
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA MATEMÁTICA

NUMERICAL RECONSTRUCTION OF INVERSE PROBLEMS FOR PARTIAL
DIFFERENTIAL EQUATIONS

TESIS PARA OPTAR AL GRADO DE
DOCTOR EN CIENCIAS DE LA INGENIERÍA, MENCIÓN MODELACIÓN

MATEMÁTICA

JAVIER ANÍBAL RAMÍREZ GANGA

PROFESOR GUÍA:
JAIME H. ORTEGA PALMA

PROFESOR CO-GUÍA:
GINO MONTECINOS GUZMÁN

MIEMBROS DE LA COMISIÓN:
ERIC BONNETIER

SERGIO GAETE BECERRA
ALEJANDRO JOFRÉ CÁCERES

RODRIGO LECAROS LIRA

This work was partially supported by CODELCO, CODELCOTECH by Beca Doctorado
PiensaMinería, CMM ANID PIA AFB170001, CMM IRL 2907-CNRS and CODELCO-El
Teniente by project Desarrollo de herramientas algorítmicas para la estimación de peligro

sísmico

SANTIAGO DE CHILE
2021

RESUMEN DE LA MEMORIA PARA OPTAR AL GRADO DE
DOCTOR EN CIENCIAS DE LA INGENIERÍA, MENCIÓN MODELACIÓN MATEMÁTICA
POR: JAVIER ANÍBAL RAMÍREZ GANGA
FECHA: 2021
PROF. GUÍA: JAIME H. ORTEGA PALMA
PROF. CO-GUÍA: GINO MONTECINOS GUZMÁN

NUMERICAL RECONSTRUCTION OF INVERSE PROBLEMS FOR PARTIAL
DIFFERENTIAL EQUATIONS

Esta tesis está dedicada al estudio de problemas inversos desde un enfoque numérico. Nos
centraremos principalmente en problemas aplicados a ingeniería y ciencias, especi�camente
estudiaremos dos problemas que enunciaremos a continuación:

En la primera parte de la tesis estudiaremos el problema de extracción de mineral en minas.
Para mina subterránea, la técnica habitual para la extracción de minerales es el método de
block caving, que genera e induce actividad sísmica en la mina. Comprender el método de
block caving es uno de los problemas más desa�antes en la minería subterránea. Este método
se basa en la gravedad para romper y transportar grandes cantidades de mineral y desechos.
El estado del arte de los modelos de daños no puede representar el efecto real de la minería
en la masa rocosa, ya que, por ejemplo, el daño aparece en la parte inferior del dominio en
consideración y con esto no es posible recuperar la subsicendia que se ve en la mina. En esta
tesis estudiamos un nuevo enfoque que recupera los efectos que ocurren en la masa rocosa
a medida que la actividad minera se desarrolla. Presentamos un modelo de daño extendido
y mejorado que recupera el efecto del block caving basado en el modelo de gradiente de
daño propuesto por Pham y Marigo en 2010, en particular, consideraremos una formulación
variacional donde los modelos de gradiente de daño aparecen como un enfoque elíptico del
problema variaconal de la mecánica de fractura y el criterio de daño depende de la parte
esférica y deviatoria del tensor de esfuerzo. Mostramos pruebas y simulaciones numéricas
interesantes que producen comportamientos de daño realistas en el dominio mejorando todos
los enfoques de daño anteriores a este problema.

Para el segundo problema estudiaremos la reconstrucción numerica de las soluciones CGO
para un sistema de conductividad. Estudiaremos metodos numéricos para el cálculo de las
soluciones CGO para el sistema div(σ · ∇U) en R2 para funciones matriciales σ simetricas y
de�nidas positivas. La forma de calcularlas será mediate el uso de las soluciones del sistema
de Beltrami. Primero probaremos la existencia de las soluciones CGO y luego usaremos una
estrategia numérica basada en el método introducido por Huhtanen y Perämäki [28] para la
ecuación the Beltrami. Consideraremos experimentos numéricos para mostrar la in�uencia
de las ecuaciones acopladas.

i

ii

ABSTRACT OF MEMORY TO OBTAIN THE DEGREE OF
DOCTOR EN CIENCIAS DE LA INGENIERÍA, MENCIÓN MODELACIÓN MATEMÁTICA
BY: JAVIER ANÍBAL RAMÍREZ GANGA
DATE: 2021
PROF. GUÍA: JAIME H. ORTEGA PALMA
PROF. CO-GUÍA: GINO MONTECINOS GUZMÁN

NUMERICAL RECONSTRUCTION OF INVERSE PROBLEMS FOR PARTIAL
DIFFERENTIAL EQUATIONS

This thesis is devoted to the study of inverse problems in a numerical approach. We will
focus on problems applied to engineering and science, speci�cally we will study two problems
that we will state below:

In the �rst part of the thesis, we will study the problem of ore extraction in mines. For
underground mine, the current usual technique for ore extraction is block caving, which
generates and induces seismic activity in the mine. To understand the block caving method
is one of the most challenging problems in underground mining. This method relies on
gravity to break and transport enormous amounts of ore and waste. The state of the art in
damage models is not able to represent the real e�ect of the mining in the rock mass since
for example the damage appears in the bottom of the domain under consideration and with
this is not possible to recover the subsidence seen in the mine. In this work we study the
e�ects that occur on rock mass as mining activity develops. In this thesis we present an
extended and improved damage model that recovers the e�ect the block caving based on the
gradient damage model proposed by Pham and Marigo in 2010 we will consider a variational
formulation where gradient damage models appear as an elliptical approach to the problem
of variational fracture mechanics and the damage criterion depends on the spherical and
deviatoric part of the stress tensor. We show interesting numerical tests and simulations
producing realistic damage behaviors in the domain, improving all previous approaches to
this issue.

In the second part of this thesis, we will study the numerical reconstruction of the CGO
solutions for a conductivity system. We study numerical methods for computing numerically
the CGO solutions to the conductivity system div (σ · ∇U) = 0 in R2 for symmetric, positive
de�nite matrix functions σ. The way to compute those solutions is to use solutions to the
Beltrami system. In this work, we �rst prove the existence of CGO solution and then use
a numerical strategy based on the method introduced by Huhntanem and Perämäki in [28]
for the Beltrami equation. Numerical experiments are considered to show the in�uence of
coupled equations.

iii

iv

Agradecimientos

El proyecto de tesis es el término de una etapa que comencé hace varios años, un período de
crecimiento académico, profesional y personal lleno de éxitos, pero también de fracasos. Por
lo mismo, quisiera agradecer a las personas que me brindaron un apoyo constante desde el
comienzo.

Para comenzar, debo agradecer y reconocer a mis guías de tesis Jaime Ortega y Gino
Montecinos por la gran colabración, apoyo y cada uno de los aprendizajes. En conjunto, me
ayudaron e incentivaron a desarrollar y mejorar mis competencias, conocimientos y habili-
dades necesarias para ser un aporte signi�cativo en la investigación. Siempre me entregaron
las herramientas necesarias y la orientación para resolver las di�cultades presentadas en este
camino. También, agradecer a otros grandes colaboradores Rodrigo Lecaros y Ariel Pérez,
quienes han compartido otras experiencias y visiones para el desarrollo de este trabajo y
otros futuros, y expandido el campo de estudio y prestado su colaboración, conocimientos y
apoyo en todo momento.

De igual manera, agradezco a los incentivadores de la continuación de mis estudios y su
�nanciamiento. Al CMM IRL 2907-CNRS por dar el pie inicial para el primer período como
estudiante, y a CODELCO y COLDELCOTECH quienes me brindaron la oportunidad de
estudiar problemas relacionados al rubro.

A mi familia, le agradezco por acompañarme todo el tiempo, brindarme contención y
cariño. De manera especial, a Daniela que decidió estar conmigo en este camino y a Santiago
que llegó para disfrutar juntos del éxito �nal, siendo siempre ambos un apoyo incondicional.
A mis amigos, quienes con�aron en mí y me dieron ánimos para seguir arduamente en este
trabajo.

Finalmente, a todas las personas que directa o indirectamente pueden haber participado en
mi formación tanto profesional, académica o personal y en las decisiones que he emprendido
en mi vida.

v

vi

Contents

I A shear-compression damage model for simulation of under-
ground mining by block caving 1

Introduction 2

1 Background and state of the art 5

1.1 Variational approach to fracture . 5
1.1.1 Brittle fracture as an energy minimization problem 5
1.1.2 Elliptic regularization . 6

1.2 Gradient damage models to approximate brittle fracture 7
1.2.1 Variational formulation . 8
1.2.2 Approximation of variational brittle fracture 10
1.2.3 Gradient damage model for shear fracture 11

1.3 Generalized standard materials . 12
1.3.1 Gradient damage model . 12
1.3.2 Gradient damage model for shear fracture 13

2 Linear elasticity and di�erentiation with respect to the domain 15

2.1 Linear Elasticity . 15
2.2 E�ect of the boundary conditions in the elasticity equation 16

2.2.1 Results for a �xed radius . 17
2.2.2 Results for di�erent radius values . 21

2.3 Di�erentiation with respect to the domain 23
2.3.1 Numerical results . 25

3 A damage model for the simulation of underground mining 33

3.1 Shear-compression damage model . 33
3.2 New model to underground mining . 36
3.3 Numerical results . 36

3.3.1 Discretization and solution algorithm 36
3.3.2 In�uence of the cavity in the damage model 37

4 Numerical improve for block caving process 55

4.1 Hardening properties analysis . 55
4.1.1 Hardening properties . 55
4.1.2 Models for damage laws . 56
4.1.3 Numerical results . 57

vii

4.2 Damage model in the block caving process and boundary conditions 60
4.2.1 Numerical results . 61

4.3 Fast algorithm to solve the block caving process 79
4.3.1 Errors and new algorithm . 80
4.3.2 numerical results . 83

5 Hydraulic fracturing in the damage model 104

5.1 hydraulic fracturing modeling . 104
5.2 Numerical results . 105

6 The damage model in a real mine 126

6.1 El Teniente mine . 126
6.2 Numerical results . 127

Conclusion 148

II Numerical reconstruction of CGO of conductivity systems 150

Introduction 151

7 Background and state of the art 156

7.1 Calderón's paper . 156
7.2 Complex geometrical optics solutions with a linear phase 158
7.3 The Calderón Problem in two dimensions . 159

8 Construction of CGO of conductivity systems 161

8.1 Existence of CGO solution . 161
8.2 Compute the CGO solutions . 166
8.3 Reduction to a periodic integral equation and discretization 167

9 Numerical results 170

Conclusion 190

A Meshes Creation 191

B Codes in Python 195

B.1 Code for Cavity in 2D . 195
B.1.1 Cavity2D.py . 195
B.1.2 Parameters.py . 205

B.2 Code for Cavity in 3D . 207
B.2.1 Cavity3D.py . 207
B.2.2 Parameters.py . 220
B.2.3 AuxFunctions.py . 224

C Codes in MATLAB 226

C.1 main.m . 226
C.2 operator.m . 230

viii

Bibliography 232

ix

x

Part I

A shear-compression damage model for

simulation of underground mining by

block caving

1

Introduction

Block caving is a mining method in which ore blocks are undermined, causing the rocks to
cave, and thus allowing broken ore to be removed at draw-points (see [24]). This method is
based on the sinking principle and mineral breakage due to the removal of a large supporting
area of rock and the subsequent extraction of this by mean of tunnels or collectors. The
vacuum generated by the extraction of material from the basis is �lled by the material falling
by the action of gravity, which added to the process of attrition given by the friction during
its falling de�nes the size of the mineral at the extraction point. Once extracted from this
point, the material is transferred to a transfer stop in charge of directing it to the next
process, either reduction or transport to the processing plant for further treatment. Figure 1
summarizes the Block Caving process where it is possible to see that over the blastholes, the
ore blocks are broken allowing with this that the material to pass through of the drawpoints.

Figure 1: Block Caving process scheme.

In this work we study a mathematical model which describes the e�ect that occurs in
the rock mass as mining activity developed by the block caving process, speci�cally, we seek
to recover damage from underground mining in the rock mass, where the damage can be

2

seen to appear above the cavity causing subsidence on this cavity [12]. A model of rock
mechanics considering damage, in particular, we will consider a variational formulation of
fracture mechanics.

The key issue of models predicting fracture is Gri�th's criterion [22]. This criterion sup-
poses that, as a crack grows, the displacement �eld is instantly in a new equilibrium, since
the displacement may be discontinuous across the crack increment. The resulting decrease
in stored elastic energy can then be balanced with the work required to create the crack
increment, postulated to be proportional to the newly created area. The proportionality
constant is usually known as fracture toughness. In other words, the rate of elastic energy
decreases per unit area, the energy release rate, is proportional to the fracture toughness.
Gri�th's criterion stipulates that the crack grows only if the energy release rate is equal
to the fracture toughness. Traditionally, these ideas could be formalized only for relatively
simple crack typologies and often only for a pre-de�ned crack path. Only recently was the
theory of brittle fracture freed from this restriction [1, 19]. Ambrosio and Braides [1] pro-
pose minimizing the sum of stored elastic energy and surface energy of discontinuity sets, to
obtain displacements that are stable in the sense of Gri�th. The �rst well-possed mathe-
matical models of quasi-static fracture can be found in Francfort and Marigo [19], Dal Maso
and Toader [15], and Francfort and Larsen[20]. In these references, the Dirichlet data uD
is varying in time and, at each time t, u(t) is assumed to minimizes the potential energy
subject to the appropiated boundary conditions, and subject to an irreversibility constraint
on the crack set. In Giacomini [21], a discrete-time model of this type is proposed, based on
the Ambrosio-Tortorelli approximation, which Γ-converges to the Gri�th energy, see Am-
brosio and Tortorelli [2]. The Ambrosio-Tortorelli approximation is particularly convenient
for numerical implementation and was proposed by Bourdin, Francfort and Marigo [9] and
Bourdin [10] for the simulation of the quasi-static model.

In this work, we consider the gradient damage approach for modeling fracture. In the
pioneer work [46], the gradient damage approach has been used to model brittle fractures.
In damage models, the failure is described by means of an internal variable, the so-called
damage variable, which allows to modulate the sti�ness of the material. For damage models,
it is shown that the quasi-static evolution of a damaged body can be recast into a variational
formulation [41] which consists of minimizing locally the total energy of the system under an
irreversibility condition on the damage variable while enforcing an energy balance condition.
For these models, the total energy can be read as a sum of an elastic energy and a dissipated
energy.

Both gradient damage models and Gri�th model of fracture relies have a variational
structure and one can interpret gradient damage models as an elliptic approximation of
the variational fracture mechanics problem. The variational approach of brittle fracture
recasts the evolution problem for the cracked state body as a minimality principle for an
energy functional sum of the elastic energy and the energy dissipated to create the crack [19].
Mathematical results based on Γ-Convergence theory show that when the internal length of
gradient damage models tends to zero, the global minimum of the damage energy functional
tends towards the global minima of the energy functional of Gri�th brittle fracture [11].

The aim of this work is to provide a new damage model that reproduces the damage in

3

the rock mass produced by the block caving process based on gradient damage models, that
is, recover the damage above the cavity and with this obtain the subsidence. The main issue
of the gradient damage models shown in [40] for underground mining is that, due of the
gravity force, compression at the bottom of the domain has a great value, obtaining with
this that the damage appears speci�cally in the bottom of the domain and then spreading
throughout the domain and with this not showing the true behavior of the damage by the
block caving process. For this, we will propose a new model in order to recover the true e�ect
of the underground mining in the rock mass and the subsidence. the main idea is change the
damage criterion, where, by following [35],the stress tensor is decomposed in its deviatoric
and spherical part, in order to be able to control the contribution of the compression and
shear forces in the damage criterion.

Through this work we will use the following summation convention on repeated indices:
Vectors and second order tensors are indicated by a lowercase letter, such as u and σ for the
displacement �eld and the stress �eld. Their components are denoted by ui and σij. Third
or fourth order tensors as well as their components are indicated by a capital letter, such as
A or Aijkl for the sti�ness tensor. Such tensors are considered to be linear maps applying on
vectors or second order tensors and the application is denoted without dots, like Aε whose
ij-component is Aijklεkl. The inner product between two vectors or two tensors of the same
order is indicated by �:� which stands for aibi or σ : ε for σijεij. We use the notation A > 0
to denote a positive de�nite tensor.

4

Chapter 1

Background and state of the art

In this chapter we will introduce the main concepts that will be used as the basis of our
damage model for underground mining. In a �rst instance, we will introduce the variational
fracture model with its respective elliptical regularization and then we will deliver the main
characteristics of the gradient damage models.

1.1 Variational approach to fracture

The objective of the variational approach to fracture is to settle down a complete and uni�ed
brittle fracture theory within the Continuum Mechanics framework, which is capable of
predicting the onset and the space-time evolution of the sharp-interface cracks with possible
complex typologies where the previous sharp-interface fracture theories fail to deliver.

1.1.1 Brittle fracture as an energy minimization problem

Let us consider a body Ω ⊆ Rn, 1 ≤ n ≤ 3, with a prescribed displacement load U imposed
on a part of the boundary, denoted by ∂ΩU . As such Ω represents the crack-free reference
con�guration of an elastic body.

Throughout the work, fracture are studied within the brittle fracture theory. The fracture
is represented by a family of cracks which correspond to lines in 2D and surfaces in 3D. Let
Γ be the set of the cracked points within the body, where the displacement �eld u may be
discontinuous. Here, we consider the variational approach to fracture mechanics proposed
by Francfort and Marigo [19] who have introduced the following energy functional for the
cracked body

P(u,Γ) = E(u,Γ) + S(Γ) =

∫
Ω\Γ

ψ(ε(u))dx+GcHn−1(Γ), (1.1)

where ψ is the elastic energy density function of the linearized strain ε(u), symmetric part
of the gradient of u de�ned by ε(u) = ∇u+∇uT

2
, Gc is the fracture toughness, i.e. the energy

required to create a crack of unit surface in the body Ω, and Hn−1 is the Hausdor� surface
measure giving the crack length, for n = 2 or surface, for n = 3. In the functional (1.1),

5

E(u,Γ) is the elastic energy stored in the cracked body, and S(Γ) is the energy required to
create the crack according to the Gri�th model [22]. For linear elastic bodies ψ(ε(u)) =
1
2
Aε(u) : ε(u), where A is the fourth order elastic sti�ness tensor, with

A(x) symmetric and such that αI ≤ A(x) ≤ βI for a.e. x ∈ Ω, α, β > 0. (1.2)

Remark 1.1 The energies E(u,Γ) and S(Γ) satisfy the following elementary properties:

1. E(u,Γ) is monotonically decreasing in Γ for any �xed u.

2. S(Γ) is strictly monotically increasing in Γ.

The variational approach to fracture sees the crack evolution as a minimization movement
of the total energy under an irreversibility condition to prevent self-healing of cracks. To this
e�ect a time-parameterized loading U(t) is applied to ∂ΩU . Assume that a initial crack Γ0 is
represent in the body at the onset of the loading process. The main goal is to determine the
evolution of the crack (or cracks) during the loading, i.e., to obtain the time-parameterized
mapping Γ(t). The basic idea is as follow. At a given time t, and for the corresponding
loading U(t) the crack Γ(t) will be the closed subset of Ω which minimizes P(u(t),Γ) among
all cracks Γ which contain all previous Γ(s), s < t.

The Francfort-Marigo model formulates the quasi-static time evolution of the displace-
ment �eld u and the crack set Γ as a minimization problem in (1.1). In view of the
numerical applications, we focus here on the time-discrete case, with N + 1 time steps
{t0 = 0, · · · , ti, · · · , tN = T}. For this, we assume that Γ0 is given, let Uti be a sequence
of loadings. Then the corresponding cracks Γi have to satisfy

Γi ⊇ Γi−1, E(u,Γi) ≤ E(u,Γ) for every Γ ⊇ Γi−1. (1.3)

As such, the evolution is discretization-dependent. The real evolution should be construed
as a limit of the discrete evolution as the time-step tends to zero.

On the basis of the knowledge of the craked at the time instant ti−1, the craked at the
time step ti is obtained as the solution of the following minimization problem

inf {P(u,Γ) : u ∈ Cti(Γ),Γ ⊇ Γi−1} , (1.4)

where the space of admissible displacements at time t is de�ned by

Ct(Γ) :=
{
u ∈ H1(Ω \ Γ) : u = Ut on ∂ΩU

}
, (1.5)

and the admissible crack sets have to satisfy the irreversibility condition Γ ⊇ Γi−1. The
irreversibility condition is fundamental to prevent the unphysical healing of the crack set
Γi−1 at the previous time step.

1.1.2 Elliptic regularization

The variational approach to fracture can be regarded as a Free Discontinuity Problem where
the unknown crack set introduces displacement discontinuity somewhere in the body, see [11]

6

for a mathematical treatment of this topic. The minimization problem for the quasi-static
crack evolution as formulated in (1.4) is not prone to an immediate numerical implementation,
because, for example, there is a dependency between the displacement Γ and the space
of admissible displacement where u is de�ned. To tackle it numerically with a standard
�nite element discretization Bourdin et al. [9] resorts to regularization strategy proposed by
Ambrosio and Tortorelli in [2] for solving similar free-discontinuity problems encountered in
image segmentation [44]. To approximate the solution of the minimization problem (1.4), by
Bourdin et al. [9], we consider the family of elliptic functionals de�ned by

P`(u, α) = E`(u, α) +GcS`(α), (1.6)

with

E`(u, α) =

∫
Ω

1

2

(
(1− α)2 + k`

)
ψ(ε(u))dx, S`(α) =

∫
Ω

(
α2

4`
+ `∇α · ∇α

)
dx, (1.7)

where ` and k` are positive scalar parameters, α is an additional scalar �eld with values in
[0, 1].

The associated regularized version of the minimality principle (1.4) for the time discrete
quasi-static evolution between the time-step ti−1 and ti read as

inf {P`(u, α) : u ∈ Cti , α ∈ Di} , (1.8)

where the spaces of admissible state �elds at the step i are

Cti :=
{
u ∈ H1(Ω) : u = Uti on ∂ΩU

}
, Di := {α ∈ H1(Ω) : αi−1 ≤ α ≤ 1} . (1.9)

The condition α ≥ αi−1, where αi−1 is the damage in the time-step ti−1, is the regularized
version of the irreversibility condition Γ ⊇ Γi−1 in (1.4). The strategy proposed in [9] avoids
the dependency between the fracture and the space of admissible displacement.

Γ-convergence theorems [11] prove that, for ` → 0+ and 0 < k` � `, the sequence
(u`, α`), obtained as the global minimum of (1.6) for a �xed `, converges, in a speci�c weak
sense, to the global minimum of (1.1). Moreover, in [21], Giacomini proves that the time-
discrete quasi-discrete evolution obtained by minimizing the regularized functional under the
irreversibility condition on α converges to the quasi-static evolution of the brittle fracture
model of Francfort and Marigo in [19].

1.2 Gradient damage models to approximate brittle frac-

ture

Damage theory aims at modeling progressive degradation and failure in engineering materials
such as metal, concrete, or rocks. Damage localization may be interpreted as a regularized
description of cracks, that is surfaces of discontinuities of the displacement �eld. Its use
as a genuine physical model for brittle fracture starts from the pioneering work in [46],
where the properties and behaviors of the model are analyzed with respect to its aptitude to
approximate fracture phenomena.

7

1.2.1 Variational formulation

The current formulation of the Gradient Damage Model in the evolution framework is
achieved in [47, 48]. We refer the readers to [40] and references therein for a thorough
review of its variational and constitutive ingredients as well its properties especially when
applied to brittle fracture. This model is based on the variational approach to fracture shown
in the previous chapter, where also, the surface and body forces are added into the energy
functional.

Let us consider a homogeneous n-dimensional body whose reference con�guration is the
open connected bounded set Ω ⊆ Rn and we assume that the local elastic material behavior
can be characterized by the Young's modulus E and the Poisson's ratio ν. The scalar �eld α
introduced in the elliptic regularization shown in Section 1.1.2 is now interpreted as a damage
variable growing from 0 to 1, α = 0 being the undamaged state and α = 1 being the fully
damage state.

The elastic-damage evolution is governed by several physics principles based on the de�-
nitions of a potential energy Pt(u, α) of the body Ω. Adopting the notation used in [40] of
gradient damage models and following Section 1.1.1, the potential energy Pt(u, α) reads

Pt(u, α) = E(u, α) + S(α)−Wt(u). (1.10)

In this potential energy, the elastic energy that characterizes the elastic behavior of the
material is given by

E(u, α) =

∫
Ω

ψ(ε(u), α)dx =

∫
Ω

1

2
A(α)ε(u) : ε(u)dx, (1.11)

where A(α) is the Hooke's elasticity tensor at a given damage state de�ned by

A(α) = a(α)A0, (1.12)

with α 7→ a(α) an adimensional real function of damage characterizing sti�ness degradation
from an initial undamaged state A0 = A(0). Thus, the damage-dependent stress tensor
conjugates to the strain variable is given by

σ = σ(u, α) = A(α)ε(u). (1.13)

The damage dissipation energy, that quanti�es the amount of energy consumed in a dam-
age process, is de�ned by

S(α) =

∫
Ω

(
w(α) +

1

2
w1`

2∇α · ∇α
)

dx, (1.14)

where α 7→ w(α) describes local damage dissipation during a homogeneous damage evolution
and its maximal value w(1) = w1, with 0 < w1 < ∞, is the energy completely dissipated
during such process when damage attains 1.

To de�ne the loading conditionWt(u) and admissible function spaces. We assume that the
body Ω is submitted to a time dependent loading Ut, Ft and ft, which consists of a imposed

8

displacement on the boundary part ∂ΩU , the surface forces on the complementary part ∂ΩF

and the volume forces over Ω, t denoting the time parameter respectively. The potential of
the given external forces at time t can read as the following linear form Wt de�ned on the
set Ct of kinematically admissible displacement �elds

Wt(v) :=

∫
Ω

ft · vdx+

∫
∂ΩF

Ft · vds, (1.15)

with
Ct := {v : v = Ut on ∂ΩU} . (1.16)

The law of evolution of the damage in the body is written in a variational form, that is,
if (u, α) denotes a pair of admissible displacement and damage �elds at time t, i.e., if u ∈ Ct
and α ∈ D with

D := {β : 0 ≤ β ≤ 1 in Ω} , (1.17)

then the evolution problem consists of �nding, for every t ≥ 0, (ut, αt) ∈ Ct × D such that
the following conditions hold (see [47, 48])

1. Irreversibility: t 7→ αt must be non decreasing and, at each time t ≥ 0, αt ∈ D.
2. Stability: At each time t > 0, the state (ut, αt) must be stable in the sense that for

all v ∈ Ct and all β ∈ D such that β ≥ αt, there exists h > 0 such that for all h ∈ [0, h]

Pt(ut, αt) ≤ Pt(ut + h(v − ut), αt + h(β − αt)). (1.18)

3. Energy balance: At each time t > 0, the following energy balance must be hold:

Pt(ut, αt) = P0(u0, α0) +

∫ t

0

(∫
Ω

σs : ε(U̇s)dx−Ws(U̇s)− Ẇs(us)

)
dS (1.19)

In (1.19), α0 denotes the given damage state at the beginning of the loading process
whereas u0 is the associated displacement �eld obtained by solving the elastostatic problem
at time 0. σs denotes the real stress �eld at time s, U̇s is the rate of a given admissible
displacement �eld at time s and Ẇs denotes the linear form associated with the rate of the
prescribed volume or surface forces at time s. The energy balance condition (1.19) charac-
terizes the energy �ow in the system: The loading condition is balanced by the mechanical
energy variation of the system consisting of the elastic energy (1.11) and the energy dissipated
in the process of damage production (1.14).

The necessary conditions that a solution must satisfy are obtained by follow: Dividing
the stability conditions by h > 0 and passing to the limit when h→ 0, one obtains the �rst
order conditions that (ut, αt) must satisfy at time t:

P ′t(ut, αt)(v − ut, β − αt) ≥ 0,∀(v, β) ∈ Ct ×D(αt), (1.20)

where D(αt) = {β : αt ≤ β ≤ 1 in Ω} and P ′t(ut, αt)(v, β) denotes the directional derivative
of Pt at (ut, αt) in the direction (v, β), i.e. the linear form de�ned by

P ′t(ut, αt)(v, β) =

∫
Ω

σt : ε(v)dx

+

∫
Ω

((
1

2
a′(αt)A0ε(ut) : ε(ut) + w′(αt)

)
β + w1`

2∇αt · ∇β
)

dx−Wt(v),

(1.21)

9

where, σt = σ(ut, αt) is the stress tensor at time t. From this global variational formulation,
we can deduce the standard local formulation of the damage model by integration by parts
and classical localization arguments.

The equilibrium equation for the stress σt is obtained by testing the variational inequality
(1.20) for β = αt and v ∈ Ct. This gives the well known equilibrium equation

div(σt) + ft = 0 in Ω,
σt · n = Ft on ∂ΩF ,

u = Ut on ∂ΩU .
(1.22)

The damage problem is obtained by testing (1.20) for arbitrary β in the convex cone D(αt)
with v = ut. That leads to the variational inequality governing the evolution of the damage,
for all β ∈ D(αt)∫

Ω

((
1

2
a′(αt)A0ε(ut) : ε(ut) + w′(αt)

)
(β − αt) + w1`

2∇αt · ∇(β − αt)
)

dx ≥ 0. (1.23)

After integration by parts and using classical tools of calculus of variations, we �nd the
strong formulation for the damage evolution problem in the form of the Kuhn-Tucker condi-
tions for unilateral constrained variational problems

1. Irreversibility: α̇t ≥ 0 in Ω.

2. Damage criterion: 1
2
a′(αt)A0ε(ut) : ε(ut) + w′(αt)− w1`

2∆αt ≥ 0 in Ω.

3. Energy balance: α̇t
(

1
2
a′(αt)A0ε(ut) : ε(ut) + w′(αt)− w1`

2∆αt
)

= 0 in Ω.

4. Boundary Conditions: ∂αt
∂n
≥ 0 and α̇t ∂αt∂n

= 0 on ∂Ω.

The energy balance states that, at each point, the damage can increase only if the damage
yield criterion is attained, that is if the damage criterion is an equality.

The equilibrium and damage problem are implicitly linked and must be satis�ed simulta-
neously to get a solution of the evolution problem (1.20).

1.2.2 Approximation of variational brittle fracture

To show how such gradient damage models are suitable for the simulation of brittle fracture
mechanics, let us �rst rewrite the total energy of the system (1.10) for a body Ω, assuming
no external body and surface forces for brevity

P(u, α) =

∫
Ω

1

2
A(α)ε(u) : ε(u)dx+

Gc

cw

∫
Ω

(
1
˜̀
w(α)

w1

+ ˜̀∇α · ∇α
)

dx, (1.24)

where the fracture toughness energy Gc is de�ned by

Gc = 2`

∫ 1

0

√
2w1w(β)dβ = cw

`w1√
2
, (1.25)

with cw = 4

∫ 1

0

√
w(β)

w1

dβ and ˜̀=
`√
2
.

10

In fracture mechanics approaches, material failure is modeled by nucleation and propaga-
tion of surfaces of discontinuity of the displacement �eld. Following Chapter , the quasi-static
problem of fracture mechanics requires to determine the evolution of the displacement u and
the crack set Γ as a function of the loading.

The fuctional (1.1) has a close analogy with the damage energy functional in the form
(1.24). Both of them are the sum of an elastic energy term and a dissipated energy term,
the dissipated energy being a volume integral for the damage model and a surface integral
for the fracture model. Indeed, the damage functional is a regularized version of the Gri�th
functional. Γ -convergence results [11] show that, under some constitutive requirements, the
global minimum of the damage functional (1.24) converges toward the global minimum of
the Gri�th functional (1.1) when the internal length ` goes to zero.

1.2.3 Gradient damage model for shear fracture

For case where we are interested in predicts asymmetric results in traction and in compression,
the gradient damage model, shown in Section 1.2, is not able to recover this kind of fractures.
An interesting idea is to consider a new variational approach to show how it might be altered
tto incorporate the idea od less brittle, "deviatoric-type fracture" and apply to materials
such as con�ne stone in underground mining.

Lancioni and Royer-Carfagni proposed in [35] a formulation reproducing the shear fracture
model. They modi�ed the energy functional (1.10) to obtain a gradient damage model
developing shear bands with localized damage approximating cracks. The approach is based
on the orthogonal decomposition of the linearized strain tensor in its spherical and deviatoric
components given by εs and εd, respectively, that is:

ε = εs + εd, εs = 1
n
tr(ε)I, εd = ε− εs, (1.26)

where I denotes the n-dimensional identity tensor. With this decomposition, the elastic
energy density function may be written as the sum of the spherical and deviatoric contribution

ψ(ε) =
1

2
λtr(ε)2 + µε : ε = k0

tr(ε)2

2
+ µεd : εd, (1.27)

where λ and µ are the Lamé coe�cients and k0 = λ+ 2µ
n
is the bulk modulus of the material.

The formulation for shear fracture replaces the functional Pt(u, α) of the variational statement
(1.10) by

P̃t(u, α) = Ẽ(u, α) + S(α)−Wt(u), (1.28)

with

Ẽ(u, α) =

(
k0

tr(ε)2

2
+ (a(α) + k`)µε

d : εd

)
, (1.29)

where the spherical part of the elastic energy remains una�ected by the value of the scalar
�eld α. The modi�ed functional implies that the creation of the surface energy may be
compensated exclusively by a reduction of the deviatoric elastic energy.

11

1.3 Generalized standard materials

In this section, we cast the damage models we studied in the framework of generalized stan-
dard materials [23]. In an isothermal process, the Clausius-Duhem inequality that expresses
the second law of thermodynamics takes the form

Φ = σ : ε̇− Ẇ ≥ 0, (1.30)

where Φ denotes the density of dissipated power, W the free energy, σ the stress tensor and
ε̇ the strain rate tensor, de�ned by

ε̇ = ε(u̇) =
1

2

(
∇u̇+∇u̇T

)
. (1.31)

In our case, the free energy is assumed to depend on the strain and on an internal variable
α that measures damage, (1.30) can be rewritten in the form(

σ − ∂W

∂ε

)
: ε̇− ∂W

∂α
: α̇ ≥ 0. (1.32)

In the theory of generalized standard materials, it is postulated that there exists a non-
negative, convex, lower semi-continuous function ϕ(ε̇, α̇), which satis�es ϕ(0, 0) = 0, and
such that Φ = ϕ̇. This assumption yields the relations

∂ϕ

∂ε̇
= σ − ∂W

∂ε
, (1.33)

∂ϕ

∂α̇
= −∂W

∂α
. (1.34)

We next consider di�erent choices for the free energy and the pseudopotential of dissipation
to generate di�erent damage models.

