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Resumen

Este trabajo corresponde a una Tesis Doctoral para la obtención del grado de Doctor en
Ciencias de la Ingeniería, mención Modelación Matemática. El presente trabajo está inscrito
en la vasta área del Análisis Variacional y Funcional, y exhibe una síntesis de los resul-
tados disponibles en los artículos publicados "Linear Structure of Functions with Maximal
Clarke Subdifferential" [30] y "Index of symmetry and topological classification of asymmet-
ric normed spaces" [11], junto al preprint ArXiv "On an identification of the Lipschitz-free
spaces over subsets of Rn" [35].

El presente documento está dividido en dos partes. La Parte I trata principalmente con
funciones Lipschitz y se centra en el estudio de propiedades estructurales de los espacios de
funciones Lipschitz definidas sobre un subconjunto no vacío, abierto y convexo de un espacio
de dimensión finita. En el Capítulo 1 se muestra que el espacio vectorial de las funciones Lip-
schitz que se anulan en un punto predeterminado del dominio anterior, dotado de la norma
Lipschitz, es isométrico a un subespacio específico de funciones esencialmente acotadas con
valores en el dual del dominio de las funciones Lipschitz. La propiedad que define dicho
subespacio recuerda a la condición de Poincaré clásica, asegurando la integrabilidad de un
campo vectorial. El Capítulo 2 trata con el concepto de espacio Lipschitz-libre y la isometría
mencionada anteriormente es usada para mostrar que el espacio Lipschitz-libre en el mismo
contexto es isométrico a un cuociente específico de las funciones integrables con valores en el
dominio de las funciones Lipschitz. El subespacio cerrado que define este cuociente está for-
mado por aquellas funciones integrables cuya divergencia no suave es igual a cero, mostrando
una conexión de estos dos capítulos con una especie de Cálculo Multivariado no suave. En
el Capítulo 3 se continúa tratando con funciones Lipschitz, pero en este caso el estudio se
centra en las propiedades del subdiferencial de Clarke y los conceptos de lineabilidad y espa-
ciabilidad. Más específicamente, se muestra que el conjunto de funciones Lipschitz (definidas
sobre el mismo tipo de dominio que antes) cuyo subdiferencial de Clarke es maximal en todo
punto (en el sentido que es tan grande como es posible) de hecho contiene una copia de `∞,
mostrando que este conjunto es "algebráicamente grande".

Motivado por el desarrollo reciente de estructuras asimétricas y la existencia de isometrías
canónicas de espacio quasimétricos en espacios normados asimétricos, en la Parte II se anal-
iza el concepto de espacios normados asimétricos y se entregan nociones análogas para su
contraparte métrica, los espacios quasimétricos. En el Capítulo 4, se busca una forma de
clasificar espacios normados asimétricos en términos del grado de asimetría de sus normas.
Para ello se introduce la noción de índice de simetría, la cual resume en un número entre cero
y uno que tan simétrica es la norma. En términos de dicho índice se muestra que cada vez
que éste es positivo, la norma es suficientemente simétrica, es decir, la topología del espacio
puede ser obtenida por una norma clásica. Esto muestra que los casos de mayor importancia
son aquellos donde el índice de simetría es igual a cero. Así, existen dos tipos de espacios,
donde la principal diferencia entre ellos es el grado de separación de sus topologías. Esto a
su vez cambia completamente la estructura de los espacios duales. Esta clasificación es par-
ticularmente interesante en espacios de dimensión infinita, donde varios espacios definidos de
manera natural tienen índice de simetría igual a cero, pero sus topologías pueden o no ser
Hausdorff, en contraste con el caso de dimensión finita, donde un índice de simetría igual a
cero sólo es posible cuando la topología no es Hausdorff (de hecho, ni siquiera T1).
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Abstract

This work corresponds to a Doctorate Thesis dissertation for obtaining the PhD Degree in
Engineering Science (Mention: Mathematical Modelling). The dissertation is inscribed in the
broad area of Variational and Functional Analysis and presents a synthesis of results that
are available in the published articles "Linear Structure of Functions with Maximal Clarke
Subdifferential" [30] and "Index of symmetry and topological classification of asymmetric
normed spaces" [11], together with the ArXiv preprint "On an identification of the Lipschitz-
free spaces over subsets of Rn" [35].

The document is divided in two parts. Part I deals mainly with Lipschitz functions and
focuses on the study of structural properties for the spaces of Lipschitz functions defined
over a nonempty open convex subset of a finite-dimensional space. In Chapter 1 we show
that the vector space of Lipschitz functions that vanish at a prescribed point of the above
domain, endowed with the Lipschitz norm, is actually isometric to a specific subspace of
essentially bounded functions with values in the dual of the domain of the Lipschitz functions.
The property that determines this subspace is reminiscent of the classical Poincaré condition
ensuring the integrability of a vector field. Chapter 2 deals with the concept of Lipschitz-
free space and the aforementioned isometry is used to show that the Lipschitz-free space in
the same framework is isometric to a specific quotient of integrable functions with values in
the domain of the Lipschitz functions. The closed subspace that appears in this quotient is
formed by the integrable functions whose nonsmooth divergence is equal to zero, showing
a connection of these two chapters with a kind of Nonsmooth Multivariate Calculus. In
Chapter 3 we continue dealing with Lipschitz functions, but in this case we focus on the
properties of Clarke subdifferential and the concepts of lineability and spaceability. More
specifically, we show that the set of Lipschitz functions (defined in the same type of domain
as before) whose Clarke subdifferential is maximal at every point (in the sense that it is as
big as it can be) in fact contains a copy of `∞, showing that this set is "algebraically big".

Motivated by recent developments on asymmetric structures and the existence of a canonical
isometric embedding of a quasimetric space to an asymmetric normed space (its free quasi-
metric space), in Part II we analyse the concept of asymmetric normed spaces and give some
related definitions for their metric counterpart, quasimetric spaces. In Chapter 4, we look for
a way of classifying asymmetric normed spaces in terms of the degree of asymmetry of their
norms. In order to do that, we introduce the notion of index of symmetry for an asymmetric
normed space, which resumes in a number between zero and one how symmetric the norm
is. In terms of the aforementioned index, we show that whenever this index is greater than
zero, the norm is sufficiently symmetric, meaning that the associated topology for the space
can be obtained by some classical norm. This shows that the cases of utmost importance are
those where the index of symmetry is equal to zero. Therefore, there are two types of spaces,
where the main difference between them is the separation properties for their topologies.
This, in turn, changes completely the structure of their dual spaces. This classification is
particularly interesting in infinite dimensions, where many naturally defined spaces turn out
to have index of symmetry equal to zero, but their topologies might or might not Hausdorff,
in contrast to the case of finite dimensions, where an index of symmetry equal to zero is only
possible when the topology is non-Hausdorff (actually, not even T1).
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Introduction

This work corresponds to the PhD Thesis elaborated between 2017 - 2020 at the Department
of Mathematical Engineering of the University of Chile for the obtention of the Degree of
Doctor in Mathematical Modeling.

The document is divided in two independent parts. The first part deals with the space of
Lipschitz functions, viewed as a nonlinear dual of a given Euclidean space (or subset of it)
as well as of a first-order determination of them via derivatives or subdifferentials. The
second part deals with the study of asymmetrical normed spaces, more precisely with a
classification for the aforementioned spaces in terms of their asymmetry. This is done using
a specific coefficient which leads to a variety of properties of the spaces and their dual spaces
depending on its value.

The original results presented in this document are contained in three ArXiv preprints that
gave place to two published articles: "Linear Structure of Functions with Maximal Clarke
Subdifferential" in SIAM Journal of Optimization [30] and "Index of symmetry and topolog-
ical classification of asymmetric normed spaces" in Rocky Mountains Journal of Mathematics
[11]. The third ArXiv preprint, which is not published, is titled "On an identification of the
Lipschitz-free spaces over subsets of Rn" [35].

In this introduction, the guidelines for each part as well as the framework and necessary tools
to follow the ideas are stated.

Framework and basic tools
In this section we give the main definitions and results from Measure Theory and Functional
Analysis, which are prerequisites for several parts of the present work. Most of the notation
used throughout this document is standard, but it will be precised if necessary to avoid
confusion. As usual, (Rd,‖ · ‖) stands for the d-dimensional space endowed with the norm
‖ · ‖. While topologically the choice of this norm is not important, in terms of isometries it
is. In this sense, when Rd is endowed with some of the classical p-norms for p ∈ [0,∞] we
will denote the resulting Banach space simply as `dp. Since a great part of this work is related
to the study of metric properties, the corresponding norm will always be specified.

Recall that a nonempty set M endowed with a function d : M ×M → R≥0 which satisfies
the following properties for every x, y, z ∈M
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i) d(x, y) = 0 if and only if x = y,

ii) d(x, y) = d(y, x), and

iii) d(x, y) ≤ d(x, z) + d(z, y)

is called a metric space, in which case we call d a distance over M . It is important to
notice that, in general, there is no algebraic structure on the set M . Because of that, and
in constrast to what happens in the study of normed vector spaces, the natural morphisms
between metric spaces are no longer linear operators, since linearity has no sense in a general
metric space. Instead, the functions that arise as natural morphisms between metric spaces
are Lipschitz functions. For a metric space (M,d), we say that a function f : M → R is
Lipschitz if

(∃L > 0)(∀x, y ∈M) f(x)− f(y) ≤ Ld(x, y),

and by its Lipschitz constant we mean the greatest lower bound among all constants L which
satisfy the aforementioned property for f , or equivalently

Lip(f) := sup
x,y∈M
x 6=y

f(x)− f(y)

d(x, y)
.

We denote by Lip(M) the linear space of all real-valued Lipschitz functions over M . Most
of the present work is closely related to Lipschitz functions, or more precisely, to an specific
class of Lipschitz functions. A metric space (M,d) is called pointed if it has a distinguished
point, which in general we will call 0M (or simply 0 if there is no ambiguity).

If M is a pointed metric space, we denote by Lip0(M), the linear space of all real-valued
Lipschitz functions that vanish at 0. In topological terms, both spaces Lip(M) and Lip0(M)
can be endowed with the function ‖f‖L := Lip(f), which turns out to be a seminorm over
Lip(M) and a norm over Lip0(M). In this latter case, (Lip0(M), ‖ · ‖L) is a Banach space.

In case that the metric space is (isometrically identified to) a subset of Rd, an essencial
property of Lipschitz functions is given in the following theorem, which will be paramount
for many proofs in the sequel.

Theorem 1 (Rademacher) Let U ⊆ Rd be an nonempty open set and f : U → R a Lipschitz
function. Then, the set Df ⊆ U where f is differentiable has full measure (with respect to
the Lebesgue measure over U).

Remark It is a well known fact that Hadamard and Fréchet differentiability are equivalent in
finite dimensional spaces. Moreover, for Lipschitz functions over any Banach space Gâteaux
and Hadamard differentiability are also equivalent. This being said, the above mentioned
types of differentiability are the same for Lipschitz functions defined over finite-dimensional
spaces. We refer to [24] for this and other properties of Lipschitz functions.
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For a normed linear space X, its dual space is defined as follows

X∗ = {ϕ : X → R |ϕ is linear and continuous}.

It is easily seen that X∗ is a vector space, with becomes a Banach space when endowd with
the norm

‖ϕ‖∗ := sup
‖x‖≤1

ϕ(x), ∀ϕ ∈ X∗,

which is well defined thanks to the continuity of ϕ. Moreover, in virtue of the linearity of
ϕ ∈ X∗, it is easy to verify that

‖ϕ‖∗ := sup
x,y∈X
x 6=y

ϕ(x)− ϕ(y)

‖x− y‖
, ∀ϕ ∈ X∗,

from which we see that this norm simply computes the Lipschitz constant for the linear
functional ϕ. In other words, when dealing with normed linear spaces, we define its dual
using their natural morphisms with real values, that is, linear functionals, which reflect the
linear structure inside the space. On the other hand, it is natural to consider a dual space
for metric spaces using its natural morphisms, that is, real valued Lipschitz functions, which
reflect the metric structure of the space. No matter the case we deal with, the norm over
those natural real valued morphisms is defined in the same way.

In this sense, considering the pointed metric space X with 0 ∈ X its distinguished point, the
space Lip0(X) is often called the Lipschitz-dual of X (in opposition to the dual space, which
in this context we may call linear-dual).

We are also going to use notions and results from measure theory. To this end, let (Ω,Σ, µ)
be a measure space and X a Banach space. A function f : Ω→ X is called µ-measurable (or
simply measurable when there is no confusion) if it is almost everywhere the pointwise limit
of a sequence of simple functions, that is functions of the form

ω 7→
n∑
k=1

xk1Ak
(ω),

where Ak ⊂ Ω, for i = 1, . . . , n and n ∈ N. A µ-measurable function f is said to be Bochner-
integrable if the function ω 7→ ‖f(ω)‖ is integrable as a real-valued measurable function.
For relevant definitions and results on vector-valued measurable functions, we refer to [33].
The following spaces which arise from measurable functions will be useful in terms of finding
isometries in Part I of the present work.

Definition 1 Let p ∈ [1,∞) and a measure space (Ω,Σ, µ). The Lebesgue-Bochner space
Lp(Ω,Σ, µ;X) is the space given by the (equivalence classes of) µ-Bochner-integrable func-
tions f : Ω→ X such that

‖f‖p :=

(∫
Ω

‖f‖pdµ
) 1

p

<∞.

We also define the Lebesgue-Bochner space L∞(Ω,Σ, µ;X) as the space given by the (equiv-
alence classes of) µ-measurable essentially bounded functions, that is such that

‖f‖∞ := esssup
Ω
‖f‖ <∞.

3



These spaces endowed with the corresponding p-norm become Banach spaces.

Remark Whenever there is no confusion with the σ-algebra and the measure in this defi-
nition, we will simply write Lp(Ω;X). In the case that Ω is a Lebesgue-measurable subset
of Rd and the considered measure is the Lebesgue measure, we simply denote these spaces
as Lp(Ω).

Several properties can be found in the literature for these spaces, in particular for the case
that X = R. We give now some of these essential properties in full generality.

Definition 2 (RNP space) We say that a Banach space X has the Radon-Nikodym prop-
erty (RNP) if for every σ-finite measure space (Ω,Σ, µ) we have that for every X-valued
absolutely continuous measure ν : Σ → X of bounded variation, there exists a function
f ∈ L1(Ω,Σ, µ;X) such that

ν(A) =

∫
A

fdµ , ∀A ∈ Σ.

The Radon-Nikodym property has several equivalences related to martingale convergence,
geometry of Banach spaces, etc., which we will not state here. An important result in this
sense is the Dunford-Pettis theorem, which is inscribed in our framework, that is, finite-
dimensional spaces.

Theorem 2 (Dunford-Pettis) Let X be a separable dual space. Then, X has the RNP. In
particular, every reflexive Banach space has the RNP.

As a final important result, we state the following theorem which generalizes a well known
duality result.

Theorem 3 Let (Ω,Σ, µ) be a measure space and X be a Banach space such that its dual
X∗ has the Radon-Nikodym property. Then

Lp(Ω,Σ, µ;X)∗ ≡ Lq(Ω,Σ, µ;X∗),

where p ∈ [1,∞) and 1
p

+ 1
q

= 1.

Since every finite-dimensional Banach space is reflexive (under any norm), the above result
applies in our framework and will be used in the sequel to establish isometries.

Lipschitz-free spaces: Definitions and previous results
Lipschitz-free spaces have been extensively studied in recent literature, but their structure
is far from being completely understood. Nevertheless, there are specific cases where some
results are available. Here we will make a selection of those results and the required def-
initions. These definitions will be given in full generality, but in the subsequent chapters
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we will focus on the case where the underlying metric space is an open convex subset of
a finite-dimensional Banach space. Most of the preliminary results can be found in [42].
Throughout this document, we shall also refer to other relevant works for results concerning
the Lipschitz-free space of particular metric spaces.

Definitions

The idea behind Lipschitz-free spaces is to define a Banach space related to a pointed metric
space M such that its dual space coincides with the space Lip0(M) of real-valued Lipschitz
functions which vanish at a distinguished point x0 ∈M , which is often called base point and
denoted by 0 (Lip0(M)). In order to so this, we focus on an specific subset of Lip0(M) as
follows. We define the evaluation function δM : M → Lip0(M)∗ as the function such that for
every x ∈M

〈δM(x), f〉 = f(x).

Again, when there is no confusion on the subjacent metric space, we denote this function
simply as δ. The Lipschitz-free space over M , denoted by F(M), is defined as the subspace
of Lip0(M)∗ given by

F(M) := span{δ(x) : x ∈M \ {0}}.

It is easy to see that the set {δ(x) : x ∈ M \ {0}} is linearly independent. Also, it can be
shown that this space verifies that F(M)∗ ≡ Lip0(M), that is, there exists a linear isometry
between these spaces.

The definition of the Lipschitz-free spaces can be understood as follows. Using Lip0(M)∗ as
a host space, we assign to every x ∈M \ {0} a different direction in this space, while 0 ∈M
is mapped to the origin. Then, F(M) is the smallest Banach space (up to isometry) which
contains an isometric copy of M , where the associated isometry is the evaluation function δ.

State-of-the-Art

To get a better understanding of the definition of a Lipschitz-free space, we now present a
result concerning the mentioned embedding on Lipschitz-free spaces

Lemma 1 Let M,N be two metric spaces, each one with a base point (0M and 0N , respec-
tively) and F : M → N a Lipschitz function such that F (0M) = 0N . Then, there exists a
unique linear operator F̂ : F(M) → F(N) such that Lip(F ) = ‖F̂‖ and δN ◦ F = F̂ ◦ δM ,
that is, the following diagram conmutes

M F //

δM
��

N

δN
��

F(M) F̂ // F(N)

Lemma 1 shows that the whole Lipschitz structure present in a given metric space is fully
absorbed by its Lipschitz-free space, since it assigns a different direction to every point of the
metric space. It is worth noticing that if M is a metric subspace of N , Lemma 1 also says
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that F(M) can be seen as a subspace of F(N). Considering these facts, this gives a way of
linearizing problems, in the sense that they can be seen as linear problems in the respective
Lipschitz-free spaces. The main problem is that the structure of Lipschitz-free space is not
yet fully understood. As an example, it is known that F(R) is isometric to L1(R) (later on,
we will revisit this proof), but A. Naor and G. Schechtman proved on [56] that F(R2) is not
isomorphic to any subspace of L1. Also, in the separable case it is still open the relation
between Lipschitz-equivalence and isomorphisms, that is, whether two Banach spaces X, Y
are Lipschitz-equivalent (there exists a Lipschitz homeomorfism F : X → Y ) implies they
are isomorphic.

In the case where the pointed metric space for which we are interested to determine its
Lipschitz-free space is contained in a finite-dimensional normed space there are some results
concerning the metric structure of the associated metric space. In this sense, it is known that
both F(`1) and F(`d1) admit monotone finite-dimensional Schauder decompositions (Lancien-
Pernecká, [52]). This last result has further been improved, showing that those spaces in fact
have a Schauder basis (Hájek-Pernecká, [45]). In the case that Rd is equipped with an
arbitrary norm, we also know that if M ⊂ Rd is convex and compact, then the space F(M)
has the metric approximation property (Pernecká-Smith [59]).

To finish this section we review the proof that states a simple identification for the Lipschitz-
free space in the case that the subjacent metric space is R, which can be seen for example
on [65]. In order to do this, suppose that U is a non-empty open interval of the real line and
fix x0 ∈ U . We shall show that Lip0(U) and L∞(U) are isometric.

Let T : L∞(U)→ Lip0(U) be the linear operator defined by

Tg(x) =

∫ x

x0

g(t)dt, for all x ∈ U .

The function is well-defined, being the integral of an essentially bounded function over a
bounded set. Moreover, it is Lipschitz since for every x, y ∈ U

|Tg(x)− Tg(y)| ≤
∫ x

y

|g(t)|dt ≤ ‖g‖∞|x− y|

and it vanishes as x0. We deduce from here that T is well defined and continuous, with
‖Tg‖ ≤ ‖g‖∞. We show that this operator defines a bijective isometry between the spaces.

• T is injective: Suppose that Tg = 0. In particular, we have that for every interval
a, b ∈ U ∫ b

a

g(t)dt = 0,

which implies that g(t) = 0 almost everywhere over U , or equivalently g = 0. With
this, T is injective.

• T is surjective: It suffices to notice that if f ∈ Lip0(U), then f ′ is well-defined al-
most everywhere over U (thanks to Theorem 1) and that ‖f ′(x)‖∞ ≤ ‖f‖L for every
differentiability point of f , yielding f ′ ∈ L∞(U). Therefore

Tf ′(x) =

∫ x

x0

f ′(t)dt = f(x)− f(x0) = f(x).
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from which we deduce that T is surjective.

From these last observations, we have that T is bijective. Moreover, its inverse is given by
the operator D : Lip0(U) → L∞(U) given by Df = f ′. From the inequality used in the
proof of the surjectivity, we deduce easily that D is continuous, with ‖Df‖∞ ≤ ‖f‖L. It
follows directly from the estimates of the continuity of both operators T and D that T is an
isometry.

