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A B S T R A C T   

We investigate the accuracy of copper price forecasts produced by three decision learning methods. Prior evi
dence (Liu et al. Resources Policy, 2017) shows that a regression tree, a simple decision learning model, can be 
used to predict copper prices for both short-term and long-term horizons (several days and several years, 
respectively). We contribute to this literature by evaluating more sophisticated decision learning methods based 
on trees: random forests and gradient boosting regression trees. Our results indicate that random forests and 
gradient boosting regression trees significantly outperform regression trees at forecasting copper prices. Our 
analysis also reveals that a random walk process, recognized in the literature as one of the most useful models for 
forecasting copper prices, yields competitive out-of-sample forecasts as compared to these decision learning 
methods.   

1. Introduction 

The ability to forecast copper prices is of interest to governments and 
practitioners alike. Governments of major copper-producing economies 
such as Chile1 (where income from copper accounts for around a third of 
GDP and 50 percent of total exports) aim to predict the medium-run 
price of copper in order to prepare the national budget for the coming 
years. The Chilean government sets this future price annually on the 
basis of individual forecasts provided by an expert committee. From the 
investor’s perspective, copper is one of the most traded commodities on 
the major futures trading exchanges such as the London Metal Exchange, 
the New York Commodity Exchange, and the Shanghai Futures Ex
change (see Sanchéz-Lasheras et al., 2015). As such, accurate pre
dictions of future copper prices are an indispensable foundation from 
which to establish profitable investment strategies. Finally, forecasts of 
copper prices and their volatility are a critical factor that must be taken 
into consideration when evaluation (the viability of) mining projects. 
The approval or rejection of a mining project depends on these critical 
predictions (see Dehghani and Ataee-pour, 2012; and Dehghani et al., 

2014). 
In a recent paper, Li et al. (2017) propose forecasting copper prices 

using a regression tree (RT) model, which is a simple decision learning 
method. Li et al. (2017) conclude that this machine-learning method 
produces accurate and reliable short-term and long-term copper price 
forecasts (for horizons of several days and years, respectively), with 
mean absolute errors (MAE) of out-of-sample predictions below 4 
percent and root-mean-square errors (RMSE) of out-of-sample pre
dictions below 8 percent, regardless of the forecast horizon. This is a 
surprising result, because short-term forecasts are typically more accu
rate than long-term forecasts. 

In this article, we contribute to the literature on copper-price fore
casting by analyzing two additional decision learning approaches: the 
random forest (RF) method (Ho, 1995; Amit; Geman, 1997; Breiman, 
2001) and the gradient boosting regression trees (GBRT) method 
(Chapter 10 of Hastie et al., 2009). From a theoretical standpoint, these 
two machine-learning methods offer better prediction accuracy than the 
simple regression trees employed by Li et al. (2017); while from an 
applied point of view, they have been successfully used to produce 
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forecasts in areas ranging from empirical finance to medical science. 
Therefore, we expect them to produce significantly more accurate pre
dictions in our application as well. Besides evaluating the forecasting 
ability of RFs, GBRTs, and RTs (Li et al., 2017), we also analyze a 
random walk (RW) model. Prior literature (see, e.g., Engel and Valdés, 
2001) shows that the best predictor of future copper prices is often its 
current price. To the best of our knowledge, this is the first study to 
evaluate the ability of RF and GBRT decision-learning models to forecast 
copper prices. 

We perform a comprehensive empirical analysis and compare the 
forecasting performance of the three decision-learning methods (RT, RF, 
and GBRT) with that of the RW model. We implement a genuine fore
casting test to evaluate the accuracy of these methods. Indeed, we 
determine the accuracy of the models’ forecasts by considering how well 
they perform on new data that were not used to initially fit them. In our 
first assessment of the models, we employ the same empirical framework 
as Liu et al. (2017). More specifically, we use the same target variable 
(the price of copper), the same set of predictors (lags of the price of 
copper, the lagged prices of gold, silver, crude oil, natural gas, lean hogs, 
and coffee, as well as the lagged value of the Dow Jones index), the same 
sample period, and the same training and testing windows. However, 
unlike Liu et al. (2017), our results show that the longer the range of the 
forecasts, the greater their error, regardless of the method under 
consideration, as we would expect. Our results also reveal that both the 
RF and the GBRT models produce better predictions of the price of 
copper than the RT model developed by Liu et al. (2017). Indeed, we 
report significant reductions in RMSE and MAE across all the specifi
cations and forecast horizons we evaluate. Moreover, upon using an 
updated database, all our findings remain valid. Hence, our results 
provide evidence in favor of the implementation of more sophisticated 
decision-learning methods to forecast copper prices. 

Turning now to the RW model, we find that its forecasts are the most 
accurate. It outperforms the three decision-learning models described 
above in almost all of the cases under evaluation. This evidence supports 
prior literature (Engel and Valdés, 2001) stating that the best predictor 
of future copper prices is its current price. From an economic point of 
view, this evidence suggests that regardless of the forecasting horizon, it 
is very unlikely future copper prices can be predicted from prior 
movements or trends in copper, gold, silver, crude oil, natural gas, lean 
hogs, or coffee prices, or based on the lagged values of the Dow Jones 
index. This is consistent with the spirit of the weak form of the efficient 
market hypothesis, because any attempt to use the set of predictors 
under consideration to forecast future copper price movements, either 
by implementing an RT, RF, or GBRT, is futile. Importantly, upon reit
erating our analysis using an updated database of commodity prices, all 
our results remain valid. 