1.3.1 Gradient damage model

In a �rst model, we assume that the free energy and the pseudopotential of dissipation take
the following form

W (ε, α) =
1

2
a(α)A0ε(u) : ε(u) + w(α) +

1

2
w1`

2|∇α|2, (1.35)

ϕ(ε̇, α̇) = I+(α̇), (1.36)

where, I+(α̇) is the indicator function de�ned by

I+(x) =

{
0, if x ≥ 0,

+∞, if x < 0.
(1.37)

Equations (1.33)-(1.34) then yield

σ(u, α)− a(α)A0ε = 0, (1.38)
1

2
a′(α)A0ε : ε+ w′(α)− w1`

2∆α = −R(α̇), (1.39)

12

where, R(α̇) = 0 if α̇ ≥ 0 and R(α̇) ∈ (−∞, 0] if α̇ = 0.

This gradient damage model is studied in [40] and its evolution is de�ned as follows:

1. The stress tensor σ(x, t) = σ(u(x, t), α(x, t)) = a(α(x, t))A0ε(u(x, t)) satis�es the equi-
librium equations

div(σ(x, t)) + f(x, t) = 0 in Ω,
σ(x, t) · n = F (x, t) on ∂ΩF ,

u(x, t) = U(x, t) on ∂ΩU .
(1.40)

2. The damage �eld α(x, t) satis�es the nonlocal damage criterion

1

2
(a′(α(x, t))A0ε(u(x, t)) : ε(u(x, t))) + w′(α(x, t))− w1`

2∆α(x, t) ≥ 0, in Ω,(1.41)

and the nonlocal consistency condition(
1

2
(a′(α)A0ε(u(x, t)) : ε(u(x, t))) + w′(α(x, t))− w1`

2∆α(x, t)

)
α̇(x, t) = 0, in Ω.(1.42)

1.3.2 Gradient damage model for shear fracture

In this model, the pseudopotential of dissipation again takes the form

ϕ(ε̇, α̇) = I+(α̇). (1.43)

For the free energy, we consider the approach based on the orthogonal decomposition of
the linearized strain tensor in its spherical and deviatoric components de�ned in (1.26). With
this decomposition, the free energy W is written as the sum of the spherical and deviatoric
contribution of the strain tensor. Moreover, to reproduce the shear fracture, the spherical
part remains una�ected by the value od the damage scalar α, that is,

W (ε, α) =

(
λ+

2µ

n

)
tr(ε(u))2

2
+ a(α)µεd : εd + w(α) +

1

2
w1`

2|∇α|2, (1.44)

where, λ and µ are the Lamé coe�cients. Then, considering the above mentioned, the
equations (1.33)-(1.34) yield

σ(u, α)−
(
(2µ+ nλ)εs + 2a(α)µεd

)
= 0, (1.45)

a′(α)µεd : εd + w′(α)− w1`
2∆α = −R(α̇). (1.46)

This damage model is studied in [35], where the creation of surface energy may be compen-
sated exclusively by a reduction of the deviatoric elastic energy.

Accordingly, the evolution is de�ned as follows: at each time t,

1. The stress tensor σ(x, t) = σ(u(x, t), α(x, t)) =
(
(2µ+ nλ)εs(x, t) + 2a(α(x, t))µεd(x, t)

)
satis�es the equilibrium equations

div(σ(x, t)) + f(x, t) = 0 in Ω,
σ(x, t) · n = F (x, t) on ∂ΩF ,

u(x, t) = U(x, t) on ∂ΩU .
(1.47)

13

2. The damage �eld α(x, t) satis�es the nonlocal damage criterion

a′(α(x, t))µεd(x, t) : εd(x, t) + w′(α(x, t))− w1`
2∆α(x, t) ≥ 0, in Ω, (1.48)

and the nonlocal consistency condition(
a′(α(x, t))µεd(x, t) : εd(x, t) + w′(α(x, t))− w1`

2∆α(x, t)
) ˙α(x, t) = 0, in Ω.(1.49)

14

Chapter 2

Linear elasticity and di�erentiation with

respect to the domain

In this chapter, we will consider the linear elasticity system as a �rst approximation of
the problem, this will allow us to better understand the impact of mining on the stress
behavior and with it the energy behavior of the elasticity system. Numerical simulations
will be developed to study some important quantities and as these are a�ected by changes
in geometry, for this we will use tools from the optimal design, in particular the so-called
derivation with respect to the domain.

2.1 Linear Elasticity

The linear elasticity problem for static equilibrium of a homogeneous isotropic body Ω ⊆ Rn

under the assumption of small deformations and strains reads: �nd the symmetric stress
tensor σ = [σij]

n
1 and the displacement vector u = [ui]

n
1 , such that

div(σ) = f, in Ω,
σ = 2µε(u) + λ (∇ · u) I, in Ω,
u = 0, on ΓD,

σ · n = g, on ΓN .

(2.1)

Here, f is a given body force, and g a given traction load acting along a segment ΓN of
the boundary, which has an outward unit normal n. Along the rest of the boundary ΓD the
body is clamped and can not be displaced. The elastic properties of the body are governed
by the positive constants λ and µ called the Lamé parameters. Further, ε(u) = [εij]

n
1 is the

strain tensor with components

εij(u) =
1

2

(
∂ui

∂xj
+
∂uj
∂xi

)
, i, j = 1, 2. (2.2)

15

The divergence of the tensor σ and the vector u is de�ned by

div(σ) =

[
n∑
j=1

∂σij

∂xj

]n
i=1

, div(u) =
∑n

i=1
∂ui
∂xi
. (2.3)

Finally, I is the n× n identity matrix.

2.2 E�ect of the boundary conditions in the elasticity

equation

In this section, we will study the e�ect of the boundary conditions in elasticity problem. To
do this, we will compare the results obtained in a spherical bounded domain with the exact
solution of the elasticity problem in an in�nite domain and compare the results on spheres
with di�erent radii.

In the �rst instance, let us consider u as the solution of the following elasticity problem

−div (σ(u)) = f1ω in Rn, (2.4)

where f is a force supported in the open bounded ω ⊆ Rn. In particular we consider the
Dirac delta function at the origin. For this problem, there is an explicit solution, de�ned for
each i component by

ui(x) = Gij(x)fj1ω, (2.5)

with Gij(x), the Green function for the elasticity equation de�ned as follow

Gij(x) =
1

16πµ(1− ν)r
((3− 4ν)δij + r,ir,j) , (2.6)

where ri = xi, r,i = ∂r
∂xi

and r = |x|.

On the other hand, in our problem we are going to consider a bounded domain where we
impose a Robin type boundary condition, given by

−div(σ(u)) = f1ω, in Ω,
σ(u)n+ k(u · n)n = 0, on ∂Ω.

(2.7)

In order to study the e�ect produced by delimiting the domain, let us consider as domain
Ω = BR corresponding to a ball centered on the origin and radius R and consider w = u− u
that satis�es the following problem.

−div(σ(w)) = 0, in BR,
σ(w)n+ k(w · n)n = σ(u)n+ k(u · n)n, on ∂BR.

(2.8)

The objective of this analysis is to study the behavior of the solution w for di�erent values
of R, that is, we will study what happens with the di�erence u− u as R grows.

16

We will consider the following parameters

E = 2.9 · 1010, ν = 0.3, k = 109 and µ = E
2(1−ν)

. (2.9)

We also consider that the force in ω is f = (0, 0,−g)T , with ρ = 2.7 · 103 and g = 9.8

2.2.1 Results for a �xed radius

First, we will study the results for a �xed radius R = 15000 and study the magnitude for
each of the solutions and observe the results. To develop these examples we consider a mesh
with a greater re�nement in the center, this in order to better represent a concentrated force
in the center of the ball, see Figure 2.1

Figure 2.1: Mesh side cut.

In the Figures 2.2-2.3, is shown the magnitude of the exact solution, considering a view in
the y-axis and z-axis respectively, where its highest value is in the center, this is consistent
because the explicit solution has a behavior of the form 1

R
.

17

Figure 2.2: Magnitude of the exact solution (y-axis cut).

Figure 2.3: Magnitude of the exact solution (z-axis cut).

Figure 2.4 the magnitude of the error can be observed when considering a cut in the y-axis,
it is observed that the magnitude of the error is greater in a stripe in the center of the sphere
through the two poles. It is also possible to observe in Figure 2.5, that when making a cut
in the z-axis, when considering a radius of R = 15000 meters the error takes its lower value
at the edges and its greater value at the center axis of the sphere, so the error has a greater
concentration in the center.

18

Figure 2.4: Error magnitude (y-axis cut).

Figure 2.5: Error magnitude (z-axis cut).

Finally, if we consider the relative error, that is, the ratio between the magnitude of the
error and the magnitude of the exact solution, it can be seen in Figure 2.6 the maximum
value is concentrated at the poles of the sphere in the y-axis. On the other hand we can see
in Figure 2.7 that the maximum value is concentrated at the boundary and the minimum
value at the center in the z-axis.

19

Figure 2.6: Magnitude of relative error (y-axis cut).

Figure 2.7: Magnitude of relative error (z-axis cut).

To study the above in a better way, we will consider the value of this magnitude in a
radius located on the x-axis where the left axis will consider the magnitude on a logarithmic
scale. Figure 2.8 shown that the error decreases in a slower than the exact solution, so the
relative error is increasing as we approach the boundary, this is a consequence of applying
the boundary condition.

20

Figure 2.8: Comparison between error magnitudes, exact solution, and relative error.

The results shown above demonstrate that the exact solution magnitude behaves in the
form 1

R
, while the magnitude of the error between both solutions is not seriously a�ected

when considering a bounded domain. On the other hand, when considering the relative
error, we can see that it takes its greatest value at the boundaries of the domain because in
that place one is where it imposes the boundary conditions, a�ecting to the solution of the
problem.

2.2.2 Results for di�erent radius values

In this section, we will study the maximum values that are obtained in the sphere and how
they vary as their radius increases. As can be seen in Figures 2.6-2.7, the relative error has
its maximum value at the boundary of the domain, this because in that area it is where we
impose the boundary condition, so always the value maximum we will �nd in that area. In
order to improve this and have a better comparison for each radius variation, we are going
to truncate this relative error in a radius of size 1000 meters.

For the following results we will consider the relative error, which we will de�ne as follows:

Relative Error = sup
x

∣∣∣∣ ‖w(x)‖2

‖uex(x)‖2

∣∣∣∣ (2.10)

where ‖ · ‖2 is the Euclidean norm. In Table 2.1 the results can be seen, where it can be seen
that the maximum of the exact solution takes a constant value, this because the maximum
value is located in the center, instead the error decreases to ratio 1

R
as the radius increases.

It can be see nthe Relative Error for each value of radius R where it remains constant as
the radius increases, but on the other hand, the truncated Relative Error decreases as the
radius increases. These results tell us that as the radius grows, the error to consider bounded
domains decreases.

21

Radius ‖w‖∞ ‖uex‖∞ Relative Error Truncated relative error

1.50E+03 1.23E-10 2.22E-03 7.62E-05 8.02E-06
2.00E+03 9.29E-11 2.25E-03 9.55E-05 3.78E-06
2.50E+03 7.46E-11 2.26E-03 1.07E-04 2.34E-06
3.00E+03 6.23E-11 2.27E-03 1.20E-04 1.74E-06
3.50E+03 5.35E-11 2.27E-03 1.30E-04 1.32E-06
4.00E+03 4.69E-11 2.28E-03 1.42E-04 1.06E-06
4.50E+03 4.17E-11 2.28E-03 1.54E-04 9.10E-07
5.00E+03 3.76E-11 2.27E-03 1.59E-04 8.05E-07
5.50E+03 3.42E-11 2.30E-03 1.71E-04 7.00E-07
6.00E+03 3.13E-11 2.29E-03 1.91E-04 6.22E-07
6.50E+03 2.89E-11 2.26E-03 1.92E-04 5.91E-07
7.00E+03 2.69E-11 2.28E-03 1.90E-04 5.47E-07
7.50E+03 2.51E-11 2.27E-03 2.16E-04 5.06E-07
8.00E+03 2.35E-11 2.29E-03 2.07E-04 4.55E-07
8.50E+03 2.22E-11 2.24E-03 2.63E-04 4.32E-07
9.00E+03 2.09E-11 2.30E-03 2.42E-04 3.84E-07
9.50E+03 1.98E-11 2.22E-03 2.46E-04 3.93E-07
1.00E+04 1.88E-11 2.34E-03 2.13E-04 3.39E-07
1.05E+04 1.80E-11 2.31E-03 2.75E-04 3.27E-07
1.10E+04 1.71E-11 2.39E-03 2.52E-04 2.91E-07
1.15E+04 1.64E-11 2.29E-03 2.71E-04 2.92E-07
1.20E+04 1.57E-11 2.23E-03 2.74E-04 2.94E-07
1.25E+04 1.51E-11 2.39E-03 2.41E-04 2.53E-07
1.30E+04 1.45E-11 2.26E-03 2.84E-04 2.59E-07
1.35E+04 1.40E-11 2.28E-03 2.83E-04 2.43E-07
1.40E+04 1.35E-11 2.19E-03 2.63E-04 2.50E-07
1.45E+04 1.30E-11 2.20E-03 2.85E-04 2.33E-07
1.50E+04 1.26E-11 2.17E-03 2.87E-04 2.30E-07
1.55E+04 1.22E-11 2.16E-03 2.77E-04 2.21E-07

Table 2.1: Maximum values of the Error and the exact solution uex for di�erent radius R.

To see the above in a better way, we will consider the value of truncated relative error
on a logarithmic scale. Figure 2.9 shown that the this magnitude is monotonically decreases
attained the maximum curvature about the radius R = 3000, after that value the truncated
relative error stabilizes.

22

Figure 2.9: Truncated relative error for di�erent values of R.

The results shown above exhibit that considering a radius greater than 3000, the error
produces by the boundary conditions are not signi�cant in the solution of the elasticity
equation. For this reason we consider that the domains will be about 3 times bigger that the
cavity in the damage problem.

2.3 Di�erentiation with respect to the domain

In order to study the impact of the change in the shape of the cavity in the system (2.1), the
theory of di�erentiation with respect to the domain will be used. This approach captures the
sensitivity of the solution (2.1) to the shape change of cavity.

The derivation with respect to the domain is borned with the optimal design, that is,
problems in which we look for the geometry that minimizes a certain cost function. These
types of problems appear naturally in areas such as the design of structures, pro�les of the
wings of an airplane, among others.

To de�ne this mathematically, following [52], we consider an Ω ⊆ Rn geometry and denote
by u(Ω) the state of the given system as the solution of the following problem

Au(Ω) = f, in Ω,
Bu(Ω) = g, on ∂Ω.

(2.11)

Here A and B denote partial di�erential operators and f and g are some functions de�ned
on Rn.

23

Our objective is to know the dependence of the solution of the problem (2.11) with respect
to the variations of the geometry and in particular the behavior of certain cost functionalities
with respect to the geometry.

Let Ω ⊆ Rn be our domain of reference, let us consider a function φ : Rn → Rn regular
enough, such that the domain variations can be written as

Ω + φ = {y = x+ φ(x) ∈ Rn : x ∈ Ω} . (2.12)

In this way we can de�ne the functional φ 7→ u(Ω + φ), where u(Ω + φ) is the solution of
the problem (2.11) in the domain Ω + φ.

The central idea is to de�ne the concept of derivative of the function (2.11) with respect
to the change of geometry. To do this, let us de�ne the local variation of u as follows. Let
ω ⊂ Ω, we de�ne the local variation of u in the direction φ as

u′(φ) = lim
t→0

u(Ω + φ)
∣∣
ω
− u(Ω)

∣∣
ω

t
, (2.13)

and we have to
u(Ω + φ) = u(Ω) + u′(φ) + o(‖φ‖). (2.14)

In our case, we consider a domain that simulates a rock mass in three dimensions Ω0 ⊆ R3,
with ∂Ω = Γlat ∪ Γup ∪ Γdown denoting the lateral, upper and lower bounds of the domain
respectively. We consider a interior domain S0 ⊆ Ω0, with ∂S0 = Γcav, representing the
interior cavity of this rock mass. Finally we consider the domain Ω = Ω0 \ S0 that it will be
our whole domain.

The linear elasticity equation on Ω correspond to

−div(σ(u)) = f, in Ω,
σ(u) · n = 0, on Γcav,
σ(u) · n = 0, on Γup,

u · n = 0, on Γdown,
σ · n = g, on Γlat,

(2.15)

Our objective is to change the geometry of the cavity, that is, to deform Γcav, without
deforming the regions exteriors Γlat∪Γup∪Γdown to obtain the local variations of the problem
(2.15). Following the work carried out in [52], we have that the local variation u′ is the solution
to the problem

−div(σ(u′)) = 0, in Ω,
σ(u′) · n = −(φ · n) ((∇σ(u))n · n) + σ(u)∇∂Ω(φ · n), on Γcav,
σ(u′) · n = 0, on Γup,

u′ · n = 0, on Γdown,
σ(u′) · n = 0, on Γlat,

(2.16)

where u is the solution of the problem (2.15), that is, the solution of the problem in the
reference domain Ω and ∇∂Ω is the tangential gradient de�ned by

∇∂Ωf = ∇f − (∇f · n) · n on ∂Ω. (2.17)

24

2.3.1 Numerical results

For the numerical tests, we consider �rst the linear elasticity equation (2.15). Figures 2.10-
2.11 display the distribution of the z-component of the displacement in a vertical cut in the
y-axis. It is possible to see that as the cavity evolves, the displacement begins to increase
over the cavity attaining the maximum displacement in this area.

(a) Ω(t0).

(b) Ω(t7).

Figure 2.10: Distribution of vertical displacement in a cut on the y-axis.

25

(a) Ω(t15).

(b) Ω(t20).

Figure 2.11: Distribution of vertical displacement in a cut on the y-axis.

The results shown above exhibit the behavior of the displacement as the cavity advances,
where it is possible to see that the behavior is observed in the block caving process. It
is possible to see that considering only the elasticity problem the model can recover the
subsidence seen in underground mining.

Now when considering the di�erentiation with respect to the domain, �rst we need the
deformation vectors in each cavity con�guration. Figures 2.12-2.13 show the deformation
vectors in a cut in the z-axis for some scenarios, where the blue line represents the cavity
a �xed instant, the red line represents the cavity in the following state and the yellow lines
represent the deformation vectors in these states..

26

(a) Deformation vectors between Ω(t1) and Ω(t2).

(b) Deformation vectors between Ω(t6) and Ω(t7).

Figure 2.12: Horizontal view of the deformation vector.
27

(a) Deformation vectors between Ω(t14) and Ω(t15).

(b) Deformation vectors between Ω(t19) and Ω(t20).

Figure 2.13: Horizontal view of the deformation vector.
28

Figure 2.14-2.15 display the distribution of the magnitude of the derivative with respect
to the domain of the displacement. It is possible to see that as the cavity begins to advance
this magnitude spreads around the cavity because the cavity advances both on the x-axis and
on the y-axis. On the other hand in the last cavity advance the magnitude of the derivative
is distributed around the right cavity end because the cavity advances only in the x-axis.

(a) Ω(t0).

(b) Ω(t7).

Figure 2.14: Distribution of magnitude of the derivative with respect to the domain of the
displacement in a cut on the y-axis.

29

(a) Ω(t15).

(b) Ω(t20).

Figure 2.15: Distribution of magnitude of the derivative with respect to the domain of the
displacement in a cut on the y-axis.

Figure 2.16-2.17 display the distribution of the z-component of the derivative with respect
to the domain of the displacement. As in the previous result, it is possible to see that as
the cavity begins to advance this magnitude spreads around the cavity because the cavity
advances both on the x-axis and on the y-axis. On the other hand in the last cavity advance
the magnitude of the derivative is distributed around the right cavity end because the cavity
advances only in the x-axis. It is also possible to see how the growth rate of the z-component
of the displacement will be as the cavity advances.

30

(a) Ω(t0).

(b) Ω(t7).

Figure 2.16: Distribution z-component of the derivative with respect to the domain of the
displacement in a cut on the y-axis.

31

(a) Ω(t15)

(b) Ω(t20)

Figure 2.17: Distribution z-component of the derivative with respect to the domain of the
displacement in a cut on the y-axis.

The results shown above give us a �rst approximation of how the rock mass will behave in
the block caving process. It can be observed that the displacement behaves in the expected
way since the subsidence seen in underground mining can be observed. On the other hand,
the derivative with respect to the domain gives us information about how the displacement
variation rate will be as the block caving process develops.

32

Chapter 3

A damage model for the simulation of

underground mining

In this chapter we introduce the shear-compression damage model, we will use this model to
approximate the Block Caving process and compare the results with the classical Gradient
Damage Model. The main characteristic of this model is that we can control the contribution
in the damage process given by shearing and compression and, as in the Block Caving process
the main damage is by the e�ect of the shear, this model is suitable for modeling underground
mining.

3.1 Shear-compression damage model

The main issue of gradient damage models in underground mining is that, due to the gravity
force, the damage due to the block caving process is negligible with respect to the damage
associated to large compression in the bottom of the domain. For this, we will proposed a
new model in order to recover the true e�ect of the underground mining in the rock mass,
the principal idea for this is change the damage criterion, where we will decompose the stress
tensor in its deviatoric and spherical part, in order to be able to control the damage produced
by the deviatoric and spherical component of the stress.

Following the gradient damage models shown in Section 1.2, the stress-strain relation is
given by

σ(u, α) = a(α)A0ε(u). (3.1)

For the equation that governs the evolution of damage, we consider the following relationship

1

2
H(ε, α) + w′(α)− w1`

2∆α = −R(α̇), (3.2)

where H(ε, α) is a source term for damage.

We de�ne the expression H(ε, α) in terms of the principal stress of the stress tensor. For
a given stress tensor σ = σ(u, α) = a(α)A0ε(u), we can solve the characteristic equation to
explicitly determine the principal values and directions. In three-dimensional case, following

33

[53], if we consider

m =
1

3
tr(σ), (3.3)

q =
1

2
det(σ −mI), (3.4)

p =
1

6

∑
ij

(σ −mI)2
ij, (3.5)

then, from Cardano's trigonometric solutions of det[(σ−mI)− λI] as a cubic polynomial in
λ, the eigenvalues of σ are de�ned by

λ1 = m+ 2
√
pcos(θ), (3.6)

λ2 = m−√p
(

cos(θ) +
√

3sin(θ)
)
, (3.7)

λ3 = m−√p
(

cos(θ)−
√

3sin(θ)
)
, (3.8)

where θ = 1
3
tan−1

(√
p3−q2
q

)
and 0 ≤ θ ≤ π. Thus, if we rewrite the eigenvalues, we have

λ1 = m+ 2
√
pcos(θ), (3.9)

λ2 = m− 2
√
pcos

(
θ − π

3

)
, (3.10)

λ3 = m− 2
√
pcos

(
θ +

π

3

)
, (3.11)

subtracting the eigenvalues, we obtain

λ1 − λ2 = 2
√

3pcos
(
θ − π

6

)
, (3.12)

λ1 − λ3 = 2
√

3pcos
(
θ +

π

6

)
, (3.13)

λ2 − λ3 = 2
√

3psin(θ). (3.14)

Then, considering the trigonometric part of the previous equations, we can assert, following
the Mohr's circle of stress, that the largest shear component is obtained when λ1−λ2

2
=
√

3p.

We assume that the material gets damaged when the magnitude of the shear component
S is greater than the factor of the magnitude of the normal component N , i.e., S > κN . As
mentioned earlier, the maximun shear is

√
3p, our damage criterion will be

√
3p > κN . On

the other hand, considering σ = σs + σd, where σs and σd are the spherical and deviatoric
part of σ respectively de�ned by σs = mI and σd = σ −mI, we have

|m| =
√
m2 =

√
1

3
σs : σs,

√
3p =

√
1
2

∑
ij(σ −mI)2

ij =
√

1
2
σd : σd, (3.15)

so that damage takes place when

σd : σd − 2

3
κσs : σs > 0. (3.16)

34

In order to compare our model with the models presented in Section 1.3, we rewrite the
above quantity using the stress-strain relation σ = a(α) (2µε+ λtr(ε)I), which yields

σd = a(α)2µεd, (3.17)

σs = a(α)(2µ+ 3λ)εs, (3.18)

so that

σd : σd = a(α)2µσd : εd, (3.19)

σs : σs = a(α)(2µ+ 3λ)σs : εs. (3.20)

These quantities can also expressed in terms of Young's modulus and Poisson's ratio
according to the relations

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
. (3.21)

The conditions for damage can thus be written, up to normalizing by a factor 1
E
to compare

with the models of Section 1.2.
1

E

(
σd : σd − 2

3
κσs : σs

)
> 0. (3.22)

We �nally arrive at the form of the function H(ε, α) as the variation of the damage
condition (3.22) with respect to α

H(ε, α) =
∂

∂α

(
1

E

(
σd : σd − 2

3
κσs : σs

))
. (3.23)

For the case of two dimensions, the characteristic equation takes the following form

det (σ − λI) = λ2 − tr(σ) + det(σ), (3.24)

where the eigenvalues of σ are de�ned by

λ1 =
tr(σ) +

√
tr(σ)2 − 4det(σ)

2
, λ2 =

tr(σ)−
√

tr(σ)2 − 4det(σ)

2
. (3.25)

Then, following the Mohr's circle, we can assert that the largest shear component is
obtained when

λ1 − λ2

2
=

1

2

√
tr(σ)2 − 4det(σ). (3.26)

Considering m = 1
2
tr(σ), we have

|m| =
√
m2 =

√
1

2
σs : σs, 1

2

√
tr(σ)2 − 4det(σ) =

√
1
2

∑
ij(σ −mI)2

ij =
√

1
2
σd : σd,(3.27)

so, in two-dimensional case, damage takes place when

σd : σd − κσs : σs > 0, (3.28)

and the function H(ε, α) takes the following form

H(ε, α) =
∂

∂α

(
1

E

(
σd : σd − κσs : σs

))
. (3.29)

35

3.2 New model to underground mining

In order to model the damage in the underground mining process and considering the pseu-
dopotential of dissipation de�ned above, we propose the following evolution model for block
caving that satisfy the following conditions

1. The stress tensor σ(x, t) = σ(u(x, t), α(x, t)) = a(α(x, t))A0ε(u(x, t)) satis�es the equi-
librium equations

div(σ(x, t)) + f(x, t) = 0 in Ω,
σ(x, t) · n = F (x, t) on ∂ΩF ,

u(x, t) = U(x, t) on ∂ΩU .
(3.30)

2. The damage �eld α(x, t) satis�es the nonlocal damage criterion in Ω

(a2(α(x, t)))′

2E

(
(A0ε)

d : (A0ε)
d − c(A0ε)

s : (A0ε)
s
)

+ w′(α(x, t))− w1`
2∆α(x, t) ≥ 0,

(3.31)
and the nonlocal consistency condition in Ω(

(a2(α(x, t)))′

2E

(
(A0ε)

d : (A0ε)
d − c(A0ε)

s : (A0ε)
s
)

+ w′(α(x, t))− w1`
2∆α(x, t)

)
α̇(x, t) = 0,

(3.32)
where c = κ in the two-dimensional case and c = 2

3
κ in the three-dimensional case.

3.3 Numerical results

In this section we describe the numerical strategy to attack the underground mining problem
and show synthetic 2D test cases where our new damage model is compared with other
existing models describes in Section 1.2, and present di�erent simulations in the sense of the
underground mining.

3.3.1 Discretization and solution algorithm

The three models have been numerically implemented in two dimension, following [40]. Our
numerical scheme uses an alternate minimization algorithm, which consists in solving a series
of subproblems at each time step, to determine u when α is �xed, then to determine α at
�xed u, until convergence.

The evolution is discretized in time. Given the displacement and the damage �eld (ui−1, αi−1)
at time step ti−1, the displacement ui at time ti is �rst obtained by solving the variational
problem: Find u such that

∀v ∈ Cti ,
∫

Ω

σ(u, αi−1) : ε(v)dx =

∫
Ω

fi · vdx+

∫
∂ΩF

Fi · vdS, (3.33)

Subsequently, the �eld αi is determined as a solution to the following bound-constrained
minimization problem

inf
{
P(ui, α) : α ∈ Dt(αi−1)

}
, (3.34)

36

where the functional P(u, α) is de�ned for the three di�erent models by
Gradient damage model:

P(u, α) =

∫
Ω

1

2
a(α)A0ε(u) : ε(u) + w(α) +

1

2
w1`

2|∇α|2, (3.35)

Gradient damage model for shear fracture:

P(u, α) =

∫
Ω

(
λ+

2µ

n

)
tr(ε(u))2

2
+ a(α)µεd : εd + w(α) +

1

2
w1`

2|∇α|2, (3.36)

Shear-compression damage model:

P(u, α) =

∫
Ω

a2(α)

2E

(
(A0ε(u))d : (A0ε(u))d − κ (A0ε(u))s : (A0ε(u))s

)
+ w(α) + w1`

2|∇α|2.
(3.37)

The unilateral constraint α(x) ≥ αi−1 is the time-discrete version of the irreversibility
of damage Considering this way of calculating the damage, we can include the reversibility
of the problem in the equations. The solution strategy is summarized in Algorithm 3 and
implemented in FEniCS, where the codes can be seen in the Appendix B.1.

Algorithm 1 Numerical algorithm to solve the damage problem
1: return Solution of time step ti.
2: Given (ui−1, αi−1), the sate at the previous loading step.
3: Set (u(0), α(0)) := (ui−1, αi−1) and error(0) = 1.0
4: while error(p) > tolerance do
5: Solve u(p) from (3.33) with α(p−1).
6: Find α(p) := arg min

α∈D(αi−1)

P(u(p), α).

7: error(p) = ‖α(p−1) − α(p)‖∞.
8: end while

9: Set (ui, αi) = (up, αp).

3.3.2 In�uence of the cavity in the damage model

For modeling the block caving process, we consider a domain that simulates a rock mass
in two dimensions Ω0 ⊆ R2 with ∂Ω0 = Γlat ∪ Γup ∪ Γdown denoting the lateral, upper and
lower bounded of the domain respectively. We consider a time depending interior domain
S(ti) ⊆ Ω0, with ∂S(ti) = Γcav(ti) representing the interior cavity of this rock mass, where we
assume free boundary conditions in Γcav(ti), that is, σ ·n = 0 in Γcav(ti). Finally, the domain
to consider the block caving process is Ω(ti) = Ω0 \ S(ti). Figure 3.1 shows a sketch of the
domain de�ned above with the boundary conditions used in these problems. The loading is
given by the gravity de�ned by ft = ρg, with ρ = 2.7 · 103 and g = (0.0,−9.8).

37

u · n = 0u · n = 0

u = 0

σ · n = 0

Figure 3.1: Geometry and boundary condition for the cavity problem.

In our tests, we consider that the rock mass is de�ned by Ω0 = (−1500, 1500)×(−500, 500)
and the cavities are represented by S(t) = (−500,−500 + 40ti)× (−20, 20). All simulations
presented here use the following values for material parameters

E = 2.9 · 1010, κ = 1.0, and ν = 0.3, (3.38)

where we use a quadratic damage model de�ned by

a(α) = (1− α)2, w(α) = w1α
2. (3.39)

Gradient damage model

In the �rst test case, we consider the gradient damage model described the Section 1.3.1.
Figures 3.2 3.3 summarize the results obtained with this model. The images display the
evolution of damage when the cavity advances in time. We chose w1 = 105. We observe
that the damage appears in whole the domain and it is distributed in an instant of time (the
same phenomenon can be seen when considering values smaller of w1). This indicates that in
this example, damage is essentially triggered by compression due to the gravity forces, which
is the main forcing term in the model and which is uniformly distributed in the domain.
Damage does not seem to be very sensitive to the presence of the cavity.

38

(a) ti = 0

(b) ti = 5

Figure 3.2: Damage �eld distribution in the rock mass for w1 = 105.

39

(a) ti = 10

(b) ti = 15

Figure 3.3: Damage �eld distribution in the rock mass for w1 = 105.

We observe that on the �rst time steps, the damage begins to appear in the lower area of
the domain, below the extraction cavity, and later distributes throughout the domain. Such
qualitative behavior is not consistent with the expected mechanism of fracking produced by
block caving.

40

Gradient damage model for shear fracture

In the second test case, we consider the gradient damage model for shear fracture given in
Section 1.3.2. Figures 3.4-3.5 display the evolution of the damage when the cavity advances
in time. Again, w1 = 105. Here, damage hardly appears, and takes values close to zero
around the cavity.

(a) ti = 0

(b) ti = 5

Figure 3.4: Damage �eld distribution in the rock mass for w1 = 105.

41

(a) ti = 10

(b) ti = 15

Figure 3.5: Damage �eld distribution in the rock mass for w1 = 105.

For smaller values of w1 (see Figures 3.6-3.7 and Figures 3.8-3.9 for w1 = 5 · 104 and
w1 = 104) damage remains distributed around the cavity. When w1 = 5 · 104 begins to
appear around the end corners of the cavity (where stresses are expected to blow up, due
to corner singularities). On the other hand when w1 = 104 damage begins to appear in the
bottom of the rock mass. Again these results do not represent the expected e�ect of block
caving.

42

(a) ti = 0

(b) ti = 5

Figure 3.6: Damage �eld distribution in the rock mass for w1 = 5 · 104

43

(a) ti = 10

(b) ti = 15

Figure 3.7: Damage �eld distribution in the rock mass for w1 = 5 · 104

44

(a) ti = 0

(b) ti = 5

Figure 3.8: Damage �eld distribution in the rock mass for w1 = 104

45

(a) ti = 10

(b) ti = 15

Figure 3.9: Damage �eld distribution in the rock mass for w1 = 104

Shear-compression damage model

In this test case, we consider our model for the damage problem presented in Section 3.1. In
Figures 3.10-3.11, the evolution of damage is displayed as the cavity advances in time, for the
choice w1 = 105. We observe that the level of damage is lower that produced by the gradient
damage model, and it is mostly localized around the cavity.

46

(a) ti = 0

(b) ti = 5

Figure 3.10: Damage �eld distribution in the rock mass for w1 = 105

47

(a) ti = 10

(b) ti = 15

Figure 3.11: Damage �eld distribution in the rock mass for w1 = 105

Figures 3.12-3.13 and 3.14-3.15 show the evolution of damage for w1 = 104 and w1 = 103

respectively. Damage remains localized around the cavity. As the latter advances in time,
damage gets distributed above the ceiling of the cavity, consistently with what is expected
in block caving.

48

(a) ti = 0

(b) ti = 5

Figure 3.12: Damage �eld distribution in the rock mass for w1 = 104.

49

(a) ti = 10

(b) ti = 15

Figure 3.13: Damage �eld distribution in the rock mass for w1 = 104.

50

(a) ti = 0

(b) ti = 5

Figure 3.14: Damage �eld distribution in the rock mass for w1 = 103.

51

(a) ti = 10

(b) ti = 15

Figure 3.15: Damage �eld distribution in the rock mass for w1 = 103.

Sensitivity analysis

As seen in the damage criterion (3.31), the parameter κ plays a fundamental role in the
propagation of damage in the rock mass, as it controls the contribution of the spherical and
deviatoric part of the stress tensor in the damage criterion.