Remark In fact, since U ⊂ R. the use of Theorem 1 can be avoided by noticing that every
Lipschitz functions is absolutely continuous which implies that its derivative is defined a.e.
on U .

To finish the required identification, we recall the following theorem.

Theorem 4 Let X, Y be two Banach spaces. Let T : Y ∗ → X∗ be a linear bounded operator.
Suppose that T is w∗-w∗ continuous. Then, there exists a linear bounded operator S : X → Y
such that S∗ = T . Moreover, if T is a bijective isometry, so is S.

It is known (thanks to Grothendieck’s Theorem, see [43]) that L1(U) is the unique predual
of L∞(U) (up to isometry). We show that the operator T defined above is actually w∗-w∗
continuous, considering L∞(U) and Lip0(U) as the dual spaces of L1(U) and F(U), respec-
tively. Let (gλ)λ∈Λ be a w∗-convergent net on L∞(U) and let g ∈ L∞(U) be its limit. Then,
for each x ∈ U we have that

〈Tgλ, δ(x)〉 =

∫ x

x0

gλ(t)dt = 〈gλ,1[x0,x]〉.

Since 1[x0,x] ∈ L1(U) and (gλ)λ∈Λ is w∗-convergent, we deduce that

〈Tgλ, δ(x)〉 → 〈g,1[x0,x]〉 =

∫ x

0

g(t)dt = 〈Tg, δ(x)〉

Then, passing through linear combinations and limits, we conclude that Tgλ
∗
⇀ Tg whenever

gλ
∗
⇀ g. Then, thanks to Theorem 4 there exists an linear operator S : F(U) → L1(U)

identifying both spaces and such that its adjoint operator is T . Moreover, since T is a
bijective isometry, so is S, which implies that F(U) ≡ L1(U).

In Chapter 1 we generalize the ideas of the proof of the above result to the case where U is
a nonempty open convex subset of Rd endowed with an arbitrary norm. This relies mainly
on identifying, among the essentially bounded functions those which are gradients of some
Lipschitz function. In Chapter 2 we search for a predual of the aforementioned subspace of
functions in order to use it to identify the associated Lipschitz-free space. In Chapter 3 we use
the ideas developed on Chapter 1 to study the set of functions whose Clarke-subdifferential
is big in the sense that it coincides with the closed dual ball of radius ‖f‖|L at every point
(the exact definition will be given in the sequel).
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Lineability and spaceability: An alternative way to mea-
sure the extent of a property
In this section, we recall the notions of lineability and spaceability, concepts that have been
extensively studied in several areas and relies on the concept of finding linear structures
inside classes of functions satisfying certain properties. Examples of this line of research can
be found in [8], [9], [15], [16], [10] and [44].

Definition 3 Suppose that S is a set of functions f : X → Y which satisfy a certain property
P , where X is a set and Y is a normed space. We say that S is

• Lineable if S ∪ {0} contains a linear subspace of Y X .

• κ-lineable, for a cardinal κ if S ∪ {0} contains a linear subspace of Y X with dim(κ).

• Spaceable if S ∪ {0} is contained in a normed space and contains a copy of an infinite-
dimensional Banach space.

In this context, several properties have been studied in the search for linearity. As examples,
we have that the set of differentiable functions on R that are nowhere monotone is lineable
in C(R) ([10], Theorem 2.4) and that the set of continuous everywhere surjective functions
on R is 2c-lineable ([10], Theorem 4.3)

In this sense, both results say that in a particular sense the sets are big. More precisely,
they are algebraically big. To use as a point of comparison, we recall that we can say that
a set is topologically big if it contains a dense Gδ set. Notice that for lineability there is
no topology involved, which allows us to study the algebraic size of sets in a more general
setting. Spaceability deals exactly with the cases where we can do more, that is, finding a
linear space inside the set which is also (isometric to) a Banach space.

It is important to state that the search of linearity on sets is not an easy task, since there are
cases where a rich linear structure is not found inside a set, as is shown in [44], where it is
proven that the set of continuous functions on [0, 1] which attain their maxima at exactly one
point is a dense Gδ in C([0, 1]) but it does not contain any linear subspace with dimension
greater that 1. As we can see, even when the definition of the set relies on a simple property
and is topologically big, it has a very poor linear structure.

The start point for Chapter 3 relies on the following result, which shows that our set of
interest is topollogically big. This result is given in a more general setting, but we state it in
the particular case which will serve as motivation: Let X be a Banach space and C ⊂ X. For
a real valued Lipschitz function f defined over C, the Clarke directional derivative is defined
as

f ◦(x; v) := lim sup
y→x
t↘0

f(y + tv)− f(y)

t
, for every x ∈ C, v ∈ X.

It is easily verifiable that this directional derivative is well defined, thanks to f being Lips-
chitz. Moreover, for every x ∈ C, v 7→ f ◦(x; v) is finite, positively homogeneous, subadditive
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on X and satisfies |f ◦(x; v)| ≤ ‖f‖L‖v‖. In terms of this generalized derivative, the Clarke
subdifferential is defined (for f as before) as

∂◦f(x) = {ϕ ∈ X∗ | 〈ϕ, v〉 ≤ f ◦(x; v) ∀v ∈ X}, for every x ∈ C,

which is a nonempty, convex, weak∗-compact subset of X∗, which is contained in the closed
ball centered at the origin of X∗, with radius equal to ‖f‖L, the Lipschitz constant of f .

For fixed K > 0, the set of Lipschitz functions such that ∂◦f equals K times the dual closed
unit ball over C is generic in the set of Lipschitz functions with constant at most K endowed
with the metric of uniform convergence over bounded sets.

We see that the above result reveals that the set of Lipschitz functions whose Clarke subdif-
ferential is everywhere maximal (that is, is the biggest it can be at any point of the domain)
contains a Gδ dense set, meaning that it is topologically big under the right topology over
the space of Lipschitz functions with a fixed maximum Lipschitz constant.

In Chapter 3 we use the tools developed on Chapter 1 in order to obtain a sequence of
linearly independent Lipschitz functions which have the property of maximality of their
Clarke subdifferentials, as mentioned before, which in turn are suited to build inside the
space of all Lipschitz functions a Banach space containing only functions which satisfy the
same property, obtaining a spaceability result in line with the result mentioned from [19].
For this, it will be necessary to change both the host set and the metric. The change of the
host set is obvious from the fact that we are looking for a linear space, while in the set of
Lipschitz functions with constant at most K > 0 the biggest linear space we can find is that
defined by the constant functions. Moreover, we change also the domain of definition for the
functions in order to obtain the result using Chapter 1, which deals with Lipschitz functions
defined over convex subsets of Rd. In terms of the metric used in [19], which was that of
uniform convergence over bounded subsets, will be also changed, since it is not well adapted
to the space of all Lipschitz functions (there is no completeness given the lack of bounds for
the Lipschitz constants). It is worth mentioning that a first attempt was done by directly
using the norm given by the Lipschitz constants in order to replicate the functions exposed in
[19], which failed since the metric of uniform convergence over bounded sets allows to move
the slopes of the functions as needed not losing the convergence, which is impossible with the
aforementioned norm, since it completely controls those slopes. However, our result will be
based in a explicit construction while the result from [19] relies on Baire category theorem,
which shows in particular that the approach taken is completely different.

Asymmetric normed spaces: State-of-the-Art
The last chapter of this thesis deals with a topic of different nature, which has to do with
asymmetric structures. We give here the main definitions and some examples of asymmetric
normed spaces. We refer to [25], where the developement of Functional Analysis on these
spaces is detailed.

The idea behind asymmetric normed spaces is to emancipate from the classical symmetry
assumption of classical norms while preserving the rest of its structure. This leads to topolo-
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gies whose properties will can naturally be expected to depend on the level of asymmetry of
the norm.

Definitions

Asymmetric normed spaces (as can be deduced by the name) are linear spaces endowed with
a non-negative function which satisfies all usual properties of a norm, except for absolute
homogeneity and identifying 0, properties that are replaced by positive homogeneity and
requiring both x and −x to evaluate to 0 in order to conclude that x = 0. Such a functional
is called asymmetric norm, whose main property is that x and −x do not necessarily have
the same norm, hence the term asymmetric. More precisely

Definition 4 Let X be a real linear space. We say that a functional ‖ · | : X → [0,∞) is an
asymmetric norm over X if

i) ‖x| = ‖ − x| = 0 =⇒ x = 0.

ii) ‖λx| = λ‖x| for every x ∈ X and λ ≥ 0.

iii) ‖x+ y| ≤ ‖x|+ ‖y| for every x, y ∈ X.

When endowed with an asymmetric norm, we say that X is an asymmetric normed space.

We can easily see that every norm satisfies trivially the above definition, therefore it is also
an asymmetric norm and the difference between an asymmetric norm and a norm is that the
equality ‖−x| = ‖x| is not necessarily true for every x ∈ X. The topology of an asymmetric
normed space is defined in the same way as for normed spaces, that is, a subset U of X is
open if for every x ∈ U there exist a ball centered at x and radius r which is completely
contained in U . Then, we first need to define the notion of a ball as follows:

Definition 5 For an asymmetric normed space, we define the open and closed balls centered
at x ∈ X of radius r > 0 as

B(x, r) = {y ∈ X : ‖y − x| < r} and B(x, r) = {y ∈ X : ‖y − x| ≤ r},

respectively.

Remark Given the asymmetry of the norm and contrary to the normed case, the order
‖y − x| (instead of ‖x − y|) of the difference in the definition is important. Changing this
order will in general give different sets. In the literature can also be found this definition and
the analogous with the difference in the other sense as forward and backward balls.

To understand how the lack of symmetry affects the topology of these spaces we shall begin
by studying the most elementary asymmetric normed space, which in turn will be useful to
state the definition of duality over these spaces. Over the real line, it is not hard to see that
the function ‖t|0 = max{0, t} defines an asymmetric norm. Moreover, the open unit ball is
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given by B(0, 1) = (−∞, 1), which raises a topology which is not Hausdorff. Nevertheless
there are cases where the asymmetric norm is not a norm, but the induced topology is still
Hausdorff. The following example shows this.

Example Let α > 0. On R consider the asymmetric norm given by ‖t|α = max{−αt, t}. We
can easily see that B(0, 1) = (−1/α, 1), which implies that the induced topology is the same
as the usual topology over R. As a consequence, every topological result for R endowed with
the absolute value remains true for this asymmetric norm. Moreover, it is not hard to notice
that both spaces are actually linearly isomorphic, which is not the case for the asymmetric
norm defined before this example.

In the spirit of this example, we focus on studying the degree of asymmetry of an asymmetric
norm, which will give raise to an index and a classification of these spaces in terms of
that index. In order to do this, an important structure will be the one that we call the
symmetrization of an asymmetric normed space.

Definition 6 Let X be an asymmetric normed space. By its symmetrization we mean the
space X endowed with the norm ‖x‖ := max{‖x|, ‖−x|}. We denote by Xs the symmetriza-
tion of X.

Another concept related to asymmetry is that of quasi-metric spaces, which can be under-
stood as asymmetric metric spaces. We give the the definition of these spaces for complete-
ness.

Definition 7 (Quasi-metric space) A quasi-metric space is a pair (M,d), where M is a
nonempty set and d : M ×M → R≥0 is a function satisfying

i) d(x, x) = 0 for every x ∈M ,

ii) d(x, y) = d(y, x) = 0 implies x = y, for every x, y ∈M , and

iii) d(x, y) ≤ d(x, z) + d(z, y), for every x, y, z ∈M .

In general, a quasi-metric space needs not to be T2 (neither T1), which is also the case for
asymmetric normed spaces. Nevertheless, several examples of quasi-metric spaces which are
T2 can be found in the literature, such as Finsler manifolds, for which we refer to [31]. In
the same way that we can define the symmetrization of an asymmetric normed space, we
can also define the symmetrization for a quasi-metric space, which is always a metric space
(hence T2).

The study of continuous linear functionals is of paramount importance in Functional Analysis.
In this sense, the space of countinuous linear functionals has been studied in the context of
asymmetric normed spaces.
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Definition 8 Let X be an asymmetric normed space. We say that a linear functional
ϕ : X → R is bounded if there exists a constant C > 0 such that

ϕ(x) ≤ C‖x| ∀x ∈ X.

It is known that for normed spaces boundedness and continuity of linear functionals are
equivalent, which is not directly true in the case for asymmetric normed spaces, as we will
see in the following section. To finish this section, we define the asymmetric dual of an
asymmetric normed space.

Definition 9 Let X be an asymmetric normed space. We define its asymmetric dual as the
set of all bounded linear functionals, that is

X[ := {ϕ : X → R : ϕ is linear and bounded}.

Consider also the function ‖ · |[ : X∗s → R≥0 given by

‖ϕ|[ := sup
‖x|≤1

ϕ(x)

It follows directly from the definition that in general X[ is a cone contained in X∗s . Moreover,
the function defined above is actually an extended asymmetric norm over X∗s , that is, an
asymmetric norm which takes infinity as a value. It is clear that ϕ belongs to the asymmetric
dual of X if and only if ϕ belongs to X∗s and ‖ϕ|[ is finite. From this we trivially see that if
X is normed, then X[ coincides with X∗. This fact is something that we will revisit during
Chapter 4.

Previous results

In this section we state some properties of asymmetric normed spaces. More precisely, we
announce some results that will be useful during the development of Chapter 4. At the end of
the previous section we gave the definition for bounded linear functionals and the asymmetric
dual for asymmetric normed spaces. The first consequence of this is that continuity of linear
functional needs to be treated carefully. We give details of this on the following proposition.

Proposition 1 Let X be an asymmetric normed space and ϕ : X → R a linear functional.
The following are equivalent.

i) ϕ is continuous from X to (R, ‖ · |R).

ii) ϕ is continuous at 0.

iii) ϕ is bounded.

iv) ϕ is upper semicontinuous from X to (R, | · |).
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Considering this proposition we can see that if R is endowed with ‖·|R, its asymmetric dual is
given by the interval [0,∞). From this, the main difference with the classical dual is evident,
since in this case the asymmetric dual is not a linear space. The general result in this sense
is given in the following proposition.

Proposition 2 Let X be an asymmetric normed space. Then, X[ is a convex cone contained
in the dual of Xs.

Another important fact is that X[ is not necessarily strictly contained in the dual of Xs. A
simple example of that is when X is actually normed. A more elaborated example is in the
case of R endowed with an asymmetric norm of the form ‖t|α := max{−αt, t}, with α > 1.

In the case of quasi-metric spaces we can also define the analogous of the Lipschitz-dual for
metric spaces, which is given by the Semi-Lipschitz functions, which are defined as follows

Definition 10 (Semi-Lipschitz function) Let (M,d) be a quasi-metric space. A function
f : M → R is called semi-Lipschitz if there exists a constant L ≥ 0 such that

f(y)− f(x) ≤ Ld(y, x), for all x, y ∈M.

The infimum of the above constants L ≥ 0 is called the semi-Lipschitz constant of f , that is,

‖f |L := sup
d(y,x)>0

f(y)− f(x)

d(y, x)
.

We denote by SLip(M) the set of semi-Lipschitz functions on (M,d).

The analogy in the definitions of X[ and SLip(M) is evident, and a result in the line of
Proposition 2 is easy to prove and is given for completeness.

Proposition 3 Let M be a quasi-metric space. Then, SLip(M) is a convex cone contained
in Lip(Ms), the space of real valued Lipschitz functions defined over the symmetrization of
M , Ms.

The importance of this concept in our work relies in the fact that an analogous theory
around free spaces exists for quasi-metric spaces: Every quasi-metric space can be injected
in a asymmetric normed space, the so-called semi-Lipschitz free space. We now state the
related definitions and properties, both for completeness and to see the analogy with the
definitions given by G. Godefroy and N. J. Kalton [42].

Let (M,d) be a pointed quasi-metric space. For x ∈ M we consider the corresponding
evaluation mapping

δx : SLip0 → R defined by δx(f) = f(x), ∀f ∈ SLip0(M).

An easily verifiable fact is that δx is a linear mapping over the cone SLip0(M). A first result
on δx is that it belongs to the linearity part of the dual cone (SLip0(M))∗, that is, to a vector
space contained in that dual cone, which we state in the following proposition
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Proposition 4 For each x ∈ M , both the evaluation functional δx and its opposite −δx
belong to the dual cone (SLip0(M))∗.

To make clear the analogy with the classic framework of Lipschitz-free space, notice that in
the construction for those spaces the same evaluation functional is used, but the fact that
both δx and δx is trivially assured, since in that case δx belongs to the dual of a normed space.
We proceed to state a final proposition before giving the definition of the semi-Lipschitz free
space of M .

Proposition 5 The mapping
δ : M → SLip0(M)∗,

defined by δ(x) = δx is an isometry onto its image.

We now take the asymmetric normed space (span(δ(M)), ‖ · |∗) (which is contained in the
normed cone (SLip0, ‖·|∗)), and we define the semi-Lipschitz free space to be the bicompletion
of (span(δ(M)), ‖ · |∗).

Definition 11 (The semi-Lipschitz free space) Let (M,d) be a quasi-metric space with a
base point x0. The semi-Lipschitz free space over (M,d), denoted by Fa(M), is the (unique)
bicompletion of the asymmetric normed space (span(δ(M)), ‖·|∗), where ‖·|∗ is the restriction
of the norm of SLip0(M)∗.

It should be now clear the analogy between this definition and that of Lipschitz-free space
in the symmetric case. For more detailed information on this topic, we refer to [32].

In Chapter 4 we study the problem of determining whether X[ is a linear space, classifying
in this way the asymmetric normed spaces in terms of an index which depends only on the
asymmetric norm given.
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Part I

Integration of essentially bounded
functions
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Chapter 1

Identification of the space of Lipschitz
functions in finite-dimensional spaces

In this part, we work around the concept of Lipschitz-free spaces. More precisely, we study the
properties and structure of Lipschitz functions over finite-dimensional spaces and then using
those properties to identify the Lipschitz-free spaces over finite-dimensional spaces. In the
beginning, the study of those Lipschitz functions was done in order to find the aforementioned
identification. However, the same results developed there bootstrap on the study of deeper
properties in the structure of the space of Lipschitz functions.

The study of Lipschitz-free spaces goes back to [65], where more precisely Arens-Eells spaces
are analysed. These spaces are defined in a constructive way starting from what is called the
Lipschitz dual of a Banach space, that is, the space of all Lipschitz functions that vanishes at
the origin. It is worth noticing that it is not necessary for the definition of these spaces that
the host space (that is, the domain of the Lipschitz functions) is a Banach space. It suffices
for it to be a pointed metric space, that is, a metric space with a fixed distinguishable point,
which takes the role of the origin, that is, we ask our functions to vanish at that point. In
any case, the set of Lipschitz functions which vanishes at the origin is in fact a Banach space
when endowed with the norm given by the Lipschitz constant.

From here, the construction of the Lipschitz-free space is straightforward: It is defined as the
closed linear span of the evaluation functionals δ(x) : Lip0(X)→ R (that is, 〈δ(x), f〉 = f(x)).
It can be easily proven that the space defined in this way is actually a predual of Lip0(X),
and that it contains an isometric copy of the host space, where the isometry is actually the
operator δ : X → F(X). Notice that, even in the case where X is a Banach space, δ is not
linear.

A general problem involving these ideas arises on the study of Banach spaces. More precisely,
the following question is considered for two Banach spaces X and Y : Is it true that X and Y
are linearly isomorphic whenever they are Lipschitz isomorphic (i.e. there exists a bijective
bi-Lipschitz map F : X → Y )? It is already known that in full generality this is false, but the
case where the spaces are separable still remains as an open problem. For this and related
topics, we refer to [14].
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A detailed study of these concepts was done by J. Kalton (e.g. [49], [42]). These works are
the current starting point to any research in this topic.

In this chapter, we take the ideas on the identification of the space of Lipschitz functions over
the real line exposed on the introduction and generalize them in order to obtain an identi-
fication for the case where those functions are defined over non-empty open convex subsets
of finite-dimensional spaces. As was already mentioned in the introduction of the present
work, the structure of Lipschitz-free spaces in a general setting is not yet fully understood.
In order to find some properties of an specific Lipschitz-free space F(M) we can begin by the
study of its dual space, namely the space of Lipschitz functions which vanish at a fixed point,
Lip0(M). Having this idea in mind, during this chapter we search for a way of generalizing
the proof for the case where the asociated metric space is simply a non-empty open real
interval.

In this context, we fix a non-empty open convex set U ⊂ Rd and without loss of generality
we assume that 0 ∈ U . It is not difficult to see that this is not a restrictive condition, since
the space of Lipschitz functions over U which vanish at a fixed point x0 ∈ U and the space of
Lipschitz functions over U −x0 which vanish at 0 are linearly isometric. In fact, the operator
f 7→ f(x0 + ·) defines the aforementioned isometry.

Making use of Rademacher theorem, we first observe that the gradient of any Lipschitz
function defined over U is well defined almost everywhere. Moreover, over the set of its
differentiability points it is also bounded. This allows us to study the problem from the same
starting point as in the case of dimension 1. In this sense, the first problem we encounter is
that (contrary to the case one-dimensional case) not every vector-valued essentially bounded
function is almost everywhere equal to the gradient of a Lipschitz function, as is shown in
the following example.