Although our paper provides new empirical evidence regarding the 
ability of tree-based (RF and GBRT) decision-learning methods to fore
cast copper prices, it adds to a broader body of literature focusing on the 
ability of other decision-learning methods to predict commodity prices. 
For example, Dehghami (2018) assesses the predictive accuracy of the 
gene expression programming (GEP) algorithm when using it to forecast 
commodity prices, while Dehghani and Bogdanovi (2018) study copper 
predictability using a procedure combining traditional time-series 
analysis and the BAT algorithm. These studies highlight the superior 
forecasting accuracy of the decision-learning methods they evaluate as 
compared to the more traditional time-series and 
multiple-linear-regression methods. 

Our paper is also related to studies using several Artificial Neural 
Network (ANN) methods (another type of decision-learning approach) 
to forecast copper prices. For instance, Sanchez-Lasheras et al. (2015) 
compare the predictive performance of two kinds of ANN: a multilayer 
perceptron ANN and an Elman Neural Network. The authors compare 
these models with standard ARIMA models and find that ANN models 
produce better forecasts of copper prices than the ARIMA models. Wang 
et al. (2019) introduce a hybrid predictive technique combining a 

complex network with traditional ANNs. Specifically, they combine a 
price volatility network (PVN) with three types of ANN and find that the 
hybrid method outperforms traditional ANN methods when forecasting 
copper prices. Additionally, Shi et al. (2011) study an empirical fore
casting model that combines a wavelet method with an ANN. As 
compared with ARIMA models, the dynamic wavelet-ANN models pro
duce better forecasts of copper prices. Furthermore, Garcia and Krist
janpoller (2019) present an adaptative approach to forecast copper price 
volatility by considering ARIMA and GARCH methods, as well as ANN, 
Fuzzy Inference Systems (FIS), and hybrid combinations of these. The 
authors report that an Adaptative-GARCH-FIS model produces the most 
accurate forecasts of copper volatility. Finally, Liu et al. (2020) intro
duce a hybrid decision (deep) learning method that combines varia
tional mode decomposition (VMD) and long short-term memory 
network methods (LSTM) to predict zinc, copper, and aluminum prices. 
The VDM-LSTM model outperforms ARIMA models and other bench
mark models. 

Our work is also related to the literature aiming to forecast copper 
prices and volatility using ARIMA and GARCH models, respectively. For 
instance, Kriechbaumer et al. (2014) combine wavelet analysis (in 
which a time series is decomposed into its frequency and time domain) 
with ARIMA models to forecast monthly aluminium, copper, lead, and 
zinc prices. The combined method offers better forecasting accuracy 
than ARIMA methods. Moreover, Rubaszek et al. (2020) evaluate the 
ability of AR and VAR models, as well as a non-linear threshold VAR 
model to forecast the monthly price of aluminium, copper, nickel, and 
zinc. The authors find that commodity prices are mean-reverting and 
that univariate models produce better forecasts than multivariate 
models. Finally, Bundic and Moretto (2015) forecast monthly copper 
prices using a broad set of economic predictors, including autoregressive 
terms, using a dynamic-averaging and selection (DMA/DMS) approach. 
The authors find that several economic variables can contribute to 
forecasts of prices up to 6 months in advance. Beyond that range, a 
random walk benchmark produces superior forecasts. 

Additionally, a related branch of the time-series literature focuses on 
forecasting copper volatility rather than prices. Methodologically, most 
of these studies use GARCH models or heterogeneous autoregressive 
(HAR) models. As is well known from the seminal work of Bolleslev 
(1986), GARCH models are well suited to the conditional dynamic of 
financial asset volatilities. By combining volatility estimates of the same 
asset at different frequencies, HAR models have also shown good fore
casting ability. Notable studies using GARCH models to forecast copper 
volatility include those by Li and Li (2015), Khalifa et al. (2011), 
Hammoudeh and Yuan (2008), and Smith and Bracker (2003). 
Conversely, Gong and Li (2018), Todorova (2015), Todorova et al. 
(2014) and Lyocsa et al. (2017) have used HAR models to forecast 
realized copper volatilities. Meanwhile, Díaz et al. (2020) have added to 
the set of economic predictors used by Bundic and Moretto (2015) to 
forecast realized copper volatility. These authors find that fundamental 
copper market variables such as excess demand and several proxies for 
uncertainty (VIX index, EPU index, and geopolitical risk indices) are 
important predictors of monthly copper volatility in the short-run. 

Lastly, our evidence regarding the predictive power of the RW model 
is akin to that of Buncic and Moretto (2015). These authors evaluated a 
macroeconomic factor-based model for predicting monthly copper 
returns. In results similar to ours, they find that the RW model produces 
competitive forecasts of copper returns (as compared to the 
macro-factor model) six to 12 months ahead. Engel and Valdés (2001) 
report similar evidence after comparing a set of 18 time-series models 
using quarterly and yearly data. In contrast to these studies, we rely on 
decision-learning models to compute our forecasts. Additionally, we 
perform our empirical analysis on daily, instead of monthly, quarterly, 
or yearly data. 

The remainder of this paper is structured as follows. In section 2, we 
describe the three decision-learning methods used in the empirical 
analysis. In section 3, we present our database and provide descriptive 
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statistics. In section 4, we report our empirical results and discuss their 
key implications. Finally, we conclude in section 5. 

2. Methodology: Decision learning methods 

In this section, we describe the decision learning methods considered 
in the forecasting exercise below. These models are also known in the 
machine learning literature as tree-based methods (Hastie et al., 2009; 
James et al., 2013). We begin by defining the regression trees (RT) used 
by Liu et al. (2017) since they constitute the benchmark model for our 
analysis. We subsequently introduce random forests (RF) and gradient 
boosted regression trees (GBRT). 

