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GENERACION E IMPLEMENTACION DE MODELOS GEOMETALURGICOS: GUIA
MULTIDISCIPLINARIA PARA LA DEFINICION DE RESERVAS MINERAS

La tesis de doctorado Generacion e implementacion de modelos geometalurgicos: Guia
multidisciplinaria para la definicion de reservas mineras se enmarca en el contexto geo-minero-
metallrgico de depdsitos de porfido cupriferos, donde se muestra la importancia para los proyectos
mineros la generacion de modelos geometallrgicos y su implementacion préactica en planificacion
de corto y largo plazo para definir reservas mineras dentro de los estandares internacionales de
reporte de reservas NI 43-101, impactando en la disminucion de los costos operacionales de
tratamiento, ademas de la disminucién del riesgo de un proyecto. El objetivo general de la tesis es
establecer un método de estandar internacional para cuantificar reservas mineras considerando
modelos geometallrgicos en la planificacibn minera. Para esto, (1) se generaron modelos
geometaldrgicos integrados considerando incertidumbre geoldgica y metalurgica; (2) se realizé una
descripcion de método genérico para incluir modelos geometallrgicos en planificacion minera de
corto y largo plazo; (3) se gener6 un manuscrito guia de buenas practicas para la declaracién de
reservas considerando la geometalurgia como un factor modificante clave.

El articulo 1 titulado 'Cambio de soporte usando variables no aditivas con Gibbs Sampler:
Aplicacion a recuperacion metaltrgica de minerales sulfurados' (Computer and Geoscience 2019)
describe una metodologia para la integracion de la base de datos de diferentes fuentes y soportes,
donde se discuten las ventajas y desventajas de esta nueva metodologia desde un punto de vista
geoestadistico. El articulo 2 titulado 'Simulacion de bases de datos de exploracion y geometallrgica
de depositos porfidos cupriferos con fines educacionales' (Natural Resources Research 2020)
describe una metologia de simulacién de atributos geometaldrgicos, el cual permite la generacion
de base de datos sintéticas para multiples propositos.

Se adjunta documento publicado en Predictive Geometallurgy and Geostatistics Lab, Queen's
University el cual presenta una guia de buenas practicas para la declaracion de reservas
considerando la geometalurgia como un factor modificante, basado en las definiciones de reservas
minerales del codigo NI 43-101.
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INTRODUCCION

En esta tesis se resumen 2 articulos de publicacién cientifica orientadas a la generacion e

implementacién de modelos geometaltrgicos de sulfuros de cobre.

CONTEXTO

La geometalurgia busca la integracion de diferentes areas de conocimiento a través de modelos
predictivos que puedan ser utilizados en la disminucién de costos operacionales ante procesamiento
mineral. El estudio geoldgico del mineral extraido, tanto de mena como de ganga, es una ciencia
ampliamente desarrollada por la geologia a traves de diferentes mediciones que permiten generar
una completa caracterizacion del mineral. Asi mismo, ensayos metaldrgicos permiten caracterizar
el comportamiento operacional que se esperara en la planta de procesamiento mineral (desde
conminucion, hasta la separacién de la mena y ganga o refinamiento). Los comportamientos
geometaldrgicos de las rocas, unidades geoldgicas de un yacimiento, se determinan comdnmente
mediante la realizacion de ensayos mineros. Propiedades como dureza, moliendabilidad,
recuperacion de cobre, consumos de insumos en procesamiento, entre muchos otros aspectos, se
determinan en forma empirica, normalmente sobre un nimero limitado de muestras, esto debido a
los altos costos que implican. EI comportamiento del material procesado dependera tanto de
factores operacionales como geoldgicos. Los procesos metalrgicos requieren procesar el $100\%$
de la roca, los costos de produccién y la eficiencia de recuperacién no solamente dependen de las
caracteristicas de los minerales de mena, mas bien mayoritariamente de los de ganga. El enfoque
clasico en explotacion y procesamiento mineral de yacimientos se centra principalmente en la
mena, las caracteristicas de ganga normalmente quedan relegadas a las caracteristicas geoldgicas

de un yacimiento.

La generacion de modelos geometalurgicos es una herramienta necesaria en cualquier proyecto

minero, por lo tanto su incorporacion dentro de la planificacion minera es un objeto de estudio

inminente y de innovacion para entidades especializadas en el area de investigacion y desarrollo.

La innovacidn en esta area generara nuevos estandares en el reporte de reservas mineras para la
1



industria a nivel mundial de yacimientos polimetalicos a través de la generacion de guias de buenas
practicas para definir formalmente metodologias para incluir modelos geometaldrgicos durante el

proceso de evaluacién de yacimientos.