Example Suppose that U = (−1, 1)2 and consider the function g : U → R2 given by
g(x1, x2) = (0, x1). It is clear that this function belongs to L∞(U ;R2) and also that it is not
the gradient of any Lipschitz function (in fact, it is not the gradient of any function).

Considering the previous example it becomes necessary to find a stronger condition to assure
that a vector-valued essentially bounded functions is in fact almost everywhere equal to the
gradient of a Lipschitz function. The rest of this chapter deals with this problem and is
divided in three main sections. First we study the structure of L∞(U ; (Rd)∗) in terms of the
properties of sets derived from their members and the use of them on integrability. Then
we go deeper on the structure of Lipschitz functions over U in order to obtain a necessary
and sufficient condition for the elements of L∞(U ; (Rd)∗) to be the gradient of a Lipschitz
function. Finally, using the preceding parts we obtain the desired isometry to identify the
space of Lipschitz functions over U which vanish at 0 with a particular subset of L∞(U ; (Rd)∗).
The results that we present in this chapter can also be found in the author’s Master Thesis
([36], in Spanish).
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1.1 One-dimensional integration over U
Following the ideas of the one-dimensional case, we would like to define Lipschitz functions
from essentially bounded functions via integration over curves. The first complication of this
process is that piecewise smooth curves have null Lebesgue measure, which may lead to ill-
defined functions. In order to overcome this difficulty we proceed to study some properties of
full measure sets and we apply them to obtain an operator on the class of essentially bounded
functions, which will be the starting point for the final result of this chapter. With this in
mind, let us start with the following proposition.

Proposition 1.1 Suppose that A ⊆ U has full measure in U . Then, for every x ∈ U

Ax := {y ∈ U : x+ t(y − x) ∈ A a.e. on [0, 1]}

has full measure in U .

Proof. Thanks to the invariance under translations of the Lebesgue measure, we can assume
that x = 0. It suffices to prove that for every R > 0, the equality λ(BR ∩ A0) = λ(BR)
holds, where BR = B2(0, R) ∩ U and B2(0, R) is the ball of Rd endowed with the Euclidean
norm. Since A has full measure, we know that λ(BR ∩ A) = λ(BR). Then, using spherical
coordinates (where dv denotes the surface measure over Sd−1) we have that∫

Sd−1

∫ R(v)

0

rd−1drdv =

∫
Sd−1

∫ R(v)

0

1A(rv)rd−1drdv,

where R(v) = sup{r ∈ [0, R] : rv ∈ U}. This yields that necessarily for almost every
v ∈ Sd−1 ∫ R(v)

0

1A(rv)rd−1dr =

∫ R(v)

0

rd−1dr.

Let Σ ⊆ Sd−1 be the set of directions v where the last equality is true. Then for every v ∈ Σ,
rv ∈ A for almost every r ∈ [0, R(v)], or equivalently R(v)v ∈ A0. We easily see that A0

is star-shaped, so actually we have that rv ∈ A0 for every r ∈ [0, R(v)], whenever v ∈ Σ.
Considering this, we deduce that

λ(BR ∩ A0) =

∫
Sd−1

∫ R(v)

0

1A0(rv)rd−1drdv

=

∫
Σ

∫ R(v)

0

rd−1drdv =

∫
Sd−1

∫ R(v)

0

rd−1drdv = λ(BR),

for every R > 0. We deduce that A0 has full measure.

In virtue of Proposition 1.1, we see that for every x ∈ U the set

Ax = {y ∈ U : ‖g(x+ t(y − x))‖∗ ≤ ‖g‖∞ a.e. on [0, 1]}

have full measure, which is obtained directly from the fact that ‖g(z)‖∗ ≤ ‖g‖∞ almost
everywhere over U . This remark allows us to integrate essentially bounded functions over
almost every straight line with endpoints x, y ∈ U . This fact will become more precise in the
next definition.
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Definition 1.1 For x ∈ U , we define the operator

Tx : L∞(U ; (Rd)∗)→ RU/ ∼,

where RU/ ∼ stands for the quotient of RU with respect to equality almost everywhere, as
the equivalence class of the function defined as

f(y) =


∫ 1

0

〈g(x+ t(y − x)), y − x〉dt , if the integral is well defined

0 , otherwise
.

In other words, the operator Tx takes an essentially bounded function g over U , and gives a
real-valued function which is defined almost everywhere as the integral of g over the straight
line going from x to the point in which we are evaluating. We can see the resemblance with
the one-dimensional case, where an essentially bounded function over an interval is used to
obtain a real-valued function integrating from 0 to the evaluation point. In the latter case,
it is clear that the resulting function is well-defined and Lipschitz. For higher dimensions
this is not straightforward anymore. Our task is to show that this operator can be used in
a similar way as in the one-dimensional case, which means that we need to find its relation
with Lipschitz functions. It is worth noticing that the integral given in the definition is well
defined for almost every y ∈ U thanks to the remark after Proposition 1.1. This fact will
be paramount for assuring that the operator is well defined. To see how this operator acts,
consider the following example.

Example Suppose that U = (−1, 1)2 and consider the function g : U → R2 given by
g(x1, x2) = (0, x1). It is clear that this function belongs to L∞(U ;R2). Notice that for every
x ∈ U the integral in Definition 1.1 is well defined for every y ∈ U . With this in mind, we
have that T0 is given by the equivalence class of the function over U given by

f(y1, y2) =

∫ 1

0

ty1y2dt =
y1y2

2
.

Notice that the function obtained from this is actually Lipschitz over U and it vanishes at 0.
If change the domain of definition of g to all of R2, the function f will be the same, and
hence it will not be Lipschitz.

The last remark of the previous example tells us that it is necessary to set a condition
over essentially bounded functions in order to obtain Lipschitz functions making use of the
operator given in Definition 1.1. Before going deeper on that, we need to assure that this
operator is actually well defined, that is, it does not depend on the chosen representative of
the equivalence class in the domain.

Proposition 1.2 For every x ∈ U , Tx is well-defined and is linear.

Proof. Let g, h ∈ L∞(U ; (Rn)∗) be such that g = h almost everywhere. We want to prove
that Txg = Txh. Thanks to Proposition 1.1 we know that the following sets have full measure
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• {y ∈ U : ‖g(x+ t(y − x))‖∗ ≤ ‖g‖∞ a.e. on [0, 1]}.

• {y ∈ U : ‖h(x+ t(y − x))‖∗ ≤ ‖h‖∞ a.e. on [0, 1]}.

• {y ∈ U : g(x+ t(y − x)) = h(x+ t(y − x)) a.e. on [0, 1]}.

Then, for every y ∈ U belonging to the intersection of these three sets (which again has full
measure) we have that∫ 1

0

〈g(x+ t(y − x)), y − x〉dt =

∫ 1

0

〈h(x+ t(y − x)), y − x〉dt,

where both integrals are well defined. We deduce that Txg = Txh. The linearity of Tx is
trivial.

Once we have established that the operator Tx is well defined, we shall use it in a similar
manner as in the one-dimensional case. In the next section, we study thoroughly a specific
property of Lipschitz functions which will allow us to restrict the domain of these operators
in order to obtain always Lipschitz functions as the image.

1.2 The space of Lipschitz-compatible functions
Recall that every ϕ ∈ C∞0 (U) (that is, ϕ is a smooth compactly supported function over U) is
Lipschitz. We begin by looking closely at this class of functions in order to obtain a general
property of Lipschitz functions which will allow us to restrict the domain of the operators Tx
defined in the previous section. Let ϕ ∈ C∞0 (U) and consider its gradient ∇ϕ, which defines
a bounded function over U . Suppose that Γ is a piecewise smooth and regular curve in U of
finite length and take γ : [a, b]→ U any parametrization of Γ. Then∮

Γ

∇ϕd~r =

∫ b

a

〈∇ϕ(γ(t)), γ′(t)〉dt =

∫ b

a

(ϕ ◦ γ)′(t)dt = ϕ(y)− ϕ(x),

where x = γ(a) and y = γ(b). In the same way, we can now go further. Suppose now that f
is a Lipschitz function over U , take Γ and γ as before. We see that f ◦ γ is Lipschitz, hence
its derivative is well defined almost everywhere on (a, b). Then if g is any essentially bounded
function such that g(x) = ∇f(x) for every x ∈ Df and 〈g(γ(t)), γ′(t)〉 = f ′(γ(t); γ′(t)) almost
everywhere on (a, b), we deduce that∮

gd~r =

∫ b

a

〈g(γ(t)), γ′(t)〉dt =

∫ b

a

f ′(γ(t), γ′(t))dt =

∫ b

a

(f ◦ γ)′(t)dt = f(y)− f(x),

where again the points x, y ∈ U are the endpoints of Γ. We see that given x, y ∈ U , the
definition of g depends a priori on the chosen curve going from x to y and its parametrization.
Nevertheless we see that the function g obtained as described is always equal almost every-
where to ∇f . This observation imposes a restriction over the elements of L∞(U ; (Rd)∗) in
order to be the gradient of a Lipschitz function, which is detailed in the following definition.
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Definition 1.2 We say that an essentially bounded function g over U is Lipschitz-compatible
if for almost every x, y ∈ U (with respect to the product measure over U × U)

(T0g)(y)− (T0g)(x) = (Txg)(y),

where T0g and Txg are seen as any representative of the equivalence class.

Remark It is not difficult to see that there are non-trivial functions that are Lipschitz-
compatible. More precisely, in the beginning of this section we saw that for every ϕ ∈ C∞0 (U),
∇ϕ is Lipschitz-compatible. The property of Lipschitz-compatibility can be understood as
the fact that the functions defined by Tx and T0 are the same (up to a constant) for almost
every x ∈ U . Moreover, it is easy to verify that this is actually a property of the class, since
Tx is linear. Another way to understand this property is noticing that this is the same as
saying that for almost every triangle (hence, every polygonal closed curve) the integral of g
over it is equal to zero, that is, Lipschitz-compatible functions behave like conservative fields.

We would like to determine the image of Lipschitz-compatible functions via the operator T0.
To study the mentioned image, we need to introduce the next definition

Definition 1.3 The space of essentially Lipschitz functions is defined as

Lip(U) := {f ∈ RU : L(f) < +∞},
where the essential Lipschitz constant is defined as

L(f) = esssup
x,y∈U
x 6=y

f(y)− f(x)

‖y − x‖
.

Here the essential supremum is taken with respect to the product measure over U×U . We will
also say that f ∈ Lip0(U) if f ∈ Lip(U) and there exists K ≥ L(f) such that |f(x)| ≤ K‖x‖
almost everywhere over U .

The first question that arises is which is the link between this concept of essentially Lipschitz
functions and the space of Lipschitz functions. In this sense, the next lemma gives us the
answer and also shows the way to follow in order to prove the main result of this chapter.

Lemma 1.1 Let f ∈ Lip0(U). We have that

i) If h = f almost everywhere, then L(h) = L(f).

ii) There exists a unique h ∈ Lip0(U) such that h = f almost everywhere.

In particular, Lip0(U) is linearly isometric to the quotient of Lip0(U) with respect to equality
almost everywhere.

Proof. First we notice that L(·) defines a seminorm on Lip0(U). This is analogous to the
fact that

esssup
ω∈Ω

|g(ω)|
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defines a seminorm on L∞(Ω). This directly proves the first part, since L is zero only on
almost everywhere null functions. For the second part, we have that there exists a set F ⊆ U
of full measure such that

|f(x)− f(y)|
‖x− y‖

≤ L(f)

for every x, y ∈ F . Since F is dense in U , let us define h as the unique Lipschitz extension
of f |F . It is clear that h(0) = 0, because f ∈ Lip0(U).

For the last part, we notice from the proof of the second part that we can also deduce that
L(·) defines a norm on the mentioned quotient and the operator that maps every f ∈ Lip0(U)
to its unique Lipschitz representative is linear, since it is defined by density. We deduce that
the mentioned operator is in fact a linear isometry thanks to the first part of the lemma.

In the last section of this chapter we use the tools developed above to show that the space
of Lipschitz-compatible functions of L∞(U ; (Rd)∗) contains nothing but the gradients of Lip-
schitz functions, thus giving us the desired identification of the space Lip0(U).

1.3 Identification of the space of Lipschitz functions
In the previous section we studied some structural properties of Lipschitz functions over U ,
which lead us to the definition of Lipschitz-compatible functions. Moreover, we gave an
intermediate definition, namely the space of essentially Lipschitz functions, which will help
us to state the connection between Lipschitz-compatible and Lipschitz functions. Considering
that this will be key in the sequel, denote by Z the subspace of L∞(U ; (Rd)∗) defined by the
Lipschitz-compatible elements. We give now the proof of the main result of the present
chapter.

Theorem 1.1 The spaces Z and Lip0(U) are linearly isometric.

Proof. In virtue of Proposition 1.1 and the definition of Lipschitz-compatibility, we have
that for almost every x, y ∈ U

|(T0g)(y)− (T0g)(x)| = |(Txg)(y)| ≤ ‖g‖∞‖y − x‖.

Again thanks to Proposition 1.1, we also have that for almost every x ∈ U

|(T0g)(x)| ≤ ‖g‖∞‖x‖.

From this, we deduce that T0g ∈ Lip0(U). Accordingly to Lemma 1.1, we define the linear
operator T : Z → Lip0(U) as follows: Tg is the only continuous representative of T0g. From
this and the first inequality it also follows that ‖T‖ ≤ 1, which implies that T is continuous.

Consider now the operator D : Lip0(U)→ Z given by Rf = ∇f . Using Theorem 1 together
with Proposition 1.1, we see that this operator is well-defined (that is, ∇f is Lipschitz-
compatible) and it is clearly linear with ‖R‖ ≤ 1, since ‖∇f(x)‖∗ ≤ ‖f‖L for every x ∈ Df .
Moreover, we have that TD = IdLip0(U), since for every f ∈ Lip0(U) we have that

TDf = T∇f = T0(∇f) = T0g = f,
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where the function g : U → Rd is defined as follows:

g(x) :=


∇f(x) , x ∈ Df

f ′(x;x) · ux‖x‖ , x /∈ Df ∧ x 6= 0 ∧ f ′(x;x) exists
0 , otherwise

where ux ∈ Rd is such that ‖ux‖∗ = 1 and 〈ux, x〉 = ‖x‖. We see that g = ∇f almost
everywhere and for any x ∈ U \ {0}, 〈g(tx), x〉 = f ′(tx;x) almost everywhere on [0, 1], and
then T0g = f .

In particular, we have that T is surjective. Suppose now that there exists x ∈ U such that
Tg(x) > 0. Since f := Tg ∈ Lip0(U), there exists δ > 0 such that for almost every y ∈ B(x, δ)

0 < f(y) =

∫ 1

0

〈g(ty), y〉dt,

that is, for almost every y ∈ B(x, δ) there exists a non-null subset of [0, 1] such that g(ty) 6= 0
on that subset. This implies that there exists a non-null subset of U such that g 6= 0 on that
subset. Then, T is injective. We deduce that T is bijective with T−1 = D. With this T is a
linear isometry between Z and Lip0(U).

This last proposition goes in line with the procedure for the one-dimensional case. It is
worth to clarify at this point the main difference that appears on higher dimensions. If we
take all that we have done to this point during this chapter in the case d = 1 we can see
that every function of L∞(U) is Lipschitz compatible, which is a trivial consequence of the
definition. Hence in that case, since every Lipschitz function is absolutely continuous, the
link between Lipschitz functions derivatives and essentially bounded functions is evident. In
higher dimensions, since we have other directions to go, this link is broken and it becomes
necessary to study more in detail the structure of Lipschitz functions. We now prove the
main result of this section, which states an identification for the space Lip0(U).

We finish this chapter by mentioning that the last characterization was also proven in [28]
with a very similar statement.

Proposition 1.3 (M. Cúth, O. Kalenda, P. Kaplický) For any f ∈ Lip0(U) set Df = ∇f .
Then, the following hold

i) D is a linear isometry of Lip0(U) into L∞(U ; (Rd)∗).

ii) The range of D is

Z(U) = {g ∈ L∞(U ; (Rd)∗) : ∂igj = ∂jgi for i, j = 1, . . . , d},

where the derivatives are considered in the sense of distributions on U .

iii) The inverse operator D−1 : Z(U)→ Lip0(U) is defined by

D−1g(x) = lim
k→∞

∫ 1

0

〈(g ∗ uk)(tx), x〉dt,

where (uk)k∈N is a smooth mollifier.
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The main difference between these results is the way of describing the space of Lipschitz-
compatible elements of L∞(U ; (Rd)∗). We have described it in terms of integrals over closed
polygonal curves, asking for this value to be 0, while in the aforementioned result it is
described in terms of derivatives in the sense of distributions. It is not hard to notice that
we can see a direct relation between these results: We can consider L∞(U ; (Rd)∗) as vector
fields. Then, in one hand we are asking these fields to be conservative over U while in the
other case we are asking them to have null curl, which recalls a classical result for smooth
vector fields on Rd.
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Chapter 2

Identification of the Lipschitz-free space
of finite-dimensional spaces

We have already seen in the previous chapter that even in the case where the domain of the
Lipschitz functions is some appropiate subset of a finite-dimensional space, the structure of
those functions is not simple, and they are connected to the space of essentially bounded
functions in a way that is not as direct as it is in the one-dimensional case. Before going
further on our discussion, a few known results for Lipschitz-free spaces are presented as a
starting point in order to understand the objective behind finding a way of identifying the
Lipschitz-free spaces for finite-dimensional spaces. For more details on these results, we refer
to [27], [42], [49], [45], [52] and [59].

Suppose that X, Y are Banach space and that L : X → Y is a Lipschitz map such that
L(0) = 0. A basic lemma tells us that in this case, there exists a unique linear map L̂ :
F(X) → F(Y ) such that L̂δX = δYL and ‖L̂‖ = ‖L‖Lip. In other words, we can think
of Lipschitz-free spaces as those spaces that not only contain a copy of the host space, but
also absorb all the Lipschitz structure, "linearizing" Lipschitz functions. A straightforward
consequence of the previous lemma is that whenever X is a subspace of Y , with ι : X → Y
the canonical embedding, then ι̂ : F(X)→ F(Y ) is an isometric embedding.

In this sense, the question of how to distinguish the spaces F(Rn) for n ≥ 1 arises. More
precisely, a first natural question is whether or not the spaces F(Rn+1) and F(Rn) are
isometric. A partial answer to this was given on [56], where it is proven that F(R) is strictly
embedded in F(R2). Nevertheless, the general case remains an open problem, which leads
to the study of these spaces in a general setting.

But even considering that the aforementioned connection between those spaces remains an
open question, there are numerous results concerning their internal structure. More precisely,
in [52], G. Lancien and E. Pernecká proved that F(Rd) admits monotone finite-dimensional
Schauder decompositions when Rd is endowed with the norm ‖·‖1. Moreover, from a result of
P. Hájek and E. Pernecká [45] we know that the space F(X) has a Schauder basis whenever
X is the product of countably many closed intervals in R, with endpoints in Z ∪ {−∞,∞},
considered as a metric subspace of `1 equipped with the inherited metric, which in particular
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shows that F(Rd) has a Schauder basis when Rd is endowed with the norm ‖ · ‖1. We readily
see that in both cases the choice of the norm is important, which is a point that we will
consider in the following.

In a more general setting, E. Pernecká and R. J. Smith proved in [59] that independently of
the choice of the norm, the space F(M) has the metric approximation property whenever
M ⊂ Rd satisfies certain structural conditions. In particular, this is true when M is a
compact and convex subset of Rd. In a sense, this result allows us to state the question of
the structure of the Lipschitz-free space of a subset U of Rd at least keeping the convexity
for U , expecting to develop a technique that works no matter the subjacent metric structure.

In order to do this we use the main result of Chapter 1 (Theorem 1.1) to identify the
Lipschitz-free space for any non-empty open convex subset U of Rd, which without loss of
generality contains 0. As we already saw during the motivation for the definition of Lipschitz-
compatibility, the fact that every smooth function compactly supported over U is Lipschitz
gives a great insight to the structure of the space of Lipschitz functions. In this sense we will
continue with the study of those functions in order to obtain an isometry for F(U) with an
appropiate space related to Z, the space of Lipschitz-compatible functions.

Recall that in the one-dimensional case once we obtain the isometry between Lip0(U) and
L∞(U), the identification for F(U) follows easily, since it is known that L∞(U) has a unique
predual, up to isometry (thanks to Grothendieck’s Theorem, see [43]). To do this, the use
of Theorem 4 was useful to obtain the desired isometry. It is worth noticing that the use
of that theorem can easily be avoided in the one-dimensional case, while for our purpose in
higher dimensions will be quite useful.