2.1. Regression trees 

A regression tree is the adaptation of a decision tree model (Breiman 
et al., 1984) for the regression case. Specifically, to forecast the price of 
copper, p, using a set of predictors, X1, X2,…, Xk, a regression tree model 
is built by partitioning the possible values of the predictors into M 
different and disjoint regions, e.g., H1, H2,…., HM. In order to predict the 
copper price of an observation belonging to any given region Hm, the 
simple average of the copper price values for the training observations in 
Hm, i.e., p̂Hm

, is used. 
In principle, the construction of regions H1, H2,…., HM should 

minimize the residual sum of squares (RSS), which is given by the 

expression RSS =
∑M

m=1

∑

i∈Hm

(pi − p̂Hm
)
2. However, in practice, given that it 

is impossible to assess every possible split in predictor space due to 
limited computational resources, this strategy is not feasible. To over
come this issue, one alternative is to build the regions by growing a 
binary tree following a top-down strategy. This approach, also known as 
recursive binary splitting, begins at the top of the tree and successively 
splits the values of the predictors into two new branches further down 
the tree. Importantly, the cutoff value for the partition space of one 
predictor is optimally selected by minimizing the residual sum of 
squares of the training observations that are relevant to that specific 
partition (i.e., not considering future binary splits of other predictors). 

Once a large tree has been grown through recursive binary splitting 
(e.g., with a maximum depth or minimum node size as the stopping 
criterion), the selection of the best subtree, i.e., that of the partition (of 
the predictor space) which attained the lowest RSS, is performed by 
implementing a cost-complexity pruning process. This approach uses 
cross-validation to prune the original large tree and select the optimal 
subtree that leads to the lowest average forecast error. For compre
hensive revisions of the regression tree methods, see Chapter 9 in Hastie 
et al. (2009), and Chapter 8 in James et al. (2013). 

2.2. Random Forests 

Random forests (Ho, 1995; Amit and Geman, 1997; Breiman, 2001) 
offer better prediction accuracy than regression trees. These models 
extend the single regression tree by building multiple regression trees 
based on random subsets of training data and predictors. Forecasts based 
on random forests average the resulting predictions of the multiple fitted 
regression trees. 

The statistical procedure underpinning random forests is bootstrap 
aggregation (typically called bagging), which was developed by Brei
man (1996). As is well known, bagging increases the prediction accuracy 
of any statistical method (e.g., a single regression tree) by taking many 
bootstrapped subsamples from the training observations and fitting 
separate prediction models (regression trees) for each of those random 
subsamples. In bagging, the final prediction is the average (aggregation) 
of the resulting predictions, which reduces the variance. When bootstrap 
aggregation is applied to regression trees, these are often named bagged 
trees. 

In addition to the advantages of bagging, the random forests method 
further improves prediction accuracy by reducing the correlation in 
predictive power between the regression trees that are fitted separately 
with the bootstrapped subsamples. This reduction is achieved when each 
time a bootstrapped subsample is considered, the regression tree is built 
using only a random sample of predictors (from the full set of predictors) 
at each binary split. Intuitively, a random forest fits multiple decorre
lated regression trees, with each tree predicting with high variance, but 
low bias. Thus, averaging the predictions of these models reduces the 
overall variance. Note that if the forecasts of the multiple regression 
trees are too highly correlated (i.e., if the predictive ability is similar 
across the regression trees), then it is not possible to reduce the variance 
when aggregating the predictions. 

Random forest models have three adjustable (tuning) parameters: 
the number of predictors to randomly select for each bootstrapped 
subsample (we use 8); the total number of regression trees to be 
aggregated (in our case 1500); and the size (or depth) of each regression 
tree (we employ trees with 5 terminal nodes). A detailed description of 
the statistical theory behind random forests can be found in chapter 15 
of Hastie et al. (2009), while chapter 8 of James et al. (2013) focuses on 
applications of this model. 

2.3. Gradient Boosting Regression Trees 

A gradient boosting regression tree (GBRT, Hastie et al., 2009, 
chapter 10) also provides better prediction accuracy than a single 
regression tree, but it employs a different approach to that of the random 
forest method. Intuitively, unlike random forests that reduce variance by 
aggregating complex decorrelated trees, this method sequentially de
creases the bias of a simple regression tree with higher bias but low 
variance. 

More formally, GBRTs are based on boosting (Freund and Schapire, 
1996; Schapire, 2003), which is another general statistical technique for 
improving predictions generated from learning models (e.g., regression 
trees). In GBRTs, an ensemble (aggregation) of multiple regression trees 
is also used to forecast the outcome variable of interest, but the main 
difference is that each tree is constructed using the knowledge acquired 
from previously fitted models. Specifically, each regression tree is built 
sequentially using the current model’s residuals as the outcome variable. 
Then, this new regression tree is aggregated in the fitted model to update 
the residuals. The rationale behind this approach is that the new 
regression tree that is aggregated to the ensemble model corrects the 
errors of the current ensemble and, therefore, reduces the RSS. In 
GBRTs, the way the contemporary ensemble model is updated makes use 
of the same principle as that underpinning the gradient descent algo
rithm used in numerical optimization, but with the RSS as the objective 
function. 

GBRTs have three tuning parameters: the number of trees to be 
considered in the ensemble model, the depth of each tree (the number of 
splits), and a shrinkage parameter related to the learning rate of the 
ensemble model. As Hastie et al. (2009) point out in their tenth chapter, 
although parameter configurations depend on the specificities of each 
case study, a value of 0.01 for the learning rate and regression trees with 
just one split work well. Finally, we use a cross-validation procedure to 
select the number of regression trees to be aggregated in the model. 

