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JOURNAL BEARINGS BY MEANS OF ADAPTIVE KRIGING METAMODEL

Uncertainties are present in any engineering system, from the modeling and design up to
the manufacturing and performance. The performance of a system based on nominal de-
sign parameters may significantly differ from that of the final product. These discrepancias
are related to uncertainties associated with the manufacturing process and material proper-
ties, which have been traditionally mitigated with strict tolerance specifications and process
control parameters, respectively.

Traditionally, tolerancing specification is based on pure geometrical analysis trying to
minimize undesired effects in the component assembly. However, the objective of this work
is to identify the relationship between the manufacturing tolerance of a component and the
expected variations on its mechanical performance. To the best of the authors’ knowledge,
such relationship has not been fully addressed in the literature.

A framework is proposed where the manufacturing tolerance is described through proba-
bility density functions while its effect on performance is addressed via stochastic simulations.
The procedure underlies the adoption of a surrogate model under local and global training
(based on adaptive Kriging interpolation) to predict the probability to exceed a certain per-
formance. The proposed framework is illustrated and validated studying a tilting pad jour-
nal bearing in terms of minimum and maximum credible values for its dynamic coefficients.
Results show a significant saving in terms of computational time, making this framework
attractive to perform manufacturing tolerances selection.
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DESARROLLO DE METAMODELOS ADAPTATIVOS BASADOS EN KRIGING PARA
SELECCIÓN DE TOLERANCIAS DE FABRICACIÓN EN COJINETES

HIDRODINÁMICOS

Las incertidumbres están presentes en cualquier sistema de ingeniería, desde el modelado y
el diseño hasta la fabricación y su rendimiento. El rendimiento de un sistema basado en
parámetros de diseño nominales puede diferir significativamente del producto final. Estas
discrepancias están relacionadas con las incertidumbres asociadas al proceso de fabricación
y las propiedades del material, las cuales tradicionalmente han sido mitigadas con estrictas
especificaciones de tolerancia y parámetros de control del proceso, respectivamente

Tradicionalmente, la especificación de tolerancia se basa en un análisis geométrico puro
que intenta minimizar los efectos no deseados en el ensamblaje del componente. Sin embargo,
el objetivo de este trabajo es identificar la relación entre la tolerancia de fabricación de un
componente y las variaciones esperadas en su rendimiento mecánico. Hasta donde saben los
autores, dicha relación no se ha abordado plenamente en la bibliografía.

Se propone un marco en el que la tolerancia de fabricación se describe mediante funciones
de densidad de probabilidad, mientras que su efecto sobre el rendimiento se aborda mediante
simulaciones estocásticas. El procedimiento subyace a la adopción de un modelo sustituto
bajo entrenamiento local y global (basado en la interpolación adaptativa de Kriging) para
predecir la probabilidad de exceder un cierto rendimiento. El marco propuesto está ilustrado
y validado estudiando un cojinete hidrodinámico en términos de valores mínimos y máximos
creíbles para sus coeficientes dinámicos. Los resultados muestran un ahorro significativo en
términos de tiempo computacional, lo que hace que este marco sea atractivo para realizar la
selección de tolerancias de fabricación.
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Chapter 1

Introduction

1.1 General Background

Uncertainties are present in any engineering system, from the modeling and design up to
the manufacturing and performance. The performance of a system based on nominal de-
sign parameters may significantly differ from that of the final product. These discrepancies
are related to uncertainties associated with the manufacturing process and material proper-
ties, which have been traditionally mitigated with strict tolerance specifications and process
control parameters, respectively.

As performance limits are extended, acceptable deviation margins between nominal and
actual performance lead to unrealistic machining tolerances, poor process control and quality
targets. The only feasible approach is to embed all of the expected uncertainties within the
design process. These uncertainties include (but are not limited to): (1) Design process:
uncertain nature of excitations, lack of information about the model parameters, precision
of the mathematical model; (2) Manufacturing: manufacturing process precision; and (3)
Service and operation: deviation of product use from expected duty cycle.

The present work focuses on the study of manufacturing tolerances as part of the de-
sign process to predict system performance. The modern method of specifying tolerances is
through geometric dimensioning and tolerancing (GD&T), as specified in the ASME Y14.5M
Standard [1] and/or ISO 1101 [2]. Thus, the GD&T during product development is the first
step in geometric variations management where its aim is to guarantee a specific perfor-
mance by establishing permission limits of the geometric variations of a product due to its
manufacturing process.

Traditionally, tolerancing specification is based on pure geometrical analysis trying to min-
imize undesired effects in the component assembly. It is possible to make a tolerance analysis
and variation simulation from three main perspectives: (1) tolerance models representing the
geometrical deviations on individual parts; (2) system behavioral models representing how
variation propagates in a product or an assembly and (3) tolerance and variation analysis
techniques [3].
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Tolerance models represent the link between functional requirements and geometrical devi-
ations of individual components in the form of mathematical expressions. There are different
mathematical models for representing geometric deviation, such as variation geometry ap-
proach, skin model shape, and modal representation among others. Between these three
classes, the most commonly used is the variation geometry approach, where the real geom-
etry of parts is considered by the variation of nominal dimensions or it is bounded by a
variation (position and orientation) of the nominal geometry [4]. The fundamentals of the
skin model at a conceptual, geometric and computational level are investigated in [5], while
the concept of skin model shapes that has been developed to address digital representation
of “non-ideal” parts and extended to mechanical assemblies is studied in [6, 7, 8, 9]. Regard-
ing modal representation, Huang et al. [10] propose a discrete-cosine-transformation (DCT)
based on decomposition method for form defects modeling. Samper et al. [11] present the
Discrete Modal Decomposition (DMD) considering modal shapes of a discretized feature.
The geometric or dimensioning tolerances are represented by a deviation domain [12] or a
Tolerance-Map® [13, 14, 15], while the orientation and position deviations of each surface
could be represented by Technologically and Topologically Relates Surfaces (TTRS). These
three models are compared in [16], and Chen et al. [17] provide a comprehensive review on
dimensional tolerance analysis methods.

In order to analyze system behavior models, it is necessary to establish a relation between
the allocated tolerances of the individual parts and the critical product dimension when
creating the models. This kind of models can be divided into analytical and computer-aided
models, the latter being the most promising strategy (for example, the work presented in
[18, 19, 20]). Here, the tolerance analysis techniques can be applied adopting: (1) the worst-
case analysis that considers the worst possible combinations of individual tolerances [21] or
(2) statistical analysis that considers a probability density function of the manufacturing
processes [22]. Both approaches compute the likelihood that the product can be assembled
and will function under given individual tolerances. However, the objective of this work is not
to determine if the final assembly will exclusively be possible under certain tolerances, but to
establish the relationship between the manufacturing tolerance of specific components and
the system-level performance associated with a specific mechanical functionality. To the best
of the authors’ knowledge, such relationship has not been fully addressed in the literature.

There are some mechanical components with functionalities that not only depend on the
individual tolerances and their compatibility with the final assembly, but also in their ability
to attain a specific performance. In these cases, it is crucial to perform a tolerance selection
to evaluate its effect in the physics of the problem by employing different numerical simula-
tion models. In this regard, it is proposed a scheme based on the probabilistic description
of a mechanical component geometry in terms of the manufacturing tolerance. All statisti-
cal quantities are obtained using stochastic simulations, specifically adopting a Monte Carlo
simulation. Therefore, one of the most challenging tasks is to manage the computer burden
due to the large number of simulations needed to obtain an adequate approximation by the
Monte Carlo simulation. To alleviate this computational demand, a surrogate model based
on Kriging interpolation is proposed. This surrogate model is trained with the high-fidelity
model in an adaptive manner to improve the accuracy of the model with the minimum num-
ber of support points. Two strategies are proposed, a metamodel trained in a global and
a local manner. In order to provide an illustrative example and validate this study, these
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proposed adaptive schemes are applied to identify the effect of the manufacturing tolerance
in the dynamic performance of a tilting pad journal bearing (TPJB). These bearings are
widely used in land-based turbomachinery to enable high-speed operation while avoiding
subsynchronous instabilities [23] . TPJB are variable geometry bearings comprising multiple
pads assembled around a bearing shell. Dmochowski et al. [24] and Quintini et al. [25] have
reported that small variations in the pad clearance and preload (two well-known geometric
parameters of TPJBs) lead to an important variation in the dynamic coefficients. This ex-
ample illustrates the capability of the proposed framework to characterize the variation on
mechanical performance as a function of the manufacturing tolerances not only for bearings
but for any other mechanical component. However, it is considered particularly relevant for
journal bearing applications since it could be easily implemented over new bearing config-
urations (for example [26, 27]) and the novel techniques developed to obtain their dynamic
coefficients (for example [28, 29, 30]).

1.2 Objectives
The purpose of this work is to achieve the objectives presented below.

1.2.1 General Objective

Develop and implement a methodology that helps to identify the relationship between the
manufacturing tolerance of a mechanical part and the expected variations on its mechanical
performance.

1.2.2 Specific Objectives

• Propose and define a probabilistic framework that relates the manufacturing tolerances
to the mechanical performance of different components.

• Propose a computational methodology based on the generation of metamodels in or-
der to reduce the computational cost associated with the problem of propagation of
uncertainties.

• Validate the methodology with an illustrative example.

1.3 Scope
• Implement the procedure in order to evaluate the effect of manufacturing tolerance on

the dynamic performance of a tilting pad journal bearing (TPJB)

3
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Chapter 2

General Overview of the Proposed
Manufacturing Tolerance Selection
Scheme

In order to support the proposal and analysis of this work, the next revision of the relevant
concepts is carried out.

2.1 Manufacturing Tolerance Selection: Stochastic Sys-
tem Model and Performance Evaluation

The proposed framework is based on the probabilistic description of the geometry of a me-
chanical component as a function of the manufacturing tolerance. Hence, its performance
could be also be expressed in probabilistic terms such that the manufacturing tolerance could
be selected by employing a risk-related metric. For example, this approach could be used
to select a manufacturing tolerance that yields a low probability of exceeding an admissible
performance limit.

