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New detrital zircon U-Pb geochronology data from the Cenozoic Magallanes-Austral Basin in Argentina and Chile ~51° S establish a
revised chronostratigraphy of Paleocene-Miocene foreland synorogenic strata and document the rise and subsequent isolation of 
hinterland sources in the Patagonian Andes from the continental margin. The upsection loss of zircons derived from the 
hinterland Paleozoic and Late Jurassic sources between ca. 60 and 44 Ma documents a major shift in sediment routing due to 
Paleogene orogenesis in the greater Patagonian-Fuegian Andes. Changes in the proportion of grains from hinterland thrust sheets,
comprised of Jurassic volcanics and Paleozoic metasedimentary rocks, provide a trackable signal of long-term shifts in orogenic 
drainage divide and topographic isolation due to widening of the retroarc fold-thrust belt. The youngest detrital zircon U-Pb ages 
confirm timing of Maastrichtian-Eocene strata but require substantial age revisions for part of the overlying Cenozoic basinfill 
during the late Eocene and Oligocene. The upper Río Turbio Formation, previously mapped as middle to late Eocene in the 
published literature, records a newly recognized latest Eocene-Oligocene (37-27 Ma) marine incursion along the basin margin. We 
suggest that these deposits could be genetically linked to the distally placed units along the Atlantic coast, including the El Huemul 
Formation and the younger San Julián Formation, via an eastward deepening within the foreland basin system that culminated in a 
basin-wide Oligocene marine incursion in the Southern Andes. The overlying Río Guillermo Formation records onset of 
tectonically generated coarse-grained detritus ca. 24.3 Ma and a transition to the first fully nonmarine conditions on the proximal 
Patagonian platform since Late Cretaceous time, perhaps signaling a Cordilleran-scale upper plate response to increased plate 
convergence and tectonic plate reorganization.
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1. Introduction

Tectonics, climate, and eustasy in convergent plate settings
control first-order fluctuations between marine and terres-
trial environments along continental margins and the trans-
fer of sediment from orogens to basin depocenters. With
the emergence of a new paradigm in the last three decades
recognizing dynamic interactions and feedbacks between tec-
tonics and climate [1–3], it is all the more essential to differ-
entiate between their signals in the stratigraphic record. For
instance, enhanced tectonism in foreland basin settings can
cause crustal load-driven basin subsidence and deepening of
marine environments [4, 5]. Climate variations and orogra-
phy influence precipitation and temperature gradients, which
in turn affect erosion rates, vegetation cover, and even the
location of deformation and drainage divides [6–9]. Globally,
climate modulates the growth and ablation of continental ice
sheets and sea level [10]. Cenozoic marine transgressive-
regressive cycles are well-studied in terms of sequence strati-
graphic models for global sea level change (e.g., Miocene US
Atlantic history of [11]) and the dominant control of climatic
optima are suitable for passive continental margins. How-
ever, in tectonically active, shallow-marine basins, resolving
the relative contributions of regional tectonics and eustasy,
driven by global mechanisms, must be carefully considered
[12]. For example, work in the Cretaceous interior seaway
has demonstrated that tectonism is an important player in
controlling parasequence progradation and subsidence [13],
in addition to eustatic sea-level variations [14, 15].

An improved understanding of the controls on subaerial
emergence or subsidence of these landmasses is fundamental
to evaluating potential linkages between mountain building
and climate (e.g., [16]), eustatic sea level changes [11], sedi-
ment delivery to the oceans [17–19], and biotic responses to
changing ecosystems ([20–22]; Palazzesi et al. 2014; Eronen
et al. 2015). Moreover, better knowledge of the dynamic
response of sedimentary and tectonic systems is critical to
current scientific issues, including long-term climate change,
biogeochemical fluxes to lakes and oceans, and conservation
of mineral and energy resources [23]. A central requirement
to unravel these competing processes is detailed chronology
of sedimentation and changes in provenance preserved in
the sedimentary basin fill. Lithologic variations and detrital
geochronologic signals indicating the appearance of sedi-
ment that is associated with a diagnostic tectonic terrane
or geologic unit are commonly used to infer timing of source
area unroofing and to make paleogeographic, tectonic, or
climatic interpretations (e.g., [24–27]). However, the decline
of a source as a prominent sediment contributor to basin
infill—potentially through erosional removal, topographic
blocking, or burial—is less commonly preserved in the depo-
sitional record. Sediment recycling and weathering of source
areas can further complicate the cause of a waning source
signal [28–31].

The Patagonian Andes, a high-latitude convergent oro-
gen in South America, provides sediment to the genetically
linked Magallanes-Austral Basin, which extends ~200 km
from a retroarc thrust front to the southern Atlantic Ocean
(Figure 1). This relatively narrow distance results in the east-

ern Atlantic continental margin in Patagonia that is sensitive
to sea level fluctuations driven by dynamic and tectonic load-
ing of the flexural foredeep [32]; variations in sediment flux
across the coastal plain, eustasy, and global climate; and
far-field tectonics. The proximal Patagonian foredeep depo-
center near 51° S remained predominantly deep marine from
ca. 100 to 80Ma [33–36] followed by basin filling and shoal-
ing to shallow marine to marginal continental conditions ca.
78-60Ma [37–43]. This western part of the Magallanes-
Austral Basin coevolved with the Cenozoic development of
the southeastern Magallanes-Austral and Malvinas depocen-
ters related to the Fuegian orocline [44–46] and opening of
the Drake Passage between Antarctica and South America
[47, 48]. Following N-S early foreland development of basin
subsidence and infilling, deformation across the Patagonian
thrust-belt promoted a general eastward shift of deposition
in Paleocene-Miocene time [49, 50].

