) → D′(Rd) be a map and (M, S) a partial product on

H. We define C� as the vector space freely generated by the symbols (�(τi), i ∈ I) as in

Definition 8.1, and � : H → C� the unique linear extension of τi �→ �(τi) ∈ C�. Then we

define a partial product on C� as follows:

� S� ⊆ C� ⊗ C� := {�(τ) ⊗ �(σ) : τ ⊗ σ ∈ S}
� M� : S� → C�, M�(�(τ) ⊗ �(σ)) := �(M(τ ⊗ σ)).

We are clearly inspired by the construction of the previous sections, by realizing

that we can work on distributions rather than on continuous functions. We stress

that this definition allows to define partial products of distributions in a very

general setting.

However, the construction of interesting � : (τi, i ∈ I) → D′(Rd) may not be

simple. The method that is successfully used in a large class of applications in [3, 6, 10]

is the following. We start from a �ε : (τi, i ∈ I) → C(Rd) which is multiplicative in the

sense that

〈�ε ,M(τ ⊗ σ)〉 = 〈�ε , τ 〉 · 〈�ε , σ 〉, ∀ τ ⊗ σ ∈ S,

where · is the standard pointwise product in C(Rd). In order to obtain a convergent limit

as ε → 0, we try to deform this pointwise product, using the comodule structure of H

over Ĥ. For all unital multiplicative and linear λ : Ĥ → R we define ψλ : H → H as in (41)

and then we set as in (45)

�λ
ε (τ) := �ε(ψ

−1
λ τ ), τ ∈ H.

Then we can define the deformed partial product on C�ε

Mλ
�ε

(�λ
ε (τ ) ⊗ �λ

ε (σ )) := �λ
ε (M(τ ⊗ σ)), τ ⊗ σ ∈ S.
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If λ = λε is chosen in such a way that �
λε
ε converges to a well-defined map �̂ : (τi, i ∈

I) → D′(Rd), then we can define on C
�̂

the partial product

M
�̂

(�̂(τ ) ⊗ �̂(σ )) := �̂(M(τ ⊗ σ)), τ ⊗ σ ∈ S

which is the analog of (47) in this setting. We note that in general neither �ε nor λε

converge; indeed, λε diverges exactly in a way that compensates the divergence of �ε , in

such a way that �
λε
ε converges.

The fact that the above construction can indeed be implemented in a large

number of interesting situations is the result of [3, 6]. Those papers consider random

maps �ε with suitable properties which resemble those of X in Theorem 9.1, namely

�ε is supposed to be stationary and to possess finite moments of all orders. Then, as

in Theorem 9.1, it is possible to choose a specific element λε : Ĥ → R which yields

a centered family of functions �ε ◦ ψ
λ−1

ε
, see [3, Theorem 6.17]. Under very general

conditions, this special choice produces a converging family as ε → 0 [6].

Therefore the renormalized (converging) random distributions are a centered

version of the original (non-converging) ones. The specific functional λ−1
ε is equal to

με ◦ A, where με : Ĥ → R is an expectation with respect to �ε as in (54), and A is

a twisted antipode; the functional με ◦ A plays the role that is also played by μ̂−1 in

Theorem 9.1.

Remark 10.3. We stress that the centered family �ε◦ψ
λ−1

ε
cannot be in general reduced

to the Wick polynomials of Theorem 4.2. This is because the coaction δ : H → Ĥ ⊗ H in

this context is significantly more complex than (19) and (53).
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