Figures 3.16-3.17 display results for several values of κ. As this parameter decreases,
damage gets distributed throughout the whole domain, starting from the ceiling of the cavity

52

to the upper surface of the rock mass. When κ becomes smaller than 1, damage appears
in the bottom of the rock mass and invades the whole domain. This is consistent with the
fact that for such values of κ, the damage criterion is less to the deviatoric part of the
stresses, whereas the main forcing term is compressive. On the other hand, larger values of κ
emphasize the deviatoric component of the stress in the damage criterion and privilege shear
forces.

(a) κ = 2.0

(b) κ = 1.5

Figure 3.16: Damage �eld distribution in the rock mass for w1 = 104, with ti = 15.

53

(a) κ = 0.5

(b) κ = 0.2

Figure 3.17: Damage �eld distribution in the rock mass for w1 = 104, with ti = 15.

The results seen above show the importance of parameter κ in our model. In a these
examples, one sees that, for a smaller than 1 values of κ, the spherical component of the stress
tensor predominates over the deviatoric component and with this the damage is damage is
mainly caused by compression causing damage to appear in the bottom of the domain. On
the other hand, for a bigger values of the parameter κ the deviatoric component of the stress
tensor predominates over the spherical part and with this the damage is mainly produced by
the shear forces e�ect.

54

Chapter 4

Numerical improve for block caving

process

In this chapter we proposed a fast numerical algorithm to solve the damage problem in
underground mining.

4.1 Hardening properties analysis

In order to have a better approximation of impact of the underground mining in the rock
mass, it is necessary to model di�erent materials that can represent the di�erent types of
rocks found in mining deposits. In this section we will study di�erent numerical results to
analyze the di�erent combinations of A(α) and w(α). To de�ne the di�erent models, we will
study the Strain Hardening and Stress Softening conditions.

4.1.1 Hardening properties

For a homogeneous damage distribution α, let us de�ne the elastic domains in the strain and
stress spaces by

R(α) =

{
ε ∈Ms :

1

2
a′(α)A0ε : ε ≤ w′(α)

}
, (4.1)

R∗(α) =

{
σ ∈Ms :

1

2
S ′(α)σ : σ ≤ w′(α)

}
, (4.2)

where Ms is the space of symmetric tensors and S(α) = A−1(α).

The evolution of the sizes of (4.1) play a important role in the qualitative properties in
the evolution damage problems. To see this, �rst we introduce the following de�nition

De�nition 4.1 (Hardening properties) We say that the material behavior is: Strain Hard-

ening if α 7→ R(α) is increasing, Stress Hardening if α 7→ R∗(α) is increasing and Stress
Softening if α 7→ R∗(α) is decreasing.

55

Remark 4.2 The monoticity properties mut be understood in the sense of the set inclusion.
For example, the Strain Hardening propertie means that

α1 < α2 ⇒ R(α1) ⊆ R(α2). (4.3)

Depending on the behavior of the quadratic forms de�ning these domains, the material is
said to be

� Strain Hardening when α 7→ (−A′(α)/w′(α)) is decreasing with respect to α, i.e.,

w′(α)A′′(α)− w′′(α)A′(α) > 0. (4.4)

� Stress Hardening (resp. Softening) when α 7→ (S ′(α)/w′(α)) is decreasing (resp. in-
creasing) with respect to α, i.e.,

w′(α)S ′′(α)− w′′(α)S ′(α) < 0 (resp. > 0). (4.5)

The importance of these de�nitions will appear in the study of the solutions of the damage
problems as we will show in the next section.

4.1.2 Models for damage laws

For the study of the di�erent behavior, following [40], we consider four di�erent models, with
its damage laws and hardening properties respectively. This models are de�ned as follows:

� Model 1: We consider a model with an elastic phase. For this, we assume a linear
function w(α) and quadratic function a(α), that is, we take the following damage law

w(α) = w1α, a(α) = (1− α)2. (4.6)

This law satis�es both the strain hardening and stresss softening conditions for α ∈
[0, 1).

� Model 2: We consider the original Ambrosio-Tortorelli regularization model. For this,
we assume a quadratic function w(α) and quadratic function a(α), that is, we take the
following damage law

w(α) = w1α
2, a(α) = (1− α)2. (4.7)

This law satis�es the condition strain hardening for α ∈ [0, 1) and stress softening only
for α ≥ 1/4.

� Model 3: We consider a family of models with the same homogeneous strain-stress
response. For this, we consider the following family of damage models indexed by
parameter p > 0

w(α) = w1

(
1− (1− α)p/2

)
, a(α) = (1− α)p. (4.8)

This case is a generalization of the Model 1 which is recovered for p = 2. It satis�es
both the strain hardening and stress softening conditions for α ∈ [0, 1) and any p > 0.

� Model 4: We consider a model where ultimate fracture occurs at �nite strain. For
this, we assume that it is de�ned by the following material functions parametrized by
a scalar parameter k > 1

w(α) = w1α, a(α) =
1− α

1 + (k − 1)α
. (4.9)

56

4.1.3 Numerical results

In this section we will validate the model proposed in Section 3. For this, we will replicate
the results seen in a cylindrical "testigo" that undergoes a vertical compression and that
also has an initial vertical failure, as seen in Figure 4.1a. In the experiments it can be seen
that, after applying the compression, the "testigo" breaks diagonally following the line of the
initial fracture (Figure 4.1b).

(a) Before compression. (b) After compression.

Figure 4.1: Laboratory test of a "testigo" subjected to a vertical compression.

To model the experiment seen in the Figure 4.1, let us consider a homogeneous cylindrical
domain of L = 0.2 meters length and radius R = 0.06 meters. For the lower base of the
cylinder we will consider that the displacement is null in all directions, while in the upper base
we will consider controlled displacement in the axis z, that is, uz = −0.005t meters. In all
these examples we will consider free condition for the displacement in the lateral boundary,
that is, σ · n = 0. For the case of damage, the boundary conditions will be considered
homogeneous Neumann type, that is, ∂α

∂n
= 0.

The Figures 4.2-4.5 display the distribution of the damage for the di�erent models pro-
posed previously and for the times t = 0.0 seconds and t = 1.0 seconds with an initial
diagonal fracture in the center of the cylinder with magnitude α = 0.5. Is possible see that,
the di�erent models have di�erent behaviour for the distribution of the damage. In the Mod-
els 1 and 3 the damage only appear in the path of the diagonal fracture, where the the values
of the damage grows to α = 1.0 and extends following this path. In the Models 2 and 4 is
possible see that the distribution of the damage does not consider the initial fracture and the
damage is distributed more homogeneously throughout the domain.

57

(a) t=0.0 seg. (b) t=1.0 seg.

Figure 4.2: Damage �eld distribution in the cylinder for the model 1.

(a) t=0.0 seg. (b) t=1.0 seg.

Figure 4.3: Damage �eld distribution in the cylinder for the model 2.

58

(a) t=0.0 seg. (b) t=1.0 seg.

Figure 4.4: Damage �eld distribution in the cylinder for the model 3.

(a) t=0.0 seg. (b) t=1.0 seg.

Figure 4.5: Damage �eld distribution in the cylinder for the model 4.

Through these results, we can di�erentiate two kinds of materials: The �rst kind of
materials are those that, from a fracture (damaged area), follow the path of the fracture
getting the material to be damaged in a particular area, for example the Models 1, 3 and
4, following the laboratory results seen in the Figure 4.1. The second kind of materials, are
those that do not consider the fracture and are damaged homogeneously (Model 2), that is,
do not show the results seen in laboratory tests. After seeing the results, we can conclude
that our model is valid to represent the behavior of fractures, since it is capable of replicating
the laboratory test shown in Figure 4.1.

59

4.2 Damage model in the block caving process and bound-

ary conditions

For simulate the block caving process, we consider a domain that simulates a rock mass in
three dimensions Ω0 ⊆ R3 with ∂Ω = Γlat ∪ Γup ∪ Γdown denoting the lateral, upper and
lower bounded of the domain respectively. We consider a time depending interior domain
S(ti) ⊆ Ω0, with ∂S(ti) = Γcav(ti) and S(ti) ⊆ S(ti+1), representing the interior cavity of this
rock mass. Then in each time step, we consider the evolution domain Ω(ti) = Ω0 \S(ti), that
is, our domain where we calculate the damage model will be the initial domain Ω0 minus the
internal cavity in each time step.

Finally, to de�ne the boundary conditions for our problems, let us consider the equilibrium
equation for �xed value of α that, no loss of generality, we assume that α = 0

−div(σ) = f, in Ω,
σ · n = 0, on Γcav,
σ · n = 0, on Γup,
u · n = 0, on Γdown,
σ · n = g, on Γlat,

(4.10)

where σ = 2µε(u) + λtr(ε(u))I and f = (0, 0,−ρg)T . We will assume that, in the rock mass,
we do not have lateral displacement, that is,

u =

 0
0

uz(z)

 and ε(u) =

 0 0 0
0 0 0
0 0 u′z(z)

 , (4.11)

so we will have

σ =

 λ 0 0
0 λ 0
0 0 λ+ 2µ

u′z(z) and div(σ) =

 0
0

(λ+ 2µ)u′′z(z)

 =

 0
0
ρg

 . (4.12)

Then
u′z(z) =

ρg

λ+ 2µ
z + C. (4.13)

Now, denoting byHmax, the maximum height of the domain and considering that σzz(Hmax) =
0, we have

C = −ρgHmax

λ+ 2µ
. (4.14)

Then
u′z(z) =

ρg

λ+ 2µ
(z −Hmax), (4.15)

and, thus

σ =

 λ
λ+2µ

0 0

0 λ
λ+2µ

0

0 0 1

 ρg(z −Hmax). (4.16)

This gives us a condition that depends on the height z and the maximum height of the
domain Hmax, so for non-homogeneous domains, for example a real mine, this condition

60

gives us problems, because the border conditions have di�erent values for each side face,
since these would not have the same height, causing that the damage appears in the corners
of the domain. To solve this problem we will include a Robin boundary condition of the form
σ · n + k(u · n) · n = 0, with k > 0 a real constant. Finally the boundary condition is of the
form

g =
λ

λ+ 2µ
ρg(z −Hmax)− k(u · n) · n. (4.17)

4.2.1 Numerical results

In all our tests, we consider Ω0 such that x ∈ [−1540, 2060], y ∈ [−1050, 1050] and z ∈
[−500, 450]. Here the meshes are de�ned following the Appendix A and we use the synthetic
cavities de�ned in the Figures A.1, where it is possible to see the di�erent con�gurations of
each cavity. All simulations presented here use the following values for the parameters in the
damage model

E = 2.9 · 1010, ν = 0.3, κ = 1.0 and k = 109, (4.18)

For the numerical test, �rst, we consider that the constant in the function w(α) is indepen-
dent of the constant in the elliptic regularization term in (3.34), this in order to independently
control the variable the energy dissipated without a�ecting the term of regularization. Thus,
for the models shown in Section 4.1.2, we take

w(α) = w11α, w(α) = w11α
2, w(α) = w11

(
1− (1− α)p/2

)
, with w11 6= w1. (4.19)

The Figures 4.6-4.9 summarize the maximum values of α in each mesh iteration. The
images display the evolution of this maximum value and we can be see that for little values
w11 the damage grows faster than bigger values of this constant. For large w11 values the
damage does not achieve the maximum value to fully damage state.

61

0 5 10 15 20 25 30 35 40

Mesh Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ax

im
um

 v
al

ue
 o

f

w
11

=102

w
11

=103

w
11

=104

w
11

=105

w
11

=106

Figure 4.6: Maximum damage value for Model 1 and for each cavity advance considering
di�erent values of w11.

0 5 10 15 20 25 30 35 40

Mesh Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ax

im
um

 v
al

ue
 o

f

w
11

=102

w
11

=103

w
11

=104

w
11

=105

w
11

=106

Figure 4.7: Maximum damage value for Model 2 and for each cavity advance considering
di�erent values of w11.

62

0 5 10 15 20 25 30 35 40

Mesh Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ax

im
um

 v
al

ue
 o

f

w
11

=102

w
11

=103

w
11

=104

w
11

=105

w
11

=106

Figure 4.8: Maximum damage value for Model 3 and for each cavity advance considering
di�erent values of w11.

0 5 10 15 20 25 30 35 40

Mesh Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ax

im
um

 v
al

ue
 o

f

w
11

=102

w
11

=103

w
11

=104

w
11

=105

w
11

=106

Figure 4.9: Maximum damage value for Model 4 and for each cavity advance considering
di�erent values of Kw.

63

Following the previous results, we consider that, for the Model 1, 2 and 3, w11 = 103 and,
for Model 4, w11 = 102. Figures 4.10-4.17 display the evolution of the damage when the cavity
advance in time, for the di�erent models. As it showed in the Chapter 3, the damage is close
to zero almost everywhere except around the cavity, it is possible see that the distribution
of the damage reaching the upper boundary of the domain. For the all models, the material
is fully damaged over the cavity.

(a) Ω(t0).

(b) Ω(t15).

Figure 4.10: Damage �eld distribution in the rock mass for Model 1.

64

(a) Ω(t30).

(b) Ω(t40).

Figure 4.11: Damage �eld distribution in the rock mass for Model 1.

65

(a) Ω(t0).

(b) Ω(t15).

Figure 4.12: Damage �eld distribution in the rock mass for Model 2.

66

(a) Ω(t30).

(b) Ω(t40).

Figure 4.13: Damage �eld distribution in the rock mass for Model 2.

67

(a) Ω(t0).

(b) Ω(t15).

Figure 4.14: Damage �eld distribution in the rock mass for Model 3.

68

(a) Ω(t30).

(b) Ω(t40).

Figure 4.15: Damage �eld distribution in the rock mass for Model 3.

69

(a) Ω(t0).

(b) Ω(t15).

Figure 4.16: Damage �eld distribution in the rock mass for Model 4.

70

(a) Ω(t30).

(b) Ω(t40).

Figure 4.17: Damage �eld distribution in the rock mass for Model 4.

For 3D visualization, the �gures 4.18-4.25 display the distribution of the damage. In this
view is possible see that the damage is close to zero almost everywhere except around the
cavity and in all models the damage reaches the upper boundary with di�erent magnitudes
and distributions.

71

(a) Ω(t0).

(b) Ω(t15).

Figure 4.18: Damage �eld distribution in the rock mass for Model 1 in 3D.

72

(a) Ω(t30).

(b) Ω(t40).

Figure 4.19: Damage �eld distribution in the rock mass for Model 1 in 3D.

73

(a) Ω(t0).

(b) Ω(t15).

Figure 4.20: Damage �eld distribution in the rock mass for Model 2 in 3D.

74

(a) Ω(t30).

(b) Ω(t40).

Figure 4.21: Damage �eld distribution in the rock mass for Model 2 in 3D.

75

(a) Ω(t0).

(b) Ω(t15).

Figure 4.22: Damage �eld distribution in the rock mass for Model 3 in 3D.

76

(a) Ω(t30).

(b) Ω(t40).

Figure 4.23: Damage �eld distribution in the rock mass for Model 3 in 3D.

77

(a) Ω(t0).

(b) Ω(t15).

Figure 4.24: Damage �eld distribution in the rock mass for Model 4 in 3D.

78

(a) Ω(t30).

(b) Ω(t40).

Figure 4.25: Damage �eld distribution in the rock mass for Model 4 in 3D.

4.3 Fast algorithm to solve the block caving process

For large-scale models like those that model a real mine, calculation times can be very large,
causing the results to take a long time to be to solve this, we will proposed a new algorithm
that will lower calculation times without greatly varying the solution to the damage problem.

79

4.3.1 Errors and new algorithm

The results, obtained by Agorithm 3 in the previous section, su�er oscillations in the errors
to achieve the convergence. This causes felays in the solving tho problem, causing more time
to �nd the solution to this problem.

Figure 4.26 shows the logarithm of the errors in each mesh iteration fot the four models.
It is possible to see that, For the Model 1, the oscillations are obtained in the last time step.
In the Model 2 and 3, the oscillations appear around the mesh step 30 and 31 respectively.
Finally, in the Model 4, the are no oscillations.

5 10 15 20 25 30 35 40

Mesh Iteration

-4

-2

0
Model 1

5 10 15 20 25 30 35 40

Mesh Iteration

-4

-2

0
Model 2

5 10 15 20 25 30 35 40

Mesh Iteration

-4

-2

0
Model 3

5 10 15 20 25 30 35 40

Mesh Iteration

-4

-2

0
Model 4

Figure 4.26: Logarithm of the error for each cavity advance.

Figure 4.27-4.30 shows a zoom of the oscillations in the mesh step of these oscillations

80

occur. It can be seen that the oscillations appear in the same mesh step where attained its
maximum value (see Figures 4.6-4.9).

37 38 39 40 41

Mesh Iteration

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
Model 1

Figure 4.27: Zoom of the logarithm of the errors for Model 1.

28 29 30 31 32

Mesh Iteration

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
Model 2

Figure 4.28: Zoom of the logarithm of the errors for Model 2.

81

32 33 34 35 36

Mesh Iteration

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
Model 3

Figure 4.29: Zoom of the logarithm of the errors for Model 3.

13 14 15 16 17

Mesh Iteration

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
Model 4

Figure 4.30: Zoom of the logarithm of the errors for Model 4.

To avoid the oscillations in the solution of the problem and with this improve the time

82

in which the solution is obtained, we propose a modi�cation in the Algorithm 3. This
modi�cation consists in considering, when the error grows, and arrangement of the form

α(p) = CLα
(p−1) + (1− CL)α(p), (4.20)

where this arrangement is a combination between the solution in iteration (p) and the previous
solution in the iteration (p− 1), with CL ∈ (0, 1) a constant. This new approach to solve the
approach is summarized in Algorithm 2, where the FEniCS implementation can be seen in
Appendix B.2.

Algorithm 2 Fast algorithm to solve the damage problem
1: return Solution at time step ti.
2: Given (ui−1, αi−1), the sate at the previous loading step.
3: Set (u(0), α(0)) := (ui−1, αi−1) and error(0) = 1.0
4: while error(p) >tolerance do
5: Solve u(p) from (3.33) with α(p−1).
6: Find α(p) := arg min

α∈D(αi−1)

P(u(p), α).

7: error(p) = ‖α(p−1) − α(p)‖∞.
8: while error(p) >error(p−1) do

9: α(p) = CLα
(p−1) + (1− CL)α(p).

10: α(p) = α(p).
11: error(p) = ‖α(p−1) − α(p)‖∞.
12: end while

13: end while

14: Set (ui, αi) = (up, αp).

4.3.2 numerical results

For this new algorithm, we consider the same previous test, where we apply the Algorithm
2 to all models. The Figures 4.31-4.34 display the logarithm of the error for CL = 0.5 and
CL = 0.9 respectively and for the di�erent models. It is possible to see that the oscillations of
the error disappear that with a smaller amount of iterations the convergence of the algorithm
is attained, causing with this that the solution is obtained in a lower time.

83

5 10 15 20 25 30 35 40

Mesh Iteration

-5

-4

-3

-2

-1

0
CL=0.0

5 10 15 20 25 30 35 40

Mesh Iteration

-5

-4

-3

-2

-1

0
CL=0.5

5 10 15 20 25 30 35 40

Mesh Iteration

-5

-4

-3

-2

-1

0
CL=0.9

Figure 4.31: Logarithm of the error in the Model 1 for di�erent values of CL.

5 10 15 20 25 30 35 40

Mesh Iteration

-5

-4

-3

-2

-1

0
CL=0.0

5 10 15 20 25 30 35 40

Mesh Iteration

-5

-4

-3

-2

-1

0
CL=0.5

5 10 15 20 25 30 35 40

Mesh Iteration

-5

-4

-3

-2

-1

0
CL=0.9

Figure 4.32: Logarithm of the error in the Model 2 for di�erent values of CL.

84

5 10 15 20 25 30 35 40

Mesh Iteration

-5

-4

-3

-2

-1

0
CL=0.0

5 10 15 20 25 30 35 40

Mesh Iteration

-5

-4

-3

-2

-1

0
CL=0.5

5 10 15 20 25 30 35 40

Mesh Iteration

-5

-4

-3

-2

-1

0
CL=0.9

Figure 4.33: Logarithm of the error in the Model 3 for di�erent values of CL.

5 10 15 20 25 30 35 40

Mesh Iteration

-5

-4

-3

-2

-1

0
CL=0.0

5 10 15 20 25 30 35 40

Mesh Iteration

-5

-4

-3

-2

-1

0
CL=0.5

5 10 15 20 25 30 35 40

Mesh Iteration

-5

-4

-3

-2

-1

0
CL=0.9

Figure 4.34: Logarithm of the error in the Model 4 for di�erent values of CL.

Figures 4.35-4.38 summarized the maximum values of α for the di�erent values of CL and
di�erent models in each mesh iteration. The �gure displays the evolution of this maximum
value and it can be see that the value of the constant CL is higher. It is possible see that
the value of the maximum damage is the same for the di�erent values of CL in the �nal
mesh step, except in Model 1 and 3, that the maximum value is lower, for this reason we will
consider CL = 0.9 since this value require less iterations to achieve the convergence.

85

5 10 15 20 25 30 35 40

Mesh Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ax

im
um

 v
al

ue
 o

f

C
L
=0.0

C
L
=0.5

C
L
=0.9

Figure 4.35: Maximum damage value in the Model 1 for each mesh step for di�erent values
of CL.

5 10 15 20 25 30 35 40

Mesh Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ax

im
um

 v
al

ue
 o

f

C
L
=0.0

C
L
=0.5

C
L
=0.9

Figure 4.36: Maximum damage value in the Model 2 for each mesh step for di�erent values
of CL.

86

5 10 15 20 25 30 35 40

Mesh Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ax

im
um

 v
al

ue
 o

f

C
L
=0.0

C
L
=0.5

C
L
=0.9

Figure 4.37: Maximum damage value in the Model 3 for each mesh step for di�erent values
of CL.

5 10 15 20 25 30 35 40

Mesh Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ax

im
um

 v
al

ue
 o

f

C
L
=0.0

C
L
=0.5

C
L
=0.9

Figure 4.38: Maximum damage value in the Model 4 for each mesh step for di�erent values
of CL.

87

Figures 4.39-4.46 display the distribution of the damage when the cavity advances in time
using the Algorithm 2. In the same way as using the Algorithm 3, the damage is closed to
zero almost everywhere but with a lower value and not reaching the upper boundary of the
domain in the Model 1. In the Models 2 and 3 the material is fully damaged over the cavity
in the same way as the Algorithm 3. The Figures 4.47-4.54 display the distribution of the
damage in 3D.

(a) Ω(t0).

(b) Ω(t15).

Figure 4.39: Damage �eld distribution in the rock mass for Model 1 and CL = 0.9.

88

(a) Ω(t30).

(b) Ω(t40).

Figure 4.40: Damage �eld distribution in the rock mass for Model 1 and CL = 0.9.

89

(a) Ω(t0).

(b) Ω(t15).

Figure 4.41: Damage �eld distribution in the rock mass for Model 2 and CL = 0.9.

90

(a) Ω(t30).

(b) Ω(t40).

Figure 4.42: Damage �eld distribution in the rock mass for Model 2 and CL = 0.9.

91

(a) Ω(t0).

(b) Ω(t15).

Figure 4.43: Damage �eld distribution in the rock mass for Model 3 and CL = 0.9.

92

(a) Ω(t30).

(b) Ω(t40).

Figure 4.44: Damage �eld distribution in the rock mass for Model 3 and CL = 0.9.

93

(a) Ω(t0).

(b) Ω(t15).

Figure 4.45: Damage �eld distribution in the rock mass for Model 4 and CL = 0.9.

94

(a) Ω(t30).

(b) Ω(t40).

Figure 4.46: Damage �eld distribution in the rock mass for Model 4 and CL = 0.9.

95

(a) Ω(t0).

(b) Ω(t15).

Figure 4.47: Damage �eld distribution in the rock mass for Model 1 in 3D considering
CL = 0.9.

96

(a) Ω(t30).

(b) Ω(t40).

Figure 4.48: Damage �eld distribution in the rock mass for Model 1 in 3D considering
CL = 0.9.

97

(a) Ω(t0).

(b) Ω(t15).

Figure 4.49: Damage �eld distribution in the rock mass for Model 2 in 3D considering
CL = 0.9.

98

(a) Ω(t30).

(b) Ω(t40).

Figure 4.50: Damage �eld distribution in the rock mass for Model 2 in 3D considering
CL = 0.9.

99

(a) Ω(t0).

(b) Ω(t15).

Figure 4.51: Damage �eld distribution in the rock mass for Model 3 in 3D considering
CL = 0.9.

100

(a) Ω(t30).

(b) Ω(t40).

Figure 4.52: Damage �eld distribution in the rock mass for Model 3 in 3D considering
CL = 0.9.

101

(a) Ω(t0).

(b) Ω(t15).

Figure 4.53: Damage �eld distribution in the rock mass for Model 4 in 3D considering
CL = 0.9.

102

(a) Ω(t30).

(b) Ω(t40).

Figure 4.54: Damage �eld distribution in the rock mass for Model 4 in 3D considering
CL = 0.9.

The results seen above show that our proposed algorithm, in these synthetic examples, is
able to model the damage produce in the rock mass as the Block Caving process develops
and with this we can use this fast algorithm to predict the damage using lower calculation
time.

103

Chapter 5

Hydraulic fracturing in the damage

model

In this chapter, we will consider a �rst view of hydraulic fracturing to underground mining.
Hydraulic fracturing has been investigated as an alternative to conventional fracturing meth-
ods, where the main motivation is to mitigate the seismic response of the rock mass. We will
study if it is possible with our model to be able to replicate the hydraulic fracturing used in
underground mining.

5.1 hydraulic fracturing modeling

To model the hydraulic fracturing, we consider that the domain has an initial fracture on
the cavity, that is α0 6= 0. The main objective is to study the e�ect produced by the initial
hydraulic fracturing in our underground mining problem. For this we will analyze the damage
caused by the cavity and the elastic and dissipated energies, and compared the results with
those obtained without using hydraulic fracturing.

Considering the de�nition of the total energy P(u, α) de�ned in Chapter 1.2 by

Pt(u, α) = E(u, α) + S(α)−Wt(u), (5.1)

where

E(u, α) =

∫
Ω

1

2
A(α)ε(u) : ε(u)dx, (5.2)

S(α) =

∫
Ω

(
w(α) +

1

2
w1`

2∇α · ∇α
)

dx, (5.3)

Wt(u) =

∫
Ω

ft · udx+

∫
∂ΩF

Ft · uds. (5.4)

To model the impact of mining activity, let us consider a homogeneous body Ω0 ⊂ Rn,
with n = 2, 3, that represents the reference rock mass, and consider subdomains Si ⊆ Ω0,

104

i = 1, · · · ,M , that represent the interior cavities with Si ⊆ Si+1, where our domain to
consider the block caving process will be Ωi = Ω0 \ Si, with k = 1, · · · ,M . These domains
represent the cavity advance in mining activity. Thus, we consider, for k ≥ 1

uk = arg min
u∈Cti

Pt(u, αk−1), (5.5)

αk = arg min
α≥αk−1

Pt(uk, α). (5.6)

Previously, the solutions to this problem were obtained considering the initial damage
α0 = 0, but to study the in�uence of hydraulic fracturing in underground mining, we consider
α0 6= 0. In this way, the results obtained in each step of cavity advance are associated to this
initial damage, where we will denote these solutions by {uk(α0), αk(α0)}, k = 1, · · · ,M .

As α0 ≥ 0, αk(α0) ≥ αk(0), for k ≥ 1. Therefore it is not evident that the dissipated
energy associated with the damage can be compared with the case of hydraulic fracturing of
the one that does not have it, this is because the solutions in each cavity advance come from
di�erent initial damages.

On the other hadn, if we consider the elastic energy with A(α) = (1− α)2A0

E(uk, αk) =

∫
Ω

1

2
(1− αk)2A0ε(uk) : ε(uk)dx, (5.7)

and taking α0 = 1− λ, with 0 ≤ λ ≤ 1 constant, we have

E(uk(α0), α0) =
1

λ2
E(uk(0), 0) > E(uk(0), 0). (5.8)

In this way, the elastic energy associated with hydraulic fracturing will always be greater
than the elastic energy without considering hydraulic fracturing. This leads us to �nd a
better way to compare the associated energies. So, we de�ne the following sequences

Λ1(α0) := {E(uk(α0), αk(α0))− E(uk−1(α0), αk−1(α0))}Mk=1 , (5.9)

Λ2(α0) := {S(αl(α0))− S(αk−1(α0))}Mk=1 , (5.10)

which represent the change in the elastic and dissipated energies respectively by the mining
process. In this way we would be interested in comparing Λi(0) with Λi(α0), i = 1, 2.

5.2 Numerical results

We present some numerical results for the analysis of the hydraulic fracturing e�ect consid-
ering the cavity evolution in a synthetic example that models the rock mass in underground
mining. Figure 5.1 displays the lateral cut of the rock mass considering the hydraulic frac-
turing.

105

Figure 5.1: Damage distribution in initial time.

Figures 5.2-5.13 display a comparison between the block caving process without hydraulic
fracturing and the block caving process considering this. It is possible to see that the damage
distribution does not vary perceptibly when considering hydraulic fracturing, so we must see
what happens with other quantities when hydraulic fracturing is taken into account.

106

(a) Domain without initial damage in Ω(t0).

(b) Domain with initial damage in Ω(t0).

Figure 5.2: Lateral cut of the mesh for di�erent time steps for the Model 1.

107

(a) Domain without initial damage in Ω(t20).

(b) Domain with initial damage in Ω(t20).

Figure 5.3: Lateral cut of the mesh for di�erent time steps for the Model 1.

108

(a) Domain without initial damage in Ω(t40).

(b) Domain with initial damage in Ω(t40).

Figure 5.4: Lateral cut of the mesh for di�erent time steps for the Model 1.

109

(a) Domain without initial damage.

(b) Domain with initial damage.

Figure 5.5: Lateral cut of the mesh for di�erent time steps for the Model 2.

110

(a) Domain without initial damage.

(b) Domain with initial damage.

Figure 5.6: Lateral cut of the mesh for di�erent time steps for the Model 2.

111

(a) Domain without initial damage.

(b) Domain with initial damage.

Figure 5.7: Lateral cut of the mesh for di�erent time steps for the Model 2.

112

(a) Domain without initial damage.

(b) Domain with initial damage.

Figure 5.8: Lateral cut of the mesh for di�erent time steps for the Model 3.

113

(a) Domain without initial damage.

(b) Domain with initial damage.

Figure 5.9: Lateral cut of the mesh for di�erent time steps for the Model 3.

114

(a) Domain without initial damage.

(b) Domain with initial damage.

Figure 5.10: Lateral cut of the mesh for di�erent time steps for the Model 3.

115

(a) Domain without initial damage.

(b) Domain with initial damage.

Figure 5.11: Lateral cut of the mesh for di�erent time steps for the Model 4.

116

(a) Domain without initial damage.

(b) Domain with initial damage.

Figure 5.12: Lateral cut of the mesh for di�erent time steps for the Model 4.

117

(a) Domain without initial damage.

(b) Domain with initial damage.

Figure 5.13: Lateral cut of the mesh for di�erent time steps for the Model 4.

Considering now the volume of the dissipated energy generated by the damage. Figures
5.14 -5.17 show the comparison of the volume of the dissipated energy in a log-log scale for
the �nal cavity advance (that is, Ω(t40)), where it is possible to see that the values are not
a�ected mainly by hydraulic fracturing, obtaining similar results.

118

Figure 5.14: Comparison of the dissipated energy in the �nal cavity advance for the Model
1.

Figure 5.15: Comparison of the dissipated energy in the �nal cavity advance for the Model
2.

119

Figure 5.16: Comparison of the dissipated energy in the �nal cavity advance for the Model
3.

Figure 5.17: Comparison of the dissipated energy in the �nal cavity advance for the Model
4.

Figures 5.18-5.21 display the comparison of the volume of the elastic energy in a log-log
scale for the �nal cavity advance where, it is possible to see, unlike previous results, that the

120

values for Model 1 and Model 3 have a more signi�cant di�erence, while for Model 2 and
Model 4, the results are practically the same.

Figure 5.18: Comparison of the elastic energy in the �nal cavity advance for the Model 1.

Figure 5.19: Comparison of the elastic energy in the �nal cavity advance for the Model 2.

121

Figure 5.20: Comparison of the elastic energy in the �nal cavity advance for the Model 3.

Figure 5.21: Comparison of the elastic energy in the �nal cavity advance for the Model 4.

Finally, we consider the di�erence between of the dissipated energy with the previous step,
that is Λ2(α0), for α0 = 0 and α0 6=. Figures 5.22-5.25 display a comparison between the
of Λ2(α0) without hydraulic fracturing and the block caving process considering hydraulic
fracturing. It is possible to see that for the Models 1,2 and 3 there is a di�erence between

122

the value considering hydraulic fracturing or not. On the other hand, for the Model 4 there
is no di�erence between the two cases.

Figure 5.22: Comparison of the elastic energy in the �nal cavity advance for the Model 1.

Figure 5.23: Comparison of the elastic energy in the �nal cavity advance for the Model 2.

123

Figure 5.24: Comparison of the elastic energy in the �nal cavity advance for the Model 3.

Figure 5.25: Comparison of the elastic energy in the �nal cavity advance for the Model 4.

In the test shown above, considering for underground mining that the hydraulic fracturing
is characterized by an initial damage and comparing it with the case without damage, it is
possible to see that the hydraulic fracturing does not represent a signi�cant e�ect in the Block
Caving process and does not a�ect the damage generation process, on the other hand, it can

124

also be observed that the energies dissipated also do not undergo changes when considering
α0 6= 0. It should be noted that the real case of hydraulic fracturing requires additional work
to implement it, this due to the size of the initial fractures must be of a considerably small
size in comparison to the considered domain. Finally, a future study will be a better way to
consider hydraulic fracturing and how to implement it numerically in our model.

125

Chapter 6

The damage model in a real mine

In this chapter, we consider our damage model and the fast algorithm proposed in the Chap-
ters 3-4 respectively for a realistic aplication, that is, we consider a domain that represent
the real topography of the El Teniente mine.

6.1 El Teniente mine

In this section we consider the previous results and apply in a mesh that corresponds to
the real topography of the El Teniente mine (see Figure 6.1), where the meshes are de�ned
following the Appendix A. For this test, we consider the Model 1 and CL = 0.9, for avoiding
errors oscillations, and we will show the behavior of these models for this domain, in addition
to the mesh step, we will consider the real progress of the mine through the polylines of the
cavity, data delivered by the El Teniente Division. This type of more complex topography
brings numerical di�culties and increased calculation times, so it is necessary to consider
distributed algorithms in order to overcome them.

126

Figure 6.1: 3D view of the topography that represent El Teniente mine.

6.2 Numerical results

In this �rst test, we consider the Esmeralda sector in El Teniente mine. For this we will de�ne
the cavity advances as shown in Figure 6.2, where it can be observed that these advances are
not regular as in the previous tests.

127

Figure 6.2: Cavity advances for the Esmeralda sector in El Teniente mine.