Near ~51° S, the proximal Cenozoic Magallanes-Austral
Basin preserves shelfal facies overlain by near-shore and con-
tinental facies. Documented middle Cenozoic transgressions
in Patagonia and Tierra del Fuego have been linked to Ceno-
zoic global sea level rise due to climate [51–53] and phases of
Andean orogenesis [50, 54, 55]. Most notably, stratigraphic
units like the El Huemul Formation (late Eocene-early Oligo-
cene) and the slightly younger San Julián Formation (late
Oligocene) represent latest Paleogene shallowmarine deposi-
tion along much of the Atlantic coast [56–60]. These units
mark the beginning of the “Patagonian Sea” incursion
recorded as the Juliense (25–22Ma) and Leonense (22–
17.9Ma) stages [60]. Previous work has suggested that the
Patagonian Sea was largely influenced by climate optima
and eustatic transgressions [60] and/or tectonics [61, 62]. It
is yet undetermined (1) if the inland sea reached the proximal
part of the Magallanes-Austral Basin during the Oligocene,
(2) how upland source areas changed during Cenozoic fore-
land sedimentation, and (3) to what extent these marine
phases were driven by tectonic subsidence, changes in upland
sediment routing/sediment flux, or eustasy. Differentiating
among the relative impacts of these large-scale factors is
important for recognizing the effects of external controls,
such as global climate transitions, versus internal orogenic
wedge dynamics [3, 63] and source to sink connections in
the transfer of sediment to the world’s oceans.

We present new sediment provenance data and a new
chronostratigraphy of Eocene-Miocene strata in the
Magallanes-Austral Basin of southern Patagonia that (1)
revise the age of marine incursions and changes in orogenic
paleogeography during the transition to nonmarine condi-
tions in southern Patagonia, (2) highlight the rise and subse-
quent isolation of a major hinterland source area due to
basinward development of younger orogenic topography,
and (3) suggest recycling of Mesozoic grains from Upper
Cretaceous sedimentary rocks, rather than direct sourcing
from the Mesozoic batholith.

2. Tectonic Setting and Basin Stratigraphy

The Upper Cretaceous-Cenozoic Magallanes-Austral Basin
(Figure 1) records deposition during structural growth of
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the Patagonian-Fuegian Andes [35, 44, 45, 50, 64]. Follow-
ing marine conditions that have generally persisted since
Late Jurassic time, the early foreland basin history was pre-
dominantly deep marine, with southward deepening from
a narrow continental shelf in the north [37, 58, 65, 66] to
bathyal conditions in the south [33]. Shoaling of the Upper
Cretaceous marine depocenter led to dominantly shallow-
marine, coastal, and deltaic sedimentation that persisted
until Paleocene time [35, 37–39, 67]. Thrust front advance-
ment of the Patagonian retroarc thrust belt promoted an
eastward shift of the foreland deposition in Paleocene-
Miocene time [50]. The primary sediment sources to the
Magallanes-Austral Basin include the Mesozoic-Cenozoic
Southern Patagonian Batholith and related volcanics, Meso-
zoic basinal rocks of the Rocas Verdes Basin, and to a lesser
extent, Paleozoic metamorphic rocks (Figure 1). The prox-
imity of the basin to an active magmatic arc throughout its
history has resulted in intercalated volcanic ashes and abun-
dant magmatically derived zircons proven useful for asses-
sing controls on sedimentation, with prior focus on the
Cretaceous strata [65, 66, 68–73].

During the Cenozoic, much of the South American extra-
Andean regions north of Patagonia underwent predomi-
nately continental sedimentation, briefly punctuated by mid-
dle and late Miocene epicontinental marine incursions, and
development of tidal-dominated wetland systems, like the
Paranean Sea and the Pebbas lake [74–77]. In contrast, most
of the eastern Patagonian foreland south of the Deseado

Massif seems to have been largely submerged in shelf to shal-
low marine and transitional depositional environments,
during the structurally complicated development of the
Magallanes-Austral and Malvinas foreland depocenters
related to the oroclinal curved plate boundary with the Scotia
plate [44, 45] and tectonic separation of Antarctica from
South America continents during opening of the Drake Pas-
sage [47, 78, 79]. In the Última Esperanza District of the
Magallanes-Austral Basin (Chile), Cenozoic strata are dis-
conformable on Maastrichtian tide-influenced shelf-edge
deltaic Dorotea Formation [33, 39, 42, 67, 80, 81]. However,
the timing and extent of this unconformity and its geologic
significance are unresolved given limited chronology and
stratigraphic correlation along the basin axis [29, 33, 80]. In
our study area (Figure 1), the Dorotea Formation is overlain
by the laterally discontinuous Paleocene Cerro Dorotea For-
mation [38, 81] and unconformably overlying Eocene shal-
low marine, estuarine, and deltaic Río Turbio Formation.
[42, 81–83]. Geological observations in Brunswick Peninsula,
Isla Riesco, and Río Figueroa show that this Paleogene strat-
igraphic separation decreases southward through Tierra del
Fuego, where the Maastrichtian/Danian unconformity is
restricted and more continuous sedimentation occurred until
Miocene time [84–87].