In order to establish the framework, it is necessary to describe the performance of the
mechanical component of interest as H(θ), where H ∈ RnH corresponds to a deterministic
performance metric, while θ ∈ Rnθ corresponds to all of parameters required in the perfor-
mance assessment. In the context of this work, θ is called the model parameters or model
parameter vector. In engineering applications, model parameters are rarely known precisely
due to the presence of uncertainties arising either from the mechanical properties (i.e. ma-
terial imperfections) or from the geometry (i.e. variations introduced in the manufacturing
process). These uncertainties are modeled adopting a Probability Density Function (PDF)
p(θ) and propagated to the performance metric such that its expected value could be defined
by solving the following probabilistic integral:

E[H] =

∫
H(θ)p(θ)dθ (2.1)

5



where E[H] defines the expected value of H after propagating the uncertainties associated
with θ. Similarly, it is also possible to define the probability of H exceeding an admissible
threshold:

PF = P (H > Hthresh) =

∫
IF (θ)p(θ)dθ (2.2)

where PF defines the probability of H being greater than a threshold Hthresh, also known
as probability of exceedance. In this case, IF (θ) corresponds to the indicator function that
assumes a value of zero or one depending on whether the performance metric is below or
above the threshold.

IF (θ) = 1 if H(θ) ≥ Hthresh

IF (θ) = 0 if H(θ) < Hthresh

(2.3)

At this point, all of the model parameters θ are considered to have an unknown variation.
However, and for the sake of simplicity, from now on θ will exclusively denote the model pa-
rameters that are directly affected by the manufacturing tolerance. The next step is to relate
the manufacturing tolerance (denote from now on as δ) to the distribution of the geometrical
model parameters p(θ). This relation could be established by adopting the covariance matrix
of θ as function of δ, which is denoted as Σθ. On the other hand, the expected value of θ is
defined using the nominal geometrical characteristics θ̂ to avoid any bias between nominal
geometry and the mean value of p(θ). Once the expected value and the covariance of θ are
defined, the remaining task is to define its distribution. In order to illustrate this relation,
two distributions for θ are presented in Fig.2.1. Here, both distributions p(θ) are assumed to
be Gaussian with mean θ̂ but with different variances. In particular, for the case presented
in fig.2.1a the variance is defined as Σθ = δ2 while the case presented in 2.1b corresponds to
Σθ = (δ/3)2, indicating that exist a probability of 0.681 and 0.997 that the given geometric
characteristic of the mechanical component lies within the tolerance defined by δ. Note that
the later PDF practically enforces that any possible geometry resulting in the manufacturing
process will lie within the tolerance, while the former PDF corresponds to a more adverse
scenario since it contemplates geometries outside of the tolerance. Ultimately, the relation
between Σθ and δ together with the selection of the distribution p(θ) will be determined
by the nature of the manufacturing process and the availability of uncertainty parameters.
However, based on the principle of maximum entropy, it is possible to assume that the most
adverse scenario corresponds to an independent Gaussian p(θ) with mean θ̂ and variance δ2
for each model parameter [31].

Once the manufacturing tolerance δ is defined, it is possible to solve Eq.(2.2) in order to
evaluate the probability of exceedance PF for different performance metric thresholds Hthresh

(a detailed description of the computational procedure is presented in Section 2.2). The
typical behavior of these two parameters is shown in Fig.2.2. The figure also includes results
for different δ, which illustrate the impact of δ over PF and Hthresh.

Ultimately, the designer could select the manufacturing tolerance δ by adopting a risk-
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informed decision-making scheme. First, the threshold of the performance metric Hthresh is
established, and then the manufacturing tolerance is selected based on a desired PF . Note
that the selection of PF reveals the attitude towards risk of the designer, e.g., lower or
higher PF and PF close to 0.5 indicate a risk-averse and a risk-neutral positions, respectively.
To exemplify this, a reference line is included in Fig.2.2 (red dotted line) corresponding to
Hthresh = 68 (this number is chosen arbitrarily for the sake of the example). The selection
of the third and second manufacturing tolerance lead to mechanical parts that have 100%
and 80% probability to exhibit a performance greater than 68, respectively (see red circles in
figure 2.2). This selection is considered a risk-averse attitude when the problem demands a
performance higher that Hthresh. On the other hand, if the problem demands a performance
lower than Hthresh, the risk-adverse attitudes lead to selection of lower exceedance proba-
bilities. Furthermore, if the selection of the manufacturing tolerance is conducted based on
a 50% of exceedance probability, it is said that the attitude towards risk is neutral since it
exists 50% of chances to be above or below Hthresh.

2.2 Stochastic Analysis and Computational Implementa-
tion

One of the most challenging task of the proposed framework relates to the recursive solution
of the probabilistic integral presented in Eq.(2.2) for different manufacturing tolerances δ.
The analytical calculation of this integral is impractical (apart from special, simple cases)
and calculation through numerical integration is inefficient for nθ > 3. Therefore, a high-
dimensional probabilistic integral is commonly solved via stochastic-simulations, correspond-
ing to a broad class of computational methods that are sampling-based, e.g. Monte Carlo’s
Family Methods.

2.2.1 Stochastic Simulation Based on Monte Carlo Methods

The proposed methodology numerically approximates an integral of the form presented in
Eq.(2.2). The first step of this method corresponds to the generation of K samples that
follow p(θ) such that {θj, j = 1, ..., K}. The second step consists of estimating the output
of the system by using each sample obtained previously, generating a set of data denoted
{IF (θj), j = 1, ..., K}. Finally, based on the Central Limit Theorem, the Monte Carlo method
estimates the probabilistic integral (Eq. (2.2)) as:

P̂F ≈
1

K

K∑
j=1

IF (θj) (2.4)

where P̂F is the approximation of PF made by Monte Carlo, and it simply corresponds to the
mean value of the output dataset. The accuracy in the estimation of PF could be evaluated
by the following expression:

δMC =
1√
K

√
1
K

∑K
j=1

(
IF
(
θj
))2 − ( 1

K

∑K
j=1 IF

(
θj
))2

1
K

∑K
j=1 IF

(
θj
) (2.5)
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where δMC defines the coefficient of variation of the estimator P̂F . In other words, this value
represents the variations obtained if the procedure to estimate P̂F is repeated multiple times.
Note that δMC goes to zero if K goes to infinity, indicating that the Direct Monte Carlo
Method is an unbiased and convergent estimator.

Since the proposed framework requires the solution of Eq.(2.2) for any desired manufac-
turing tolerance δ, the computational cost could be significant. However, the Direct Monte
Carlo simulation presents some advantages related to: (1) it is an unbiased and convergent
method, (2) it is possible to control the precision via the number of samples, (3) the number
of uncertain variables does not affect the precision and (4) imposes not constrains in the
performance model complexity or in the PDF associated to the model parameters. Other
techniques can be also applied to solve the probabilistic integral, e.g. asymptotic and an-
alytical approximations. Unfortunately, these methods only provide an approximation to
the probabilistic integral assuming that the integrand behaves like a Gaussian distribution.
In this case, no measure of the accuracy of that approximation can be directly established.
Moreover, these methods require the estimation of the integrand maximum and the evalu-
ation of the Hessian at that point. Note that the identification of this quantities could be
challenging for systems with large number of uncertainty variables.

The ultimate challenge of Monte Carlo sampling methods is to decrease the computational
time required in the solution of Eq.(2.2). This issue could be tackled either by decreasing the
number of samples used in the Monte Carlo simulation or by decreasing the computational
time involved in the calculation of the performance metric H(θ). In order to alleviate this
computational burden, a computationally efficient surrogate model for H(θ) was adopted.
In particular, it employs a Kriging metamodel.

2.2.2 Kriging-Based Metamodel

Kriging provides a simplified relationship between the input and output of a process (for
example, a computational expensive simulation model) by utilizing existing information
(database) for the given process. Let assume that exist a database (training set) of nsup
number of θ −H(θ) pairs (also known as support points). This training set is denoted as
{θk −H(θk) : k = 1, ..., nsup}. Derivation of the database is formally known as DoE (Design
of Experiments) and common approach is to use a space-filling algorithm for it (such as Latin
Hypercube Sampling [32]) within the range Θ of possible values for θ.

The fundamental building blocks of Kriging are the nsup dimensional basis vector f(θ) and
the correlation function R(θn,θm), with typical selections corresponding, respectively, to a
full quadratic basis and a generalized exponential correlation, leading to

f(θ) =
[
1 θ1 · · · θNe θ

2
1 θ1θ2 · · · θ2Ne

]
where np = (Ne + 1)(Ne + 2)/2

R(θn,θm) =

Nθ∏
i=1

exp [−si|θni − θmi |sNθ+1 ]

with s = [s1 · · · sNθ+1]

(2.6)
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For the set of nsup observations (training set) with input and their corresponding output
matrix given by

Φ =
[
θ1 · · ·θnsup

]T
Z =

[
H(θ1) · · ·H(θnsup)

]T (2.7)

it is defined the basis

F =
[
f(θ1) · · · f(θnsup)

]T (2.8)

and the correlation matrix R with its nm-element defined by R(θn,θm). Also for every new
input θ, the correlation vector between the input and each of the elements of Φ is defined as
follow:

r(θ) =
[
R(θ,θ1) · · ·R(θ,θnsup)

]T (2.9)

Ultimately, the Kriging approximation of the model H(θ) is given by the following Gaus-
sian process [33]:

H(θ) ∼ GP
(
H̄(θ), Σ̄(θ)

)
(2.10)

where H̄(θ) corresponds to the mean of the prediction defined as:

H̄(θ) = f(θ)α∗ + r(θ)TR−1 (Z− Fα∗)

α∗ =
(
FTR−1F

)−1
FTR−1Z

(2.11)

while Σ̄(θ) corresponds to the covariance matrix function of the prediction defined as

Σ̄(θ) = A
[
1 + uT

(
FTR−1F

)−1
u− r(θ)TR−1r(θ)

]
u = FTR−1r(θ)− f(θ)T

A = (Z− Fα∗)T R−1 (Z− Fα∗) /nsup

(2.12)

Through the proper tuning of the parameter s, of the correlation function, Kriging can
efficiently approximate very complex functions. The tuning involves an optimization process
(training process) where s is identified. More details on this optimization may be found
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in [33]. The accuracy of the metamodel can be evaluated considering a leave-one out cross
validation approach [34].

