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This thesis focuses on studying the spin dynamics of an electronic device composed of
two high-spin molecules subject to a bias voltage through two electrodes. We found that the
non-equilibrium configuration induced by the bias voltage generates an effective interaction
between the spins. Moreover, we discover that the bias voltage can control the strength and
even the sign of those interactions. Furthermore, the system presents a stochastic nature that
we study by the Langevin equation and the Fokker-Planck equation.

In the first chapter, we introduce the essential concepts to study and understand this
particular system. Here we explain the difference between the well-known Spin Transfer Tor-
que and Spin-Orbit Torque, along with a brief introduction to the Keldysh formalism for
non-equilibrium systems.

The second chapter presents the microscopic derivation of the effective interactions, dam-
ping, and correlations that describe the system’s spin dynamics with a stochastic equation.
Here we include a spin-dependent hoping to model the spin-orbit coupling in the device that
introduces anisotropic damping along with a Gilbert damping. Moreover, we find three ef-
fective interactions that bound the dynamics between the previously free spins.

In the third chapter, we study the average value of the spin’s direction for the specific case
in which the direction of one spin is kept fixed. By increasing the voltage, we find that the
system can switch from a parallel to an antiparallel configuration. We also find that a strong
enough spin-orbit coupling can switch the preferred direction due to the Dzyaloshinskii-
Moriya interaction.
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Español

Esta tesis se centra en el estudio de la dinámica de espín de un dispositivo electrónico
compuesto por dos moléculas de alto espín sometidas a un voltaje de polarización a través
de dos electrodos. Encontramos que la configuración de no equilibrio inducida por el voltaje
de polarización genera una interacción efectiva entre los espines. Además, descubrimos que
la intensidad e incluso el signo de esas interacciones pueden controlarse mediante el voltaje
de polarización. Además, el sistema presenta una naturaleza estocástica que estudiamos me-
diante la ecuación de Langevin y la ecuación de Fokker-Planck.

En el primer capítulo, presentamos los conceptos esenciales para estudiar y comprender
este sistema en particular. Aquí explicamos la diferencia entre los conocidos Torque de trans-
ferencia de espín y Torque de espín-órbita, junto con una breve introducción al formalismo
Keldysh para sistemas fuera del equilibrio.

El segundo capítulo presenta la derivación microscópica de las interacciones, disipaciones
y correlaciones efectivas que describen la dinámica de espín del sistema con una ecuación
estocástica. Aquí incluimos una interacción dependiente de espín para modelar el acompla-
miento de espín-órbita en el dispositivo, que introduce disipación anisotrópica junto con la
disipación de Gilbert. Además, encontramos tres interacciones efectivas que unen la dinámica
entre los espines anteriormente libres.

En el tercer capítulo, estudiamos el valor promedio de la dirección del espín para el caso
específico en el que la dirección de un espín se mantiene fija. Encontramos que, al aumentar
el voltaje, el sistema puede cambiar de una configuración ferromagnética a una antiferromag-
nética. También encontramos que un acoplamiento de espín-órbita lo suficientemente fuerte
puede cambiar la dirección preferida debido a la interacción Dzyaloshinskii-Moriya.
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Chapter 1

Introduction

1.1. Spintronics
Condensed matter physics is a broad category of research that, in principle, studies subs-

tance in their solid-state, from crystalline solids in which we find a regular structure where
the position of the atoms of the crystal are very much fixed, to amorphous materials in which
the lack of a regular structure provide a variety of interesting phenomena that are, in general,
very difficult to model. Nowadays this category can be thought as the study of systems that
contains many particles and, in general, exhibit more and different properties than just a
collection of the ones that its constituents present, as beautifully explained by Anderson in
[3]. This thesis is, in fact, fundamentally motivated by that aspect of the many-body systems.

For a long time, the primary way to pass, store, and read information in electronic devices
was using the fundamental property of electrons, their charge. Therefore, in most conventio-
nal electronics, the spin of the electrons is completely ignored [51]. This assumption is well
justified since the balance between the spin-up and spin-down (where up and down relate
to some quantization axis) conducting electrons in those electronic devices allows them to
neglect the spin’s effect. However, when we look at electronic transport through materials
such as ferromagnets [32], we find that the electron’s spin separates them into two distinct
groups of charge carriers. Therefore, a whole new degree of freedom ready to be exploited.
Nowadays, in search of better and more efficient ways to deal with information inside an
electronic device, commonly seeking an applicable quantum process to reach quantum com-
puting, it has been useful to take advantage of another fundamental property of particles,
the spin. This new physics area is called Spintronics (electronics with spin-based transport),
and studies the advantage of spin current over electronic current, since it has lesser energy
lost through conductance and resistance, therefore an efficient transmission.

The most exceptional success in the field was the discovery of the giant magnetoresistan-
ce (GMR) [8, 5]. This led to an increase in hard drives’ storage space by a factor of over a
hundred times in the following ten years after its discovery. It consists of two ferromagnetic
layers, where a third nonmagnetic metallic layer is put in between, forming a three-layer sys-
tem. This simple configuration has an impressive change in its resistance depending on the
relative magnetization orientation, from a relatively small resistance when both ferromagne-
tic magnetizations are parallel to a significant (hence giant) resistance for an anti-parallel
configuration [36]. From this extraordinary discovery, one could say that the current efforts
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in the implementation of Spintronics devices so that they can be included in the design of
future electronic devices can be separated into two, as explained in [42]. One of them would
be, keep perfecting the GMR technology with new materials that can make the giant mag-
netoresistance even bigger. The other focuses on developing new and better ways to use,
control, and generate spin-polarized currents. In this thesis, we focus on an approach more
similar to the last one. As can be seen, the Spintronics area is vast, and it has a lot of exciting
applications to technology. Many of them have been thoroughly reviewed in [52, 24, 38, 21].

1.2. Spin interactions
Throughout this thesis, we get to deal with Spins in a semi-classical way and encounter

various interactions and energies. Therefore, here we set a simple review of the most common
ones that are of our interest. A complete study and deduction of these ideas can be found in
[1, 19].

i) Exchange interaction:
This interaction comes from the electron-electron interaction through Coulomb inter-
action between two sites and their respective statistics. This means that it is the inter-
action between neighbors’ atoms. The mathematical expression is:

Hex = −
∑
i,j

JijSi · Sj. (1.1)

θ

J < 0

J > 0

Figure 1.1: Sketch of the exchange interaction. Here we can see that
depending on the sign of the exchange constant, the system’s minimum
energy configuration, i.e., the equilibrium configuration, is ferromag-
netic (J > 0) or antiferromagnetic (J < 0).

Here the exchange matrix can be simplified as an identity with an exchange constant
J, i.e. Jij = JIij. We can see that the minimum energy configuration is where the
spins are aligned in a common direction, Si · Sj = S2, i.e., the angle θ in figure 1.1 is
zero.. However, that assumption is only correct for a positive exchange constant. So,
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we can obtain either a Ferromagnetic configuration (J > 0) or an Antiferromagnetic
configuration (J < 0) depending only on J’s sign, as depicted in figure 1.1.

ii) Zeeman interaction:
The interaction between each site’s spin S and an external magnetic field is

HZ = −
∑
i

Si · h (1.2)

where h = µBgB, µB is the Bohr magneton, g is the Landé g-factor and B is the
applied external magnetic field. As we can see, this interaction has the its lower value
when every spin Si is aligned with B, as depicted in figure 1.2. A detailed deduction
of this interaction can be found in [23].

hh h h hh h h

Figure 1.2: Sketch of the Zeeman interaction. Here an external mag-
netic field h interacts with the spin of each site. With this interaction,
the system tends to align with the magnetic field.

iii) Anisotropic interaction:
This interaction can be confused into two types, the anisotropic energy that comes
from the very nature of the molecule and its approximated shape, and an interaction
between two sites depends on a specific direction. The latter can be understood as a
modification of the symmetric exchange interaction towards a preferred direction.

The Anisotropic energy has many types of manifestations; the most relevant to us is
the uniaxial anisotropy that defines the easy axis or easy plane that tells whether it
prefers to align its spins either parallel or perpendicular to a given axis. Throughout
this thesis, this energy will be modeled phenomenologically as

EAni = D(Sz)2 − E[(Sx)2 − (Sy)2]. (1.3)

This is inspired by ref. [11, 12, 29]. Following the exchange interaction definition, we
will consider that an anisotropic interaction has the structure of

HAI = −
∑
ij

SiAijSj, (1.4)

where Aij can not be described as AijI, meaning that it is not isotropic like the exchange
interaction (1.1).
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iv) Dzyaloshinskii - Moriya interaction:
The Dzyaloshinskii - Moriya interaction (DMI) or Antisymmetric interaction comes
from two main ingredients, the broken symmetry in the lattice and the spin-orbit
coupling. We characterize this effect between two spins, S1 and S2, as

HDMI = D12 · (S1 × S2), (1.5)

where D12 contains the information of the preferred direction in the system and the
interaction’s strength. In most cases, this interaction is very weak compared with others
in the crystal, so it is not easy to measure it directly. Nevertheless, it minimizes when
the spins are perpendicular with each other, and the resultant antisymmetric product is
anti-parallel with the vectorD. This interaction is very well studied in micromagnetism
because it produces non-collinear particle-like magnetic textures like skyrmions, that
can be used to store information due to their stability [15, 50]. It can also produce a
weak magnetism in an antiferromagnet.

θ D > 0
D

D < 0

Figure 1.3: Sketch of the DMI interaction. Here, each site interacts with
its neighbors, so they tend to be orthogonal to each other, forming a
plane with the interaction’s vector as the plane’s, D,normal vector.

1.3. Electronic Transport
In this section, we introduce the underlying formalism that we need in order to study our

problem. We will start by giving a brief review of what we have to know about Open Quan-
tum Systems and electronic Green’s functions. To end up with the Non-equilibrium scheme
or Keldysh-Schwinger formalism for non-equilibrium systems. These subjects are very well
studied in [9, 10, 39], and here we will only summarize the most relevant parts that we will
need in order to make this thesis self-contained.

When we study electronic transport, we have three main ingredients, the source and drain
electrodes or leads, which for a general configuration can be as many as we want, and the
system or electronic device. In general there are two approaches to study this kind of systems.
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The first one is the Landauer-Büttiker formalism [9], where the problem is transformed into
a scattering problem assuming ballistic conduction. Here the current is studied from the pro-
bability that an electron can transmit through the device. Although this is an intuitive idea,
it deserves the time to be explained since there are very important issues like the Voltage
across the device or the degeneracy at low temperatures. It was formulated as a correction
of Ohm’s Law at small dimensions.Two main problems arrived: the conductance does not
decrease linearly with the width of the conductor, and that independently of the length of
the sample, there is an interface resistance. Aiming to solve those problems, Landauer pro-
posed that the conductance is directly proportional to the transmission probability and the
number of propagating modes. Later, Büttiker extended those results to a multi-terminal
configuration. We remark that this is not nearly enough to understand the full capacity and
depth of the approach, and for a detailed and thorough study, the reader is referred to [9, 10].

source draindevice

Figure 1.4: Sketch of a generic configuration where we have two elec-
trodes, the source and drain, and an electronic device.

The second approach to deal with the system in figure 1.4 is the so-called Non-Equilibrium
Green’s Functions (NEGF). Here we consider each part separately as open quantum systems
at equilibrium, i.e., first we solve (or attempt to solve) them as isolated system and then “turn
on” the connection. Generally, the leads are treated as bath, so they are characterized by
their respective temperature and chemical potential. Although these approaches do not seem
very distinct since the both use Green’s functions formalism, which allow us to calculate (in
principle) everything, and we could use them to calculate the scattering matrix as shown in [9].
It is essential to note that they have different limitations; therefore, they are more suitable for
some systems or goals. This formalism’s real power comes when we deal with non-neglectable
interactions inside the device, like electron-electron and photon-electron interactions, because
for non-interacting transport, both approaches are equivalent.

Schwinger-Keldysh Formalism

This latter approach is a generalization of the usual Quantum Field Theory because, as
is usually constructed, it can only deal with asymptotically free systems, for both the far
past and future. This means that we need an extended theory to deal with non-equilibrium
systems effects since they do not necessarily disappear in the far future.
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We can illustrate this new formalism and its benefits by following the deduction presented
in [39] for a general system described by a time-dependent Hamiltonian H(t). We will res-
trict this system to somehow be at equilibrium and characterize by the temperature T, and
described by the Hamiltonian H. This restriction will hold from the far past until a critical
time t0. Beyond that time, a time-dependent perturbation H ′(t), is applied to the system.
So the system Hamiltonian is:

H(t) = H +H ′(t), (1.6)

where we can see that we are dealing with the perturbation problem. However, since this
perturbation is time-dependent, a transformation to the Heisenberg picture is actually more
illustrative. To do so, we need a relation between two Heisenberg pictures, ruled by H(t) and
H, of an generic operator O. One way to relate them is through the Dyson series that allows
us to find a time evolution operator in the interaction picture. A simpler way is by writing
the usual picture operator transformation of both pictures by contrasting each one with the
Schrodinger picture. So, let us start by defining those picture transformations for a generic
operator as

AH(t) ≡ U †H(t, t0)AUH(t, t0). (1.7)

Therefore, if we want to compare both Heisenberg pictures, we do it by means of the
common original operator A. Hence, the unitary transformation of the operator O is:

OH(t) =
(
U †H(t, t0)UH(t, t0)

)
OH(t)

(
U †H(t, t0)UH(t, t0)

)
, (1.8)

where the time evolution operators are defined as:

UH(t, t0) = e−iH(t−t0) , UH(t, t0) = T e−i
∫ t
t0
dt′H(t′)

, (1.9)

with ~ = 1 for convenience. If we make use of the relation U †(t, t′) = U(t′, t), we can read
from equation (1.8) that the transformation is defined over a closed time path. In the end,
from UH(t0, t)UH(t, t0), we define that path goes from t0 to t, the time at which we want to
evaluate the operator, and then goes back to t0, where the time-dependent perturbation is
turned on. This contour is called Ct, and is illustrated in figure 1.5.

When we deal with equilibrium situations, that contour analysis can be dismissed. This
because the perturbation can be turned on and off adiabatically. Therefore, this process en-
sures that in the far future, the only effect to the unperturbed ground state is a phase, as
we can see from the Gell-Mann-Low theorem [20], and we would not need the above picture
transformation to study the time evolution of an operator. That line of thought does not
hold for an out-of-equilibrium system since, again, the perturbation does not vanish in time.
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t0 t

t0− iβ

tc

Figure 1.5: Contour path. This path is defined by t0 and t, when the
non-equilibrium perturbation is turned on and off,respectively. The
appendix path t0 − iβ is added to calculate the two-point correlation
function.

Back to the contour-time, it can be shown that equation (1.8), with yet another trans-
formation to the interacting picture so we can work with a free Hamiltonian H0 as the usual
requirement for a well-defined perturbation theory [33, 35], can be written as:

OH(t) = TCt
(
e
−i
∫
Ct
dtc(H(i)

H0
(tc)+H

′
H0

(tc))OH0(t)
)
. (1.10)

We have defined the contour ordering symbol TCt to order products of operators according
to the position of their time argument, tc, over the contour time Ct. The above expression is
not so simple to prove, and the reader is referred to [39] for a detailed deduction. If we apply
the above expression to a more common operator, we can see that it is much more similar
to the regular equilibrium formalism than we could expect. For example, in the two-point
correlation function we add the appendix contour from t0 to t0 − iβ, with β the inverse
temperature, to the already presented contour time Ct, as shown in figure 1.5. However,
since we are not interested in transient phenomena, we can let t0 to approach minus infinity,
t0 →∞, and the imaginary part of the contour vanish.

〈T ψH(x, t)ψ†H(x′, t′)〉 = Tr
(
ρ0TCt

(
e
−i
∫
Ct
dtc(H(i)

H0
(tc)+H

′
H0

(tc))ψH(x, t)ψ†H(x′, t′)
))

, (1.11)

with ρ0 = e−βH0
Tr(e−βH0 ) . From the above expression, we can obtain the path integral formalism

analogously as the usual treatment. Once again, we stressed that this is a mere presentation
of the idea and to clarify the notation. Nevertheless, a neat and simple explanation can be
found in [13] and a thorough deduction in [39].

Green’s Functions decomposition

A useful tool that will come in handy throughout this thesis is a Green’s function de-
composition along the Keldysh contour. A general Green’s function F (t, t′) can be separated
as:
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F (t, t′) = Θ(t− t′)F>(t, t′) + Θ(t′ − t)F<(t, t′), (1.12)

where we can relay the behavior of the original function F (t, t′) into their Greater F> and
Lesser F< components. If F (t, t′) is defined over the Keldysh contour, we have to keep in
mind that the Heaviside step function Θ(t − t′) is also defined over the Keldysh contour
variable tc. These new functions allow us to connect the real function F with yet another
useful decomposition:

F (±) = ±Θ (±(t− t′)) [F>(t, t′)− F<(t, t′)], (1.13)
F (K) = F>(t, t′) + F<(t, t′). (1.14)

We introduce the advanced F− and retarded F+ Green’s functions along with the Keldysh
FK component. This new set of 5 functions is very well known, and it will be very useful
when to give a physical interpretation of our results.

1.4. STT vs. SOT
When dealing with non-equilibrium effects in a spin system, we deal with the interaction

between itinerant electron’s spin, mi, and the system’s spins, Mi. Over the years this inter-
action has been studied in several ways. The more common interpretation of this interaction
comes from the conservation of angular and linear momentum in the scattering between these
two spins. However, for there to be an exchange in angular momentum, the non-equilibrium
spin density of the electrons from the electronic current cannot be collinear to the direction
of the magnetization. This misalignment depending on its origin can provide different effects
on the magnetization.