2.1 Identification of the Lipschitz-free space
In analogy to the one-dimensional case we would like to use the operator T from the previous
chapter to obtain a linear isometry between F(U) and a predual space for Z (the space of
Lipschitz-compatible elements of L∞(U ; (Rd)∗)). For the one-dimensional case we used the
known fact that L1(U) is the unique (up to isometry) predual of L∞(U) for any open interval
U ⊆ R. In our case we only know that X is a dual space. To find a predual space for U , we
first recall a classical result on Banach spaces theory

Proposition 2.1 Let X be a Banach space and Y a closed subspace of X. Then the dual
space (X/Y )∗ is linearly isometric to the annihilator of Y

Y ⊥ = {x∗ ∈ X∗ : 〈x∗, y〉 = 0,∀y ∈ Y }.

Considering this, we want to compute the space Y := Z⊥ ∩ L1(U ;Rd). In order to do this,
we state a relation between C∞0 (U) and Z. To this end, we need the next lemma

Lemma 2.1 Let g ∈ Z be any function and (ϕk)k∈N a sequence on C∞0 (U) with ϕk(0) = 0
for every k ∈ N. Then, the following are equivalent
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i) (∃f ∈ Lip0(U), K > 0)ϕk
p.w.−→ f, ‖ϕk‖L ≤ K and g = ∇f .

ii) ∇ϕk
∗
⇀ g on L∞(U ; (Rd)∗).

Proof. Suppose that ‖ϕk‖L ≤ K and that ϕk converges pointwise to f , with f such that
∇f = g. It suffices to show that for every open bounded d-dimensional cube H∫

H

∂ϕk
∂x1

dλ −→
∫
H

∂f

∂x1

dλ.

Let I = (a, b) be an interval and H ′ an open bounded (d − 1)-dimensional cube such that
H = I ×H ′. Then∫

H

∂ϕk
∂x1

dλ(n) =

∫
H′

∫ b

a

∂ϕk
∂x1

(t, y)dtdy =

∫
H′

(ϕk(b, y)− ϕk(a, y)) dy.

We see that for every y ∈ H ′, ϕk(b, y) − ϕk(a, y) −→ f(b, y) − f(a, y). Moreover, we have
that

|ϕk(b, y)− ϕk(a, y)| ≤ ‖ϕk‖L(b− a)‖e1‖ ≤ K(b− a)‖e1‖.

Since H ′ has finite measure, in virtue of the Dominated Convergence Theorem we have that∫
H

∂ϕk
∂x1

dλ −→
∫
H′
f(b, y)− f(a, y)dy,

but we also have that∫
H′
f(b, y)− f(a, y)dy =

∫
H′

∫ b

a

∂f

∂x1

(t, y)dtdy =

∫
H

∂f

∂x1

dλ.

Repeating the same procedure over every coordinate, the direct implication is proven.

For the converse, suppose that ∇ϕk
∗
⇀ g on L∞(U ; (Rd)∗). We want to prove that ϕk

converges pointwise to some Lipschitz function. Let x ∈ U \ {0} be any point and consider
V = {x}⊥. For ε > 0, we denote by BV (ε) the restriction to V of the ball of radius ε centered
at 0. Let λ′ be the (d−1)-dimensional Lebesgue measure over V . Then, in virtue of Lebesgue
Differentiation Theorem, we have that

ϕk(x) = lim
ε→0

1

λ′(BV (ε))

∫
BV (ε)

ϕk(x+ y)− ϕk(y)dy

= lim
ε→0

1

λ′(BV (ε))

∫
BV (ε)

∫ 1

0

〈∇ϕk(y + tx), x〉dtdy

= lim
ε→0

∫
Hε

〈
∇ϕk,

x

‖x‖2λ′(BV (ε))

〉
dλ = lim

ε→0
〈∇ϕk, fε〉,

where
Hε = {z ∈ U : (∃y ∈ BV (ε), t ∈ [0, 1]) z = y + tx}

and
fε =

x

‖x‖2λ′(BV (ε))
1Hε .
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We easily deduce that fε ∈ L1(U ;Rd). In fact, it suffices to see that given the definition of
Hε, λ(Hε) = ‖x‖2λ

′(BV (ε)). Now, for k, j ∈ N we have that

|ϕk(x)− ϕj(x)| = lim
ε→0
|〈∇ϕk −∇ϕj, fε〉|.

Let η > 0. Then, there exists ε > 0 be such that

lim
ε→0
|〈∇ϕk −∇ϕj, fε〉| ≤ |〈∇ϕk −∇ϕj, fε〉|+ η.

But the sequence (〈∇ϕk, fε〉)i∈N is Cauchy, hence there exists N ∈ N such that for every
j, k ≥ N

|ϕk(x)− ϕj(x)| ≤ |〈∇ϕk −∇ϕj, fε〉|+ η ≤ 2η.

We deduce that for every x ∈ U , (ϕk(x))k∈N is a Cauchy (hence convergent) sequence.

In the following, we denote by f the pointwise limit of this sequence. It is clear that f(0) = 0.
Since ∇ϕk is w∗-convergent, ‖∇ϕk‖∞ = ‖ϕk‖L are bounded, say by K > 0 and then

|f(x)− f(y)| = lim
k→∞
|ϕk(x)− ϕk(y)| ≤ lim sup

k→∞
‖ϕk‖L‖x− y‖ ≤ K‖x− y‖,

which leads to f ∈ Lip0(U). We now see that ∇ϕk
∗
⇀ ∇f because of the direct implication

and we conclude that g = ∇f .

Once stated this close link between w∗ convergence on L∞(U ; (Rd)∗) and pointwise con-
vergence, we must highlight two facts. On one hand, the last lemma reveals the presence of
F(U) in the structure of Z, since pointwise convergence and w∗-convergence on Lip0(U) are
closely related. On the other hand, it says that it suffices to focus on a class of functions
with good properties to study the space of Lipschitz-compatible functions. A more detailed
approach of this last remark is given in the following corollary.

Corollary 2.1 The subspace Z̃ := {∇ϕ : ϕ ∈ C∞0 (U)} of L∞(U ; (Rd)∗) is w∗-dense on Z.

Using this consequence and the class of compactly supported smooth functions we can now
get a first description of the desired predual of Z.

Proof. For g ∈ Z let f = Tg. For a mollifier (uk)k∈N ∈ C∞0 (U), define ϕk = uk ∗f−uk ∗f(0).
Then, apply Lemma 2.1. On the other hand, if ∇ϕk

∗
⇀ g on L∞(U ; (Rd)∗) we again apply

Lemma 2.1, since we can always assume that ϕk(0) = 0.

Proposition 2.2 Let h ∈ L1(U ;Rd) be any function. Then h ∈ Z⊥ if and only if ∇ · h = 0
in the sense of distributions.

Proof. For every ϕ ∈ C∞0 (U) we have that

〈∇ϕ, h〉 =

∫
U

〈∇ϕ, h〉dλ =
d∑

k=1

∫
U

∂ϕ

∂xk
hkdλ = −

∫
U

ϕ(∇ · h)dλ.
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As the derivatives of C∞0 (U) functions are w∗-dense on Z, we conclude the desired equivalence.

Consider now the subspace of L1(U ;Rd) given by

Y = {f ∈ L1(U ;Rd) : ∇ · f = 0 in the sense of distributions} = Z⊥ ∩ L1(U ;Rd).

Using Proposition 2.1, now we know that (L1(U ;Rn)/Y )∗ is linearly isometric to

Y ⊥ = (Z⊥ ∩ L1(U ;Rd))⊥ = Z
w∗

= Z.

In other words, L1(U ;Rd)/Y is a predual for Z. To conclude, we show that the operator T
defined in Chapter 1 is continuous when we equip Lip0(U) and Z with their w∗-topologies,
looking at these spaces as the dual spaces of F(U) and L1(U ;Rd)/Y , respectively.

Proposition 2.3 The linear isometry T : X → Lip0(U) is w∗-w∗ continuous.

Proof. This is equivalent to prove that D = T−1 is w∗-w∗ continuous. Let (fλ)λ∈Λ be a net
in Lip0(U) such that fλ

∗
⇀ f . We want to prove that ∇fλ

∗
⇀ ∇f , considering Z as the dual

of L1(U ;Rd)/Y . That is, for every [h] ∈ L1(U ;Rd)/Y

〈∇fλ, [h]〉 → 〈∇f, [h]〉.

Noticing that this is equivalent to 〈∇fλ, h〉 → 〈∇f, h〉 for every h ∈ L1(U ;Rd), we can use
Lemma 2.1. Then, it suffices to prove pointwise convergence and boundedness of fk. These
two are trivial from the fact that fλ

∗
⇀ f , since Lip0(U) ≡ F(U)∗.

Using the last proposition together with Proposition 4 we conclude that

L1(U ;Rd)/Y ≡ F(U).

We summarize the main result of this chapter in the following theorem.

Theorem 2.1 Let U be a nonempty open convex subset of Rd. Then, F(U) is linearly
isometric to L1(U ;Rd)/Y , where Y is the subspace of L1(U ;Rd) given by the functions with
null divergence in the sense of distributions. Moreover, if S is the preadjoint of T and
Ψ : U → C∞0 (U)∗ is such that

〈Ψ(x), ϕ〉 = ϕ(x) , ∀x ∈ U,ϕ ∈ C∞0 (U),

then Sδ(x) = [f ] if and only if ∇ · f = Ψ(0)−Ψ(x).

Proof. The first part is direct from Proposition 2.3. For the final part, let f ∈ L1(U ;Rd)
and x ∈ U . Then

Iδ(x) = [f ]⇔ (∀ϕ ∈ C∞0 (U)) 〈∇ϕ, Iδ(x)〉 = 〈∇ϕ, f〉.
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Then, let ϕ ∈ C∞0 (U) be any function. We see that

〈∇ϕ, Iδ(x)〉 = 〈TT−1(ϕ− ϕ(0)), δ(x)〉 = ϕ(x)− ϕ(0) = 〈Ψ(x)−Ψ(0), ϕ〉.

On the other hand

〈∇ϕ, f〉 =
d∑

k=1

∫
U

∂ϕ

∂xk
fkdλ = −

∫
U

ϕ
d∑

k=1

∂fk
∂xk

dλ = −〈∇ · f, ϕ〉.

Then, we have that
Iδ(x) = [f ]⇔ ∇ · f = Ψ(0)−Ψ(x).

Just like in the end of Chapter 1, it is important to mention that also in [28], M. Cúth,
O. Kalenda and P. Kaplický obtained the same identification for the Lipschitz-free space of
non-empty open convex subsets of a finite-dimensional space, starting from their description
of what we have called Lipschitz-compatible functions during the present work.

The results of this Chapter give us a way to deal with the Lipschitz-free spaces of metric spaces
isometric to nonempty open convex subsets of a finite dimensional space. It is important to
consider that these results are completely independent of the chosen norm in Rd, but this
does not mean that the Lipschitz-free space of a nonempty open convex set U ⊂ Rd is the
same for every norm. Actually, the dependence of this norm is present in the L∞ and L1

spaces which host the identifications for both the spaces Lip0(U) and F(U).

Recall that a question involving the Lipschitz-free spaces of finite dimensional spaces is that
if it is true or not that F(Rd) is isometric to F(Rk) whenever d 6= k. This has already been
answered negatively in the particular case where d = 1 and k = 2, but it still remains an
open question in the general case. This identifications and the study of their structure may
serve as a way to further study and answer this question.

Several of the arguments given during the proofs relied strongly in the fact that we were
working in a finite-dimensional space, notably Rademacher’s Theorem. It is not clear how
to adapt these ideas to a more general framework, for which a different approach is needed.
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Chapter 3

Clarke-saturated Lipschitz functions on
finite-dimensional spaces

Lineability and spaceability are concepts that can be summarized as the search of linear
structure or even normed spaces inside a certain set defined by some property. Our goal is to
make use of the tools developed during Chapter 1 together with differentiability properties
for Lipschitz functions in order to find a linear structure inside the set of Lipschitz functions
whose Clarke subdifferential is as big as it can be. For this, we first need to clarify the
meaning of this last statement.

The concepts of differentiability and subdifferentials are in the core of convex analysis and
convex optimization. In this sense, recall that for a convex function f : U ⊂ X → R the
directional derivatives, given by

f ′(x; d) := lim
t→0+

f(x+ td)− f(x)

t
,

are well defined for every x ∈ U and d ∈ X, where U is an open subset of a Banach space
X. In the same way, the convex subdifferential of f at x0 ∈ U , defined as

∂f(x0) := {x∗ ∈ X∗ : 〈x∗, d〉 ≤ f ′(x0; d)∀d ∈ X}

becomes a nonempty convex-w∗ closed subset of X∗. As mentioned before, a straightforward
consequence of these definitions is that the function f ′(x0; ·) is sublinear for every x0 ∈ U
and that z ∈ U defines a minimum of f if and only if 0 ∈ ∂f(z), which is nothing but a
generalization of the well known optimality condition for differentiable convex functions over
finite dimensional spaces.

For the case of locally Lipschitz functions, a generalization of these definitions is made having
in mind the bound given by the Lipschitz constant. More precisely, the Clarke derivative and
subdifferential are defined as follows

f ◦(x0; d) := lim sup
y→x,t→0+

f(y + td)− f(y)

t
,

∂◦(x0) := {x∗ ∈ X∗ : 〈x∗, d〉 ≤ f ◦(x0; d)∀d ∈ X},
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where x0 ∈ U and d ∈ X. As was the case with the directional derivative of a convex
function, the function f ◦(x0; ·) is sublinear for every x0 ∈ U and at every x0 ∈ U the Clarke
subdifferential is a nonempty convex w∗-compact subset of X∗. While these definitions share
these basic properties with the convex case, it is well known that there exist non-constant
Lipschitz functions even over R for which 0 belongs to the Clarke subdifferential at every
point. To see the real implications of the aforementioned anomaly, we must first understand
why these definitions are actually a generalization from the convex case. Recall that if a
function f is convex, then if it is bounded above in a neighbourhood of a point of its domain,
then it is locally Lipschitz over all its domain. In this case, we have that both definitions of
directional derivatives (hence, of subdifferentials) coincide.

The idea of finding a linear structure as mentioned at the beginning of this chapter comes
arises in the following context. Let X be a separable Banach space and U a nonempty open
subset of X. We denote by B∗ the closed unit ball of the dual space X∗ and by ||f ||Lip the
Lipschitz constant of a Lipschitz function f : U → R below). We also denote by Lip[k](U) the
set of Lipschitz functions f defined on U of Lipschitz constant ||f ||Lip ≤ k. This space, when
endowed with the metric of uniform convergence over bounded subsets of U , is complete.

In the above setting J. Borwein and X. Wang have shown in [19]–[20], that the set of Lipschitz
functions with maximal Clarke subdifferential (that is, ∂◦f(x) ≡ ||f ||LipB∗ for all x ∈ U)
is generic in Lip[k](U). The result has been obtained via a standard application of Baire’s
category theorem. However, this result highly depends on the chosen metric, the reason
being that wild functions with oscillating derivatives can be obtained as uniform limits of
well-behaved ones (piecewise linear or quadratic). An explicit construction of such a wild
function with maximal Clarke subdifferential is given in [18].

Therefore, in some generic sense, most Lipschitz functions are Clarke-saturated (see forth-
coming Definition 3.1), but this genericity is strongly related to the chosen topology. To
illustrate further this fact, let us fix a nonempty compact subset K of U and let us consider
Lip[k](K) as a closed subset of the Banach space (C(K), || · ||∞) (a uniform limit of Lipschitz
continuous functions of Lipschitz constant bounded by k is Lipschitz). Then || · ||∞-limits of
piecewise polynomial functions in Lip[k](K) may give rise to Lipschitz functions with max-
imal Clarke subdifferentials. A completely different behaviour appears if one uses instead,
the Lipschitz norm to describe convergence: in this case || · ||Lip-limits of (piecewise) polyno-
mials are (piecewise) C1-functions (therefore ∂◦f(x) ≡ {df(x)}, for all x ∈ K). The reason
is that for smooth functions the Lipschitz norm || · ||Lip coincides with the norm of uniform
convergence of the derivatives and under this norm C1(K) is a Banach subspace of Lip(K).

If X = Rd, then important subclasses of Lipschitz functions, such as semialgebraic (more
generally, o-minimal) Lipschitz functions or finite selections of Cd-smooth functions have small
Clarke subdifferentials: indeed, the aforementioned classes satisfy a Morse-Sard theorem for
their generalized critical values, see [17, Corollary 5(ii)] and [13, Theorem 5] respectively,
while every point (and consequently every value) of a Clarke-saturated Lipschitz function is
critical.

In this chapter we complement the results [18], [19], [20] by establishing a topology-independent
result (Theorem 3.1(i)), namely, that the set of Clarke-saturated Lipschitz functions contains
an infinite dimensional linear space of uncountable dimension; in particular it is lineable,
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according to the terminology of [44], and consequently algebraically large. Moreover, sur-
prisingly, (Lip(K), || · ||Lip) contains a closed non-separable subspace of Clarke-saturated
functions, hence this set is also spaceable. We refer to [9] for related terminology and an ex-
position on the state of the art of this trend, nowadays known as lineability and spaceability.
We also refer to [8], [55], and the expository paper [16], for recent results. In some sense, our
results have been anticipated in [16, page 114].

3.1 Context and previous results
Throughout the rest of this chapter, the functions used will be defined over a nonempty open
convex subset U of Rd. In this case, we have that the Clarke subdifferential is given by

∂◦f(x) := co{ lim
k→∞
∇f(xk) : (xk)k∈N ⊂ Df \N and xk → x}, (3.1)

where Df stands for the set of differentiability points of f and N ⊂ U is any null set. In
other words, ∂◦f(x) is the closed convex hull of all the accumulation points of the gradient
of f around x. It can be proven that the choice of N does not change the result and hence,
thanks to Rademacher theorem [1], this set is well defined at every x ∈ U and coincides with
the general definition. As mentioned earlier, the Clarke subdifferential is always a nonempty
convex w∗-compact subset of X∗ whenever f is locally Lipschitz. We state this more precisely
in the following proposition.

Proposition 3.1 For every f ∈ Lip(U) and x ∈ U , ∂◦f(x) is a non-empty convex com-
pact subset of Rd. Moreover, ∂◦f(x) is contained in the closed dual ball centered at 0 of
radius ‖f‖L.

Recall the result from J. Borwein and X. Wang [19, Theorem 1], which states the genericity
of Lipschitz functions that attain the inclusion with equality in the context of the metric
of uniform convergence. We deal now with the question of whether a similar result can be
obtained in the space of all Lipschitz functions which does not depend on this specific metric,
but is based, instead, on the concepts of lineability and spaceability. More precisely, we ask
ourselves if the set of functions with big subdifferentials contains a linear structure and how
rich is that structure.

We begin by stating the definition of Clarke-saturated (Lipschitz continuous) functions which
will be the starting point for this investigation.

Definition 3.1 (Clarke-saturated function) Let U ⊂ Rd. We say that f ∈ Lip(U) has a
maximal Clarke subdifferential at x ∈ U whenever ∂◦f(x) = ‖f‖LB∗, that is, the Clarke
subdifferential equals to the closed ball of (Rd)∗ centered at 0 and with radius ‖f‖L. If this
is true for every x ∈ U , we say that f is Clarke-saturated.

The first example of a Clarke-saturated Lipschitz function in one-dimension has been given
(up to obvious modifications) by G. Lebourg in [53, Proposition 1.9]. The function was
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given by an explicit formula based on a splitting subset A of R with respect to the family of
nontrivial intervals of R, that is, a measurable subset A satisfying

0 < λ(A ∩ I) < λ(I), for every (nontrivial) interval I ⊂ R, (3.2)

where λ denotes the Lebesgue measure. An explicit construction of such a splitting set can
be found in [50] in a general setting (atomless measure space). In the next section we shall
enhance this construction to the particular case of a real line and come up with a countable
family of disjoint spitting sets. This family will be paramount for the proof of our main
result.

Finally, recall Theorem 1.1 and Proposition 1.3 which state an isometry for the space Lip0(U)
in terms of the gradient of the functions. More precisely, the operator

D : Lip0(U)→ L∞(U ; (Rd)∗)

given by Df = ∇f is a linear isometry whose image is given by

Z = {g ∈ L∞(U ; (Rd)∗) : ∂igj = ∂jgi for every i, j ∈ {1, . . . , d}},

where ∂igj stands for the partial derivative with respect to xi of the j-th component of g in
the sense of distributions. That is, the required equality goes as follows∫

U

gj
∂ϕ

∂xi
dλ =

∫
U
gi
∂ϕ

∂xj
dλ, for every ϕ ∈ C∞0 (U).

For better understanding and for justifying the constructions, the following section deals
with the cases d = 1 and d > 1 separately. Nevertheless, both constructions rely on the same
principle, with a slight modification for the case d > 1.

3.2 Main result
In this section we establish our main result which consists in exhibiting a linear space of un-
countable dimension of Clarke-saturated Lipschitz functions, whenever U ⊆ `1

d is a nonempty
open convex set. More precisely, endowing Lip0(U) with the Lipschitz norm ‖ · ‖L we obtain
a closed subspace of Clarke-saturated elements, which in turn yields the result thanks to
Baire theorem (which ensures that every infinite dimensional Banach space has uncountable
dimension). Our technique is as follows: we will first prove the result for the one-dimensional
case and then we extend the construction for the d-dimensional case. In both cases, we first
obtain countably many linearly independent Clarke-saturated functions in Lip0(U) and in
the final subsection we use these functions to obtain the final result.