Note that H̄(θ) is used as the surrogate model (to estimate the exceedance probability
presented in Eq.2.2) while Σ̄(θ) describes the variance of the process which could be used to
identify the space of θ where the trained Kriging presents important spread. The identifica-
tion of this space could be exploited in order to implement an adaptive procedure in which
the new support points are added only in regions where the spread are important.
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Chapter 3

Global and Local Adaptive Kriging

In this chapter, the Kriging variance is used to guide an adaptive training. The general idea
is to reduce the total number of support points, thus keeping the number of evaluations of
the high fidelity model to a minimum. In this regard, the support points are recurrently
added in order to obtain a surrogate model with a global or local precision. Both strategies
are explored next.

3.1 Global Adaptive Kriging

This global strategy seeks to carry out the Kriging training (described in section 2.2.2)
by adding samples exclusively in regions where the Kriging cross-validation identifies poor
performance. This process is performed recursively over the entire domain of θ, leading to a
global surrogate model incorporating a minimum numbers of support points. Note that this
global strategy, like the standard Kriging (described in Section 2.2.2), surrogates the high
fidelity model H(θ) such that it could be directly used in the Monte Carlo scheme adopted
to estimate the exceedance probability presented in Eq.2.2. Thus, the resulting Kriging is
used to estimate the exceedance probability curve for any desired manufacturing tolerance
δ, i.e., a single training is necessary.

The proposed training strategy begins employing the minimum number of support points
(given by np in Eq.2.6) obtained using a space-filling algorithm based on the Latin Hypercube
technique to generate samples of θ and subsequently evaluate them in the high fidelity model
H(θ). New support points are added in an adaptive way using the cross validation of the
Kriging. Cross validation is commonly applied to estimate the Kriging error and it provides
a measure of its performance, which is used as a metric to identify the support points that
present the most important weights in the Kriging prediction. In this particular work, this
strategy aims at guiding the selection of new support points.

As is shown in [34], cross validation starts with a initial data set, consisting of ns input-
output pairs {θsi− zsi; i = 1, ..., ns}. First, the data is randomized and split into p mutually
exclusive and exhaustive subsets, such that {θs − zs} = {θs1 − zs1}, . . . , {θsp − zsp}. The
metamodel is trained p times and each time leaving out one of the subsets from training and

13



using this omitted subset to compute the cross validation error measure. The leave-k-out
approach is a variation of the p-fold cross validation. This approach considers all possible

(
ns
k

)
subsets of size k are left out (where the cross validation error will be computed), and the
model is trained with the remaining set. In this work, k = 1 is considered, which is called
leave-one-out cross validation. In that way, the cross validation is computed in a loop of ns
iterations. The model is trained without the i-th element, denoted as θs∼i − zs∼i and it is
evaluated in this omitted point θsi to compute the error respect to the current output zsi.
This error is computed per support point (ns) and output (nz) leading to the e matrix. Note
that large errors are associated with the support points that present important weights in the
prediction. In this regard, the incorporation of new support points in their closeness decrease
the cross validation error. An important issue to highlight is that each output has its own
set of θs that leads to large errors, i.e., same support points have different weights across
the outputs. Then, different outputs could required adding new support points in different
regions.

In order to facilitate the implementation of this adaptive scheme, the respective algorithm
is included (Algorithm 1). The algorithm starts defining all possible values of θ using a
Latin Hypercube Sampling employing the lower possible number of samples, denoted as
{θsi; i = 1, ..., ns}. These samples are evaluated in the high fidelity model yielding the initial
training set {θsi − zsi; i = 1, ..., ns}. The metamodel is trained employing the available
database to subsequently perform the cross validation. As discussed above, this algorithm
uses the leave-one-out cross validation approach. The model is trained without the i-th
element pairs (θs∼i−zs∼i) and it is evaluated in the omitted point θsi yielding the predicted
output of the model ẑi. Next, the error of the model is computed as:

e =
zs − ẑ
zs

(3.1)

with an element-wise operation. Note that the dimension of e is ns×nz. Therefore, the error
is computed per support point and predicted output. This error is sorted over each system
output to identify the support points with greater influence in the metamodel precision. This
is accomplished with a for loop per output, which sorts the error in a descending way keeping
the first a percentage (P ) of errors (e∗) and identifying their respective samples θs∗. The
samples θs∗ across the outputs are stored as θso. Note that the set θso contains the support
points with major errors across the outputs, i.e., it is possible to find repeated support points
in θso. Afterwards, it is computed θcluster as the centroids of θso using a kmeans algorithm
with nadd clusters. If these centroids are already in the database, the algorithm converges,
otherwhise these centroids are evaluated in the high fidelity model obtaining the z(θcluster).
Then, the new support points are added as a union of these sets: zs = [zs zcluster] and
θs = [θs θcluster]. The iteration number is updated and the while loop is repeated until the
stop criteria is achieved or a certain number nmax of cycles is obtained. Finally, the surrogate
model znew(θ) is ready to be used to compute the probabilistic integral and the probability
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of exceedance showed in the Eq.(2.1) and Eq.(2.2) respectively.This training can actually be
used to estimate the exceedance probability for any manufacturing tolerance δ because the
metamodel is trained in the whole domain of θ.

Algorithm 1 Global Adaptive Kriging
Require: z(θ): High fidelity model Rnθ → Rnz ;

nmax: Maximum number iteration;
nadd: Number samples added in each step;

Ensure: znew: Kriging Training
1: Draw ns samples of θ using a Latin Hypercube algorithm, such that {θsi; i = 1, ..., ns}.
2: Evaluate z(θ) in θs, such that {zsi; i = 1, ..., ns}.
3: Define n = 1;
4: while n < nmax do
5: Kriging Training with θs − zs → znew(θ)
6: for i← 1 to ns do . cross validation
7: Kriging Training with θs∼i − zs∼i → znew(θ)i

8: Define ẑi as znew(θ)i evaluated at θsi

9: end for
10: Define e = (zs − ẑ)/zs (element-wise operation such that {ei,j; i = 1, ..., ns; j =

1, ..., nz})
11: Define θso ← {}
12: for j ← 1 to nz do
13: Sort {ei,j; i = 1, ..., ns} (descending) and keep the first P errors → e∗ ∈ RP

14: Identify the θs that corresponds to e∗ → θs
∗

15: θs
o = [θs

o θs
∗]

16: end for
17: Define θcluster as the centroid of θso using a kmeans with nadd clusters
18: if θcluster ∈ θs then
19: break
20: else
21: Evaluate z(θcluster), such that {zclusterj; j = 1, ..., nadd}.
22: Define zs = [zs zcluster] . adding new support points
23: Define θs = [θs θcluster] . adding new support points
24: n = n+ 1
25: end if
26: end while
27: return znew(θ)

3.2 Local Adaptive Kriging
The global adaptive Kriging presented allows the incorporation of new support points in
any region of θ, where the cross-validation error is relevant. Thus, the metamodel obtained
is expected to exhibit an adequate performance in the entire domain of θ. However, the
nature of the manufacturing problem studied indicates that the most important region of θ
is defined by the manufacturing tolerance (defined in the context of this work by p(θ)). In
this sense, a global adaptive strategy could drive new support points to regions of θ that
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are not relevant to the uncertainty propagation problem, i.e., increasing the fidelity of the
surrogate model in regions where the integrand of Eq.(2.2) is negligible. In order to overcome
this issue, a local scheme is presented in this section to drive the selection of new support
points by exploring the Kriging’s variance only in regions of θ defined by p(θ). Hence, the
metamodel obtained will present high accuracy only in regions of θ that contain the higher
uncertainties introduced by the manufacturing tolerance.

The proposed scheme starts with a Latin Hypercube sampling of θ in the entire domain
employing the lower possible number of points and subsequently introducing new support
points only in region confined by p(θ). The initial Latin Hypercube sampling of θ allows to
maintain certain level of information of the high fidelity model in the entire domain of θ,
while the new support points keep the total number of high fidelity model evaluations to a
minimum. This characteristic of the local adaptive scheme proposed is particularly relevant
for high fidelity models with high computational burden.

In contrast to the previous model, in this local scheme the manufacturing tolerance is
introduced explicitly in the training process. As described previously in section 2.1, there is
a relation between the distribution p(θ) and the manufacturing tolerance δ by adopting the
covariance matrix of θ as a function of δ. Following this approach, the new support points
that will be added in an adaptive manner during the training will be bounded by an specific
manufacturing tolerance δ.

Similar to the global adaptive scheme, the local adaptive algorithm is also presented and
described in Algorithm 2. The first step of this method corresponds to the generation of
samples that follow p(θ). These samples are used to perform the Monte Carlo simulations
to solve Eq.(2.2). These samples are denoted as {θok; k = 1, ..., K}. In the second step, ns
samples in the entire domain using a Latin Hypercube algorithm are generated. Similar to the
global algorithm, the initial samples ns correspond to the minimum necessary for the Kriging
training. These samples are evaluated through a high fidelity model by obtaining the support
points from each output, generating a set of data denoted {θsi − zsi; i = 1, ..., ns}. For the
base case (n = 1), the output model is established as znew = 0 ∈ RK×nz before starting the
while loop. Here, the prediction from the previous iteration is saved as zold = znew. The
model is then trained with the support points {θsi − zsi; i = 1, ..., ns} and is subsequently
evaluated in the samples {θok; k = 1, ..., K}, where the integrand of the probability integral
is more relevant. In order to verify the convergence, the Hellinger distance is used as a metric
between the previous and the new prediction [35].