3. Data and descriptive statistics 

Following Liu et al. (2017), we build our database by collecting daily 
copper prices and a set of predictors covering the period between 
January 2008 and May 2020. As predictors, we consider lags of the price 
of copper, the lagged prices of a set of other commodities (mostly 
minerals commodities), and the lagged value of a stock market index in 
the USA (Dow Jones). We include gold, silver, crude oil, natural gas, lean 
hogs, and coffee in the set of commodities used as predictors. This 
particular selection of predictors of copper prices allows us to remain as 
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close as possible to the work of Liu et al. (2017), our benchmark paper in 
this forecasting exercise. The authors discuss the economic rationale 
behind the selection of these predictors in their article and refer to prior 
evidence (see, e.g., Charlot and Marimoutou, 2014; Joseph and Kunding, 
1999; and Gargano and Timmermann, 2014). We download all the data 
from the website www.investing.com. 

Table 1 reports descriptive statistics (panel A) and contemporaneous 
correlations (panel B) among the variables. The average price of the 
copper in the sample is US$ 3.22, with a standard deviation of US$ 0.65. 
The contemporaneous correlations between the price of copper and that 
of the other commodities are positive and statistically significant. The 
correlations between the price of copper and that of the other metals and 
energy commodities are stronger (e.g., 0.56 with gold, 0.76 with silver, 
0.74 with oil) than the correlation with the Dow Jones index (0.01). 

4. Empirical results 

In this section, we describe our empirical framework and report our 
forecasting results. 

4.1. Framework 

We implement two exercises to evaluate the out-of-sample fore
casting accuracy of the different methods described in this paper. 
Throughout this article, we refer to these exercises as exercise A and 
exercise B. Specifically, in exercise A, we use the sample period begin
ning in January 2008 and ending in December 2015, while in exercise B, 
we employ the period from January 2008 until May 2020. The first time 
period is chosen so as to replicate the results of Liu et al. (2017) as 
closely as possible. 

In each exercise (A and B), we consider several forecast horizons, 
which we express in terms of days ahead (h): 1 day (h = 1), 1 week (h =

5), 1 month (h = 20), 6 months (h = 120), 1 year (h = 250), and 2 
years (h = 500)2 ahead. Moreover, in each exercise, we also consider 
different augmentations of the set of predictors, by adding lags to the 
current values of the predictors. Specifically, we study the following 
configurations of the set of predictors (D): 1 (only the current values of 
the predictors); 5 (from the current value until the fourth lag of the 
predictors); 10 (from the current value until the ninth lag of the pre
dictors); 20 (from the current values until the nineteenth lag of the 
predictors); 40 (from the current values until the thirty-ninth lag of the 
predictors); and 80 (from the current values until the seventy-ninth lag 

of the predictors). 
More precisely, if pt denotes the price of copper on day t and Xt is the 

vector collecting the values of the set of predictors on that day t, then for 
a given combination of h and D, we model pt+h from Xt, Xt− 1, Xt− 2, …, 
Xt− D− 1. For example, if h = 1 and D = 1, we fit the models with the 
outcome (response) variable pt+1 and predictors Xt. Alternatively, in the 
case of h = 5 and D = 5, we adjust the models with the outcome variable 
pt+5 and predictors Xt, Xt− 1, Xt− 2, Xt− 3, and Xt− 4; while if h = 250 and 

D = 10, we estimate the models with the outcome variable pt+250 and 
predictors Xt, Xt− 1, Xt− 2, Xt− 3, …, Xt− 9. In total, each exercise is 
composed of 36 cases. 

In each exercise, we split the sample into training and testing sub
samples. The training subsample is used to fit the model, while the 
testing subsample serves to evaluate the model’s forecasting accuracy. 
Regardless of the values of h and D, we set the initial size of the training 
subsample in 607 observations, as in Liu et al. (2017), for exercises A 
and B. Note that, for different values of h and D, the number of obser
vations in the testing subsamples varies from 677 observations, when 
h = 500 and D = 80 in exercise A, to 3135 observations, when h = 1 and 
D = 1 in exercise B. 

Given h and D for each exercise, we make predictions using a rolling 
training sample, i.e., each forecast in the testing sample uses a fixed 
number of previous observations for model estimation3. More precisely, 
to predict the copper price for the first date in the testing sample, we 
begin by estimating the model using the initial training sample. Then, to 
forecast the price of copper on the second date in the testing sample, we 
move forward the estimation window by one period. Subsequently, to 
predict the price of copper for the next date in the testing subsample, we 
move forward the model estimation window by one period, and so on. 
We stop once the price of copper has been forecasted for all of the dates 
in the testing sample. Lastly, we repeat this predictive approach using a 
rolling training sample for the four models considered in this article: 
regression trees, random forests, gradient boosted decision trees, and 
random walks4. 

A crucial difference between our forecasting exercise and the one in 
Liu et al. (2017) refers to the out-of-sample periods considered in the 
forecasting evaluation. While we only use information up to t to fore
casting t + h periods ahead, Liu et al. (2017) seem to be using infor
mation up to t + h-1. This difference in the forecasting framework 
explains differences in the magnitude of the reported forecasting errors, 
especially at the longer horizons.5 We believe that the evaluation of the 
forecast accuracy of these methods must be based on a genuine forecast 
exercise, where the determination of the accuracy of forecasts must 
consider how well the models perform on new data that were not used 
when fitting the models. 

For a combination of h and D, we consider the root-mean-square 
error (RMSE) and the mean absolute error (MAE) as measures of fore
cast error to evaluate the out-of-sample forecasting accuracy of the four 
methods. More formally, the RMSE and the MAE are given by the 
following expressions:  

where t* is the start date of the testing subsample, T* is the end date of 
the testing subsample, ps is the actual price of copper on date s of the 
testing period and p̂s is the predicted price of copper on date s of the 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
(T* − t* + 1)

∑T*

s=t*

(
100%(ps − p̂s )

ps

)2
√
√
√
√ , and MAE=

1
(T* − t* + 1)

∑T*

s=t*

⃒
⃒
⃒
⃒
100%(ps − p̂s)

ps

⃒
⃒
⃒
⃒ (1)   

2 Liu et al. (2017) also consider a 4-year forecasting horizon. We exclude that 
horizon from the analysis because of the reduced number of periods available 
for the out-of-sample evaluation given our sample size and forecasting frame
work. As we explain below, our forecasting framework differs from the one in 
Liu et al. (2017). 