Figures 6.3-6.5 display the damage distribution in a plane parallel to the xy-plane. It
is possible to see that the damage appears in the lateral boundary of the cavity and the
damage is close to zero almost everywhere except in a circumscribed area of the cavity where
the value of α never achieves the maximum value α = 1. It is observed that the advance of
the cavity also eliminates areas damaged in the previous steps as the cavity advances and a
larger and more irregular cavity is created.

128

(a) Ω(t0)

(b) Ω(t5)

Figure 6.3: Horizontal cut of the mesh for di�erent time step.

129

(a) Ω(t10)

(b) Ω(t20)

Figure 6.4: Horizontal cut of the mesh for di�erent time step.

130

(a) Ω(t30)

(b) Ω(t38)

Figure 6.5: Horizontal cut of the mesh for di�erent time step.

Figures 6.6-6.8 display the damage distribution produce by the cavity advance for di�erent
time steps in 3D. It is observed that as the advance of the cavities occurs, the damage begins
to spread throughout the cavity increasing the value of the α parameter. It is possible to
see that the damage is close to zero almost everywhere, but the material is fully damaged
(α = 1) at the upper boundary of the domain reaching the surface.

131

(a) Ω(t0)

(b) Ω(t5)

Figure 6.6: Damage distribution in the rock mass in 3D.

132

(a) Ω(t10)

(b) Ω(t20)

Figure 6.7: Damage distribution in the rock mass in 3D.

133

(a) Ω(t30)

(b) Ω(t38)

Figure 6.8: Damage distribution in the rock mass in 3D.

In this second test, we consider the Sub6 sector of the El Teniente mine. For this, we will
de�ne the cavity advance as shown in Figure 6.9, where we again consider an irregular cavity.

134

Figure 6.9: Cavity advances for the Sub6 sector in El Teniente mine..

Figures 6.10-6.12 display the damage distribution in a plane parallel to xy-plane. It
is possible to see that the damage appears in the lateral boundary of the cavity and the
damage is close to zero almost everywhere except in a circumscribed area of the cavity where
the value of α never achieves the maximum value α = 1. Again, it is observed that the
advance of the cavity eliminates areas damaged in the previous steps as the cavity advances
and a larger and more irregular cavity is created.

135

(a) Ω(t0)

(b) Ω(t5)

Figure 6.10: Horizontal cut of the mesh for di�erent time step.

136

(a) Ω(t10)

(b) Ω(t15)

Figure 6.11: Horizontal cut of the mesh for di�erent time step.

137

(a) Ω(t20)

(b) Ω(t28)

Figure 6.12: Horizontal cut of the mesh for di�erent time step.

Figures 6.13-6.15 display the damage distribution produced by the cavity advance for
di�erent time steps. It is observed that as the advance of the cavities the damage begins to
spread over the cavity increasing the value of the α parameter. It is possible see that the
damage is close to zero almost everywhere, but the material is fully damaged (α = 1) at the
upper boundary of the domain reaching the surface.

138

(a) Ω(t0)

(b) Ω(t5)

Figure 6.13: Damage distribution in the rock mass in 3D.

139

(a) Ω(t10)

(b) Ω(t15)

Figure 6.14: Damage distribution in the rock mass in 3D.

140

(a) Ω(t20)

(b) Ω(t28)

Figure 6.15: Damage distribution in the rock mass in 3D.

In the last test, we consider the Nuevo Nivel Mina sector of the El Teniente mine, where
we de�ne the irregular advances of the cavity as shown in Figure 6.16

141

Figure 6.16: Cavity advances fot ge Nuevo Nivel Mina sector in El Teniente mine.

Figures 6.17-6.19 display the damage distribution in a plane parallel to xy-plane. It is
possible to see that the damage appears in the lateral boundary of the cavity and it is close
to zero almost everywhere close to zero almost everywhere except in a circumscribed area of
the cavity where the value of α never achieves the maximum value α = 1. It is also observed
that the damage attains the full damage state around the �rst cavity advance.

142

(a) Ω(t0)

(b) Ω(t5)

Figure 6.17: Horizontal cut of the mesh for di�erent time step.

143

(a) Ω(t10)

(b) Ω(t15)

Figure 6.18: Horizontal cut of the mesh for di�erent time step.

144

(a) Ω(t20)

(b) Ω(t27)

Figure 6.19: Horizontal cut of the mesh for di�erent time step.

Figures 6.20-6.22 display the damage distribution produce by the cavity advance for dif-
ferent time steps. It is observed that as the cavity advances, the damage begins to spread
throughout the cavity increasing the value of the α parameter faster than in the previous
tests. It is possible see that the damage is close zero almost everywhere, but the material is
fully damaged (α = 1) at the upper boundary of the domain, reaching the surface.

145

(a) Ω(t0)

(b) Ω(t5)

Figure 6.20: Damage distribution in the rock mass in 3D.

146

(a) Ω(t10)

(b) Ω(t15)

Figure 6.21: Damage distribution in the rock mass in 3D.

147

(a) Ω(t20)

(b) Ω(t27)

Figure 6.22: Damage distribution in the rock mass in 3D.

The results show that our proposed model captures the damage produced by the block
caving process not only for a synthetic example but for more complex geometries and cavities
that represent a real mine. Accordingly, this model can be used to predict the damage caused
by the advance of di�erent cavities in underground mining and thus be a good approximation
for understanding the behavior of the rock as the Block Caving process is developed.

148

Conclusion

We de�ned a new approach to modeling the block caving process based in gradient damage
model shown in [40], we propose a modi�ed model separating the spherical part and the
deviatoric part of the stress tensor σ in the damage criterion. We have shown in this work
that our new damage model is a good candidate to approximate this underground mining
process. In this work, we consider 2D examples to compare our results with the classical
gradient damage model [40] and gradient damage model for shear fracture [35], where these
models do not recover the damage produced by the mining e�ect since the damage appears
in the bottom of the rock mass or almost in the whole domain. We also consider 3D examples
where, in the �rst instance, we validate our model with a laboratory example in the "testigo"
and then with the validated model carry out di�erent tests for synthetic examples that model
the block caving process. Then, we proposed a new algorithm that, using fewer iterations, is
able to recover the e�ect of the underground mining in the rocky mass. Lastly, we use the
results obtained previously to be able to model the e�ect of hydraulic fracturing and perform
simulations on topographies that simulate a real mine.

In order to extend the results and obtain a more realistic model, we have identi�ed some
strategies listed below:

1. To consider the numerical experiments in a 3D case, taking into account the edge
conditions and surface forces for this case.

2. To consider the temporal e�ect following the dynamic approach in [37].

3. Introduce a temporary dissipation in the model, which allows the study of the variation
of the damage as a function of time in order to extend the results of the quasi-static
model to a more realistic environment.

4. Incorporate into the model the e�ects of the granular phase produced when the material
is totally damaged combined with plasticity models (see [39]).

5. Incorporate into the model the e�ects of density variation due to the mass loss caused
by the material extracted during the block caving process.

149

Part II

Numerical reconstruction of CGO of

conductivity systems

150

Introduction

Electrical impedance tomography (EIT) is an imaging technique in which electrodes are
placed on the surfae of the body, and low-frequacy current is applied on rhe electrodes which
can then be measured. The measurement is repeated for a specifed set of current patterns, or
choices of current amplitudes at each electrode. The resulting current-to-voltage map serves
as data for the inverse problem.

The mathematical model of EIT is called the inverse conductivity problem: recover the
conductivity distribution inside the body given electric boundary measurements performed
on the surface of the body. It is a nonlinear and secerely ill-posed problem.

Two questions were posed by Calderón in [14] which is often pointed to as the mathematical
beginnings of the inverse conductivity problem. The �rst queston is, Is it possible to uniquely
determine the conductivity of an unknown object from boundary measurements? The other
question is, How can this conductivity be reconstructed? Calderón shows that the linearized
problem has an a�rmative answer too the uniqueness question, and he proposed a linearized
reconstruction scheme. His methods have inspired a multitude of research on the problem,
including the use of complex geometrical optics (CGO) solutions for answering both of his
quetions and for designing a regularized inversion method for practical EIT.

In this work, following [5, 4], we study the numerical computation of the CGO solution
to the conductivity system

div (σ · ∇U) = 0, in R2, (6.1)

where, these solutions are speci�ed by their asymptotics

U(z, k) = eikz

((
1
1

)
+W(z)

)
, (6.2)

with W(z) =

(
W1(z)
W2(z)

)
that satis�es

Wi(z) = O
(

1

z

)
, as |z| → ∞, for i = 1, 2.

Here k is a complex parameter, i is the imaginary unit, the conductivity σ ∈ M2×2(R)
is a given symmetric, positive de�nite matrix function, with σ`m(z) = 1, for ` = m, and

151

σ`m(z) = 0, for ` 6= m, outside a compact set Ω. For simplicity let us take Ω as the unit
disk, this is not a signi�cant loss of generality, as a large class of more general setting can be
reduced to this case.

This problem can be considered as a vectorial extension of the scalar case of Calderón's
inverse conductivity problem. In 1980 Alberto Calderón published a short paper entitled
�On an inverse boundary value problem� [14]. This pioneer contribution has motivated many
developments in inverse problem, in particular in the construction of �Complex Geometrical
Optics� solutions of partial di�erential equations to solve several inverse problems. The
problem that Calderón considered was wheter one can determinate the electrical conductivity
of a medium by making voltage and current measurements at the boundary of the medium.
This inverse method is know as Electrical Impedance Tomography (EIT). EIT also arises
in medical imaging given that human organs and tissues have quite diferent conductivities
[32, 60, 29]. This inverse problem has also been used to detect leaks from buried pipes [31].

Let us describe the details of this problem as follows. Let Ω ⊂ RN be a bounded domain
with smooth boundary. The electrical conductivity of Ω is represented by a bounded and
positive function q(x). In the absence of sink or sources of current, the equation for potential
is given by

div (q∇u) = 0, in Ω,

where q∇u represents the current �ux.

Given a potential φ ∈ H1/2(∂Ω) on the boundary, the induced potential u ∈ H1(Ω) solves
the Dirichlet problem

div (q∇u) = 0, in Ω,
u = φ, on ∂Ω.

(6.3)

The Dicichlet to Neumann map, or vortage to current map, is given by

Λq : H1/2(∂Ω) → H−1/2(∂Ω),
φ 7→ q ∂u

∂n

∣∣
∂Ω
,

where n denotes the unit outer normal to ∂Ω.

The inverse problem is to determine q knowing Λq. It is di�cult to �nd a systematic way
of prescribing voltage measurements at the boundary to be able to �nd the conductivity.
Calderón took instead a di�erent route. Using the divergence theorem we have

Qq(φ) :=

∫
Ω

q|∇u|2dx =

∫
∂Ω

Λq(φ) = φdS, (6.4)

where dS denotes surface measure and u is the solution of (6.3). Qq(φ) is the quadratic
form associated to the linear map Λq(φ), and know Λq(φ) or Qq(φ) for all φ ∈ H1/2(∂Ω) is
equivalent. Qq(φ) measures the energy needed to maintain the potential φ at the boundary.
Calderón's point of view is that if one looks at Qq(φ) the problem is changed to �nding
enough solutions u ∈ H1(Ω) of the equation (6.3) in order to �nd q in the interior.

In [14], Calderón used complex exponentials harmonics functions u = ex·ρ and v = e−x·ρ,
where ρ ∈ CN and ρ · ρ = 0, to prove that the linearization of (6.4) is injective at constant

152

conductivities. He also gave an approximation formula to reconstruct a conductivity which
is, a priori, close to a constant conductivity.

Several uniqueness results have been obteined for the inverse conductivity problem, for
example, in dimension higher than two for smooth conductivities by Sylvester and Uhlmann
in 1987 [56]. In dimension two, Nachman [45] produced in 1995 a uniqueness result for
conductivities with two derivatives. Earlier, the problem was solved for piecewise analytic
conductivities by Koh and Vogelius in [33] and [34] and the generic uniqueness was established
by Sun and Uhlmann [54]. In particular, in dimension two, Astala and Päivärinta [5] proved
that the Dirichlet-to-Neumann map, Λσ, uniquely determines the conductivity σ ∈ L∞(Ω),
0 < c ≤ σ. In [51], Santacesaria propose a �rst step to tackle the Calderon's problem in Rn,
based in the Astala and Päivärinta method [5] and Cli�ord algebras.

The crucial technical tools for the uniqueness results are Complex Geometrical Optics
(CGO) solutions, sometimes also called exponentially growing solutions. These solutions
have their origin in optics, and the complex-valued CGO solutions have exponential growth
in certain directions and exponential decay in others. They were �rst time introduced by
Faddeev in 1966 [18] and later rediscovered in the context of inverse problems. CGO solutions
are a valuable tool both theoretically and computationally points of view since many proofs
involving them are constructive and lend themselves well to computational algorithms. For
a thorough survey see [57].

In dimension 2, Astala and Päivärinta [5] use the CGO solutions to solve the Calderón's
problem. In this case (with L∞-conductivities) the CGO solutions need to be constructed
via the Beltrami equation

∂fµ = µ∂fµ, (6.5)

where µ is a compactly supported L∞ functions, connected to q by the identity

µ =
1− q
1 + q

. (6.6)

Indeed, the respective complex CGO solution are related by the equation

2u(z, k) = fµ(z, k) + f−µ(z, k) + fµ(z, k)− f−µ(z, k). (6.7)

The simple reason behind these identities is that the real part u(z, k) of fµ(x, k) solves the
equation (6.3) while the imaginary part solves the same equation with q replaced by 1/q.

Then, an asymptotical condition is required as well

f(z, k) = eikz(1 + ω(z, k)), ω(z, k) = O
(

1

z

)
, |z| → ∞. (6.8)

The numerical computation of the CGO solutions of the equation (6.5) was �rst time
introduced in [4], the authors proposed a complicated method to compute ω(z, k) in (6.8) via
the solution of a R-linear integral equation based on periodization, truncation of a Neumann
series, discretization, Fast Fourier Transform (FFT), and the GMRES method [50]. In [17], a
simpler numerical method for solving the same R-linear integral equation was proposed, which

153

solves the R-linear integral equation in the unit disk directly, based on the fast algorithm in
[16]. In [28] Huhntanen and Perämäki introduced an e�cient method for the computation of
the CGO, where they considered a new way to discretize the R-linear integral equation.

For our problem, let us consider the set of all symmetric 2-matrices, S2, equipped with
the inner product M ·N = trace(MN) and the norm

‖M‖S2 = (M ·M)1/2 =

(
2∑

i,j=1

m2
ij

)1/2

,

where M ∈ S2. Let M and N be in S2, let us consider the order relation M ≤ N by

Mξ · ξ ≤ Nξ · ξ, for all ξ ∈ R2.

Finally, in the space L∞(Ω;R2×2) we use the norm

‖H‖L∞(Ω;R2×2) := max
1≤i,j≤2

‖hij‖L∞(Ω),

where H ∈ L∞(Ω;R2×2).

Suppose that Ω ⊂ R2 is the unit disc and σ = [σjk]
2
j,k=1 such that

[σjk] ∈ L∞(Ω;R2×2), [σjk]
t = [σjk], C−1I ≤ [σjk] ≤ CI

where C > 0 is a real number and the super-cript t denotes the non-conjugate matrix trans-
pose. Let U ∈ [H1(Ω)]2 be the unique solution to

div (σ · ∇U) = 0, in Ω,
U = Φ, on ∂Ω.

(6.9)

If σ and ∂Ω are smooth, we can de�ne the Dirichlet-to-Neumann, or voltage-to-current,
map by

Λσ : [H1/2(∂Ω)]2 → [H−1/2(∂)]2,
Φ 7→ n · σ∇U.

Compared to the identi�cation σ in (6.3), the problem of identifying the matrix σ not
only has not been demonstrated but also it has received less attention than scalar problems.
However, there are some contributions treating the following problem:

div (σ∇u) =
2∑

i,j=1

∂

∂zi

(σij(z))
∂

∂zj
u = 0, in Ω,

u = φ, on ∂Ω.

(6.10)

Ho�mann and Sprekels in [27] proposed a dynamical system approach to reconstruct the
matrix σ in equation (6.10). In [49], Rannacher and Vexler employed the �nite element
method and showed error estimates for a matrix identi�cation problem from pointwise mea-
surements of the state variable, provided that the sought matrix is constant and the exact

154

data is smooth enough. Astala et al. [6] showed that it is possible to determine a L∞ smooth
anisotropic conductivity up to a W 1,2 di�eomorphism φ.

In [26], an alternative method for reconstruction to matrix coe�cient is proposed, based
on convex energy functional method with Tikhonov regularization.

We can consider this work as a natural extension to Calderón's problem proposed in [5] for
coupled conductivity systems and for non-symmetric matrix conductivity. This paper gives
the �rst step to extend the Calderon problem to coupled conductivity systems by Astala
Päivärinta method for L∞ non-symmetric matrix coe�cients and can be extended for more
complex problems, for example elasticity equation and Stoke equation. The principal idea
of this problem is to reconstruct numerically the CGO solutions for the matrix conductivity
case where we consider di�erent types of conductivities which represent di�erent types of
materials, for example anisotropic conductivities. There are other works in the context to
vectorial equations. In [58], Uhlmann and Wang construct CGO solutions for the isotropic
elasticity system concentrated near spheres, where the domain is modeled as an inhomoge-
neous, isotropic, elastic medium characterized by the Lamé parameters λ(x) ∈ C2(Ω) and
µ ∈ C4(Ω). In [25] Heck et al., transform the Stoke equations to the decoupled system which
is a matrix-valued Schrödinger equation.

155

Chapter 7

Background and state of the art

7.1 Calderón's paper

In [14], Caldeón proved that the map Q is analytic. The Fréchet derivative of Q at q = q0 in
the direction h is given by

dQ
∣∣
q=q0

(h)(f, g) =

∫
Ω

h∇u · ∇vdx, (7.1)

where u, v ∈ H1(Ω) solve{
div(q0∇u) = div(q0∇v) = 0 in Ω

u
∣∣
∂Ω

= f ∈ H 1
2 (∂Ω), v

∣∣
∂Ω

= g ∈ H 1
2 (∂Ω).

(7.2)

So the linearized map is injective if the product of H1(Ω) solutios of div(q0∇u) = 0 is dense
in L2(Ω).

Calderón proved injectivity of the linearized map in the case where q0 is a constant, which
we assume for simplicity to be the constant function 1. The question is reduced to whether
the product of gradients of harmonic functions is dense in L2(Ω).

The harmonic functions used by Calderón was the following

u = ex·ρ, v = e−x·ρ, (7.3)

where ρ ∈ Cn with
ρ · ρ = 0. (7.4)

The condition (7.4) is equivalent to the following

ρ = η+ik
2
, η, k ∈ Rn,

|η| = |k|, η · k = 0.
(7.5)

Then by plugging the solutios (7.3) into (7.1) we obtain if dQ
∣∣
q0=1

(h) = 0

|k|2(χΩh)∧(k) = 0,∀k ∈ Rn, (7.6)

156

where χΩ denotes the characteristic function of Ω and ∧ denotes Furier transform. Then we
conclude by the Fourier inversion that h = 0 on Ω. However, one cannot apply the implicit
function theorem to conclude that q is invertible near a constant since conditions on the range
of Q that would allow use of the implicit function theorem are either false or not known.

Calderón also observed that using the solutions (7.3) one can �nd an approximation for
the conductivity q if

q = 1 + h (7.7)

and h is small enough in the L∞ norm. Considering

Gq = Qq

(
ex·ρ
∣∣
∂Ω
, ex·ρ

∣∣
∂Ω

)
, (7.8)

with ρ ∈ Cn as in (7.4). Now

Gq =

∫
Ω

(1 + h)∇u · ∇vdx+

∫
Γ

h(∇δu · ∇v +∇u · ∇δv)dx+

∫
Ω

(1 + h)∇δy · ∇δvdx, (7.9)

with u, v as in (7.3) and

div(q∇(u+ δv)) = div(q∇(v + δv)) = 0 in Ω,
δu
∣∣
∂Ω

= δv
∣∣
∂Ω

= 0.
(7.10)

Now standar elliptic estimates applied to (7.10) show that

‖∇δu‖L2(Ω), ‖∇δv‖L2(Ω) ≤ C‖h‖L∞(Ω)|k|e
1
2
r|k‖ (7.11)

for fome C > 0 where r denotes the radius of the smallest ball containing Ω.

Plugging u, v into (7.8) we obtain

χ̂Ωq(k) = −2
Gq

|k|2 +R(k) = F̂ (k) +R(k), (7.12)

where F is determined by Gq and therefore this is known. Using (7.11), we can show that
R(k) satis�es the estimate

|R(k)| ≤ C‖h‖2
L∞(Ω)e

r|k|. (7.13)

In other words we know χ̂Ωq(k) up to a term that is small for k, where k is small enough.
More precisely, let 1 < α < 2. Then for

|k| ≤ 2− α
t

log

(
1

‖h‖∞L

)
= β (7.14)

we have
|R(k)| ≤ C‖h‖αL∞(Ω) (7.15)

for some C > 0.

We take η̂ a C∞ cut-o� so that η̂(0) = 1, suppη̂(k) ⊂ {k ∈ Rn, |k| ≤ 1} and ηβ(x) =
βnη(βx). Then we obtain

χ̂Ωq(k)η̂

(
k

β

)
=
−2Gqq

|k|2 η̂

(
k

β

)
+R(k)k̂

(
k

β

)
. (7.16)

157

Using this we get the following estimate

|l(x)‖ ≤ C‖h‖αL∞(Ω)

(
log

(
1

‖h‖L∞

))n
, (7.17)

where l(x) = (χΩq ∗ ηβ)(x)− (F ∗ ηβ)(x). Formula (7.17) gives then an approximation to the
smoothed out conductivity, χΩq ∗ ηβ, for h su�ciently small.

7.2 Complex geometrical optics solutions with a linear

phase

Motivated by Calderón exponential solutions, Sylvester and Uhlmann [55, 56] constructed
in dimension n ≥ 2 CGO solutions of the conductivity equation for C2 conductivities that
behave like Calderón exponential solutions for large frequencies. This can be reduced to
constructing solutions in the whole space for Schrödinger equation with potential.

Let q ∈ C2(Rn), q strictly positive in Rn and q = 1 for |x| ≥ R, R > 0. Let Lqu =
div(q∇u). Then we have

q−
1
2Lq(q

− 1
2) = ∆− γ (7.18)

where

γ =
∆
√
q

√
q
. (7.19)

Therefore, to construct solutions of Lqu = 0 in Rn it is enough to construct solutions of the
Schödinger equation (∆ − γ)u = 0 with γ of the form (7.19). The next result proved in
[55, 56] states the existence of CGO solutions for the Schödinger equation associated to any
bounded and compactly supported potential.

Theorem 7.1 Let γ ∈ L∞(Rn), n ≥ 2 with q(x) = 0 for |x‖ ≥ R > 0. Let −1 < δ < 0.
There exists ε(δ) and such that for every ρ ∈ Cn satisfying

ρ · ρ = 0 (7.20)

and
‖(1 + |x|2)1/2γ‖L∞(Rn) + 1

|ρ| ≤ ε (7.21)

there exists a unique solution to
(∆− γ)u = 0 (7.22)

of the form
u = ex·ρ(1 + ψγ(x, ρ)) (7.23)

with φγ(·, ρ) ∈ L2
δ(Rm). Moreover ψγ(·, ρ) ∈ H2

δ (Rn) and for 0 ≤ s ≤ 2 there exists C =
C(n, s, δ) > 0 such that

‖ψγ(·, ρ)‖Hs
delta
≤ C

|ρ|1−s . (7.24)

158

Here

L2
δ(Rn) =

{
f :

∫
(1 + |x|2)δ|f(x)|2dx <∞

}
, (7.25)

with the norm given by ‖f‖2
L2
δ

=
∫

(1+ |x|2)δ|f(x)|2dx and Hm
δ (Rn denotes the corresponding

Sobolev space. Note that for large |ρ| these solutions behave like Calderón's exponential
solutions ex·ρ.

7.3 The Calderón Problem in two dimensions

Astala and Päivärinta, in [5], have extended signi�cantly the uniqueness result of [45] for
conductivities having two derivatives in an appropiate sense and the result of [13] for con-
ductivities having one derivatives in appropiate sense, by proving that any L∞ conductvity
in two dimensions can be determined uniquely form the Dicichlet to Neumann map. The
∂ method, introduced in [8], has been used in numerical reconstruction procedures in two
dimensions in [30, 43].

The proof of [5] relies also on contruction of CGO solutions for the conductivity equation
with L∞ coe�cients and the ∂ method. This is done by transforming the conductivity
equation to a quasi-regular map. let D be the unit disk in the plane. Then we have

Lemma 7.2 Assume u ∈ H1(D) is a real valued and satis�es the conductivity equation on
D. Then there exists a function v ∈ H1(D), unique up to a constant, such that f = u + iv
satis�es the Beltrami equation

∂f = µ∂f, (7.26)

where µ = (1− q)/(1 + q).

Conversely, if f ∈ H1(D) satis�es (7.26) with a real-valued µ, then u = Re(f) and
v = Im(f) satisfy

div(q∇u) = 0 and div

(
1

q
∇v
)

= 0, (7.27)

respectively, where q = (1− µ)((1 + µ).

Let us denote κ = ‖µ‖L∞ < 1. Then (7.26) means that f is a quasi-regular map. The
function v is called the q-harmonic conjugate of u and it is unique up to a constant.

Astala and Päivärinta consider the µ-Hilbert transform Hµ : H1/2(∂Ω) → H1/2(∂Ω) that
is de�ned by

Hµ : u
∣∣
∂Ω
7→ v

∣∣
∂Ω

(7.28)

and show that the DN map Λq determines Hµ and vice versa.

Below we use the complex notation z = x1 + ix2. Moreover, for the equation (7.26), it is
shown that for every k ∈ C there are CGO solutions of the Beltrami equation that have the
form

fµ(z, k) = eikzMµ(z, k), (7.29)

159

where

Mµ(z, k) = 1 +O
(

1

z

)
as |z| → ∞. (7.30)

More precisely, they prove that

Theorem 7.3 For each k ∈ C and for each 2 < p < 1 + 1/κ the equation (7.26) admits
a unique solution f ∈ W 1,p

loc (C) of the form (7.29) such that the asymptotic formula (7.30)
holds true.

In the case of non-smooth coe�cients the functionMµ grows sub-exponentially in k. Astala
and Päivärinta introduce the transport matrix to deal with this problem and they show that
this matrix is determined by the Hilbert transform Hµ and therefore by the Dicichlet to
Neumann map. Then they use the transport matrix to show that Λq determines uniquely q.

160

Chapter 8

Construction of CGO of conductivity

systems

8.1 Existence of CGO solution

In this work we identify R2 and C by the map (x1, x2) 7→ x1 + ix2 and denote z = x1 + ix2,
with i satisfying i2 = −1. We use the standar notations:

∂ = ∂z = 1
2

(∂1 − i∂2)

∂ = ∂z = 1
2

(∂1 + i∂2)

where ∂i =
∂

∂xj
, j = 1, 2. We will consider Ω ⊂ R2 to be the unit disc and σ ∈ L∞(Ω;R2×2)

a symmetric, positive de�nite matrix.

The aim of this work is, following [5], for k ∈ C, compute numerically a unique solution
U1 and U2 to

div (σ(z) · ∇U1(z, k)) = 0,
div (σ(z)−1 · ∇U2(z, k)) = 0,

(8.1)

where U1 and U2 have asymptotic behavier similar to (6.2). The way to get U1 and U2 is
considering solutions to the Beltramy system

∂F = µ∂F , (8.2)

where
µ(z) = (I − σ(z)) (I + σ(z))−1 . (8.3)

Here, the connection between the equations (6.9) and (8.2) is given by the following
Lemma:

Lemma 8.1 Suppose U ∈ [H1(Ω)]2 satis�es the equation (6.9). Then there exists a function
V ∈ [H1(Ω)]2 such that F = U + iV satis�es the Beltrami system (8.2), where µ is de�ned

161

by (8.3). Conversely, if F ∈ [H1(Ω)]2 satis�es (8.2) with µ ∈ L∞(Ω;R2×2), then U = Re(F)
and V = Im(F) satisfy

div(σ · ∇U) = 0

div(σ−1 · ∇V) = 0,

respectively, where
σ = (I + µ)−1(I − µ).

Proof. Let us denote W = (−σ∂2U, σ∂1U). By (6.9),

0 = div(σ · ∇U),

= div(σ(∂1U, ∂2U)),

= ∂1(σ∂1U) + ∂2(σ∂2U),

then ∂2W1 = ∂1W2.

Therefore there exists V ∈ [H1(D)]2 such that

∂1V = −σ∂2U,
∂2V = σ∂1U.

}

Then a straightforward calculation prove the equivalence of the two equations.

Remark 8.2 We note that the condition for σ and µ implies the existence of a constant
0 ≤ κ < 1 such that

‖µ‖L∞(Ω;R2×2) ≤ κ,

holds for almost very z ∈ C and for σ ∈ L∞(Ω;R2×2).

In the same way that for the scalar case, the Beltrami system (8.2) and its solutios are
governed and controlled by the extension of two basic linear operators, the Cauchy transform
and the Beurling transform.

The Cauchy transform is extended for the vectorial case by

PG(z) =

(
PG1(z)
PG2(z)

)
,

where the scalar Cauchy transform is de�ned by

Pg(z) = − 1

π

∫
C

g(ω)

ω − zdm(ω).

Remark 8.3 The vectorial Cauchy transform P acts as the inverse operator to ∂, i.e., P∂G =
∂PG = G for G ∈ [C∞0 (C)]2.

162

The operator P has some properties in an appropiate Lebesgue, Sobolev and Lipschitz
space (see [59]) and can be easily extended to the operator P. If we denote

Lp(Ω) =
{
G ∈ [Lp(C)]2

∣∣ G∣∣C\Ω ≡ 0
}
,

we have the following properties.

Proposition 8.4 Let Ω ⊂ C be a bounded domain and let 1 < q < 2 and 2 < p <∞. Then

1. P : [Lp(C)]2 → [Lipα(C)]2, where α = 1− 2
p
.

2. P : [Lp(Ω)]2 → [W 1,p(C)]2 is bounded.

3. P : [Lp(Ω)]2 → [Lp(C)]2 is compact.

4. P : [Lp(C) ∩ Lq(C)]2 → [C0(C)]2 is bounded, where C0 is the closure of C∞0 in L∞.

On the other hand, the Beurling transform is also extended for the vectorial case by

SG(z) =

(
SG1(z)
SG2(z)

)
=

(
∂PG1(z)
∂PG2(z)

)
= ∂PG(z),

where S is determined as a principal-value integral

Sg(z) = − 1

π

∫
C

g(ω)

(ω − z)2
dm(ω).

To undertand the mapping properties of P and the invertibility of the operator I − µS
on some appropriate spaces, the following proposition is very usefull, where S denotes the
operator S(G) = S(G).

Proposition 8.5 Let M,N ∈ L∞(C;C2×2) such that

2
(
‖M‖L∞(C;C2×2) + ‖N‖L∞(C;C2×2)

)
≤ κ,

holds for almost every z ∈ C with a constant 0 ≤ κ < 1. Suppose that 1 + κ < p < 1 + 1/κ.
Then the operator

B = I −MS−NS

is bounden and invertible in [L2(C)]2, where the norm of B and B−1 are bounded by constants
depending only on κ and p.

Moreover, the bound in p is sharp; for each p ≤ 1 + κ and for each p ≥ 1 + 1/κ there are
M1 and M2, as above, such that B is not invertible in [Lp(C)]2.

163

Proof. If we consider

B = I −MS−NS

= I −M
(
S
S

)
−N

(
S
S

)
= I −

(
(m11 +m12)S
(m21 +m22)S

)
−
(

(n11 + n12)S
(n21 + n22)S

)
=

(
I − (m11 +m12)S − (n11 + n12)S
I − (m21 +m22)S − (n21 + n22)S

)
,

where every component is bounded and invertible in Lp(C) (see [3]) and then the result
holds.

We need the following useful proposition as well, which is a natural extension of the result
shown in [5] and [59].

Proposition 8.6 Let F = (F1, F2) ∈ [W 1,p
loc]2 and Γ ∈ Lploc(C) for some p > 2. Suppose that

for some constant 0 ≤ κ < 1,

|∂Fi(z)| ≤ κ|∂Fi(z)|+ Γ(z)|Fi|, i = 1, 2,

holds for almost every z ∈ C. Then, if F(z) → 0 as |z| → ∞ and Γ has a compact support
then

F(z) ≡ 0.

Now, we can establish the existence of the CGO solutions to (8.2) of the form

Fµ(z, k) = eikz

((
1
1

)
+N (z)

)
(8.4)

where N =

(
N1

N2

)
and

Ni(z, k) = O
(

1

z

)
, as |z| → ∞, for i = 1, 2. (8.5)

In order to establish the existence and shape (8.4) of CGO solutions, we begin with the
following proposition.

Proposition 8.7 Suppose that 2 < p < 1 + 1/κ, α ∈ L∞(C;R2×2) with supp(α) ⊂ Ω and
‖ν‖L∞(C;R2×2) ≤ κχΩ(z) for almost every z ∈ Ω. De�ne the operator K : [Lp(C)]2 → [Lp(C)]2

by

KG = P
(
I − νS

)−1 (
αG
)
.

Then K : [Lp(C)]2 → [W 1,p(C)]2 and I −K is invertible in [Lp(C)]2.

164

Proof. First, since ‖ν‖L∞(C;R2×2) ≤ κχΩ(z), by Proposition 8.5, we have that I − νS is
invertible in Lp and, by Proposition 8.4, the operator K : [Lp(C)]2 → [Lp(C)]2 is well-de�ned
and compact. We also have supp

(
I − νS

) (
αG
)
⊂ Ω.

Finally, to prove the invertibility of I −K in [Lp(C)]2, we use the Fredholm's alternative.
For this, let us prove that I −K is injective in [Lp(C)]2.

Let us suppose that G =

(
G1

G2

)
∈ [Lp(C)]2 satisfying

G = P
((
I − νS

)−1 (
αG
))
,

by Proposition 8.4, we have that G ∈ [W 1,p(C)]2 and thus

∂G =
(
I − νS

)−1 (
αG
)
,

which is equivalent to
∂G− ν∂G = αG. (8.6)

Finally, from (8.6) we can conclude that ∂G = 0 outside Ω, and therefore G is analytic.
Then this combined with G ∈ [Lp(C)]2 implies that

Gi(z) = O
(

1

z

)
, for |z| → ∞, for i = 1, 2.

Thus, the assumptions of Proposition 8.6 are ful�lled and we must have G ≡ 0.

Finally, the following theorem establishes the existence of the Complex Geometric Optics
solutions to the Beltrami system (8.2).

Theorem 8.8 For each k ∈ C and for each 2 < p < 1 + 1/κ the system (8.2) admits a
unique solution F ∈ [W 1,p

loc (C)]2 of the form (8.4) such that the asymtotic formula (8.5) holds
true.