The Hellinger distance is a metric that quantifies the discrepancy between two probability
distributions and it is used in this framework as a convergence criterion. The metric is
bounded in the domain [0 1], where lower values represents two similar distributions and
higher values indicating greater discrepancy. The Hellinger distance is defined as:

D (p(θ), π(θ)) =

√
1

2

∫
θ

[√
p(θ)−

√
π(θ)

]2
dθ (3.2)

Where p(θ) and π(θ) are distributions (PDF). The Hellinger distance can be also expressed
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and computed as:

D (p(θ), π(θ)) =

√√√√1

2

∫
θ

[
1−

√
π(θ)

p(θ)

]2
p(θ)dθ ≈

√√√√ 1

2K

K∑
i=1

[
1−

√
π(θi)

p(θi)

]2
(3.3)

In order to establish a small discrepancy between the two distributions, the Hellinger
distance threshold (Dt) is computed [36]. As the Hellinger distance is invariant under the co-
ordinate transformation for θ, the Gaussian distributions were compared for simplicity. This
comparison assumes the same variance (the identity covariance matrix) and difference for the
mean δu in every dimension between two θ-dimensional multivariate Gaussian distributions.
The Hellinger distance threshold is defined as:

Dt =
√

1− e−(nθ/8)(δu)2 (3.4)

If the Hellinger distance is lower than the threshold Dt, Algorithm 2 converges. Otherwise,
the prediction errors e in each sample {θok; k = 1, ..., K} is be evaluated and sorted in
descending order, keeping the first P errors of e (the prediction error is computed employing
the Kriging variance Σ̄(θ) in Eq.(2.12)). These higher errors are denoted as e∗ and are used
to identify the associated samples, denoted as θo∗. The θo∗ samples are located at relevant
regions of θ (from the uncertainty perspective) and are the samples that corresponds to
regions where the Kriging present important variances. Subsequently, the samples θo∗ are
clustering via kmean identifying nadd centroids, defined as θcluster. Then, these centroids
are evaluated in the high fidelity model to obtain the z(θcluster), which are the new support
points. The new support points are added to the previous support point sets such that
zs = [zs zcluster] and θs = [θs θcluster]. Finally, the iteration number is updated and the
process is repeated until they converge or a certain number nmax of cycles is obtained.
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Algorithm 2 Local Adaptive Kriging
Require: p(θ): PDF associated to manufacturing tolerance;

z(θ): High fidelity model Rnθ → Rnz ;
nmax: Maximum number iteration;
nadd: Number samples added in each step

Ensure: znew: Kriging Training
1: Draw K samples from p(θ), such that {θok; k = 1, ..., K}.
2: Draw ns samples of θ using a Latin Hypercube algorithm, such that {θsi; i = 1, ..., ns}.
3: Evaluate z(θ) in θs, such that {zsi; i = 1, ..., ns}.
4: Define n = 1;
5: Define znew = 0 ∈ RK×nz

6: while n < nmax do
7: zold = znew;
8: Kriging Training with θs − zs → znew(θ)
9: Evaluate znew(θ) in θo, such that {znewk; k = 1, ..., K}.

10: if D(znew, zold) < Dt then . Hellinger Distance
11: break
12: else
13: Evaluate the error of znew(θ) in θo, such that {ek; k = 1, ..., K}.
14: Sort e (descending) and keep the first P errors → e∗

15: Identify the θo that corresponds to e∗ → θo
∗

16: Define θcluster as the centroid of θo∗ using kmeans with nadd clusters
17: Evaluate z(θcluster), such that {zclusterj; j = 1, ..., nadd}.
18: Define zs = [zs zcluster] . adding new support points
19: Define θs = [θs θcluster] . adding new support points
20: n = n+ 1
21: end if
22: end while
23: return znew
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Chapter 4

Effect of Uncertainties in Tilting Pad
Journal Bearings

This section illustrates the implementation of the proposed adaptive schemes by evaluating
the influence of manufacturing tolerances on the dynamic performance of tilting pad journal
bearings (TPJP). These variable geometry hydrodynamic journal bearings are mechanical
elements commonly used in high-speed turbomachinery. TPJB not only provide a low fric-
tion interface supporting the rotor weight, but represent the main source of damping in
land-based turbomachinery. These mechanical elements limit rotor vibration while crossing
critical speeds and enable stable operation at supercritical speeds. TPJB comprise multiple
pads that are concentrically assembled within a circular shell or housing. Each pad pivots
independently respect to the housing. Furthermore, the radius of curvature of the pad inner
surface is different from the set bore radius of curvature. This difference, represented through
a preload parameter (m in Fig.4.1), promotes the development of a convergent-divergent
wedge to enhance hydrodynamic effects. The dynamic performance of these bearings is mod-
eled through linear force coefficients. These coefficients are usually obtained by solving the
Reynolds equation via finite differences method using two- or three-dimensional models. The
dynamic force coefficients are a strong function of the geometric parameters of each of the
pads and the bearing assembly. Small deviations from nominal values in the manufacturing
of each of the pads and housing can lead to variations of the critical speed locations and
stability issues [24, 25], and consequently prolonged equipment commissioning periods and
costly modifications. This sensitivity and the difficulty of measuring parameters such as pad
preload raise the question about the adequate selection of the manufacturing tolerance bands
for these multi-component bearings.

4.1 Characteristics of the Journal Bearing Studied

The proposed local and global schemes are used to evaluate the effect of manufacturing toler-
ance on the dynamic performance of a tilting pad journal bearing (TPJB) previously studied
in [25] and [37]. Both studies determined that small variations of the pad clearance and
preload could lead to important variations in the TPJB dynamic coefficients. In particular,
the referred works use a TPJB with 5 pads with a variation of 5% in the nominal clearance
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and preload values. These former results required imposing specific TPJBs manufacturing
tolerance values in order to obtain admissible variations in the dynamic coefficients.

Table 4.1: Tilting pad journal bearing specifications.
Number of pads 5
Configuration Load on pad
Journal diameter 110 mm
Bearing length 44 mm
Radial bearing clearance 0.099 mm
Preload 0.264 mm
Offset 50 %
Journal speed 7300 rpm
Bearing unit load 0.4 MPa
Fluid supply temperature 40oC
Fluid supply pressure 1.29 bar
Lubricant type ISO VG 32

Table 4.1 lists the geometric parameters an operating conditions of the TPJB from [25]
and [37]. The TPJB presented in [37] is used to illustrate the implementation of the proposed
methodology. This TPJB model is used over other models without loss of generality, while
there are other TPJB models [38, 39, 40] that include additional effects such as pad flexibility
and deformation [41, 42, 43], the implementation of the proposed methodology is independent
of the selected model and the number of parameters included. The TPJB model uses the
finite element method to integrate the isothermal Reynold’s equation through a perturbation
approach. The procedure essentially works in two stages: first it finds the static equilibrium
position (given the geometry, rotor speed, weight and fluid characteristics), followed by a
perturbation analysis [44] to identify the complex dynamic stiffnesses Hxx, Hxy, Hyx and Hyy

for a particular perturbation frequency, where the real part is related to the stiffness and
inertia coefficients and the imaginary to the damping coefficient [23]. This model is treated
as the function H(θ) (in equations 2.1 and 2.2) such that:

H(θ) = [Hxx(θ) Hxy(θ) Hyx(θ) Hyy(θ)] (4.1)

Figure 4.1 shows a schematic view of the TPJB under evaluation, including the definition
of clearance and preload, and the nomenclature used to defined the radius and the pivot
position of each pad. The effect of the manufacturing tolerance are accounted as uncertainties
incorporated in the pad radius Rp and the pivot position Lp, then, θ is defined as θ =

[Rp1 · · ·Rp5 Lp1 · · ·Lp5 ]
T . The remaining parameters presented in Table 4.1 are considered

known (free of uncertainties and variations). All results presented here correspond only to
synchronous perturbations, i.e. perturbation frequency coincides with rotational speed.
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Figure 4.1: Schematic view of a 5-pad Tilting Pad Journal Bearing Describing Main Com-
ponents and Geometric Parameters

The PDF p(θ) is defined as a Gaussian distribution with mean θ̂ = [55.4 · · · 55.4 55.1 · · · 55.1]T

(units in millimeters) while the variance of each geometrical parameter is considered as δ2,
with δ representing the manufacturing tolerance (corresponding to the case presented in
Fig.2.1a). It is important to stress out that different manufacturing strategies could lead
to different correlation levels between the geometrical parameters. For instance, each pad
could be manufactured independently or they could be manufactured cutting in 5 parts a
large pad with uniform curvature. In the former case the pad radius are uncorrelated, how-
ever, in the later manufacturing strategy, the pads will present a strong correlation. In this
illustrative example, three different scenarios are evaluated: (1) a manufacturing tolerance
of 10µm where all geometrical parameters are uncorrelated, (2) a manufacturing tolerance of
1µm where all geometrical parameters are uncorrelated, and (3) a manufacturing tolerance
of 5µm where the pad radius are correlated in 80%.

4.2 Validation of the Proposed Adaptive Schemes

The exceedance probability curves are obtained adopting both, the local and the global
adaptive schemes proposed. The validation of these schemes are achieved comparing these
exceedance probability curves respect to the one obtained employing a high fidelity model,
i.e., solving Eq.(2.2) without the support of any kind of metamodel. Additionally, the results
are also compared with a standard Kriging to highlight the benefits of the adaptive schemes.