En esta tesis se trabajé una guia metodoldgica que permite incluir los modelos geometallrgicos
dentro de la definicion de reservas mineras de una compafiia. EI concepto de reserva se basa en
aquellos recursos mineros estimados con buena confiabilidad que tienen posibilidades de ser
explotados, por lo tanto son considerados parte de los activos econémicos de una empresa minera.
Para que recursos minerales sean valorizados como reservas mineras, deben ser evaluados por una
serie de factores modificantes, por ejemplo, proceso minero/metalirgico, geotecnia, hidrologia,
medio ambiente, factores de mercado, etc. Y la geometalurgia es un factor modificante dentro del
proceso minero/metallrgico que debe ser considerado para la definicidn de reservas mineras. No
considerarlo implica en aumento de costos operacionales y aumento del riesgo del proyecto. El
concepto Reserva Minera esté relacionado con la industria que genera estudios bancables, puesto
que es esencial comunicar los riesgos asociados de manera efectiva y transparente a fin de obtener
el nivel de confianza necesario para respaldar actividades mineras. CRIRSCO es el Committee for
Mineral Reserves International Reporting Standards, del cual miembros de todo el mundo, por
ejemplo la Comision Calificadora de Competencias en Recursos y Reservas Mineras de Chile, CIM
de Canad4, SAMREC de Africa del Sury JORC de Australia siguen guias de buenas practicas para

definir las reservas mineras.

MOTIVACION

Al integrar el area de geometalurgia en la evaluacién de recursos y planificacion minera se logra
una disminucién de costos de procesamiento, y disminucion de la incertidumbre del mineral a
procesar. El principal desafio que limitan las actividades en el &rea de la geometalurgia es la
integracién de conocimiento especializado, de esta forma el geometalurgista debe tener un
conocimiento transversal sobre geologia, produccién minera, procesamiento mineral, medio
ambiente y sostenibilidad minera. En enfoque actual del geometalurgista se basa en el

conocimiento geoldgico, cuya tarea de incluir estos factores geometalurgicos normalmente es



delegado al minero, generando interferencias en el entendimiento geometallrgico y perdiendo el

enfoque principal, cuyo objetivo es disminuir costos e incertidumbre del procesamiento mineral.

Actualmente en la geometalurgia no se modelan procesos de interaccion agua/roca desde molienda
en adelante, donde las condiciones de composicién mineral y de agua son las que regulan
reacciones de equilibrio quimico, reacciones que controlan las condiciones fisicoquimicas (pH, Eh,
EC entre otros) e hidroquimicas del agua de proceso. Estas condiciones a su vez afectan los
parametros de operacién, costos de insumos y eficiencia de recuperacién, como también la calidad
y condiciones del agua y material de descarte a relaves. La geologia/ mineralogia de alimentacion
a planta incide sobre la operacion, costos y eficiencia, por lo que modelar atributos geometaltrgicos

en forma predictiva es fundamental para disminuir los riesgos de un proyecto minero.

A pesar de los estudios para generacion de modelos geometallrgicos, la metodologia y su
implementacién en la cadena productiva minera aun presenta dudas, se desconocen sus potenciales
usos y no se cuenta con una guia clara para su manejo. La planificacién (de mina como de planta)
permite generar planes de respuesta en el corto, mediano y largo plazo a fin de aumentar la vida
del proyecto minero, disminuir costos operacionales y maximizar el beneficio econémico de
retorno. El proyecto minero se basa en una buena planificacion para minimizar los riesgos
asociados a la extraccién, procesamiento y venta del mineral. Los modelos geometallrgicos no son
considerados explicitamente dentro de la planificacién minera, ya que no existe una guia clara 'y
concisa de como unificar estas areas multidisciplinarias y las herramientas comerciales adecuadas

para su ejecucion.

HIPOTESIS DE LA INVESTIGACION

La hipdtesis de esta investigacion es que la integracion de modelos en geometalurgia permite
mejorar resultados en procesamiento de minerales, disminuyendo la incertidumbre y costos de

proceso.



OBJETIVOS

El objetivo principal de la investigacion es establecer un método de estandar internacional para
cuantificar reservas mineras considerando modelos geometalurgicos en la planificacién minera.

Para esto, se ha separado en 3 etapas, con diferentes objetivos especificos:

1. Metodologia para generacion de modelos geometallrgicos integrados considerando
incertidumbre geoldgica y metalurgica.

2. Desarrollo e implementacion de método genérico para incluir modelos geometalrgicos en
planificacién minera de corto y largo plazo para operaciones de rajo abierto.

3. Generar un manuscrito guia de buenas practicas para la declaracion de reservas
considerando la geometalurgia como un factor modificante, basado en las definiciones de

reservas minerales de codigos internacionales.

ESTADO DEL ARTE

Los modelos geometallrgicos predictivos permiten estimar, con diferentes niveles de confianza y
riesgo, el comportamiento insitu de un material en base a su caracterizacion mineral. Este resultado
es escalado a nivel industrial en la planificacion de corto plazo para poder optimizar los pardmetros
operacionales y disminuir los costos asociados al tratamiento del mineral. En un yacimiento
mineral del tipo porfido cuprifero es posible tener una diversidad de unidades litoldgicas, de
alteracion, de mineralizacion y estructuras, cuya combinatoria implica una alta variabilidad en los
materiales de alimentacion a planta de procesamiento. Comportamientos diferenciales segln
alimentacion, ya sea de frentes de extraccion singulares o bien mediante programas de mezcla
controladas, son lo esperable en produccién. Estudios que aborden los impactos geoldgicos /
minerales, composicion de aguas de proceso, reacciones de equilibrio agua / roca en procesamiento
y los impactos de estos en flotacion y recuperacion, o en lixiviacién en el caso de procesamiento

mediante lixiviacién en pilas, son escasos.