Proof. If we write

Fµ(z, k) = eikz

((
1
1

)
+N (z)

)
, (8.7)

and plug this into the Beltrami system (8.2) we obtain

∂N − e−kµ∂N = αN + α

(
1
1

)
,

where
e−k(z) = e−i(kz+kz).

α(z) = −ike−k(z)µ(z).
(8.8)

165

Since S
(
∂G
)

= ∂G, we obtain

∂N =
(
I − e−kµS

)−1
(
αN + α

(
1
1

))
.

If now, K is de�ned, as in the Proposition 8.7, with ν = e−kµ we get

N −KN = K (χΩ) ∈ [Lp(C)]2. (8.9)

Since I −K is invertible in [Lp(C)]2, and N is analytic in C \ Ω the result holds.

Finally, by the Theorem 8.8, the Complex Geometrical Optics solutions Fµ are given by
substituting the unique solution of equation (8.9) by the formula (8.7).

8.2 Compute the CGO solutions

Once the existence of the CGO solution of (8.2) has been proved, we want to calculate
this solution Fµ numerically. For the scalar case, the numerical computation of CGO was
introduced in [4], based on the original contruction in [5]. In [4], the di�culty of the numerical
computation of CGO solutions is the lack of complex-linearity in the equation that was
compensated by keeping the real and imaginary parts of the solution separately in a real-
linear solution process. To amend this Huhntanen and Perämäki introduced in [28] an e�cient
method for the computation of the CGO solutions. Let us describe this method below:

First, by Theorem 8.8 we know that the function N satis�es the equation

∂N − ν∂N − αN − α
(

1
1

)
= 0. (8.10)

De�ne U ∈ [Lp(Ω)]2 by U = −∂N . Then N = −PU and ∂N = −SU . Substituting U
into (8.10) leads to the real-linear integral equation

−U − ν
(
−SU

)
− α

(
−PU

)
= α

(
1
1

)
.

Then

U + (−νS− αP)U = −α
(

1
1

)
. (8.11)

Let us denote the complex conjugate G of an operator G as G = ρ(G), then (8.11) takes
the form

(I + Aρ)U = −α
(

1
1

)
, (8.12)

where A := (−νS− αP).

166

The operator I+A is invertible in [Lp(Ω)]2. Indeed, note that, by Proposition 8.5, I−νSρ
is invertible. Hence the equation(

I − (I − νSρ)−1 (αPρ)
)
U = (I − νSρ)−1

(
−α
(

1
1

))
is equivalent to (8.12). The operator on the left-hand side is invertible by the fact that its
null space is trivial and (I − νSρ)−1 (αPρ) is compact. Therefore, I +A is invertible as well.

A special precoditioning step is �rst time introduced in [28], it consists of the transfor-
mation of the real-linear equation (8.12) into a complex-linear equation allowing standar
iterative solution by GMRES. Consider the following equation in the space [Lp(Ω)]2:(

I − AA
)
V = −α

(
1
1

)
, (8.13)

where AV = AV . Now (8.13) is complex-linear, and the solution U of (8.12) can be written
as U = (I − Aρ)V .

Summarizing, the computation of the function N (z, k) de�ned in (8.9) for a given k ∈ C
proceeds as follows:

Algorithm 3 Solution of Nµ
1: return Solution of the function N (z, k).
2: Given k, α, µ ,Where k ∈ C, α is compute from (8.8) , µ is compute from(8.3).
3: Solve for V from (8.13). Note that V is supported in Ω.
4: Calculate U = (I − Aρ)V . Note that U is supported in Ω.
5: Compute N = −PU .
6: Nµ = N .

8.3 Reduction to a periodic integral equation and dis-

cretization

As shown in [28] and discussed in the previous section, the computation of CGO solution
to the real-linear Beltrami equation can be reduced to the solution of the complex-linear
equation (8.13). Furthermore, one can use the iterative GMRES method for the solution of
periodized and discretized version of (8.13). To that end, followong [4], we need to introduce
a periodic version of the operator A := (−νS − αP).

Take s > 2 and de�ne a square Q ⊂ R2 by

Q :=
{

(x, y) ∈ R2
∣∣− s ≤ x < s,−s ≤ y < s

}
.

We consider tiling of the plane by translated copies of Q and work with 2s-periodic func-
tions f : R2 → C satisfying

f̃(x+ 2j1s, y + 2j2s) = f̃(x, y), for j1, j2 ∈ Z,

167

where we indicate 2s-periodic functions adding ·̃ on top of symbols.

Choose a smooth cuto� function η satisfying

η(z) =

{
1, for |z| ≤ 2,
0, for |z| ≥ 2 + (s− 2)/2,

(8.14)

and 0 ≤ η(z) ≤ 1 for all z ∈ C. De�ne a 2s-periodic approximate Green's function g̃ for the
D-bar operator by setting it to η(z)/(πz) inside Q and extending periodically by

g̃(z + 2j1s+ i2j2s) =
η(z)

πz

for z ∈ Q \ 0 and j1, j2 ∈ Z. De�ne a periodic approximate Cauchy transform by

P̃ f(z) := (g̃∗̃f) (z) =

∫
Q

g̃(z − w)f(w)dw1dw2, (8.15)

where ∗̃ denotes convolution on the torus.

The Beurling transform is approximated in the periodic context by writing

β̃(z + 2j1s+ i2j2s) =
η(z)

πz2

for z ∈ Q \ 0 and j1, j2 ∈ Z, and de�ning

S̃g(z) :=
(
β̃∗̃g

)
(z) =

∫
Q

β̃(z − w)g(w)dw1dw2. (8.16)

Then the extentions of the periodic Cauchy transform P̃ and periodic Beurling transform
S̃ is de�ned by

P̃ =

(
P̃

P̃

)
, S̃ =

(
S̃

S̃

)
.

Set Ã :=
(
−ν̃S̃− α̃P̃

)
with the functions α̃ and ν̃ being trivial periodic extensions of

functions de�ned in (8.8), α and ν, which are both supported in the unit disc. The periodic
version of (8.13) takes the form (

I − ÃÃ
)
Ṽ = α̃

(
1
1

)
(8.17)

Now, for discretization, choose a positive integer m, denote M = 2m, and set h = 2s/M .
De�ne a grid Gm ⊂ Q by

Gm =
{
jh
∣∣j ∈ Z2

m

}
,

Z2
m =

{
j = (j1, j2) ∈ Z2

∣∣− 2m−1 ≤ jl < 2m−1, l = 1, 2
}
.

168

Note that the number of points in Gm is M2. De�ne the grid approximation ϕh : Z2
m → C

of a function ϕ : Q→ C by
ϕh(j) = ϕ(jh).

Our strategy is to use the iterative GMRES method for the solution of the discretized
version of the periodic equation (8.17). To that end, we need to discretize the periodic
Cauchy and Beurling transforms de�ned in (8.15) abd (8.16), respectively.

Set

g̃h(j) =

{
g̃(jh) for j ∈ Z2

m \ 0,
0 for j = 0,

and

β̃h(j) =

{
β̃(jh) for j ∈ Z2

m \ 0,
0 for j = 0,

where the point jh ∈ R2 is interpreted as the complex number hj1 + ihj2. Now g̃h and β̃h are
M ×M matrices with complex entries. Given a periodic function ϕ, the discrete transforms
P̃ϕ are de�ned by (

P̃ϕh

)
h

= h2IFFT (FFT(g̃h) · FFT(ϕh)) ,(
S̃ϕh

)
h

= h2IFFT
(
FFT(β̃h) · FFT(ϕh)

)
,

and all the ingredients for the numerical solution are in place.

169

Chapter 9

Numerical results

In this section we assess the ability of the proposed approach for obtaining numerical ap-
proximation on several contexts. We will take strictly positive conductivities σlm : Ω → R
that models an idealized cross-section of human chest. Since the Astala-Päivärinta theory is
developed for nonsmooth conductivities σ ∈ L∞(Ω) we will consider the background conduc-
tivity has the value one and the conductive heart and resistive lungs are separated from the
background by a discontinuity.

For the �rst test, based on the example in [4, 42], let us consider σlm(z) = σ(z), when
the conductivity of the heart is 2 an the conductivity of the lungs is 0.7, see Figure 9.1 for
a graphical representation of the conductivity. In this example we consider that the two
equations act separately, that is, they are not coupled, the equation is the following

div

(
σ(z)

(
1 0
0 1

)
· ∇U

)
= 0, in Ω,

170

Figure 9.1: Three-dimensional mesh plot of the discontinuous conductivity σ.

In the Figure 9.2 it can be seen that the two equations act independently with the same
conductivity, obtaining the same result for the CGO solution for N1 and N2. It is possible
to observe that the solutions in the Figure 9.2 are equivalent to the solutions shown in the
Figure 14.12 in [42]. It's possible to observe that our procedure solves the fully vectorial
expression and recover the scalar case for the diagonal matrices, then our procedure is an
extension of the scalar algorithm.

171

(a) Real part of N1(z, 2).

(b) Real part of N2(z, 2).

Figure 9.2: Three-dimensional mesh plot of the CGO solutions corresponding to the nons-
mooth conductivity σ. Here k = 2 and m = 8.

172

For the second example we consider, as in the previous example, the conductivity σlm(z) =
σ(z) and as a diagonal matrix as well, but in this case the conductivity is di�erent in the
diagonal, the equation that represent this is the following

div

(
σ(z)

(
2 0
0 3

)
· ∇U

)
= 0, in Ω,

For this example we will compare the results obtained by the vectorial algorithm and the
results obtained by the scalar algorithm presented in [28]. For this cases, the scalar algorithm
solves the folowings problems:

div (λσ(z)∇u) = 0, in Ω,

where λ = 2, 3 and N 1, N 2 represent the scalar solution for λ = 2 and λ = 3, respectively.
In the Figures 9.3-9.4 it can be seen that the two equations act independently, but since the
factor that multiplies σ is di�erent in each equation, a di�erent solution is observer for N1

and N2. Also in the Figures 9.3-9.4, it is possible to see that, the solutions have the same
form.

173

(a) Real part of N1(z, 2).

(b) Real part of N 1(z, 2).

Figure 9.3: Three-dimensional mesh plot of the CGO solutions. Here k = 2 and m = 8.

174

(a) Real part of N2(z, 2).

(b) Real part of N 2(z, 2).

Figure 9.4: Three-dimensional mesh plot of the CGO solutions. Here k = 2 and m = 8.

175

For the third example, we also take σlm(z) = σ(z), but in this case, we consider a non-
diagonal matrix, with this choice we have that the equations are coupled. This will be
represented by the following equation

div

(
σ(z)

(
2 1
1 3

)
· ∇U

)
= 0, in Ω,

In order to assess the consistency and mesh independence of the method in this example,
we have three di�erent mesh re�nements, m = 6, 7, 8, and compare their di�erents results. In
the Figures 9.5-9.7 can be seen that the coupled equation gives us solutions that di�er both
in their magnitude and their shape, so it can be seen that there is an interaction between
the conductivities of each of the solutions. From Figures 9.5-9.7 it is possible to see that, for
di�erents re�nements, the solution is the same. In the Tables 9.1-9.2 it can be see the error
between the discretization m and m− 1, where it can be observed that as the discretization
increases, the error compared to the previous discretization is lower. In order to compare
both solutions, we consider only the common nodes that contain both discretizations.

176

(a) Real part of N1(z, 2).

(b) Real part of N2(z, 2).

Figure 9.5: Three-dimensional mesh plot of the CGO solutions. Here k = 2 and m = 6.

177

(a) Real part of N1(z, 2).

(b) Real part of N2(z, 2).

Figure 9.6: Three-dimensional mesh plot of the CGO solutions. Here k = 2 and m = 7.

178

(a) Real part of N1(z, 2).

(b) Real part of N2(z, 2).

Figure 9.7: Three-dimensional mesh plot of the CGO solutions. Here k = 2 and m = 8.

179

m ‖Nm
1 ‖∞ ‖Nm

1 −Nm−1
1 ‖∞

7 1.0990 0.2955
8 0.9603 0.1619
9 0.9837 0.0809
10 0.9833 0.0394

Table 9.1: Comparison of N1 for di�erent re�nements m.

m ‖Nm
2 ‖∞ ‖Nm

2 −Nm−1
2 ‖∞

7 1.2320 0.3385
8 1.1026 0.2319
9 1.1264 0.1241
10 1.1264 0.0480

Table 9.2: Comparison of N2 for di�erent re�nements m.

Now, for the last example, we will consider di�erent conductivities for the matrix but
with the condition that the matrix remains symmetric, see Figures 9.8-9.9 for plot of the
conductivities. The equation that represent this is the following

div

((
σ11(z) σ12(z)
σ21(z) σ22(z)

)
· ∇U

)
= 0, in Ω,

180

(a) σ11(z).

(b) σ12(z).

Figure 9.8: Three-dimensional mesh plot of the discontinuous conductivity σlm.

181

(a) σ21(z).

(b) σ22(z).

Figure 9.9: Three-dimensional mesh plot of the discontinuous conductivity σlm.

182

In the Figure 9.10 it can be seen that the coupled equation gives us solutions that di�er
both in their magnitude and their shape, so it can be seen that there is an interaction between
the conductivities of each of the solutions. In this example it is possible to consider di�erent
conductivities that represent deformities of organs and tumors that may have these organs.

183

(a) Real part ofN1(z, 2).

(b) Real part of N2(z, 2).

Figure 9.10: Three-dimensional mesh plot of the CGO solutions corresponding to the nons-
mooth conductivity σlm. Here k = 2 and m = 8.

184

Finally, for the �fth example, we will consider the non-symmetric matrix, i.e., each compo-
nent of the matrix is a di�erent conducticity, see Figure 9.11-9.12 for plot of the conductivities.
The equation that represent this is the following

div

((
σ11(z) σ12(z)
σ21(z) σ22(z)

)
· ∇U

)
= 0, in Ω, (9.1)

185

(a) σ11(z).

(b) σ12(z).

Figure 9.11: Three-dimensional mesh plot of the discontinuous conductivity σlm.

186

(a) σ21(z).

(b) σ22(z).

Figure 9.12: Three-dimensional mesh plot of the discontinuous conductivity σlm.

187

In the Figure 9.13, it can be seen that, for non-symmetric matrix, the coupled system
give us di�erent solutions in shape and magnitude. In the example is possible to see that for
non-symmetric matrix σ, our algorithm can reconstruct the CGO solutions of the system.

188

(a) Real part ofN1(z, 2).

(b) Real part of N2(z, 2).

Figure 9.13: Three-dimensional mesh plot of the CGO solutions corresponding to the nons-
mooth conductivity σlm. Here k = 2 and m = 8.

189

Conclusion

We present a numerical reconstruction of the CGO solutions for the conductivity systems,
this reconstruction is based on solving the problem for a Beltrami system equivalent to the
conductivity system. For this, we prove the existence of the CGO solutions of the Beltrami
system and then reconstruct the solution of this system. Several examples were presented to
represent all the possible cases of conductivity systems, where we consider a simple case of a
diagonal matrix to a more complex example of anisotropic conductivity and non-symmetric
matrix. In the examples are considered di�erent ways to validate the method where we can
see that we can replicate the solution obtained for the scalar case, it can bee seen that the
method converges under mesh re�nements.

In order to extend the results, we have identi�ed some future works listed below:

1. To solve Calderón's problem (Uniqueness, Stability, Reconstruction) for conductivity
systems, considering the CGO solutions.

2. To consider numerical reconstruction of the CGO solution for other elliptic vectorial
equations, for instance the elasticity equation or Stoke equation, using the same strat-
egy.

3. To solve Calderón's problem for the conductivity equation in Rn, following the ideas
of Santacesaria [51], where it is necessary the Astala and Päivärinta method [5] and
Cli�ord algebras.

190

Appendix A

Meshes Creation

In this appendix we will show the methodology used to create the meshes for the di�erent
numerical results shown in this work. To create the meshes, in the �rst instance, to build
the mesh surfaces using FEniCS, and then �ll each surface with tetrahedron using TetGen.

To construct the mesh that represents our domain, �rst we need to de�ne the interior
cavity in each time step ti. For this, we consider a �at surface that represents the base of the
cavity, which is projected on the z axis. More speci�cally, the base is repeated and scaling at
di�erent levels of z in the range z ∈ [0, zmax] to build the cavity surface in 3D. For example,
Figure A.1 displays the forty interior �at surface that represent the cavity sequences that we
use in our synthetic tests.

Figure A.1: Interior �at surface that represent the cavity sequences.

Once the cavity in each time step is known, for each cavity, a mesh is built around it where

191

near the boundary of the cavity a more re�ned mesh is de�ned in order to better re�ect the
e�ects produced by each advance of the cavity in the damage process. Figure A.2 shows
a lateral view of the mesh in the last cavity advance for the synthetic case, where, we can
observe the greater re�nement around the cavity.

Figure A.2: Lateral cut of the mesh in the last time step.

To de�ne the mesh sequences and taking into account the irreversibility of the problem, it
is necessary that as the cavity progresses, the mesh should not change its form between one
advance to another, that is, the nodes should be kept in the same place in each advance of
this. To make this possible, we will consider a series of meshes in which we will only eliminate
the internal domain of the cavity, keeping the rest of the nodes in the same position. In the
Figure A.3, the mesh can be observed for di�erent advances of this in a horizontal cut, where
the location of the nodes for each advance is not a�ected. On the other hand, in Figure A.4
it possible see the mesh for the same advances but now in a Lateral cut.

192

(a) Ω(t20)

(b) Ω(t40)

Figure A.3: Horizontal cut of the mesh for di�erent time step.

193

(a) Ω(t20)

(b) Ω(t40)

Figure A.4: Lateral cut of the mesh for di�erent time step.

194

Appendix B

Codes in Python

This appendix presents the computer codes used in the Part I, which have been developed in
Python and with the use of FEniCs software. FEniCS is a popular open-source computing
platform for solving partial di�erential equations (PDEs). FEniCS enables users to quickly
translate scienti�c models into an e�cient �nite element code. With the high-level Python
and C++ interfaces to FEniCS, it is easy to get started, but FEniCS o�ers also powerful
capabilities for more experienced programmers. FEniCS runs on a multitude of platforms
ranging from laptops to high-performance clusters. For more information on FEniCS and
the latest FEniCS software updates, visit the FEniCS website: http://fenicsproject.org.

The unilateral constraint included in the damage problem requires the use of variational
inequalities solvers, here we use the open source library PETSc [7], where this capability is
available. The problem is discretized in space with standard triangular �nite elements with
piece-wise linear approximation for u and α. The mesh size is selected to have a su�ecient
number of elements in the localization band (we tipically use 5-10 elements in a localization
band [40]). A �nite element implementation based on the open-source FEniCS library are
used for this problems [36, 38].

B.1 Code for Cavity in 2D

B.1.1 Cavity2D.py

1000 #==
IMPORT ALL PARAMETERS FROM parameters . py .

1002 #==
from parameters import *

1004 # read paramaters from command l i n e
parameters . parse ()

1006 # se t some d o l f i n s p e c i f i c parameters
parameters [" form_compiler "] [" opt imize "] = True

1008 parameters [" form_compiler "] [" cpp_optimize"] = True
parameters [" form_compiler "] [" r ep r e s en t a t i on "] = " u f l a c s "

1010 parameters [" a l l ow_extrapo la t ion "] = True
The minimizat ion procedure r e qu i r e s parameters to get a s u i t a b l e performance

. The f o l l ow i ng i s a s u i t a b l e s e t o f arrangements .

195

1012 solver_minimizat ion_parameters = {"method" : "gpcg" ,
" l i n e a r_so l v e r " : "gmres" ,

1014 #================================
These are parameters f o r opt imiza t i on

1016 #================================
" l ine_search " : " armijo " ,

1018 " p r e cond i t i on e r " : " hypre_eucl id " ,
"maximum_iterations" : 200 ,

1020 " error_on_nonconvergence" : False ,
#================================

1022 # These are parameters f o r l i n e a r s o l v e r
#================================

1024 " kry lov_so lver " : {
"maximum_iterations" : 200 ,

1026 " nonzero_in i t i a l_gues s " : True ,
" r epor t " : True ,

1028 "monitor_convergence " : False ,
" r e l a t i v e_to l e r an c e " : 1e=8

1030 }
}

1032 # The l i n e a r s o l v e r r e qu i r e s parameters to get a s u i t a b l e performance . The
f o l l ow i ng i s a s u i t a b l e s e t o f arrangements .

solver_LS_parameters = {" l i n e a r_so l v e r " : " cg" ,
1034 " symmetric " : True ,

" p r e cond i t i on e r " : " j a c ob i " ,
1036 " kry lov_so lver " : {

" r epor t " : True ,
1038 "monitor_convergence " : False ,

" r e l a t i v e_to l e r an c e " : 1e=8
1040 }

}
1042 #==

DEFINE THE OPERATORS.
1044 #==

Cons t i tu t i v e f unc t i on s o f the damage model
1046 de f w(alpha) :

i f model==" l i n " :
1048 re turn w11* alpha

i f model =="quad" :
1050 re turn w11* alpha **2

de f A(alpha) :
1052 re turn (1=alpha) **2

Def ine th Deviator and Spher i c Tensors
1054 de f Dev(Tensor) :

r e turn Tensor=Sph(Tensor)
1056 de f Sph (Tensor) :

Tensor2=as_matrix ([[1 , 0] , [0 , 1]])
1058 re turn (inner (Tensor , Tensor2) / inner (Tensor2 , Tensor2)) *Tensor2

Stra in and s t r e s s in f r e e damage regime .
1060 de f eps (v) :

r e turn sym(grad (v))
1062 de f sigma_0 (eps) :

r e turn 2 .0*mu*(eps)+lmbda* t r (eps) * I d en t i t y (ndim)
1064 # mod i f i c a t i on o f the Young modulus .

de f sigma (eps , alpha) :
1066 re turn (A(alpha)+k_el l) *sigma_0 (eps)

196

#==
1068 # MESH WITHOUT CAVITY.

#==
1070 # Def ine the funct ion , t e s t and t r i a l f i e l d s .

"u , du , v" are v e c t o r i a l e xp r e s s i on s .
1072 u = Function (V_vector , name="u")

du = Tria lFunct ion (V_vector)
1074 v = TestFunction (V_vector)

"alpha , dalpha , beta " are s c a l a r .
1076 alpha = Function (V_scalar , name="alpha")

alpha0 = Function (V_scalar , name = "alpha ")
1078 dalpha = Tria lFunct ion (V_scalar)

beta = TestFunction (V_scalar)
1080 # Def ine the en e r g i e s f unc t i on s .

W_energy = Function (V_scalar , name="energy_w")
1082 dev_energy = Function (V_scalar , name="energy_dev")

div_energy = Function (V_scalar , name="energy_sph")
1084 E_energy = Function (V_scalar , name="energy_E")

p_energy = Function (V_scalar , name="energy_p")
1086 dis_energy = Function (V_scalar , name="energy_dis ")

Def ine the s t r e s s and s t r a i n f unc t i on s .
1088 s t r e s sG = Function (V_tensor , name="sigma")

stra inG = Function (V_tensor , name=" ep s i l o n ")
1090 # Def ine the alpha a u x i l i a r func t i on .

alphaAux = Function (V_scalar , name="alpha ")
1092 # Def ine the func t i on " alpha_error " to measure r e l a t i v e e r r o r .

a lpha_error = Function (V_scalar)
1094 # In t e r p o l a t e the i n i t i a l c ond i t i on f o r the damage va r i ab l e " alpha " .

alpha_0 = i n t e r p o l a t e (Express ion (" 0 . " , degree = 2) , V_scalar)
1096 # Def ine ds and dx .

ds = Measure (' ds ' , domain=mesh , subdomain_data=boundar ies)
1098 dx = Measure (' dx ' , domain=mesh)

Let us d e f i n e the t o t a l energy o f the system as the sum of e l a s t i c energy ,
d i s s i p a t e d energy due to the damage and ex t e rna l work due to body f o r c e s .

1100 # El a s t i c energy f o r d i f f e r e n t s ca s e s .
i f case=="Marigo" :

1102 e l a s t i c_ene rgy1 = 0.5* i nne r (sigma (eps (u) , alpha) , eps (u)) *dx
e l a s t i c_ene rgy2 = 0.5* i nne r (sigma (eps (u) , alpha) , eps (u)) *dx

1104 i f case=="DMSF" :
Id_Tensor = as_matrix ([[1 , 0] , [0 , 1]])

1106 e l a s t i c_ene rgy1 = (0 . 5 * ((lmbda+mu) *(t r (eps (u)) **2) * i nne r (Id_Tensor ,
Id_Tensor))) *dx+((A(alpha)+k_el l) *mu* i nne r (Dev(eps (u)) ,Dev(eps (u)))) *dx
e l a s t i c_ene rgy2 = (0 . 5 * ((lmbda+mu) *(t r (eps (u)) **2) * i nne r (Id_Tensor ,
Id_Tensor))) *dx+((A(alpha)+k_el l) *mu* i nne r (Dev(eps (u)) ,Dev(eps (u)))) *dx

1108 i f case=="ShearComp" :
e l a s t i c_ene rgy1 = 0.5* i nne r (sigma (eps (u) , alpha) , eps (u)) *dx

1110 e l a s t i c_ene rgy2 = 0.5/E*(inner (Dev(sigma (eps (u) , alpha)) ,Dev(sigma (eps (u)
, alpha))) \

=kappa* i nne r (Sph (sigma (eps (u) , alpha)) , Sph (sigma (
eps (u) , alpha)))) *dx

1112 # External work .
external_work = dot (body_force , u) *dx

1114 # Dis s ipa ted energy .
d i s s ipated_energy = (w(alpha)+e l l v **2*w1*dot (grad (alpha) , grad (alpha))) *dx

1116 # De f i n i t i o n o f the t o t a l energy
tota l_energy1 = e la s t i c_ene rgy1+diss ipated_energy=external_work

197

1118 tota l_energy2 = e la s t i c_ene rgy2+diss ipated_energy=external_work
Weak form o f damage problem . This i s the formal exp r e s s i on f o r the tangent

problem which g i v e s us the equ i l i b r ium equat ions .
1120 E_u = de r i v a t i v e (total_energy1 , u , v)

E_alpha = de r i v a t i v e (total_energy2 , alpha , beta)
1122 # Hess ian matrix .

E_alpha_alpha = de r i v a t i v e (E_alpha , alpha , dalpha)
1124 # Writing tangent problems in term o f t e s t and t r i a l f un c t i on s f o r matrix

assembly .
E_du = rep l a c e (E_u,{ u : du})

1126 E_dalpha = rep l a c e (E_alpha , { alpha : dalpha })
Once the tangent problems are formulated in terms o f t r i a l and text

funct i ons , we de f i n e the va r i a t ona l problems .
1128 # Var i a t i ona l problem f o r the disp lacement .

problem_u = LinearVar iat iona lProb lem (l h s (E_du) , rhs (E_du) ,u , bc_u)
1130 # Def ine the c l a s s s Optimizat ion Problem f o r then de f i n e the damage .

Var i a t i ona l problem f o r the damage (non=l i n e a r to use v a r i a t i o n a l i n e qua l i t y
s o l v e r s o f pe t s c) .

1132 c l a s s DamageProblem(OptimisationProblem) :
de f __init__(s e l f) :

1134 OptimisationProblem .__init__(s e l f)
Object ive vec to r

1136 de f f (s e l f , x) :
alpha . vec to r () [:]= x

1138 re turn assemble (tota l_energy2)
Gradient o f the ob j e c t i v e func t i on

1140 de f F(s e l f , b , x) :
alpha . vec to r () [:]= x

1142 assemble (E_alpha , t enso r=b)
Hess ian o f the ob j e c t i v e func t i on

1144 de f J (s e l f ,A, x) :
alpha . vec to r () [:]= x

1146 assemble (E_alpha_alpha , t en so r=A)
Def ine the minimizat ion problem us ing the c l a s s .

1148 problem_alpha = DamageProblem ()
Set up the s o l v e r s . Def ine the ob j e c t f o r s o l v i n g the disp lacement problem ,

" solver_u " .
1150 solver_u = L inea rVa r i a t i ona lSo l v e r (problem_u)

Get the s e t o f paramters f o r the c l a s s " solver_u " . This only r e qu i r e s the
s o l u t i o n o f l i n e a r system s o l v e r .

1152 solver_u . parameters . update (solver_LS_parameters)
Def ine the cor re spond ing object , " so lver_alpha " .

1154 # The ob j e c t a s s o c i a t ed to minimizat ion i s c r ea ted .
so lver_alpha = PETScTAOSolver ()

1156 # Get the s e t o f paramters f o r the c l a s s " so lver_alpha " . This r e qu i r e s the
s o l u t i o n o f a minimizat ion problem .

so lver_alpha . parameters . update (solver_minimizat ion_parameters)
1158 # As the opt imiza t i on i s a cons t ra ined type we need to prov ide the

corre spond ing lower and upper bounds .
lb = i n t e r p o l a t e (Express ion (" 0 .0 " , degree = 0) , V_scalar)

1160 ub = i n t e r p o l a t e (Express ion (" 0 .95 " , degree = 0) , V_scalar)
lb . vec to r () [:] = alpha . vec to r ()

1162 # Crete the f i l e s to s t o r e the s o l u t i o n o f damage and d i sp lacements .
f i l e_a lpha = F i l e (s aved i r+"/alpha . pvd")

1164 f i l e_u = F i l e (s aved i r+"/u . pvd")
#==

198

1166 # ALTERNATE MINIIZATION .
#==

1168 # I n i t i a l i z a t i o n
i t e r = 1 ; err_alpha = 1 ; err_alpha_aux=1

1170

a0 = Vector (MPI .COMM_SELF)
1172 a1 = Vector (MPI .COMM_SELF)

I t e r a t i o n s o f the a l t e r n a t e minimizat ion stop i f an e r r o r l im i t i s reached
or a maximim number o f i t e r a t i o n s have been done .

1174 whi le True and err_alpha > t o l l and i t e r < maxiter :
alpha . vec to r () . gather (a0 , np . array (range (V_scalar . dim ()) , " i n t c "))

1176 amin=alpha . vec to r () . min ()
amax=alpha . vec to r () .max()

1178 i f MPI .COMM_WORLD. Get_rank () == 0 :
p r i n t ("Job %d : I t e r a t i o n : %2d , a0 : [% .8 g ,%.8 g] "%(MPI .COMM_WORLD.

Get_rank () , i t e r , a0 . min () , a0 .max()))
1180 # so l v e e l a s t i c problem

solver_u . s o l v e ()
1182 # so l v e damage problem via a cons t ra ined minimizat ion a lgor i thm .

so lver_alpha . s o l v e (problem_alpha , alpha . vec to r () , lb . vec to r () , ub . vec to r ())
1184 alpha . vec to r () . ge t_loca l () [alpha . vec to r () . ge t_loca l () >0.95]=0.95

alpha . vec to r () . gather (a1 , np . array (range (V_scalar . dim ()) , " i n t c "))
1186 # Compute the norm of the the e r r o r vec to r .

err_alpha = np . l i n a l g . norm(a1=a0 , ord=np . I n f)
1188 # Numerical Improve .

i f C_L != 0 . 0 :
1190 whi le err_alpha > err_alpha_aux :

alpha_2 = C_L*alpha_0+(1.0=C_L) * alpha
1192 alpha . a s s i gn (alpha_2)

alpha . vec to r () . gather (a1 , np . array (range (V_scalar . dim ()) , " i n t c "))
1194 err_alpha = np . l i n a l g . norm(a1=a0 , ord=np . I n f)

Monitor the r e s u l t s
1196 i f MPI .COMM_WORLD. Get_rank () >= 0 :

p r i n t (" I t e r a t i o n : %2d , Error : %2.8g , alpha_max : %.8g" % (i t e r ,
err_alpha , alpha . vec to r () .max()))

1198 # Update the s o l u t i o n f o r the cur rent a l t e r n a t e minimizat ion i t e r a t i o n .
err_alpha_aux = err_alpha

1200 alpha_0 . a s s i gn (alpha)
i t e r = i t e r + 1

1202 # updating the lower bound with the s o l u t i o n o f the s o l u t i o n corre spond ing to
the cur rent g l oba l i t e r a t i o n , i t i s f o r account ing f o r the i r r e v e r s i b i l i t y .

lb . vec to r () [:] = alpha . vec to r ()
1204 pr in t ("===")

p r i n t (" End o f the a l t e r n a t e minimizat ion without cav i ty . ")
1206 pr in t ("==")

#==
1208 # END ALTERNATE MINIMIZATION.

#==
1210 # Store u , alpha .

i f MPI .COMM_WORLD. Get_rank ()>=0:
1212 f i l e_u << (u , 0 .)

f i l e_a lpha << (alpha , 0 .)
1214 # Store the damage f o r t h i s geometry

alphaAux . a s s i gn (alpha)
1216 alpha0 . a s s i gn (alpha)

p r i n t ("===")

199

1218 pr in t (" Geometry without cav i ty i s f i n i s h e d . ")
p r i n t ("===")

1220 # Remove prev ious i n t e g r a t i n g f a c t o r s "dx , ds"
de l ds , dx

1222

#==
1224 # MESH WITH CAVITY.

#==
1226 # Star t loop over new geometr i e s . These are obta ined from a sequence o f

geometr i e s which are obta ined from an ex t e rna l f o l d e r . The number o f
ex t e rna l f i l e s i s "NstepW" and the c a l l i s dr iven by the counter " itmesh " .

Sta r t i ng the loop o f the mesh sequence . I t i s dr iven by the index " itmesh " .
1228 whi le itmesh <= NstepW :

a0 = Vector (MPI .COMM_SELF)
1230 a1 = Vector (MPI .COMM_SELF)

Def ine Subdomain Cavity .
1232 c l a s s St ruc ture (SubDomain) :

de f i n s i d e (s e l f , x , on_boundary) :
1234 re turn between (x [0] ,(=500.0 ,=500+40* i tmesh)) andbetween (x [1]

, (=20 .0 ,20 .0))
Create sub domain markers and mark everayth ing as 0

1236 sub_domains = MeshFunction (" s i ze_t " ,mesh , mesh . topo logy () . dim ())
sub_domains . s e t_a l l (0)

1238 # Mark s t r u c tu r e domain as 1
s t r u c tu r e = Struc ture ()

1240 s t r u c tu r e . mark (sub_domains , 1)
Extract sub meshes

1242 domain_new = SubMesh(mesh , sub_domains , 0)
tunel_new = SubMesh(mesh , sub_domains , 1)

1244 # Def ine boundary s e t s f o r boundary cond i t i on s
c l a s s Left_new (SubDomain) :

1246 de f i n s i d e (s e l f , x , on_boundary) :
r e turn near (x [0] , =1500 .)

1248 c l a s s Right_new(SubDomain) :
de f i n s i d e (s e l f , x , on_boundary) :

1250 re turn near (x [0] , 1 5 0 0 .)
c l a s s Top_new(SubDomain) :

1252 de f i n s i d e (s e l f , x , on_boundary) :
r e turn near (x [1] , 5 0 0 .)