A key stratigraphic unit within our study area is the Río
Turbio Formation, which is characterized by glauconitic
shallow-marine to lagoonal sandstone, siltstone, claystone,
coquina, and interbedded minable coal seams [38, 53, 88]
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Figure 1: (a) Tectonic setting of the Magallanes-Austral Basin and other Cenozoic depocenters (yellow) in relation to key southern plate
boundary features (after [44, 50, 154]). Global Multi-Resolution Topography (GMRT) base map from GeoMapApp©. Black stars denote
stratigraphic areas discussed in the text: CC: Cerro Castillo; SJ: San Julián; NP: Nazca plate; NSR: North Scotia Ridge; MFFZ: Magallanes-
Fagnano Fault Zone; SFZ: Shackleton Fracture Zone. (b) Location of the Cerro Castillo-Cancha Carrera study area within the Cenozoic
Magallanes-Austral Basin outcrop belt along the eastern margins of the Patagonian thrust belt. Geologic map was compiled from
Malumián et al. [98], SERNAGEOMIN [155], and Fosdick et al. [50]. Zircon crystallization ages are summarized from igneous and
recycled sediment sources [29].
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and fossil assemblages of subtropical macroflora, palyno-
morphs, and marine invertebrates [81, 89–93]. Debate per-
sists on the depositional age of the Río Turbio Formation,
with early biostratigraphic studies reporting Eocene through
Miocene [94] or exclusively Eocene biozones [38, 95, 96].
This depositional unit records high-latitude organic-rich
shallow marine and transitional deposition. Therefore, its
age is highly relevant for understanding paleoenvironmental
conditions and tectonic influences on sedimentation during
past climate optima.

The Río Turbio Formation is unconformably overlain by
the Río Guillermo Formation, a mostly fluvial sandstone,
conglomerate, and coaly claystone with notable abundant
silicified tree trunks preserved in life position [38, 53, 81,
97]. Most previous workers have proposed an upper Eocene
to early Oligocene age for the Río Guillermo Formation
[98–100]. Fluvial sedimentation in the Magallanes-Austral
Basin was briefly interrupted by a shallow marine incursion,
resulting in sandstone and mudstone deposits of the Estancia
25 de Mayo Formation [57, 58, 101] and coeval informal
units (“Estratos de Río del Oro”). This unit has been corre-
lated to the distal Monte León Formation along the Atlantic
coast that, together, records the Leonense marine incursion
of the Patagonian Sea at this latitude [56, 59, 60, 62]. The
overlying Santa Cruz Formation marks the last phase of
major syntectonic sedimentation and fluvial deposition in
the Patagonian Andes ca. 19-16Ma, prior to regional surface
uplift and incision of the foreland basin [54, 102–104]. Mul-
tiple explanations have been postulated for this abrupt end to
proximal foreland sedimentation along the Andean foothills
and a shift to offshore deposition [46]. Potential mechanisms
include (1) reduced sediment supply caused by an orographic
rain shadow during topographic surface uplift [105, 106], (2)
effects of flat slab subduction [107–109], and (3) regional sur-
face uplift caused by migration of the Chile Ridge collision
[110] and dynamic response to opening of an asthenospheric
slab window beneath Patagonia [111, 112] or some combina-
tion of these processes.

3. Detrital U-Pb Geochronology

3.1. Sampling and Analytical Methods. We collected twelve
sandstone samples from the Paleocene-Miocene outcrop
belt exposed near Cerro Castillo township, Chile, and Estan-
cia Cancha Carrera, Argentina, in Patagonia (Figure 1) from
previously studied stratigraphic sections [38, 53, 81, 97, 113].
Sample information and locations are outlined in Table 1.
Detrital zircons were extracted from ~5kg medium-grained
sandstone hand samples using standard mineral separation
techniques, including crushing and grinding, fractionation of
magnetic minerals with a Frantz isodynamic magnetic separa-
tor, and settling through heavy liquids to exclude phases with
densities less than 3.3 g/cm3. Final zircon separates were
mounted in epoxy resin together with fragments of the Sri
Lanka standard zircon. The mounts were polished to a depth
of ~20μm to expose grain interiors, CL and BSE imaged,
and cleaned prior to isotopic analysis. U-Pb geochronology
of zircons was conducted by laser ablation multicollector
inductively coupled plasma mass spectrometry (LA-MC-

ICPMS) using a Photon Machines Analyte G2 excimer laser
using a spot diameter of 30μm at the Arizona LaserChron
Center [114, 115]. Analytical methods and data are available
in the data repository.

Preferred calculated U-Pb ages use the 204Pb-corrected
206Pb/238U ratio for <900Ma grains and the 204Pb-corrected
206Pb/207Pb ratio for >900Ma grains. Uncertainties shown
in these tables are at the 1σ level and include only measure-
ment errors. Analyses that are >20% discordant and 5%
reverse discordant (by comparison of 206Pb/238U and
206Pb/207Pb ages) were excluded from provenance interpre-
tations and maximum depositional age interpretations. Pb∗

/U concordia diagrams (Figure A1) and probability density
plots (Figures A2 and A3) were generated using the routines
in Isoplot [116]. The age-probability diagrams show each
age and its uncertainty (for measurement error only) as a
normal distribution and sum all ages from a sample into a
single curve. Probability density plots for individual sam-
ples are presented in Figures A2 and A3, and compiled
formation-level datasets are shown in Figure 2. For samples
that yielded youngest age groups that could represent con-
ceivable maximum depositional ages, we calculated error-
weighted mean ages based on the following criteria: age
clusters contained at least two overlapping concordant grains
at 2σ uncertainty (Figure 3; Table 1). For published samples
from the Punta Barrosa, Cerro Toro, Tres Pasos, and Dorotea
Formations (Figures 2 and 4), we recalculated relative proba-
bility density curves from published U-Pb geochronological
data [27, 29, 50, 68, 69].

3.2. Results and Interpretations. Detrital zircon U-Pb geo-
chronology results (1,579 dated grains) from the Cerro
Castillo-Cancha Carrera area reveal distinctive age groups
in variable proportions upsection (Figure 2): (1) Cenozoic
age clusters that include early Miocene-Oligocene (20-
30Ma), Eocene (33-45Ma), and Paleocene (60-65Ma) ages;
(2) a range of Cretaceous ages with clusters at ca. 66-80Ma
and 80-136Ma; (3) a Late Jurassic-earliest Cretaceous age
group (136-175Ma); (4) smaller proportions of Devonian-
Permian ages (250-420Ma); (5) early Paleozoic and Meso-
proterozoic ages (420-1600Ma); and (6) few Mesoprotero-
zoic and older grains. Cenozoic and Cretaceous zircon
grains are mostly large (>100μm), euhedral to subhedral,
magmatically zoned zircons. In contrast, Jurassic zircons
are mostly small (<60μm in width), subangular, or broken
fragments of long and narrow volcanic crystals. Paleozoic
and Proterozoic grains are mostly small (<50μm) sub-
rounded to rounded grains.