The comparison between the high fidelity model, the standard Kriging and the local
adaptive scheme are presented in Fig.4.2. The figure shows the real and imaginary part
for direct and cross-coupled dynamic stiffness coefficients, Hxx and Hyx, and for the three
different tolerances described previously. Only two of the eight coefficients are presented
for the sake of simplicity, however, it is possible to find the rest of coefficients in A.1. The
metamodels are showed in red color (dashed lines for the standard Kriging and solid lines
for the local adaptive) while the high fidelity model is presented in black solid lines. The
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results show good agreements in the general trend for both metamodels. However, it is
observed that the local adaptive metamodel is much closer to the high fidelity curve than the
standard Kriging, where the discrepancies seems to be more important for low manufacturing
tolerances and for the imaginary part of direct coefficients and the real part of cross-coupled
coefficients. It is important to highlight that both metamodels are employing the same
number of support points such that the differences arise exclusively from their locations.
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Figure 4.2: Comparison between the high fidelity model, the standard Kriging and the pro-
posed local adaptive metamodel for Hxx and Hyx and for three different manufacturing tol-
erance scenarios. Important discrepancies are observed in the standard Kriging

Tables 4.2, 4.3 and 4.4 shows the local adaptive and the standard kriging prediction
as percentage error respect to the high-fidelity prediction for an exceedance probability of
PF = 0.95 (minimum credible), PF = 0.5 (median) and PF = 0.05 (maximum credible).
These results are presented for the uncorrelated tolerance of 10µm, the uncorrelated tolerance
of 1µm and the correlated tolerance of 5µm, respectively (The values in [MN/m] of direct
and cross dynamic coefficients for the local scheme and the standard kriging can be found in
A.1). Section 4.4 will explain why those values are compared.
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Table 4.2: Values of direct and cross dynamic coefficient for an exceedance probability of
PF = 0.95 (minimum credible), PF = 0.5 (median) and PF = 0.05 (maximum credible)
employing the high-fidelity model. The local and standard kriging prediction is presented as
percentageerror respect to the high-fidelity prediction. Values corresponds to a manufacturing
tolerance of δ = 10µm with all geometrical parameters uncorrelated.

Coef. High Fidelity [MN/m] Local Adaptive Standard Kriging
Error [%] Error [%]

Min / Med /Max Min / Med /Max Min / Med /Max
Hxx(Re) 60.673 / 70.817 / 83.432 -0.7 / 0.0 / -0.2 -0.1 / 0.1 / -0.3
Hyy(Re) 23.976 / 34.724 / 53.239 0.6 / 0.3 / -0.2 0.6 / -0.4 / -0.4
Hxy(Re) -2.3746 / -0.1765 / 2.0377 -2.3 / 3.6 / -0.1 -3.6 / 35.0 / 1.8
Hyx(Re) -2.0394 / 0.1571 / 2.3725 -2.8 / -5.6 / -0.1 -4.2 / -39.8 / 1.8
Hxx(Im) 26.356 / 29.818 / 34.197 0.3 / 0.2 / -0.9 0.7 / -0.4 / -1.2
Hyy(Im) 14.125 / 18.325 / 25.048 0.4 / 0.1 / -0.1 0.3 / -0.3 / -0.3
Hxy(Im) -0.9545 / 0.0834 / 1.1219 -0.7 / 0.2 / 1.2 -2.2 / -34.6 / 2.5
Hyx(Im) -1.1159 / -0.0828 / 0.9580 -0.9 / 1.8 / 1.3 -2.2 / 34.3 / 3.2

Table 4.3: Values of direct and cross dynamic coefficient for an exceedance probability of
PF = 0.95 (minimum credible), PF = 0.5 (median) and PF = 0.05 (maximum credible)
employing the high-fidelity model. The local and standard kriging prediction is presented as
percentageerror respect to the high-fidelity prediction. Values corresponds to a manufacturing
tolerance of δ = 1µm with all geometrical parameters uncorrelated.

Coef. High Fidelity [MN/m] Local Adaptive Standard Kriging
Error [%] Error [%]

Min / Med /Max Min / Med /Max Min / Med /Max
Hxx(Re) 69.464 /70.543 / 71.593 0.0 / 0.0 / -0.1 0.0 / 0.0 / -0.2
Hyy(Re) 33.16 / 34.477 / 35.888 0.3 / 0.0 / -0.3 0.5 / 0.3 / 0.0
Hxy(Re) -0.3787 / -0.1715 / 0.0302 -1.2 / 3.5 / -53.5 -25.3 / -50.4 / 264.5
Hyx(Re) -0.0457 / 0.1613 / 0.363 -10.5 / -3.6 / -4.5 -208.7 / 53.1 / 21.8
Hxx(Im) 29.257 / 29.598 / 30.163 0.0 / -0.1 / 0.4 -0.5 / -0.7 / -0.2
Hyy(Im) 17.713 / 18.211 / 18.778 0.1 / 0.0 / 0.0 0.1 / 0.0 / 0.0
Hxy(Im) -0.0161 / 0.0837 / 0.1804 -8.5 / -2.0 / -2.7 -121.7 / 20.1 / 8.2
Hyx(Im) -0.1814 / -0.0815 / 0.0153 -0.9 / 2.0 / -30.1 -10.8 / -20.6 / 96.4

Looking at the first tolerance in the Table 4.2 (tolerance of 10µm with all geometrical
parameters uncorrelated), it is possible to confirm what Figure 4.2 shows, the local training
offers better accuracy than the standard kriging. The last one shows errors close to 40% for
the cross coefficients. Then, considering a smaller manufacturing tolerance (tolerance of 1µm
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with all geometrical parameters uncorrelated, Table 4.3), the error increase up in the same
coefficients reaching errors of up to 260% for the real part of Hxy.

Table 4.4: Values of direct and cross dynamic coefficient for an exceedance probability of
PF = 0.95 (minimum credible), PF = 0.5 (median) and PF = 0.05 (maximum credible)
employing the high-fidelity model. The local and standard kriging prediction is presented as
percentageerror respect to the high-fidelity prediction. Values corresponds to a manufacturing
tolerance of δ = 5µm with the pad radius correlated in 80%.

Coef. High Fidelity [MN/m] Local Adaptive Standard Kriging
Error [%] Error [%]

Min / Med /Max Min / Med /Max Min / Med /Max
Hxx(Re) 65.577 / 70.572 / 76.254 0.3 / 0.0 / -0.4 0.0 / -0.2 / -0.4
Hyy(Re) 28.391 / 34.491 / 42.288 0.3 / -0.3 / -0.4 1.3 / 0.8 / -0.3
Hxy(Re) -1.1932 / -0.1603 / 0.8638 -3.8 / 3.3 / -7.0 -9.4 / -30.5 / -5.1
Hyx(Re) -0.8618 / 0.1730 / 1.1942 -5.1 / -3.4 / -5.3 -12.9 / 28.3 / -3.9
Hxx(Im) 28.051 / 29.692 / 31.713 0.6 / -0.1 / -0.4 0.8 / 0.1 / 0.0
Hyy(Im) 15.905 / 18.227 / 21.128 0.3 / -0.2 / -0.4 0.7 / 0.3 / -0.1
Hxy(Im) -0.4058 / 0.0896 / 0.5799 -3.9 / -0.1 / -3.2 -8.7 / 18.1 / -2.1
Hyx(Im) -0.5701 / -0.0764 / 0.4138 -3.1 / 0.6 / -4.8 -6.5 / -20.7 / -3.6

About the third manufacturing tolerance scenario (tolerance of 5µm with the pad radious
correlated in 80%, Table 4.4) the results are similar. It is possible to notice a better accuracy
in the local training presenting errors up to 7% for the minimum and maximum credible
value, while the standard kriging present error arround 13%. For the mean value the local
scheme present errors close to 3.5% for the real part of Hyx while the standard kriging present
errors greater than 30% for the same coefficient.

A similar comparison between the high fidelity model, the standard Kriging and the global
adaptive scheme is presented in Fig.4.3. The exceedance probability curves for the same
dynamic coefficients are presented. The metamodels are shown in blue (solid line for the
global adaptive scheme and dashed line for the standard Kriging), while the high fidelity is
presented in black solid lines as the previous figure. Similar to the previous results, the trend
of the models are in agreement, however, the standard Kriging shows important discrepancies
respect to the high fidelity model, specifically for the imaginary part of the direct coefficients.
As in the previous case, the number of support points of the metamodels are the same and
it is also possible to argue that the differences between the metamodels come exclusively
from the location of the support points. Thus, the effectiveness of the adaptive scheme is
proved. Please note that the number of support points employed for both adaptive schemes
are not necessary the same, then, the standard Krigings in figures 4.2 and 4.3 are not directly
comparable.
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Figure 4.3: Comparison between the high fidelity model, the standard Kriging and the pro-
posed global adaptive metamodel for Hxx and Hyx and for three different manufacturing
tolerance scenarios. Important discrepancies are observed in the standard Kriging

Like in the previous analysis. Tables 4.5, 4.6 and 4.7 show the global adaptive and the
standard kriging prediction as percentage error respect to the high-fidelity prediction for an
exceedance probability of PF = 0.95 (minimum credible), PF = 0.5 (median) and PF = 0.05
(maximum credible). These results are presented for the uncorrelated tolerance of 10µm, the
uncorrelated tolerance of 1µm and the correlated tolerance of 5µm, respectively (The values
in [MN/m] of direct and cross dynamic coefficients for the global scheme and the standard
kriging can be found in A.2).
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Table 4.5: Values of direct and cross dynamic coefficient for an exceedance probability of
PF = 0.95 (minimum credible), PF = 0.5 (median) and PF = 0.05 (maximum credible)
employing the high-fidelity model. The global and standard kriging prediction is presented as
percentageerror respect to the high-fidelity prediction. Values corresponds to a manufacturing
tolerance of δ = 10µm with all geometrical parameters uncorrelated.