1254 c l a s s Bottom_new(SubDomain) :
de f i n s i d e (s e l f , x , on_boundary) :

1256 re turn near (x [1] , =500 .)
I n i t i a l i z e sub=domain i n s t an c e s

1258 left_new = Left_new ()
right_new = Right_new ()

1260 top_new = Top_new()
bottom_new = Bottom_new ()

1262 # de f i n e meshfunct ion to i d e n t i f y boundar ies by numbers
boundaries_new = MeshFunction (" s i ze_t " ,domain_new , domain_new . topology () .
dim ()=1)

1264 boundaries_new . s e t_a l l (0)
left_new .mark (boundaries_new , 1) # mark l e f t as 1

1266 right_new .mark (boundaries_new , 2) # mark r i gh t as 2
top_new .mark (boundaries_new , 3) # mark top as 3

1268 bottom_new .mark (boundaries_new , 4) # mark bottom as 4
Def ine the new ds and dx .

200

1270 dsN = Measure (' ds ' , domain=domain_new , subdomain_data=boundaries_new)
dxN = Measure (' dx ' , domain=domain_new)

1272 #normal v e c to r s
normal_v_new = FacetNormal (domain_new)

1274 # Create new func t i on space f o r e l a s t i c i t y + Damage
V_vector_new = VectorFunctionSpace (domain_new , "CG" ,1)

1276 V_scalar_new = FunctionSpace (domain_new , "CG" ,1)
V_tensor_new = TensorFunctionSpace (domain_new , "DG" ,0)

1278 #==
REMARK: To generate a sequence o f p l o t s in paraview the name

1280 # of the va r i ab l e must be the same . I t i s achieved by in c l ud ing
name="alpha " at the moment o f the d e f i n i t i o n o f the s t r u c tu r e " alpha " .

1282 #
<< alphaN = Function (V_scalar_new , name="alpha ") >>

1284 #
The same d e f i n i t i o n needs to be done f o r d i sp lacement "u" and

1286 # other ar rays as the d i f f e r e n c e o f damage without cav i ty and
damage with cavity , f o r example " a lphaDi f f " .

1288 #==
Def ine the funct ion , t e s t and t r i a l f i e l d s

1290 uN = Function (V_vector_new , name="u")
duN = Tria lFunct ion (V_vector_new)

1292 vN = TestFunction (V_vector_new)
alphaN = Function (V_scalar_new , name="alpha ")

1294 alphaN_2 = Function (V_scalar_new , name="alpha ")
dalphaN = Tria lFunct ion (V_scalar_new)

1296 betaN = TestFunction (V_scalar_new)
Pro j ec t the r e r ence s o l u t i o n in to the new mesh .

1298 alphaN_0 = Function (V_scalar_new , name="alpha ")
Def ine the i n i t i a l damage f o r the new mesh .

1300 alphaN_0 = i n t e r p o l a t e (alphaAux , V_scalar_new)
Boudary cond i t i on s .

1302 zero_v_new = Constant ((0 . ,) *ndim)
u_0_new = zero_v_new

1304 bc_boxbottomN = Dir ichletBC (V_vector_new ,u_0_new, boundaries_new , 4)
bc_leftN = Dir ichletBC (V_vector_new . sub (0) , 0 . 0 , boundaries_new , 1)

1306 bc_rightN = Dir ichletBC (V_vector_new . sub (0) , 0 . 0 , boundaries_new , 2)
bc_uN = [bc_boxbottomN , bc_leftN , bc_rightN]

1308 # Let us d e f i n e the t o t a l energy o f the system as the sum of e l a s t i c
energy , d i s s i p a t e d energy due to the damage and ex t e rna l work due to body
f o r c e s .
i f case == "Marigo" :

1310 elastic_energy1_new = 0.5* i nne r (sigma (eps (uN) , alphaN) , eps (uN)) *dxN
elastic_energy2_new = 0.5* i nne r (sigma (eps (uN) , alphaN) , eps (uN)) *dxN

1312 i f case=="DMSF" :
Id_Tensor = as_matrix ([[1 , 0] , [0 , 1]])

1314 elastic_energy1_new = (0 . 5 * ((lmbda+mu) *(t r (eps (uN)) **2) * i nne r (
Id_Tensor , Id_Tensor))) *dxN+((A(alphaN)+k_el l) *mu* i nne r (Dev(eps (uN)) ,Dev(eps
(uN)))) *dxN

elastic_energy2_new = (0 . 5 * ((lmbda+mu) *(t r (eps (uN)) **2) * i nne r (
Id_Tensor , Id_Tensor))) *dxN+((A(alphaN)+k_el l) *mu* i nne r (Dev(eps (uN)) ,Dev(eps
(uN)))) *dxN

1316 i f case=="ShearComp" :
elastic_energy1_new = 0.5* i nne r (sigma (eps (uN) , alphaN) , eps (uN)) *dxN

1318 elastic_energy2_new = 0.5/E*(inner (Dev(sigma (eps (uN) , alphaN)) ,Dev(
sigma (eps (uN) , alphaN))) \

201

= kappa* i nne r (Sph (sigma (eps (uN) , alphaN)) , Sph (
sigma (eps (uN) , alphaN)))) *dxN

1320 # Dis s ipa t ed energy .
dissipated_energy_new = (w (alphaN) + e l l v **2 *w1 * dot (grad (alphaN)
, grad (alphaN))) * dxN

1322 # External work .
external_work_new = dot (body_force , uN) * dxN

1324 # De f i n i t i o n o f the t o t a l energy
total_energy1_new = elastic_energy1_new + dissipated_energy_new=
external_work_new

1326 total_energy2_new = elastic_energy2_new + dissipated_energy_new=
external_work_new
Weak form o f e l a s t i c i t y problem . This i s the formal exp r e s s i on f o r the
tangent problem which g i v e s us the equ i l i b r ium equat ions .

1328 E_uN = de r i v a t i v e (total_energy1_new ,uN,vN)
E_alphaN = de r i v a t i v e (total_energy2_new , alphaN , betaN)

1330 # Hess ian matrix
E_alpha_alphaN = de r i v a t i v e (E_alphaN , alphaN , dalphaN)

1332 # Writing tangent problems in term o f t e s t and t r i a l f un c t i on s f o r matrix
assembly
E_duN = rep l a c e (E_uN,{uN:duN})

1334 E_dalphaN = rep l a c e (E_alphaN ,{ alphaN : dalphaN})
Once the tangent problems are formulated in terms o f t r i a l and text
funct i ons , we de f i n e the va r i a t ona l problems .

1336 # Var i a t i ona l problem f o r the disp lacement .
problem_uN = LinearVar iat iona lProb lem (l h s (E_duN) , rhs (E_duN) ,uN,bc_uN)

1338 # Def ine the c l a s s s Optimizat ion Problem f o r then de f i n e the damage .
Var i a t i ona l problem f o r the damage (non=l i n e a r to use v a r i a t i o n a l
i n e qua l i t y s o l v e r s o f pe t s c) .

1340 c l a s s DamageProblemN(OptimisationProblem) :
de f __init__ (s e l f) :

1342 OptimisationProblem .__init__(s e l f)
Object ive vec to r

1344 de f f (s e l f , x) :
alphaN . vec to r () [:]= x

1346 re turn assemble (total_energy2_new)
Gradient o f the ob j e c t i v e func t i on

1348 de f F(s e l f , b , x) :
alphaN . vec to r () [:]= x

1350 assemble (E_alphaN , t enso r=b)
Hess ian o f the ob j e c t i v e func t i on

1352 de f J (s e l f ,A, x) :
alphaN . vec to r () [:]= x

1354 assemble (E_alpha_alphaN , t enso r=A)
Def ine the minimizat ion problem us ing the c l a s s .

1356 problem_alphaN = DamageProblemN ()
Set up the s o l v e r s

1358 solver_uN = Linea rVa r i a t i ona lSo l v e r (problem_uN)
solver_uN . parameters . update (solver_LS_parameters)

1360 solver_alphaN = PETScTAOSolver ()
solver_alphaN . parameters . update (solver_minimizat ion_parameters)

1362 # For the c on s t r a i n t minimizat ion problem we r equ i r e the lower and upper
bound , "lbN" and "ubN" . They are i n i t i a l i z e d though i n t e r p o l a t i o n s .
lbN = alphaN_0

1364 ubN = in t e r p o l a t e (Express ion (" 9 .5 " , degree = 0) , V_scalar_new)
#==

202

1366 # ALTERNATE MINIIZATION .
#==

1368 i t e r = 1 ; err_alphaN = 1 ; err_alpha_aux=1

1370 whi le err_alphaN > t o l l and i t e r < maxiter :
alphaN . vec to r () . gather (a0 , np . array (range (V_scalar_new . dim ()) , " i n t c "))

1372 amin=alphaN . vec to r () . min ()
amax=alphaN . vec to r () .max()

1374 i f MPI .COMM_WORLD. Get_rank () == 0 :
p r i n t ("Job %d : itmesh=%=2d , I t e r a t i o n : %2d , a0 : [% .8 g ,%.8 g] ,

alphaN : [% .8 g ,%.8 g] " \
1376 %(MPI.COMM_WORLD. Get_rank () , itmesh , i t e r , a0 . min () , a0 .max() ,

amin , amax))
so l v e e l a s t i c problem

1378 solver_uN . s o l v e ()
so l v e damage problem via a cons t ra ined minimizat ion a lgor i thm .

1380 solver_alphaN . s o l v e (problem_alphaN , alphaN . vec to r () , lbN . vec to r (
) , ubN . vec to r ())

alphaN . vec to r () . ge t_loca l () [alphaN . vec to r () . ge t_loca l () > 0 . 9 5] =
0 .95

1382 alphaN . vec to r () . gather (a1 , np . array (range (V_scalar_new . dim ()) , " i n t c ")
)

Compute the norm of the the e r r o r vec to r .
1384 err_alphaN = np . l i n a l g . norm(a1 = a0 , ord = np . I n f)

i f C_L != 0 . 0 :
1386 whi le err_alphaN>err_alpha_aux :

alphaN_2 = C_L*alphaN_0+(1.0=C_L) *alphaN
1388 alphaN . a s s i gn (alphaN_2)

alphaN . vec to r () . gather (a1 , np . array (range (V_scalar_new . dim ()) ,
" i n t c "))

1390 err_alphaN = np . l i n a l g . norm(a1=a0 , ord=np . I n f)
Monitor the r e s u l t s f o r the new mesh .

1392 i f MPI .COMM_WORLD. Get_rank () >= 0 :
p r i n t ("Job %d : itmesh=%=2d , I t e r a t i o n : %2d , Error : %2.8g ,

alpha_max : %.8g" \
1394 %(MPI.COMM_WORLD. Get_rank () , itmesh , i t e r , err_alphaN , alphaN .

vec to r () .max()))
update the s o l u t i o n f o r the cur rent a l t e r n a t e minimizat ion i t e r a t i o n

.
1396 err_alpha_aux = err_alphaN

alphaN_0 . a s s i gn (alphaN)
1398 i t e r = i t e r + 1

i f MPI .COMM_WORLD. Get_rank () >= 0 :
1400 pr in t ("==")

p r i n t (" End o f the a l t e r n a t e minimizat ion in Remesh : %d " %(itmesh))
1402 pr in t ("==")

Once a new damage has been obtained , we s t o r e i t i n to an aux i l i a r y
va r i ab l e "alphaAux"

1404 alphaAux = Function (V_scalar_new , name="alpha ")
alphaAux . a s s i gn (alphaN)

1406 # Store u , alpha .
i f MPI .COMM_WORLD. Get_rank () >= 0 :

1408 f i l e_u << (uN, 1 .0 * i tmesh)
f i l e_a lpha << (alphaN , 1 .0 * i tmesh)

1410 i tmesh = itmesh + 1
Free memory f o r l i s t s depending on the cur rent mesh i t e r a t i o n

203

1412 de l duN
de l vN

1414 de l alphaN
de l dalphaN

1416 de l betaN
de l alphaN_0

1418 de l ubN
de l lbN

1420 de l bc_uN
de l normal_v_new

1422 de l boundaries_new
de l domain_new

1424 de l V_vector_new
de l V_scalar_new

1426 de l total_energy1_new
de l elastic_energy1_new

1428 de l total_energy2_new
de l elastic_energy2_new

1430 de l external_work_new
de l dissipated_energy_new

1432 de l E_uN
de l E_alphaN

1434 de l E_alpha_alphaN
de l E_duN

1436 de l E_dalphaN
de l solver_uN

1438 de l problem_uN
de l problem_alphaN

1440 de l dsN , dxN
de l DamageProblemN

1442 de l a0
de l a1

1444 de l a1
#==

1446 # THE MAIN LOOP FOR REMESHING GAS FINISHED .
#==

1448 pr in t ("===")
p r i n t (" Geometry with cav i ty i s f i n i s h e d . ")

1450 pr in t ("===")
#==

1452 # FREE MEMORY
#==

1454 de l u , du , v
de l alpha , dalpha , beta , alpha_0

1456 de l a lpha_error
de l f i l e_a lpha

1458 de l f i l e_u
de l lb , ub

1460 de l solver_u
de l so lver_alpha

1462 de l alphaAux
de l V_vector

1464 de l V_scalar
de l normal_v

1466 de l mesh , boundar ies
#==

204

1468 # End o f the main program .
#==

./codes/Cavity_2D/Cavity2D.py

B.1.2 Parameters.py

1000 #==
IMPORT LIBRARIES TO GET THE CODE WORKING.

1002 #==
from do l f i n import *

1004 from mshr import *

import sys , os , sympy , shu t i l , math
1006 import numpy as np

import matp lo t l i b
1008 matp lo t l i b . use ('Agg ')

from matp lo t l i b import pyplot as p l t
1010 import socket

import datet ime
1012 from u f l import r ep l a c e

from mpi4py import MPI
1014 from in spe c t import currentframe , get f rame in fo , s tack

#==
1016 # MESH

#==
1018 mesh = RectangleMesh (Point (=1500.0 ,=500.0) , Point (1500 . 0 , 5 00 . 0) ,750 ,250 , "

c ro s s ed ")
#==

1020 # PARAMETERS
#==

1022 i tmesh = 1
NstepW = 15

1024 model = "quad"
w1 = 1 .0 e5

1026 w11 = 1 .0 e5
C_L = 0 .

1028 kappa = 1 .0
#Di f e r en t Models to Damage problem , f o r example : "Marigo " ;" ShearComp " ; "DMSF"

1030 case = "Marigo"
#==

1032 # MATERIAL CONSTANTS
#==

1034 E = 29 e9
nu = 0 .3

1036 mu = E/(2 .0* (1 .0+ nu))
lmbda = E*nu/(1.0=nu**2)

1038 # In t h i s case t h i s quant i ty conta in s the dens i ty , so g rav i ty = rho * g , with
g the g rav i ty a c c e l e r a t i o n .

rho = 2 .7 e3
1040 g = 9 .8

g rav i ty = rho*g
1042 k_el l = Constant (1 . e=6) #r e s i d u a l s t i f f n e s s

De f i n i t i o n o f \ e l l parameter
1044 h = Cel lDiameter (mesh) # diameters o f a l l e lements

hmin = mesh . hmin () # minimum of a l l d iameters
1046 hmax = mesh . hmax() # maximun o f a l l d iameters

205

e l l v = 5 .0*hmin #\ e l l parameter
1048 #Body f o r c e

body_force = Constant ((0 . 0 , =g rav i ty))
1050 #==

NUMERICAL PARAMETERS OF THE ALTERNATE MINIMIZATION.
1052 #==

maxiter = 1e3
1054 t o l l = 1e=5

#==
1056 # THE FILES ARE STORED IN A FOLDER NAMED "modelname " .

#==
1058 date = datet ime . datet ime . now() . s t r f t ime ("%m=%d=%y_%H.%M.%S")

where = socket . gethostname ()
1060 modelname = " [C_L=0]_[case=%s]_[model=%s]_[w1=%g]_[w11=%g]_[e l l =%.2g]_[

kappa=%.2g]_[Date=%s]_[Where=%s] "%(case , model ,w1 , w11 , e l l v , kappa , date , where)
p r i n t ('modelname='+modelname)

1062 # other s
regenerate_mesh = True

1064 s aved i r = " r e s u l t s/%s "%(modelname)
p r in t (' s aved i r='+saved i r)

1066 #==
PARAMETERS IN THE GEOMETRY

1068 #==
ndim = mesh . geometry () . dim () #get number o f space dimensions

1070 # Def ine boundary s e t s f o r boundary cond i t i on s
c l a s s Le f t (SubDomain) :

1072 de f i n s i d e (s e l f , x , on_boundary) :
r e turn near (x [0] , =1500 .)

1074 c l a s s Right (SubDomain) :
de f i n s i d e (s e l f , x , on_boundary) :

1076 re turn near (x [0] , 1 5 0 0 .)
c l a s s Top(SubDomain) :

1078 de f i n s i d e (s e l f , x , on_boundary) :
r e turn near (x [1] , 5 0 0 .)

1080 c l a s s Bottom(SubDomain) :
de f i n s i d e (s e l f , x , on_boundary) :

1082 re turn near (x [1] , =500 .)
I n i t i a l i z e sub=domain i n s t an c e s

1084 l e f t = Le f t ()
r i g h t = Right ()

1086 top = Top ()
bottom = Bottom ()

1088 # de f i n e meshfunct ion to i d e n t i f y boundar ies by numbers
boundar ies = MeshFunction (" s i ze_t " ,mesh , mesh . topo logy () . dim ()=1)

1090 boundar ies . s e t_a l l (0)
l e f t . mark (boundaries , 1) # mark l e f t as 1

1092 r i g h t . mark (boundaries , 2) # mark r i gh t as 2
top . mark (boundaries , 3) # mark top as 3

1094 bottom .mark (boundaries , 4) # mark bottom as 4
normal v e c to r s

1096 normal_v = FacetNormal (mesh)
#==

1098 # CREATE FUNCTION SPACE FOR 2D ELASTICITY AND DAMAGE
#==

1100 V_vector = VectorFunctionSpace (mesh , "CG" ,1)
V_scalar = FunctionSpace (mesh , "CG" ,1)

206

1102 V_tensor = TensorFunctionSpace (mesh , "DG" ,0)
#==

1104 # BOUNDARY CONDITIONS.
#==

1106 zero_v = Constant ((0 . ,) *ndim)
u_0 = zero_v

1108 bc_le f t = Dir ichletBC (V_vector . sub (0) , 0 . 0 , boundaries , 1)
bc_right = Dir ichletBC (V_vector . sub (0) , 0 . 0 , boundaries , 2)

1110 bc_boxbottom = Dir ichletBC (V_vector , u_0 , boundaries , 4)
bc_u = [bc_boxbottom , bc_left , bc_right]

./codes/Cavity_2D/Parameters.py

B.2 Code for Cavity in 3D

B.2.1 Cavity3D.py

1000 #==
IMPORT ALL PARAMETERS FROM Parameters . py AND AuxFunctions . py .

1002 #==
from parameters import *

1004 from AuxFunctions import *

read paramaters from command l i n e
1006 parameters . parse ()

s e t some d o l f i n s p e c i f i c parameters
1008 parameters [" form_compiler "] [" opt imize "] = True

parameters [" form_compiler "] [" cpp_optimize"] = True
1010 parameters [" form_compiler "] [" r ep r e s en t a t i on "] = " u f l a c s "

parameters [" a l l ow_extrapo la t ion "] = True
1012 # The minimizat ion procedure r e qu i r e s parameters to get a s u i t a b l e performance

. The f o l l ow i ng i s a s u i t a b l e s e t o f arrangements .
so lver_minimizat ion_parameters = {"method" : "gpcg" ,

1014 " l i n e a r_so l v e r " : "gmres" ,
#================================

1016 # These are parameters f o r opt imiza t i on
#================================

1018 " l ine_search " : " armijo " ,
" p r e cond i t i on e r " : " hypre_eucl id " ,

1020 "maximum_iterations" : 200 ,
" error_on_nonconvergence" : False ,

1022 #================================
These are parameters f o r l i n e a r s o l v e r

1024 #================================
" kry lov_so lver " : {

1026 "maximum_iterations" : 200 ,
" nonzero_in i t i a l_gues s " : True ,

1028 " repor t " : True ,
"monitor_convergence " : False ,

1030 " r e l a t i v e_to l e r an c e " : 1e=8
}

1032 }
The l i n e a r s o l v e r r e qu i r e s parameters to get a s u i t a b l e performance . The

f o l l ow i ng i s a s u i t a b l e s e t o f arrangements .
1034 solver_LS_parameters = {" l i n e a r_so l v e r " : " cg" ,

" symmetric " : True ,

207

1036 " p r e cond i t i on e r " : " j a c ob i " ,
" kry lov_so lver " : {

1038 " repor t " : True ,
"monitor_convergence " : False ,

1040 " r e l a t i v e_to l e r an c e " : 1e=8
}

1042 }
#==

1044 # DEFINE THE OPERATORS.
#==

1046 # Cons t i tu t i v e f unc t i on s o f the damage model
de f w(alpha) :

1048 i f model==1:
re turn w11* alpha

1050 i f model==2:
re turn w11* alpha **2

1052 i f model==3:
re turn w11*(1=(1=alpha) **2)

1054 i f model==4:
re turn w11* alpha

1056 de f A(alpha) :
i f model==1 or model ==2:

1058 re turn (1=alpha) **2
i f model==3:

1060 re turn (1=alpha) **4
i f model==4:

1062 re turn (1=alpha) /(1+alpha)
Def ine th Deviator and Spher i c Tensors

1064 de f Dev(Tensor) :
r e turn Tensor=Sph(Tensor)

1066 de f Sph (Tensor) :
Tensor2=as_matrix ([[1 , 0 , 0] , [0 , 1 , 0] , [0 , 0 , 1]])

1068 re turn (inner (Tensor , Tensor2) / inner (Tensor2 , Tensor2)) *Tensor2
Stra in and s t r e s s in f r e e damage regime .

1070 de f eps (v) :
r e turn sym(grad (v))

1072 de f sigma_0 (eps) :
r e turn 2 .0*mu*(eps)+lmbda* t r (eps) * I d en t i t y (ndim)

1074 # mod i f i c a t i on o f the Young modulus .
de f sigma (eps , alpha) :

1076 re turn (A(alpha)+k_el l) *sigma_0 (eps)
Def ine the en e r g i e s .

1078 de f energy_w(u , alpha) :
Es=eps (u)=t r (eps (u)) /3* I d en t i t y (ndim)

1080 Eploc=t r (eps (u))
re turn ((lmbda/2+mu/3) *Eploc**2+mu* i nne r (Es , Es))

1082 de f energy_dev (u , alpha) :
Es=Dev(sigma (eps (u) , alpha))

1084 re turn (0 . 5* i nne r (Es , eps (u)))
de f energy_sph (u , alpha) :

1086 Eploc=Sph(sigma (eps (u) , alpha))
re turn (0 . 5* i nne r (Eploc , eps (u)))

1088 de f energy_dis (alpha , e l l , w1) :
w_a=w(alpha)

1090 grad_a=e l l **2*w1*dot (grad (alpha) , grad (alpha))
re turn w_a+grad_a

208

1092 de f energy_p (u , body_force) :
r e turn =i nne r (body_force , u)

1094 de f energy_E (u , alpha , body_force) :
r e turn energy_dev (u , alpha)+\

1096 energy_sph (u , alpha)+\
energy_p (u , body_force)

1098 # Function f o r boundary cond i t i on
de f k_r(u) :

1100 k=1.0 e9
return k*u

1102 #==
MESH WITHOUT CAVITY.

1104 #==
Def ine the funct ion , t e s t and t r i a l f i e l d s .

1106 # "u , du , v" are v e c t o r i a l e xp r e s s i on s .
u = Function (V_vector , name="u")

1108 du = Tria lFunct ion (V_vector)
v = TestFunction (V_vector)

1110 # "alpha , dalpha , beta " are s c a l a r .
alpha = Function (V_scalar , name="alpha")

1112 alpha0 = Function (V_scalar , name="alpha ")
dalpha = Tria lFunct ion (V_scalar)

1114 beta = TestFunction (V_scalar)
Def ine energy func t i on s .

1116 W_energy = Function (V_scalar , name="energy_w")
dev_energy = Function (V_scalar , name="energy_dev")

1118 div_energy = Function (V_scalar , name="energy_sph")
E_energy = Function (V_scalar , name="energy_E")

1120 p_energy = Function (V_scalar , name="energy_p")
dis_energy = Function (V_scalar , name="energy_dis ")

1122 # Def ine s t r e s s and s t r a i n f unc t i on s .
s t r e s sG = Function (V_tensor , name="sigma")

1124 stra inG = Function (V_tensor , name=" ep s i l o n ")
Def ine the alpha a u x i l i a r func t i on .

1126 alphaAux = Function (V_scalar , name="alpha ")
Def ine the func t i on " alpha_error " to measure r e l a t i v e e r r o r .

1128 alpha_error = Function (V_scalar)
In t e r p o l a t e the i n i t i a l c ond i t i on f o r the damage va r i ab l e " alpha " .

1130 alpha_0 = i n t e r p o l a t e (Express ion (" 0 . " , degree=2) , V_scalar)
i f FH=="Initial_Damage" :

1132 a_1 = Constant (900 . 0)
a_2 = Constant (900 . 0)

1134 a_3 = Constant (121 . 0)
f o r i in range (0 , 5) :

1136 f o r j in range (0 , 5) :
alpha_0_aux=i n t e r p o l a t e (Express ion (" (pow(cos (theta) *(x [0]=65* j)+

s i n (theta) *(x [2]=(30+30* i)) , 2) /a_1+pow((x [1]) , 2) /a_2+\
1138 pow(= s i n (theta) *(x [0]=65* j

)+cos (theta) *(x [2]=(30+30* i)) , 2) /a_3) <=1?0.95:0. " ,
degree=2,a_1=a_1 , a_2=a_2 ,

a_3=a_3 , theta=pi /4 , j=j , i=i) , V_scalar)
1140 alpha_0 . vec to r () [:] = alpha_0 . vec to r ()+alpha_0_aux . vec to r ()

alpha . a s s i gn (alpha_0)
1142 # Def ine ds and dx .

ds = Measure (' ds ' , domain=mesh , subdomain_data=boundar ies)
1144 dx = Measure (' dx ' , domain=mesh)

209

Let us d e f i n e the t o t a l energy o f the system as the sum of e l a s t i c energy ,
d i s s i p a t e d energy due to the damage and ex t e rna l work due to body f o r c e s .

1146 # El a s t i c energy .
e l a s t i c_ene rgy1 = 0.5* i nne r (sigma (eps (u) , alpha) , eps (u)) *dx

1148 e l a s t i c_ene rgy2 = 0.5/E*(inner (Dev(sigma (eps (u) , alpha)) ,Dev(sigma (eps (u) ,
alpha))) \

=2.0/3.0* kappa2* i nne r (Sph (sigma (eps (u) , alpha)) , Sph (
sigma (eps (u) , alpha)))) *dx

1150 # External work .
external_work = dot (body_force , u) *dx

1152 # Neumand BC.
external_bc = 0 . 5* ((dot (k_r(u) , normal_v) *dot (u , normal_v)) *ds (BOXMIDX1)

1154 +(dot (k_r(u) , normal_v) *dot (u , normal_v)) *ds (BOXMIDX2)
+(dot (k_r(u) , normal_v) *dot (u , normal_v)) *ds (BOXMIDY1)

1156 +(dot (k_r(u) , normal_v) *dot (u , normal_v)) *ds (BOXMIDY2)
=dot (g_bc_zz*normal_v , u) *ds (BOXMIDX1)

1158 =dot (g_bc_zz*normal_v , u) *ds (BOXMIDX2)
=dot (g_bc_zz*normal_v , u) *ds (BOXMIDY1)

1160 =dot (g_bc_zz*normal_v , u) *ds (BOXMIDY2))
Dis s ipa t ed energy .

1162 di s s ipated_energy = (w(alpha)+e l l **2*w1*dot (grad (alpha) , grad (alpha))) *dx
De f i n i t i o n o f the t o t a l energy

1164 tota l_energy1 = e la s t i c_ene rgy1+diss ipated_energy=external_work+
external_bc

tota l_energy2 = e la s t i c_ene rgy2+diss ipated_energy=external_work+
external_bc

1166 # Weak form o f damage problem . This i s the formal exp r e s s i on f o r the tangent
problem which g i v e s us the equ i l i b r ium equat ions .

E_u = de r i v a t i v e (total_energy1 , u , v)
1168 E_alpha = de r i v a t i v e (total_energy2 , alpha , beta)

Hess ian matrix
1170 E_alpha_alpha = de r i v a t i v e (E_alpha , alpha , dalpha)

Writing tangent problems in term o f t e s t and t r i a l f un c t i on s f o r matrix
assembly .

1172 E_du = rep l a c e (E_u,{ u : du})
E_dalpha = rep l a c e (E_alpha , { alpha : dalpha })

1174 # Once the tangent problems are formulated in terms o f t r i a l and text
funct i ons , we de f i n e the va r i a t ona l problems .

Var i a t i ona l problem f o r the disp lacement .
1176 problem_u = LinearVar iat iona lProb lem (l h s (E_du) , rhs (E_du) ,u , bc_u)

Def ine the c l a s s s Optimizat ion Problem f o r then de f i n e the damage .
1178 # Var i a t i ona l problem f o r the damage (non=l i n e a r to use v a r i a t i o n a l i n e qua l i t y

s o l v e r s o f pe t s c) .
c l a s s DamageProblem(OptimisationProblem) :

1180 de f __init__(s e l f) :
OptimisationProblem .__init__(s e l f)

1182 # Object ive vec to r
de f f (s e l f , x) :

1184 alpha . vec to r () [:]= x
return assemble (tota l_energy2)

1186 # Gradient o f the ob j e c t i v e func t i on
de f F(s e l f , b , x) :

1188 alpha . vec to r () [:]= x
assemble (E_alpha , t enso r=b)

1190 # Hess ian o f the ob j e c t i v e func t i on
de f J (s e l f ,A, x) :

210

1192 alpha . vec to r () [:]= x
assemble (E_alpha_alpha , t enso r=A)

1194 # de f i n e the minimizat ion problem us ing the c l a s s .
problem_alpha = DamageProblem ()

1196 # Set up the s o l v e r s . Def ine the ob j e c t f o r s o l v i n g the disp lacement problem ,
" solver_u " .

solver_u = L inea rVa r i a t i ona lSo l v e r (problem_u)
1198 # Get the s e t o f paramters f o r the c l a s s " solver_u " . This only r e qu i r e s the

s o l u t i o n o f l i n e a r system s o l v e r .
solver_u . parameters . update (solver_LS_parameters)

1200 # Def ine the cor re spond ing object , " so lver_alpha " .
The ob j e c t a s s o c i a t ed to minimizat ion i s c r ea ted .

1202 so lver_alpha = PETScTAOSolver ()
Get the s e t o f paramters f o r the c l a s s " so lver_alpha " . This r e qu i r e s the

s o l u t i o n o f a minimizat ion problem .
1204 so lver_alpha . parameters . update (solver_minimizat ion_parameters)

As the opt imiza t i on i s a cons t ra ined type we need to prov ide the
cor re spond ing lower and upper bounds .

1206 lb = i n t e r p o l a t e (Express ion (" 0 .0 " , degree=0) , V_scalar)
ub = i n t e r p o l a t e (Express ion (" 0 .95 " , degree=0) , V_scalar)

1208 lb . vec to r () [:] = alpha . vec to r ()
Crete the f i l e s to s t o r e the s o l u t i o n s

1210 f i l e_a lpha = F i l e (s aved i r + "/alpha . pvd")
fi le_energW = F i l e (s aved i r + "/energy_w . pvd")

1212 f i l e_energDev = F i l e (s aved i r + "/energy_dev . pvd")
f i l e_energDiv = F i l e (s aved i r + "/energy_sph . pvd")

1214 f i l e_ene rgD i s = F i l e (s aved i r + "/ energy_dis . pvd")
f i l e_energP = F i l e (s aved i r + "/energy_p . pvd")

1216 f i l e_energE = F i l e (s aved i r + "/energy_E . pvd")
f i l e_u = F i l e (s aved i r + "/u . pvd")

1218 f i l e_s igma = F i l e (s aved i r+"/sigma . pvd")
f i l e_ e p s i l o n = F i l e (s aved i r+"/ ep s i l o n . pvd")

1220 #==
ELASTICITY PROBLEM.

1222 #==
i f caso==" E l a s t i c i t y " :

1224 solver_u . s o l v e ()
p r i n t ("

===")
1226 pr in t (" End o f the E l a s t i c i t y Problem in Remesh : %d " %(0))

p r i n t ("
===")

1228 #==
ALTERNATE MINIIZATION .

1230 #==
I n i t i a l i z a t i o n

1232 i f caso =="Damage" :
i t e r = 1 ; err_alpha = 1

1234 a0 = Vector (MPI .COMM_SELF)
a1 = Vector (MPI .COMM_SELF)

1236 # I t e r a t i o n s o f the a l t e r n a t e minimizat ion stop i f an e r r o r l im i t i s
reached or a maximim number o f i t e r a t i o n s have been done .
whi l e True and err_alpha > t o l l and i t e r < maxiter :

1238 alpha . vec to r () . gather (a0 , np . array (range (V_scalar . dim ()) , " i n t c "))
i f MPI .COMM_WORLD. Get_rank ()==0:

211

1240 pr in t ("Job %d : I t e r a t i o n : %2d , a0 : [% .8 g ,%.8 g] "%(MPI .COMM_WORLD.
Get_rank () , i t e r , a0 . min () , a0 .max()))

so l v e e l a s t i c problem
1242 solver_u . s o l v e ()

so l v e damage problem via a cons t ra ined minimizat ion a lgor i thm .
1244 so lver_alpha . s o l v e (problem_alpha , alpha . vec to r () , lb . vec to r () , ub . vec to r

())
alpha . vec to r () . ge t_loca l () [alpha . vec to r () . ge t_loca l () >0.95]=0.95

1246 alpha . vec to r () . gather (a1 , np . array (range (V_scalar . dim ()) , " i n t c "))
Compute the norm of the the e r r o r vec to r .

1248 err_alpha = np . l i n a l g . norm(a1 = a0 , ord = np . I n f) #np . l i n a l g . norm (
alpha_error . vec to r () . ge t_loca l () , ord = np . I n f)

Numerical Improve .
1250 i f C_L != 0 . 0 :

whi l e err_alpha>err_alpha_aux :
1252 alpha_2=C_L*alpha_0+(1.0=C_L) * alpha

alpha . a s s i gn (alpha_2)
1254 alpha . vec to r () . gather (a1 , np . array (range (V_scalar . dim ()) , " i n t c "

))
err_alpha=np . l i n a l g . norm(a1=a0 , ord=np . I n f)

1256 # monitor the r e s u l t s
i f MPI .COMM_WORLD. Get_rank ()>=0:

1258 pr in t (" I t e r a t i o n : %2d , Error : %2.8g , alpha_max : %.8g" %(i t e r ,
err_alpha , alpha . vec to r () .max()))

update the s o l u t i o n f o r the cur rent a l t e r n a t e minimizat ion i t e r a t i o n
.