3 Alternatively, predictions can be based on an expanding training sample, i. 
e., each forecast is produced by a model estimated with all of the previous 
observations.  

4 Specifically, we consider random walk model without drift.  
5 In the appendix, we report the forecast exercise using the approach 

employed in Liu et al. (2017). When we use the same forecasting framework, 
we replicate their results. In particular, as in Liu et al. (2017), the estimated 
mean absolute errors are always below 4% and the root-mean-squared errors 
are always below 8%, regardless of h and D. 
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testing period using a specific model. For a combination of h and D, we 
report four RMSE values (and four MAE values), one for each of the 
models under consideration (regression trees, random forests, gradient 
boosted regression trees, and random walk). Naturally, the model with 
the lowest RMSE (MAE) is the best in terms of out-of-sample forecasting 
accuracy. 

4.2. Results 

Table 2 shows the results for exercise A, which use the sample mir
roring that employed by Liu et al. (2017) covering the period between 
January 2008 and December 2015. As mentioned above, we compare 
and evaluate the models in terms of out-of-sample forecasting accuracy 
on the basis of the root-mean-square error (RMSE) and the mean abso
lute error (MAE). We report the values of these forecast error measures 
for several horizons: the 1-day, 1-week, 1-month, 6-month, 1-year, and 
2-year forecast horizons. Liu et al. (2017) use similar evaluation metrics 
and forecast horizons, so our empirical results are comparable with 
theirs. 

As explained above, the set of predictors considered in the fore
casting exercise included lags of the price of copper, the lagged values of 
a number of other commodity prices (gold, silver, oil, gas, lean hogs, and 
coffee) and lagged values of a US stock index (the Dow Jones index). As 
discussed in section 4.1, the parameter D determines the number of lags 
considered in the set of predictors in each forecasting exercise. Table 2 
shows the forecasting results for D = 1, 5, 10, 20, 40, and 80. 

The first panel in Table 2 shows the results for the case in which D =

1. For the 1-day forecast horizon, the RMSE for the four forecasting 
models under evaluation, i.e., RT, RF, GBRT, and RW, are 3.16%, 1.43%, 
1.56%, and 1.25%, respectively. Comparing these values, we observe 
that both the RF and GBRT models provide significantly more accurate 
forecasts than the RT model used by Liu et al. (2017). At around 50%, 
the improvement in forecast accuracy for both models is considerable. 
When the RW model is included in the comparison, the overall fore
casting results improve further. The RW model produces an RMSE of 
1.25%, which is 74% lower than the value of the benchmark RT model. 
We obtain similar results when comparing the models using the MAE. In 
this case, the RT model produces an MAE of 2.27%, while the RF and 
GBRT models produce values of 1.01% and 1.11%, respectively. These 
values again indicate a sizeable and significant improvement in 

forecasting accuracy of around 50%. The RW model produces even 
better forecasting results by delivering an MAE of 0.86%, which repre
sents a 62% improvement in forecasting accuracy as compared with the 
RT model. Overall, this evidence shows that more general tree-based 
regression models (RF and GBRT) outperform the RT model. Impor
tantly, considering all of the models evaluated, our results indicate that 
the RW model delivers the best forecasting performance in the very 
short-term. 

Although our results show that the forecast error increases as the 
forecast horizon increases, regardless of the method under analysis, it is 
noteworthy that the conclusions from the first panel of results remain 
qualitatively valid across all the other forecast horizons under evalua
tion, but with smaller quantitative differences in forecasting errors 
among the methods. For instance, for the 1-year horizon, we find that 
the RMSE of the RT model is 19.70%, while the RMSE of the RF and 
GBRT models are 17.80% and 17.25%, respectively, indicating an 
improvement in forecasting accuracy of around 12%. The RW model 
produces an RMSE of 11.84%, which is the lowest among all the models 
under consideration. Turning to the MAE metrics, the RT model provides 
an MAE of 16.41%, while the other models produce MAE values of 
16.44% (RF), 15.98% (GBRT), and 9.85% (RW), respectively. Again, we 
observe substantial improvements in the accuracy of future copper price 
predictions using the RW model. 

The conclusions for the results in the remaining panels, i.e., for D =

5, 10, 20, 40, and 80, are almost identical to those obtained with D = 1. 
Again, for all of the prediction horizons considered, we observe that the 
RF, GBRT, or RW models provide significant improvements in fore
casting accuracy over the RT model, regardless of the forecast error 
measure employed. The RW model consistently performs the best for 
out-of-sample predictions in most of the cases, and the RF model per
forms second best. The improvement in prediction accuracy varies be
tween models, as well as according to the set of predictors included in 
each model (D), and the forecast horizons (h) considered. 

Table 3 shows the results of exercise B. In this exercise, we use an 
updated database covering the period from January 2008 until May 
2020. We observe that the use of this extended database does not affect 
the validity of most of the conclusions obtained in exercise A. In general, 
we find that short-term forecasts are more accurate than long-term 
forecasts, with more sophisticated tree-based models tending to yield 
more accurate forecasts of the price of copper than those generated from 

Table 1 
Descriptive Statistics and Correlations among variables.  