En la conferencia Procemin-GEOMET del afio 2019 realizada en Chile se han discutido varios
temas relacionados con esta investigacion, destacando los siguientes problemas relacionados con

la generacion de modelos geometalurgicos y su implementacion en la planificacién minera:

1. Integracion de datos con diferentes fuentes de muestreo, diferentes incertidumbres
asociadas y representatividad de muestras.

2. Variables claves que permitan generar modelos predictivos con una confiabilidad aceptable
dependiendo de la etapa del proyecto minero (estudio de perfil, estudio preliminar, pre-
factibilidad, factibilidad y operacion mina).

3. Prediccion de variables de naturaleza no aditivas, y su cuantificacion del riesgo en la
estimacion.

4. Optimizacion del valor del proyecto que considere costos asociados a la roca, por ejemplo,
minerales con alta presencia de arcilla presentan problemas operacionales en la planta de
flotacion, disminuyendo la recuperacion metallirgica y aumentando los costos de

procesamiento.

A continuacion, se describe los 3 objetivos principales de esta tesis:

1. En la generacion de modelos geometallrgicos integrados, considerando incertidumbre
geoldgica y metalurgica, el objetivo especifico es generar modelos geometalrgicos
integrados considerando incertidumbre geoldgica y metallrgica combinada, que sirvan
como input en la segunda etapa de planificacion minera. Ademas, los modelos
geometallrgicos pueden ser utilizados en planificacion de corto plazo para definir
parametros operacionales en el procesamiento de diferentes minerales de alimentacion.
Herramientas de medicidn en linea permiten proveer estimaciones de minerales en corto
plazo.

2. En el desarrollo e implementacién de metodologia para integrar modelos geometallrgicos
en planificacion minera de corto y largo plazo para operaciones, el objetivo especifico es
establecer un método genérico para incluir modelos geometalUrgicos en planificacion

minera de corto y largo plazo. Dentro de los resultados académicos, se incluye una
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publicacién cientifica-tecnoldgica relacionada con el area de planificaciébn minera y
utilizacion de modelos geometaltrgicos para disminuir los riesgos del proyecto minero.

En la generacidn de un manuscrito guia de buenas préacticas para la declaracion de reservas
considerando la geometalurgia como un factor modificante, el objetivo especifico es
generar un manuscrito guia de buenas précticas basado en las definiciones de reservas
minerales de codigos internacionales. El resultado tiene un impacto directo en el sector

productivo de empresas mineras y consultoras privadas que prestan servicios de apoyo.



ARTICULOS PUBLICADOS

ARTICLE 1: CHANGE OF SUPPORT USING NON-ADDITIVE VARIABLES
WITH GIBBS SAMPLER: APPLICATION TO METALLURGICAL RECOVERY
OF SULPHIDES ORES.

El articulo 1 adjunto a continuacion permite cambiar de soporte para variables no aditivas (en este
caso, aplicado al ensayo geometalurgico de recuperacion rougher) conservando caracteristicas
geoestadisticas de la base de datos para evitar artefactos matematicos en la consolidacién de base
de datos de diferentes fuentes de informacion (logeo geoldgico, geoquimico, mineraldgico,
geofisico, geomecanico y geometallrgico). La consolidacion correcta de la base de datos permite

generar modelos georeferenciados en el espacio de atributos geometallrgicos.
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ARTICLE INFO ABSTRACT

Keywords: Flotation tests at laboratory scale describe the metallurgical behavior of the minerals that will be processed in
Metallurgical recovery the operational plant. This material is generally composed of ore and gangue minerals. These tests are usually
Additivity

scarce, expensive and sampled in large supports. This research proposes a methodology for the geostatistical
modelling of metallurgical recovery, covering the change of support problems through additive auxiliary vari-
ables. The methodology consists of simulating these auxiliary variables using a Gibbs Sampler in order to infer
the behavior of samples with smaller supports. This allows downscaling a large sample measurement into smaller
ones, reproducing the variability at different scales considering the physical restrictions of additivity balance of
the metallurgical recovery process. As a consequence, it is possible to apply conventional multivariate geosta-
tistical tools to data at different supports, such as multivariable exploratory analysis, calculation of cross-var-
iograms, multivariate estimations, among others. The methodology was tested using a drillhole database from an
ore deposit, modelling recovery at a smaller support than that of the metallurgical tests. The support allowed for
the use of the geochemical database, to consistently model the metal content in the feed and in the concentrate,
in order to obtain a valid recovery model. Results show that downscaling the composite size reduces smoothing
in the final model.