Coef. High Fidelity [MN/m] Global Adaptive Standard Kriging
Error [%] Error [%]

Min / Med /Max Min / Med /Max Min / Med /Max
Hxx(Re) 60.673 / 70.817 / 83.432 -0.7 / 0.0 / -0.1 0.0 / 0.2 / 0.0
Hyy(Re) 23.976 / 34.724 / 53.239 0.2 / 0.1 / 0.9 1.0 / -0.4 / -0.1
Hxy(Re) -2.3746 / -0.1765 / 2.0377 -0.8 / 1.5 / -0.4 0.1 / 5.5 / -2.6
Hyx(Re) -2.0394 / 0.1571 / 2.3725 -0.9 / -2.8 / -0.2 0.0 / -6.4 / -2.2
Hxx(Im) 26.356 / 29.818 / 34.197 -0.2 / 0.1 / -0.4 0.1 / 0.2 / -0.1
Hyy(Im) 14.125 / 18.325 / 25.048 0.3 / 0.0 / 0.7 0.3 / -0.2 / -0.2
Hxy(Im) -0.9545 / 0.0834 / 1.1219 0.2 / 1.4 / -0.3 0.8 / -3.2 / -1.1
Hyx(Im) -1.1159 / -0.0828 / 0.95802 -0.3 / -0.9 / -0.3 0.3 / 2.7 / -1.1

Table 4.6: Values of direct and cross dynamic coefficient for an exceedance probability of
PF = 0.95 (minimum credible), PF = 0.5 (median) and PF = 0.05 (maximum credible)
employing the high-fidelity model. The global and standard kriging prediction is presented as
percentageerror respect to the high-fidelity prediction. Values corresponds to a manufacturing
tolerance of δ = 1µm with all geometrical parameters uncorrelated.

Coef. High Fidelity [MN/m] Global Adaptive Standard Kriging
Error [%] Error [%]

Min / Med /Max Min / Med /Max Min / Med /Max
Hxx(Re) 69.464 / 70.543 / 71.593 0.1 / 0.1 / -0.1 0.4 / 0.3 / 0.2
Hyy(Re) 33.160 / 34.477 / 35.888 0.0 / -0.1 / -0.2 -0.5 / -0.8 / -1.0
Hxy(Re) -0.3787 / -0.1715 / 0.0302 -3.7 / -2.2 / -21.0 2.1 / 12.1 / -107.1
Hyx(Re) -0.0457 / 0.1613 / 0.363 -30.5 / 2.2 / -1.8 17.5 / -12.9 / -9.0
Hxx(Im) 29.257 / 29.598 / 30.163 -0.2 / -0.4 / 0.1 0.3 / 0.1 / 0.6
Hyy(Im) 17.713 / 18.211 / 18.778 -0.1 / -0.1 / 0.0 -0.4 / -0.6 / -0.5
Hxy(Im) -0.0161 / 0.0837 / 0.1804 -33.6 / 3.0 / -0.3 25.5 / -9.3 / -6.6
Hyx(Im) -0.1814 / -0.0815 / 0.0153 -2.9 / -2.9 / -2.1 2.2 / 9.7 / -75.7

Concerning the first tolerance set shown in the Table 4.2 (tolerance of 10µm with all
geometrical parameters uncorrelated), there are not many differences between one strategy
and another. Both global adaptive and standard kriging share similar errors. However, when
the manufacturing tolerance is decreased to 1µm, the estimation error for the minimum
credible values presented by the local scheme shows errors arround the 30% only for the real
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part of Hyx and the imaginary part of Hxy. On the other hand, the standard kriging presents
errors arround the 20% for the same values, but the estimation error for the maximum
credible values for the real part of Hxy and the imaginary part of Hyx reach errors around
107% and 75% respectively.

Table 4.7: Values of direct and cross dynamic coefficient for an exceedance probability of
PF = 0.95 (minimum credible), PF = 0.5 (median) and PF = 0.05 (maximum credible)
employing the high-fidelity model. The global and standard kriging prediction is presented as
percentageerror respect to the high-fidelity prediction. Values corresponds to a manufacturing
tolerance of δ = 5µm with the pad radius correlated in 80%.

Coef. High Fidelity [MN/m] Global Adaptive Standard Kriging
Error [%] Error [%]

Min / Med /Max Min / Med /Max Min / Med /Max
Hxx(Re) 65.577 / 70.572 / 76.254 0.0 / 0.0 / -0.3 0.4 / 0.3 / -0.1
Hyy(Re) 28.391 / 34.491 / 42.288 1.0 / 0.3 / -0.1 0.5 / -0.6 / -1.2
Hxy(Re) -1.1932 / -0.1603 / 0.8638 -2.8 / 9.7 / -6.4 -2.6 / 14.5 / -7.9
Hyx(Re) -0.8618 / 0.1730 / 1.1942 -3.6 / -8.9 / -4.9 -3.3 / -14 / -6.0
Hxx(Im) 28.051 / 29.692 / 31.713 0.1 / -0.2 / -0.3 0.7 / 0.3 / 0.1
Hyy(Im) 15.905 / 18.227 / 21.128 0.7 / 0.1 / 0.0 0.4 / -0.4 / -0.8
Hxy(Im) -0.4058 / 0.0896 / 0.5799 -2.0 / -3.9 / -3.3 -2.0 / -8.8 / -4.2
Hyx(Im) -0.5701 / -0.0764 / 0.4138 -1.5 / 6.0 / -4.6 -1.5 / 11.5 / -6.1

Considering the third tolerance scenario (Table 4.7) where a correlation of 80% is intro-
duced in the pad radius, the global scheme and the standard kriging present similar results.
The biggest error in the prediction is in the mean value for the same coefficient. The real
part of the Hxy reaches values up to 9.7% and 14.5% for the global scheme and the standard
kriging respectively.

Finally, both adaptive metamodels and the high fidelity models are compared for the three
manufacturing tolerance and for all dynamic coefficients in Fig.4.4. An excellent agreement
is observed for all cases studied.
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Figure 4.4: Comparison between the high fidelity model, and both adaptive metamodel
proposed (local and global) for three different manufacturing tolerance scenarios. All dynamic
coefficients are presented. Excellent agreement is shown for all cases
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4.3 Comparison in Terms of Computational Time
Although both adaptive schemes offer similar predictions in terms of the exceedance probabil-
ity, the computational time involved in each case is different. The global adaptive scheme is
trained in the entire domain of θ, and thus, it is independent of the manufacturing tolerance.
Thus, its training is performed once. On the other hand, the local adaptive scheme requires a
training process per tolerance selected since the local training depends on the manufacturing
tolerance. The high fidelity model takes more than 3hrs to obtain the exceedance probability
curve for a specific tolerance, which involves 10,000 evaluations of the function H(θ) used in
the Monte Carlo simulation needed to solve Eq.(2.2). The computational burden offered by
the proposed adaptive schemes is considerably lower than the high fidelity model, decreasing
the computational burden by at least 25 times. The computational time and the fraction
employed to compute each major steps in the algorithms are presented in Table 4.8. The local
scheme takes almost half of the time involved in the global scheme when the first tolerance
is accounted for. However,when evaluating a new tolerance condition, the global scheme is
roughly 10 times faster than the local scheme. This difference is attributed to the fact that
the local scheme has to perform a training process for any new tolerance set while the global
scheme is already trained. In general, the local scheme seems to be a good alternative only
when considering few manufacturing tolerances. The global adaptive scheme is recommended
when evaluating large set of manufacturing tolerances.

Table 4.8: Computing time for the different models and tolerances
Model High Fidelity Local Adaptive Global Adaptive

First Tolerance 3.23 hrs 196.14 s 407.19 s
48% Support Points 23% Support Points

52% Training/Prediction 75% Training
2% Prediction

Second Tolerance 3.23 hrs 64.99 s 7.12 s
100% Training/Prediction 100% Prediction

Third Tolerance 3.23 hrs 99.52 s 6.67 s
100% Training/Prediction 100% Prediction

4.4 Precision for Minimum and Maximum Credible Val-
ues

The exceedance probability curves could be used to identify extreme performances. For
example, to identify the minimun and maximum credible values for the dynamic coefficients
of the TPJB. These credible values are defined as the dynamic coefficient that defines a
probability of exceedance equal to PF = 0.95 and PF = 0.05 for the minimum and maximum
credible values, respectively. In other words, the minimum and maximum credible values are
associated with a confidence interval of 90%.
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For the sake of comparison, the credible values are first obtained employing the high-
fidelity model, where the accuracy of those credible values are obtained using Eq.(2.5), being
δMC = 0.23% for PF = 0.95 and δMC = 4.36% for PF = 0.05. Afterwards, the credible values
are obtained using the proposed adaptive schemes for the three scenarios and compared
with the high-fidelity model. These results are presented in tables 4.9, 4.10 and 4.11, for
the uncorrelated tolerance of 10µm, the uncorrelated tolerance of 1µm and the correlated
tolerance of 5µm, respectively. Note that tables also presents the median dynamic coefficient
(PF = 0.5).

Regarding the first tolerance set (tolerance of 10µm with all geometrical parameters un-
correlated, Table 4.9), the local and global schemes offer accurate results for the minimum
and maximum credible values, presenting errors up to 2.8%. However, in the median values
estimation, the local scheme presents errors close to 6% for the cross coefficients while the
global scheme presents errors up to 3%. When the manufacturing tolerance is decreased to
1µm (Table 4.10), the estimation error for the minimum credible values presented by the local
scheme increases up to 10.5%. For this case, the maximum credible estimation values present
errors greater than 5% only for the real part of Hxy and the imaginary part of Hyx, reaching
errors around 54% and 30% respectively. In the global scheme, the real part of Hyx and the
imaginary part of Hxy present errors around 30% in the estimation of the minimum credible
value; while only the real part of Hxy present errors greater than 2% in the estimation for
the maximum credible value. In terms of the median prediction, both adaptive schemes offer
predictions with lower errors (below 4%). In general, the reduction of the manufacturing
tolerance deteriorates the precision of both adaptive schemes, with a higher impact on the
global scheme.