3.2.1. Dorotea and Cerro Dorotea Formations. Detrital geo-
chronology from four stratigraphic horizons (649 grains)
within the mapped Cerro Dorotea Formation and its contact
with the underlying Dorotea Formation yields major age
groups between 60 and 66Ma, 74 and 115Ma, 123 and
160Ma, 473 and 630Ma, and 960 and 1130Ma and fewer
early Paleozoic and Proterozoic zircons. The lowest sample
(15LDC05) collected from a horizon considered part of the
uppermost exposures of the Dorotea Formation yields an
MDA of 65:8 ± 1:3Ma. In the Cerro Dorotea Formation,
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two samples (14AVDZ1 and 14AVDZ1), collected from
thick trough cross-bedded tan and orangish brown sand-
stone with interbedded siltstone and coal-bearing mudstone,
yield MDAs of 61:9 ± 0:3Ma and 60:5 ± 0:8, respectively
(Figure 3). The stratigraphically highest level was sampled
twice in the exact location (to overcome low zircon yield
in the first sample), ~3m below the top of the formation
(14AVDZ3+15LDC02) and yields a MDA of 60:2 ± 1:3Ma.

3.2.2. Lower Member of the Río Turbio Formation. Three
samples (413 grains) collected from the overlying greenish
gray and brown glauconitic sandstone units, interpreted as
subaqueous deltaic deposits, yield similar zircon U-Pb age
distributions with a pronounced Eocene peak, two Late Cre-
taceous age clusters, and few Jurassic ages (Figure 2). Estima-
tion of MDAs from the youngest zircon population indicates
sedimentation of the basal glauconitic sandstone by ca. 47:1
± 2:7Ma (14LDC-DZ4) and the overlying brown deltaic
sandstone unit by 46:3 ± 1:3Ma (14LDC-DZ2). The upper-
most sample collected from a glauconitic sandstone at the
top of the exposed unit yields a youngest age cluster with a
MDA of 41:3 ± 0:3Ma (17CCRT2-29).

3.2.3. Upper Member of the Río Turbio Formation. We col-
lected three detrital zircon U-Pb geochronology samples
(312 grains) from fossiliferous and highly bioturbated marine
strata of the upper member of the Río Turbio Formation.
Using the stratigraphic subdivisions of Rodríguez Raising
[53] and the presence of a mappable and distinct coal seam
as a reference, samples RT28DZ08 and RT28DZ07 were
positioned in the upper half of Sequence VIII, and sample
RT28DZ05 was collected from the top of Sequence IX [53]
of the upper Río Turbio Formation. These samples yield
robust age populations between 29 and 45Ma, 63 and 109,
113 and 137Ma, and 218 and 288Ma and few Late Jurassic
grains (Figure 2). Proterozoic grains are noticeably lacking
compared to underlying detrital age distributions. Youngest

age clusters from the upper half of the unit yield a MDA ca.
36:6 ± 0:3Ma (RT28DZ08) and 35:4 ± 0:2Ma (RT28DZ07).
At the top of the ~506m thick succession, organic-rich mud-
stones below the contact with the Río Guillermo Formation
yield a MDA of ca. 26:6 ± 0:2Ma (RT28DZ05).

3.2.4. Río Guillermo Formation. Two samples (205 grains)
collected from the base of the Río Guillermo Formation yield
U-Pb age peaks between 23 and 26Ma and 33 and 36Ma; a
broad range of mid to late Cretaceous age between 72 and
128Ma, 149 and 154Ma, 275 and 304Ma; and lesser num-
bers of Proterozoic grains (Figure 2). The youngest zircon
age peak from the bottom of the formation gives a MDA of
ca. 24:3 ± 0:6Ma (RT28DZ06). A second sample collected
from the top of the Río Guillermo Formation, directly below
a dated volcanic tuff (21.7Ma zircon U-Pb SHRIMP-RG,
[50]), yields a MDA of 22:8 ± 0:2Ma (JCF09-237B).

The sampled section exhibits an upsection younging of
zircons, increase in Cenozoic and Late Cretaceous zircons,
and decrease in all zircon age groups older than ca. 135Ma
(Figure 2). The most pronounced loss of Late Jurassic-Early
Cretaceous (~20% to ~6%) and Paleozoic (40-17% to 7%)
andMesoproterozoic-Archean (20% to 8%) is observed across
the Paleocene Cerro Dorotea Formation-middle Eocene Río
Turbio Formation contact (Figures 2 and 3). Only the Río
Guillermo Formation exhibits a slight covarying increase in
both the Late Jurassic-Early Cretaceous group and Paleozoic
age group. These percentage trends persist, even when
accounting for the large influx of Cenozoic grains, as shown
by the normalized zircon age groups > 66Ma (Figure 4).

4. Discussion

4.1. Revised Timing of Foreland Sedimentation.New geochro-
nological constraints on depositional ages in the Magallanes-
Austral Basin suggest significantly younger timing for middle
Cenozoic inland sea transgressions and onset of exclusively

Table 1: Sample information and calculated maximum depositional ages (MDAs) from the Magallanes Basin for detrital zircon U-Pb
LA-ICP-MS geochronology.