Panel A: Descriptive Statistics 

Variable Mean Std. Dev. Min Max     

Copper 3.22 0.65 1.25 4.62     
Gold 1304.37 267.94 704.90 1888.70     
Silver 22.31 7.86 8.79 48.58     
Oil 84.41 21.14 33.87 145.20     
Gas 4.29 1.91 1.91 13.57     
Lean Hogs 81.01 16.68 44.52 133.30     
Coffee 162.58 45.68 101.50 304.90     
Dow Jones 13229.73 2926.48 6547.05 18312.39      

Panel B: Correlations  

Copper Gold Silver Oil Gas Lean hogs Coffee Dow Jones 

Copper 1.00        
Gold 0.56* 1.00       
Silver 0.77* 0.86* 1.00      
Oil 0.75* 0.30* 0.47* 1.00     
Gas 0.14* -0.55* -0.27* 0.43* 1.00    
Lean hogs 0.39* 0.53* 0.40* 0.51* -0.17* 1.00   
Coffee 0.65* 0.58* 0.75* 0.34* -0.14* 0.43* 1.00  
Dow Jones 0.01 0.28* -0.02 0.01 -0.29* 0.46* -0.04 1 

Notes: Panel A reports descriptive statistics (mean, standard deviation, minimum, and maximum values) for the futures prices of several commodities and the index 
value of the Dow Jones index. Panel B reports pairwise correlations between the variables. * indicates a statistically significant pairwise correlation at the 95 percent 
confidence level. The sample period considered is from January 2008 until May 2020. 
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a simple regression tree. Specifically, both the RF and the GBRT models 
considerably reduce forecast errors, as compared with the RT model, 
regardless of the set of predictors included (D) and for all the forecast 
horizons (h) under consideration except for the very long-term (2 years), 
where we observe that the forecasting performance of the four models 
become similar. This exercise also reveals that the RW model produces 
more accurate predictions of copper prices for the 1-day, 1-week, 1- 
month, 6-month, and 1-year forecast horizons, independently of the 
sets of predictors used. 

Overall, two key points emerge from these empirical results. Firstly, 
as compared to the RT model used by Liu et al. (2017), more sophisti
cated tree-based methods such as the RF and GBRT models appear to 
produce considerably better forecasts of copper prices. In general, the RF 
model outperforms the GBRT model. Secondly, our evidence suggests 
that the RW model provides very competitive forecasts of short-, me
dium-, and long-term copper prices. From an economic point of view, 
this last result is consistent with the weak version of the efficient market 
hypothesis. In other words, it is unlikely future copper prices can be 
predicted from the past movements or trends of copper prices (or from 

those of any of the other predictors considered here). 

5. Conclusions 

This article assesses the accuracy of copper-price forecasts from three 
tree-based decision-learning methods. In an earlier study, Liu at al. 
(2017) concluded that regression tree models produce accurate and 
reliable short-term and long-term copper-price forecasts (with horizons 
several days and years ahead, respectively). We compare the forecasting 
performance of the model presented by Liu et al. (2017) with that of two 
other tree-based models: random forests (RF) and gradient boosting 
regression trees (GBRT). We also evaluate the performance of a random 
walk (RW) model that prior literature (see, e.g., Engel and Valdés, 2001) 
has identified as a competitive model for forecasting copper prices. 

Using daily data from January 2008 until May 2020, our empirical 
analysis shows that both the RF and the GBRT models produce more 
accurate forecasts of copper prices than the RT model developed by Liu 
et al. (2017). We document significant improvements in 
root-mean-square errors (RMSE) and mean absolute errors (MAE), 

Table 2 
Copper price out-of-sample forecasting evaluation for alternative models and horizons. (Short sample, 2008:01-2015:12).   

RMSE  MAE  

RT RF GBM RW  RT RF GBM RW 

D ¼ 1 
1 day 3.16 1.43 1.56 1.25  2.27 1.01 1.11 0.86 
1 week 4.49 3.36 3.48 2.83  3.38 2.51 2.61 2.12 
1 month 7.76 6.80 6.47 5.28  5.87 5.12 4.99 4.06 
6 months 13.37 13.06 12.10 10.19  11.20 11.10 10.05 8.20 
1 year 19.70 17.80 17.25 11.84  16.41 16.44 15.98 9.85 
2 years 20.18 19.52 18.89 16.89  17.69 17.19 16.54 15.21 

D = 5 
1 day 3.16 1.60 1.54 1.25  2.28 1.17 1.11 0.86 
1 week 4.48 3.44 3.48 2.82  3.38 2.57 2.61 2.12 
1 month 7.95 6.44 6.70 5.26  6.12 4.92 5.20 4.04 
6 months 13.09 13.01 11.91 10.13  10.90 10.78 9.90 8.16 
1 year 20.62 16.08 16.58 11.76  16.99 14.67 14.98 9.80 
2 years 20.74 20.15 18.85 16.94  18.20 17.53 16.36 15.27 

D = 10 
1 day 3.17 1.74 1.52 1.25  2.28 1.28 1.09 0.86 
1 week 4.53 3.53 3.41 2.81  3.38 2.62 2.57 2.11 
1 month 8.15 6.51 6.78 5.26  6.20 4.96 5.24 4.05 
6 months 12.86 12.99 11.79 10.01  10.74 10.75 9.88 8.10 
1 year 19.34 15.73 16.24 11.68  15.78 14.12 14.44 9.74 
2 years 20.82 20.42 19.08 16.97  18.03 17.58 15.98 15.31 

D = 20 
1 day 3.16 1.87 1.51 1.25  2.27 1.37 1.08 0.86 
1 week 4.50 3.61 3.38 2.79  3.34 2.69 2.53 2.09 
1 month 8.95 6.67 6.97 5.26  6.57 4.98 5.21 4.04 
6 months 12.49 12.84 11.42 9.76  10.57 10.70 9.57 7.96 
1 year 17.66 15.06 15.46 11.58  14.60 13.18 13.61 9.65 
2 years 20.61 20.78 19.41 17.04  17.40 17.66 15.57 15.38 