Change of support
Gibbs sampler

1. Introduction statistical bias given the non-additive nature of these variables

(Carrasco et al., 2008). In the particular case of the metallurgical re-

The sample support of drillholes (whether geochemical grades,
geological logging, metallurgical testing, etc.) is often different. In the
case of geochemical grades, the drillholes are composited to a constant
length to perform conventional statistical and geostatistical analyses,
for example exploratory data analysis, variogram analysis, estimation
or simulation (eg. (Chiles and Delfiner, 2012), (Deutsch and Journel,
1998), (Goovaerts, 1997), (Isaaks and Srivastava, 1989)). In the case of
metallurgical variables, compositing methods can cause problems of
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covery in the flotation process, it is calculated as the ratio between the
mass of metal in the concentrate and the mass of metal in the feed
(Mular and Barratt, 2002). The metal of the concentrate and feed are
additive variables from a statistical point of view (mass properties), but
the recovery is not (Carrasco et al., 2008).

Flotation tests are usually performed to describe the behavior of a
mineral in the metallurgical process plant. The metallurgical response
will depend mainly on two factors: the geological properties of the
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material and the operational parameters. There are different studies
where the relations between geology and the metallurgical response are
observed (Garrido et al., 2016), (Hu et al., 2009), (Hunt et al., 2011),
(Lund and Lamberg, 2014), (Solozhenkin et al., 2016), (Haga et al.,
2012). Clay minerals associated with alteration negatively affect the
process to recover copper (Bulatovic et al., 1999). Faced with these
materials, different operational responses can increase recovery by
improving the effectiveness of the process. Other sulphide minerals
such as pyrite also negatively affect the copper recovery (Mular and
Barratt, 2002). Usual recovery values range from 90% to 95%, but in the
face of these geological variations the recovery may decrease to 80% or
less (Metso, 2006).

Linear regression models are used to estimate the recovery of an ore
body (Weisberg, 2005). This methodology requires to find statistical
correlations between recovery and other variables such as total copper,
solubility ratio, analytical acid consumption, etc. Gaussian simulations
have been used to model metallurgical parameters since they do not
assume additivity of the study variable (Deutsch et al., 2015). The
methodology proposed in this research allows estimating/simulating
the recovery using samples of variable length/support, maintaining
basic statistics, the spatial variability and the physical conditions or
restrictions associated to the problem of additivity. The methodology
can be easily applied or adapted to other cases related to geome-
tallurgical performance.

Geostatistical modelling needs defining the estimation units (do-
mains) on which the study is being performed (Hunt et al., 2014). These
domains assume a constant statistical behavior of the variable within
the entire volume (second order stationarity) (Matheron, 1973).

In the case of recovery, domains are established on geological and
metallurgical information. Within these domains, variables are esti-
mated or simulated using classical statistical and geostatistical algo-
rithms such as multivariate regression and Gaussian simulation
(Deutsch, 2016). If the geological characteristics are constant in two
flotation tests, then the metallurgical response must have the same
behavior in both tests without making operational changes. This hy-
pothesis is debatable given the high variability of geological conditions
in the ore body, and many of these geometallurgical relationships have
not been exhaustively described yet.

Another complication associated with modelling the recovery is the
scaling problem going from laboratory small scale test to production
volumes (Truter, 2010). Many models have been created based on these
tests (Boisvert et al., 2013), (Coward and Dowd, 2015). The models
generated based on laboratory tests are used to determine the expected
behavior in the processing plant, and must be over-dimensioned on an
industrial scale (Suazo et al., 2009). Laboratory tests are performed as a
batch process. On the other hand, in industrial applications flotation is
performed through a continuous flow (serial and parallel Rougher,
Scavenger and Cleaner cells) (Mular and Barratt, 2002). These and
other problems complicate the correct modelling for the prediction of
the geometallurgical variables.

This research deals with the issue of downscaling the support of
geometallurgy tests done at the laboratory to match the support of
geochemical and mineralogical composites. Downscaling methodolo-
gies have been developed by different authors, where change of support
accounts for the statistical consequences (Pardo-Iguzguiza et al., 2006)
(Tran et al., 1999) (Deutsch, 2016). This article covers the problem of
downscaling integrating different sources of information through aux-
iliary variables (in the case of the flotation of sulphur minerals, the
metal in feed Wy and metal in concentrate W, explained in section 2
Methodology. It is based on the Gibbs Sampler (Geman and Geman,
1984) and allows to estimate/simulate samples on a smaller support
consistent with the original data reproducing their basic statistics,
spatial variability and constraints associated to the nature of the vari-
able. The article is explained through a simulated synthetic case and
applied to a case study (exploratory drillholes).