This interaction gives rise to internal torques, so the global angular momentum is con-
served. These torques are called Spin Transfer Torque (STT) and Spin-Orbit Torque (SOT)
[47, 6]. Those effects can be combined, and they are not so easy to separate. Both torques de-
pend on the strength of the non-equilibrium spin density compared to the arriving material’s
magnetization. As for classical scattering, for strong enough torques, they can influence the
magnetization direction (weak magnetization or thin layer), or they can tend to align with
the magnetization (large magnetization or thick layer). The fundamental difference between
those torques is the spin density origin, i.e., the preferred direction of the electron’s spin.
However, in both cases, the equation of motion of the magnetization is given by:

∂M

∂t
= −γM ×Heff + α

Ms

M × ∂M

∂t
+MsTst(M ), (1.15)

where the spin torque, Tst(M ), takes a specific form for each case and the magnetic system
we are studying, and Ms is the saturation magnetization.

The STT [7, 45, 37] postulates that when the spin density that appears from the spin
transport throughout a collinear magnetization enters a material with another non-collinear
magnetization, the spin density exerts a torque on the new magnetization. This torque can
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cause a change in the magnetization’s direction, switching, and precession. Therefore, the
electrons will transfer their polarization into the arriving material; only if the incident elec-
tron’s polarization is different from the magnetization direction due to the torque between
them. When we consider an s − d model with ∆ as the exchange interaction between the
localized and itinerant electrons, we can obtain that the above equation takes the form:

∂M

∂t
= −γM ×Heff + α

Ms

M × ∂M

∂t
− 2∆

~
M ×m. (1.16)

Another way to understand this process is through the net balance between an in-going
spin current and the out-going spin current, indicating the total angular momentum change
in the non-collinear magnetization. In the absence of spin-orbit interaction and if we neglect
spin-flip scattering, both interpretations are equal.

Tst = −2∆
~
M ×m = −∇ · Js (1.17)

Therefore, the spin torque can be viewed as the spin transfer due to the spin current,
hence spin-transfer torque. Usually, these effects are observed with spin filters, and it has
been proposed as a mechanism for quantum computer reading and writing devices.

The SOT [17, 30, 31, 38] arises from a more fundamental property of the molecule or
material, the spin-orbit coupling with the itinerant electrons. This interaction is very well
known for being a small contribution compared with other interactions, but powerful since
it can lead to remarkable results. Like the former interaction, here, the electrons interchange
angular momentum with the intrinsic angular momentum of the components of the material.
The microscopic origin of this Torque is still on the debate, but at the current state, the
Rashba effect [40] and the spin Hall effect [14] are the most accepted proposal. Here we can
model the spin-orbit interaction by the Hamiltonian:

HSO = ~
2mc2 (∇V × p̂) · σ. (1.18)

When we assume uniformly magnetized electrodes, a steady-state condition, and a ne-
glected spin-flip effect, we can see that the spin torque is:

Tst = −2∆
~
M ×m = − 1

2m2c2 〈(∇V × p̂)× ŝ〉, (1.19)

wherem = −〈ŝ〉. In this case, the spin-orbit coupling acts as the source of the spin torque. In
contrast to STT, the SOT does not require a spin-polarizer, which is a significant advantage
for technological implementation. In both cases, the spin torque can be separated as:

Tst = tf
Ms

M × t+ td
M2

s

M × (t×M ), (1.20)

where t is conveniently chosen for each system. The first term is called the field-like term,
and the second term is called the damping-like term. The factors tf and td are specific for
the origin of the spin torque. For example, the Rashba SOC presents both torques [48], but
the spin Hall effect’s torque mainly presents the damping-like torque.
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FM1

FM2

FM1

FM2
barrier barrier

Figure 1.6: Sketch of the standard circuits that include STT and SOT
to read and write information. Both configurations are very similar
but differ in the path for the itinerant electrons. For the STT, the
itinerant electrons pass through both ferromagnetic layers from where
they gain a polarization, i.e., an spin density emerges. For the SOT,
the itinerant electrons move in-plane, making this circuit more stable,
and they acquire the spin density from the barrier’s high spin-orbit
interaction [47].

The best applications of both torques are the spin manipulation of the receiving material,
the spin injection, and transport. All of the above allows them to be exciting tools to read and
write in magnetic memories. These new tools are expected to accelerate the electronic devices’
reading and writing capabilities, make them smaller, and increase their endurance, and are
depicted in figure 1.6. The first writing technique was the field-induced switching of the
magnetization of one Ferromagnetic-layer. However, that method of writing information over
spin orientation switching was not scalable. Here it presents the more significant advantage
and the main reason to develop a functional STT or SOT switching mechanism, since those
methods are scalable, as explained in [16].
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Chapter 2

Effective dynamics for localized spins

2.1. Introduction
In this chapter, we develop the main framework of this thesis and its numerical results.

We aim to study a toy model that contemplates two leads and an electronic device like figure
(2.1). This configuration has been studied in [43, 25, 34, 12], each one with its exciting ingre-
dients. Here we are interested in the non-equilibrium effects, i.e., the effects of an electrical
current passing through the device like in [34, 12]. However, now we focus on the effects
of a spin-dependent hopping between the sites in the device. We will construct a general
formalism to study a 1-D chain of N sites in a non-equilibrium configuration and present
all the mathematical tools that we will need to obtain the equation of motion for the spin’s
direction at each site.

T,µL T,µR
tL tRTσ,σ′ Tσ,σ′

JL JL JR JR

Figure 2.1: Sketch of a one-dimensional chain toy model that includes
two semi-infinite leads and an N-sites device.

Once we have computed all the ingredients for the general N sites device, we restrict
our analysis to two critical cases. The first one contemplates a one-particle-device [34], from
now on, the monomer case. This simple configuration will allow us to present the Keldysh
formalism introduced in the first chapter and the mathematical approach to deal with the
interaction between the spin and electronic degree of freedom to obtain the localized quan-
tum spin’s effective dynamics.

A second application adds another particle to the first one, making a two-particles-device
[12], the dimer case. It comes as a natural extension of the monomer case, with more com-
plications and exciting results. Here we can see how the first case is the building block of our
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study, thus the need to study the monomer case, but it turns to be much more than the sum
of its independent ingredients, as beautifully explained by Anderson in [3].

2.2. The Array of localized spin: Model
This section introduces the model and mathematical approach to study a system that

covers both monomer and dimer cases. They share almost all the ingredients. The simplest
way to study the effects of electrical current on an electronic device, up to the microscopic
level, is by a one-dimensional Tight Binding Model [26, 44] . The first ingredients to analyze
are the left and right leads, modeled as

HL = −JL
∑
〈i,j〉,σ

c†L;i,σcL;j,σ, (2.1)

HR = −JR
∑
〈i,j〉,σ

c†R;i,σcR;j,σ. (2.2)

Where JL and JR are the spin-independent hopping parameter that, in principle, can be
as different as we want, but for simplicity, we will consider them as equal, i.e., JL = JR = J .
Using the second quantization formalism, the operators c†L(R);i,σ and cL(R);i,σ represent the
fermionic creation and annihilation operator in the left (right) lead, respectively. They create
and annihilate an electron at site i with spin σ in the left (right) lead. The summation
runs over 〈i, j〉, meaning that only the nearest neighbors interact. The next ingredient is the
connection Hamiltonian that models the system-lead interaction by an electronic hopping
between the last (first) site in the left (right) lead with the first (last) site of the electronic
device,

HLc = −tL
∑
σ

(
c†Ln,σcD1,σ + c†D1,σcLn,σ

)
, (2.3)

HRc = −tR
∑
σ

(
c†R1,σcDN,σ + c†DN,σcR1,σ

)
. (2.4)

Here tL and tR are the spin-independent hopping parameters quantifying the coupling
between each lead and the system. In this case, c†Di,σ and cDi,σ represent the fermionic creation
and annihilation operators in the device at site i, as shown in figure 2.1. The system is
modeled as an array of N sites, each with a spin S molecule. The interactions between
them and their environment can be separated into a purely electronic contribution and a
mixed one that combines the electronic and spin degrees of freedom, Harray = He + Hd.
The mixed Hamiltonian includes the Zeeman interaction, i.e., a fixed external field, and an
interaction between the spin of the itinerant electrons and the localized spin of each site by
a ferromagnetic exchange coupling ∆. This interaction is called the s-d interaction or Kondo
model [27]. So the electronic and mixed Hamiltonian are:

He =
∑
a;σ
εac
†
a,σca,σ −

∑
〈a,b〉;σ,σ′

c†a,σTσ,σ′cb,σ′ , (2.5)

Hd = E [Ŝia]−∆
∑
i,a;σ

ŝiaŜ
i
a −

∑
a

h · Sa. (2.6)

12



Where ŝia = 1
2
∑
σ,σ′ c

†
a,στ

i
σσ′ca,σ′ represents the electron’s spin at the site a, τ iσ,σ′ is the

i-th component of the vector containing the Pauli matrices like ~τ = (σx, σy, σz), and c†a,σ, ca,σ
are the fermionic creation and annihilation operators at the site a. Ŝa is the operator of the
localized spin-S at the site a. Finally, E [Ŝia] represents all the on-site energy terms due to
the internal structure of the molecule, here we only contemplate anisotropic energies, and
for simplicity on the expressions, we neglect it until the last equation due to the similarity
with the Zeeman effect, in terms of how we deal with it. In later sections, we will simplify
the above Hamiltonian to the case of interest. We have define the hopping matrix T in He

so we can include a spin-dependent hopping between the sites on the device, meaning that
it will not be present for the monomer case. The matrix

Tσσ′ = t0Iσσ′ + tt̂ · ~τσσ′ , (2.7)

depends on an arbitrary vector t that accounts for the spin-orbit coupling inside the system.
With all these ingredients, we can write the probability density using the “path integral
formalism” in the standard construction [33, 49, 2] from which we get an expression that
depends on all the possible ways that itinerant electrons and the localized spin can interact,
so we must integrate over the Grassmann variables for the fermionic state, and the unit vector
for the spin’s coherent state. Although robust, this usual construction does not include the
non-equilibrium configuration that we are interested in here. Instead of the usual imaginary
time integral for the action, our probability is defined over the close-contour path Ct we
introduced in the first chapter. So now, the probability density is expressed in terms of the
Grassmann vector field Ψ describing the electrons, and the unit vector fields Ω̂a that describe
each localized spin’s state at site a and time t, i.e. Ŝa = SΩ̂a, like

P[Ψ,Ω, t] =
∫

Ψ(t)=Ψ
D2Ψ

N∏
a

∫
Ωa(t)=Ω̂a

DΩaδ(|Ωa|2 − 1)e i~ST . (2.8)

The total action ST , can be separated into an electronic action SΨ, an spin action SΩ and
interaction action SI , where each term is written as

SΩ =
∑
a

∫
Ct
dtc

[
−~Sdωa

dtc
+ SΩa · h− E [Sa]

]
, (2.9)

SΨ =
∫
Ct
dtc
[
i~
∑
σ,i

(
ψ∗Li,σ∂tcψLi,σ + ψ∗Di,σ∂tcψDi,σ + ψ∗Ri,σ∂tcψRi,σ

)
+

−HR −HL −HRc −HLc −He

]
, (2.10)

SI =
∑
a

∫
Ct
dtc∆SΩa · sa. (2.11)

Where, in the action for the localized spins SΩ, ωa is the Berry phase for the spin variable
[4], and in the action for the free or itinerant electrons SΨ, the terms with contour-time
derivative, ψ∗∂tcψ, are the Berry phases of the Grassmann fields [33]. Now we have all the
pieces that characterize the system. We can start to manipulate them to obtain the spin’s
effective dynamics. Since the action in (2.9), (2.10), and (2.11) are quadratic in their fields, we
could, in principle, directly perform the integral over the Grassmann variables ψ. However,
due to the s − d interaction, the resulting factor would depend on the spin direction field,
and it would be of no use for us. Instead of that, we can use the standard Effective Field
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Theory (EFT) methods to deal with more than one field and expand perturbatively over ∆
that couple those fields. A common way to expand it is the Cumulant expansion [41] up to
second order, like

ST → S = SΩ + 〈SI〉+ i

2~(〈S2
I 〉 − 〈SI〉2). (2.12)

Where 〈(. . . )〉 represents the average value of an operator, obtained by integrating the
Grassmann field due to the electronic degree of freedom, with only the electronic action
SΨ as a weight factor, i.e., without the ferromagnetic coupling with the localized spin, with
this in mind, we define the integral kernel that keeps the localized-itinerant spin interaction
information up to second order

Kij
ab(tc, tc′) ≡

i

2~
[
〈T sia(tc)s

j
b(tc′)〉 − 〈sia(tc)〉〈s

j
b(tc′)〉

]
(2.13)

So the effective action for the array of N localized sites, each with spin S, and approximated
up to second order in ∆ is

S = SΩ +
∫
Ct
dt′

S∆
∑
a

Ωa · 〈sa(t′)〉+
∫
Ct
dt′′S2∆2 ∑

ij,ab

Ωi
a(t′)K

ij
ab(t′, t′′)Ω

j
b(t′′)

 , (2.14)

and the probability density only depends on the spin path integrals and its constraints that
enforce each localized spin at the specific state Ω̂a at the time t, which define the contour
time Ct, so

P[Ω̂a, t] =
N∏
a

∫
Ωa(t)=Ω̂a

DΩaδ(|Ωa|2 − 1)e i~S . (2.15)

The remaining piece we have left is the change in perspective when analyzing the kernel
Kijab in terms of the correlation of 2 spin variables instead of the correlation of 4 electronic
states. This change can seem useless or even make the problem harder, but if we define the
electronic Green’s function as the correlation between two sites (a and b), and two spins (σ
and σ′), keeping in mind that there is no reason for not being the same, we get:

iGaσ;bσ′(t, t′) ≡ 〈T ψaσ(t)ψ∗bσ′(t′)〉, (2.16)

with the time-ordered operator along the Keldysh contour, we can use Wick’s Theorem [35]
to rewrite Kijab in terms of Gaσ;bσ′ only by replacing the sia(t) = 1

2
∑
σσ′ ψ

∗
aσ(t)τ iσσ′ψaσ′ so if we

drop the Pauli matrices and analyze the first term in (2.13) like

〈T ψ∗aσ(t)ψaσ′(t)ψ∗bµ(t′)ψbµ′(t′)〉 = 〈T ψ∗aσ(t)ψaσ′(t)〉〈T ψ∗bµ(t′)ψbµ′(t′)〉
−〈T ψ∗aσ(t)ψbµ′(t′)〉〈T ψ∗bµ(t′)ψaσ′(t)〉 (2.17)

So the two-terms definition of the integral kernel is reduced to a single term of the elec-
tronic Green’s functions, like

Kij
ab(t, t′) ≡

i

8~
∑

σσ′µµ′
τ iσσ′τ

j
µµ′Gaσ′;bµ(t, t′)Gbµ′;aσ(t′, t). (2.18)
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From now on, we will study each case (monomer and dimer) separated, since they present
their own peculiarities that are worth looking at individually. Aside from the fact that the
monomer case is the simpler version of the problem, it also will be useful to develop a recipe
to obtain the spin’s dynamics and obtain comparable results for the dimer case.

2.3. Spin Monomer
The spin monomer system [34], as the name suggests, consists of a single molecule with

total spin S and unit direction vector Ω, coupled to two leads by the connection Hamiltonians
(2.4) and (2.3). Since we have a one-site-device to study, there is no need for the hopping
matrix Tσσ′ in equation (2.5), and we can model the electronic Hamiltonian by means of
spin-independent hoppings. Therefore, the electronic Green’s function Gaσ;bσ′(t, t′) defined in
(2.18), must be spin-independent as well:

iGaσ;bσ′(t, t′) = δabδσσ′iG(t, t′) (2.19)

That means that there is no preferred direction for the itinerant electron’s spin to choose,
i.e., 〈s(t)〉 = 0. This can be shown by applying the sum over spin and using the Pauli matrices
have null trace. The integral kernel is clearly also affected by this property

Kijab = i

8~δabG(t, t′)G(t′, t)
∑

σσ′µµ′
τ iσσ′τ

j
µµ′δσ′µδµ′σ

= i

8~δabG(t, t′)G(t′, t)
∑
σµ

τ iσµτ
j
µσ

= i

4~δabδ
ijG(t, t′)G(t′, t) (2.20)

= δabδ
ijK(t, t′). (2.21)

Where we have defined the one particle integral kernel K(t,t’). Now we can write the
one-site version of (2.14) and (2.15) as:

P[Ω̂, t] =
∫
Ω(t)=Ω̂

DΩδ(|Ω|2 − 1)e i~S , (2.22)

where

S =
∫
Ct
dt′
[
−S~dω

dt
+ Sh ·Ω + ∆2S2

∫
Ct
dt′′K(t′, t′′)Ω(t′) ·Ω(t′′)

]
, (2.23)

is the effective action for the spin-monomer system in between the leads. This action and
the time-ordered operator in (2.21) are defined over the Keldysh contour time, from which,
as explained in the Introduction section 1.3, it is not very easy to extract physical insight.
Therefore, we have to map it back to real time to understand the action and obtain relevant
information about the system or an effective equation of motion for the localized spin. We
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can map it back by separating the spin vector in the forward (t+) and backward (t−) paths
of the Keldysh contour time tc . This separation between the branches of the close-contour
time path defines the variables t+ : −∞ → t and t− : t → −∞ that lead to a change of
variables from Ω(tc) to Ω(t±) and δΩ(t±), the classical and fluctuation parts of the spin. The
separation

Ω(t±) = Ω(t)± 1
2δΩ(t), (2.24)

will allow us to map back to real time [39]. Here we notice that the change of variables
has a unitary Jacobian up to first order in the perturbation δΩ. The delta functional in
equation (2.22) enforce the unitary value of Ω(tc), but to keep that restriction in the new
time variables, we need to write it in a more manageable way. Luckily we can replace it with
a functional integral of a Lagrangian multiplier λ as

δ(||Ω||2 − 1) =
∫
Dλe

i
~

∫
Ct
dt′λS2(||~Ω(t′)||2−1). (2.25)

Therefore, we have to give the same treatment for λ as for Ω:

λ(t±) = λ(t)± 1
2δλ(t) (2.26)

Once we have prepared the effective action to transform it into real-time construction,
these two variables allow us to separate the time integral as follows

∫
Ct
dtc =

∫ t

−∞
dt+ +

∫ −∞
t

dt− =
∫ t

−∞
dt+ −

∫ t

−∞
dt−. (2.27)

t0 tt′ t

Figure 2.2: Sketch of the contour time illustrating how two times t
and t′ can be one greater than the other in value, but the relation is
inverted when we compare them in the contour time.