D = 40 
1 day 3.15 1.97 1.48 1.23  2.26 1.46 1.06 0.84 
1 week 4.51 3.65 3.28 2.74  3.34 2.75 2.46 2.06 
1 month 9.66 6.68 7.26 5.28  6.98 5.12 5.48 4.06 
6 months 12.38 12.53 10.63 9.57  10.63 10.50 9.00 7.81 
1 year 17.73 14.58 15.35 11.34  14.91 12.66 13.51 9.46 
2 years 22.30 21.01 20.33 17.25  19.14 17.84 16.74 15.65 

D = 80 
1 day 3.15 1.99 1.45 1.21  2.25 1.49 1.04 0.83 
1 week 4.69 3.63 3.25 2.70  3.43 2.76 2.43 2.03 
1 month 9.03 6.34 6.61 5.19  6.52 4.94 5.12 4.00 
6 months 13.20 11.94 10.53 9.48  10.98 10.13 8.80 7.69 
1 year 14.86 13.22 13.35 11.29  12.05 11.03 11.24 9.36 
2 years 23.20 21.92 21.36 17.46  20.38 19.32 18.40 15.82 

Notes: the table reports Root-Mean-Square Errors (RMSE) and Mean Absolute Errors (MAE) obtained from a Regression Tree (RT) model, a Random Forest model (RF), 
a Gradient-Boosting Regression Tree (GBRT) model, and a Random Walk (RW) aiming to predict Copper Prices. The predictions are computed for 1-day, 1-week, 1- 
month, 6-month, 1-year, and 2-year forecast horizons. The forecasts also consider the inclusion of D lags of the Price of Copper and D lags of a set of additional variables 
included in the forecasting exercise (see section 3 for a list of these variables). We evaluate the cases in which D = 1, 5, 10, 20, 40, and 80. The training period for the 
models rans from January 2008 until October 2011; while the out-of-sample forecasting period covers from November 2011 until December 2015, depending on the 
forecast horizon. 
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favoring both the RF and the GBRT models over the RT model. More
over, our evidence shows that the RW model is very competitive when 
compared with the tree-based methods. From an economic standpoint, 
this evidence of the RW model’s predictive power can be interpreted as a 
corroboration of the weak form of the efficient market hypothesis for the 
copper market. Indeed, it is unlikely future copper prices can be pre
dicted from the past movements or trends of the predictors under 
consideration, irrespective of whether an RT, RF, or GBRT model is 
implemented. 
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Appendix(Not for Publication): Replication of Liu et al. (2017) 

(Sample, 2008:01-2015:12). 

Table 3 
Copper price out-of-sample forecasting evaluation for alternative models and horizons. (Full sample, 2008:01-2020:06).   

RMSE  MAE  

RT RF GBM RW  RT RF GBM RW 
D ¼ 1 

1 day 2.94 1.32 1.45 1.15  2.16 0.93 1.01 0.79 
1 week 4.12 3.15 3.21 2.62  3.12 2.35 2.40 1.97 
1 month 7.17 6.44 6.15 5.09  5.43 4.82 4.69 3.89 
6 months 14.41 13.98 13.03 10.37  11.93 11.75 10.75 8.20 
1 year 23.51 22.51 21.49 14.41  19.44 19.17 18.12 12.04 
2 years 23.23 22.61 23.58 23.68  19.75 19.38 20.14 19.42 

D = 5 
1 day 2.93 1.50 1.44 1.15  2.16 1.10 1.01 0.79 
1 week 4.17 3.23 3.22 2.62  3.13 2.42 2.42 1.96 
1 month 7.29 6.07 6.34 5.08  5.55 4.59 4.86 3.88 
6 months 14.16 13.49 13.00 10.34  11.66 11.27 10.68 8.18 
1 year 23.92 21.14 21.27 14.38  19.74 17.68 17.75 12.02 
2 years 23.23 22.78 23.57 23.70  19.91 19.49 20.10 19.45 

D = 10 
1 day 2.95 1.63 1.42 1.15  2.17 1.20 1.00 0.79 
1 week 4.26 3.30 3.19 2.61  3.18 2.48 2.40 1.96 
1 month 7.49 6.11 6.43 5.08  5.65 4.63 4.93 3.88 
6 months 14.33 13.48 12.95 10.28  11.75 11.24 10.58 8.14 
1 year 23.46 21.10 21.18 14.35  19.25 17.55 17.60 11.99 
2 years 23.41 22.86 23.79 23.72  20.01 19.52 20.10 19.47 

D = 20 
1 day 2.97 1.74 1.42 1.15  2.18 1.28 1.00 0.79 
1 week 4.29 3.36 3.19 2.60  3.19 2.52 2.40 1.95 
1 month 7.91 6.20 6.54 5.08  5.77 4.67 4.91 3.88 
6 months 14.64 13.37 12.78 10.15  11.74 11.15 10.33 8.07 
1 year 22.87 21.02 21.31 14.32  18.74 17.33 17.59 11.96 
2 years 22.59 23.08 23.47 23.77  18.73 19.50 19.35 19.51 

D = 40 
1 day 2.96 1.83 1.40 1.13  2.16 1.36 0.99 0.78 
1 week 4.30 3.41 3.13 2.57  3.20 2.56 2.37 1.93 
1 month 8.28 6.24 6.74 5.09  5.97 4.75 5.09 3.88 
6 months 14.40 13.16 12.60 10.06  11.43 10.93 10.13 8.00 
1 year 24.04 21.53 22.09 14.25  19.98 17.52 18.17 11.89 
2 years 23.28 22.95 22.86 23.87  19.19 19.14 18.45 19.65 