3.2.1 The one-dimensional case

We begin by studying the simplest case, given by d = 1. To this end, we show how to
construct Clarke-saturated functions using a known technique and with some modifications,
how to obtain a countable family of such functions which are also linearly independent. As
mentioned earlier, the construction for the aforementioned family of functions relies on some
basic results concerning Lebesgue measure. Let us start with a typical example of a subset
of [0, 1] which is closed, nowhere dense and has positive measure.
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Definition 3.2 (Smith-Volterra-Cantor set) Consider the subsets Fn ⊂ [0, 1] defined as
follows:

• F0 = [0, 1]

• Fn is obtained by removing the middle open interval of length 1
2·4n from each of the 2n

closed intervals whose union is Fn.

Let F =
⋂
n≥0 Fn. Then F is closed and contains no intervals. Moreover, F is Lebesgue

measurable with measure 1/2.

From now on we shall use the term fat Cantor set for any Cantor-type set (that is, a set
built in this way) with positive measure. It is clear that this procedure can be carried out
over any (open or closed) interval, thanks to the homogeneity and invariance of the Lebesgue
measure. Related to this concept, we have the following.

Definition 3.3 (everywhere positive-measured set) A subset A of R is called everywhere
positive-measured, if it intersects any nontrivial interval in a set of positive measure.

Notice that a set A has the splitting property (3.2) for the family of intervals of R if both
A and R \ A are everywhere positive-measured. The following lemma asserts the existence
of a countable partition of R into splitting sets.

Lemma 3.1 (countable splitting partition) There exists a countable partition {Ak}k∈N of R
each of which splits the family of intervals.

Proof. Let us first notice that it suffices to obtain a partition of [0, 1) with the above property,
since we can translate those sets over every interval of the form [m,m + 1), m ∈ Z. To this
end, let {In}n∈N be an enumeration of the subintervals of (0, 1) with rational end points, say
In = (an, bn). We split I1 into two open contiguous intervals, that is, we take c ∈ (a1, b1) and
consider the intervals (a1, c) and (c, b1). Then let T (1)

1 and B(1) be two fat Cantor sets over
(a1, c) and (c, b1) respectively. Since T (1)

1 ∪ B(1) is nowhere dense, there exists (a′2, b
′
2) ⊆ I2

such that

(a′2, b
′
2)
⋂(

T
(1)
1 ∪B(1)

)
= ∅.

We now proceed inductively as follows: Given T (i)
k , B(i) for 1 ≤ k ≤ i ≤ n − 1, since their

union is a nowhere dense closed subset of (0, 1), there exists a subinterval (a′n, b
′
n) of In which

is disjoint from this union. We now split the interval (a′n, b
′
n) into n + 1 contiguous open

intervals and define T (n)
k , B(n) (where k ∈ {1, . . . , n}) to be fat Cantor sets over each one of

these intervals. In this way we obtain inductively disjoint fat Cantor subsets T (n)
k , B(n) of

(0, 1) where 1 ≤ k ≤ n, and n ∈ N. We then define
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Ak =
⋃
n≥k

T
(n)
k ; A0 = [0, 1) \

(⋃
k≥1

Tk

)
; B =

⋃
n≥1

B(n).

We claim that the family {Ak}k≥0 is the partition of [0, 1) we are looking for. Indeed, the
sets {Ak}k≥1 are mutually disjoint: Let 1 ≤ k < k′ and assume towards a contradiction that
x ∈ Ak∩Ak′ . Then, there exists n ≥ k and n′ ≥ k′ such that x ∈ T (n)

k and x ∈ T (n′)
k′ , which is

impossible by construction. Notice further that B ⊆ A0 (the argument is the same as before)
and that A0 ⊆ [0, 1) \Ak, for every k ≥ 1. Now, let [a, b] ⊆ [0, 1) be any interval. For k ≥ 1,
let n ≥ k such that In ⊆ [a, b]. It follows that

λ(Ak ∩ [a, b]) ≥ λ(Ak ∩ In) ≥ λ(T
(n)
k ∩ In) = λ(T

(n)
k ) > 0.

On the other hand
λ(A0 ∩ [a, b]) ≥ λ(B ∩ [a, b]) ≥ λ(B ∩ In)

≥ λ(B(n) ∩ In) = λ(B(n)) > 0,

yielding the result.

Let now U ⊆ R be a nontrivial open interval and suppose without loss of generality that
0 ∈ U . Define the family of functions given by

gk(x) = 1A2k+1
(x)− 1A2k

(x), x ∈ U (3.3)
and set

fk(x) =

∫ x

0

gk(t)dt. (3.4)

We list below some properties of the family F = {fk : k ∈ N} of functions defined by (3.4). In
what follows, we denote by c00 the space of finitely supported sequences, that is, µ = (µn)n∈N
if and only if supp(µ) := {n ∈ N : µn 6= 0} is finite.

i) F ⊂ Lip0(U). In particular, for every k ∈ N, fk is Lipschitz, with ‖fk‖L = 1.

This is straightforward from the fact that the functions gk = f ′k belong to L∞(U), with
‖g‖∞ = 1.

ii) The family F is linearly independent.

Let µ ∈ c00. Then∑
k∈N

µkfk = 0 ⇐⇒
∫ x

0

(∑
k∈N

µkgk(t)

)
dt = 0, ∀x ∈ U .

In virtue of Rademacher theorem and Lebesgue differentiation theorem, the above
equality yields that ∑

k∈N

µkgk(x) = 0, almost everywhere on U .
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Since {Ak}k∈N are disjoint, everywhere positive-measured sets, we can for every k ∈ N
choose xk ∈ A2k+1 ∩ U , . Then xk /∈ A2k, and in view of (3.3) we have gk(xk) = 1 and
gk(xk′) = 0 for k 6= k′. From this, we deduce that for every k ∈ N, µk = 0. Therefore
{fk}k∈N is a linearly independent family.

iii) The functions fk are Clarke-saturated, for every k ∈ N.

Since f ′k = gk almost everywhere on U , it follows that f ′k takes each one of the values
{−1, 0, 1} over an everywhere positive-measured (and a fortiori in a dense) subset of
U . It follows by (3.1) that ∂f ◦k (x) = [−1, 1] = B∗(0, 1) for every x ∈ U .

Considering this observations, we would like to use these functions somehow as a basis for
the desired linear space. For this is necessary that the Clarke-saturation of these functions
is preserved under linear combinations. Before giving details of this, is necessary to recall a
property of the Clarke-subdifferential, which will show that this required property is far from
being trivial.

Proposition 3.2 Suppose that f, g : U ⊂ Rd → R are Lipschitz. Then,

∂◦(f + g)(x) ⊂ ∂◦f(x) + ∂◦g(x) , ∀x ∈ U .

From this last property, it is clear that Clarke-saturation is not trivially preserved. Indeed,
if the Lipschitz constant of f + g is equal to the sum of both Lipschitz constants, since the
right will be simply the ball centered at 0 with radius equal to the sum of those constants
whenever f, g are Clarke-saturated, then the inclusion is the same obtained by the properties
of the Clarke subdifferential, but equality is not assured. Nevertheless, only sums of functions
can bring this problem, as shown in the following proposition.

Proposition 3.3 Suppose that f : U ⊂ Rd → R is Lipschitz an let λ ∈ R. Then,

∂◦(λf)(x) = λ∂◦f(x) , ∀x ∈ U .

In particular, if f is Clarke-saturated, so is λf .

We proceed now to show that the property of Clarke-saturation is indeed inherited under
linear combinations of the family F .

Proposition 3.4 (Lineability in the one-dimensional case) Every linear combination of the
functions {fk}k∈N has maximal Clarke subdifferential.

Proof. Let µ ∈ c00 and set f =
∑

k∈N µkfk (that is, a finite linear combination). Then it
holds almost everywhere on U

f ′(x) =
∑
k∈N

µk f
′
k(x) =

∑
k∈supp(µ)

µk gk(x).
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Notice that for a given x ∈ U there exists at most one k ∈ N such that gk(x) 6= 0 (namely,
gk(x) = 1 or −1). Therefore f ′ can only take the values {±µk}k∈N and 0. Using the same
argument as before, we deduce that each of these values is taken on a dense subset of U .
Therefore

∂◦

(∑
k∈N

µkfk

)
(x) = ‖µ‖∞[−1, 1] = B∗(0, ‖µ‖∞), for every x ∈ U .

Moreover,

‖f‖L =

∥∥∥∥∥∑
k∈N

µkfk

∥∥∥∥∥
L

=

∥∥∥∥∥∑
k∈N

µkgk

∥∥∥∥∥
∞

= ‖µ‖∞.

We conclude that this linear combination has maximal Clarke subdifferential everywhere,
that is, it is Clarke-saturated.

The above results provide an efficient way to find a linear structure inside the set of Clarke-
saturated functions. Moreover, in the previous proof we have also dealt with a metric struc-
ture inside this set, which will be useful in the proof of spaceability. Indeed, we have implicitly
shown that for the constructed family of functions, the Lipschitz norm of any linear combi-
nation coincides with the supremum norm of the coeficients defining that linear combination.
Taking this into account, we can construct an explicit isometry between this class of Clarke-
saturated functions and the space c00. We give details of this after generalizing this method
for higher dimensions.

3.2.2 The higher dimensional case

We now proceed to study the general case of higher dimension. As was mentioned before, a
special care is required in order to make an analog construction. The details and consequences
for this construction will be developed below. For technical reasons which will be clear in the
construction, we work over the space `d1, that is, the d-dimensional space Rd equipped with
the ‖ · ‖1-norm. Then, the dual space is `d∞, that is, the d-dimensional space Rd equipped
with the ‖ · ‖∞-norm. This allows us to extend the aforementioned construction easily in
order to obtain Clarke-saturation. We do not know whether or not this result remains true
under a different choice of the norm.

Let U ⊆ `d1 be a non-empty open convex set and let D stand for the isometry in Theorem 1.1.
For k ∈ N and x = (x1, . . . , xd) ∈ U we define the function Gk : U → `d∞ as

Gk(x) := (gk(x1), . . . , gk(xd)) = (1A2k+1
(x1)− 1A2k

(x1), . . . ,1A2k+1
(xd)− 1A2k

(xd)). (3.5)

In other words,
〈Gk(x), ei〉 = gk(〈x, ei〉),

where the functions gk are given by (3.3) and {ei}i=1,...,d is the canonical basis of Rd.

Let us first show that the functions {Gk}k∈N are "derivatives" of functions of Lip0(U) in the
appropiate sense. This part relies on Proposition 1.3.

Proposition 3.5 (Gk are derivatives) For every k ∈ N, Gk ∈ D(Lip0(U)).
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Proof. Let i, j ∈ {1, . . . , d} with i 6= j and ϕ ∈ C∞0 (U). Then

∫
U
∂jG

k
iϕdλ = −

∫
U
Gk
i

∂ϕ

∂xj
dλ = −

∫
U
gk(xi)

∂ϕ

∂xj
(x)dx.

Since ϕ ∈ C∞0 (U), thanks to Fubini theorem we can first integrate over the variable xj and
deduce that the above integral is equal to 0. Therefore, ∂iGk

j = 0 whenever i 6= j. In
particular, ∂iGk

j = ∂jG
k
i in the sense of distributions, and according to Theorem 1.1 we

deduce that Gk ∈ D(Lip0(U)).

In view of the above proposition, we can define the family

F = {fk}k≥0 ⊂ Lip0(U)

as the inverse images of the family {Gk}k≥0, that is,

fk := D−1(Gk), for every k ∈ N. (3.6)

Remark From this last definition, is not difficult to see that

fk(x) =
d∑
i=1

hk(xi),

where the functions hk are the ones used in the one-dimensional case, that is, the one that
verifies h′k = gk over the appropiate domain.

We now verify the same properties as in the previous section for the above functions.

i) F ⊂ Lip0(U). In particular, ‖fk‖L = 1.

Notice that the values of Gk are vectors v ∈ Rd whose components take the values
{−1, 0, 1}, each of them over everywhere positive-measured sets. Therefore ‖Gk‖∞ = 1
and the result follows from the fact that D is an isometry.

ii) The family F is linearly independent.

It suffices to prove that the family {Gk}k≥0 is linearly independent, since D is an
isometry. Let µ ∈ c00 (compactly supported sequence) and assume

∑
k∈N

µkG
k = 0, that is,

∑
k∈N

µkG
k = 0 a.e. on U .

For every k ≥ 0 let xk ∈ (Ak × . . .×Ak)∩U . Given the definition of the functions Gk,
we have that for i ∈ {1, . . . , d}
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(∑
k∈N

µkG
k(xk)

)
i

=

{
µ2n+1, if k = 2n+ 1
−µ2n, if k = 2n.

Since (Ak × . . . × Ak) ∩ U has positive measure everywhere, we conclude that µ = 0.
Therefore {Gk}k≥0 is linearly independent and the assertion follows.

iii) The functions fk are Clarke-saturated.

Notice that every extreme point of the unit ball of `d∞ is attained as a value of Gk on
a subset of U which has positive measure everywhere. Since Dfk = Gk, Gk is equal to
∇f almost everywhere on U . We conclude that ∂◦fk(x) = B∗, for all x ∈ U .

After stating these facts, it becomes clear why the host space for the domain has been chosen
to be `d1, since its dual is `d∞ and it was crucial to obtain the Clarke-saturation via the use of
the extreme points of the dual ball. Similarly to the one-dimensional case we now establish
that Clarke-saturation is preserved under linear combinations of elements of F .

Proposition 3.6 (Lineability) Every linear combination of the functions (fk)k∈N has maxi-
mal Clarke subdifferential.

Proof. Let µ ∈ c00. Then we have

∇

(∑
k∈N

µkfk

)
(x) =

∑
k∈N

µkG
k(x), for a.e. x ∈ U .

The values of this last function are exclusively vectors v ∈ Rd with components in the set
{±µk : k ≥ 0}. Moreover, each component takes each one of the values {±µk}k∈N over
subsets of U which have everywhere positive measure. It follows readily from (3.1) that for
every x ∈ U

∂◦

(∑
k∈N

µkfk

)
(x) = ‖µ‖∞B∗.

In addition, using the isometry D we deduce that

‖f‖L =

∥∥∥∥∥∑
k∈N

µkfk

∥∥∥∥∥
L

=

∥∥∥∥∥∑
k∈N

µkG
k

∥∥∥∥∥
∞

= ‖µ‖∞,

which completes the proof.

An important consequence which is implicit in the proof of the aforementioned facts is that,
similarly to the one-dimensional case, there is a inherent metric asociated. More precisely,
the Lipschitz norm of any linear combination of the family F coincides with the supremum
norm of the coeficients defining that linear combination, just as before. Having in mind that
this property is present in all previous cases, we are in condition to state the main result of
this chapter.
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3.2.3 The space of Clarke-saturated functions

In the previous sections we constructed for every d ≥ 1 a countable family of linearly inde-
pendent Clarke-saturated functions fk belonging to Lipx0(U), where U ⊆ `d1 is a nonempty
open convex set and x0 ∈ U . We shall now describe in terms of the isometry D (Theorem 1.1)
the closure of the space generated by these functions. In what follows we denote by `∞(N)
the (nonseparable) Banach space of bounded sequences.

Proposition 3.7 Let T : `∞(N)→ L∞(U ; `d∞) given by

Tµ =
∑
k≥0

µkG
k, for all µ = (µn)n∈N ∈ `∞(N).

Then T is well defined and establishes a linear isometric injection of `∞(N) into L∞(U ; `d∞).

Proof. Let {Ak}k∈N be the countable partition of R given by Lemma 3.1. Let x ∈ U . Since
each Ak is everywhere positive measured, there exists j1, . . . , jd ≥ 0 such that xi ∈ Aji , for
i ∈ {1, . . . , d}. This implies that the sum∑

k≥0

µkG
k(x)

is finite for every x ∈ U , with norm less than or equal to ‖µ‖∞. Therefore Tµ ∈ L∞(U ; `d∞),
with ‖Tµ‖∞ ≤ ‖µ‖∞. Moreover, if x ∈ (A2n+1 × . . .× A2n+1) and x′ ∈ (A2n . . .× A2n) then

Tµ(x) = −Tµ(x′) = (µk, . . . , µk),

which leads to ‖Tµ‖∞ = ‖µ‖∞. Since T is obviously linear, it follows that T is a linear
isometry between `∞(N) and T (`∞(N)).

Before proceeding with the next results that will lead to the final theorem, notice that the
previous proposition implies in particular the results from the previous sections. Indeed,
it suffices to consider the restriction of T to the subspace of `∞(N) given by the finitely
supported sequences. Considering that, the previous proposition can be understood broadly
as taking infinite linear combinations in an appropiate way. Now, we state the relation
between T (`∞(N)) and D(Lipx0(U)). This relation is obtained in a similar way as in the case
of linear combinations studied in the previous sections.

Proposition 3.8 T (`∞(N)) ⊆ D(Lipx0(U)).

Proof. Let µ ∈ `∞(N). We need to prove that Tµ is the gradient of some Lipschitz function.
Let i, j ∈ {1, . . . , d} with i 6= j. Then

(Tµ)i(x) =
∑
k≥0

µkgk(xi).
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If ϕ ∈ C∞0 (U), we have that

〈∂j(Tµ)i, ϕ〉 = −
∫
U

(∑
k≥0

µkgk(xi)

)
∂ϕ

∂xj
(x)dx = −

∫
U

∑
k≥0

(
µkgk(xi)

∂ϕ

∂xj
(x)

)
dx.

We define for n ≥ 0

ψn(x) =
n∑
k=0

(
µkgk(xi)

∂ϕ

∂xj
(x)

)
and ψ(x) =

∑
k≥0

(
µkgk(xi)

∂ϕ

∂xj
(x)

)
.

Notice that for x = (x1, . . . , xd) ∈ U and i ∈ {1, . . . , d} we have

gk(xi) 6= 0 ⇐⇒ xi ∈ A2k+1 ∪ A2k

and in this case gk′(xi) = 0, for all k′ 6= k. Therefore, there exists some N ≥ 0 large enough
such that

ψn(x) =
n∑
k=0

µkgk(xi)
∂ϕ

∂xj
(x) =

{
0, n < N

µN gN(xi)
∂ϕ
∂xj

(x), n ≥ N

yielding

ψn → ψ (pointwise) and |ψn| ≤ ||µ||∞
∣∣∣∣ ∂ϕ∂xj

∣∣∣∣ ∈ L1(U).

In virtue of the Lebesgue dominated convergence theorem, we have that

〈∂j(Tµ)i, ϕ〉 = −
∑
k≥0

(∫
U
µkgk(xi)

∂ϕ

∂xj
(x)dx

)
.

But thanks to Fubini theorem, we can integrate first with respect to the xj variable and since
ϕ has compact support, we conclude that all the integrals are equal to 0. Then ∂j(Tµ)i = 0
whenever i 6= j, which leads to Tµ ∈ D(Lipx0(U)). The proof is complete.

As the last proposition shows, even passing through infinite linear combinations of the func-
tions Gk we obtain gradients of Lipschitz functions in the sense studied in Chapter 1, that is,
via the isometry D. Just as in the case of finite linear combinations studied in the previous
sections, it only suffices now to prove that the Lipschitz functions obtained as the inverse
images through D of these gradients still preserve the property of Clarke saturation. This is
stated in the following proposition.

Proposition 3.9 Let f ∈ Lipx0(U) be such that Df = Tµ. Then f is Clarke-saturated.

Proof. It suffices to notice that

‖f‖L = ‖Df‖∞ = ‖Tµ‖∞ = ‖µ‖∞

and that for every extreme point v of the dual ball B∗ and k ≥ 0 there exists an everywhere
positive-measured set A ⊂ U such that

Df(x) = Tµ(x) = µkv for every x ∈ A.
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Since f is differentiable almost everywhere, we conclude that

∂◦f(x) = ‖µ‖∞B∗ = B∗(0, ‖f‖L),

which finishes the proof.

Using all the previous tools, we are now ready to state the main result of the present chapter.
However, it is important to summarize everything to this point. Recall that until now we
are supposing that U ⊂ `d∞. This is important in the construction of the functions, since in
order to obtain the operator T in a constructive way, it was important the use of the extreme
points of the unit ball of `d∞. With this in mind, we state now the main result of the chapter,
as well as a corollary involving a related result in the case that the host space for the domain
of the functions is endowed with a different norm.

Theorem 3.1 (Spaceability of Clarke-saturated functions) Let d ≥ 1 and U ⊆ `1
d be a

nonempty open convex set. Then,

i) (lineability) The space Lip(U) of Lipschitz functions contains a linear subspace of
Clarke-saturated functions of uncountable dimension.

ii) (spaceability) For any x0 ∈ U , the Banach space Lipx0(U), ‖ · ‖L) contains a (proper)
linear subspace of Clarke-saturated functions isometric to `∞(N).

In particular, if F = {fk : k ∈ N} is the family defined in (3.6), then span{fk} is isometric
to c00, while span{fk} is isometric to c0(N) (the Banach space of null sequences).