Sample Formation
Latitude
(° N)

Longitude
(° W)

Elevation
(m)

No. of grains
analyzed

Interpreted MDA
(Ma ± 2σ)

Age of youngest grain
(Ma ± 2σ)

JCF09-237B Río Guillermo -51.30338 -72.18670 389 115 22:8 ± 0:2 (n = 65) 20:7 ± 0:8
Rt28DZ6 Río Guillermo -51.31373 -72.21932 346 94 24:3 ± 0:6 (n = 8) 23:0 ± 0:5
Rt28DZ5 Río Turbio (upper) -51.31163 -72.22042 323 103 26:6 ± 0:5 (n = 5) 25:9 ± 0:9
Rt28DZ7 Río Turbio (upper) -51.29761 -72.23581 349 101 35:4 ± 0:2 (n = 45) 32:2 ± 1:9
Rt28DZ8 Río Turbio (upper) -51.29667 -72.23819 282 110 36:6 ± 0:3 (n = 65) 33:4 ± 0:6
17CCRT2-29 Río Turbio (lower) -51.31735 -72.29126 464 157 41:3 ± 0:3 (n = 56) 38:7 ± 1:5
14LdCdz2 Río Turbio (lower) -51.28071 -72.28936 443 106 46:3 ± 1:3 (n = 2) 45:7 ± 0:8
14LdCdz4 Río Turbio (lower) -51.27997 -72.28916 411 108 47:1 ± 2:7 (n = 2) 46:1 ± 0:5
15LDC02/14DZ3 Cerro Dorotea -51.28001 -72.28927 351 227 60:2 ± 1:3 (n = 3) 60:0 ± 1:0
14AVDZ2 Cerro Dorotea -51.28475 -72.30764 433 107 60:5 ± 0:8 (n = 3) 60:2 ± 0:8
14AVDZ1 Cerro Dorotea -51.28473 -72.30828 434 103 61:9 ± 0:3 (n = 4) 61:4 ± 1:2
15LDC05 Dorotea -51.27793 -72.31254 312 212 65:8 ± 1:3 (n = 2) 65:4 ± 1:1
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fluvial sedimentation in the study area (Figure 5). These
results redefine our understanding of the genetic relationship
between sedimentation and changes in relative sea level, cli-
mate, and phases of deformation in the Andean orogenic belt
(Figure 6). Under the prevailing view, there are four major
Cenozoic Atlantic transgressions in the Magallanes-Austral
Basin of Patagonia and Tierra del Fuego: Maastrichtian-
Danian, late Middle Eocene, late Oligocene-early Miocene
(Juliense), and early Miocene (Leonense) [52, 57, 60, 117].

In the proximal Magallanes-Austral Basin near Cerro Cas-
tillo (Figure 1), the Maastrichtian deltaic Dorotea Formation
is overlain by the laterally discontinuous Paleocene Cerro
Dorotea Formation and overlying Eocene estuarine and del-
taic Río Turbio Formation (Figure 5; [38, 53, 80, 81, 118]).
Debate persists on the age of the Río Turbio Formation [38,
53, 93]. Riccardi and Rolleri [94] reported an Eocene through
Miocene age, whereas more recent biostratigraphic work sug-
gests exclusively Eocene biozones [38, 90, 95, 96]. Based on
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such age assignments for these strata, many workers have
interpreted the upper Cerro Dorotea through Río Turbio
deposits within the paleoclimatic context of Paleogene
climatic optima such as the Paleocene-Eocene Thermal
Maximum and Early Eocene Climatic Optimum (Figure 6;
e.g., [88]). Our data support this age (61-60Ma) and paleocli-
matic interpretation for the Cerro Dorotea Formation
through only the basal portion of the lower Río Turbio For-
mation, which is Lutetian (47-41Ma) in age (Figure 5). The
Cerro Dorotea Formation is recognized in Argentina and
assigned to the Danian mostly based on the foraminiferal
content [52], but our radiometric age suggests a later, Selan-

dian, maximum depositional age, also giving the first formal
confirmation of the occurrence of this Paleocene lithostrati-
graphic unit in Chile.

The subaqueous deltaic lower Río Turbio Formation con-
tains detrital zircons that indicate Eocene sedimentation
starting at ca. 47Ma and continued through at least ca.
41Ma (Figure 5). These depositional ages are compatible
with middle Eocene age estimates from dinoflagellate cyst
biozonation, ranging from 46 to 39Ma (Zone I of [95] and
RTF 1 and 2 from [96]); leaf impressions; shark teeth; and
marine invertebrate fossils recovered from these deposits
[82, 89, 91, 119, 120]. Moreover, these strata show similar
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age, sedimentary facies, fossil content, and mineral composi-
tion to those of its northern equivalent in the Man Aike For-
mation near Lago Argentino [53, 58, 121, 122] and Sierra
Baguales [55, 83], pointing to stratigraphic correlation of a
regional, renewed depositional phase of foreland sedimenta-
tion across the Paleocene unconformity surface [80].

In contrast, our findings from the upper Río Turbio
Formation show substantially younger ages ca. 37-27Ma
(Figure 5), indicating that these deposits are not associated
with early/middle Eocene climatic events. Rather, they record
late Eocene through Oligocene paleoenvironmental and
tectonic conditions (Figure 6). The new depositional ages
on the middle and upper part of the upper Río Turbio For-
mation are compatible with the recently proposed dinoflagel-
late cyst biozonation for this unit: samples RT28DZ08 and
RT28DZ07 belong to stratigraphic levels included within
Zone III of González Estebenet et al. [95] or RTF4 of Gonzá-
lez Estebenet et al. [96]. These biostratigraphic levels were
indirectly dated between 35.5 and 33.5Ma (latest Eocene),

making a good match with our observed U-Pb maximum
depositional ages. However, González Estebenet et al. [95,
96] note that preserved palynomorphs were not recovered
from the top of the Río Turbio Formation, and thus, no inde-
pendent biostratigraphic age is presently available for the
contact between the Río Turbio and Río Guillermo forma-
tions. Our maximum depositional ages of ca. 27Ma fill this
important gap in basin chronology.