D = 80 
1 day 2.96 1.86 1.37 1.12  2.16 1.40 0.97 0.78 
1 week 4.52 3.42 3.12 2.54  3.29 2.58 2.36 1.91 
1 month 8.52 6.14 6.35 5.04  6.14 4.72 4.87 3.85 
6 months 15.24 12.85 12.68 10.02  12.22 10.78 10.28 7.94 
1 year 22.88 20.66 21.98 14.27  18.45 16.42 17.61 11.88 
2 years 24.17 23.02 23.17 24.04  19.44 19.18 18.62 19.78 

Notes: the table reports Root-Mean-Square Errors (RMSE) and Mean Absolute Errors (MAE) obtained from a Regression Tree (RT) model, a Random Forest model (RF), 
a Gradient-Boosting Regression Tree (GBRT) model, and a Random Walk (RW) aiming to predict Copper Prices. The predictions are computed for 1-day, 1-week, 1- 
month, 6-month, 1-year, and 2-year forecast horizons. The forecasts also considered the inclusion of D lags of the Price of Copper and D lags of a set of additional 
variables included in the forecasting exercise (see section 3 for a list of these variables). We evaluate the cases in which D = 1, 5, 10, 20, 40, and 80. The training period 
for the models rans from January 2008 until October 2011; while the out-of-sample forecasting period covers from November 2011 until May 2020, depending on the 
forecast horizon. 
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RMSE  MAE  

RT RF GBM RW  RT RF GBM RW 

D ¼ 1 
1 day 3.16 1.43 1.56 1.25  2.27 1.01 1.11 0.86 
1 week 4.04 2.16 2.59 1.25  3.05 1.54 1.95 0.86 
1 month 5.12 2.89 3.18 1.25  3.68 1.90 2.39 0.86 
6 months 4.93 2.64 3.18 1.21  3.67 1.78 2.37 0.83 
1 year 5.19 2.86 3.18 1.21  3.50 1.82 2.33 0.82 
2 years 4.37 2.56 2.92 1.09  3.02 1.70 2.20 0.75 

D = 5 
1 day 3.16 1.60 1.54 1.25  2.28 1.17 1.11 0.86 
1 week 4.03 2.15 2.54 1.25  3.04 1.57 1.90 0.86 
1 month 5.20 2.63 3.17 1.24  3.77 1.85 2.39 0.85 
6 months 4.87 2.51 3.12 1.21  3.57 1.81 2.36 0.83 
1 year 5.55 2.49 3.26 1.21  3.73 1.73 2.38 0.82 
2 years 4.29 2.28 2.91 1.09  2.95 1.65 2.19 0.75 

D = 10 
1 day 3.17 1.74 1.52 1.25  2.28 1.28 1.09 0.86 
1 week 3.98 2.18 2.42 1.25  2.99 1.58 1.83 0.86 
1 month 5.07 2.53 3.08 1.23  3.67 1.82 2.29 0.85 
6 months 4.97 2.38 3.05 1.21  3.63 1.74 2.30 0.83 
1 year 5.54 2.32 3.11 1.21  3.63 1.64 2.28 0.82 
2 years 4.51 2.17 2.83 1.08  3.10 1.60 2.15 0.75 

D = 20 
1 day 3.16 1.87 1.51 1.25  2.27 1.37 1.08 0.86 
1 week 3.97 2.15 2.32 1.24  2.98 1.57 1.73 0.85 
1 month 5.20 2.43 3.00 1.23  3.63 1.76 2.17 0.84 
6 months 4.72 2.21 2.70 1.22  3.44 1.67 2.08 0.83 
1 year 5.47 2.18 2.84 1.21  3.63 1.56 2.09 0.82 
2 years 4.54 1.95 2.60 1.07  3.09 1.49 1.99 0.74 

D = 40 
1 day 3.2 2.0 1.5 1.2  2.26 1.46 1.06 0.84 
1 week 4.0 2.1 2.2 1.2  2.95 1.57 1.62 0.84 
1 month 6.1 2.3 2.9 1.2  3.87 1.70 2.13 0.84 
6 months 4.3 2.1 2.5 1.2  3.10 1.59 1.89 0.83 
1 year 5.3 2.1 2.7 1.2  3.52 1.50 1.92 0.82 
2 years 5.5 1.8 2.3 1.1  3.57 1.36 1.75 0.74 

D = 80 
1 day 3.15 1.99 1.45 1.21  2.25 1.49 1.04 0.83 
1 week 3.98 2.06 2.06 1.21  2.95 1.55 1.55 0.83 
1 month 5.79 2.12 2.62 1.21  3.68 1.60 1.92 0.83 
6 months 4.60 2.05 2.30 1.21  3.20 1.53 1.71 0.82 
1 year 4.86 2.00 2.59 1.20  3.22 1.48 1.84 0.81 
2 years 5.24 1.72 2.16 1.05  3.42 1.33 1.64 0.73 

Notes: the table reports Root-Mean-Square Errors (RMSE) and Mean Absolute Errors (MAE) obtained from a Regression Tree (RT) model, a Random Forest model (RF), 
a Gradient-Boosting Regression Tree (GBRT) model, and a Random Walk (RW) aiming to predict Copper Prices. The predictions are computed for 1-day, 1-week, 1- 
month, 6-month, 1-year, and 2-year forecast horizons. The forecasts also considered the inclusion of D lags of the Price of Copper and D lags of a set of additional 
variables included in the forecasting exercise (see section 3 for a list of these variables). We evaluate the cases in which D = 1, 5, 10, 20, 40, and 80. The training period 
for the models rans from January 2008 until October 2011; while the out-of-sample forecasting period covers from November 2011 until December 2015. 
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