However, to map back to real-time, we must apply the decomposition presented in section
1.3 that introduces five new versions of the original kernel K(t, t′):
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K(t, t′) = Θ(t− t′)K>(t, t′) + Θ(t′ − t)K<(t, t′), (2.28)
K(±)(t, t′) = ±Θ (±(t− t′)) [K>(t, t′)−K<(t, t′)], (2.29)
K(K)(t, t′) = K>(t, t′) +K<(t, t′). (2.30)

With careful treatment on which function is defined in which branch, and applying the
Heaviside function’s properties: Θ(t− t′): Θ(t− t′)Θ(t′− t) = 0, Θ2(t− t′) = Θ(t− t′) we can
finally obtain the action’s real-time expression (2.23). A special note has to be taken here
because the Heaviside function takes values from the contour time; the difference between
time t and t′ depends on which branch they lay on, as shown in figure 2.2. So even tough their
actual value shows that t > t′, along the contour time t′ still can be greater than t: t<ct

′.
After taking all these steps and ingredients into account, the effective action S is written in
real-time as

S =
∫
dt′
[
~Sεαβγ

dΩα

dt′
δΩβΩγ + (hα + 2λΩα) δΩα + δλ

(
||Ω||2 + 1

4 ||δΩ||
2 − 1

)]

+S2∆2
∫
dt′
∫
dt′′

[
K(+)(t′, t′′) +K(−)(t′′, t′)

]
δΩ(t′) ·Ω(t′′)

+1
2S

2∆2
∫
dt′
∫
dt′′

[
K(K)(t′, t′′)

]
δΩ(t′)δΩ(t′′) +O(δΩ3). (2.31)

We have gotten a more extensive action than in 2.23, and the probability now is defined
by several path integrals over spin, Lagrangian multiplier and their fluctuations :

P[Ω̂, t] =
∫

Ω(t)=Ω̂
(DΩDδΩDλDδλ) exp

{
i

~
S[Ω, δΩ, λ, δλ]

}
. (2.32)

The significant advantage of these expressions is that we can directly integrate the La-
grangian multiplier fluctuation (Dδλ) since it only appears linearly in the action. The result
is a delta function that enforces that the classical direction plus the fluctuation still lies in
each site’s unit sphere. That leaves us with the condition:

||Ω||2 = 1− 1
4 ||δΩ||

2, (2.33)

this result is simply the consequence of the original condition on the contour time. However,
when we try to implement this condition in the effective real-time action, it only gives higher
than second-order terms in δΩ. Therefore, in the following sections, we neglect it and consider
that the Ω(t) lies in the unit sphere, i.e., ||Ω(t)||2 − 1 = 0.

2.3.1. Equation of motion

The remaining fluctuation field δΩ makes it complicated to obtain insightful notions of the
classical part dynamics since K(±) coupled them. This problem gets even more problematic
due to the non-trivial kernel K(K) as weight factor of the quadratic term in δΩ. This compli-
cation can be simplified if we transform the quadratic term, using the Hubbard-Stratonovich
(H-S) transformation [22, 46] to replace the fluctuation field’s quadratic term by adding a
new pure imaginary auxiliary field i

~η. To apply the transformation, we need to define the
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inverse of the Keldysh kernel as∫ ∞
−∞

dt′′KK(t, t′′)[KK(t′′, t′)]−1 = δ(t− t′). (2.34)

We can now perform the transformation that is, broadly speaking, a direct gaussian
integration of the auxiliary field. Which results in the quadratic term that we want to replace.
So, the last term in equation (2.31) can now be written as the path integral

∫
Dη exp

{[
−1

2

∫ t

−∞

∫ t

−∞
dtdt′ηi(t)[−i~S2∆2K(K)(t, t′)δij]−1ηj(t′) + i

~

∫ t

−∞
dtη · δΩ

]}
.

(2.35)
We can see that the “path integral” representation of the probability density got bigger,

but easier. This simplification is due to the fluctuation field δΩ appears only linearly, allowing
us to integrate it into a delta-functional. From where we define a constraint vector C that
imposes a relation between the rest of the fields. The final version of the probability density
is

P[Ω̂, λ, t] =
∫
Dη

∫
Ω(t)=Ω̂

(DΩDλ)δ(C) exp
[
−1

2

∫
dt
∫
dt′ηi(t)[−i~S2∆2K(K)(t, t′)δij]−1ηj(t′)

]
,

(2.36)
where the constrain vector is defined as

Ci ≡ ~SεijkΩj dΩk

dt
+Shi + 2λΩi + ηi +S2∆2

∫
[δijK(+)(t, t′) + δjiK(−)(t′, t)]Ωj(t′)dt′. (2.37)

This relation is what we have been looking for, but it still has the inconvenient Lagrangian
multiplier λ. We no longer need this field because its primary purpose was to enforce that the
spin direction in the contour time lies in the unit sphere, and at the end of the last section,
we have already done it. We can apply the cross product to the above equation to get rid of
it, using the classical direction’s unitary condition. Therefore, the equation of motion for the
spin direction is:

~S
dΩ(t)
dt

= Ω(t)×
[
(Sh + η) + S2

∫ ∞
−∞

dt′K̄(t, t′)Ω(t′)
]
, (2.38)

where for notation simplicity we define

K̄(t, t′) = −∆2[K(+)(t, t′) +K(−)(t′, t)] = −2∆2K(+)(t, t′). (2.39)

The last equality comes from the symmetry of the kernel definition in (2.29) under inter-
change the sign (+)↔ (−) while interchanging t↔ t′. From equation (2.38), we see that η
plays the role of a stochastic magnetic field. The auxiliary field inherits its stochastic nature
from the fluctuating field, and we can characterize its one and two-point correlation functions
as

〈η(t)〉 = 0, (2.40)
〈ηα(t)ηβ(t′)〉 = −i∆2~S2K(K)(t, t′)δαβ. (2.41)
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Up to this point, we have not studied in much detail the kernel itself. Apart from its
definition (2.21) and that it can be expressed in the usual Green’s function decomposition
(2.28), (2.29) and (2.30). It is not easy to obtain analytical information from the kernel in
its current state. However, if we assume some considerations in the system’s time scales, we
can obtain some insight into the kernel behavior, at least in the low energy regime.

2.3.2. Low energy approximation

We can easily spot that the integral kernel K(t, t′) is the complicated term in equation
2.38, and we need a way to deal with it. This kernel has all the information about the
interaction between the itinerant electrons and the localized spin. It covers the whole range
of energies. With that in mind, it is clear that the kernel’s full analytical expression and the
effects on the system are far from easy to calculate. Nevertheless, to maintain consistency
with our first approximation to get equations (2.36) and (2.38), weak s-d interaction, we
can neglect the kernel’s high energies processes. Besides the second approximation, where we
neglect high order terms in the fluctuation part of the localized spin. So, we first need the
energy representation of the integral kernel. To do it, we perform a Fourier transformation
in the time domain the advanced, retarded, and Keldysh component in equations (2.29) and
(2.30), we get:

K(±,K)(t, t′) ≡
∫ ∞
−∞

d(ε)
2π e−

i
~ ε(t−t

′)K(±,K)(ε) (2.42)

K(±)(ε) = −
∫ dε′

2π

∫ dε′′

2π
[G<(ε′)G>(ε′′)−G>(ε′)G<(ε′′)]

(ε± iη + ε′′ − ε′) (2.43)

K(K)(ε) = −2iπ
∫ dε′

2π

∫ dε′′

2π δ(ε− ε
′ + ε′′)[G<(ε′)G>(ε′′) +G>(ε′)G<(ε′′)] (2.44)

In the above expressions, we have made use of the fact that for the steady-state regime,
the kernels only depend on the time difference, which in the end, is the regime we want to
study. Now we have reduced the problem to calculate and manage the electronic Green’s
function. We obtain them from the Dyson equation:

[ε± − 2~Σ(±)(ε)]G(±) = 1 (2.45)

Where Σ(±)(ε) in equation 2.45 are the advanced and retarded self-energies of a semi-
infinite chain. These functions represent the lead’s effects on the system, as shown in [12, 9,
10, 39]. To determine their analytical expression, we considered each lead to be in thermal
equilibrium at temperature T, and chemical potential µL and µR for the left and right lead,
respectively. A handy tool to gain interpretation of the equations in energy representation is
the spectral function A(ε), defined as

A(ε) = i[G(+)(ε)−G−(ε)], (2.46)

this function allows as to express the needed components of the electronic Green’s function
as shown in [9, 10]
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−iG<(ε) = A(ε)
2

∑
s∈{L,R}

nF (ε− µs) (2.47)

iG>(ε) = A(ε)
2

∑
s∈{L,R}

[1− nF (ε− µs)] (2.48)

where nF (ε) is the Fermi-Dirac distribution. The spectral function will allow us to dig deeper
into finding an interpretative, analytical expression for the integral kernel K̄ in equation
(2.38). A Taylor expansion easily finds the low energy approximation up to first order for ε
around 0 in equations (2.43) and (2.44). As explained in this chapter’s introduction, our main
goal is to study the dynamics mediated by the non-equilibrium electrons, so we introduce
an imbalance between the chemical potential through an external voltage difference between
them: µL = µF + |e|V

2 and µR = µF − |e|V2 . This unbalance gives us two control parameters,
the band of voltage and the center of the band. Applying the above expressions, we find that
equation (2.43) is, in terms of the spectral function, an expression more easily interpreted:

K(±)(ε) = K(±)(ε = 0)∓ i

8π

(
A2(µF + |e|V2 ) + A2(µF −

|e|V
2 )

)
ε. (2.49)

We have used the approximation of a delta function for the derivative of the Fermi dis-
tribution, n′F (ε) ≈ −δ(ε). Since we think on a low energy approximation, a possible low-
temperature experiment seems reasonable and justifies that approximation. Here we use the
Cauchy Principal value identity to work the complex-valued denominator, due to ±iδ. Now
we can come back to the integral in the equation of motion (2.38) and approximate it as:

Ω(t)×
∫ ∞
−∞

K̄(t, t′)Ω(t′)dt′ ' −~α(V )Ω(t)× dΩ(t)
dt

(2.50)

We see that the energy-independent term in equation (2.49) plays no role in the spin
direction dynamics. Replacing the above expression in the equation (2.38), we see that a
Landau-Lifshitz-Gilbert equation (LLG) rules the spin direction dynamics with α(V ) as the
effective damping.

α(V ) = ∆2

4π [A2(µF + |e|V2 ) + A2(µF −
|e|V

2 )] (2.51)

so the final form of 2.38 is

~S
dΩ(t)
dt

= Ω(t)×
(
Sh+ η − S2~α(V )dΩ(t)

dt

)
(2.52)

With this, we have found an elegant expression for the equation of motion that includes
the interaction of the itinerant electrons with the localized spin as an effective damping and
a stochastic magnetic field. This result presents a very interesting microscopic derivation of
the Landau-Lifshitz-Gilbert equation and gives an analytical justification of the damping
contribution rather than the usual phenomenological reasoning to include it. A significant
detail that needs to be noted is that α(V ) ≥ 0, meaning that this interaction can only extract
energy from the molecule and give it to the electrons passing through. Applying the same
mechanism explained for the advanced and retarded components to the Keldysh component,
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we find that

K(K)(ε) = −i2

∫ dε′′

2π A
2(ε′′){nF (µL − ε′′) + nF (µR − ε′′)}[nF (ε′′ − µL) + nF (ε′′ − µR)], (2.53)

this expression is hardly as simple as the one we find for the advanced and retarded compo-
nent, but if we see the equilibrium situation where µL = µR = µF for some illumination, we
can see that the Keldysh component K(K)

0 in the low energy approximation is

K
(K)
0 (ε→ 0) = 2kBT

i∆2 α0. (2.54)

Where α0 in the above equation is the equilibrium value of the effective damping. With
this, we see that K(K) defines an effective temperature, just like K(±) define an effective
damping. Another way to see this relationship between the Keldysh and the advanced and
retarded Green’s functions is through the Fluctuation-Dissipation theorem that connects the
fluctuating part of a system, the Keldysh component, with the dissipation in the same system,
the advanced and retarded components. Theorem’s applicability has been shown to hold at
equilibrium in [34] and further extended to non-equilibrium in [13]. In both cases, they show
the same idea of the effective temperature from the Keldysh component as:

kBTeff (V ) ≡ i∆2

2α(V )K
(K)(ε) (2.55)

We find a more detailed deduction of this relationship in the next chapter when studying
the stochastic field’s implications in the equation of motion. For now, we can see that the
two-points correlation function of the auxiliary field in equation (2.41) is

〈ηα(t)ηβ(t′)〉 = [−i∆2~2S2K(K)(ε→ 0)]δαβδ(t− t′). (2.56)

We see that the correlation, after the low-energy approximation, is local in time and
is diagonal in its vector components, both essential characteristics that will simplify much
work in the next chapter when we study the effects of the stochastic nature of equation (2.52).
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Figure 2.3: Effective damping and effective temperature, considering a
symmetric case with tL = 1[meV ] and tR = 1[meV ], along with the
hopping between electrodes sites J = 1[meV ], as presented in [34]. We
can see that the effective temperature has an asymptotic value for high
voltages as shown in equation 2.57.

2.3.3. Effective temperature and damping: Numerical analysis

Now that we have found the mathematical expressions for the effective temperature
Teff (V ) and damping α(V ), we can explore in detail the numerical aspects of those ex-
pressions. We compare our results with the ones presented in [34], from where the authors
developed the framework and presented a microscopic derivation of the stochastic Landau-
Lifshitz-Gilbert equation for the spin direction of a molecule under the effects of electrical
current. We study the effective temperature and damping as function of the bias voltage at
a fixed value of the chemical potential µF = 1[meV ].

A fascinating result for the effective temperature appears when we study the limit where
the voltage is much larger than the system’s temperature. In this limit, the authors of [34]
found that Teff (V ) has a simple asymptotic expression.

kBTeff '
|e|V

4 + 1
2kBT (2.57)

2.4. Spin dimer
The spin dimer system [12] is the natural extension of the monomer system. Since we

only add another molecule, at first sight, it might not look like a very exciting system to
work with. However we find some new phenomena that the monomer system can not include;
effective interactions inside the device. Like the last case, this system consists of two leads
connected to the device by the connection Hamiltonian for each one in equation (2.3) and
(2.4), as shown in figure 2.4. Only now, the device consists of two molecules with total spin S
and unit vector Ωa, where a ∈ {1, 2}. Since now we have a two-site-device, we cannot reduce
the full electronic Green’s expression to a single function, like in equation (2.19). Instead, we
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deal with a 4x4 matrix from the general expression (2.16) as:

iGaσ;bσ′(t, t′) ≡ 〈T ψaσ(t)ψ∗bσ′(t′)〉. (2.58)

T,µL T,µR
tL tR

Tσ,σ′JL JL JR JR

Figure 2.4: Sketch of a one-dimensional chain toy model that includes
two semi-infinite leads and an N-sites device.