We suggest a latest Eocene through Oligocene age (this
work) for the upper Río Turbio Formation. This interpreta-
tion is also more compatible with paleobotanical data that
suggest mesothermal conditions at high latitude, based on
the abundance and diversity of fossilized Nothofagus mor-
photype leaf impressions and wood fragments [81, 92, 120].
Whereas the warm early to middle Eocene conditions in Pat-
agonia favored high tropical to subtropical (mega/mesother-
mal) plant diversity [91, 123, 124], the late Eocene-Oligocene
transition ushered forth increased diversification and abun-
dance of meso- and microthermal floral elements across
southern Gondwana, including the widespread dominion of
genus Nothofagus [20, 92, 120, 125].

Our younger basin age model suggests that the deepening
to offshore conditions in the upper Río Turbio Formation ca.
37Ma coincides with basin subsidence and deepening
observed in Tierra del Fuego during propagation of the
Fuegian fold-thrust belt ensuing after the first opening of
the Drake Passage [78, 126]. This deepening was also nota-
bly concurrent with a late Eocene marine transgression
(Figure 6) and the beginning of the Antarctic ice sheet
expansion [127, 128]. Sustained shallow-marine conditions
along the margin of the Magallanes Basin between ca. 37
and 27Ma, despite Oligocene eustatic sea level fall, suggest
an additional tectonic mechanism for marine conditions.
More broadly, we suggest that the upper Río Turbio Forma-
tion marks a phase of overall early Oligocene basin deepen-
ing, eastward loading of the foreland, and diachronous
marine flooding driven by topographic loading from the
fold-and-thrust belt [50] and coeval transpression across
the North Scotia Ridge [47] (Figure 6). It follows that the
subsurface marine succession of the El Huemul Formation
on the southern extreme of the Golfo de San Jorge Basin
[129] could represent the distal record of tectonically driven
lithospheric flexure and basin deepening. Continued marine
sedimentation evolved to a more extensive incursion along
the Atlantic coast, represented by the San Julián Formation,
during the beginning of the Juliense stage of the “Patagonian
Sea” [60]. Tectonic basin deepening in southern Patagonia
may have followed deepening episodes in the Drake Passage,
as suggested by changes in neodymium isotope ratios inter-
preted to record an influx of Pacific seawater into the Atlan-
tic Ocean ca. 41-37Ma [48, 126]. However, relative sea level
highs around Antarctica due to near-field processes during
glaciation (e.g., [130]) may have also affected sea level in
southeastern Patagonia prior to a global sea level decrease
through the Oligocene.

New geochronological data from the overlying fluvial
Río Guillermo Formation suggest its deposition took place
between latest Chattian through Aquitanian time ca.
24-21Ma (Figure 5). These radiometric results revise the
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previously accepted biostratigraphic upper Eocene to lower
Oligocene age [38, 100] and the interpretation that the Río
Guillermo Formation predates a rejuvenated phase of
Andean orogenesis. These coarse-grained strata reflect the
first Cenozoic fully continental conditions on the Patagonian
foredeep depocenter (cf. [36]) in the area. The onset of
fluvial deposition coincides with ca. 27-21Ma fault motion
on the Río El Ríncon-Castillo thrusts [50], suggesting these
deposits reflect increased supply of tectonically generated
sediment (cf. [131]) during structural uplift and unroofing
of the Patagonian orogen. This interpretation is consistent
with published subsurface data just to the south of our study
area (Figure 1) that record latest Eocene through early
Miocene prograding clastic strata [84, 132].

4.2. Reorganization of Sediment Provenance and Routing.
Detrital provenance data from the Upper Cretaceous-
Miocene basin infill track changes in relative proportions of
zircon age groups for pre-Cenozoic age groups (Figure 2). A
comparison with the Upper Cretaceous basin record and our
new data shows the upsection rise and subsequent loss of
Jurassic-Early Cretaceous (J-K1) grains (blue wedge), a pro-

gressive loss of Precambrian and Paleozoic grains (browns
and pink wedges), and an overall increase in Late Cretaceous
and Cenozoic igneous sources (gray and white wedges).
Notably, the Paleocene Cerro Dorotea Formation maintains
similar provenance and gross depositional character to the
underlying Dorotea Formation. This similarity indicates little
to no drainage divide reorganization nor exposure of new
sources during southward building of the continental shelf
[42] from Maastrichtian to earliest Selandian time. More-
over, this observation is noteworthy because of the discontin-
uous nature of the Cerro Dorotea Formation along the frontal
monocline, which has invited debate regarding its original
lateral extent and subsequent erosion versus heterogeneous
depositional footprint (e.g., [29]). The Paleocene foreland
basin phase along this sector of the Andes may have once been
more geographically widespread prior to erosional removal
and resumed deposition of the middle Eocene Río Turbio For-
mation that forms the Paleogene unconformity (Figure 6).

The largest shift in sediment provenance signature
occurred across the Paleocene Cerro Dorotea and the middle
Eocene Río Turbio Formation boundary, marked by a con-
spicuous decline of Late Jurassic and Paleozoic zircons

Paleoenvironmental context

10
0 

m

R.
 T

ur
bi

o
(lo

w
er

)

24.3 ± 0.6 Rt28DZ6

21.7 ± 0.3 JCF09-237A 

36.6 ± 0.3 Rt28DZ8

47.1 ± 2.7 14LdCdz4
46.3 ± 1.3 14LdCdz2
41.3 ± 0.3 17CCRT2-29 

60.2 ± 1.3 15LDC02 

26.6 ± 0.2 Rt28DZ5

22.8 ± 0.2 JCF09-237B
R.

 G
ui

lle
rm

o
R.