Proof. Thanks to Propositions 3.7 and 3.8, we deduce that `∞(N) is isometric to the subspace

Z = D−1(T (`∞(N)))

of Lipx0(U). This subspace is proper, since any strictly differentiable not null function h
belonging to Lipx0(U) does not belong to Z. This proves ii), and yields directly that Clarke-
saturated functions contain a linear subspace of uncountable dimension. Therefore i) holds,
since Lipx0(U) is a linear subspace of Lip(U). Finally, an easy computation shows that if
µ ∈ c00, then D−1Tµ ∈ span{fk}, whence c00 is isometric to span{fk}. It follows readily by
the continuity of the operators that c0(N) is isometric to span{fk}.

Before finishing this chapter, we give the following straightforward consequences of Theo-
rem 3.1.

Corollary 3.1 Let p ∈ Rd and r > 0. Then, there exists f ∈ Lip(U) such that ∂◦f(x) =
B∗(p, r) for every x ∈ U .

Proof. Let µ ∈ `∞(N) be such that ‖µ‖∞ = r. Set h1 = D−1Tµ and h2 = 〈p, ·〉. Then
∂◦h1(x) = B∗(0, r) and ∂◦h2(x) = {p} for every x ∈ U , where we used that h2 is strictly
differentiable. Again thanks to that, if f = h1 + h2 then for every x ∈ U

∂◦f(x) = ∂◦(h1 + h2)(x) = ∂◦h1(x) + ∂◦h2(x) = B∗(p, r).
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The proof is complete.

Corollary 3.2 Suppose that U ⊂ Rd endowed with any norm. Then the following property
is lineable in Lip(U) and spaceable in (Lipx0(U), ‖ · ‖L):

(∃δ > 0) (∀x ∈ U) B∗(0, δ) ⊂ ∂◦f(x)

Proof. Recall that every pair of norms over Rd are equivalent and that the gradients of
functions are independent of the chosen norm. Hence, δ arises from the equivalence for the
dual norm of the chosen norm over Rd with the norm of `d∞.

As indicated at the beginning of the present chapter, it is now clear that the pathological
situation described in Definition 3.1 is actually present over an algebraically large subset
of Liscphitz continuous functions. In this sense, it is important to have in mind that not
only there is a subspace of uncountable dimension contained in the set of Clarke-saturated
functions, but in addition, this subspace is also non-separable, which reveals even more
clearly that in this case, the subdifferential does not give any information on the function,
unless we have additional assumptions on the function. As mentioned at the beginning,
it is straightforward to see that adding convexity to the function, the presence of the zero
subgradient in the subdifferential, that is, 0 ∈ ∂f(x) for all x ∈ U , leads directly to the global
minimum of the function. Having said all the above, it should be noted that in general, for
concrete subclasses of interest, the Clarke subdifferential is not necessarily pathological as it
has been called throughout this chapter, but it gives some insight on how rich the space of
Lipschitz functions can be, even when defined over R.

It is important to have in mind that throughout this chapter, in order to establish our results
it was necessary to work with the 1-norm in the domain. This does not necessarily mean that
an analogous statement would be false in full generality, but rather reveals the limitations
of the current technique. Therefore, it seems that another approach should be taken, or at
least modify our construction in an appropiate way.

A first idea is to deal with the case of polyhedral norms over Rd. Recall that a norm on Rd

is called polyhedral if the closed unit ball for this norm is a polytope. It is not difficult to
see that in this case the dual norm is also polyhedral. We think of these norms as a natural
starting point to further develop our results since our constructions strongly relied in the
extreme points of the unit ball of Rd endowed with the 1-norm, which is clearly polyhedral.

A question on another direction is that of the case where the domain is not of finite dimension.
More precisely, if there are a set of properties for a Banach space X in order to obtain
lineability for the set of Lipschitz functions with maximal Clarke subdifferential. It is worth
noticing that in order to analyse this case it is necessary to take a completely different
approach, since we no longer have the characterization for the Clarke subdifferential which
we use in the finite-dimensional case, which is also the case for the results of Chapter 1.
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Part II

Classification of asymmetric normed
spaces

45



Chapter 4

Index of symmetry for asymmetric
normed spaces

In this last chapter we focus on the study of asymmetric normed spaces. Most of the defini-
tions given in this chapter can be found in [25].

It is difficult to track down the first moment when the concept of asymmetry has been in-
troduced, but in 1968 on a paper by R. J. Duffin and L. A. Karlovitz [34] it was already
proposed. More recently, especially in papers coming from the Polytechnic University of Va-
lencia and others Spanish universities, there has been a systematic study of this concept. The
importance of this subject relies not only on its intrinsic interest, but also on its applications
on Computer Science [63] and the Markov moment problem [51].

The concept of asymmetric normed spaces arises naturally when considering non-reversible
Finsler manifolds ([23, 31, 58]) and meet applications in Physics ([47]) as well as in Game
Theory ([2, 41]). As mentioned before, these spaces have been studied by several authors,
emphasizing on its main similarities as well as differences with the classical framework of
normed spaces. To clearify the state-of-the-art, we refer to [25], where the classic results on
Functional Analysis are studied, giving its counterparts in the asymmetric frame.

It is worth noticing that the addition of asymmetry is not exclusive for the study over linear
spaces. An associated concept is that of quasi-metric space, which in a few words gets rid of
the symmetry assuption for the distance. We refer to the recent works [31] and [32] where
quasi-metric spaces are used together with come to be the natural morphisms between those
spaces, called semi-Lipschitz functions. Notice that we follow a similar approach in our work:
Studying linear operators in the framework of asymmetric normed spaces. Finally, semi-
Lipschitz functions are used for the definition of semi-Lipschitz free spaces, which are the
analog for Lipschitz-free spaces when asymmetry is taken into account.

Our goal is to focus on finding a way to classify these spaces, since it is clear in the literature
that there are at least two types of asymmetric normed spaces: Those that behave just as a
normed space and the limit case, where the asymmetry is big enough to change its behaviour.
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More details of this are given in the main results of this chapter.

An asymmetric normed space is a real vector space X equipped with a positive, subadditive
and positively homogeneous function ‖ · |X satisfying

‖x|X = ‖ − x|X = 0⇐⇒ x = 0.

A more general concept related to asymmetric normed spaces are quasi-metric spaces. We
say that a set M endowed with a mapping ρ : M ×M → [0,∞) is a quasi-metric space if
ρ(x, x) = 0 for every x ∈M and ρ satisfies the triangle inequality, that is

ρ(x, y) ≤ ρ(x, z) + ρ(z, x) , ∀x, y, z ∈M.

In this case, we say that ρ is a quasi-metric. In brief, we require from ρ all properties
of a usual metric except from the symmetry. It follows readily from the above definitions
that every asymmetric normed space is trivially asociated to a quasi-metric space, where
ρ(x, y) = ‖x− y|X , for every x, y ∈ X.

The main difference between a classical norm and an asymmetric norm, is that the equality
‖−x|X = ‖x|X does not always hold. In the literature (see [4, 5] and [61]) asymmetric norms
are also called a quasi-norms. Every asymmetric normed space (X, ‖ · |X) can be associated
to a normed space Xs := (X, ‖ · ‖s) with the norm defined by

‖x‖s := max{‖x|X , ‖ − x|X}.

It is not hard to see that any real vector space can be endowed with an asymmetric norm.
Such a functional can be obtained as the Minkowski gauge functional of an absorbing convex
subset of the space, dropping the usual symmetry condition over this subset, which in turn
implies the lack of symmetry for the functional.

During this chapter we will focus on the degree of symmetry of these spaces, defining the so-
called index of symmetry. As we will see, this index does not simply quantifies that property,
but also allows to state a classification of these spaces and, in particular, the properties for
the dual space that arise directly from that value.

In order to do this, we need to state in this framework the concept of dual space, for which
we refer to [25]. The dual X[ of an asymmetric normed space X is formed by all linear
continuous functionals from (X, ‖ · |X) to (R, ‖ · |R), or equivalently, by all linear upper
semicontinuous functionals from (X, ‖ · |X) to (R, | · |). In contrast to the usual case, the dual
X[ and the set of continuous linear operators Lc(X, Y ) are not necessarily linear spaces, but
merely convex cones contained respectively in X∗ and L(Xs, Ys). But as far as we know,
there is no characterization in the literature for the asymmetric normed spaces X for which
Lc(X, Y ) is also an asymmetric normed space.

It is clear that it is simply the lack of symmetry of the unit ball which gives this bizarre
behaviour of the dual space. With this in mind, for an asymmetric normed space (X, ‖ · |),
the index of symmetry of X is defined as

c(X) := inf
‖x|=1

‖ − x| ∈ [0, 1],
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which quantifies the amount of deviation of the unit ball from a perfect ball, meaning a ball
obtained from a normed space.

The aim of this chapter is to prove that the case c(X) = 0 is exactly the situation where
the convex cone Lc(X, Y ) (in particular the dual X[) has no linear structure, for every
asymmetric normed space Y . As a consequence, from a topological point of view, the case
where c(X) = 0 turns out to be the only interesting case in the theory of asymmetric normed
spaces. Indeed, we prove in Corollary 4.3 that the following are equivalent

i) X[ is a vector space

ii) (X, ‖ · |X) is isomorphic to its associated normed space

iii) Lc(X, Y ) is a vector space isomorphic to L(Xs, Ys), for every asymmetric normed
space Y

iv) c(X) > 0

These equivalences indicate that the case where c(X) > 0 refers to the classical framework of
normed spaces. The most challenging implication is i) =⇒ ii), which uses the Baire category
theorem. These statements are consequences of the first main result, Theorem 4.1. The
second main result (Theorem 4.2) shows that an asymmetric normed space X is a T1 space
(that is, every singleton is closed) if and only if its dual X[ is w∗-dense in (X∗, w∗).

Considering the preceding statements, it is clear that this study naturally leads to a topo-
logical classification for asymmetric normed spaces. More precisely, recall that a topological
space X is said to be T1 if every pair x, y ∈ X can be separated by an open set, that is,
for every x, y ∈ X there exists an open set containing x but not containing y. With this in
mind, the aforementioned classification goes as follows.

Definition 4.1 Let X be an asymmetric normed space. We say that

i) X is of type I if c(X) > 0 (necessarily a T1 space).

ii) X is of type II if c(X) = 0 and X is a T1 space.

iii) X is of type III if X is not a T1 space (necessarily c(X) = 0).

As it will be clear in the discusion, from a topological point of view asymmetric normed
spaces of type I present no new interest compared to the classical theory of normed spaces,
since these spaces are isomorphic to their associated normed spaces and the same holds
for their duals (see Corollary 4.3). Moreover, the class of finite dimensional T1 asymmetric
normed spaces is contained in the class of type I (see Theorem 4.3). Spaces of type II and
III are the interesting cases, since they differ from the framework of classical normed spaces.
Spaces of type III include finite dimensional spaces (consider for example the space (R, ‖ · |R)
defined in the Introduction of the present work), while spaces of type II only include infinite
dimensional spaces (see Proposition 4.4).
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In order to fix the ideas behind these definitions, we show some examples of these spaces.

Example Finite dimensional space of type III: Let X = R and ‖t|R := max{0, t} for all
t ∈ R. Then, (R, ‖ · |R) is an asymmetric normed space for which c(X) = 0 and (X[, ‖ · |[) is
not a vector space.

Example Infinite dimensional space of type III: Let X = C0[−1, 1] the space of all continu-
ous functions from [−1, 1] to R such that f(0) = 0. We define on X the following asymmetric
norm

‖f | := sup
x∈[−1,1]

f(x) ≤ ‖f‖∞ = max{‖f |, ‖ − f |}.

It is easy to see that c(X) = 0. Let us denote by δx : X → R the evaluation map associated
to x ∈ [−1, 1] defined by δx(f) = f(x) for all f ∈ X. Clearly, δx ∈ X[ and ‖δx|[ = 1 for all
x ∈ [−1, 1]. However, −δx 6∈ X[, for all x ∈ [−1, 1] \ {0}. It follows that X[ is not a vector
space.

Example Space of type II: Let X = l∞(N∗) equipped with the asymmetric norm ‖ · |∞
defined by

‖x|∞ = sup
n∈N∗
‖xn| 1

n
≤ ‖x‖∞,

where for each t ∈ R and each n ∈ N∗, ‖t| 1
n

= t if t ≥ 0 and ‖t| 1
n

= − t
n
if t ≤ 0.

Then, clearly ŜX = SX since ‖x|∞ = 0 ⇐⇒ ‖ − x|∞ = 0 ⇐⇒ x = 0. Thus, (X, ‖x|∞) is a
T1 asymmetric normed space. On the other hand, for each n ∈ N∗, we have ‖en|∞ = 1 and
‖ − en|∞ = 1

n
, where (en) is the canonical basis of c0(N∗). It follows that c(l∞(N∗)) = 0 and

(l∞(N∗))[ is not a vector space (see Theorem 4.1).

Example Space of type I: Let (X, ‖ · |) be an asymmetric normed space. Define a new
asymmetric norm on X as follows: ‖x|1 = ‖x|+ ‖x‖s, where ‖x‖s = max{‖x|, ‖− x|}, for all
x ∈ X. Then, the index of symmetry c(X, ‖ · |1) of X for the asymmetric norm ‖ · |1, satisfies
0 < c(X, ‖ · |1) < 1. First, we see that c(X, ‖ · |1) < 1 since ‖ · |1 is not a norm. Suppose
that c(X, ‖ · |1) = 0, there exists (xn) ⊂ X such that ‖xn| + ‖xn‖s = 1 for all n ∈ N and
‖ − xn| + ‖ − xn‖s → 0. This implies that ‖xn‖s = ‖ − xn‖s → 0. Since ‖xn| ≤ ‖xn‖s, it
follows that ‖xn| + ‖xn‖s → 0, which is a contradiction. Recall that, in every asymmetric
normed space, the condition c(X) > 0 implies that ŜX = SX (see Proposition 4.2). The dual
of (X, ‖ · |1) is a vector space by Corollary 4.3.

In brief, the interest of asymmetric normed space theory (from a topological point of view)
concerns only the following cases:

i) Infinite dimensional spaces which are T1 with c(X) = 0 (spaces of type II).

ii) Finite and infinite dimensional spaces X which are not T1 (spaces of type III, where
necessarily c(X) = 0).
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Types II and III (corresponding to the case of c(X) = 0) are exactly the situations where
the dual X[ is not a vector space. Moreover, an asymmetric normed space X of type I will
be always isomorphic to its associated normed space and Lc(X, Y ) ' L(Xs, Ys) for every
asymmetric normed space Y . Examples illustrating the three types of spaces will be given
at the end of Section 4.3.3.

The rest of the present chapter is organized as follows. In Section 4.1 we recall definitions
and notation from the literature. In Section 4.2, we give some basic properties of the index
of symmetry. In Section 4.3, we state and prove our main results (Theorem 4.1, Corollary 4.3
and Theorem 4.2) and some consequences. Finally, in Section 4.3.3, we give the proofs of
Theorem 4.3 and Proposition 4.4 which justify (making use of the already defined index of
symmetry) the classification given above.

4.1 Definitions and notation
In this section, we recall known properties of asymmetric normed spaces that are going to be
used in the sequel.

Definition 4.2 Let X be a real linear space. We say that ‖ · | : X → R+ is an asymmetric
norm on X if the following properties hold.

i) For every λ ≥ 0 and every x ∈ X, ‖λx| = λ‖x|.

ii) For every x, y ∈ X, ‖x+ y| ≤ ‖x|+ ‖y|.

iii) For every x ∈ X, if ‖x| = ‖ − x| = 0 then x = 0.

Let (X, ‖ · |X) and (Y, ‖ · |Y ) be two asymmetric normed spaces. A linear operator between
these spaces T : (X, ‖ · |X)→ (Y, ‖ · |Y ) is said to be bounded if there exists C ≥ 0 such that

‖T (x)|Y ≤ C‖x|X , ∀x ∈ X.

In this case, we denote ‖T |Lc := sup‖x|X≤1 ‖T (x)|Y . It is known (see [25, Proposition 3.1])
that a linear operator T is bounded if and only if it is continuous, which in turn is equivalent
to being continuous at 0. Also, we know from [25, Proposition 3.6] that the constant ‖T |Lc

can be calculated also by the formula

‖T |Lc = sup
‖x|X=1

‖T (x)|Y .

It is worth noticing that continuity in this framework must be treated carefully, since the
asymmetry of the norm (hence, the asymmetry of the balls) can make some operators con-
tinuous, even if they are not continuous on a classical normed sense.

We can see that Lc(X, Y ) is a convex cone included in L(Xs, Ys) (see [25, Proposition 3.3])
but is not a vector space in general. Note that for each T ∈ Lc(X, Y ) we have that

‖T‖Ls ≤ ‖T |Lc ,
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where ‖ · ‖Ls , denotes the usual norm of L(Xs, Ys), where Xs and Ys stand for the sym-
metrization of the spaces X and Y .. The function ‖ · |Lc defines an asymmetric norm on
Lc(X, Y )∩(−Lc(X, Y )). Recall that in the case where Y = (R, ‖·|R), where ‖t|R = max{0, t}
for all t ∈ R, we denote X[ := Lc(X,R), called the dual of the asymmetric normed space X.
The topological dual of the associated normed space Xs := (X, ‖ ·‖s) of X is denoted X∗ and
is equipped with the usual dual norm denoted ‖p‖∗ = sup‖x‖s≤1〈p, x〉, for all p ∈ X∗. From
[25, Theorem 2.2.2] (which is a straightforward consequence of Hahn-Banach theorem) we
have that the convex cone X[ is not trivial, that is, X[ 6= {0} whenever X 6= {0}. Moreover,
it follows directly from the definition that

X[ ⊂ X∗ and ‖p‖∗ ≤ ‖p|[, for all p ∈ X[.

We say that (X, ‖ · |X) and (Y, ‖ · |Y ) are isomorphic, denoted by (X, ‖ · |X) ' (Y, ‖ · |Y ), if
there exists a bijective linear operator T : (X, ‖ · |X) → (Y, ‖ · |Y ) such that T and T−1 are
bounded.

4.2 Index of asymmetric normed space
In this section, we begin the study of the already defined index of symmetry for asymmetric
normed spaces. Recall that for an asymmetric normed space X, its index of symmetry is
defined as

c(X) = inf
‖x|=1

‖ − x|.

Consider
SX := {x ∈ X : ‖x| = 1} and ŜX := {x ∈ SX : ‖ − x| 6= 0}.

It is not difficult to see that

ŜX = SX if and only if ∀x ∈ X, ‖x| = 0⇐⇒ x = 0.

It is known that a topological space X is T1 if and only if for every x ∈ X, the singleton {x}
is closed. We begin by stating a few propositions relying on the topological structure of X,
which will allow us to relate those properties with the value of c(X).

Proposition 4.1 Let (X, ‖ · |X) be an asymmetric normed space. Then, X is a T1 space if
and only if ŜX = SX .

Proof. Suppose that X is not T1. Then, there exists a ∈ X such that X \ {a} is not open.
Thus, there exists b ∈ X \ {a} such that for every ε > 0, a ∈ B‖·|X (b, ε). In other words, we
have that ‖a − b|X = 0. Thus, we have that a − b 6= 0 and ‖a − b|X = 0. It follows that
‖b − a|X 6= 0. Let us set e := b−a

‖b−a|X
. Then, we have that e ∈ SX and ‖ − e|X = 0. Hence,

ŜX 6= SX . Conversely, suppose that ŜX 6= SX and let e ∈ SX be such that ‖ − e|X = 0. This
implies that the singleton {0} is not closed in X. Hence, X is not T1.

Proposition 4.1 makes evident that the asymmetry of the norm readily changes the separation
properties of the spaces. More precisely, it is known that every normed linear space is T2,
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while in our case, T1 is only assured when the unit ball is bounded for the associated normed
space Xs. In this sense, we focus first on the case where c(X) > 0, where we have that X
will be a T1 space.

Proposition 4.2 Let (X, ‖ · |) be an asymmetric normed space. Suppose that c(X) > 0.
Then, X is a T1 space (equivalently, ŜX = SX). Moreover, we have

1

c(X)
= sup

x∈SX

‖ − x| = sup
‖x|=1,‖p|[=1;〈−p,x〉>0

〈−p, x〉.

Therefore, we have that
( sup
x∈SX

‖ − x|)( inf
x∈SX

‖ − x|) = 1,

and so c(X) ∈ [0, 1].

Proof. Let x ∈ X such that ‖x| 6= 0, then x
‖x| ∈ SX and ‖−x‖x| | ≥ c(X) > 0. It follows that

‖ − x| 6= 0. Equivalently, ‖ − x| = 0 =⇒ ‖x| = 0 and so x = 0. It follows that ŜX = SX and
so X is a T1 space. On the other hand,

x ∈ SX ⇐⇒ (∃z ∈ SX)x = − z

‖ − z|
.

Indeed, it sufices to take z = − x
‖−x| . From this, we have that

sup
x∈SX

‖ − x| = sup
z∈SX

1

‖ − z|
=

1

infz∈SX
‖ − z|

=
1

c(X)
.