Clearly, in this case, due to the hopping matrix T, more specifically, the spin-orbit coupling
t, the system presents a preferred direction to interact with the itinerant electrons. So 〈s(t)〉 6=
0, and we have to calculate it. For now, we can establish the framework using the general
expression shown in equations (2.13) and (2.14) with N = 2, so we find that:

S =
∫
Ct
dt
∑
a

{−~Sdωa
dt
−E [Ωa(t)]+S∆〈sa〉·Ωa(t)}+

∫
Ct
dt
∫
Ct
dt′
∑
abij

∆2S2Kij
ab(t, t′)Ωi

a(t)Ω
j
b(t′)

(2.59)
is the effective action for the spin dimer, where we already made the second-order approxi-
mation on ∆. The probability keeps the same structure, but now includes two path integrals,
one for each spin, like:

P[Ω1,Ω2, t] =
∫
Ω1(t)=Ω̂1

∫
Ω2(t)=Ω̂2

DΩ1DΩ2δ(|Ω1|2 − 1)δ(|Ω2|2 − 1)e i~S . (2.60)

The above expressions for the action and the probability function are defined over the
Keldysh contour time, so we have to map it back to real-time, just like for the monomer case.
In order to do it, we have to define the components of the integral kernel Kij

ab(t, t′) in the
Keldysh contour using equations (1.12), (1.13) and (1.14). So we have that

Kij
ab(t, t′) = Θ(t− t′)Kij >

ab (t, t′) + Θ(t′ − t)Kij <
ab (t, t′), (2.61)

K
ij (±)
ab (t, t′) = ±Θ (±(t− t′)) [Kij >

ab (t, t′)−Kij <
ab (t, t′)], (2.62)

K
ij (K)
ab (t, t′) = Kij >

ab (t, t′) +Kij <
ab (t, t′). (2.63)

Here we notice the first advantage of our early study of the monomer case. We see that
the calculations done to obtain the monomer case’s real-time action are straightforwardly
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applicable to the dimer case since, in essence, we only have to repeat the procedure for each
field, Ω1 and Ω2. Although it is a bit more complicated than just that because the fields are
coupled, it still follows the same steps. So, we split the contour time into the forward and
backward paths like in (2.27). Along with the change of variables in equation (2.24) for both
spins. We obtain that the action is written as

S =
∫
dt′
∑
a

[
~Sεαβγ

dΩα
a

dt′
δΩβ

aΩγ
a + δλa

(
||Ωa||2 + 1

4 ||δΩa||2 − 1
)]

(
− dE
dΩa

[Ωa] + S∆〈sa〉 ·Ωa + 2λaΩa

)
δΩa+

S2∆2
∫
dt′
∫
dt′′

∑
abij

δΩi
a(t′)

[
K
ij (+)
ab (t′, t′′) +K

ij (−)
ba (t′′, t′)

]
Ωj
b(t′′)+

1
2S

2∆2
∫
dt′
∫
dt′′

∑
abij

δΩi
a(t′)

[
K
ij (K)
ab (t′, t′′)

]
δΩj

b(t′′) +O(δΩ3
a). (2.64)

Where again, we introduce the Lagrangian multipliers, λa, to enforce that the spin’s
direction Ωa, in the Keldysh time, lies in the unit sphere, and the Lagrangian multiplier’s
fluctuation, δλa, to map it back to real-time. Following the same argument presented in
the last section, we expand the action up to second order in δΩa, so we neglect the rapid
fluctuation contribution to the spin’s dynamics. We can see that, as before, the integration of
δλa presents higher-order contributions in terms of δΩa. So, even in the dimer configuration,
we find that both spin vectors lie on the unit sphere under our approximations. We describe
the probability P by several Path integrals over the spin direction, its fluctuation, and the
Lagrangian multiplier

P[Ω̂1, Ω̂2, t] =
∏
a

∫
Ωa(t)=Ω̂a

(DΩaDδΩaDλa) exp
{
i

~
S[Ωa, δΩa, λa]

}
. (2.65)

This expression is more complicated than the former one, but it shows us that besides the
extra indices from the sites, the non-zero average of the itinerant spin and the integral kernel
is even more intricate than before, the structure of the probability remains unchanged.

2.4.1. Equation of motion

We see the same problem from equations (2.64) and (2.65) that the one we have en-
countered in the last section. The fluctuating part δΩa makes it complicated to extract real
information on the classical part Ωa due to the quadratic terms and the Keldysh Green’s
function K(K). Naturally, we apply the Hubbard-Stratonovich transformation to each field
fluctuating part and obtain two auxiliary fields, ηa. In the next chapter, we will study the
implications of these new fields on the localized spins. This transformation adds one inte-
gral for each new auxiliary field, which is highly unrecommended because it makes a more
extended-expression. Nevertheless, it simplifies the integration of the fluctuating part of each
spin. The final form of the probability density is:
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P[Ω1,Ω2, t] =
∏
a

∫
Dηa

∫
DΩaDλaδ(Ca) exp

−1
2
∑
ab;ij

∫
dt′
∫
dt′′ηia(t′)

(Kij (K)
ab (t′, t′′))−1

−i~S2∆2

 ηjb(t′′)
.

(2.66)
We have defined the inverse of the Keldysh component, like in equation (2.34), and two

constraint vectors, Ca, from integrating each fluctuating parts at the site a,

Ci
a(t) ≡ ~SεijkΩj

a

dΩk
a

dt
− ∂E
∂Ωi

a

[Ωa]+S∆〈sia〉+2λaΩi+ηi+S2∆2
∫
dt′
[
K
ij (+)
ab (t, t′) +K

ji (−)
ba (t′, t)

]
Ωj
b(t′).

(2.67)
As for the monomer case, this vector gives us the relations we are looking for, the equation

of motion for each spin. Once we get rid of the Lagrangian multiplier, the equations of motion
are:

~S
dΩi

a(t)
dt

=
Ω̂a ×

−∂ε[Ω̂a]
∂Ω̂a

+ S∆〈~sa(t)〉+ ~ηa(t)
i

+
∑
bklm

εiklΩk
a(t)

∫
dt′S2∆2

[
Klm (+)
ab (t, t′) +Kml (−)

ba (t′, t)
]

︸ ︷︷ ︸
χlm
ab

(t−t′)=2Klm (+)
ab

(t,t′)

Ωm
b (t′) (2.68)

here we can define the magnetic susceptibility χijab(t− t′), to simplify the notation. From this
equation, we see that each auxiliary field, ηa(t), only affects the equation of their related site.
This field inherits a stochastic nature from the fluctuating nature of the fluctuating part. We
can characterize it by the one and two-point correlation functions defined by the Keldysh
components, like

〈ηa(t)〉 = 0, (2.69)
〈ηαa (t)ηβb (t′)〉 = −i∆2~S2K

αβ (K)
ab (t, t′). (2.70)

If we look closely at the structure of equation (2.68), we can see that the stochastic au-
xiliary fields appear in the same way as a magnetic field from the Zeeman interaction. This
means that the fluctuating part of the spin direction in both sites adds random magnetic
fields to each site.

Now we have to explore a little more in the integral kernel’s nature. As shown in the last
section, the simplest way is through the energy representation of the electronic Green’s fun-
ctions. Following the steps from section 2.3.2 and adapting it to the dimer configuration we
can obtain a compute-able expression for K(±) and K(K). Using the same reasoning of section
2.3, we can restrict our analysis to a low energy range to satisfy the approximations done to
obtain the equation of motion for the, now, localized classical spins at each site. Therefore,
we can perform a Taylor expansion to obtain the low energy behavior and extract all the
information that we need to understand the dynamics of the system. To focus on the relevant
results and the physics behind them, we left the step by step deduction of each equation in
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Appendix A. Here we only show the relevant expressions and final results to analyze.

Applying the decomposition of equations (2.61), (2.62), and (2.63) to the electronic
Green’s function, we find the relation between the advanced, retarded ,and Keldysh com-
ponents of Kij

ab in the energy representation, with the Greater and Lesser components of
Gaσ;bσ′(ε). So we have that

K
ij (±)
ab (ε) = −1

8~
∑

σσ′µµ′
τ iσσ′τ

j
µµ′

∫
dε′

2π
dε′′

2π
G>
aσ′;bµ(ε′)G<

bµ′;aσ(ε′′)−G<
aσ′;bµ(ε′)G>

bµ′;aσ(ε′′)
ε± − ε′ + ε′′

,(2.71)

K
ij (K)
ab (ε) = − iπ4~

∑
σσ′µµ′

τ iσσ′τ
j
µµ′

∫ dε′

2π
dε′′

2π δ(ε− ε
′ + ε′′)[G>

aσ′;bµ(ε′)G<
bµ′;aσ(ε′′)+

+G<
aσ′;bµ(ε′)G>

bµ′;aσ(ε′′)]. (2.72)

Where ε± = ε ± iδ is added for convergence in the integration as usual [2, 33]. Here we
can see that equations (2.71) and (2.72) are the clear extension of equations (2.43) and (2.44)
with the addition of site and spin dependence on G(t, t′). With the Dyson equation and the
steady-state kinetic equation [9, 10, 12], we find the exact solution for G≶ from the device’s
Hamiltonian and the self-energies of the leads. When we analyze that solution for G≶, we see
that the intricate site and spin dependence in the 4x4 matrix, can be decomposed into four
new 2x2 matrices as

G≶
aσ;bσ′(ε) = G

(s) ≶
ab (ε)Iσσ′ +G

(t) ≶
ab (ε)[t · τ ]σσ′ . (2.73)

This decomposition is actually a direct result of the symmetry on the original theory over
spin. When we replace equation (2.73) in equation (2.71) it shows an essential separation
because it allow us to work out the spin indices independently of the site indices. Using
the Pauli matrices’ properties, we see that K(±)

ij have three very characteristic tensors that
work the spatial indices; a fully symmetric part (δij), an antisymmetric part (εijk t̂k), and
asymmetric part (t̂it̂j). So we can write the advanced and retarded components as:

K
ij (±)
ab (ε) = −1

4

∫ dε′

2π
dε′′

2π

[
Jab(ε′, ε′′)δij + iDab(ε′, ε′′)εijk t̂k + 2Γ̄ab(ε′, ε′′)t̂it̂j

]
ε± − ε′ + ε′′

. (2.74)

Therefore, we tentatively call their weight factors: the symmetric Jab, antisymmetric Dab,
and anisotropic Γ̄ab full interactions. In a later section, we will check if they follow the expected
symmetries. In Appendix A, we present a detailed derivation of the analytical expression of
these interactions. We treat them as “full interactions” because up to now, we have not made
the low energy approximation, so they contain the kernels’ full behavior and information
from the interaction with the itinerant electrons. However, as we argue at the beginning
of the section, we are not interested in their full behavior, nor are we allowed to describe
the full range of energies. Here we call the result shown in Appendix A, where we obtain
that from each full interaction we get a low energy effective interaction and damping as:
Jab 7→ {Jab, αab}, Dab 7→ {Dab, βab} and Γ̄ab 7→ {Γab, γab}, respectively. With those definitions
we can come back to the equation of motion and obtain:
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~S
dΩa

dt
(t) = Ωa ×

[
− ∂

∂Ωa

Eaeff [Ω̂a(t), Ω̂b(t)] + ηa(t)− ~S2∑
b

ᾱab
dΩb

dt
(t)
]
. (2.75)

We have defined the effective energy at site a due to the spin direction of both spins at
time t, Eaeff , and the effective damping tensor,ᾱab, as

Eaeff [Ω̂a(t), Ω̂b(t)] = E [Ω̂a]− S∆〈sa(t)〉 ·Ωa(t)− ~S2∆2∑
b

[
JabΩa ·Ωb+

+iDabt · (Ωa ×Ωb) + 2Γab(Ωa · t)(Ωb · t)−
1
2Γaa(Ωa · t)2

]
, (2.76)

ᾱijab = ∆2
[
αabδ

ij + iβabε
ijk t̂k + 2γabt̂it̂j

]
. (2.77)

Here we notice the resemblance with equation 2.52, but due to the spin-orbit coupling,
the expression is more challenging, and the damping is now a non-diagonal tensor. On the
other hand, if we apply equation (2.73) in the Keldysh component Kij (K)

ab , along with the
low energy approximations, we find that up to first order in ε, the Keldysh component is

K
ij (K)
ab (ε) = jabδ

αβ + idabε
αβk t̂k + 2gabt̂αt̂β. (2.78)

Where we see that K(K) has the same vectorial structure as the advanced and retarded
functions, but in contrast with those expressions, the Keldysh component is constant in
energy. Therefore, with equations (2.78) and (2.70), we find the final version of the two-point
correlation function for the stochastic magnetic field as

〈ηαa (t)ηβb (t′)〉 = −i∆2~S2
[
jabδ

αβ + idabε
αβk t̂k + 2gabt̂αt̂β

]
δ(t− t′). (2.79)

This correlation function is far from the diagonal one we found for the monomer confi-
guration. This complication comes essentially from the spin-orbit coupling rather than the
addition of another molecule. When we look at the antisymmetric and the asymmetric dam-
ping’s analytical expressions, it is clear that those terms drop to zero for a neglectable spin-
orbit coupling, and the Keldysh component is a diagonal again. The antisymmetric and the
asymmetric interactions drop to zero as well when there is no spin-orbit coupling. The phy-
sical reasoning of all these comes from the loss of a preferred direction. Therefore, the only
possible interaction between the spin has to be a symmetric interaction.

2.4.2. One spin fixed

When we look at equation (2.75), we can anticipate a much longer and harder treatment
to obtain the steady-state probability density than the one needed to deal with equation
(2.52). However, if we study the case where we somehow manage to fix one of the localized
spin’s directions, the equation of motion for the free spin simplifies considerably. Due to the
symmetry in the system, we can set the localized spin at site 1 as fixed along m̂. Later it
will be parallel to the external magnetic field, and let Ω2 evolve in time. Now, instead of two
coupled Langevin equations, we only contemplate effective interactions with a fixed localized
spin. We can drop the sub-index in the Ωa vectors, and re-name them as m̂ for Ω1, and Ω
for the spin’s direction of site 2. Therefore, the final effective energy of the localized spin at
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site 2 is

E ′[Ω, m̂, t̂] = E [Ω]− S∆〈s〉 · Ω− ~S2∆2
[
J21Ω · m̂+D21t̂ · (Ω× m̂)+

2Γ21(Ωt)(m̂ · t̂) + Γ22(Ωt)2
]
. (2.80)

When we study the damping tensor, we see that the relevant component turns out to be
ᾱ22, and we can define the damping factors

i~∆2{α22, β22, γ22} → {α, β, γ}, (2.81)

for simplicity in notation. Therefore, the final Langevin equation is

~S
dΩ

dt
= Ω×

[
H + η − ~S{SαdΩ

dt
+ Sβ(dΩ

dt
)× t̂+ Sγt̂(t̂ · dΩ

dt
)}
]
. (2.82)

where we have defined the effective field H = −∂E ′
∂Ω

. Now we can see that, even though
equation (2.82) still depends on the spin’s direction at site 1, it is a much simpler equation.
The effect of the damping factors and how we can keep extracting information from this
equation of motion will be studied in the next chapter. In the above equation, we notice that
the relevant stochastic magnetic field, one is at site 2, i.e., η2. We can define the correlation
terms as

− i∆2~S2{j22, id22, 2g22} → {j, d, g}, (2.83)

as for the damping tensor for simplicity. Before we continue with the analysis of the equation
of motion and its implication to an average value of the spin direction, we have to study
different relations between the hopping parameters. These configurations will allow us to
understand a little more the low energy representation of the system’s electrical current
effects.

2.4.3. Analysis of effective interactions

When we see the final equations for the effective interactions in Appendix A, we see that
they are meant to be numerically calculated. However, if we define the spectral function
(2.46) in a similar way as for the monomer case, we see that a little more information can
be obtained but only for very characteristic cases, like equilibrium (V = 0), symmetric
comparison (F (V ) ∼ F (−V )) or index permutation. Those are the cases that we should pay
special attention to because it will help us verify our assumptions of the kind of interaction we
are looking at, with the aid of section 1.2. It also will help us to verify that we are computing
each term right. First, we have to define the partial spectral functions:

A
(s)
c;ab = −2~

[
G(s)(+)
ac Im

(
Σ(+)
c

)
G

(s)(−)
cb +G(t)(+)

ac Im
(
Σ(+)
c

)
G

(t)(−)
cb

]
, (2.84)

A
(t)
c;ab = −2~

[
G(s)(+)
ac Im

(
Σ(+)
c

)
G

(t)(−)
cb +G(t)(+)

ac Im
(
Σ(+)
c

)
G

(s)(−)
cb

]
, (2.85)

so we can write the effective interactions in equations (A.23), (A.24) and (A.25), as:
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Jab(ε′, ε′′) =
∑
cd

[nF (ε′′ − µd)− nF (ε′ − µc)]
(
A

(s)
c;ab(ε′)A

(s)
d;ba(ε′′)− A

(t)
c;ab(ε′)A

(t)
d;ba(ε′′)

)
,(2.86)

Dab(ε′, ε′′) =
∑
cd

[nF (ε′′ − µd)− nF (ε′ − µc)]
(
A

(s)
c;ab(ε′)A

(t)
d;ba(ε′′)− A

(t)
c;ab(ε′)A

(s)
d;ba(ε′′)

)
,(2.87)

Γab(ε′, ε′′) =
∑
cd

[nF (ε′′ − µd)− nF (ε′ − µc)]A(s)
c;ab(ε′)A

(s)
d;ba(ε′′). (2.88)

The significant advantage of those expressions over the original ones comes from the
separation of the site dependence and the non-equilibrium parameters {µF , V }, through the
spectral function and the Fermi distribution, respectively. Now we can study each interaction
and its symmetries. We can deduce the most relevant symmetries by studying the parity
symmetry under energy exchanges, i.e. ε′ ↔ ε′′

Jab(ε′, ε′′) = −Jba(ε′′, ε′), (2.89)
Dab(ε′, ε′′) = Dba(ε′′, ε′), (2.90)
Γ̄ab(ε′, ε′′) = −Γ̄ba(ε′′, ε′). (2.91)

Therefore, when we evaluate the expression for J21 we find that only for the equilibrium
situation, i.e. V = 0, it presents the symmetry J12 = J21. From that, we see that only in
equilibrium we have symmetric interactions between the spins. With the same reasoning, we
can see that Γ21 = Γ12 for V = 0, but that relation does not hold for the non-equilibrium
configuration. On the other hand, the antisymmetric interaction has the special property
that, at equilibrium, D21 = 0. All this equilibrium-symmetries can be understood from the
symmetry that breaks the voltage. Since the voltage sets an imbalance between the sites the
interaction between them cannot be equal, one must react different from the other. Therefore,
they only interact symmetrically when their occupancies are filled symmetrically, and clearly
the antisymmetric interaction has to vanish for such configuration.

With relations (2.89), (2.90), and (2.91) we can also study the damping terms {α22, β22, γ22}.
Even more, we can analyze and reduce the number of integrals. All this since J22 and Γ̄22
are completely antisymmetric under energies switch, i.e. ε′ ↔ ε′′. Another significant result
from the study of these symmetries comes from the correlation functions, particularly the
antisymmetric correlation. Since it presents a relation similar to equation (2.90):

d̄ab(ε′, ε′′) = −d̄ba(ε′′, ε′). (2.92)

With this relation, it is very clear that the id22 integral is zero. So the system does not
present an antisymmetric part in the correlation function. In purely physical interpretation
we can see that this contribution must be zero. Since it make no sense that the two-point
correlation function for the stochastic magnetic field would not commute. So we have that
the correlation functions of the η2(t) are:

〈η2(t)〉 = 0, (2.93)
〈ηα2 (t)ηβ2 (t′)〉 =

[
jδαβ + gt̂αt̂β

]
δ(t− t′). (2.94)
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With these results and those of the last sections, we see that each interaction can be
identified as:

Exchange: −J21Ω · m̂.