Tu
rb

io
(u

pp
er

)
Ce

rr
o

D
or

ot
ea

 
Es

t. 
25

de
 M

ay
o

Section continues
upward

D
or

ot
ea

35.4 ± 0.2 Rt28DZ7

65.8 ± 1.3 15LDC05

60.5 ± 0.8 14AVDZ2

‡Section continues downward

61.9 ± 0.3 14AVDZ1

Zircon U-Pb MDA (Ma ± 2σ)
Denotes published zircon U-Pb data from Fosdick et al. (2011).

Chronostratigraphy and composite section at Cerro Castillo and Cancha Carrera

Shallow marine deposits

Fluvial deposits

Coal seams

Trough cross-bedding

Planar cross-bedding

Marine invertebrate fossils

Plant fossils

Legend and symbols

Río Turbio Fm. (lower) - Mid-Eocene:
subaqueous deltaic deposits; mega and mesothermic
fossil flora; subtropical marine invertebrates and
vertebrates (sharks, turtles, crocodiles),
associated with climatic optimum.

Río Turbio Fm. (upper) - Latest Eocene - Oligocene
(previously late mid-Eocene to early late Eocene):
coal-rich coastal plain & shallow marine deposits;
mesothermic fossil flora; uppermost beds almost
coeval with early Juliense incursion.

Río Guillermo Fm. - Latest Oligocene -
Early Miocene (previously late Eocene or Oligocene):
first fully fluvial foreland deposition at this latitude;
coeval with fault motion on Río El Rincón thrust. 
Meso- and microthermic fossil flora dominated by
Nothofagus spp.

Cerro Dorotea Fm. - Paleocene (consistent with
reported microfossil assemblages): laterally
discontinuous; lower beds are compositionally and
stratigraphically similar to underlying Dorotea Fm. 

Figure 5: Summary of new depositional age constraints and paleoenvironmental context in the Magallanes-Austral Basin near 51° S.
Cenozoic stratigraphy and revised timing of sedimentation based on new maximum depositional ages (MDA) calculated from the
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(Figures 2 and 4). Zircons of these ages are sourced from hin-
terland thrust sheets (Figure 1) that expose the Upper Juras-
sic volcanic Tobífera Formation [133, 134] and Paleozoic
basement [135–137]. The concurrent increase in Cenozoic
zircons from the Patagonian Batholith may act to swamp
out the signal from these older zircon sources. However, a
comparison of relative proportion of pre-66Ma age groups
show similar trends in the rise and decline of the Jurassic
and Paleozoic age groups (Figure 4). We interpret this initial
shift as likely a consequence of tectonic or surface changes in
sediment routing between ca. 60 and 44Ma, when the basin
became topographically isolated from northwestern hinter-
land sources during uplift across the external fold-thrust belt.

Our age control of the Paleogene unconformity in our
study area improves upon the work of Fosdick et al. [29]
who compared provenance and burial histories of the
Dorotea Formation with the upper Río Turbio Formation
but lacked higher provenance resolution from intervening

deposits. Additionally, the ca. 15m.y. hiatus estimated by
our model partially matches recently published ages in Sierra
Baguales and Río Las Chinas, ~40 km north of our study area
[55, 80]. There, a ca. 20m.y. hiatus across the Paleogene
unconformity has been proposed by George et al. [80], also
based on detrital zircon U-Pb geochronology. Evidence of
coeval basin burial thermal heating [29, 138] in the central
thrust belt and development of a basin-wide foreland uncon-
formity are consistent with this timeframe. New provenance
data sheds light on the timing of Tenerife thrusting (Figure 6)
and further supports an Eocene phase of orogenesis that is
well-documented in the Fuegian Andes [24, 33, 139] but
remains enigmatic in the Southern Patagonian Andes. This
finding suggests that, rather than being an inactive foreland
basin during this time [140, 141], a more continuous fold-
and-thrust belt and basin depocenter may have connected
the Patagonian and Fuegian Andes during development of
the Fuegian orocline [44].
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These upsection trends continue into late Eocene-
Oligocene time when sediment provenance of the upper
Río Turbio Formation reflects predominantly Cretaceous
and younger age peaks. Prominent Eocene and Late Creta-
ceous age clusters include two prominent new popula-
tions—denoted here as K4 (ca. 80-66Ma) and P2 (ca. 35-
25Ma)—that are not well-recognized in in situ batholith
geochronology datasets (Hervé et al. 2007) and extend the
record of pulsed activity of arc magmatism (Figure 2). In
the most comprehensive summary of the Southern Patago-
nian Batholith magmatism, Hervé et al. (2007) document a
Paleogene phase of magmatism from 67 to 40Ma and a Neo-
gene phase from 25 to 16Ma. These detrital findings of K4
and P2 zircon populations highlight the value of the sedi-
mentary archive in recognizing phases of magmatism not
represented in available bedrock records. By ca. 26Ma and
the end of the marine sedimentation at this latitude, detrital
zircons derived from the Late Jurassic Tobífera thrust sheets
(Figure 1), which were once a dominant sediment source to
the Cenomanian-Paleocene basin, are virtually absent in the
basin fill. Synchronous with this change in depositional envi-
ronment is a marked provenance shift to increased mafic
volcanic and recycled sedimentary sources, suggesting that
the change in environment is linked to upland tectonic/cli-
mate changes with a lesser control from low stand in global
sea level [97, 113]. This timing of transition to fully continen-
tal sedimentation coincides with deformation in the fold-
and-thrust belt at Río El Ríncon thrust and related structures
[50]. We suggest the Río Guillermo Formation represents
tectonically generated sediment (e.g., [14, 131]) associated
with this phase of deformation.