Table 4.9: Values of direct and cross dynamic coefficient for an exceedance probability of PF =
0.95 (minimum credible), PF = 0.5 (median) and PF = 0.05 (maximum credible) employing
the high-fidelity model. The local and global adaptive prediction is presented as percentage
error respect to the high-fidelity prediction. Values corresponds to a manufacturing tolerance
of δ = 10µm with all geometrical parameters uncorrelated.

Coef. High Fidelity [MN/m] Local Adaptive Error[%] Global Adaptive Error[%]

Min / Med /Max Min / Med /Max Min / Med /Max
Hxx(Re) 60.673 / 70.817 / 83.432 -0.7 / 0.0 / -0.2 -0.7 / 0.0 /-0.1
Hyy(Re) 23.976 / 34.724 / 52.239 0.6 / 0.3 / -0.2 0.2 / 0.1 / 0.9
Hxy(Re) -2.3746 / -0.1765 / 2.0377 -2.3 / 3.6 / -0.1 -0.8 / 1.5 /-0.4
Hyx(Re) -2.0394 / 0.1571 / 2.3725 -2.8 / -5.6 / -0.1 -0.9 / -2.8 / -0.2
Hxx(Im) 26.356 / 29.818 / 34.197 -0.3 / 0.2 / -0.9 -0.2 / 0.1 /-0.4
Hyy(Im) 14.125 / 18.325 / 25.048 0.4 / 0.1 / -0.1 0.3 / 0.0 / 0.7
Hxy(Im) -0.9545 / 0.0834 / 1.1219 -0.7 / 0.2 / 1.2 0.2 / 1.4 /-0.3
Hyx(Im) -1.1159 / -0.0828 / 0.9580 -0.9 / 1.8 / 1.3 -0.3 /-0.9 /-0.3
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Table 4.10: Values of direct and cross dynamic coefficient for an exceedance probability of
PF = 0.95 (minimum credible), PF = 0.5 (median) and PF = 0.05 (maximum credible)
employing the high-fidelity model. The local and global adaptive prediction is presented as
percentage error respect to the high-fidelity prediction. Values corresponds to a manufactur-
ing tolerance of δ = 1µm with all geometrical parameters uncorrelated.

Coef. High Fidelity [MN/m] Local Adaptive Error[%] Global Adaptive Error[%]

Min / Med /Max Min / Med /Max Min / Med /Max
Hxx(Re) 69.464 / 70.543 / 71.593 0.0 / 0.0 / -0.1 0.1 / 0.1 / -0.1
Hyy(Re) 33.160 / 34.477 / 35.888 0.3 / 0.0 / -0.3 0.0 / -0.1 / -0.2
Hxy(Re) -0.3787 / -0.1715 / 0.0302 -1.2 / 3.5 / -53.5 -3.7 / -2.2 / -21.0
Hyx(Re) -0.0457 / 0.1613 / 0.3630 -10.5 / -3.6 / -4.5 -30.5 / 2.2 / -1.8
Hxx(Im) 29.257 / 29.598 / 30.163 0.0 / -0.1 / 0.4 -0.2 / -0.4 / 0.1
Hyy(Im) 17.713 / 18.211 / 18.778 0.1 / 0.0 / 0.0 -0.1 / -0.1 / 0.0
Hxy(Im) -0.0161 / 0.0837 / 0.1805 -8.5 / -2.0 / -2.7 -33.6 / 3.0 / -0.3
Hyx(Im) -0.1814 / -0.0815 / 0.0154 -0.9 / 2.0 / -30.1 -2.9 / -2.9 / -2.1

Studying the third manufacturing tolerance scenario (Table 4.11) where a correlation of
80% is introduced in the pad radius, it is possible to observed that the local scheme presents a
better performance when compared to the global scheme. In this case, the error identified in
the local adaptive scheme reaches values up to 5% while the global adaptive scheme presents
errors as high as 10%. This difference in performance is expected since the local scheme aims
to increase the precision in regions of θ where bearing geometry is more likely to lies, which
is ultimately defined by p(θ).

Table 4.11: Values of direct and cross dynamic coefficient for an exceedance probability of
PF = 0.95 (minimum credible), PF = 0.5 (median) and PF = 0.05 (maximum credible)
employing the high-fidelity model. The local and global adaptive prediction is presented as
percentage error respect to the high-fidelity prediction. Values corresponds to a manufactur-
ing tolerance of δ = 5µm with the pad radius correlated in 80%.

Coef. High Fidelity [MN/m] Local Adaptive Error[%] Global Adaptive Error[%]

Min / Med /Max Min / Med /Max Min / Med /Max
Hxx(Re) 65.577 / 70.572 / 76.254 0.3 / 0.0 / -0.4 0.0 / 0.0 / -0.3
Hyy(Re) 28.391 / 34.491 / 42.288 0.3 / -0.3 / -0.4 1.0 / 0.3 / -0.1
Hxy(Re) -1.1932 / -0.1603 / 0.8638 -3.8 / 3.3 / -7.0 -2.8 / 9.7 / -6.4
Hyx(Re) -0.8618 / 0.1730 / 1.1942 -5.1 / -3.4 / -5.3 -3.6 / -8.9 / -4.9
Hxx(Im) 28.051 / 29.692 / 31.713 0.6 / -0.1 / -0.4 0.1 / -0.2 / -0.3
Hyy(Im) 15.905 / 18.227 / 21.128 0.3 / -0.2 / -0.4 0.7 / 0.1 / 0.0
Hxy(Im) -0.4058 / 0.0896 / 0.5799 -3.9 / -0.1 / -3.2 -2.0 / -3.9 / -3.3
Hyx(Im) -0.5701 / -0.0764 / 0.4138 -3.1 / 0.6 / -4.8 -1.5 / 6.0 / -4.6
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Chapter 5

Conclusions

A robust framework to identify the relationship between the manufacturing tolerance of a
mechanical part and the expected variations on its mechanical performance is presented.
The framework is based on a Monte Carlo simulation adopting a surrogate model in order
to predict the probability to exceed a certain performance. The surrogate model, based on
Kriging interpolation, is trained in an adaptive way with the use of a deterministic model.
Two different approaches to train the model are presented: local and global. Both adaptive
schemes offer a reduction in the computing time and similar predictions in terms of exceedance
probability of mechanical performance. These methods were compared with a traditional
Kriging employing the same number of support points showing a better accuracy in the
adaptives schemes, where the only differences were from the location of them. As far as
the author’s knowledge, the use of this kind of procedures in the selection of manufacturing
tolerance by means of adaptive Kriging metamodels was not fully studied until now.

A study of the reliability of a tilting pad journal bearing was presented employing the
proposed framework. The implementation of this technique is not straightforward since it
requires a certain expertise, which is the reason why it was decided to revisit the most
important concepts and adapt them to the study of TPJB. As result, the use of metamodels
in the study of the reliability of a TPJB demonstrated a series of significant advantages
as: (1) it is possible to evaluate the influence of manufacturing tolerances on the dynamic
performance (2) the most probable value of the dynamic coefficients are identified, (3) it is
possible to identify the minimum and maximum credible values for its dynamic coefficients,
and (4) the exceedance probability curves could be used to identify extreme performances.
The methodology is validated comparing these exceedance probability curves respect to the
one obtained employing a high fidelity model. Although this research focused on a particular
bearing configuration, the framework is extendable to any other mechanical component.
In general, the proposed framework represents a feasible and attractive approach to define
manufacturing tolerance limits with minimum computational effort.

Finally, considering the versatility of this methodology, the implementation of this scheme
to any other mechanical component is proposed for future work. Also, it could be interesting
to develop a sensitivity analysis to implement on this scheme. This type of analysis would
allows the identification of the parameter or set of parameters that have the greatest influence
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on the model output. It consequently provides useful insight into which model input con-
tributes most to the variability of the model output. In this particular case, the dimensions
that have the greatest influence on the performance would be identified, thus strict tolerance
specifications on them would be applied.
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Annex A

Values of Direct and Cross Dynamic
Coefficient

A.1 Local Adaptive Kriging and Standard Kriging
Tables A.1, A.2 and A.3 show the values of direct and cross dynamic coefficient for an
exceedance probability of PF = 0.95 (minimum credible), PF = 0.5 (median) and PF = 0.05
(maximum credible) employing the high-fidelity model, the local adaptive training and the
standard kriging.

Table A.1: Values of direct and cross dynamic coefficient for an exceedance probability of
PF = 0.95 (minimum credible), PF = 0.5 (median) and PF = 0.05 (maximum credible)
employing the high-fidelity model, local adaptive prediction and standard kriging. Values
corresponds to a manufacturing tolerance of δ = 10µm with all geometrical parameters
uncorrelated.

Coef. High Fidelity [MN/m] Local Adaptive [MN/m] Standard Kriging [MN/m]

Min / Med /Max Min / Med /Max Min / Med /Max
Hxx(Re) 60.673 / 70.817 / 83.432 61.084 / 70.800 / 83.609 60.723 / 70.778 / 83.683
Hyy(Re) 23.976 / 34.724 / 53.239 23.822 / 34.604 / 53.348 23.827 / 34.851 / 53.475
Hxy(Re) -2.3746 / -0.1765 / 2.0377 -2.429 / -0.1701 / 2.0398 -2.4594 / -0.1147 / 2.0018
Hyx(Re) -2.0394 / 0.1571 / 2.3725 -2.0963 / 0.1660 / 2.3753 -2.1243 / 0.2197 / 2.3306
Hxx(Im) 26.356 / 29.818 / 34.197 26.276 / 29.769 / 34.510 26.176 / 29.949 / 34.609
Hyy(Im) 14.125 / 18.325 / 25.048 14.069 / 18.297 / 25.067 14.082 / 18.380 / 25.114
Hxy(Im) -0.9545 / 0.0834 / 1.1219 -0.9610 / 0.0833 / 1.1085 -0.9758 / 0.1123 / 1.0939
Hyx(Im) -1.1159 / -0.0828 / 0.9580 -1.126 / -0.0813 / 0.9455 -1.1401 / -0.0544 / 0.9278
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Table A.2: Values of direct and cross dynamic coefficient for an exceedance probability of
PF = 0.95 (minimum credible), PF = 0.5 (median) and PF = 0.05 (maximum credible)
employing the high-fidelity model, local adaptive prediction and standard kriging. Values
corresponds to a manufacturing tolerance of δ = 1µm with all geometrical parameters un-
correlated.