This interaction minimizes the system’s energy when the spin at site 2 is parallel (J21 >
0) or anti-parallel (J21 < 0) with respect to the spin at site 1 m̂. Therefore, this
interaction makes the system tend to the ferromagnetic/antiferromagnetic configuration
according to the sign of J21.

DM: −iD21t̂ · (Ω× m̂).

In contrast to J21, this interaction minimizes the energy of the system when the spins
are orthogonal to each other. In fact, it makes the spin at site 2 to align with m̂ × t̂,
forming a right-handed triad with {t̂,Ω, m̂}.

Asymmetric Exchange: Γ21(Ωt)(mt) and Γ22(Ωt)2.

Here the energy is minimized when both spins align (Γ21 > 0) or anti-align (Γ21 < 0)
with a preferred direction t̂. However, the second contribution Γ22 only considers the
alignment between the dynamic spin Ω and the spin-orbit direction t̂.

All this agrees with what we have shown in Section 1.2. We can see that the vector-like of
the DM interaction in equation (1.5) turns to beD21 = iD21t̂, and the anisotropic interaction
in equation (1.4) is the exterior product of the spin-orbit direction, i.e. Aij = Γij t̂⊗ t̂. A final
note on these interactions is that Γ21 does not contribute to our’s case’s dynamics since we
have chosen m̂ and t̂ to be orthogonal to each other. This interaction would be relevant if
we study the case where those vectors align or even if they are not orthogonal, i.e. m̂ · t̂ 6= 0.
However, we are interested in the DMI effects, so we choose that configuration in order to
maximize that effect. Another exciting configuration could be where those effects are mixed
and balanced, but we leave that configuration for future work. Therefore, in the next section,
we study the numerical value of both interactions.

2.4.4. Effective interactions, damping, and correlation: Numerical
analysis

To better understand each interaction, damping, and correlation strength, we can explo-
re the numerical value for a certain relation between the hoppings. From the mathematical
expression presented in the last section and at the end of Appendix A, we can see that the
explicit form of each effective term is highly dependent of the external parameters, the che-
mical potential of each lead, and the bias voltage. We can explore the space parameter of
combinations between the center-band chemical potential µF that sets the equilibrium beha-
vior and the bias voltage V that sets an imbalance between the leads, as shown in figure 2.5.
This section is devoted to analyze those results and discuss the interesting features of each
one. The numerical calculations were done using Mathematica to integrate the expressions in
Appendix A.
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Figure 2.5: Sketch of the relation between the center-band chemical
potential, µF , and the bias voltage, eV . Along with the illustration of
which spin is fixed and which is free to move.

To identify the spin-dependent hopping effect in the system and the effects of the electri-
cal current, we propose to study three different strength of the spin-orbit coupling (SOC). At
first, we establish main contribution of the electrical current by setting a neglected SOC, i.e.,
t = 0 [meV]. With this configuration, we aim to set the ground results in order to compare
them with non-neglectable SOC configurations. We can understand the system’s sensitivity
to the SOC with a perturbative inclusion of the spin-dependent hopping, t = 0.05 [meV]. Ho-
wever, the full effect of including a spin-dependent hopping can be found for strong coupling
t = 1 [meV].

Without spin-orbit coupling

We begin the numerical analysis with the null SOC configuration, for which we have seen
in the analysis of the former section and Appendix A that from all the interaction, damping,
and correlation strengths, the only non-zero terms are: the symmetric interaction J21, the
symmetric damping α22 and the symmetric correlation factor j22. These results are shown
in figure 2.6. Those figures consider the hopping parameters for the intra-lead hopping of
J = 100[meV ], the lead-device hopping of tL/R = 10[meV ], and the intra-device hopping of
t0 = 2[meV ], as shown in [12]. We choose the relation between the hoppings so the approxi-
mation we have done in this chapter are valid.
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(a) J21 (b) α22 (c) j22

Figure 2.6: Effective terms in absence of the spin-orbit coupling, con-
sidering symmetric relation between the leads. Where the effective ex-
change interaction J21 is shown in (a), the effective symmetric damping
is shown in (b), and the symmetric correlation strength is shown in (c).
In every figure, we show the reference lines µL = ±t0 and µR = ±t0
to illustrate the cross-like structure. These lines show a more profound
and underlying relation between the hoppings.

In figure (2.6), we show the three effective terms for the spin dimer in the absence of
the spin-orbit coupling. All three plots share the same underlying cross-like structure, that
indicate a deeper relationship between the bias voltage and the chemical potential of each
lead. When we analyze those figures, we can see that the characteristic lines are:

||µL/R|| = t0, (2.95)

where we remember that µL = µF + |e|V
2 and µR = µF − |e|V2 , as shown in figure 2.5. These

lines are shown in all three plots of figure 2.6. It is important to note that these lines show
the characteristic cross-like line, but slightly different lines represent different aspects of each
term, such as the local minima/maxima or possible zeros.

The effective exchange interaction J21 in figure 2.6a shows many interesting features; to
us, the most important one is the sign switch. When we look at the definition and conse-
quences of the symmetric exchange interaction in section 1.2, we find that the system can
present either a ferromagnetic or an antiferromagnetic configuration due to this sign change.
Even more, this switch can be achieved by adjusting the center-band µF and the bias voltage
|e|V . The big advantage here is that both parameters can be tuned externally. We do not
have to settle to a magnetic configuration restricted by the properties of the components in
the system. As we mentioned in the last section, the symmetric interaction is not symmetric
for a voltage inversion. It is very interesting that the parameter space where the interac-
tion is negative (J21 < 0) is approximately restricted by |µL| > t0 and |µR| > t0. We can
only express an approximate expression of the characteristic lines because of the complex
form of each effective term’s expression. Even though those lines can not predict the zeros
of the function, they surely set the local maxima along |µL| = t0 and |µR| = t0. Besides, the
global maxima of the function is found for slightly outside of the intersection, along |µR| > t0.
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In figure 2.6b, we present the numerical value of the effective damping α22. Unlike the
monomer case, the dimer in the absence of the spin-orbit coupling has effective damping with
a negative value for a certain combination of the external parameters. The fact that α22 is
negative shows that the localized spin at site two is gaining energy instead of dissipating it
to the nearest lead. This region in the parameter space is roughly characterized by |µL| < t0
and |µR| > t0. Similarly to the exchange interaction, the effective damping presents their
local maxima along the lines |µL| = t0 and |µR| = t0, where the latter one is greater than the
first. Even more, in this case, the global maxima are precisely at the intersection of those lines.

Finally, in figure 2.6c, we present the symmetric correlation strength. This effective term
is inherently different from the former factors. Although the same characteristic lines can
analyze it, the cross-like form does not follow the local maxima, but instead, the mid-point
of the step-like increase along with an increasing absolute value of the voltage. Unlike the
former terms, the correlation strength presents a perfect symmetry meaning that an stochastic
magnetic field does not care of the direction of the current but the intensity.

Weak spin-orbit coupling

As we can see from the explicit expressions of the interactions, damping, and correlation
strengths, as soon as we include the SOC (t 6= 0), the anomalous terms; Dab, Γab, γab and gab,
are no longer zero-valued. So, as explained at the beginning of this section, we will study the
inclusion of this new interaction by comparing the results of weak coupling (t = 0.0 [meV])
with a strong coupling (t = 1 [meV]), so we can understand the main effects of the SOC
qualitatively.

Unlike the former configuration, when we include the SOC, the number of effective terms
increases significantly, so we separate them by their common role. We present the numerical
results of the interactions, damping, and correlation strength that are relevant to the dyna-
mics of the spin at site two, in figures 2.7, 2.8, 2.9, and 2.10. In those figures, we can see
that the earlier characteristic lines in equation (2.95) still seem very accurate. However, by
a closer look and comparison between the symmetric terms shown in figure 2.6, under both
configurations, we can see that the characteristic lines for this system are:

||µL|| = t0 − t, (2.96)
||µR|| = t0 + t. (2.97)

We can see that those results seem similar because of the low value of t. Although these
lines are highly motivated by the pole-like value of the explicit electronic Green’s function
shown in Appendix A, we still have to check the validity of these lines with the strong SOC
case.

The effective interactions J21, D21, Γ21, and Γ22 are shown in figures 2.7 and 2.8. When
we compare the symmetric interaction J21 in figure 2.7a with its counterpart in without SOC
in 2.6a, we can see that all the relevant characteristics are preserved. The low sensitivity
under an additional hopping comes from the fact that this particular interaction is mainly
affected and originated by the electrical current, therefore the system-lead interaction. As
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(a) J21 (b) D21

Figure 2.7: Effective interactions for weak spin-orbit coupling, consi-
dering symmetric relation between the leads. The effective exchange
interaction J21 is shown in (a), and the DM interaction is shown in
(b). Here we can see that J21 allows a ferromagnetic or antiferromag-
netic interaction for certain combinations of the external parameters.
The DM shows a step-like behavior that resembles the structure of
the correlation factor in 2.6c. The spin’s direction dynamics would be
ruled by the relation between these interactions and the corresponding
correlation factors.

we can see from the characteristic lines ||µR|| = t0 + t, the local maxima that enclose the
negative-valued region are separated by the inclusion of the SOC compare with the former
case. Nevertheless, the more interesting result comes by comparing the global maxima and
minima, because both values are slightly smaller/bigger, indicating that it is affected by the
SOC.

Between the new interactions that appear with the inclusion of the SOC, we are more
interested in the effective DM interaction D21 in figure 2.7b. This interaction is exceptionally
different from J21. Even though it is still represented by characteristic lines in equations (2.96)
and (2.97), it follows a similar step-like form as for the symmetric correlation strength rather
than a cross-like form denoted by its local maxima. However, unlike j22, the DM interaction
turns to be an odd function of the voltage, which follows the regular physical interpretation
of a DM interaction. It is important to note that this interaction is lower than J21, but not
for that much, even for a weak SOC. In the end, this close relation between them will provide
interesting effects in the dynamics.
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(a) Γ21 (b) Γ22

Figure 2.8: Effective interactions for weak spin-orbit coupling, conside-
ring symmetric relation between the leads. Where the effective aniso-
tropic interactions Γ21 and Γ22 are shown in (a) and (b), respectively.
We can see the oppositve response in sign to the characteristic lines of
constant value of each lead chemical potential.

At last, the anisotropic interactions Γ21 and Γ22 are shown in figures 2.8a and 2.8b, respec-
tively. First, we see that Γ21 is very similar to J21, however, this interaction is three orders of
magnitude smaller, and the local maxima along ||µL|| = t0− t is swapped by minima and the
global maximum appear along the ||µL|| = 0. The anisotropic “self-interaction” Γ22, like J21
and Γ22, also follow the cross-like form of local maxima/minima, but it presents the inverse
positive-negative relation. These interactions tell us the response to an alignment with the
spin-orbit unit vector t̂. So Γ21 says that as long as the localized spin at site one, as some
alignment with that unit vector, it will increase the likelihood toward that direction. However,
Γ22 represents the aim of the system to oppose to that alignment under the same configura-
tion. Still, both effective interactions are much lesser than the symmetric interaction J21, and
we would not expect to see a significant influence to the dynamics, at least for the weak SOC.

The damping factors, α22 and γ22, are shown in figure 2.9. When we compare the symme-
tric damping in figure 2.6b without SOC, with the figure 2.9a that includes that effect, we
can see that the latter one has the local maxima slightly moved, following equations (2.96)
and (2.97). That displacement is added to a little reduction in the maximum values at the
local maxima. Besides that little changes, the cross-like form is preserved, along with the
global maxima that appears at the intersection of the local maxima lines. Furthermore, the
negative-value region is still defined by the relations between the chemical potential with the
additional spin-dependent hopping changing the symmetry, |µL| < t0 − t and |µR| > t0 + t.
The relation between the local maxima is also preserved, with the α22 is bigger at |µR| = t0+t.
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(a) α22 (b) γ22

Figure 2.9: Effective damping factors, considering the symmetric case
relation between the lead and a weak SOC. Both damping factors show
the same cross-like form for the local maxima lines. However, the global
maxima of γ22 are slightly out of the intersection.

On the other hand, now we have the additional anisotropic damping γ22 in figure 2.9b.
This new damping presents the same cross-like form that resembles the anisotropic interac-
tion Γ22. It is very interesting that, even though γ22 is much lesser than α22, it has a wider
range of negative values. We can see that the global minima, as for the symmetric damping, is
located at |µL| = 0 [meV], but the global maxima, as for Γ22 are precisely at the intersection
of the local maxima, which do not entirely follow the same equations as for α22.

The correlation strengths are shown in figure 2.10. Following the same analysis as for j22
in figure 2.6c, we can see that in figure 2.10a the same features are presented. The resem-
blances between them confirm that along with J21 and α22, the main contribution to these
effective terms come from the electrical current, and the spin-dependent hopping does not
change the structure with a weak coupling. However, when we look closer, we can see that
the inclusion of the SOC slows the step-like change, making it softer.

In the end, we have the anisotropic correlation strength in figure 2.10b. This new corre-
lation that appears as we include the SOC, follows the same step-like form as for j22, but
with additional local minima following the equations (2.96) and (2.97), making it present a
cross-like form similar to the earlier effective terms but with local minima instead of maxima.
This correlation presents a bigger region for the first step value but a smaller global maxima
region. We can see that both effective anisotropic terms, γ22 and g22, are much smaller than
their symmetric counterparts, which leads us to understand that the main contribution to
both factors come from the spin-dependent hopping rather than the electrical current.
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(a) j22 (b) g22

Figure 2.10: Effective correlation strengths, considering the symmetric
case relation between the lead and a weak SOC. Here we see that
the step-like form of the correlation in figure 2.6c is preserved. Even
more, the anisotropic correlation presents the same structure, with the
addition of extra local minima at the transition of each step.

Strong spin-orbit coupling

Up to this point we have presented the results in absence of the spin-dependent hopping
and those for a perturbative inclusion of SOC. Now we can study what happens when we
consider a strong SOC, t = 1 [meV]. Here, we aim to determine the validity of the aforemen-
tioned line equations, and how sensitive are our earlier results to the specific configuration.
One way to quantify that response is in terms of the maximum and minimum values that
the effective factors present, and compare it with the case of a weak coupling.

The effective interactions for strong SOC are shown in figures 2.11 and 2.12. In this case,
the symmetric interaction J21 has lost the status of the dominant interaction against the DM
interaction D21, as we can see by comparing figures 2.11a and 2.11b. However, most features
discussed for previews configurations are preserved, such as the negative valued region that
now is enclose by |µL| < t0 − t and |µR| > t0 + t, approximately. Furthermore, the local
maxima follow the lines |µL| = t0 and |µR| = t0 + t. We can see that for this high-value SOC,
the region where J21 < 0 is reduced, and the global maximum and minimum are smaller,
which is reasonable since the rest of the interactions have increased their numerical values.

The DM interaction in figure 2.11b shows many interesting factors, such as the already
mentioned comparable scale with J21. However, the numerical increase is not the only cha-
racteristic effect of the increase in the SOC. The step-like form of D21, compared with 2.7b,
is smoother. Because the range,|µL,R| < t0 − t, for the step valued is narrower and the in-
crease range,|µL,R| > t0 − t and |µL,R| < t0 + t , is wider. This smoother behavior allowed
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is accompanied with a smaller zero diamond-like region at the center of the space parameters.

(a) J21 (b) D21

Figure 2.11: Effective interactions for strong spin-orbit coupling, con-
sidering symmetric relation between the leads. Here the effective ex-
change interaction J21 is shown in (a) and the DM interaction is shown
in (b). We can see that J21 preserve the sign switch that allows mo-
difying the Ferromagnetic or antiferromagnetic preferred configuration
for certain combinations of the external parameters. The DM preser-
ved the step-like, although this time is much smoother than what was
presented in 2.7b. Unlike the case for the weak SOC, the dynamics of
the spin direction would mostly rule by the DM interaction, meaning
that we should expect a significant increase in the tendency towards
(m̂× t̂), rather than exclusively to (m̂).

With the above explained lines, we can see that both anisotropic interactions Γ21 and Γ22
in figure 2.12 follow them. Similar to the DM interaction, these interactions increase their
values to be comparable with J21. However they do not overcome the symmetric interaction.
It is very interesting to note that the global maxima and minima of Γ21 are enclosed by
|µL,R| < t0 − t, and are located at µL,R = 0, respectively. On the other hand, Γ22 follows the
same relation; however, where the former interaction has the global minimum, now it is the
global maximum and vice versa.

In figure 2.13, we present both symmetric α22 and asymmetric damping γ22. With figure
2.13a, we can see that one big effect of the spin-dependent hopping inclusion, as we expected,
is the inevitable loss of symmetry This comes directly from the fact that the maxima do not
follow the same equation for both chemical potential-like relations between the external para-
meters. Although the features that characterize the symmetric damping are not lost, they are
rearranged. For example, the negative valued zone is now in the region where the condition
|µL| > t0− t and |µR| < t0 + t are simultaneously fulfilled, and the global minimum is located
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along µR = 0. However, the global maxima still appears at the local maxima intersection,
even though they do not follow the same lines.

(a) Γ21 (b) Γ22

Figure 2.12: Effective interactions for strong spin-orbit coupling, consi-
dering symmetric relation between the leads. Here we show the effective
anisotropic interactions Γ21 and Γ21 in (a) and (b), respectively. In this
case, the interactions come to be comparable with J21 and D21, so we
expect that although they still are lesser than them, the dynamics will
be affected towards the SOC polarization, t̂.