The objective of applying this methodology is to reduce the support

Computers and Geosciences 122 (2019) 68-76

of the metallurgical recovery variable in order to facilitate the appli-
cation of conventional geostatistics tools. The upscaling procedure is
not considered in this article because it generates a decrease in the
variance of data and, consequently, predictive models with low re-
solution. The objective of this research is the assimilation of small
support samples (eg, geochemical variables) with large support samples
(eg, geometallurgical variables) to generate high resolution models. To
find multivariate correlations usual statistical tools are correlation
coefficients, principal component analysis, cross variograms, scatter
plots, etc. (Wackernagel, 2003). These tools require that the data be
collocated (all variables measured in the same sample (Chiles and
Delfiner, 2012),) and at the same support, a condition that can be
achieved through this methodology without losing resolution of the
local variability. The proposed methodology is built on the hypothesis
that specific geometallurgical parameters and hence mineral behavior
in processing are a function of geological/mineralogical properties.
These properties may be identified on a much smaller scale, hence
improving resolution of geometallurgical properties and models.

2. Methodology

Samples with geological information are usually measured on sup-
ports different from the metallurgical tests. Metallurgical tests require
much larger sample volumes, in order to analyze the different attributes
and their operational characteristic ranges. To integrate geological and
metallurgical information, it is convenient to change the variable dif-
ferent supports to a standardized support for all measurements. For
non-additive categorical variables (e.g. lithology or mineralogy code),
the majority code can be assigned to the composite or the sample code
located in its center. In the case of continuous variables, there are dif-
ferent tools to increase or decrease the sampling support:

- Composite: method of up-scaling, is based on averaging an attribute
based on the sampling lengths. This is not recommended for non-
additive variables because it biases the result by using a linear
average.

Gibbs sampling: down-scaling method, allows to simulate samples
with higher sampling density by scaling basic statistics and spatial
continuity. It also allows to consider mathematical restrictions in the
simulation.

A schematic example of down-scaling with 3 samples (7, 7, and Z3)
is shown in Fig. 1.

The value of Z; with support of 3 m is downscaled to the values of
711, Z12 and 733 with supports of 1 m respectively. These values are re-
lated through f(-) which represents the physical constraints associated
with metallurgical processes, for example mass balance. The change of
support implementation considers the following aspects:

7 Down-scaling
Variable length —

Constant length
11

length =3 2, —— W7, - (211, 212, B13) = [ (%)

13
125y

length =3 Zz| += 7 (e 222 702) = F(Z)  length = 1

—"| | %32

M - (310 Z32, 233, 234) = [ (73)

length = 4
d ™ |33

Z34

Fig. 1. Diagram of down-scaling for 3 samples 7,, Z, and Z.
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Fig. 2. Diagram of variables, equations and physical restrictions of the change of support problem for recovery.

1. Scaling of basic statistics.

2. Scaling of spatial variability (smaller support implies increased
variability).

. Integration of measured geochemical variables to small support.

4. Physical constraints of the problem (inequalities and relationships).

[2%)

The methodology is now presented for the particular case of se-
parating a composite of length L into 2 composites of length L/2 subject
to the conditions described above. For the composite of length L, let Wy
be the mass of metal in the feed and W; the mass of metal in the con-
centrate. Fig. 2 shows a diagram depicting the known variables, equa-
tions and constraints of the problem.

W}l) and W}” are the mass of metal in the feed from the top and
bottom halves of the original composite. Similarly, W " and W are the
mass of metal in the concentrate. R and R are the corresponding
recoveries, which are not additive variables:

RO + R@
T b
RN e A\ 2
@) )
Hg.# Wy Wy
Wy 2 (2)

Equation (2) is the expanded form of equation (1). Under unusual
conditions, the equality of equation (1) can be met, for example when
the sample has homogeneous behavior, i.e., RV = R = R, The vari-
ables Wy and W, are additive variables (mass). The methodology uses
these variables to calculate R in each sub-composite. The methodology
consists of the following steps:

1. Transformation. Given a set of data at support L, transform W}
and W, independently to standard Gaussian distributions Yr and y, re-
spectively. The anamorphosis functions are given by the equations:

¥ () = @ (Wr (x)) (3)
1) = ¢, (We(x)) C))

where W (x) and W, (x) are the mass of the metal in the feed and in the
concentrate, respectively, from composites at support L. #y and ¢, are
the transformation functions (anamorphosis) and Y (x) and y,(x) are the
transformed variables (also at support L). These variables are dis-
tributed as Gaussian distributions with mean of 0.0 and variance of 1.0.

2. Variogram analysis. The variograms of the transformed vari-
ables 3}»(.\“) and y.(x) are calculated and modelled to capture their spa-
tial continuity and anisotropy. The variogram models obtained for the
transformed variables at support L are used to simulate the same
variables at support L/2. This is a reasonable assumption when the
nugget effect is small, considering that the variance is normalized to
1.0, since we are considering the normal scores and we can assume the
shape of the variogram does not change significantly. The variance
reduction is corrected after back transformation, as explained later, to
account for the change of support. In cases of larger nugget effect, the
variable at support L/2 can be simulated with a variogram that includes

the increase on the relative nugget effect, as computed using the var-
iogram scaling approach (see, for example (Chiles and Delfiner, 2012)).