Coef. High Fidelity [MN/m] Local Adaptive [MN/m] Standard Kriging [MN/m]

Min / Med /Max Min / Med /Max Min / Med /Max
Hxx(Re) 69.464 / 70.543 / 71.593 69.442 / 70.535 / 71.662 69.445 /70.565 / 71.721
Hyy(Re) 33.160 / 34.477 / 35.888 33.075 / 34.484 / 35.985 32.979 / 34.387 / 35.892
Hxy(Re) -0.3787 / -0.1715 / 0.0302 -0.3834 / -0.1655 / 0.0464 -0.4745 / -0.2579 / -0.0497
Hyx(Re) -0.0457 / 0.1613 / 0.3630 -0.0504 / 0.1672 / 0.3793 -0.1411 / 0.0756 / 0.2840
Hxx(Im) 29.257 / 29.598 / 30.163 29.248 / 29.634 / 30.030 29.415 / 29.810 / 30.216
Hyy(Im) 17.713 / 18.211 / 18.778 17.688 / 18.213 / 18.776 17.687 / 18.212 / 18.774
Hxy(Im) -0.0161 / 0.0837 / 0.1804 -0.0175 / 0.0853 / 0.1854 -0.0357 / 0.0669 / 0.1657
Hyx(Im) -0.1814 / -0.0815 / 0.0153 -0.1831 / -0.0799 / 0.0200 -0.2010 / -0.0983 / 0.00054

Table A.3: Values of direct and cross dynamic coefficient for an exceedance probability of
PF = 0.95 (minimum credible), PF = 0.5 (median) and PF = 0.05 (maximum credible)
employing the high-fidelity model, local adaptive prediction and standard kriging. Values
corresponds to a manufacturing tolerance of δ = 5µm with the pad radius correlated in 80%.

Coef. High Fidelity [MN/m] Local Adaptive [MN/m] Standard Kriging [MN/m]

Min / Med /Max Min / Med /Max Min / Med /Max
Hxx(Re) 65.577 / 70.572 / 76.254 65.375 / 70.584 / 76.578 65.561 / 70.748 / 76.541
Hyy(Re) 28.391 / 34.491 / 42.288 28.305 / 34.580 / 42.471 28.032 / 34.220 / 42.426
Hxy(Re) -1.1932 / -0.1603 / 0.8638 -1.2382 / -0.155 / 0.9239 -1.3054 / -0.2092 / 0.9077
Hyx(Re) -0.8618 / 0.1730 / 1.1942 -0.9055 / 0.1788 / 1.257 -0.9727 / 0.1241 / 1.2412
Hxx(Im) 28.051 / 29.692 / 31.713 27.890 / 29.717 / 31.844 27.820 / 29.647 / 31.716
Hyy(Im) 15.905 / 18.227 / 21.128 15.863 / 18.271 / 21.205 15.787 / 18.164 / 21.159
Hxy(Im) -0.4058 / 0.0896 / 0.5799 -0.4218 / 0.0897 / 0.5986 -0.4410 / 0.0734 / 0.5922
Hyx(Im) -0.5701 / -0.0764 / 0.4138 -0.5876 / -0.0759 / 0.4335 -0.6074 / -0.0922 / 0.4287

Figure A.1 shows the probability of exceedance for all dynamic coefficients for the three
different tolerances employing the high-fidelity model, local adaptive prediction and standard
kriging.
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Figure A.1: Comparison between the high fidelity model, the standard Kriging and the pro-
posed local adaptive metamodel for the dynamic coefficients for three different manufacturing
tolerance scenarios. Important discrepancies are observed in the standard Kriging
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A.2 Global Adaptive Kriging and Standard Kriging
Tables A.4, A.5 and A.6 show the values of direct and cross dynamic coefficient for an
exceedance probability of PF = 0.95 (minimum credible), PF = 0.5 (median) and PF = 0.05
(maximum credible) employing the high-fidelity model, the global adaptive training and the
standard kriging.

Table A.4: Values of direct and cross dynamic coefficient for an exceedance probability of
PF = 0.95 (minimum credible), PF = 0.5 (median) and PF = 0.05 (maximum credible)
employing the high-fidelity model, global adaptive prediction and standard kriging. Values
corresponds to a manufacturing tolerance of δ = 10µm with all geometrical parameters
uncorrelated.

Coef. High Fidelity [MN/m] Global Adaptive [MN/m] Standard Kriging [MN/m]

Min / Med /Max Min / Med /Max Min / Med /Max
Hxx(Re) 60.673 / 70.817 / 83.432 61.080 / 70.805 / 83.548 60.703 / 70.710 / 83.453
Hyy(Re) 23.976 / 34.724 / 53.239 23.923 / 34.699 / 52.769 23.748 / 34.876 / 53.315
Hxy(Re) -2.3746 / -0.1765 / 2.0377 -2.3939 / -0.1739 / 2.0453 -2.3713 / -0.1667 / 2.0907
Hyx(Re) -2.0394 / 0.1571 / 2.3725 -2.0587 / 0.1616 / 2.3772 -2.040 / 0.1672 / 2.4243
Hxx(Im) 26.356 / 29.818 / 34.197 26.397 / 29.783 / 34.321 26.342 / 29.748 / 34.229
Hyy(Im) 14.125 / 18.325 / 25.048 14.088 / 18.328 / 24.873 14.079 / 18.370 / 25.091
Hxy(Im) -0.9545 / 0.0834 / 1.1219 -0.9530 / 0.0823 / 1.1252 -0.9473 / 0.0861 / 1.1338
Hyx(Im) -1.1159 / -0.0828 / 0.9580 -1.1191 / -0.0835 / 0.9613 -1.1123 / -0.0806 / 0.9686

Table A.5: Values of direct and cross dynamic coefficient for an exceedance probability of
PF = 0.95 (minimum credible), PF = 0.5 (median) and PF = 0.05 (maximum credible)
employing the high-fidelity model, global adaptive prediction and standard kriging. Val-
ues corresponds to a manufacturing tolerance of δ = 1µm with all geometrical parameters
uncorrelated.

Coef. High Fidelity [MN/m] Global Adaptive [MN/m] Standard Kriging [MN/m]

Min / Med /Max Min / Med /Max Min / Med /Max
Hxx(Re) 69.464 / 70.543 / 71.593 69.408 / 70.505 / 71.633 69.203 / 70.326 / 71.477
Hyy(Re) 33.160 / 34.477 / 35.888 33.146 / 34.507 / 35.959 33.338 / 34.743 / 36.237
Hxy(Re) -0.3787 / -0.1715 / 0.0302 -0.3927 / -0.1753 / 0.0366 -0.3706 / -0.1508 / 0.0626
Hyx(Re) -0.0457 / 0.1613 / 0.363 -0.0596 / 0.1577 / 0.3694 -0.0376 / 0.1822 / 0.3957
Hxx(Im) 29.257 / 29.598 / 30.163 29.329 / 29.720 / 30.121 29.182 / 29.573 / 29.975
Hyy(Im) 17.713 / 18.211 / 18.778 17.723 / 18.237 / 18.782 17.787 / 18.313 / 18.871
Hxy(Im) -0.0161 / 0.0837 / 0.1804 -0.0215 / 0.0812 / 0.1809 -0.0120 / 0.0915 / 0.1923
Hyx(Im) -0.1814 / -0.0815 / 0.0153 -0.1867 / -0.0839 / 0.0156 -0.1773 / -0.0736 / 0.0270
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Table A.6: Values of direct and cross dynamic coefficient for an exceedance probability of
PF = 0.95 (minimum credible), PF = 0.5 (median) and PF = 0.05 (maximum credible)
employing the high-fidelity model, global adaptive prediction and standard kriging. Values
corresponds to a manufacturing tolerance of δ = 5µm with the pad radius correlated in 80%.

Coef. High Fidelity [MN/m] Global Adaptive [MN/m] Standard Kriging [MN/m]

Min / Med /Max Min / Med /Max Min / Med /Max
Hxx(Re) 65.577 / 70.572 / 76.254 65.555 / 70.545 / 76.457 65.291 / 70.392 / 76.322
Hyy(Re) 28.391 / 34.491 / 42.288 28.100 / 34.400 / 42.316 28.238 / 34.713 / 42.799
Hxy(Re) -1.1932 / -0.1603 / 0.8638 -1.2263 / -0.1448 / 0.9195 -1.2247 / -0.1371 / 0.9323
Hyx(Re) -0.8618 / 0.1730 / 1.1942 -0.8927 / 0.1884 / 1.2529 -0.8902 / 0.1972 / 1.2663
Hxx(Im) 28.051 / 29.692 / 31.713 28.017 / 29.753 / 31.815 27.850 / 29.593 / 31.685
Hyy(Im) 15.905 / 18.227 / 21.128 15.795 / 18.212 / 21.130 15.846 / 18.307 / 21.294
Hxy(Im) -0.4058 / 0.0896 / 0.5799 -0.4137 / 0.0931 / 0.5988 -0.4139 / 0.0975 / 0.6040
Hyx(Im) -0.5701 / -0.0764 / 0.4138 -0.5785 / -0.0718 / 0.4327 -0.5785 / -0.0675 / 0.4391

Figure A.2 shows the probability of exceedance for all dynamic coefficients for the three
different tolerances employing the high-fidelity model, global adaptive prediction and stan-
dard kriging.
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Figure A.2: Comparison between the high fidelity model, the standard Kriging and the
proposed global adaptive metamodel for the dynamic coefficients for three different manu-
facturing tolerance scenarios. Important discrepancies are observed in the standard Kriging
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