The asymmetric damping γ22 is presented in figure 2.13b. This new damping presents the
remarkable feature that allows us to identify the meaning of the extra minima and maxima
that we commented for the weak coupling. Those new minima and maxima that are not
present in the symmetric damping, differ between them in value. Nevertheless, we can note
that the maxima that follows equations |µL| = t0 + t and |µR| = t0 − t are bigger than
their counterparts with the inverse relation with t. However, the deeper, physical interpreta-
tion of these values can only be found through a more thorough analytical analysis. At this
point, we can see that for strong SOC, the values of both damping are now comparable, eit-
her because the symmetric damping is decreased and/or the asymmetic damping is enhanced.

The correlation strengths are shown in figure 2.14. As we have seen for all the correlation
figures, in figure 2.14a, we can see that j22 follows a similar step-like structure. However, with
the aid of equations (2.96) and (2.97), we can see that the first step-like value range is wider,
and the second value is narrower than before. This smoothing of the curve comes from the
increase in the spin-orbit factor t.
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(a) α22 (b) γ22

Figure 2.13: Effective damping factors, considering the symmetric re-
lation between the leads and a strong SOC. We can see that the sym-
metric damping in figure (a) is highly affected by the SOC. Due to the
decrease in magnitude and the displacement of the maxima towards
µL = t0 − t and µR = t0 + t. Another important feature of α22 with
t = 1 [meV], is that the negative region is now enclosed by the lines of
µR, rather than µL as for former cases.On the other hand, the aniso-
tropic damping in figure (b) has increased its maximum value at the
point to be comparable with α22. Unlike the symmetric damping, γ22
preserve all the features as for figure 2.9b.

When we study the anisotropic correlation strength g22 in figure 2.14b, we see that the
extra minima that appear in 2.10b are very well described by the new characteristic lines
that interchange the t-dependence in equations (2.96) and (2.97). The most important fact
here is the comparable numerical value between j22 and g22. Besides that, they share the
increase and decrease in their first and second step-like values.

Summary

With the above results where we investigated how the effective interactions, damping, and
correlation strengths are affected when we increase the SOC, we can summarize the relevant
conclusions from each kind of term.

When we compare each interaction with its respective counterpart at different SOC
strength, we see that while the symmetric interaction decreases with the SOC, the non-
symmetrical interactions are highly enhanced. We interpret this behavior as the system’s
increasing lack of symmetry is preferring an antisymmetric magnetic configuration ruled by
the SOC. This change can be seen from the strong spin-orbit coupling configuration, where
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the DM interaction surpasses the symmetric interaction and become the dominant interac-
tion in the system. Another relevant feature that appears as we increase the SOC is the
narrowing down of the region in the parameter space where the symmetric interaction is
negative, allowing an antiferromagnetic configuration.

(a) j22 (b) g22

Figure 2.14: Effective correlation strengths, considering the symmetric
relation between the leads and strong SOC. The symmetric correlation
preserved the step-like form with a much smoother increase between
the values. This is most relevant impact on j22, since even though
its maximum value is now smaller than 2.10a, it is not a significant
decrease. As for the anisotropic correlation, the value is significantly
increased. This increase means that both correlations are comparable
for this case, and we should see a preferred direction for the stochastic
magnetic field η.

As for the damping factors, we see very little change in terms of the strength of the
symmetric damping, although the parameters relation for the local maxima lines is directly
affected by the increase of the SOC can see in figure (2.11a). However, the anisotropic dam-
ping’s strength is severely enhanced by the same increase that reduces the maximum value
of the symmetric damping, and it presents an opposite reaction to the position of its local
maxima and minima compared to the symmetric damping.

For the correlation strengths, we see that both functions’ step-like forms get smoother
as we increase the SOC. However, contrasting with the interactions and damping factors,
the correlation functions cooperate at each point in the parameter space. So, even though
the SOC increase reduces the stochastic magnetic field’s statistical strength in the isotropic
component, it intensifies the same magnetic field towards the SOC’s direction.
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Chapter 3

Fokker-Planck Analysis

3.1. Introduction
In this chapter, we focus our attention on, somehow, solving the equations of motion for

the spin direction of the monomer and dimer configurations. When we look closely at equa-
tions (2.52) and (2.75), it is clear that in order to obtain information from them, we first need
to understand the effects of the stochastic magnetic field and what it means to have a diffe-
rential equation with a stochastic variable. In the last chapter, we introduced the stochastic
variable from the fluctuating part of the spin direction and found out that it behaves as a
stochastic magnetic field. Moreover, we called those equations, Langevin equations. These
equations consist of a simple ordinary differential equation, usually of first-order derivatives
in time, that includes a rapidly and fluctuating random function called stochastic force.

Figure 3.1: Motion of five point particles undergoing Brownian motion
from the same initial point. Where we can see the randomness of the
trajectory due to many collisions in unpredictable directions.

The original Langevin equation was presented as an alternative method to understand
the Brownian motion, besides Einstein’s original derivation. Historically, it was one of the
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firsts applications of a stochastic differential equation. Here, instead of a discretized time
interval as in Einstein’s deduction, this method studies the correlation functions of the sto-
chastic force to obtain the system variable’s average value throughout many realizations of
the experiment. Hence this differential equation, in some sense, works with random functions.

The relevance of this new kind of equation, ruled by random variables, is when we deal
with a many-body system such as a fluid. Where we cannot follow each particle position, the
interactions with the test particle, electron, or molecule must be treated statistically. Since
at each implementation of the experiment, the interaction, therefore the force on the test
particle, will be different. We must treat the particle’s position as a stochastic process. For
example, in the Brownian motion, we follow a specific particle on a fluid. In this scenario,
the particle has multiple collisions with the fluid molecules that can happen at any time and
in any direction. Therefore, the solution must be a stochastic process. In our system, we see
that the stochastic magnetic field comes from the interaction between the localized spin and
the itinerant electrons’ random spin direction from the electrodes. This kind of equation can
seem as hard to obtain any real information from it. However, using the stochastic force’s
relatively simple information, we can obtain some measurable results, but always on avera-
ge. In general, a Langevin equation is rarely solvable under normal conditions, such as very
strong or non-uniform interactions. The study of stochastic differential equations is a vast and
complicated branch of mathematics. In this thesis, we do not try to give more than a simple
summary of how to deal with our specific case to make this thesis as self-contained as possible.

There is an alternative way to deal with a system under the effects of a random force.
If we agree not to study the dynamical variable itself, and instead study the conditional
probability density of that variable being restricted to a sharp-value at a given time. In that
case, we can redirect our calculations to study the so-called Fokker-Planck equation. Then,
we may find a more solvable equation. Even though this equation can be solved analytically
in some specific cases, it is not easy to obtain a solution for most cases. The first section
of this chapter will present a general recipe to obtain the Fokker-Planck equation from a
Langevin equation in the “canonical form”. [18, 28, 41].

3.2. From Langevin to Fokker-Planck equation
The generic Langevin equation consists of studying the influence of a “fast” variable on a

“slow” variable. For example, in the Brownian motion, we study the slowly moving particle’s
position under the effect of the faster fluid molecules. So, as we can see from the earlier
chapter’s equations of motion, the Langevin equation we have to study is of the form:

ξ̇i = ai +RijΓi, (3.1)

where we have a first-order time derivative for the slow variable ξ and a linear dependence of
the stochastic part Γ. This expression is called the canonical Langevin equation and will be
the starting point for our deduction of the Fokker-Planck equation. We can clearly separate
the above equation into deterministic parts, ai and Rij, from the stochastic force. This force
presents the major deal in solving the equation. However, luckily enough, in this thesis, we
focus on the specific (and simplest) case of a δ-correlated Gaussian distributed force:
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〈Γ〉 = 0, (3.2)
〈Γi(t)Γj(t′)〉 = bijδ(t− t′). (3.3)

We will leave bij without any restriction, so it would be case dependent, as we have seen
from the previous Chapter results (monomer and dimer). The general procedure to obtain
the Fokker-Planck from a Langevin equation consists of obtaining the Kramers-Moyal coef-
ficients D(ν)

i1...iν , from

D
(ν)
i1...iν = 1

ν! lim
τ→0

1
τ
〈[ξi1(t+ τ)− xi1 ] . . . [ξiν (t+ τ)− xiν ]〉 (3.4)

where ξi(t+τ) with τ > 0, is a solution of (3.1) and ξi(t) = xi. For a process that is described
by a Langevin equation like (3.1), with a δ-correlated Gaussian force Γ, (3.2) and (3.3), it can
be shown that all coefficients with ν ≥ 3 are identically zero [41]. The remaining non-zero
coefficients D(1)

i and D(2)
ij are known as drift vector and diffusion tensor. We can see that the

time evolution of the probability density is described by

∂

∂t
P = (−∂µAµ + ∂µ∂νD

µν)P, (3.5)

where we have defined

Aµ = aµ + 1
2b

mn(∂kRµ
m)Rk

n (3.6)

Dµν = 1
2b

mnRµ
mR

ν
n (3.7)

Since we aim to study the steady-state solution of equation (3.5), we define the probability
current Jµ by a conservation of probability equation:

∂tP + ∂µJ
µ = 0. (3.8)

The above equation allows us to work with the divergence of the current instead of the
partial derivative with respect to the time variable. We can see that, for the generic case
described earlier, the current in terms of the characteristic functions of the Langevin equation
is

Jµ =
[
aµ − 1

2b
mnRµ

m(∂νRν
n)
]
P− 1

2b
mnRµ

mR
ν
n(∂νP) (3.9)

Using this mechanism, we can transform the Langevin equations found for the monomer
(2.52) and dimer (2.75) configurations, into a canonical form (3.1). From there, we obtain
their respective Fokker-Planck equation to study the probability density and the average
value for the spin’s direction 〈Ω〉.
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3.3. Monomer
The monomer case presents the ideal starting point since the equation (2.52) becomes

a simple Landau-Lifshitz-Gilbert equation with no effective extra interaction due to the s-d
interaction. This equation gives us a more straightforward way to obtain the Fokker-Planck
equation than the dimer case in the presence of the spin-orbit coupling.

~S
dΩ
dt

(t) = Ω(t)× [Sh + η(t)]− ~S2α(V )Ω(t)× dΩ(t)
dt

. (3.10)

To apply the routine presented at the beginning of this chapter, we need the Lange-
vin equation in the canonical form. This transformation is generally known as constant re-
normalization from where we get a Landau-Lifshitz equation without the damping term but
a damping-like torque as:

dΩ

dt
= Ω× [H + η̃ − SαΩ× (H + η̃)] , (3.11)

from where we re-define the fields variables as

H = Sh

~S(1 + (Sα)2) , (3.12)

η̃ = η

~S(1 + (Sα)2) . (3.13)

The second condition of the procedure is that the stochastic field’s correlation is zero for
the one-point correlation and a delta function in time with a Kronecker delta relation between
the vector indices for the two points correlation, known as white noise. We immediately
notice that (2.40) and (2.41) do not satisfy such condition. However, after the the low energy
approximation (2.56), we find that the two-point correlation function is delta correlated. Now
we can see that the characteristic functions of 3.1 are

a = Ω× [H − SαΩ×H ] , (3.14)
Rµ

m = A[εµamΩa − Sα(ΩµΩm − δµm)], (3.15)
bij = j δij, (3.16)

here we remind the reader that we have defined j = −i∆2~2S2K(k)(ε→ 0) and A = 1/~S(1+
(Sα)2). From (3.9), we get that Jµ is

J = AΩ×
[
(Sh− SαΩ× Sh)P + j

2~SΩ× ∂P
∂Ω

]
. (3.17)

The main reason to calculate Jµ, as said, is to study the steady-state solution of the
Fokker-Plank equation (3.11), which means that we are interested only in what happens to
the system after the transient regime has no effects. We can argue that we have always con-
templated this situation throughout our calculations; therefore, studying the transient part
of equation (3.11) has no sense. Nevertheless, the physical reasoning to do it comes from the
assumption that the characteristic times in which the multiple electrons, responsible for the
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transients, interact with the system is much shorter than the localized spin characteristic
times.

Finally, we want to solve the conservation of probability equation in the steady-state
regime, i.e., ∂µJµ = 0. The Boltzmann distribution, P = N exp{−βE}, gives the stationary
probability distribution that solves this equation, from which we find the final expression of
the effective temperature (1/β) as:

β = 2Sα(V )~S
j

, (3.18)

this temperature was predicted when we study the relationship between the Keldysh compo-
nent and the effective damping at equilibrium configuration (2.54). So, the specific form of
the probability distribution in the stationary regime is given by

P[Ω] = N exp
{

2Sα~S
j

(Sh ·Ω)
}
. (3.19)

It turns out that this solution holds for any Effective field H = − ∂E
∂Ω

[Ω] as long as the
energy is quadratic in the spin direction Ω, like the anisotropic energies that we left out for
simplicity. In principle, we can extract all the information needed to study the localized spin’s
dynamics from equation (3.11) and (3.19). However, due to the voltage and chemical potential
dependence of the effective damping, we preferred to extract the equilibrium orientation and
the torques that affect the spin from the numerical calculation and show them in figures 3.2
and 3.3. We calculate the following results considering the center-band chemical potential
µF = 1[meV ], the temperature T = 0.01[K], an inter-lead hopping J = 3[meV ], a connection
hopping tL/R = 1[meV ], and a s-d interaction factor ∆ = 1 [meV].

Figure 3.2: The average value of the localized spin’s direction for each
component considers two cases — one where the magnetic field is
strong enough to maintain the equilibrium direction near the z-axis
before decay to a full delocalized state over the unit sphere for high
voltages. The second case shows that the average can not maintain a
well defined preferred direction at high voltages for low magnetic fields.

In the high voltage case in figure (3.2), we show three points to explore the torques of
equation (3.11) in figure (3.3). Due to the zero-average of the x and y-components, we take
the liberty to illustrate the different average spin direction values by different azimuth angles
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to have a less cluttered illustration. We stressed that although one may think it is precessing
and decaying towards the magnetic field, this is not a time-varying process. We show the
probability distribution projection in the unit sphere in figure 3.4 for these three points. Here
we can see that although the positive z-axis represents the maximum of the probability for
each case. Simultaneously, we increase the voltage, the probability becomes more and more
homogeneous, explaining the decrease of the z-component average.

Figure 3.3: Illustration of the torques at the three points remarked in
figure (10). The black, red, and green arrows represent the magnetic
field, the precessional torque, and the damping-like torque’s direction.
Each sphere illustrates a point in figure (3.2), and we represent the
Voltage value by the sphere’s color.

Figure 3.4: The probability density illustration of the localized spin’s
direction for the three points remarked in figure (3.2). The left plot
represents the point at 2 [mV] and shows a higher probability density
for the positive z-axis, explaining the average value shown in figure
(3.2). We can see the delocalization of the spin’s direction for higher
values of the voltage in the central (5 [mV]) and the right(8 [mV]) plots
by looking into the range of values.
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3.4. Dimer
The dimer case is more complicated to handle than the monomer case. The complication

comes mostly from the spin-orbit coupling since, as argued in section 2.4.3, the anomalous
terms drop to zero as the spin-orbit coupling is neglected. This configuration generates ad-
ditional damping terms compared to equation (3.10), along with an effective energy that
depends on the effective interactions Jab, Dab, and Γab from the s-d interaction ∆. Therefo-
re, we must deal with these additional terms to obtain the canonical form of this Langevin
equation:

~S
dΩ

dt
= Ω× [H+η]−~S

{
Sα Ω× dΩ

dt
+ Sβ Ω× (dΩ

dt
× t̂) + Sγ Ω× t̂ (t̂ · dΩ

dt
)
}
. (3.20)

We have definedH = −∂Eeff2
∂Ω

with Eeff from (2.80) to simplify the notation and keep the
monomer case’s similarities. We see that the first additional damping term, βΩ× dΩ

dt
× t̂, is

easier to treat, but the second one presents a bigger problem, although not impossible. Even
though β = 0, we present a deduction of the canonical Langevin equation in Appendix B
that include that factor, and impose that condition at the end. Equation (3.20) is written as:

~S
dΩ

dt
= AΩ×

[
H̃ + η̃ − Sα

(
H̃ + η̃

)]
, (3.21)

where we have defined the “tilde transformation” for a generic vector field Λ as:

Λ̃ = Λ− ACSγ t̂ · Ω× [Λ− SαΩ× Λ] t̂. (3.22)

We defined the A-factor as for the monomer case, the C-factor in equation (B.13), and the
deduction of the “tilde transformation” in Appendix B. With the low energy approximation
for the Keldysh component, we can see that the two-points correlation function in equation
(2.94), matches the condition of being delta-correlated. However, the correlation is not an
isotropic relation between the indices. Instead, we have an anisotropic correlation, gab, with
the spin-orbit vector t̂ as a preferred direction besides the Kronecker delta jab relation we had
for the monomer case. Equation (3.21) is much more complicated than equation (3.11), for
many reasons. The first one is that now, we have space-dependent factors besides the cross
products. The second one is that the stochastic field’s matrix in the two-point correlation
function (3.3) is far from simple, and that will give us a much more complicated probability
current. Now we can see that the characteristic functions of the canonical form of the Lan-
gevin equation are:

aµ = A

~S
(δµν − ACSγ̄Oµctctν)OνbHb, (3.23)

Rµ
m = A

~S
(δµν − ACSγ̄Oµctctν)Oνbδbm, (3.24)

bij = j δij + g titj. (3.25)
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It is interesting to notice that the operator O is equal to the operator Rµ
ν in the monomer

case. If we take the limit with null spin-orbit coupling, the dimer equation is identical to the
monomer, since γ is zero for that case. Therefore, it has to have the same solution for that
case. With the exception that now, we have an effective interaction that accounts for an
exchange interaction between the two localized spins, as presented by [12], which does not
vanish with a neglected spin-orbit coupling. As shown in the beginning of this chapter, when
we have the Langevin equation in the canonical form, is straightforward to find the Fokker-
Planck equation. We have to apply the formulae for the drift vector (3.6) and diffusion tensor
(3.7). So, we find that the probability current Jµ is