Fluvial sedimentation was temporarily disrupted by
flooding of the foreland basin by the Leonense marine incur-
sion [56, 57, 60, 62, 101], which may have been further
enhanced by subsidence loading during Toro thrust faulting
(Figure 6). Resumed fluvial deposition of the Santa Cruz For-
mation is classically cited as the molasse deposits of the main
phase of early Miocene Andean orogenesis and surface uplift
(e.g., [54, 99, 102, 104, 105]). Published detrital geochronol-
ogy from the overlying early Miocene Santa Cruz Formation
yields dominantly (>70%) Late Cretaceous zircons [29].
Based on modeling of detrital zircon U-Pb-He thermochro-
nological data, Fosdick et al. [29] suggested that these grains
were recycled from the Upper Cretaceous clastic wedge
rather than direct sourcing of the Mesozoic batholith. Our
data from underlying strata corroborate this interpretation
and capture a more complete transition of provenance loss
of the Jurassic and Paleozoic age groups.

The rise and subsequent isolation of diagnostic sediment
sources or detrital zircon age groups bear on resolving com-
plexities from sediment recycling [142, 143] and variability in
zircon fertility [144]. As such, a geologically diagnostic age
source—especially one with smaller and/or more fragile
grains (e.g., volcanics)—is a useful tracer for identifying pri-
mary versus recycled sources and constraints on movement
of orogenic drainage divides during changes in orogenic
wedge behavior. The Eocene through Oligocene upsection
depletion of Jurassic and Paleozoic sources near 51° S, con-
current with sustained dominance of plutonic arc-derived

Cretaceous zircons (Figure 4), suggests recycling of the Cre-
taceous strata in the Río Turbio Formation and winnowing
of the smaller and more fragile Jurassic volcanic and Paleo-
zoic zircons during sediment transport. Moreover, the isola-
tion of hinterland and primary Cretaceous batholith sources
requires a cratonward shift in the drainage divide by ca.
44Ma. This change in sediment routing was followed by sub-
sequent hinterland shift in the drainage divide that occurred
sometime after ca. 18Ma, at which point sedimentation
shifted to a more distal, offshore location [46].

This synchronous adjustment in retroarc basin configu-
ration after ca. 15 Ma has been observed along >600 km
length of the Patagonian and Fuegian Andes [102, 105–
107], with multiple mechanisms considered, including (1) a
reduction in sediment supply to the retroarc foreland basin
caused by fold-and-thrust belt deformation and growth of
an orographic rain shadow [105, 106], (2) effects of a shal-
lowing slab geometry and associated eastward arc migration
between 14 and 12Ma (e.g., [107, 108]) or subduction ero-
sion without minor changes in the slab dip (e.g., [109]), and
(3) regional surface uplift in response to formation of the
Chile Ridge slab window beneath Patagonia (Figure 6; [111,
112]). Today, the hinterland high peaks of the Patagonian
Andes constitute the upland sediment sources to rivers and
glacial valleys that drain both sides of the Andes and Tobífera
thrusts (Figure 1; [145]).

5. Summary and Implications

In summary, new estimates of maximum depositional ages
from detrital geochronology data require a revised chronos-
tratigraphy of the middle Cenozoic strata. Our study con-
firms a Selandian maximum depositional age for the Cerro
Dorotea Formation, previously constrained by biostratigra-
phy to the Danian. Sediment provenance data from the
Cenozoic Magallanes-Austral Basin at 51° S track the decline
of once prominent hinterland sources between ca. 60 and
44Ma. We suggest a major change in sediment routing and
paleogeography during this time that we attribute to a phase
of Eocene orogenesis and uplift of a topographic barrier that
isolated the basin from Paleozoic and Late Jurassic-Early
Cretaceous sources (Figure 6). We also identify a previously
unrecognized latest Eocene through Oligocene period of
marine deposition from ca. 37 to 27Ma in the proximal fore-
deep depozone (upper Río Turbio Formation), followed by a
major change to nonmarine sedimentation ca. 24.3Ma. Here,
we propose that the upper Río Turbio and Río Guillermo
Formations, together, reflect a genetically linked stratigraphic
pair that shows Oligocene basin deepening and subsequent
latest Oligocene-early Miocene deposition of coarse-grained
sediments derived from the Patagonian hinterland, during a
renewed phase of orogenesis (Figure 6).

Moreover, an eastward incursion of an embayed foredeep
trough may link the upper Río Turbio Formation to the distal
El Huemul Formation and potentially the San Julián Forma-
tion, suggesting a tectonic loading origin for the Juliense
phase of the Patagonian Sea. Additional stratigraphic correla-
tion to the Atlantic margin is needed to test this hypothesis.
The late Oligocene-early Miocene synchronicity of (1)
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proximal fluvial facies (Río Guillermo Formation) and distal
marine facies (Juliense and Leonense), (2) active orogenic
deformation (Río El Rincon and Toro thrust faults), and (3)
sustained global sea level highstand, taken together, indicates
high sediment supply during shortening of the thrust belt
(Figure 6). In the case of the Oligocene-early Miocene Pata-
gonian record, we suggest that the combined effects of tecto-
nics—flexural loading of the upper plate and increased
sediment supply from actively exhuming orogenic source-
s—are primary drivers for marine incursions.

Rejuvenated late Oligocene through early Miocene retro-
arc foreland sedimentation in southern Patagonia—and else-
where along the Andean margin (e.g., [140, 146–148])—may
signal a Cordilleran-scale upper plate transition to a domi-
nantly compressional margin and active retroarc foreland
basin systems [149, 150] that include the southern Patago-
nian Andes sector. This response was likely due to increased
plate convergence [151] and initiation of the Nazca plate
subduction regime (e.g., [152]). In Patagonia, regional retro-
arc deformation and basin development may have been
enhanced by three-dimensional stress from transpressional
tectonics along the North Scotia Ridge [47, 64, 153]. These
findings underscore central requirements of detailed chro-
nology and provenance to develop basin age models and
understanding of long-term changes in sources that reflect
orogen-scale responses to tectonics, climate, and eustasy.
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