1260 err_alpha_aux = err_alpha
alpha_0 . a s s i gn (alpha)

1262 i t e r = i t e r + 1
updating the lower bound with the s o l u t i o n o f the s o l u t i o n corre spond ing
to the cur rent g l oba l i t e r a t i o n , i t i s f o r account ing f o r the
i r r e v e r s i b i l i t y .

1264 lb . vec to r () [:]= alpha . vec to r ()
p r i n t ("===")

1266 pr in t (" End o f the a l t e r n a t e minimizat ion without cav i ty . ")
p r i n t ("===")

1268 #==
END ALTERNATE MINIMIZATION.

1270 #==
Store u , alpha .

1272 i f MPI .COMM_WORLD. Get_rank ()>=0:
f i l e_u << (u , 0 .)

1274 i f caso=="Damage" :
f i l e_a lpha << (alpha , 0 .)

1276 # Store s t r a i n and s t r e s s .
s t r a i n = eps (u)

1278 s t r e s s = p ro j e c t (sigma (s t r a in , alpha) , V_tensor , so lver_type="cg" ,
precondi t ioner_type="petsc_amg")

s t re s sG . a s s i gn (s t r e s s)
1280 stra inG . a s s i gn (p r o j e c t (s t r a in , V_tensor , so lver_type="cg" , precondi t ioner_type="

petsc_amg"))
i f MPI .COMM_WORLD. Get_rank ()>= 0 :

1282 f i l e_s igma << (stressG , 0 .)
f i l e_ e p s i l o n << (strainG , 0 .)

1284 # Store en e r g i e s .

212

W_energy . a s s i gn (p r o j e c t (energy_w(u , alpha) , V_scalar , so lver_type=' cg ' ,
precond i t ioner_type="petsc_amg"))

1286 dev_energy . a s s i gn (p r o j e c t (energy_dev (u , alpha) , V_scalar , so lver_type=' cg ' ,
precond i t ioner_type="petsc_amg"))

div_energy . a s s i gn (p r o j e c t (energy_sph (u , alpha) , V_scalar , so lver_type=' cg ' ,
precond i t ioner_type="petsc_amg"))

1288 E_energy . a s s i gn (p r o j e c t (energy_E (u , alpha , body_force) , V_scalar , so lver_type=' cg '
, precondi t ioner_type="petsc_amg"))

p_energy . a s s i gn (p r o j e c t (energy_p (u , body_force) , V_scalar , so lver_type=' cg ' ,
precond i t ioner_type="petsc_amg"))

1290 i f caso=="Damage" :
dis_energy . a s s i gn (p r o j e c t (energy_dis (alpha , e l l , w1) , V_scalar , so lver_type='
cg ' , precondi t ioner_type="petsc_amg"))

1292 # Control i f e n e r g i e s are too smal l
W_energy . vec to r () . ge t_loca l () [W_energy . vec to r () . ge t_loca l ()<1e=12]=0.0

1294 dev_energy . vec to r () . ge t_loca l () [dev_energy . vec to r () . ge t_loca l ()<1e=12]=0.0
div_energy . vec to r () . ge t_loca l () [div_energy . vec to r () . ge t_loca l ()<1e=12]=0.0

1296 E_energy . vec to r () . ge t_loca l () [E_energy . vec to r () . ge t_loca l ()<1e=12]=0.0
p_energy . vec to r () . ge t_loca l () [p_energy . vec to r () . ge t_loca l ()<1e=12]=0.0

1298 i f caso=="Damage" :
dis_energy . vec to r () . ge t_loca l () [dis_energy . vec to r () . ge t_loca l ()<1e=12]=0.0

1300 i f MPI .COMM_WORLD. Get_rank ()>=0:
fi le_energW << (W_energy , 0 .)

1302 f i l e_energDev << (dev_energy , 0 .)
f i l e_energDiv << (div_energy , 0 .)

1304 f i l e_energE << (E_energy , 0 .)
f i l e_energP << (p_energy , 0 .)

1306 i f caso == "Damage" :
f i l e_ene rgD i s << (dis_energy , 0 .)

1308 # Store the damage f o r t h i s geometry
alphaAux . a s s i gn (alpha)

1310 alpha0 . a s s i gn (alpha)
p r i n t ("===")

1312 pr in t (" Geometry without cav i ty i s f i n i s h e d . ")
p r i n t ("===")

1314 # Remove prev ious i n t e g r a t i n g f a c t o r s "dx , ds"
de l ds , dx

1316 #==
MESH WITH CAVITY.

1318 #==
Star t loop over new geometr i e s . These are obta ined from a sequence o f

geometr i e s which are obta ined from an ex t e rna l f o l d e r . The number o f
ex t e rna l f i l e s i s "NstepW" and the c a l l i s dr iven by the counter " itmesh " .

1320 # Sta r t i ng the loop o f the mesh sequence . I t i s dr iven by the index " itmesh " .
whi l e itmesh <= NstepW :

1322 a0 = Vector (MPI .COMM_SELF)
a1 = Vector (MPI .COMM_SELF)

1324 # Read mesh from a sequence o f meshes generated e x t e r n a l l y .
i f malla=="v3" :

1326 mesh_new=Mesh("Meshes/V3/"+meshname+s t r (itmesh)+" . xml . gz")
i f malla==" esmeralda " :

1328 mesh_new=Mesh("Meshes/Esmeralda/"+meshname+s t r (itmesh)+" . xml . gz")
i f malla=="sub6" :

1330 mesh_new=Mesh("Meshes/Sub6/"+meshname+s t r (itmesh)+" . xml . gz")
i f malla=="nuevon ive l " :

1332 mesh_new=Mesh("Meshes/Nuevo_Nivel/"+meshname+s t r (itmesh)+" . xml . gz")

213

Read f i l e s f o r i n t e r p o l a t i o n
1334 i f malla=="v3" :

with open ("Meshes/V3/"+meshname+s t r (itmesh)+"_"+s t r (0)+" . txt " , " r ") as
f i l e :

1336 GVertexI_2_GVertex0=eva l (f i l e . r e a d l i n e ())
i f malla==" esmeralda " :

1338 with open ("Meshes/Esmeralda_2/"+meshname+s t r (itmesh)+"_"+s t r (0)+" . txt "
, " r ") as f i l e :

GVertexI_2_GVertex0=eva l (f i l e . r e a d l i n e ())
1340 i f malla=="sub6" :

with open ("Meshes/Sub6/"+meshname+s t r (itmesh)+"_"+s t r (0)+" . txt " , " r ")
as f i l e :

1342 GVertexI_2_GVertex0=eva l (f i l e . r e a d l i n e ())
i f malla=="nuevon ive l " :

1344 with open ("Meshes/Nuevo_Nivel/"+meshname+s t r (itmesh)+"_"+s t r (0)+" . txt "
, " r ") as f i l e :

GVertexI_2_GVertex0=eva l (f i l e . r e a d l i n e ())
1346 i f malla=="v3" :

with open ("Meshes/V3/"+meshname+s t r (0)+"_"+s t r (itmesh)+" . txt " , " r ") as
f i l e :

1348 GVertex0_2_GVertexI=eva l (f i l e . r e a d l i n e ())
i f malla==" esmeralda " :

1350 with open ("Meshes/Esmeralda_2/"+meshname+s t r (0)+"_"+s t r (itmesh)+" . txt "
, " r ") as f i l e :

GVertex0_2_GVertexI=eva l (f i l e . r e a d l i n e ())
1352 i f malla=="sub6" :

with open ("Meshes/Sub6/"+meshname+s t r (0)+"_"+s t r (itmesh)+" . txt " , " r ")
as f i l e :

1354 GVertex0_2_GVertexI=eva l (f i l e . r e a d l i n e ())
i f malla=="nuevon ive l " :

1356 with open ("Meshes/Nuevo_Nivel/"+meshname+s t r (0)+"_"+s t r (itmesh)+" . txt "
, " r ") as f i l e :

GVertex0_2_GVertexI=eva l (f i l e . r e a d l i n e ())
1358 mesh_new . i n i t ()

Read boundar ies f o r new mesh
1360 i f malla=="v3" :

boundaries_new=MeshFunction (' s i ze_t ' ,mesh_new , "Meshes/V3/"+meshname+
s t r (itmesh)+"_faces . xml . gz")

1362 i f malla==" esmeralda " :
boundaries_new=MeshFunction (' s i ze_t ' ,mesh_new , "Meshes/Esmeralda_2/"+

meshname+s t r (itmesh)+"_faces . xml . gz")
1364 i f malla=="sub6" :

boundaries_new=MeshFunction (' s i ze_t ' , mesh_new , "Meshes/Sub6/"+meshname
+s t r (itmesh)+"_faces . xml . gz")

1366 i f malla=="nuevon ive l " :
boundaries_new=MeshFunction (' s i ze_t ' ,mesh_new , "Meshes/Nuevo_Nivel/"+

meshname+s t r (itmesh)+"_faces . xml . gz")
1368 MeshFunction (" s i ze_t " , mesh , mesh . topo logy () . dim ()=1)

Def ine the new ds and dx .
1370 dsN = Measure (' ds ' , domain=mesh_new , subdomain_data=boundaries_new)

dxN = Measure (' dx ' , domain=mesh_new)
1372 #normal v e c to r s

normal_v_new = FacetNormal (mesh_new)
1374 # Create new func t i on spaces

V_vector_new = VectorFunctionSpace (mesh_new , "CG" ,1)
1376 V_scalar_new = FunctionSpace (mesh_new , "CG" ,1)

214

V_tensor_new = TensorFunctionSpace (mesh_new , "DG" ,0)
1378 strainGN = Function (V_tensor_new , name=" ep s i l o n ")

stressGN = Function (V_tensor_new , name="sigma")
1380 #==

REMARK: To generate a sequence o f p l o t s in paraview the name
1382 # of the va r i ab l e must be the same . I t i s achieved by in c l ud ing

name="alpha " at the moment o f the d e f i n i t i o n o f the s t r u c tu r e " alpha " .
1384 #

<< alphaN = Function (V_scalar_new , name="alpha ") >>
1386 #

The same d e f i n i t i o n needs to be done f o r d i sp lacement "u" and
1388 # other ar rays as the d i f f e r e n c e o f damage without cav i ty and

damage with cavity , f o r example " a lphaDi f f " .
1390 #==

Def ine the funct ion , t e s t and t r i a l f i e l d s
1392 uN = Function (V_vector_new , name="u")

duN = Tria lFunct ion (V_vector_new)
1394 vN = TestFunction (V_vector_new)

alphaN = Function (V_scalar_new , name="alpha ")
1396 alphaN_2 = Function (V_scalar_new , name="alpha ")

dalphaN = Tria lFunct ion (V_scalar_new)
1398 betaN = TestFunction (V_scalar_new)

Def ine energy func t i on s .
1400 W_energyN = Function (V_scalar_new , name="energy_w")

dev_energyN = Function (V_scalar_new , name="energy_dev")
1402 div_energyN = Function (V_scalar_new , name="energy_sph")

E_energyN = Function (V_scalar_new , name="energy_E")
1404 p_energyN = Function (V_scalar_new , name="energy_p")

dis_energyN = Function (V_scalar_new , name="energy_dis ")
1406 # Def ine the i n i t i a l damage f o r the new mesh .

alphaN_0 = i n t e r p o l a t e (Express ion (" 0 .0 " , degree=1) ,V_scalar_new)
1408 # In t e r p o l a t e the prev ious damage .

Interpola_In_Out (alphaAux , alphaN_0 , GVertexI_2_GVertex0)
1410 alphaN_0 . vec to r () . ge t_loca l () [alphaN_0 . vec to r () . ge t_loca l ()<1e=12]=0.0

alphaN_0 . vec to r () . ge t_loca l () [alphaN_0 . vec to r () . ge t_loca l () >0.95]=0.95
1412 alphaN . a s s i gn (i n t e r p o l a t e (alphaN_0 , V_scalar_new))

Boudary cond i t i on s .
1414 faceCornerBottom .mark (boundaries_new , FACECORNERBOTTOM)

bc_facecornerbottomN = Dir ichletBC (V_vector_new . sub (2) , Constant (0 . 0) ,
boundaries_new ,FACECORNERBOTTOM)

1416 bc_boxmidx1N = Dir ichletBC (V_vector_new . sub (0) , Constant (0 . 0) ,
boundaries_new ,BOXMIDX1)
bc_boxmidx2N = Dir ichletBC (V_vector_new . sub (0) , Constant (0 . 0) ,
boundaries_new ,BOXMIDX2)

1418 bc_boxmidy1N = Dir ichletBC (V_vector_new . sub (1) , Constant (0 . 0) ,
boundaries_new ,BOXMIDY1)
bc_boxmidy2N = Dir ichletBC (V_vector_new . sub (1) , Constant (0 . 0) ,
boundaries_new ,BOXMIDY2)

1420 bc_boxbottomN = Dir ichletBC (V_vector_new . sub (2) , Constant (0 . 0) ,
boundaries_new ,BOXBOTTOM)
bc_uN = [bc_boxbottomN , bc_facecornerbottomN]

1422 # Let us d e f i n e the t o t a l energy o f the system as the sum of e l a s t i c
energy , d i s s i p a t e d energy due to the damage and ex t e rna l work due to body
f o r c e s .
elast ic_energy1_new = 0.5* i nne r (sigma (eps (uN) , alphaN) , eps (uN)) *dxN

215

1424 elastic_energy2_new = 0.5/E*(inner (Dev(sigma (eps (uN) , alphaN)) ,Dev(sigma (
eps (uN) , alphaN))) \

=2.0/3.0* kappa2* i nne r (Sph (sigma (eps (uN) , alphaN
)) , Sph (sigma (eps (uN) , alphaN)))) *dxN

1426 # External work .
external_work_new = dot (body_force ,uN) *dxN

1428 # Neuman BC.
external_bc_new = (0 . 5 * ((dot (k_r(uN) ,normal_v_new) *dot (uN, normal_v_new))
*dsN(BOXMIDX1)

1430 +(dot (k_r(uN) ,normal_v_new) *dot (uN, normal_v_new)) *dsN(
BOXMIDX2)

+(dot (k_r(uN) ,normal_v_new) *dot (uN, normal_v_new)) *dsN(
BOXMIDY1)

1432 +(dot (k_r(uN) ,normal_v_new) *dot (uN, normal_v_new)) *dsN(
BOXMIDY2))

=dot (g_bc_zz*normal_v_new ,uN) *dsN(BOXMIDX1)
1434 =dot (g_bc_zz*normal_v_new ,uN) *dsN(BOXMIDX2)

=dot (g_bc_zz*normal_v_new ,uN) *dsN(BOXMIDY1)
1436 =dot (g_bc_zz*normal_v_new ,uN) *dsN(BOXMIDY2))

Dis s ipa t ed energy .
1438 dissipated_energy_new = (w(alphaN)+e l l **2*w1*dot (grad (alphaN) , grad (

alphaN))) *dxN
De f i n i t i o n o f the t o t a l energy

1440 total_energy1_new = elastic_energy1_new+dissipated_energy_new=
external_work_new+external_bc_new
total_energy2_new = elastic_energy2_new+dissipated_energy_new=
external_work_new+external_bc_new

1442 # Weak form o f e l a s t i c i t y problem . This i s the formal exp r e s s i on f o r the
tangent problem which g i v e s us the equ i l i b r ium equat ions .
E_uN = de r i v a t i v e (total_energy1_new ,uN,vN)

1444 E_alphaN = de r i v a t i v e (total_energy2_new , alphaN , betaN)
Hess ian matrix

1446 E_alpha_alphaN = de r i v a t i v e (E_alphaN , alphaN , dalphaN)
Writing tangent problems in term o f t e s t and t r i a l f un c t i on s f o r matrix
assembly

1448 E_duN = rep l a c e (E_uN,{uN:duN})
E_dalphaN = rep l a c e (E_alphaN ,{ alphaN : dalphaN})

1450 # Once the tangent problems are formulated in terms o f t r i a l and text
funct i ons , we de f i n e the va r i a t ona l problems .
Var i a t i ona l problem f o r the disp lacement .

1452 problem_uN = LinearVar iat iona lProb lem (l h s (E_duN) , rhs (E_duN) ,uN,bc_uN)
Def ine the c l a s s s Optimizat ion Problem f o r then de f i n e the damage .

1454 # Var i a t i ona l problem f o r the damage (non=l i n e a r to use v a r i a t i o n a l
i n e qua l i t y s o l v e r s o f pe t s c) .
c l a s s DamageProblemN(OptimisationProblem) :

1456 de f __init__(s e l f) :
OptimisationProblem .__init__(s e l f)

1458 # Object ive vec to r
de f f (s e l f , x) :

1460 alphaN . vec to r () [:]= x
return assemble (total_energy2_new)

1462 # Gradient o f the ob j e c t i v e func t i on
de f F(s e l f , b , x) :

1464 alphaN . vec to r () [:]= x
assemble (E_alphaN , t enso r = b)

1466 # Hess ian o f the ob j e c t i v e func t i on

216

de f J (s e l f ,A, x) :
1468 alphaN . vec to r () [:]= x

assemble (E_alpha_alphaN , t enso r=A)
1470 # Def ine the minimizat ion problem us ing the c l a s s .

problem_alphaN = DamageProblemN ()
1472 # Set up the s o l v e r s

solver_uN = Linea rVa r i a t i ona lSo l v e r (problem_uN)
1474 solver_uN . parameters . update (solver_LS_parameters)

solver_alphaN = PETScTAOSolver ()
1476 solver_alphaN . parameters . update (solver_minimizat ion_parameters)

For the c on s t r a i n t minimizat ion problem we r equ i r e the lower and upper
bound , "lbN" and "ubN" . They are i n i t i a l i z e d though i n t e r p o l a t i o n s .

1478 lbN = alphaN_0
ubN = in t e r p o l a t e (Express ion (" 0 .95 " , degree = 0) , V_scalar_new)

1480 #==
ALTERNATE MINIIZATION .

1482 #==
i f caso == " E l a s t i c i t y " :

1484 solver_uN . s o l v e ()
p r i n t ("

===")
1486 pr in t (" End o f the E l a s t i c i t y Problem in Remesh : %d " %(itmesh

))
p r i n t ("

===")
1488 i f caso == "Damage" :

i t e r = 1 ; err_alphaN = 1 ; err_alpha_aux=1
1490 count_arreglo=0

whi le err_alphaN>t o l l and i t e r <maxiter :
1492 alphaN . vec to r () . gather (a0 , np . array (range (V_scalar_new . dim ()) , " i n t c

"))
amin=alphaN . vec to r () . min ()

1494 amax=alphaN . vec to r () .max()
i f MPI .COMM_WORLD. Get_rank () == 0 :

1496 pr in t ("Job %d : itmesh=%=2d , I t e r a t i o n : %2d , a0 : [% .8 g ,%.8 g
] , alphaN : [% .8 g ,%.8 g] " \

%(MPI .COMM_WORLD. Get_rank () , itmesh , i t e r , a0 . min () , a0 .max
() , amin , amax))

1498 # so l v e e l a s t i c problem
solver_uN . s o l v e ()

1500 # so l v e damage problem via a cons t ra ined minimizat ion a lgor i thm .
solver_alphaN . s o l v e (problem_alphaN , alphaN . vec to r () , lbN . vec to r () ,

ubN . vec to r ())
1502 alphaN . vec to r () . ge t_loca l () [alphaN . vec to r () . ge t_loca l () >0.95]=0.95

alphaN . vec to r () . gather (a2 , np . array (range (V_scalar_new . dim ()) , " i n t c
"))

1504 # Compute the norm of the the e r r o r vec to r .
err_alphaN = np . l i n a l g . norm(a2 = a0 , ord = np . I n f)

1506 i f C_L != 0 . 0 :
whi l e err_alphaN > err_alpha_aux :

1508 alphaN_2 = C_L*alphaN_0+(1.0=C_L) *alphaN
alphaN . a s s i gn (alphaN_2)

1510 alphaN . vec to r () . gather (a2 , np . array (range (V_scalar_new . dim
()) , " i n t c "))

err_alphaN = np . l i n a l g . norm(a2 = a0 , ord = np . I n f)
1512 # Monitor the r e s u l t s f o r the new mesh

217

i f MPI .COMM_WORLD. Get_rank () >= 0 :
1514 pr in t ("Job %d : itmesh=%=2d , I t e r a t i o n : %2d , Error : %2.8g ,

alpha_max : %.8g" \
% (MPI .COMM_WORLD. Get_rank () , itmesh , i t e r , err_alphaN

, alphaN . vec to r () .max ()))
1516 # update the s o l u t i o n f o r the cur rent a l t e r n a t e minimizat ion

i t e r a t i o n .
err_alpha_aux = err_alphaN

1518 alphaN_0 . a s s i gn (alphaN)
i t e r = i t e r + 1

1520 i f MPI .COMM_WORLD. Get_rank () >= 0 :
p r i n t ("

===")
1522 pr in t (" End o f the a l t e r n a t e minimizat ion in Remesh : %d "

%(itmesh))
p r i n t ("

===")
1524 # In t e r p o l a t i o n .

Interpola_In_Out (alphaN , alphaAux , GVertex0_2_GVertexI)
1526 # Store s t r a i n and s t r e s s .

s t ra inN = eps (uN)
1528 s t r e s sN = pro j e c t (sigma (strainN , alpha) ,V_tensor_new , so lver_type=' cg ' ,

precondi t ioner_type="petsc_amg")
stressGN . a s s i gn (s t r e s sN)

1530 strainGN . a s s i gn (p r o j e c t (strainN , V_tensor_new , so lver_type=' cg ' ,
precondi t ioner_type="petsc_amg"))
i f MPI .COMM_WORLD. Get_rank ()>=0:

1532 f i l e_u << (uN, 1 . 0 * i tmesh)
f i l e_s igma << (stressGN , 1 . 0 * i tmesh)

1534 f i l e_ e p s i l o n << (strainGN , 1 . 0 * i tmesh)
i f caso=="Damage" :

1536 f i l e_a lpha << (alphaN , 1 . 0 * i tmesh)
Eval the energy

1538 W_energyN . a s s i gn (p r o j e c t (energy_w(uN, alphaN) ,V_scalar_new , so lver_type=' cg '
, precondi t ioner_type="petsc_amg"))
dev_energyN . a s s i gn (p r o j e c t (energy_dev (uN, alphaN) ,V_scalar_new , so lver_type=
' cg ' , precond i t ioner_type="petsc_amg"))

1540 div_energyN . a s s i gn (p r o j e c t (energy_sph (uN, alphaN) ,V_scalar_new , so lver_type=
' cg ' , precond i t ioner_type="petsc_amg"))
E_energyN . a s s i gn (p r o j e c t (energy_E (uN, alphaN , body_force) ,V_scalar_new ,
so lver_type=' cg ' , precondi t ioner_type="petsc_amg"))

1542 p_energyN . a s s i gn (p r o j e c t (energy_p (uN, body_force) ,V_scalar_new , so lver_type=
' cg ' , precond i t ioner_type="petsc_amg"))
i f caso=="Damage" :

1544 dis_energyN . a s s i gn (p r o j e c t (energy_dis (alphaN , e l l , w1) ,V_scalar_new ,
so lver_type=' cg ' , precondi t ioner_type="petsc_amg"))
Control i f e n e r g i e s are too smal l

1546 W_energyN . vec to r () . ge t_loca l () [W_energyN . vec to r () . ge t_loca l ()<1e=12]=0.0
dev_energyN . vec to r () . ge t_loca l () [dev_energyN . vec to r () . ge t_loca l ()<1e
=12]=0.0

1548 div_energyN . vec to r () . ge t_loca l () [div_energyN . vec to r () . ge t_loca l ()<1e
=12]=0.0
E_energyN . vec to r () . ge t_loca l () [E_energyN . vec to r () . ge t_loca l ()<1e=12]=0.0

1550 p_energyN . vec to r () . ge t_loca l () [p_energyN . vec to r () . ge t_loca l ()<1e=12]=0.0
i f caso=="Damage" :

218

1552 dis_energyN . vec to r () . ge t_loca l () [dis_energyN . vec to r () . ge t_loca l ()<1e
=12]=0.0
Store the energy

1554 i f MPI .COMM_WORLD. Get_rank ()>=0:
fi le_energW << (W_energyN , 1 . 0 * i tmesh)

1556 f i l e_energDev << (dev_energyN , 1 . 0 * i tmesh)
f i l e_energDiv << (div_energyN , 1 . 0 * i tmesh)

1558 f i l e_energE << (W_energyN , 1 . 0 * i tmesh)
f i l e_energP << (dev_energyN , 1 . 0 * i tmesh)

1560 i f caso == "Damage" :
f i l e_ene rgD i s << (dis_energyN , 1 . 0 * i tmesh)

1562 # In t e g r a l va lue o f alpha
int_alpha = assemble (alphaN*dxN)

1564 vo l = assemble (1 . 0*dxN)
in ta lpha [itmesh] = ([1 . 0 * itmesh , int_alpha , vo l])

1566 np . save txt (s aved i r + ' / int_alpha . txt ' , i n ta lpha)
itmesh = itmesh + 1

1568 # Free memory f o r l i s t s depending on the cur rent mesh i t e r a t i o n
de l duN

1570 de l vN
de l alphaN

1572 de l dalphaN
de l betaN

1574 de l alphaN_0
de l W_energyN

1576 de l div_energyN
de l dev_energyN

1578 de l ubN
de l lbN

1580 de l bc_uN
de l bc_boxmidx1N

1582 de l bc_boxmidx2N
de l bc_boxmidy1N

1584 de l bc_boxmidy2N
de l bc_boxbottomN

1586 de l bc_alpha_upN
de l bc_alphaN

1588 de l normal_v_new
de l boundaries_new

1590 de l mesh_new
de l V_vector_new

1592 de l V_scalar_new
de l total_energy1_new

1594 de l total_energy2_new
de l elastic_energy1_new

1596 de l external_work_new
de l dissipated_energy_new

1598 de l E_uN
de l E_alphaN

1600 de l E_alpha_alphaN
de l E_duN

1602 de l E_dalphaN
de l solver_uN

1604 de l problem_uN
de l problem_alphaN

1606 de l dsN , dxN

219

de l DamageProblemN
1608 de l a0

de l a1
1610 #==

THE MAIN LOOP FOR REMESHING GAS FINISHED .
1612 #==

pr in t ("===")
1614 pr in t (" Geometry with cav i ty i s f i n i s h e d . ")

p r i n t ("===")
1616 # Plot i n t e g r a l o f damage

de f plot_int_alpha () :
1618 p1 , = p l t . p l o t (in ta lpha [: , 0] , i n ta lpha [: , 1] , ' r=o ' , l i n ew id th=2)

p l t . x l ab e l ('Mesh I t e r a t i o n s ')
1620 p l t . y l ab e l (' I n t e g r a l o f damage ')

p l t . s a v e f i g (s aved i r + ' / int_alpha . png ')
1622 p l t . g r i d (True)

plot_int_alpha ()
1624 #==

FREE MEMORY
1626 #==

de l u , du , v
1628 de l alpha , dalpha , beta , alpha_0

de l a lpha_error
1630 de l W_energy , div_energy , dev_energy

de l f i l e_a lpha
1632 de l f i l e_u

de l lb , ub
1634 de l solver_u

de l so lver_alpha
1636 de l alphaAux

de l V_vector
1638 de l V_scalar

de l bc_u
1640 de l bc_boxmidx1 , bc_boxmidx2 , bc_boxmidy1 , bc_boxmidy2 , bc_boxbottom

de l normal_v
1642 de l mesh , boundar ies

#==
1644 # End o f the main program .

#==

./codes/Cavity_3D/Cavity3D.py

B.2.2 Parameters.py

1000 #==
IMPORT LIBRARIES TO GET THE CODE WORKING.

1002 #==
from do l f i n import *

1004 from mshr import *

import sys , os , sympy , shu t i l , math
1006 import numpy as np

import matp lo t l i b
1008 matp lo t l i b . use ('Agg ')

from matp lo t l i b import pyplot as p l t
1010 import socket

import datet ime

220

1012 from u f l import r ep l a c e
from mpi4py import MPI

1014 from in spe c t import currentframe , get f rame in fo , s tack
#==

1016 # PARAMETERS
#==

1018 i tmesh = 1
NstepW = 40

1020 Kw = Constant (100)
kappa = Constant (1 . 0)

1022 # Di f e r en t s models f o r w(alpha)
model = 1

1024 w1 = Constant (1 . 0 e6)
w11 = Constant (1000)

1026 C_L = 0.0
Di f e r en t meshes to Damage problem , f o r example : "v3 " ;" esmeralda " ; " sub6 " ; "

nuevonive l "
1028 malla = "v3"

Se l e c t ca s e s : Damage or E l a s t i c i t y
1030 caso = "Damage"

Consider I n i t i a l Damage f o r FH: Initial_Damage or No_Initial_Damage
1032 FH = "NO_Initial_Damage"

rk = MPI.COMM_WORLD. Get_rank ()
1034 #==

MATERIAL CONSTANTS
1036 #==

E = 2.9 e10
1038 nu = 0 .3

mu = E/(2 .0* (1 .0+nu))
1040 lmbda = E*nu/(1.0=nu**2)

f fD = lmbda/(lmbda+2*mu)
1042 # In t h i s case t h i s quant i ty conta in s the dens i ty , so g rav i ty = rho * g , with

g the g rav i ty a c c e l e r a t i o n .
rho = 2 .7 e3

1044 g = 9 .8
g rav i ty = rho*g

1046 e l l = 1 .0
k_el l = Constant (1 . e=6)

1048 e n e r g i e s = np . z e ro s ((NstepW , 6))
#Body f o r c e

1050 body_force = Constant ((0 .0 , 0 . 0 , = g rav i ty))
ndim = 3

1052 #==
NUMERICAL PARAMETERS OF THE ALTERNATE MINIMIZATION.

1054 #==
maxiter = 1000

1056 t o l l = 1e=5
#==

1058 # THE FILES ARE STORED IN A FOLDER NAMED "modelname " .
#==

1060 now = datet ime . datet ime . now() . s t r f t ime ("%m=%d_%H.%M.%S")+'_'+socket .
gethostname ()

i f FH=="Initial_Damage" :
1062 i f caso==" E l a s t i c i t y " :

modelname=" [FH] [caso=%s]_[malla=%s]_[np=%d]_%s"%(caso , malla ,MPI .
COMM_WORLD. Get_size () ,now)

221

1064 i f caso=="Damage" :
modelname=" [FH] [caso=%s]_[malla=%s]_[model=%d]_[w11=%.0 f]_[np=%d]_[k2

=%.2 f]_[C_L=%.2 f]_%s"%(caso , malla , model , w11 ,MPI .COMM_WORLD. Get_size () , kappa
,C_L, now)

1066 e l s e :
i f caso==" E l a s t i c i t y " :

1068 modelname=" [caso=%s]_[malla=%s]_[np=%d]_%s"%(caso , malla ,MPI .COMM_WORLD
. Get_size () ,now)
i f caso=="Damage" :

1070 modelname=" [caso=%s]_[malla=%s]_[model=%d]_[w11=%.0 f]_[np=%d]_[k2=%.2 f
]_[C_L=%.2 f]_%s"%(caso , malla , model , w11 ,MPI .COMM_WORLD. Get_size () , kappa ,C_L,
now)

i f MPI .COMM_WORLD. Get_rank () == 0 :
1072 pr in t ('modelname ='+modelname)

othe r s
1074 regenerate_mesh = True

saved i r = " r e s u l t s/%s "%(modelname)
1076 i f MPI .COMM_WORLD. Get_rank () == 0 :

p r i n t (' s aved i r='+saved i r)
1078 #==

READ MESH AND BOUNDARIES FROM EXTERNAL FILES .
1080 #==

In t h i s b lock we de f i n e boundary s e t s f o r boundary cond i t i on s .
1082 # This depends on p a r t i c u l a r t e s t s . In t h i s case the mesh i s readed

from ex t e rna l f i l e s .
1084 # boundar ies l a b e l s . These are a v a i l a b l e s in the f i l e "*_faces . xml . gz"

Labels f o r c a v i t i e s
1086 CAVEUP = 101

CAVEBOTTOM = 102
1088 CAVEMID = 103

Labels f o r ex t e rna l boundar ies
1090 BOXUP = 201

BOXMIDX1 = 202
1092 BOXMIDX2 = 203

BOXMIDY1 = 204
1094 BOXMIDY2 = 205

BOXBOTTOM = 206
1096 # Meshname .

i f malla=="v3" :
1098 meshname="Socavacion_incrArea5000_maxArea200000_v3_"

i f malla==" esmeralda " :
1100 meshname=" esmeralda "

i f malla=="sub6" :
1102 meshname="sub6_"

i f malla=="nuevon ive l " :
1104 meshname="nuevonivel_"

Read mesh
1106 i f malla=="v3" :

mesh=Mesh("Meshes/V3/"+meshname+s t r (0)+" . xml . gz")
1108 i f malla==" esmeralda " :

mesh=Mesh("Meshes/Esmeralda/"+meshname+s t r (0)+" . xml . gz")
1110 i f malla=="sub6" :

mesh=Mesh("Meshes/Sub6/"+meshname+s t r (0)+" . xml . gz")
1112 i f malla=="nuevon ive l " :

mesh=Mesh("Meshes/Nuevo_Nivel/"+meshname+s t r (0)+" . xml . gz")
1114 mesh . i n i t ()

222

Read boundar ies
1116 i f malla=="v3" :

boundar ies=MeshFunction (' s i z e_t ' ,mesh , "Meshes/V3/"+meshname+s t r (0)+"_faces
. xml . gz")

1118 i f malla==" esmeralda " :
boundar ies=MeshFunction (' s i z e_t ' ,mesh , "Meshes/Esmeralda/"+meshname+s t r (0)+
"_faces . xml . gz")

1120 i f malla=="sub6" :
boundar ies=MeshFunction (' s i z e_t ' ,mesh , "Meshes/Sub6/"+meshname+s t r (0)+"
_faces . xml . gz")

1122 i f malla=="nuevon ive l " :
boundar ies=MeshFunction (' s i z e_t ' ,mesh , "Meshes/Nuevo_Nivel/"+meshname+s t r
(0)+"_faces . xml . gz")

1124 # Maximum va lues o f mesh (l o c a l)
meshl_xmax , meshl_ymax , meshl_zmax = mesh . coo rd ina t e s () .max(ax i s=0)

1126 # Maximum va lues o f mesh (g l oba l)
mesh_xmax = MPI.COMM_WORLD. a l l r e du c e (meshl_xmax , op=MPI.MAX)

1128 mesh_ymax = MPI.COMM_WORLD. a l l r e du c e (meshl_ymax , op=MPI.MAX)
mesh_zmax = MPI.COMM_WORLD. a l l r e du c e (meshl_zmax , op=MPI.MAX)

1130 # Minimum va lues o f mesh (l o c a l)
meshl_xmin , meshl_ymin , meshl_zmin = mesh . coo rd ina t e s () . min (ax i s=0)

1132 # Minimum va lues o f mesh (g l oba l)
mesh_xmin = MPI.COMM_WORLD. a l l r e du c e (meshl_xmin , op=MPI.MIN)

1134 mesh_ymin = MPI.COMM_WORLD. a l l r e du c e (meshl_ymin , op=MPI.MIN)
mesh_zmin = MPI.COMM_WORLD. a l l r e du c e (meshl_zmin , op=MPI.MIN)

1136 pr in t ("ZMAX(G,L) : " ,mesh_zmax , meshl_ymax)
p r in t ("ZMIN(G,L) : " ,mesh_zmin , meshl_ymin)

1138 # normal v e c to r s
normal_v = FacetNormal (mesh)

1140 # Face Corner Bottom f o r the uniqueness
c l a s s FaceCornerBottom (SubDomain) :

1142 de f i n s i d e (s e l f , x , on_boundary) :
px , py , pz=x

1144 re turn (on_boundary and near (pz , mesh_zmin)
and (px<mesh_xmin+mesh . hmax())

1146 and (py<mesh_ymin+mesh . hmax())
)

1148 FACECORNERBOTTOM = 400
faceCornerBottom = FaceCornerBottom ()

1150 faceCornerBottom .mark (boundaries , FACECORNERBOTTOM)
#==

1152 # CREATE FUNCTION SPACE FOR 3D ELASTICITY AND DAMAGE
#==

1154 V_vector = VectorFunctionSpace (mesh , "CG" ,1)
V_scalar = FunctionSpace (mesh , "CG" ,1)

1156 V_tensor = TensorFunctionSpace (mesh , "DG" ,0)
#==

1158 # BOUNDARY CONDITIONS.
#==

1160 bc_facecornerbottom = Dir ichletBC (V_vector . sub (2) , Constant (0 . 0) , boundaries ,
FACECORNERBOTTOM)

bc_boxmidx1 = Dir ichletBC (V_vector . sub (1) , Constant (0 . 0) , boundaries ,
BOXMIDX1)

1162 bc_boxmidx2 = Dir ichletBC (V_vector . sub (1) , Constant (0 . 0) , boundaries ,
BOXMIDX2)

223

bc_boxmidy1 = Dir ichletBC (V_vector . sub (0) , Constant (0 . 0) , boundaries ,
BOXMIDY1)

1164 bc_boxmidy2 = Dir ichletBC (V_vector . sub (0) , Constant (0 . 0) , boundaries ,
BOXMIDY2)

bc_boxbottom = Dir ichletBC (V_vector . sub (2) , Constant (0 . 0) , boundaries ,
BOXBOTTOM)

1166 bc_u = [bc_boxbottom , bc_facecornerbottom]
Newmann boundary cond i t i on

1168 kx = grav i ty
g_bc_zz = Express ion (' f fD *k*(x [2]=mesh_zmax) ' , degree=2,k=kx ,mesh_zmax=

mesh_zmax , f fD=ffD)

./codes/Cavity_3D/Parameters.py

B.2.3 AuxFunctions.py

1000 #==
AUXILIARY FUNCTION FOR INTERPOLATION.