J = −hP + 1
2a

2C2(Ωt)[jSγ(Ω× t){1− 2ASγSα(1− (Ωt)2)[1 + C]} − (Ω×Ω× t)Sα[3 + 2C])

−gSα[1 + C][(Ω× t)− Sα(Ω×Ω× t)]]P + 1
2a

2j[1 + (Sα)2](Ω×Ω× ∂νP)+
1
2a

2j[1 + (Sα)2]ACSγ{C(Ω×Ω× t)(Ω× t)ν∂νP + ACSγ(1− (Ωt)2)(Ω× t)(Ω× Ω× t)ν∂νP

−(1 + C)Sα(Ω×Ω× t)(Ω× Ω× t)ν∂νP + ACSγ(1− (Ωt)2)(Ω× t)(Ω× t)ν∂νP]}

+1
2a

2gC2[(Ω× t− Sα(Ω×Ω× t)]{(Ω× t̂)ν∂νP− Sα(Ω× Ω× t̂)ν∂νP}. (3.26)

This current is hardly solvable due to many factors, such as, the number of terms, the
intricate structure of mixed derivatives, and the space dependent factors. Here we recall the
deduction and definition of the C-factor in Appendix B, because it is a function of (Ωt)2,
therefore the above expression is even harder than it looks. Nevertheless, if we look at the
previews section, we can see that the solution could come from a new effective energy that
includes the effects of the anisotropic part of equation (2.94). As for the monomer case, we
can look for a solution like equation (3.19), with an energy as the “primitive” of the effective
field in equation (3.21), like H̃ = − ∂

∂ΩE
′′. We could obtain E ′′ by Helmholtz’s theorem, but

it seems to be an impossible task due to the multiple cross products, even for a numerical
calculation. However, when we study the weak spin-orbit coupling limit in the numerical
results of section 2.4.4, we see that Sα � Sγ and j � g. In this limit, we can neglect
higher than linear terms in {Sγ, g}, so the probability current take a much more treatable
expression:

Jµ = −a(Ω×H)µP + aSα(Ω×Ω×H)µP + 1
2a

2j{1 + (Sα)2} (Ω×Ω× ∂P)µ +

+(Ω× t)µ
[1
2a

2(Ωt){jSγ − 4gSα}P− AaSγ[(Ω× t) ·H + Sα(Ω× Ω× t) ·H]P +

+1
2a

2g(Ω× t) · ∂P + 1
2a

2{jSγ − gSα}(Ω× Ω× t) · ∂P
]

+(Ω×Ω× t)µ
[
− 1

2a
2Sα{5jSγ − 4gSα}P + AaSγSα[(Ω× t) ·H + Sα(Ω× Ω× t) ·H]P +

+1
2a

2{jSγ − gSα}(Ω× t) · ∂P− 1
2a

2Sα{2jSγ − gSα}(Ω× Ω× t) · ∂P
]
. (3.27)

From the above expression, we can see that the number of direction-dependent factors
have been reduced. However, we still have to solve∇·J = 0, which still is far too complicated.
Nevertheless, when we follow our earlier proposal for the solution as a Boltzmann distribution,
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we find an approximate steady-state solution for the above current. So the probability density
is:

P = N exp
{
−βE ′eff

}
, (3.28)

where we have defined the effective temperature (1/β) and the effective energy (E ′eff ) as

β = 2S~Sα
j

, (3.29)

E ′eff = E [Ω]− S∆〈s〉 · Ω− ~S2∆2
[
J21Ω · m̂+D21t̂ · (Ω× m̂)+

Γ21(Ωt)(m̂ · t̂) + 1
2Γ22(Ωt)2

]
. (3.30)

where E [Ω] contains the Zeeman and anisotropic energies. As we mentioned, this solution
is not an exact solution of equation (3.27), and we have to analyze the results that we get
accordingly.

Numerical Analysis

As we said in the last chapter, we aim to study the effects of the electrical current over the
dimer system. More precisely, we are interested in the consequences of the spin-dependent
hopping between the dimer molecules. So, in order to distinguish between the effects of both
factors, electrical current and spin-dependent hopping, we compare the average value of the
spin’ direction for three different SOC values and the same hopping configuration. We can
identify those configurations as: null, perturbative, and strong SOC.

The first configuration establishes the ground effects, i.e., the electrical current effects. It
is clear that, with a null SOC (t = 0), the approximate solution becomes an exact solution of
equation (3.26). In section 2.4.3, we discuss that all the non-symmetric interaction, damping,
and correlations drop to zero under that condition, and we recover the equations presented
in [12]. From which we can solve as we did for the monomer. Only now, with an additio-
nal voltage-dependent magnetic field from the effective exchange interaction: S2∆2J21. The
probability density for this case is:

P = N exp
{
−2S~Sα

j

(
E [Ω]− S2∆2J21m̂ ·Ω

)}
. (3.31)

This expression is all we need to study the average value of the spin’s direction under
the influence of the non-equilibrium electrons from the leads. The above expression is very
similar to equation (3.19), with the interesting addition of the exchange interaction between
the originally not interacting spins. In figure 3.5, we show the average value of the spin’s
direction for the three components. We calculate that average value using the values used
in section 2.4.4, where we have an inter-lead hopping J = 100 [meV], connection hopping
tL/R = 10 [meV], an inter-device hopping t0 = 2 [meV], the anisotropic energies E = 0.007
[meV] and D = −0.039 [meV], and an external magnetic field B = 7 [T] as presented in
[12, 29] for the anisotropic and Zeeman interactions.
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(a) Fokker-Planck method (b) Langevin method

Figure 3.5: The average value of the localized spin’s direction for each
component at µF = 0[meV ], using the FP method in (a) and the Lan-
gevin method in (b). The calculations were done considering that the
fixed spin’s direction is ẑ in the absence of the SOC, t = 0 [meV],
and the configuration explored in section 2.4.4. We can see that the
system presents an antiferromagnetic configuration for |V | < 3 [mV].
However, as the voltage increase, the average value switches to a ferro-
magnetic configuration. At higher voltage, the spin’s direction is fully
degenerated by the increase in temperature. Both methods agree in
every relevant result but differ in the decay of the z-component at high
voltages.

Unlike the former case, now we study the non-equilibrium case with a center-band µF = 0
as a function of the bias voltage for a fixed external magnetic field. We note that in this case,
the system presents a switch in the spin orientation. At voltage V = 0, the average value
of the spin’s direction is negative due to the negative value of the effective interaction J21.
This result tells us that the system preferred an antiferromagnetic configuration between
the localized spins. This negative average value persists until approximately V = ±3 [mV]
where, as we saw in section 2.4.4, the sign of the effective interaction switches from negative
to positive. We see that 〈Ωz〉 is positive for |V | ≥ 3 [mV], meaning that the localized spins
are aligned. Therefore, the system preferred a ferromagnetic configuration for high voltages.

We can see that, even though the interaction does not change in the sign for a voltage
greater/lower that V = ±6 [mV], the average value decay to zero. This decay is approximately
completed at V = ±8 [mV], where the system presents null polarization, i.e., the direction is
completely degenerate. When we compare the numerical values presented in section 2.4.4 for
this configuration, it is clear that the relation between the inverse temperature (3.30) that
depends on the damping Sα and the correlation j, and the effective exchange interaction in
the effective energy (3.30), tends the system to decay at a zero-value polarization. Therefore,
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this decay is due to a theoretical high temperature, so the system has enough energy to ove-
rrule the effects of either the external magnetic field and the exchange interaction between
the spins.

(a) Fokker-Planck method (b) Langevin method

Figure 3.6: The average value of the localized spin’s direction for each
component at µF = 0[meV ], using the FP method in (a) and the
Langevin method in (b). The calculations were done considering that
the fixed spin’s direction is ẑ in the absence of the SOC, t = 0.05 [meV],
and the configuration explored in section 2.4.4. We can see that the z-
component preserves the spin-inversion feature as for the case without
SOC. However, the y-component is no longer fully degenerated due to
the DM interaction. We can see that the maximum/minimum value is
at the inversion point V ∼ 3 [mV]. In this case, although both methods
share the same structure, the FP method overestimates the effects of
the DM interaction; therefore, the maximum and minimum values of
the y-component.

As shown in figure 3.5, we have established that the electrical current introduces a fixed
voltage that switches between an antiferromagnetic configuration to a ferromagnetic con-
figuration. An important feature of this configuration is the degeneracy on the x-y plane,
inherited from the symmetry of the system without spin-orbit coupling. Now we can study
the inclusion of the SOC as a perturbation (t = 0.05) of the above configuration. The pro-
bability density now is not symmetric in the x-y plane due to the DM and the anisotropic
interaction. These results are shown in figure 3.6.

Comparing the z-component shown in figures 3.5 and 3.6, it is very clear that SOC is, in
fact, a small perturbation since it preserves the switching property. The only change between
those configurations for 〈Ωz〉 is that the inversion is softer than before. The range of voltage
for which the system preferred a ferromagnetic configuration is wider with the SOC. These
modifications can be seen from the little change in the numerical values of J21 between both
cases. However, as we expected from the loss of symmetry in the x-y plane, when we include
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the spin-dependent hopping the y-component is no longer zero. Instead, it reacts to the spin-
switching point V =∼ ±3 [mV], and again at the decay range, |V | ≥ 6 [mV]. To understand
which interaction is responsible for this new effect, we can look at the end of Appendix B and
see that the DM interaction is the only one that can contribute to the y-component. This
observation is confirmed due to the opposite reaction for a negative voltage, matching the
behavior of the DM interaction in figure 2.7b. The x-component remains almost zero, which
can be seen by comparing the anisotropic interaction with respect to the other interactions
along µF = 0.

As said at the beginning of this chapter, the Fokker-Planck equation is a very useful
mathematical tool to study the Langevin equation, but without an exact solution, we cannot
say how far we are from the solution to the Langevin equation. That is why, even though the
results presented at this point follow the intuition of what a weak extra interaction should
do to the average spin’s direction, we have to verify the validity of our approximate solution.
When we compare the symmetric interaction J21 with the anti-symmetric interaction D21 in
figure 2.7, it is clear that the approximate solution overestimates the effect of D21. To check
how far from the exact solution we are, we can study the absolute value of the difference
between the approximate solution and the real theoretical solution, which satisfies∇·J∗ = 0
for each point, and is integrated over the unitary sphere. So the error would be:

δP ≡
1

4π

∫
||∇ · J(P)||dS. (3.32)

The error of the results shown in figure 3.6 for weak SOC is shown in figure 3.7.

Figure 3.7: Integral error of the approximate solution to the FP equa-
tion. Calculated for the strong coupling configuration and weak SOC,
t = 0.05 [meV].

We could argue that the error is low simply because the maximum value is small (∼ 10−4)
and lower than other possible solutions. However, this procedure lacks a real comparable fra-
mework. A clearer and direct way to know if our approximate solution is trustworthy is to
compare it with the original stochastic equation’s numerical solution equations numerical
solution. We use a Montecarlo method that preserves the norm of the vector in Python. This
approach is numerically demanding, so we use it as a last resource to check the approximate
FP solution results. In figures 3.5 and 3.6, we have shown the FP result (left) and the Lan-
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gevin equation’s direct numerical solution (right). With this, we notice that our approximate
solution is indeed an excellent approximation. However, as we predicted, it overestimates the
DM interaction’s effect. When we compared both solutions in figure 3.6, we can see that the
error in figure 3.7 has the maxima approximately at the voltages that those methods differ.

(a) Fokker-Planck method (b) Langevin method

Figure 3.8: The average value of the localized spin’s direction for each
component at µF = 0[meV ], using the FP method in (a) and the
Langevin method in (b). The calculations were done considering that
the fixed spin’s direction is ẑ in the absence of the SOC, t = 1 [meV],
and the configuration explore in section 2.4.4. We can see that the
spin-inversion of the z-component is now incomplete in both methods.
This change can be explained by the numerical relation of J21 with
D21 in figure 2.11. With this configuration, the dominant component
is Ωy and the x-component is not fully degenerated as for low SOC. We
can see that although both methods predict the same raw behavior,
they-component is highly overestimated in (a) and does not decay to
zero, as shown with the Langevin method (b).

Due to the small differences between both methods, we have can study the strong SOC
case. As we can see from section 2.4.4, when we consider t = 1 [meV], the conditions Sα� Sγ
and j � g, that we impose to study the approximate form of the probability current, is no
longer valid. Therefore, it is a suitable configuration to study the limitation of solution the
(3.28). The spin’s direction’s average value is shown in figure 3.8, and the error of the FP
method is shown in figure 3.9.

54



Figure 3.9: Integral error of the approximate solution to the FP equa-
tion. Calculated for the strong coupling configuration and strong SOC,
t = 1 [meV]

Unlike the weak SOC results, when we study the average value 〈Ω〉 with both methods,
we can see more obvious differences. Although they are still reasonably similar since they
present the same attenuation of the z-component, the FP method (left) fails to estimate the
effect over the y and x-component. The fact that the y-component does not drop to zero
as the Langevin method does presents a complication since it can not predict correctly the
range of voltage for which 〈Ωy〉 could be used as 〈Ωx〉 for the case without SOC. In this case,
the error shown in figure 3.9 indicates that the bigger problem is precisely at high voltages,
where the FP method fails to estimate the decay zero-average.
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Chapter 4

Conclusion

In this thesis, we work out the effective theory to study the time evolution of the spin’s
direction in two cases, the monomer and dimer configuration, previously presented in [34] and
[12] respectively. Both configurations were studied with an electronic environment characte-
rized by two infinite leads that inject and drain electrons. Using the Path integral techniques
we were able to integrate both leads, so that we could focus on the dynamics of the spin’s
direction of the molecules in the system.

In the second chapter, we developed the mathematical framework to obtain each localized
spin equation of motion. However, since we were interested in the effects of the bias voltage
effects over the system, i.e., an electrical current passing through the leads, we had to im-
plement the Keldysh formalism to include the non-equilibrium effects in the Path integral
technique and the quantum many-body formalism. With these mathematical tools, we found
the semiclassical equations of motion.

The most remarkable results come from the inclusion of a spin-dependent hopping in
between the lead. This new interaction is attributed to a spin-orbit interaction present in the
system. For the system, the consequence of the SOC was the loss of symmetry, thus introdu-
cing non-symmetrical effective interactions, such as the DM and the anisotropic interactions.
Along with those interactions, a microscopic deduction of the Gilbert damping was presen-
ted for the monomer and dimer case. However, similar to the non-symmetric interactions, in
the dimer configuration, we found anisotropic damping in addition to the symmetric Gilbert
damping.

Furthermore, when we studied the stochastic magnetic field’s correlation functions, we
found the same additional structure. These new interactions, damping, and correlation strength
are susceptible to the strength of the SOC. At the end of the chapter, we deduce the equation
of motion that considers one of the two localized spins being fixed in a particular direction,
which turns to resemble the Landau-Lifshitz-Gilbert equation with a stochastic magnetic
field and anomalous non-symmetrical terms.

In the third chapter, the spin’s direction’s average value is studied using the Fokker-
Planck equation and a direct numerical solution of the Langevin equation. Here the effects
of the spin-dependent hopping were established for weak and strong coupling. Although we
restricted the analysis to an approximate solution to the Fokker-Planck equation due to the
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equations’ high complexity, the comparison between the two methods showed remarkable
resemblance.

In contrast with the monomer, the dimer configuration provides exceptional results when
studying the average value of the one localized spin. The polarization of the given molecule
can be electrically control between a Ferromagnetic and an Antiferromagnetic configuration
by the bias voltage between the leads, with the restriction of the other spin being fixed in
certain direction. This result has been predicted before for a similar configuration in [12, 43]
among many others. However, we see that with the inclusion of strong SOC, that inversion
is suppressed. For strong SOC, we showed that the dominant component is induced by the
DM interaction rather than the exchange interaction or the Zeeman effect as for the same
system in the absence of SOC. This effect can be understood when we analyze the canoni-
cal Langevin equation by means of the SOT, which is the most remarkable result of this thesis.