Now, by the Hahn-Banach theorem (see [25, Corollary 2.2.4]), we have

sup
‖x|=1

‖ − x| = sup
‖x|=1

sup
‖p|[=1

〈p,−x〉 = sup
‖x|=1,‖p|[=1;〈−p,x〉>0

〈−p, x〉.

The importance of this last result relies on the fact that it allows us to obtain bounds for
the asymmetric norms in terms of the norm of Xs, exposing readily part of our main results,
more presicely, the isomorphism between an asymmetric space and its symmetric version in
the case where c(X) > 0.

Proposition 4.3 Let (X, ‖ · |X) and (Y, ‖ · |Y ) be asymmetric normed spaces. Suppose that
c(X) > 0. Then, we have the following formulas:

c(X)‖x| ≤ ‖ − x| ≤ 1

c(X)
‖x|, ∀x ∈ X, (4.1)

c(X)‖x‖s ≤ ‖x| ≤ ‖x‖s, ∀x ∈ X, (4.2)
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c(X)‖T |Lc ≤ ‖ − T |Lc ≤
1

c(X)
‖T |Lc , ∀T ∈ Lc(X, Y ), (4.3)

and,

‖T‖Ls ≤ ‖T |Lc ≤
1

c(X)
‖T‖Ls , ∀T ∈ Lc(X, Y ). (4.4)

As a consequence, we have that (X, ‖ · |X) ' (X, ‖ · ‖s), (Lc(X, Y ), ‖ · |Lc) is an asymmetric
normed space, with (Lc(X, Y ), ‖ · |Lc) ' (L(Xs, Ys), ‖ · ‖Ls). Moreover, c(Lc(X, Y )) ≥ c(X).

Proof. Formula (4.1) follows easily from Proposition 4.2, the rest of the assertions are sim-
ple consequences of this formula and the definitions for the norms and asymmetric norms
involved.

Considering all the already proven propositions, we see that in the case where c(X) > 0,
the spaces (X, ‖ · |X) and (X, ‖ · ‖s) (and also (Lc(X, Y ), ‖ · |Lc) and (L(Xs, Ys), ‖ · ‖Ls)) are
topologically the same. This last statement leads us to focus our study mainly on the case
where c(X) = 0, since on the contrary, even if the unit balls are not symmetric and maybe
too different from a ball obtained by a classical norm, these distortions are not enough to
change the topology of the space, hence, we can simply study the properties of the space
directly seeing its associated normed space, for which we can use every tool from the theory
of normed spaces to obtain topological properties.

Remark We proved in Proposition 4.2 that if c(X) > 0, then ŜX = SX . The converse of
this fact is not true in general, see for instance Example 4.3.

4.3 The main results
This section is devoted to the main results Theorem 4.1, Theorem 4.2 and Corollary 4.3 and
their consequences. In order to do this, we need first to state some basic definitions related
to the topology of asymmetric normed spaces. Let (X, ‖ · |X) and (Y, ‖ · |Y ) be asymmetric
normed spaces. We call the open and closed unit balls of Lc, respectively, the sets

BLc(0, 1) := {T ∈ Lc(X, Y ) : ‖T |Lc < 1}

and
BLc(0, 1) := {T ∈ Lc(X, Y ) : ‖T |Lc ≤ 1}.

An asymmetric normed space (Y, ‖ · |Y ) is called biBanach , if its associated normed space
(Y, ‖ · ‖s) is a Banach space. In this case, (L(Xs, Ys), ‖ · ‖Ls) becomes a Banach space. We
need the following lemma.

Lemma 4.1 Let (X, ‖ · |X) be an asymmetric normed space and (Y, ‖ · |Y ) be an asymmetric
normed biBanach space. Then, BLc(0, 1) is a closed subset of (L(Xs, Ys), ‖ · ‖Ls) (which is a
Banach space) and the open unit ball BLc(0, 1) is dense in BLc(0, 1) for the norm ‖ · ‖Ls .
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Proof. Let (Tn) be a sequence in BLc(0, 1) that converges to T ∈ L(Xs, Ys) for the norm
‖ · ‖Ls and let us prove that T ∈ BLc(0, 1). Indeed, for all n ∈ N and all x ∈ X, we have

‖T (x)|Y ≤ ‖(T − Tn)(x)|Y + ‖Tn(x)|Y
≤ ‖T − Tn‖Ls‖x‖s + ‖Tn|Lc‖x|X
≤ ‖T − Tn‖Ls‖x‖s + ‖x|X .

Sending n to +∞, we get that ‖T (x)|Y ≤ ‖x|X , for all x ∈ X. It follows that T ∈ BLc(0, 1)
which implies that BLc(0, 1) is a closed subset of (L(Xs, Ys), ‖ · ‖Ls). To see that BLc(0, 1)
is dense in BLc(0, 1) for the norm ‖ · ‖Ls , let T ∈ BLc(0, 1) and consider the sequence
Tn = (1 − 1

n
)T so that ‖Tn|Lc ≤ 1 − 1

n
< 1. Then, Tn ∈ BLc(0, 1) for all n ∈ N and

‖T − Tn‖Ls = 1
n
‖T‖Ls → 0.

Remark Since BLc(0, 1) is a closed subset of (L(Xs, Ys), ‖ · ‖Ls), then (BLc(0, 1), ‖ · ‖Ls) is
a complete metric space and being so, the Baire category theorem applies. However, we do
not know if the whole space (Lc(X, Y ), ‖ · ‖Ls) is a Baire space. In general it is not closed in
(L(Xs, Ys), ‖ · ‖Ls) (see Corollary 4.6 in the case where (Y, ‖ · |Y ) = (R, ‖ · |R)).

4.3.1 The first main result and consequences.

Our first main result is the following theorem, which gives a necessary and sufficient condition
so that Lc(X, Y ) is not a vector space. This case corresponds to c(X) = 0, since it was already
proven that whenever c(X) > 0, Lc(X, Y ) and L(Xs, Ys) are isomorphic. This is the main
reason why the case c(X) = 0 is worth studying, since it is in this case where the linear
structure of Lc(X, Y ) may be lost, which in turn makes the theory of asymmetric normed
spaces interesting, since it shows a behaviour where the structure of this set is not as expected
in the framework of classical norms.

Theorem 4.1 Let (X, ‖ · |X) be asymmetric normed space. Then, the following assertions
are equivalent.

i) c(X) = 0.

ii) For every biBanach asymmetric normed space (Y, ‖·|Y ) for which there exists y ∈ Y such
that ‖y|Y = 1 and ‖ − y|Y = 0 (that is, Y is not a T1 space) and every H ∈ Lc(X, Y ),
the set

G(H) := {T ∈ BLc(0, 1) : −(H + T ) 6∈ Lc(X, Y )},
is a Gδ dense subset of (BLc(0, 1), ‖ · ‖Ls). In particular, Lc(X, Y ) is not a vector space
whenever (Y, ‖ · |Y ) is not T1.

iii) There exists a biBanach asymmetric normed space (Y, ‖ · |Y ) such that the convex cone
Lc(X, Y ) is not a vector space.

Proof. (i) =⇒ (ii) For each k ∈ N, let us set

Ok := {T ∈ BLc(0, 1) | (∃xk ∈ X) ‖ − (H + T )(xk)|Y > k‖xk|X}.
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Clearly, we have that ∩k∈NOk = G(H). By the Baire theorem, G(H) will be a Gδ dense
subset of (BLc(0, 1), ‖ · ‖Ls) whenever, for each k ∈ N, the set Ok is open and dense in the
complete metric space (BLc(0, 1), ‖ · ‖Ls) (see Lemma 4.1).

Let us prove that Ok is open in (BLc(0, 1), ‖ · ‖Ls), for each k ∈ N. Let T ∈ Ok and
0 < ε < ‖−(H+T )(xk)|Y −k‖xk|X

‖xk‖s
. Let S ∈ BLc(0, 1) such that ‖S − T‖Ls < ε. We have that

‖ − (H + S)(xk)|Y ≥ ‖ − (H + T )(xk)|Y − ‖(S − T )(xk)|Y
≥ ‖ − (H + T )(xk)|Y − ‖(S − T )(xk)‖s
> ‖ − (H + T )(xk)|Y − ‖S − T‖Ls‖xk‖s
> ‖ − (H + T )(xk)|Y − ε‖xk‖s
> k‖xk|X .

Thus, S ∈ Ok for every S ∈ BLc(0, 1) such that ‖S − T‖Ls < ε. Hence, Ok is open in
(BLc(0, 1), ‖ · ‖Ls).

Now, let us prove that Ok is dense in (BLc(0, 1), ‖ · ‖Ls), for each k ∈ N. Since the set
(BLc(0, 1), ‖ · ‖Ls) is dense in (BLc(0, 1), ‖ · ‖Ls) (by Lemma 4.1), it suffices to prove that Ok

is dense in (BLc(0, 1), ‖ · ‖Ls). Let T ∈ BLc(0, 1) and 0 < ε < 1 − ‖T |Lc . Since c(X) = 0,
there exists a sequence (an) ⊂ X such that ‖an|X = 1 for all n ∈ N and ‖ − an|X → 0. Let
us set I := {n ∈ N : ‖ − an|X = 0}. We have two cases:

Case 1. I = ∅. In this case, for all n ∈ N, let zn := −an
‖−an|X

. We see that ‖zn|X = 1

and −zn = an
‖−an|X

. Using the Hahn-Banach theorem [25, Theorem 2.2.2], for each n ∈ N,
there exists pn ∈ X[ such that ‖pn|[ = 1 and 〈pn,−zn〉 = ‖ − zn|X > 0. Now, let e ∈ Y
such that ‖e|Y = 1 and consider the operator T + εpne : x 7→ T (x) + ε〈pn, x〉e. We have
that, ‖T + εpne|Lc ≤ ‖T |Lc + ε‖pne|Lc = ‖T |Lc + ε‖pn|[ = ‖T |Lc + ε < 1, which leads us to
T + εpne ∈ BLc(0, 1) ⊂ BLc(0, 1). On the other hand,

‖ − (H + T + εpne)(zn)|Y = ‖(H + T + εpne)(−zn)|Y
≥ ‖εpn(−zn)e|Y − ‖(H + T )(zn)|Y
= ε‖ − zn|X − ‖(H + T )(zn)|Y
=

ε

‖ − an|X
− ‖(H + T )(zn)|Y

≥ ε

‖ − an|X
− ‖H + T |Lc .

Since ‖ − an|X → 0, when n → +∞, there exists a subsequence (ank
) such that for each

k ∈ N ε
‖−ank

|X
− ‖H + T |Lc > k. Hence, for each k ∈ N, we have that ‖znk

|X = 1 and

‖ − (H + T + εpnk
e)(znk

)|Y > k = k‖znk
|X . (4.5)

From formula (4.5), we have that T + εpnk
∈ Ok. Since,

‖(T + εpnk
e)− T‖Ls = ‖εpnk

e‖Ls ≤ ε‖pnk
|[ = ε,

it follows that Ok is dense in the space (BLc(0, 1), ‖ · ‖Ls).
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Case 2. I 6= ∅. In this case, there exists n0 ∈ I such that ‖an0|X = 1 and ‖ − an0|X = 0.
Using the Hahn-Banach theorem [25, Theorem 2.2.2], let p ∈ X[ \{0} such that ‖p|[ = 1 and
〈p, an0〉 = ‖an0|X = 1. Thus, we have that

‖ − (H + T + εpe)(−an0)|Y = ‖(−H − T − εpe)(−an0)|Y
≥ ‖ε〈−p,−an0〉e|Y − ‖ − (H + T )(an0)|Y
= ε‖〈p, an0〉e|Y − ‖(H + T )(−an0)|Y
≥ ε− ‖H + T |Lc‖ − an0|X
= ε

> 0 = k‖ − an0|X .

On the other hand, we have that ‖T+εpe|Lc ≤ ‖T |Lc+ε‖pe|Lc = ‖T |Lc+ε‖p|[ = ‖T |Lc+ε < 1,
so that T + εpe ∈ BLc(0, 1) ⊂ BLc(0, 1). Thus, T + εpe ∈ Ok and

‖(T + εpe)− T‖Ls = ‖εpe‖Ls ≤ ε.

Hence, Ok is dense in (BLc(0, 1), ‖ · ‖Ls).

Hence, in both cases, we have that ∩k∈NOk = G is a Gδ dense subset of (BLc(0, 1), ‖ · ‖Ls).

(ii) =⇒ (iii) is trivial.

(iii) =⇒ (i) Suppose that there exists a biBanach asymmetric normed space (Y, ‖ · |Y ) such
that the convex cone Lc(X, Y ) is not a vector space. Then, there exists T ∈ Lc(X, Y ) \ {0},
such that −T 6∈ Lc(X, Y ). Thus, for each n ∈ N, there exists xn ∈ X such that

‖ − T (xn)|Y > n‖xn|X .

It follows that, for all n ∈ N

‖T |Lc‖ − xn|X ≥ ‖T (−xn)|Y = ‖ − T (xn)|Y > n‖xn|X .

Let us set zn = −xn
‖−xn|X

(since ‖ − xn|X 6= 0) for all n ∈ N. Then, for all n ∈ N \ {0}, we have

‖zn|X = 1, ‖ − zn| = ‖xn|
‖−xn| <

‖T |Lc

n
→ 0. Hence, c(X) = 0.

Remark It does not seem obvious to establish the validity of the implication (i) =⇒ (iii)
directly without the use Baire theorem or, in other words, without passing through the
implication (i) =⇒ (ii).

We readily see that whenever c(X) = 0, the set X[ does not have linear structure. Moreover,
the set of linear functionals ϕ ∈ X[ for which −ϕ /∈ X[ is quite big, since the set of those
functionals with norm less than or equal to 1 is Gδ dense on in the closed unit ball of X∗s . In
other words, we see that passing from the case where the index of symmetry is positive to
the case where it is equal to 0 makes a huge difference, going from an empty to a Gδ dense
set.

A straightforward consequence of Theorem 4.1 is that, whenever Y is not T1, Lc(X, Y ) is
not a vector space if and only if c(X) = 0. Since Y is not T1, in particular we have that
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c(Y ) = 0. The converse is not true in general: There exists spaces which are T1 and have
index of symmetry equal to 0, which necessarily are infinite-dimensional spaces. Then, for
the finite-dimensional case, we have the following lemma.

Lemma 4.2 Let (Y, ‖· |Y ) be an finite-dimensional asymmetric normed space. Then, c(Y ) =
0 if and only if Y is not a T1 space

Proof. The "if" part is clear, since Y is not a T1 space if and only if there exists y ∈ Y such
that ‖y|Y = 1 and ‖ − y|Y = 0. For the other implication, suppose that c(Y ) = 0. Then,
there exists a sequence (yn)n ⊂ Y such that ‖yn|Y = 1 for every n ∈ N and ‖yn|Y → 0.
Without loss of generality, we can assume that ‖yn|Y < 1 for every n ∈ N, which implies
that ‖yn‖s = 1, for every n ∈ N. Since (Y, ‖ · · · ‖s) is a finite-dimensional normed space,
there exists a subsequence (ynk

)k converging to some y ∈ Y for the norm ‖ · ‖s. We see that
‖y|Y = 0. Indeed,

‖ − y|Y ≤ ‖ynk
− y|Y + ‖ − ynk

|Y ≤ ‖ynk
− y‖s + ‖ − ynk

|Y → 0.

Thus, ‖ − y|Y = 0 and ‖y|Y = ‖y‖s = 1. Hence, Y is not a T1 space.

In virtue of the previous lemma, a complete characterization for Lc(X, Y ) being a vector
space can be stated, in the case where Y is finite-dimensional.

Corollary 4.1 Let (X, ‖·|X) and (Y, ‖·|Y ) be asymmetric normed spaces and suppose that Y
is finite-dimensional. Then, Lc(X, Y ) is not a vector space if and only if c(X) = c(Y ) = 0.
The "only if" part remains true even if Y is infinite-dimensional.

Proof. To see the "only if" part, we follow the proof of part iii) =⇒ i) of Theorem 4.1.
Indeed, suppose that Lc(X, Y ) is not a vector space. Then, there exists T ∈ Lc(X, Y ) \ {0},
such that −T /∈ Lc(X, Y ). Thus, for each n ∈ N, there exists xn ∈ X such that ‖−T (xn)|Y >
n‖xn|X . It follows that, for all n ∈ N

n‖xn|X < ‖ − T (xn)|Y = ‖T (−xn)|Y ≤ ‖T |Lc‖ − xn|X .

Let us set zn = −xn/‖ − xn|X (since ‖ − xn|X 6= 0) for all n ∈ N. Then, for all n ∈ N \ {0},
we have ‖zn|X = 1, ‖ − zn|X < ‖T |Lc/n → 0. Hence, c(X) = 0. It remains to show that
c(Y ) = 0. Indeed, since T ∈ Lc(X, Y ) \ {0}, then ‖T (xn)|Y ≤ ‖T |Lc‖xn|X . Thus, using the
above inequality, we get

‖T (xn)|Y < (‖T |Lc/n)‖ − T (xn)|Y .

This implies in particular that ‖ − T (xn)|Y 6= 0 for all n ∈ N \ {0}. Let yn = (−T (xn))/‖ −
T (xn|Y ∈ Y . Then we have that ‖yn|Y = 1 for all n ∈ N \ {0} and ‖ − yn|Y < ‖T |Lc/n→ 0.
Hence c(Y ) = 0.

The "if" part follows from Theorem 4.1 provided that the condition c(Y ) = 0 implies the
existence of y ∈ Y such that ‖y|Y = 1 and ‖ − y|Y = 0. This is true since Y is finite-
dimensional (necessarily a biBanach space), by Lemma 4.2.
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Using these results, we can also now state a density result for the asymmetric norm ‖ · |Lc .

Corollary 4.2 Let (X, ‖ · |X) be an asymmetric normed space with c(X) = 0 and (Y, ‖ · |Y )
be a biBanach asymmetric normed space for which there exists y ∈ Y such that ‖y|Y = 1 and
‖ − y|Y = 0. Then, the set of elements H ∈ Lc(X, Y ) such that −H /∈ Lc(X, Y ) is dense in
Lc(X, Y ) for the asymmetric norm ‖ · |Lc.

Proof. Noticing that part ii) of Theorem 4.1 is valid for any radius for the balls, we have that
for every ε > 0 and H ∈ Lc(X, Y ), there exists T ∈ BLc(0, ε) such that −(H+T ) /∈ Lc(X, Y )
and H + T ∈ Lc(X, Y ), which finishes the proof.

Making use of Theorem 4.1 and Proposition 4.3, we state in the following corollary a complete
characterization for the convex cone Lc(X, Y ) to be a vector space. The non trivial part of
the following corollary is the implication v) =⇒ i), which is a consequence of Theorem 4.1.
Notice also that, thanks to Proposition 4.3, we do not need to assume that Y is biBanach
in the following corollary, since the condition of biBanach used in Theorem 4.1 is implicitly
verified by the space (R, ‖ · |R) in part v).

Corollary 4.3 Let (X, ‖·|X) be an asymmetric normed space. Then, the following assertions
are equivalent.

i) c(X) > 0.

ii) (X, ‖ · |X) is isomorphic to its associated normed space.

iii) For every asymmetric normed space (Y, ‖·|Y ), Lc(X, Y ) is an asymmetric normed space
isomorphic to the space L(Xs, Ys).

iv) (X[, ‖ · |[) is an asymmetric normed space isomorphic to the Banach space (X∗, ‖ · ‖∗).

v) X[ is a vector space.

The following result shows that if an asymmetric normed space X is a dual of some asymmet-
ric normed space, then necessarily it is isomorphic to its associated normed space, in other
words, necessarily c(X) > 0. In simple words, we prove that duality for asymmetric normed
spaces preserves the index of symmetry of the spaces.

Corollary 4.4 Let (X, ‖ · |) be an asymmetric normed space and suppose that c(X) = 0.
Then, X can not be the dual of an asymmetric normed space. The converse is false in
general (ex. the Banach space X = (c0(N), ‖ · ‖∞), is not a dual space but c(X) = 1).

Proof. Suppose that there exists an asymmetric normed space Y which is the predual of X,
that is (Y [, ‖ · |[) = (X, ‖ · |). We prove that c(Y ) = 0. Indeed, suppose by contradiction that
c(Y ) > 0, then by formula (4.3) of Proposition 4.3 (applied with the spaces (Y, ‖ · |Y ) and
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(R, ‖ · |R)), we have that

c(Y )‖p‖[ ≤ ‖ − p|[ ≤
1

c(Y )
‖p‖[, ∀p ∈ Y [ = X.

This implies that c(X) ≥ c(Y ) > 0, which contradict the fact that c(X) = 0. Hence,
c(Y ) = 0. Now, using Theorem 4.1, we get that Y [ is not a vector space which contradict the
fact that X = Y [ is a vector space. Finally, X cannot be the dual of an asymmetric normed
space.

To finish this section, and as a consequence of the previous results, we state the relation
between the sets Lc(X, Y ) and −Lc(X, Y ), which finally relies only on the value of the index
of symmetry of X.

Corollary 4.5 Let X be an asymmetric normed space. Then, either

Lc(X, Y ) ∩ (−Lc(X, Y )) = Lc(X, Y ) = L(Xs, Ys)

or Lc(X, Y ) ∩ (−Lc(X, Y )) is of first Baire category in (L(Xs, Ys), ‖ · ‖Ls).