3. Simulation at support L/2 using a Gibbs sampler. The Gibbs
sampler to obtain the downscaled values of W;(x) and W.(x), specifi-
cally the values W}” (), W}I} (x), W9 (x) and W (x), which represent
the mass at support L/2, is implemented as follows (we illustrate the
process for W}l}, but the four variables are simulated at every location
in order to check compliance with the constraints):

(a) Every location where a sample at support L exists is divided into
two simulation locations, representing the two downscaled values
at support L/2 (Fig. 3).
4. Backtransformation to calculate Wr(”“"‘
u}(])x[m

, H{r}l}sim-‘ W:c(z)nm and.

5. Calculation of the recovery at support L/2 through the empirical
formula of metallurgical recovery, for each sub-composite:

RWsim _ ng}ssm
- (1)sim

u’f. )
(2)sis
R@sim — Wr sim
(2)sis

Wf sim (10)

The condition 0 < R < 1 is verified by the rejection conditions im-
posed earlier.

Notice that the back transformations qb(]}ubj and ¢f-[;m account for the
variance increase due to the smaller support of sub-composites. An af-
fine correction is applied over the distribution of the original compo-
sites, to account for the new support. In the case of small variance re-
ductions, an affine correction will do well. If larger variance corrections
are needed, a different model such as the Discrete Gaussian model could
be used, although this does not change the suggested approach. The
variance increase (used in the affine correction for the back transfor-
mation, step 4) is calculated using classic variance-support relation-
ships (for more information see (Chiles and Delfiner, 2012)). In parti-
cular, the scaling of the variance is given by the following relation:

CO)=CcV,V)+7(V. V) 11

Where C(V, V) = () is the sill (or modelled variance) of the var-
iogram at support L before transformation to Gaussian units,
C(0) = y(o0) is the sill of the variogram at point support and 7(V, V) is
the average variogram value of vectors defined within the volume V. It
is given by the following relation:

1
TV, V)= —3 7 (x — x")dxdx’
V= ‘{' ‘[ 12)

In our case, it is easy to show that:
of = 0fjy = (F(L, L) — 7(L/2, L/2)) (13)

The relationship can be graphically observed in Fig. 4.Where ¢ is

10
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T~ x": coordinate of first
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\ x: coordinate of

original composite

\ x'*): coordinate of

second sub-composite

- —
Fig. 3. Support L division to two sub-composites L/2.

(b) Downscaled simulation locations are visited in a random order.

(c) At every simulation location, perform simple kriging of the sub-composites

previously simulated to determine the mean and variance of the conditional
distribution at a new sub-composite location.

H
ey = Y A (o)

) 5)
2 D 3" 3,:C @
o (M) = 1.0 — EAK‘L (x — xt9) ©
560 = 3 200 )
) @
) o &L )
og () = 1.0 — ];Af-t(-’ff—x ) ®

(d) Simulate y{""" (x'"') and y{"*" (x(") by Monte Carlo simulation, from the
Gaussian conditional distribution with mean y}”' (x™), and variance
o (xV) for ™ (xVy and with mean y{"" (x*)), and variance o3 (x") for
ycu}s;:m(_\,(l))_ -

(e) y}”’“’" is back-transformed to get W}”m and y"™ is back-transformed to
get V;ﬁ(l)ﬂm‘ ,

(f) Test 1: rejection condition W Vm (1) > IL’}‘]‘JM(I")), where
WD () = & ) O (x()) and WP (1) = ¢;{éub‘}(}'}(1“)))' If rejected,
return to (d) and resimulate (V%" (x() and y(Vm (x D),

(g) Caleulate W (@) = W) — W™ @W)  and
= We(x) — wDim(xm), _ ,

(h) Test 2: rejection condition W™ (x2) > U-’}Z]‘”“(x‘”), where
W (@) = ¢ 7y 00 (x@)) and WP (x@) = ¢ Ty 0 (<)). Tf refected,

H’f}ﬂm (_\.(g})

return to (d) and resimulate y("%" (x17) and y{"9m (x D).

(i) Once simulated values are accepted, add to conditioning information and
go back to (¢) until all nodes have been simulated.

the variance of the data W, at point support (unknown), of variance at
support L and 7, variance at support L/2. More details in (Chiles and
Delfiner, 2012).

Rejection tests (conditions of inequality) are based on the physical
constraints in the recovery calculation. It can be observed that with
more rejection conditions, the variance of the data simulated at support
L/2 increases. Simulation using Gibbs sampler has been used in other
conditional simulation methodologies based on random fields with
Gaussian distribution (Geman and Geman, 1984). The simulation is
done sequentially (Gomez-Hernandez et al., 1993).
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Fig. 4. Schematic relationship between variances of the same variable at dif-
ferent supports.

3. Synthetic case analysis

The change of support methodology was applied to a basic case
study in 2D. Statistical validations are presented.

3.1. Synthetic case study

Copper grades and metallurgical recovery values were simulated in
10 drillholes. The support used is L = 30 m. Fig. 5 shows the simulated
values, the grade distribution of W, and the variogram of this variable
transformed to Gaussian scores.