1002 #==
from do l f i n import dof_to_vertex_map , vertex_to_dof_map , Function , Vector

1004 from numpy import array
from mpi4py import MPI

1006 #==
INTERPOLATION.

1008 #==
de f Interpola_In_Out (Var_In ,Var_Out , GVertex_Out_2_GVertex_In) :

1010 V_In = Var_In . funct ion_space ()
mesh_In = Var_In . funct ion_space () . mesh ()

1012 l2gvi_In = mesh_In . topo logy () . g l oba l_ ind i c e s (0)
g2lv i_In = {}

1014 f o r j in range (mesh_In . num_vertices ()) :
g2 lv i_In [l2gvi_In [j]]= j

1016 dof_2_vl_In = dof_to_vertex_map (V_In)
vl_2_dof_In = vertex_to_dof_map (V_In)

1018 l2g_dof_vector_In = Function (V_In)
LDof_2_GVertex_arr_In = l2g_dof_vector_In . vec to r () . ge t_loca l ()

1020 f o r i , v in enumerate (LDof_2_GVertex_arr_In) :
LDof_2_GVertex_arr_In [i]= l2gvi_In [dof_2_vl_In [i]]

1022 l2g_dof_vector_In . vec to r () . s e t_ lo ca l (LDof_2_GVertex_arr_In)
Var_G_In = Vector (MPI .COMM_SELF)

1024 GDof_2_GVertex_Vself_In = Vector (MPI .COMM_SELF)
Var_In . vec to r () . gather (Var_G_In , array (range (V_In . dim ()) , " i n t c "))

1026 l2g_dof_vector_In . vec to r () . gather (GDof_2_GVertex_Vself_In , array (range (V_In
. dim ()) , " i n t c "))
Var_G_sorted_In = [Var_G_In . ge t_loca l () [i [0]] f o r i in so r t ed (enumerate (
GDof_2_GVertex_Vself_In . ge t_loca l ()) , key=lambda x : x [1])]

1028 V_Out = Var_Out . funct ion_space ()
mesh_Out = Var_Out . funct ion_space () . mesh ()

1030 l2gvi_Out = mesh_Out . topology () . g l oba l_ ind i c e s (0)
g2lvi_Out = {}

1032 f o r j in range (mesh_Out . num_vertices ()) :
g2lvi_Out [l2gvi_Out [j]]= j

1034 dof_2_vl_Out = dof_to_vertex_map (V_Out)
vl_2_dof_Out = vertex_to_dof_map (V_Out)

1036 LDof_2_GVertex_Fn_Out = Function (V_Out)
LDof_2_GVertex_arr_Out = LDof_2_GVertex_Fn_Out . vec to r () . ge t_loca l ()

224

1038 f o r i , v in enumerate (LDof_2_GVertex_arr_Out) :
LDof_2_GVertex_arr_Out [i]= l2gvi_Out [dof_2_vl_Out [i]]

1040 LDof_2_GVertex_Fn_Out . vec to r () . s e t_ l o ca l (LDof_2_GVertex_arr_Out)
Var_G_Out = Vector (MPI .COMM_SELF)

1042 GDof_2_GVertex_Vself_Out = Vector (MPI .COMM_SELF)
Var_Out . vec to r () . gather (Var_G_Out, array (range (V_Out . dim ()) , " i n t c "))

1044 LDof_2_GVertex_Fn_Out . vec to r () . gather (GDof_2_GVertex_Vself_Out , array (range
(V_Out . dim ()) , " i n t c "))
Var_G_sorted_Out=[Var_G_Out . ge t_loca l () [i [0]] f o r i in so r t ed (enumerate (
GDof_2_GVertex_Vself_Out . ge t_loca l ()) , key=lambda x : x [1])]

1046 f o r i in range (l en (Var_G_sorted_In) , l en (Var_G_sorted_Out)) :
Var_G_sorted_In . append (Var_G_sorted_Out [i])

1048 Var_array_Out = Var_Out . vec to r () . ge t_loca l ()
rk = MPI.COMM_WORLD. Get_rank ()

1050 f o r i ,GV_Out in enumerate (LDof_2_GVertex_arr_Out) :
t ry :

1052 iGV_Out=in t (GV_Out)
Var_array_Out [i]=Var_G_sorted_In [GVertex_Out_2_GVertex_In [iGV_Out

]]
1054 except IOError :

p r i n t ("iGV_Out=" ,iGV_Out)
1056 Var_Out . vec to r () . s e t_ l o ca l (Var_array_Out)

Var_Out . vec to r () . apply ("")

./codes/Cavity_3D/AuxFunctions.py

225

Appendix C

Codes in MATLAB

This appendix presents the computer codes used in the Part II, which have been developed in
Python and with the use of MATLAB software. MATLAB is a proprietary multi-paradigm
programming language and numerical computing environment developed by MathWorks.
MATLAB allows matrix manipulations, plotting of functions and data, implementation of
algorithms, creation of user interfaces, and interfacing with programs written in other lan-
guages.

C.1 main.m
1000 %% CGO so l u t i o n s (v e c t o r i a l case)

c l e a r a l l ;
1002 %% parameters

% choose the type o f example
1004 % example1 : A=I * sigma .

% example2 : A=[2 0 ;0 3]* sigma .
1006 % example3 : A=[2 1 ;1 3]* sigma

% example4 : A=[sigma1 sigma2 ; sigma3 sigma4]
1008 example = ' example0 ' ;

1010 s = 2 . 1 ; %square [=s , s)
m = 8 ;

1012 M = 2^m;
h = (2* s) /M;

1014 k = 2 ;
% Create Grid

1016 [x1 , x2] = crea_grid (m, h) ;
z = complex (x1 , x2) ;

1018 %% func t i on s eta , g and b (Cauchy and Beur l ing Transforms)
eta=crea_eta (x1 , x2 ,M, 2) ;

1020 g=eta . / (p i *z) ;
g (abs (z)==0)=0;

1022 b=eta . / (p i *z .^2) ;
b (abs (z)==0)=0;

1024 % Four ie r trans form
Fg=f f t 2 (f f t s h i f t (g)) ;

1026 Fb=f f t 2 (f f t s h i f t (b)) ;

226

%% Sigma y mu
1028 i f example == ' example0 '

d i sp ('Example 0 . ')
1030 sigma_1 = 0.5* sigma5 (z) ;

sigma_2 = 0.2* sigma6 (z) ;
1032 sigma_3 = 0.3* sigma7 (z) ;

sigma_4 = 0.5* sigma8 (z) ;
1034 end

i f example == ' example1 '
1036 di sp ('Example 1 . ')

sigma_1 = sigma1 (z) ;
1038 sigma_2 = 0* sigma1 (z) ;

sigma_3 = 0* sigma1 (z) ;
1040 sigma_4 = sigma1 (z) ;

end
1042 i f example == ' example2 '

d i sp ('Example 2 . ')
1044 sigma_1 = 2* sigma1 (z) ;

sigma_2 = 0* sigma1 (z) ;
1046 sigma_3 = 0* sigma1 (z) ;

sigma_4 = 3* sigma1 (z) ;
1048 end

i f example == ' example3 '
1050 di sp ('Example 3 . ')

sigma_1 = 2* sigma1 (z) ;
1052 sigma_2 = 1* sigma1 (z) ;

sigma_3 = 1* sigma1 (z) ;
1054 sigma_4 = 3* sigma1 (z) ;

end
1056 i f example == ' example4 '

d i sp ('Example 4 . ')
1058 sigma_1 = sigma1 (z) ;

sigma_2 = sigma2 (z) ;
1060 sigma_3 = sigma3 (z) ;

sigma_4 = sigma4 (z) ;
1062 end

sigma_2 (abs (z)>1) = 0 ;
1064 sigma_3 (abs (z)>1) = 0 ;

% SIGMA MATRIX
1066 SIGMA = [sigma_1 sigma_2 ; sigma_3 sigma_4] ;

% Create MU matrix (MU=(I=SIGMA) (I+SIGMA)^{=1})
1068 % Determinant o f Sigma

detS = ((1+sigma_1) .*(1+sigma_4))=(sigma_2 .* sigma_3) ;
1070 mu1 = ((1=sigma_1) .*(1+sigma_4)=(sigma_2 .* sigma_3)) . / detS ;

mu2 = (2* (sigma_1 .* sigma_2)) . / detS ;
1072 mu3 = (2* (sigma_3 .* sigma_4)) . / detS ;

mu4 = ((1+sigma_1) .*(1= sigma_4)=(sigma_2 .* sigma_3)) . / detS ;
1074 MU = [mu1 mu2 ;mu3 mu4] ;

% Plot Sigma and MU
1076 sigma_1tmp = sigma_1 ;

sigma_1tmp(abs (z)>1) = nan ;
1078 f 1=f i g u r e (1) ;

s u r f (x1 , x2 , sigma_1tmp) ;
1080 saveas (f1 , ' example5_sigma_1 ' , ' png ')

sigma_2tmp = sigma_2 ;
1082 sigma_2tmp(abs (z)>1) = nan ;

227

f 2=f i g u r e (2) ;
1084 s u r f (x1 , x2 , sigma_2tmp) ;

saveas (f2 , ' example5_sigma_2 ' , ' png ')
1086 sigma_3tmp = sigma_3 ;

sigma_3tmp(abs (z)>1) = nan ;
1088 f 3=f i g u r e (3) ;

s u r f (x1 , x2 , sigma_3tmp) ;
1090 saveas (f3 , ' example5_sigma_3 ' , ' png ')

sigma_4tmp = sigma_4 ;
1092 sigma_4tmp(abs (z)>1) = nan ;

f 4=f i g u r e (4) ;
1094 s u r f (x1 , x2 , sigma_4tmp) ;

saveas (f4 , ' example5_sigma_4 ' , ' png ')
1096 %% alpha and nu

E=exp(=1 i * ((k*z) + (conj (k) * conj (z)))) ;
1098 a1 = =1 i * conj (k) *E.*mu1 ;

a2 = =1 i * conj (k) *E.*mu2 ;
1100 a3 = =1 i * conj (k) *E.*mu3 ;

a4 = =1 i * conj (k) *E.*mu4 ;
1102 nu1 = E.*mu1 ;

nu2 = E.*mu2 ;
1104 nu3 = E.*mu3 ;

nu4 = E.*mu4 ;
1106 alpha = [a1 a2 ; a3 a4] ;

nu = [nu1 nu2 ; nu3 nu4] ;
1108 A=[a1 (:)+a2 (:) ; a3 (:)+a4 (:)] ;

%% Solve f o r V from (I=A* conj (A))V==conj (alpha) us ing GMRES
1110 v = gmres (' operator ' , =conj (A) , 50 , 1e=6, 500 , [] , [] , =conj (A) , Fg , Fb , h , nu1 ,

nu2 , nu3 , nu4 , a1 , a2 , a3 , a4 ,M) ;
%% Calcu la te U=(I=A* rho)V

1112 vbar = conj (v) ;
v1 = v (1 :M^2) ;

1114 v2 = v ((M^2)+1:2*M^2) ;
v1tmp = reshape (v1 ,M,M) ;

1116 v2tmp = reshape (v2 ,M,M) ;
vtmp = [v1 ; v2] ;

1118 Sv1 = (h^2*(i f f t 2 (Fb .* f f t 2 (conj (v1tmp))))) ;
Sv2 = (h^2*(i f f t 2 (Fb .* f f t 2 (conj (v2tmp))))) ;

1120 Pv1 = (h^2*(i f f t 2 (Fg .* f f t 2 (conj (v1tmp))))) ;
Pv2 = (h^2*(i f f t 2 (Fg .* f f t 2 (conj (v2tmp))))) ;

1122 Av1 = (=conj (nu1) .* Sv1=conj (nu2) .* Sv2)=(conj (a1) .*Pv1+conj (a2) .*Pv2) ;
Av2 = (=conj (nu3) .* Sv1=conj (nu4) .* Sv2)=(conj (a3) .*Pv1+conj (a4) .*Pv2) ;

1124 Av = [Av1 (:) ; Av2 (:)] ;
u = vtmp=Av;

1126 %% Compute N = = P* conj (U)
ubar = conj (u) ;

1128 u1 = u (1 :M^2) ;
u2 = u ((M^2)+1:2*M^2) ;

1130 u1tmp = reshape (u1 ,M,M) ;
u2tmp = reshape (u2 ,M,M) ;

1132 Pu1 = (h^2*(i f f t 2 (Fg .* f f t 2 (conj (u1tmp))))) ;
Pu2 = (h^2*(i f f t 2 (Fg .* f f t 2 (conj (u2tmp))))) ;

1134 N1 = =Pu1 ;
N2 = =Pu2 ;

1136 %% Plot r e a l (N)
N1tmp = r e a l (N1) ;

228

1138 N1tmp(abs (z)>1) = nan ;
f 5=f i g u r e (5) ;

1140 s u r f (x1 , x2 ,N1tmp) ;
saveas (f5 , 'example5_N_1_m8 ' , ' png ')

1142 N2tmp = r e a l (N2) ;
N2tmp(abs (z)>1) = nan ;

1144 f 6=f i g u r e (6) ;
s u r f (x1 , x2 ,N2tmp) ;

1146 saveas (f6 , 'example5_N_2_m8 ' , ' png ')
%% func t i on s

1148 f unc t i on [x1 , x2] = crea_grid (m, h)
j1==2^(m=1) :2^(m=1)=1;

1150 j 2==2^(m=1) :2^(m=1)=1;
hj1=h* j 1 ;

1152 hj2=h* j 2 ;
[x1 , x2]=meshgrid (hj1 , hj2) ;

1154 end
func t i on eta = crea_eta (x1 , x2 ,M, s)

1156 etatemp=ze ro s (M,M) ;
f o r i =1:M

1158 f o r j =1:M
i f s q r t (x1 (1 , i)^2+x2 (j , 1) ^2)<2

1160 etatemp (i , j)=1;
end

1162 i f 2<=sq r t (x1 (1 , i)^2+x2 (j , 1) ^2) && sqr t (x1 (1 , i)^2+x2 (j , 1) ^2)<2+((s=2)
/2)

etatemp (i , j)=(=2/(s=2)) *(s q r t (x1 (1 , i)^2+x2 (j , 1) ^2)=2)+1;
1164 end

i f 2+((s=2)/2)<=sq r t (x1 (1 , i)^2+x2 (j , 1) ^2)
1166 etatemp (i , j)=0;

end
1168 end

end
1170 eta = etatemp ;

end
1172 %% Sigma

func t i on r e s u l t = sigma1 (z)
1174 % Conduc t i v i t i e s o f heart and lung (background i s 1)

heart = 2 ;
1176 lung = 0 . 7 ;

% I n i t i a l i z e
1178 [z f i l a , z c o l] = s i z e (z) ;

z = z (:) ;
1180 r e s u l t = ones (s i z e (z)) ;

x1 = r e a l (z) ;
1182 x2 = imag (z) ;

% Build coa r s e r ep r e s en t a t i on o f heart . Planar po int (hc1 , hc2) i s the cente r
o f the e l l i p s e

1184 % de s c r i b i n g the heart ; numbers he1 and he2 g ive the e c c e n t r i t i e s with r e sp e c t
to rad iu s hR.

hc1 = = .1;
1186 hc2 = . 4 ;

he1 = . 8 ;
1188 he2 = 1 ;

hR = . 2 ;
1190 % Compute e l l i p t i c a l " d i s t anc e " o f the eva lua t i on po in t s from heart

229

hd = sq r t (he1 *(x1=hc1) .^2 + he2 *(x2=hc2) .^2) ;
1192 % Set value o f conduc t i v i ty i n s i d e the heart

r e s u l t (hd <= hR) = heart ;
1194 % Build coar s e r ep r e s en t a t i on o f two lungs

l 1 c1 = . 5 ;
1196 l 1 c2 = 0 ;

l 1 e1 = 3 ;
1198 l 1 e2 = 1 ;

l1R = . 5 ;
1200 f i i = =pi /7 ;

rot11 = cos (f i i) ;
1202 rot12 = s i n (f i i) ;

rot21 = =s i n (f i i) ;
1204 rot22 = cos (f i i) ;

l1d = sq r t (l 1 e1 * ((rot11 *x1+rot12 *x2)=l 1 c1) .^2 + l1e2 * ((rot21 *x1+rot22 *x2)=
l 1 c2) .^2) ;

1206 r e s u l t (l1d <= l1R) = lung ;
l 2 c1 = = .6;

1208 l 2 c2 = 0 ;
l 2 e1 = 3 ;

1210 l 2 e2 = 1 ;
l2R = . 4 ;

1212 f i i = pi /7 ;
rot11 = cos (f i i) ;

1214 rot12 = s i n (f i i) ;
rot21 = =s i n (f i i) ;

1216 rot22 = cos (f i i) ;
l2d = sq r t (l 2 e1 * ((rot11 *x1+rot12 *x2)=l 2 c1) .^2 + l2e2 * ((rot21 *x1+rot22 *x2)=

l 2 c2) .^2) ;
1218 r e s u l t (l2d <= l2R) = lung ;

r e s u l t = reshape (r e su l t , [z f i l a , z c o l]) ;
1220 end

./codes/Vectorial_CGO/main.m

C.2 operator.m
1000 % Implements the operator

% v |=> v=Aconj (A)v ,
1002 % where A=(=conj (nu)S=conj (alpha)P) .

f unc t i on r e s u l t = operator (v , Fg , Fb , h , nu1 , nu2 , nu3 , nu4 , a1 , a2 , a3 , a4 ,M)
1004 v = v (:) ;

v1 = v (1 :M^2) ;
1006 v2 = v ((M^2)+1:2*M^2) ;

vtmp = [v1 ; v2] ;
1008 v1tmp = reshape (v1 ,M,M) ;

v2tmp = reshape (v2 ,M,M) ;
1010 Sconjv1 = (h^2*(i f f t 2 (Fb .* f f t 2 (conj (v1tmp))))) ;

Sconjv2 = (h^2*(i f f t 2 (Fb .* f f t 2 (conj (v2tmp))))) ;
1012 Pconjv1 = (h^2*(i f f t 2 (Fg .* f f t 2 (conj (v1tmp))))) ;

Pconjv2 = (h^2*(i f f t 2 (Fg .* f f t 2 (conj (v2tmp))))) ;
1014 A1 = (=conj (nu1) .* Sconjv1=conj (nu2) .* Sconjv2)=(conj (a1) .* Pconjv1+conj (a2)

.* Pconjv2) ;
A2 = (=conj (nu3) .* Sconjv1=conj (nu4) .* Sconjv2)=(conj (a3) .* Pconjv1+conj (a4)

.* Pconjv2) ;

230

1016 A1bar = conj (A1) ;
A2bar = conj (A2) ;

1018 SA1 = (h^2*(i f f t 2 (Fb .* f f t 2 (A1bar)))) ;
SA2 = (h^2*(i f f t 2 (Fb .* f f t 2 (A2bar)))) ;

1020 PA1 = (h^2*(i f f t 2 (Fg .* f f t 2 (A1bar)))) ;
PA2 = (h^2*(i f f t 2 (Fg .* f f t 2 (A2bar)))) ;

1022 AA1 = (=conj (nu1) .*SA1=conj (nu2) .*SA2)=(conj (a1) .*PA1+conj (a2) .*PA2) ;
AA2 = (=conj (nu3) .*SA1=conj (nu4) .*SA2)=(conj (a3) .*PA1+conj (a4) .*PA2) ;

1024 AA1 = AA1(:) ;
AA2 = AA2(:) ;

1026 A = [AA1;AA2] ;
r e s u l t = vtmp=A;

./codes/Vectorial_CGO/operator.m

231

Bibliography

[1] Luigi Ambrosio and Andrea Braides. Energies in sbv and variational models in fracture
mechanics. Homogenization and applications to material sciences, 9:1�22, 1997.

[2] Luigi Ambrosio and Vincenzo Maria Tortorelli. Approximation of functional depending
on jumps by elliptic functional via t-convergence. Communications on Pure and Applied
Mathematics, 43(8):999�1036, 1990.

[3] Kari Astala, Tadeusz Iwaniec, Eero Saksman, et al. Beltrami operators in the plane.
Duke Mathematical Journal, 107(1):27�56, 2001.

[4] Kari Astala, Jennifer L Mueller, Lassi Päivärinta, and Samuli Siltanen. Numerical com-
putation of complex geometrical optics solutions to the conductivity equation. Applied
and Computational Harmonic Analysis, 29(1):2�17, 2010.

[5] Kari Astala and Lassi Päivärinta. Calderón's inverse conductivity problem in the plane.
Annals of Mathematics, pages 265�299, 2006.

[6] Kari Astala, Lassi Päivärinta, and Matti Lassas. Calderóns' inverse problem for
anisotropic conductivity in the plane. Communications in Partial Di�erence Equations,
30(1-2):207�224, 2005.

[7] Satish Balay, Kris Buschelman, Victor Eijkhout, William D Gropp, Dinesh Kaushik,
Matthew G Knepley, Lois Curfman McInnes, Barry F Smith, and Hong Zhang. Petsc
users manual. Technical report, Technical Report ANL-95/11-Revision 2.1. 5, Argonne
National Laboratory, 2004.

[8] R Beals and R Coifman. Transformation spectrales et equation d'evolution non-lineares.
Seminaire Goulaouic-Meyer-Schwarz, exp, 21:1981�1982, 1981.

[9] B. Bourdin, G. A. Francfort, and J.-J. Marigo. Numerical experiments in revisited brittle
fracture. J. Mech. Phys. Solids, 48(4):797�826, 2000.

[10] Blaise Bourdin. Numerical implementation of the variational formulation for quasi-static
brittle fracture. Interfaces Free Bound., 9(3):411�430, 2007.

[11] Andrea Braides. Approximation of free-discontinuity problems, volume 1694 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 1998.

232

[12] Edwin Thomas Brown. Block caving geomechanics. 2002.

[13] R Brown and G Uhlmann. Uniqueness in the inverse conductivity problem with less
regular conductivities, comm. PDE, 22:1009�1027, 1997.

[14] Alberto P Calderón. On an inverse boundary value problem. Computational & Applied
Mathematics, 25(2-3):133�138, 2006.

[15] Gianni Dal Maso and Rodica Toader. A model for the quasi-static growth of brittle
fractures: existence and approximation results. Arch. Ration. Mech. Anal., 162(2):101�
135, 2002.

[16] Prabir Daripa and Daoud Mashat. Singular integral transforms and fast numerical
algorithms. Numerical algorithms, 18(2):133�157, 1998.

[17] Kui Du. A simple numerical method for complex geometrical optics solutions to the
conductivity equation. SIAM Journal on Scienti�c Computing, 33(1):328�341, 2011.

[18] Ludvig Dmitrievich Faddeev. Increasing solutions of the schrödinger equation. SPhD,
10:1033, 1966.

[19] G. A. Francfort and J.-J. Marigo. Revisiting brittle fracture as an energy minimization
problem. J. Mech. Phys. Solids, 46(8):1319�1342, 1998.

[20] Gilles A. Francfort and Christopher J. Larsen. Existence and convergence for quasi-static
evolution in brittle fracture. Comm. Pure Appl. Math., 56(10):1465�1500, 2003.

[21] Alessandro Giacomini. Ambrosio-Tortorelli approximation of quasi-static evolution of
brittle fractures. Calc. Var. Partial Di�erential Equations, 22(2):129�172, 2005.

[22] Alan Arnold Gri�th. The phenomena of rupture and �ow in solids. Philosophical
transactions of the royal society of london. Series A, containing papers of a mathematical
or physical character, 221(582-593):163�198, 1921.

[23] Bernard Halphen and Nguyen Quoc Son. Sur les matériaux standards généralisés. J.
Mécanique, 14:39�63, 1975.

[24] Howard L Hartman and Jan M Mutmansky. Introductory mining engineering. John
Wiley & Sons, 2002.

[25] Horst Heck, Xiaosheng Li, and Jenn-Nan Wang. Identi�cation of viscosity in an incom-
pressible �uid. Indiana University mathematics journal, pages 2489�2510, 2007.

[26] Michael Hinze and Tran Nhan Tam Quyen. Matrix coe�cient identi�cation in an elliptic
equation with the convex energy functional method. Inverse problems, 32(8):085007,
2016.

[27] K-H Ho�mann and Jürgen Sprekels. On the identi�cation of coe�cients of elliptic
problems by asymptotic regularization. Numerical functional analysis and optimization,

233

7(2-3):157�177, 1985.

[28] Marko Huhtanen and Allan Perämäki. Numerical solution of the R-linear beltrami
equation. Mathematics of Computation, 81(277):387�397, 2012.

[29] D Isaacson, JC Newell, JC Goble, and M Cheney. Thoracic impedance images during
ventilation. In [1990] Proceedings of the Twelfth Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, pages 106�107. IEEE, 1990.

[30] David Isaacson, Jennifer L Mueller, Jonathan C Newell, and Samuli Siltanen. Recon-
structions of chest phantoms by the d-bar method for electrical impedance tomography.
IEEE Transactions on Medical Imaging, 23(7):821�828, 2004.

[31] Josep Jordana, Manel Gasulla, and Ramon Pallàs-Areny. Electrical resistance tomogra-
phy to detect leaks from buried pipes. Measurement Science and Technology, 12(8):1061,
2001.

[32] Jacques Jossinet. The impedivity of freshly excised human breast tissue. Physiological
measurement, 19(1):61, 1998.

[33] Robert Kohn and Michael Vogelius. Determining conductivity by boundary measure-
ments. Communications on pure and applied mathematics, 37(3):289�298, 1984.

[34] Robert V Kohn and Michael Vogelius. Determining conductivity by boundary measure-
ments ii. interior results. Communications on Pure and Applied Mathematics, 38(5):643�
667, 1985.

[35] Giovanni Lancioni and Gianni Royer-Carfagni. The variational approach to fracture
mechanics. a practical application to the french panthéon in paris. Journal of elasticity,
95(1-2):1�30, 2009.

[36] Hans Petter Langtangen, Anders Logg, and Aslak Tveito. Solving PDEs in Python: The
FEniCS Tutorial I. Springer International Publishing, 2016.

[37] Tianyi Li, Jean-Jacques Marigo, Daniel Guilbaud, and Serguei Potapov. Gradient dam-
age modeling of brittle fracture in an explicit dynamics context. Internat. J. Numer.
Methods Engrg., 108(11):1381�1405, 2016.

[38] Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of di�erential
equations by the �nite element method: The FEniCS book, volume 84. Springer Science
& Business Media, 2012.

[39] Jean-Jacques Marigo and Kyrylo Kazymyrenko. A micromechanical inspired model
for the coupled to damage elasto-plastic behavior of geomaterials under compression.
Mechanics & Industry, 20(1):105, 2019.

[40] Jean-Jacques Marigo, Corrado Maurini, and Kim Pham. An overview of the modelling
of fracture by gradient damage models. Meccanica, 51(12):3107�3128, 2016.

234

[41] JJ Marigo. Constitutive relations in plasticity, damage and fracture mechanics based on
a work property. Nuclear Engineering and Design, 114(3):249�272, 1989.

[42] Jennifer L Mueller and Samuli Siltanen. Linear and nonlinear inverse problems with
practical applications. SIAM, 2012.

[43] Jennifer L Mueller, Samuli Siltanen, and David Isaacson. A direct reconstruction al-
gorithm for electrical impedance tomography. IEEE Transactions on medical imaging,
21(6):555�559, 2002.

[44] David Mumford and Jayant Shah. Optimal approximations by piecewise smooth func-
tions and associated variational problems. Comm. Pure Appl. Math., 42(5):577�685,
1989.

[45] Adrian I Nachman. Global uniqueness for a two-dimensional inverse boundary value
problem. Annals of Mathematics, pages 71�96, 1996.

[46] Kim Pham, Hanen Amor, Jean-Jacques Marigo, and Corrado Maurini. Gradient damage
models and their use to approximate brittle fracture. International Journal of Damage
Mechanics, 20(4):618�652, 2011.

[47] Kim Pham and Jean-Jacques Marigo. Approche variationnelle de l'endommagement :
I. les concepts fondamentaux. Comptes Rendus Mécanique, 338(4):191�198, 2010.

[48] Kim Pham and Jean-Jacques Marigo. Approche variationnelle de l'endommagement: Ii.
les modèles à gradient. Comptes Rendus Mécanique, 338(4):199�206, 2010.

[49] Rolf Rannacher and Boris Vexler. A priori error estimates for the �nite element dis-
cretization of elliptic parameter identi�cation problems with pointwise measurements.
SIAM Journal on Control and Optimization, 44(5):1844�1863, 2005.

[50] Youcef Saad and Martin H Schultz. Gmres: A generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM Journal on scienti�c and statistical
computing, 7(3):856�869, 1986.

[51] Matteo Santacesaria. Note on calderón's inverse problem for measurable conductivities,
2019.

[52] Jacques Simon. Di�erentiation with respect to the domain in boundary value problems.
Numerical Functional Analysis and Optimization, 2(7-8):649�687, 1980.

[53] Oliver K. Smith. Eigenvalues of a symmetric 3× 3 matrix. Comm. ACM, 4:168, 1961.

[54] Ziqi Sun, Gunther Uhlmann, et al. Generic uniqueness for an inverse boundary value
problem. Duke Mathematical Journal, 62(1):131�155, 1991.

[55] John Sylvester and Gunther Uhlmann. A uniqueness theorem for an inverse boundary
value problem in electrical prospection. Communications on Pure and Applied Mathe-
matics, 39(1):91�112, 1986.

235

[56] John Sylvester and Gunther Uhlmann. A global uniqueness theorem for an inverse
boundary value problem. Annals of mathematics, pages 153�169, 1987.

[57] Gunther Uhlmann. Electrical impedance tomography and calderón's problem. Inverse
problems, 25(12):123011, 2009.

[58] Gunther Uhlmann and Jenn-Nan Wang. Complex spherical waves for the elasticity
system and probing of inclusions. SIAM journal on mathematical analysis, 38(6):1967�
1980, 2007.

[59] I. Nestorovich Vekua. Generalized analytic functions. Elsevier, 2014.

[60] Y Zou and Z Guo. A review of electrical impedance techniques for breast cancer detec-
tion. Medical engineering & physics, 25(2):79�90, 2003.

236

	I A shear-compression damage model for simulation of underground mining by block caving
	Introduction
	Background and state of the art
	Variational approach to fracture
	Brittle fracture as an energy minimization problem
	Elliptic regularization

	Gradient damage models to approximate brittle fracture
	Variational formulation
	Approximation of variational brittle fracture
	Gradient damage model for shear fracture

	Generalized standard materials
	Gradient damage model
	Gradient damage model for shear fracture

	Linear elasticity and differentiation with respect to the domain
	Linear Elasticity
	Effect of the boundary conditions in the elasticity equation
	Results for a fixed radius
	Results for different radius values

	Differentiation with respect to the domain
	Numerical results

	A damage model for the simulation of underground mining
	Shear-compression damage model
	New model to underground mining
	Numerical results
	Discretization and solution algorithm
	Influence of the cavity in the damage model

	Numerical improve for block caving process
	Hardening properties analysis
	Hardening properties
	Models for damage laws
	Numerical results

	Damage model in the block caving process and boundary conditions
	Numerical results

	Fast algorithm to solve the block caving process
	Errors and new algorithm
	numerical results

	Hydraulic fracturing in the damage model
	hydraulic fracturing modeling
	Numerical results

	The damage model in a real mine
	El Teniente mine
	Numerical results

	Conclusion

	II Numerical reconstruction of CGO of conductivity systems
	Introduction
	Background and state of the art
	Calderón's paper
	Complex geometrical optics solutions with a linear phase
	The Calderón Problem in two dimensions

	Construction of CGO of conductivity systems
	Existence of CGO solution
	Compute the CGO solutions
	Reduction to a periodic integral equation and discretization

	Numerical results
	Conclusion
	Meshes Creation
	Codes in Python
	Code for Cavity in 2D
	Cavity2D.py
	Parameters.py

	Code for Cavity in 3D
	Cavity3D.py
	Parameters.py
	AuxFunctions.py

	Codes in MATLAB
	main.m
	operator.m

	Bibliography