Future work would be the natural extension of the two-sites system towards an N-sites
system where we could study the dynamics of magnetic textures like domain walls and, even
more, how the spin-orbit coupling can affect the texture and its dynamics. We left pending
the calculation of an exact solution for the Fokker-Planck equation if there is one. However,
with the same framework developed in this thesis, we could study other exciting effects like
the spin Hall effect by changing the connection between the leads and the dimer. It has been
shown that a thermal gradient along the electronic device can introduce spin densities that
can lead to the asymmetry needed to induced the STT or even modify the SOT, and this
effect can be studied with the configuration presented in this thesis.
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Appendix A

Electronic Green’s functions
calculations

For the first half of Section 2.4, we avoid a detailed calculation of the integral kernel
Kij
ab(t, t′) that contains the information from the electronic interaction between the leads and

the spin dimer device. Besides the relation with the electronic Green’s function 2.18, the
decomposition over the Keldysh contour (2.62) and (2.63), and a useful symmetry 2.68. The
primary reason for this is to focus on the complicated deduction and the physical aspect,
and not get lost with all the calculations. In this Appendix, we explain a bit more step by
step procedure to obtain a low energy approximation of the integral kernel. Even though
this deduction is standard and can be found in [9, 13]. Up to now, the best we know about
Kij
ab(t, t′) is that it relates to the electronic Green’s function by equation (2.18), but if we

apply the greater and lesser decomposition for G, to replace it in equation (2.18) we see that

Gbσ′;aµ(t, t′)Gbµ′;aσ(t′, t) = Θ(t− t′)
[
G>
bσ′;aµ(t, t′)G<

bµ′;aσ(t′, t)
]

+Θ(t′ − t)
[
G<
bσ′;aµ(t, t′)G>

bµ′;aσ(t′, t)
]

(A.1)

Where we have used the properties of the Θ function: Θ(t)Θ(−t) = 0 and Θ2(t) = Θ(t).
With these result, we can come back to equation (2.18) and identify the greater and lesser
components of the integral kernel:

Kij >
ab = i

8~
∑

σσ′µµ′
τ iσσ′τ

j
µµ′G

>
aσ′;bµ(t, t′)G<

bµ′;aσ(t′, t) (A.2)

Kij <
ab = i

8~
∑

σσ′µµ′
τ iσσ′τ

j
µµ′G

<
aσ′;bµ(t, t′)G>

bµ′;aσ(t′, t) (A.3)

Applying the Fourier transformation (2.42), we find the energy representation of the dimer
kernel in terms of the electronic Green’s function components.
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K
ij (±)
ab (ε) = −1

8
∑

σσ′µµ′
τ iσσ′τ

j
µµ′

∫ dε′

2π
dε′′

2π
G>
aσ′;bµ(ε′)G<

bµ′;aσ(ε′′)−G<
aσ′;bµ(ε′)G>

bµ′;aσ(ε′′)
ε± − ε′ + ε′′

(A.4)

K
ij (K)
ab (ε) = −iπ4

∑
σσ′µµ′

τ iσσ′τ
j
µµ′

∫ dε′

2π
dε′′

2π δ(ε− ε
′ + ε′′)[G>

aσ′;bµ(ε′)G<
bµ′;aσ(ε′′)+

+G<
aσ′;bµ(ε′)G>

bµ′;aσ(ε′′)] (A.5)

where ε± = ε±iδ is added for convergence in the integration as usual [2, 33]. We have reduced
the problem to characterize the lesser and greater electronic Green’s functions, however, we
do not have an explicit expression for them. On the other hand, we can compute the advanced
and retarded Green’s functions from[

(ε− ~Σ±1 (ε))Iσµ Tσµ
Tσµ (ε− ~Σ±2 (ε))Iσµ

]
ac

G
(±)
cµ;bσ′ = Iaσ;bσ′ (A.6)

where we have set a zero on-site energy for both leads, this may be used to add an extra
set-able parameter like in [43]. We also have introduce the self-energy Σ±1,2 of each lead in
order to account for their interaction with the system in the Hamiltonian. When we solve
the above equation for G(±)

cµ;bσ′ , we find that it present a very useful and characteristic form

G
(±)
aσ;bσ′(ε) = G

(s)(±)
ab (ε)Iσσ′ +G

(t)(±)
ab (ε)[t · τ ]σσ′ (A.7)

where we define the Singlet function G
(s)(±)
ab (ε) due to be related to the symmetric part in

spin space, and the Triplet function G(t)(±)
ab (ε) due to the trace-less part of the full electronic

GF in spin space. The components of the singlet retarded and advanced function are

G
(±)(s)
11 (ε) = g±2

2

[
1

g±1 g
±
2 − (t0 + t)2 + 1

g±1 g
±
2 − (t0 − t)2

]
(A.8)

G
(±)(s)
12 (ε) = G

(±)(s)
21 (ε) = −1

2

[
t0 + t

g±1 g
±
2 − (t0 + t)2 + t0 − t

g±1 g
±
2 − (t0 − t)2

]
(A.9)

G
(±)(s)
22 (ε) = g±1

2

[
1

g±1 g
±
2 − (t0 + t)2 + 1

g±1 g
±
2 − (t0 − t)2

]
(A.10)

and the triplet retarded and advanced function

G
(±)(t)
11 (ε) = g±2

2

[
1

g±1 g
±
2 − (t0 + t)2 −

1
g±1 g

±
2 − (t0 − t)2

]
(A.11)

G
(±)(t)
12 (ε) = G

(±)(t)
21 (ε) = −1

2

[
t0 + t

g±1 g
±
2 − (t0 + t)2 −

t0 − t
g±1 g

±
2 − (t0 − t)2

]
(A.12)

G
(±)(t)
22 (ε) = g±1

2

[
1

g±1 g
±
2 − (t0 + t)2 −

1
g±1 g

±
2 − (t0 − t)2

]
(A.13)

where we have define g±i = ε − ~Σ±i (ε). The problem comes when we try to invert equation
(2.62) to obtain the lesser and greater components from the advanced and retarded. Gladly,
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we can do it by using the steady-state kinetic equation [9, 10, 12],

G≶(ε) = G(+)(ε)~Σ≶(ε)G(−)(ε) (A.14)

where Σ≶ is a 4x4 matrix that tell us the rate at which electrons come in from each lead by
the in-scattering function Σ<, or the rate at which the electrons come out from each lead by
the out-scattering function Σ>. The matrix representation of Σ≶ is

Σ≶(ε) =
[

Σ≶
1 I 0
0 Σ≶

2 I

]
(A.15)

a similar deduction has to be done to obtain equation (2.46) in the monomer case. It seems
that we are complicating things rather than making them simpler, but since we are dealing
with leads at equilibrium, the advanced and retarded self-energies can be written as

Σ<
a (ε) = −nF (ε− µa)[Σ(+)

a (ε)− Σ(−)
a (ε)] (A.16)

Σ>
a (ε) = {1− nF (ε− µa)}[Σ(+)

a (ε)− Σ(−)
a (ε)] (A.17)

with this we have finally found an explicit expression of G≶
aσ;bσ′ in term of the system variables

and the self-energies, therefore the kernels’ expressions (A.4) and (A.5), can be evaluated in
those variables. However, with the decomposition into singlet and triplet components (A.7),
and the properties of the Pauli matrices, we can see that the greater and lesser components
of G≶

aσ;bσ′ follows the same structure of singlet and triplet, only a bit more complicated.

G≶
aσ;bσ′(ε) = G

(s) ≶
ab (ε)Iσσ′ +G

(t) ≶
ab (ε)[t · τ ]σσ′ (A.18)

where we have define the lesser and greater singlet function and triplet function as

G
(s)≶
ab =

∑
c

[G(s)(+)
ac ~Σ≶

c G
(s)(−)
cb +G(t)(+)

ac ~Σ≶
c G

(t)(−)
cb ] (A.19)

G
(t)≶
ab =

∑
c

[G(s)(+)
ac ~Σ≶

c G
(t)(−)
cb +G(t)(+)

ac ~Σ≶
c G

(s)(−)
cb ] (A.20)

at this point we can define a spectral function like we have done for (2.46) and work accor-
dingly, but since we are now dealing with matrices, the expressions only get bigger and no
simple analytical interpretation can be obtain from it. Although one may gain some insight
when analyze special cases like the zero voltage, symmetry under V ↔ −V , or local maxi-
mum and minimum values along characteristics lines. This analysis can be equally done by
studying the numerical results and fit the special lines if there are any, therefore we focus
on that path. When we replace the relation (A.18) into (A.4) and (A.5), we found that it
follows a regular structure that we represent, for simplicity, in the function:

G{p,q}ab ±(ε′, ε′′) ≡ G
(p) >
ab (ε′)G(q) <

ba (ε′′)±G(p) <
ab (ε′)G(q) >

ba (ε′′) (A.21)

where (p, q) ∈ {s, t}. This new function and expression (A.18), allow us to separate the site-
dependent Green’s function from vector nature of the kernels (A.4) and (A.5). Furthermore,
we actually see that both expressions has only three very characteristic relations between the
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vector indices. The advanced and retarded components can be written as:

K
ij (±)
ab (ε) = − 1

4~

∫ dε′

2π
dε′′

2π

[
Jab(ε′, ε′′)δij + iDab(ε′, ε′′)εijk t̂k + 2Γ̄ab(ε′, ε′′)t̂it̂j

]
ε± − ε′ + ε′′

(A.22)

where

Jab(ε′, ε′′) = G{s,s}ab (−)(ε
′, ε′′)−G{t,t}ab (−)(ε

′, ε′′) (A.23)
Dab(ε′, ε′′) = G{s,t}ab (−)(ε

′, ε′′)−G{t,s}ab (−)(ε
′, ε′′) (A.24)

Γ̄ab(ε′, ε′′) = G{t,t}ab (−)(ε
′, ε′′) (A.25)

here we clearly anticipate that Jab, Dab, Γ̄ab will give the effective symmetric exchange-like
interaction, the effective antisymmetric exchange-like interaction and an effective anisotropic-
like interaction, respectively. Nevertheless, we still have some analysis to do before confirm
the above interpretation. Analogously for the Keldysh component in (A.5) we find

K
ij (K)
ab (ε) = − iπ2~

∫ dε′

2π
dε′′

2π
[
j̄ab(ε′, ε′′)δij + id̄ab(ε′, ε′′)εijk t̂k + 2ḡab(ε′, ε′′)t̂it̂j

]
δ(ε− ε′ + ε′′)

(A.26)
where we define j̄ab, d̄ab and ḡab by the same structure as for {Jab,Dab, Γ̄ab}, but replacing
(−) 7→ (+) in (A.21). Now that we have make the connection of the advanced, retarded
and Keldysh components to the singlet and triplet advanced and retarded electronic Green’s
functions, we can perform a Taylor expansion for ε ∼ 0 up to first order, and find that

(Jab, iDab,Γab) = −1
2

∫ dε′

2π
dε′′

2π
1

ε′′ − ε′ + iδ
(Jab, iDab, Γ̄ab)(ε′, ε′′) (A.27)

(αab, iβab, γab) = i

2

∫ dε′

2π
dε′′

2π
∂

∂ε

( 1
ε+ iδ − ε′ + ε′′

)
ε=0

(Jab, iDab, Γ̄ab)(ε′, ε′′) (A.28)

So we have define the effective interactions and dampings as: Jab 7→ {Jab, αab}, Dab 7→
{Dab, βab} and Γ̄ab 7→ {Γab, γab}. With this definitions, we can come back to equation (2.68)
and work out the time integral. So the final expression for the equation of motion of Ωa is:

~S
dΩa

dt
(t) = Ωa ×

[
− ∂

∂Ωa

Eaeff [Ω̂a(t), Ω̂b(t)] + ηa(t)− ~S2∑
b

ᾱab
dΩb

dt
(t)
]

(A.29)

Where we have define the effective energy at site a Eaeff and the effective damping tensor
ᾱab, as
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Eaeff [Ω̂a(t), Ω̂b(t)] = E [Ω̂a]− S∆〈sa(t)〉 ·Ωa(t)− ~S2∆2∑
b

[
JabΩa ·Ωb+

+Dabt · (Ωa ×Ωb) + 2Γab(Ωa · t)(Ωb · t)− Γaa(Ωa · t)2
]

(A.30)

ᾱijab = ~∆2
[
αabδ

ij + iβabε
ijk t̂k + 2γabt̂it̂j

]
(A.31)

When we analyze the Keldysh component, we notice that up to first order in ε, the
expression is constant, so the two-point correlation functions for the stochastic magnetic
fields are written as:

〈ηαa (t)ηβb (t′)〉 = −i∆2~S2
[
jabδ

αβ + idabε
αβk t̂k + 2gabt̂αt̂β

]
δ(t− t′) (A.32)

where we can see that due to the spin-orbit coupling, the strength of η is far from the dia-
gonal one found for the monomer configuration.

At the end of section 2.4, we specialize in the case where the spin at the first site is fixed.
Therefore, we find that only a few components are relevant for the equation of motion of the
free spin. These components are:

(J21, iD21,Γ21,Γ22) = −1
2

∫ dε′

2π
dε′′

2π
1

ε′′ − ε′ + iδ
(J21, iD21, Γ̄21, Γ̄22)(ε′, ε′′) (A.33)

(α22, γ22) = −1
4

∫ dε′

2π
∂

∂ε

(
(J22, Γ̄22)(ε′, ε+ ε′)

)
(A.34)

iβ22 = −1
2

∫ dε′

2π
dε′′

2π P
(

∂
∂ε′′

[iD22(ε′, ε′′)]
ε′′ − ε′

)
(A.35)

(j22, g22) = − i

4~

∫ dε′

2π (j̄22, ḡ22)(ε′, ε′) (A.36)

id22 = 0 (A.37)
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Appendix B

Dimer’s canonical Langevin equation:
Calculations

From equation (3.20) we now have three damping-like torques. As said in section 3.4, the
β-term is the easier to treat, even though as we see in section 2.4.3, that term is actually
zero for our configuration. However, we deduce the canonical form of the Langevin equation
for the free spin in the dimer configuration, including that term for generality. Since we have
the unitary condition for Ω, we can re-write that damping-like torque as

βΩ× dΩ

dt
× t̂ = β(Ωt)dΩ

dt
. (B.1)

Therefore, the original three-damping equation can be written as a two-damping equation
with an simple parameter-transformation

~S
dΩ

dt
= Ω× [H̄ + η̄]− SᾱΩ× (~SdΩ

dt
)− Sγ̄Ω× t̂(t̂ · ~SdΩ

dt
), (B.2)

where we have defined the “bar transformation” as:

Λ̄ = Λ
(1 + Sβ(Ω̂ · t̂))

. (B.3)

Here we present Λ as a generic variable so we can write the explicit form of the transfor-
mation. We will keep using it for simplicity in following definitions. Now we have to deal with
the γ-term. The main complication of dealing with this kind of term comes from the inner
product between the spin-orbit unitary vector and the time derivative of the spin’s direction.
But, if we replace the expression for ~S dΩ

dt
into the Right-Hand-Side (RHS) of equation (B.2)

we obtain that

~S
dΩ

dt
= AO (1)

p (H + η) + ASᾱSγ̄ Ω×Ω× t̂(t̂ · ~SdΩ
dt

)

+ASᾱSγ̄ Ω× t̂ (t · Ω× ~S
dΩ
dt

), (B.4)

where we have defined the operator O (1)
p over as

O (1)
p (Λ) = Ω× Λ− SᾱΩ× Ω× Λ− Sγ̄Ω× t̂(t̂ · Ω× Λ). (B.5)
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This definition, and the later ones, are meant to keep focus on the remaining terms, and
specially with (dΩ

dt
) in the RHS. The resembles between the operator O (1)

p and the operator
for the monomer equation is no coincidence since they are obtained by the same operation.
If we apply the dot-product to equation (B.2), we can obtain a very useful relation between
the complicated terms in the last equation of motion. The relation is

Sᾱt̂ · Ω× ~S
dΩ
dt

= t̂ · Ω× [H̄ + η̄]− t̂ · ~SdΩ
dt
. (B.6)

Replacing the above relation in equation (B.4) we obtain:

~S
dΩ

dt
= AO (2)

p (H + η) + ASγ̄
[
SᾱΩ×Ω× t̂−Ω× t̂

]
(t̂ · dΩ

dt
), (B.7)

where, again, we define a new operator O (2)
p over a vector field as:

O (2)
p (Λ) = O (1)

p (Λ) + Sγ̄ Ω× t̂
(
t̂ · Ω× Λ

)
. (B.8)

We see that in equation the last equation of motion have only one remaining term pro-
portional to (dΩ

dt
). So, to deal with this, we replace the expression for ~S dΩ

dt
into the RHS of

equation (B.7) to get:

~S
dΩ

dt
= AO (3)

p (H + η)− (ASγ̄)2Sᾱ
[
SᾱΩ×Ω× t̂−Ω× t̂

]
t̂ · ~SdΩ

dt
(1− (Ωt)2), (B.9)

where O (3)
p is defined as:

O (3)
p (Λ) = O (2)

p (Λ) + ASγ̄
[
SᾱΩ× Ω× t̂− Ω× t̂

]
(t̂ ·O (2)

p (Λ)). (B.10)

Comparing the last two equation of motion, we can calculate a linear combination of them
to get the canonical form. If we calculate: (B.9) + ASγ̄Sᾱ (B.7) (1 − (Ωt)2) we finally get
the final canonical Langevin equation for Ω in presence of spin-orbit coupling:

~S
dΩµ

dt
= A (δµν − ACSγ̄Oµctctν)Oνb(H̄ + η̄), (B.11)

with the final operator Oµν and the C-factor as:

Oµν = εµcνΩc − Sᾱ(ΩµΩν − δµν), (B.12)

C = 1
1 + ASγ̄Sᾱ(1− (Ωt)2) . (B.13)

As we stressed in the section 2.4.3 and deduced in Appendix A, the numerical value of β
is neglect-able, so the bar-transformation may fairly be approximated by a factor 1. Which
in the end helps us to find and simplify the Fokker-Planck equation. With all this, the final
version of the Langevin equation is:

~S
dΩ

dt
= AΩ×

[
H̃ + η̃ − Sα Ω× (H̃ + η̃)

]
, (B.14)
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where we define the “tilde-transformation” as:

Λ̃ = Λ− ACSγt̂ · [Ω× Λ− SαΩ× Ω× Λ] t̂. (B.15)

We can see that the “tilde-transformation” re-define the effective field and the stochastic
magnetic field by projecting the effects of the original fields with the spin-orbit direction. We
have define H̃ and η̃ to resemble the Fokker-Planck equation of the monomer case, but they
are far complicated due to the spin-orbit coupling. The non-stochastic effective field H̃ has
no fixed direction as we could predict from the original effective field H, but now the actual
field in the canonical Langevin equation is the sum of three vectorial contributions

H̃ = uẑ + vt̂+ w(m̂× t̂), (B.16)

with

u = h+ ~S2∆2J21, (B.17)
v = S∆G(t)

22 + 2~S2∆2Γ22(Ωt)− ACSγt̂ · [Ω×H − SαΩ× Ω×H] , (B.18)
w = ~S2∆2D21. (B.19)

When we see the results of the monomer case and those reported in [12], it is clear
that without SOC, the average value of the spin direction change between ±ẑ. Therefore,
depending on the numerical contribution of the effective interactions, the average value can
have components in the x-direction due to the v contribution and/or y-direction due to the
w contribution, which comes directly from the DM interaction.
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