The 30m composites are uniformly spaced every 150m in the
horizontal and every 30 m in the vertical direction. The distribution of
mass of metal concentrate is log-normal with a coefficient of variation
of 50%. The experimental variogram is calculated on the Gaussian va-
lues of the variable W. at support of 30 m. The distribution of W} is
known at support 30 m. From metallurgical tests, the recoveries R are
known over 30 m samples. Thus, W, can be inferred.

We apply the methodology previously described to obtain W and W}
in sub-composites (support 15 m) at composite locations (Fig. 6).

3.2. Statistical validations

Using the copper grade (W} in mass) and metallurgical recovery, the
mass of recovered ore (W, in mass) was calculated. Fig. 7 (A) shows the
statistical reproduction of W, at a support of 15 m and (B and C) shows
the multivariate reproduction of the relation W, < Wr.

The quantile-quantile comparison of the distributions of W, using
supports of L and L/2 is shown in Fig. 7, (A). The number of data points
was doubled, the mean of the data remained constant (W, additive
variable) and the standard deviation increased (the decrease in support
implies an increase in the variance of the data). The relation W, < Wy
with support at L/2 remained similar in comparison to this relation
with support L. A slight decrease in the correlation coefficient is ob-
served due to the increased variance at smaller support.

Estimated W, was plotted at support . = 30 m and L = 15 m for two
of the drillholes (Fig. 8). In Fig. 9 the increase in the variance that
entails the decrease of the support can be observed. From 100 simula-
tions the variogram reproduction at support of . = 15 m was checked in
Fig. 9.

4, Case study: application to drillhole samples

The following case study corresponds to a campaign with 50 real
drillholes where some samples have been selected for flotation analysis
calculating the metallurgical recovery of copper in sulphide minerals.
The samples for the flotation rougher test have different lengths with a

11
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Fig. 5. Simulated case study, 10 drillholes with their statistical distribution and normal score variogram for mass of metal in concentrate.
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Fig. 6. Resulting simulated 15 m composites, their histogram and normal score variogram (only 1 simulation is shown).
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Fig. 10. Graphical display using metallurgical recovery samples.

mean of 40 m. As a simplification (given the low variability in sample
length) these have been regularized to a nominal length of 40 m. The
samples have similar geological conditions, and are part of the same
geometallurgical domain. Fig. 10 shows a graphical display of the
samples selected for the flotation analysis at laboratory scale.

The copper grades have been composited at a nominal length of
20m (block size of the estimation model) using the proposed metho-
dology. 99 simulations using the Gibbs sampler were performed at the
20 m support. For each realization, the cooper recovery in each block of
the model was calculated as ratio between the sum of W, divided by the

We comp20
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sum of Wy and the average/uncertainty expected were calculated. The
respective validations were done obtaining satisfactory results from a
statistical point of view.

Fig. 11 shows the quantile-quantile comparison for W, using 20 and
40 m composite length. The number of composites was doubled, the
mean remained constant and the variance increased as expected. The
graphs (B) and (C) show the bivariate relations between Wy and W; to
the supports of 20 and 40 m, evidencing notorious similarities and
conservation of the behavior W, < Hf

The next step is to estimate metallurgical recovery in the block
model with 40 m composites (conventional methodology) and using the
20 m composites obtained with the proposed methodology.

The estimates from 20m composites show greater variability.
Smoothing can be observed in Fig. 12. Fig. 13 shows a histogram of the
block-to-block estimation difference between estimated recovery with
20 m and 40 m composites.

The mean difference is close to 0.0 (—0.073) with a standard de-
viation of 0.9. Approximately 1% of blocks is estimated with a bias of 3%
(red box in histogram). This is explained by the difference of the change
of support using a non-additive variable. This bias is not statistically
significant with respect to the total of the blocks but locally it can
generate important differences on the ore which is recovered in short-
term planning.
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Fig. 11. Statistical validation of composites at 40 m-20 m.
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Fig. 12. (Left) Estimation of metallurgical recovery using composites of 20 m.
(Right) Estimation using composites of 40 m.
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Fig. 13. Histogram of diference between estimated recovery using composites
40 m and E-Type of simulation.

Fig. 14 shows a scatter plot between estimated values with 20 m and
40 m composites. Fig. 14 highlights the area with metallurgical re-
covery lower than 80% These values may generate operational problems
at the metallurgical process plant. The estimation using a support of
40 m does not capture their range due to smoothing. This could be used
as an alarm from a predictive point of view to apply operational
modifications to the treatment of this material.

This result shows the difference in the estimate considering the size
of the sampling support. This affects the resolution of a predictive
model. The estimate with a larger support will not capture extreme data
(high or low metallurgical recovery) that are usually important results
from an operational point of view. Therefore reducing the sampling
support to perform an estimation or simulation allows generating
models of better resolution to capture small-scale variability, which
may help improving the performance of the mining project.
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Fig. 14. Cross-validation between estimated recovery using composites of 20
and 40 m.