Proof. If c(X) > 0, then by Corollary 4.3, we have that Lc(X, Y ) is an asymmetric normed
space isomorphic to L(Xs, Ys), thus we have that

Lc(X, Y ) ∩ (−Lc(X, Y )) = Lc(X, Y ) = L(Xs, Ys).

Otherwise, we have that c(X) = 0. In this case, to see that Lc(X, Y ) ∩ (−Lc(X, Y )) is of
first Baire category in the space (L(Xs, Ys), ‖ · ‖Ls), it suffices to observe, using Theorem 4.1
with H = 0, that we have

Lc(X, Y ) ∩ (−Lc(X, Y )) = ∪{n(BLc(0, 1) \ G(H)) : n ∈ N},

so that, it is of first Baire category in (L(Xs, Ys), ‖ · ‖Ls), being the countable union of first
Baire category sets.

4.3.2 The second main result

From the previous section, we obtained the conclusion that X[ has a linear structure if and
only if c(X) > 0, in which case X[ and X∗s are isomorphic. From this naturally arises the
question of the relation between those sets in the case where c(X) = 0, that is, asking if
there is some sort of topological relation between them, even considering the lack of linear
structure in X[. In this sense, we focus on the density of the dual X[ in X∗s . By X[

w∗

, we
denote the weak-star closure of X[ in (X∗s , w

∗).

Theorem 4.2 Let (X, ‖ · |) be an asymmetric normed space. Then, X is a T1 space if and
only if X[

w∗

= X∗s .
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Proof. Assume that X is a T1 space. Suppose by contradiction that X[
w∗

6= X∗s and fix
p ∈ X∗s \X[

w∗

. By the classical Hahn-Banach theorem in the Hausdorff locally convex vector
space (X∗s , w

∗), there exists x0 ∈ X \ {0} and α ∈ R, such that

〈p, x0〉 > α ≥ 〈q, x0〉, for all q ∈ X[
w∗

. (4.6)

Since X is T1 space and x0 6= 0, we have that ‖x0| > 0. Using [25, Theorem 2.2.2], there
exists q0 ∈ X[ such that ‖q0|[ = 1 and 〈q0, x0〉 = ‖x0|. Since X[ ⊂ X[

w∗

is a convex cone, we
obtain using (4.6) that for all n ∈ N,

〈p, x0〉 > α ≥ 〈nq0, x0〉 = n‖x0|.

This implies that ‖x0| = 0 which is impossible. Hence, X[
w∗

= X∗s . Conversely, suppose
that X[

w∗

= X∗. We need to show that ‖x| > 0 whenever x 6= 0. Indeed, let x 6= 0. By the
Hahn-Banach theorem (in X∗s ), there exists p ∈ X∗ such that ‖p‖∗ = 1 and 〈p, x〉 = ‖x‖s > 0.
On the other hand, p ∈ X[

w∗

= X∗s , thus, for every ε > 0, there exists qε ∈ X[ such that

〈qε, x〉+ ε ≥ 〈p, x〉 = ‖x‖s.

Suppose by contradiction that ‖x| = 0. It follows that for every ε > 0, 〈qε, x〉 ≤ ‖qε|[‖x| = 0.
So using the above formula, we get that ‖x‖s ≤ ε for every ε > 0 which implies that x = 0
and gives a contradiction. Hence, ‖x| > 0 for every x 6= 0, which implies that X is a T1

space.

Remark Following the same arguments as in the last proof, we have that in general

span(X[)
w∗

= X∗,

even if X is not a T1 space.

We know from [40, Theorem 4.] (see also [25, Proposition 2.4.2.]) that B[(0, 1) is always
weak-star closed in (X∗s , w

∗) (in fact, weak-star compact). On the other hand, B[(0, 1) is
always norm closed in (X∗s , ‖ · ‖∗) (see Lemma 4.1). These results are not always true for the
whole space X[ when c(X) = 0. We have the following characterization.

Corollary 4.6 Let (X, ‖ · |) be a T1 asymmetric normed space. Then, X[ is weak-star closed
in (X∗s , w

∗) if and only if, c(X) > 0 if and only if X is isomorphic to its associated normed
space.

Proof. If c(X) = 0, by Theorem 4.1 we know that X[ 6= −X[. It follows that X[ 6= X∗s

and so by Theorem 4.2, X[ 6= X[
w∗

= X∗s . Equivalently, X[ = X[
w∗

, implies that c(X) > 0.
Conversely, c(X) > 0 is equivalent to the fact that X[ is isomorphic to X∗s by Corollary 4.3
and so it is in particular is weak-star closed in (X∗s , w

∗).
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Remark If we assume that X∗s is a reflexive space, then we can replace the w∗-closure by
the ‖ · ‖∗-closure. This follows from the well-known Mazur’s theorem on the coincidence of
weak and norm topologies on convex sets (see [21]), so we have that

X[
w∗

= X[
w

= X[
‖·‖∗

,

since weak-star and weak topologies coincide in reflexive spaces.

4.3.3 Classification and examples

There are several topological studies of asymmetric normed spaces, see for instance [3], [25]
and [48]. Our study leads to the classification given in Definition 4.1 and the already men-
tioned consequences. Recall that the two possible situations which go beyond the classical
framework of normed spaces are:

i) Infinite dimensional spaces which are T1 with c(X) = 0 (spaces of type II).

ii) Finite and infinite dimensional spacesX which are not T1 (spaces of type III, necessarily
c(X) = 0).

These affirmations are consequences of Corollary 4.3, Proposition 4.4 and Theorem 4.3.

Let (X, ‖ · |) be an asymmetric normed linear space endowed with the topology τ‖·| induced
by the quasi-metric defined by

d‖·|(x, y) := ‖y − x|,∀x, y ∈ X.
The closed unit ball B‖·|X (0, 1) is the set {y ∈ X : ‖y| ≤ 1}. A set K ⊂ X is said to be
compact if it is compact considered as a subspace of X with the induced topology, that is,
(K, ‖ · |) is compact with respect to the topology τ‖·|X . A set K of X is compact if every
sequence in K has a convergent subsequence whose limit is in K.

The following proposition shows that a finite dimensional asymmetric normed space can not
be of type II.

Proposition 4.4 Let (X, ‖ · |X) be an asymmetric normed space. Suppose that X is of
type II. Then, the closed unit balls B‖·|X (0, 1) and B‖·‖s(0, 1) of X and its associated normed
space respectively, are not compact. In consequence X is infinite dimensional.

Proof. From the definition of spaces of type II, there exists a sequence (xn) ⊂ X such that
‖xn|X = 1 for all n ∈ N and 0 < ‖−xn|X → 0. We can assume without loss of generality that
0 < ‖ − xn|X < 1 so that ‖xn‖s = ‖xn|X = 1 for all n ∈ N. Suppose by contradiction that
B‖·|X (0, 1) is compact. Let (xnk

) be a subsequence converging for ‖ · |X to some a ∈ X.Then,

‖ − a|X ≤ ‖xnk
− a|X + ‖ − xnk

|X → 0,

which implies that ‖ − a|X = 0. Since X is a T1 space, then a = 0. This contradict the
fact that ‖xnk

− a|X = ‖xnk
|X = ‖xnk

‖s = 1 for each k ∈ N. Hence, the sequence (xn) has
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no convergent subsequence neither for ‖ · |X nor for ‖ · ‖s (since ‖ · |X ≤ ‖ · ‖s). Thus, the
closed unit balls B‖·|X (0, 1) and B‖·‖s(0, 1) are not compact. In particular X is of infinite
dimension.

Following the same idea, the following theorem shows that a T1 space of finite dimension
is necessarily isomorphic to its associated normed space, or equivalently, it is of type I.

Theorem 4.3 Let (X, ‖ · |X) be an asymmetric normed space of finite dimension. Then, X
is T1 if and only if X is of type I, if and only if X is isomorphic to its associated normed
space.

Proof. Suppose that X is T1. Then, X is not of type III. Since spaces of type II are
infinite dimensional by Proposition 4.4, it follows that X, is of type I. Hence, equivalently,
by Corollary 4.3, X is isomorphic to its associated normed space. The converse is trivial.

For finishing this chapter, we show that using the tools developed we recover the result of
García Raffi in [38, Theorem 13.]. This is done in the following corollary.

Corollary 4.7 The closed unit ball of a T1 asymmetric normed space X is compact, if and
only if it is finite dimensional.

Proof. Suppose that X is finite dimensional. Since X is T1, then by Theorem 4.3, X is iso-
morphic to its associated normed space. Thus, the closed unit ball of (X, ‖ · |X) is compact.
Conversely, suppose that the closed unit ball of (X, ‖ · |X) is compact. Then, by Proposi-
tion 4.4, X is not of type II. Since, X is T1, then X is of type I and so (X, ‖· |X) is isomorphic
to (X, ‖·‖s) (by Corollary 4.3), which is finite dimentional by Riesz’s theorem, since its closed
unit ball is compact.

It becomes evident that it is not only the presence or absence of asymmetry what is worth
considering at the moment of working over asymmetric normed spaces, but also the degree of
this asymmetry. A concrete way of doing this is using the index of symmetry defined during
this chapter, which relies only in the structure of the asymmetric norm of the space.

It is also important to take into account that the structure of the associated spaces, say X[

and L(X, Y ) (where Y is an asymmetric normed space), depends only in the structure of X,
which is not obvious from the beginning. It is exactly through a deep study of the defined
index that this property becomes evident.

Recall that asymmetric normed spaces have its metric counterpart, the so-called quasi-metric
spaces. Since the definition for the index of symmetry of an asymmetric normed space relies
only in the asymmetric norm of the space, a similar approach can be taken over quasi-metric
spaces in order to obtain results in the line of those present in this chapter. More precisely,
the idea is to describe the structure of the set of real valued Lipschitz functions defined over
the quasi-metric space, which is also called the Lipschitz-dual. We can go even further and
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study the next natural space associated to it, that is the semi-Lipschitz free space, which is
the analog for Lipschitz-free space when asymmetry is taken into account, and describe their
structures in terms of the degree of asymmetry of the base quasi-metric space, quantified
by the index of symmetry adapted to that end. An expected result in this line is that
for a given quasi-metric space, the index of symmetry of its free quasi-metric space (which
is an asymmetric normed space) coincides with the index of symmetry of the quasi-metric
space (now in the sense of the generalized definition for quasi-metric spaces), showing that
this index not only shows some properties of the space and its Lipschitz-dual, but is also
preserved during the construction of the asymmetric predual of the Lipschitz-dual.

In this same framework, the study of the behaviour of the index of symmetry of a quasi-metric
space may be done in the following context. In [32], an specific asymmetrization of a metric
space is done in the following way. Let (M,d) be a metric space and F(M) its free-Lipschitz
space. Define over F(M) the asymmetric norm given by

‖µ| := sup
‖f‖L=1,f≥0

〈f, µ〉, for every µ ∈ F(M).

The asymmetry of this norm is easily proven. Recall that M is isometrically embedded in
F(M), so we can now use the asymmetric norm defined over this linear space to define an
asymmetric distance over M , in a way such that the operator δ : M → F(M) continues to
be an isometry, now between the quasi-metric space M and the asymmetric normed space
F(M). Given this, a natural question arises: Which is the relation between the index of
symmetry of both spaces and the structure of the cone {f ∈ Lip0(M) : f ≥ 0}? Given
a number c ∈ [0, 1], is it possible to find a cone in the linear space Lip0(M) such that the
resulting quasi-metric space has index of symmetry equal to c? These and others questions
that might arise are still not answered, and will be revisited in future works.

63



Conclusions

If we were to resume the present work in one phrase and propose an alternative title, the
following sentence would definitely fit to both purposes: "Structural properties of linear
spaces related to some classes of Lipschitz functions".

During the development of Chapters 1 and 2, we focused on the internal structure of Lipschitz
functions defined over a nonempty open convex subset of Rd taking as an starting point the
behaviour of the same functions in the case d = 1. The first important point was to isolate
the difficulties added when passing from one to multiple dimensions, which lead us to a
more detailed study of essentially bounded vector valued functions in terms of how we could
treat them in order to view them as gradients of Lipschitz functions, in analogy to the one
dimensional case.

Our approach was somehow close to Multivariate Calculus, but from a nonsmooth viewpoint.
More precisely, we considered regular Lipschitz functions as potentials. Therefore, their
gradients must have null curl, which corresponds to a (nonsmooth) Poicaré condition. It
is precisely this which lead us to study the integrals of essentially bounded functions over
some specific closed paths. As simple as this idea is, it was not free of difficulties, the main
one being that we where using a one dimensional integral for functions which are essentially
bounded for the d-dimensional Lebesgue measure, that is, we integrated over null sets. It was
precisely this technique that naturally gave rise to the presence of what we called essentially
Lipschitz functions, since we needed to consider the behaviour not only of the chosen class
representative on the space of essentially bounded functions, but of the whole class.

Considering our approach, we can resume the main result of Chapter 1 by saying that we
can identify the space of Lipschitz functions over a nonempty open convex subset of Rd with
the space of conservative essentially bounded vector fields, or equivalently, with the space of
essentially bounded vector fields with null curl. This idea is further developed throughout
Chapter 2, where we turn our attention to compactly supported smooth functions over the
same set as before, which are clearly Lipschitz functions. This allows us on one hand to work
easily with their gradients, but also to take a closer look to the predual of the subspace of
essentially bounded functions obtained in the previous chapter.

Here, an approach more centered in Functional Analysis has been more natural, mostly since
we needed to directly study duality properties in order to finally identify the Lipschitz-free
space. But the advantage of working with compactly supported functions relies not only in
the possibility of using the gradients, but also in the known density of these functions in
the spaces we where using. But even if we left aside the Multivariate Calculus approach, we
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also obtained a description for the space identifying the Lipschitz-free space, more precisely,
it is related to integrable vector fields with null divergence. It is worth noticing that in
both description of the spaces in terms of known concepts of Multivariate Calculus, all the
derivatives are not taken in the classical sense, but in the sense of distributions, which shows
again the importance of working with compactly supported functions for obtaining the desired
results.

In Chapter 3 we left aside Lipschitz-free spaces to focus on another property of Lipschitz
functions. More precisely, we centered our attention in the results on genericity for Lipschitz
functions from J. Borwein and X. Wang [19]. The concepts appearing during this Chapter
were not even considered during the first two chapters, in particular, Clarke’s subdifferential
was not present, even when is one of the main concepts associated to Lipschitz functions
defined over normed spaces. It is worth noticing that in the beginning, the use of Clarke’s
directional derivative for the development of the results of Chapters 1 and 2 was considered,
but ultimately this had to be revised in the light of possible pathological behaviour, as has
already revealed in the PhD Thesis of X. Wang [64]. Nevertheless, Clarke’s subdifferential
appeared once again thanks to the aforementioned result on genericity for Lipschitz functions,
which in a few words states that in the set of Lipschitz functions with Lipschitz constant at
most K > 0 endowed with the metric of uniform convergence over bounded subsets, Lipschitz
functions with maximal Clarke subdifferential are generic.

Our first goal was to check if a similar proof could be carried out now in the vector space of
all Lipschitz functions endowed with the metric of uniform convergence over bounded sets,
which was rapidly discarded, since such metric space is not complete and that was ultimately
necessary for the use of Baire’s Theorem in the proof. It seemed much more natural in order
to regain completeness to work with the Lipschitz norm, recalling in particular, that this
is the choice of norm for spaces of Lipschitz functions, and directly relates to the theory of
Lipschitz-free. However, althought completeness is ensured, the use of this norm leads to
another problem: Contrary to the metric of uniform convergence over bounded subsets, the
Lipschitz norm measures and controls the slopes of the functions. Having freedom over those
slopes is essential for the proof of J. Borwein and X. Wang. At this point, is was clear that an
extension of the result for the whole space was not a simple task and maybe a new approach
was necessary.

This is where the notion of lineability comes into play and undertakes a central role. We
change the concept of being "topologically big" associated to genericity to that of being
"algebraically big", meaning that we should look for a Banach subspace of Lipschitz functions
with maximal subdifferential instead of a Gδ dense set of those functions. From here on our
work relies on the results from Chapter 1, taking a constructive approach of that subspace
instead of the Baire’s Theorem approach, even if completeness is still present. But it is
necessary to clarify that even if the results of Chapter 1 are valid no matter the norm
considered in Rd, the construction obtained in Chapter 3 works only in the case where we
use the 1-norm in Rd, which is used in the proof for constructing suitable functions whose
Clarke’s subdifferentials are balls in Rd endowed with the infinity norm. A natural question
that arises is if is it possible to make a similar construction for any norm in order to obtain
the same result. The answer to this is not obvious and after this PhD thesis, it still remains
open.
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In Chapter 4, which is does not directly rely on the previous part of this work, we dealt
with the concept of asymmetry. More precisely, we left aside Lipschitz functions to focus
our efforts in linear spaces endowed with asymmetric norms and mainly in the consequences
of this on the structure of the natural spaces associated to them, that is the dual space
and the space of linear operators with values in another asymmetric normed space. An
important part here was to comprehend profoundly the tools already developed around this
concept of asymmetry, which is not reserved only for linear spaces, but also exists in their
metric counterpart: Quasi-metric spaces. Given the particularities found for the set of linear
functionals defined over an asymmetric normed spaces, such as that they have no linear
structure in general, our goal was to determine how and when the aforementioned structure
could be found. In other words, our goal was to determine which degree of asymmetry was
allowed for a space for the set of linear functionals to have linear structure. This lead us to
the main definition of Chapter 4, which is that of index of symmetry for asymmetric normed
spaces.

In terms of its definition, the index of symmetry of an asymmetric normed space is simply
a number between 0 and 1 that quantifies the asymmetry of the space, or in other words,
how far away is the unit ball of being symmetrical. Starting from this it became evident that
the case where that index is equal to zero was precisely the case of interest: Whenever that
index is greater than 0 it is easily proven that the resulting topology for the space is the same
obtained for some norm. Moreover, this index is equal to 1 only for normed spaces. Before
noticing these consequences, the name "index of symmetry" was still not adopted, but this
name arose naturally when this was clear: The closer to 1 this index is, the less difference
there is between the unit ball of the space and the unit ball of a certain normed space.

Once it becomes evident that the case of interest were those spaces whose index of symmetry
is equal to 0 (which we could understand as "completely asymmetrical spaces"), we focus
our attention in analyzing some examples corresponding to natural asymmetrical versions of
Rd, `p, and Lp. Using these constructions to comprehend the behaviour of linear functionals
over them, an important observation was that in finite dimension there necessarily exists a
point different from the origin whose asymmetric norm is equal to zero. Let us point out,
that this is far from being the case of infinite dimensions. In other words, it is possible for
an asymmetric normed space to have index of symmetry equal to zero while keeping the
property of positivity of the norm for any point except for the origin.

Therefore, it becomes clear that as long as the study of the index of symmetry is concerned,
there were two possibilities, which are resumed on the topology being T1 or not. This dis-
tinction was made since when analizing the aforementioned examples of asymmetric normed
spaces, the property of having a dual with linear structure and having a T1 topology arose.
This naturally lead us to the mains results of the chapter, which give a characterization for
the linear structure of dual spaces and spaces of linear operators in terms of the index of
symmetry.

Even if this last chapter seems to be completely disconected from the rest of the work, when
we observe that similar results could be obtained in the framework of quasi-metric spaces
and the sets of semi-Lipschitz functions defined over them (real valued and with values in
another quasi-metric space) we see that there is an ultimate connection between both parts.
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The choice of dealing with the case of asymmetric normed spaces instead of quasi-metric
spaces was a choice of convenience: It was simpler to get a better understanding of the effect
of asymmetry when the linear structure is also present. Using this as an starting point, we
can develop these ideas in a more general framework.

To finish this work, we detail some ideas for future work starting from the concepts reviewed
above. One of the main reasons that inspired the development of Chapters 1 and 2 was
the question of whether or not the Lipschitz-free spaces of Rd are isometric in general. The
identifications made for those spaces could serve as a way to answer that question in full
generality, but it does not seem as an easy task, since those description of the spaces are
made using quotiens of L1 spaces, each of them of functions with values in spaces of different
dimensions. A more detailed study of these spaces is needed in order to, in the best case,
use them to that end. As for Chapter 3, as it was already mentioned, the results are still
incomplete. It would be ideal to have the same results, but valid for any norm on Rd. As of
the moment of writing this documents, the various attempts made in order to do this have
failed, but the fact that the results of Chapter 1 are valid no matter the norm shows no reason
to believe that the choice of the norm in Chapter 3 cannot be changed. Finally, Chapter 4
is the one that gives more possibilities for future work. In this case we can go from studying
even in more detail the case where the index of symmetry is equal to zero to obtain further
properties for the structure of its dual spaces, changes of the value of this index when passing
through isomorphisms, finding a relation between this index and the Banach-Mazur distance,
etc., to center our efforts in the adaptation of the results already obtained to quasi-metric
spaces, and its applications in the analysis of the spaces of Lipschitz spaces over then and
the so-called semi-Lipschitz free spaces.
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