5. Conclusions

Modelling geometallurgical variables often causes problems when
conventional geostatistics tools are applied. The main causes are the
condition of heterotopic sampling and differences in the measurement
supports. This article provides a new compositing approach based on
simulations through a Gibbs Sampler. Statistical and geostatistical
characteristics are preserved with this methodology: global mean,
spatial variability and bivariate relations. The simulated values at
smaller support can be used as input for simulations, in order to account
for the uncertainty stemming from the variability of small support
samples, or they can be averaged for estimation purposes, as shown in
the case studies presented in this paper.

In this article, two advantages of the method were highlighted:

— Reduction of support allows data assimilation (geological samples
and metallurgical tests) for the application of conventional geosta-
tistics tools; for example search of multivariable correlations for
generation of geometallurgical predictive models.

- Reduction of support allows generating estimation models or si-
mulation models with higher resolution and less smoothing. These
models allow the description of local variability on a smaller scale,
identifying extreme value zones that are important from a me-
tallurgical point of view.

- The expected metal of the simulation is 28,263 + 870 tons of Cu. If
the metal is calculated based on an estimate with 40 m support, the
result is 28,484 tons of Cu.

The advantages of estimating metallurgical recovery using this
compositing methodology was illustrated through a case study. The
results were compared with the traditional methodology to estimate
recovery, with important local biases that can generate operational
problems in the mineral processing plant.

Reducing the size of the composite is associated with an increase in
local variability that was captured in the estimation. This information is
captured in the methodology through scaling the variance of the dis-
tribution. The methodology was applied to metallurgical recovery data
that fulfil the physical conditions associated to the non-additivity of this
variable.
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ARTICULOS PUBLICADOS

ARTICLE 2: SIMULATION OF SYNTHETIC EXPLORATION AND
GEOMETALLURGICAL DATABASE OF PORPHYRY COPPER DEPOSITS
FOR EDUCATIONAL PURPOSES.

El segundo articulo adjunto a continuacion entrega una metodologia para simular
geoestadisticamente variables geometalirgicas considerando gran parte de los problemas y
desafios que implica este proceso a nivel industrial, donde incluye una robusta revision
bibliografica de las metodologias disponibles para este procedimiento. El primer articulo describe
una metodologia para consolidar diferentes fuentes de informacion, el cual puede ser usado como
base de datos input en la metodologia propuesta del articulo 2. Ademas, se ha dado un enfoque de
innovacion al permitir, en base a estas simulaciones y escenarios geometallrgicos, generar base de
datos sintéticas con distribucion espacial y coherencia geoldgicas creibles con fines de uso
académico. Esto presenta una gran ventaja desde un punto de vista de investigacion ya que uno de
los principales problemas en el desarrollo del area geometallrgica es la escases y dificultad para

acceder a bhases de datos.
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The access to real geometallurgical data i1s very limited in practice, making it difficult for
practitioners, researchers and students to test methods, models and reproduce results in the
field of geometallurgy. The aim of this work is to propose a methodology to simulate
geometallurgical data with geostatistical tools preserving the coherent relationship among
primary attributes, such as grades and geological attributes, with mineralogy and some
response attributes, for example, grindability, throughput, kinetic flotation performance and
recovery. The methodology is based in three main components: (1) definition of spatial
relationship between geometallurgical units, (2) cosimulation of regionalized variables with
geometallurgical coherence and (3) simulation of georeferenced drill holes based on geo-
metrical and operational constraints. The simulated geometallurgical drill holes generated
look very realistic, and they are consistent with the input statistics, coherent in terms of
geology and mineralogy and produce realistic processing metallurgical performance re-
sponses. These simulations can be used for several purposes, for example, benchmarking
geometallurgical modeling methods and mine planning optimization solvers, or performing
risk assessment under different blending schemes. Generated datasets are available in a
public repository.

KEY WORDS: Geometallurgy, Geostatistics, Synthetic database, Uncertainty.

budget limitations. Development of realistic syn-
thetic geometallurgical databases as proposed in this

At present, access to large mining exploration
and/or geometallurgical databases from industry, for
academic and/or educational purposes, is difficult,
and this due to confidentiality restrictions and/or
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paper may allow an alternative to such problem and
may also offer a robust tool for the purposes of
benchmarking exploration and/or geometallurgical
modeling, mine planning methods or reserves esti-
mations (Garrido et al. 2019).

Geometallurgy has become an important field
in mining engineering because of its benefits on the
ore quality on mine planning, plant performance,
lower costs and product quality. To incorporate
these benefits into the mining value chain, key
metallurgical responses and proxy variables need to
be incorporated into the block model, which is the
main input to solve many optimization problems in
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mine planning (Ortiz et al. 2015; Dominy et al.
2018). This enriched block model with geometal-
lurgical variables is commonly termed a geometal-
lurgical block model (GMBM), and the
methodology of this research is based on the transfer
of the simulated attributes of the GMBM to a
geometallurgical database (GMDB), referred to a
drill holes of a geological exploration campaign.
From the point of view of practitioners, researchers,
teachers and students, there is another issue with
GMDB; that 1s, the important lack of available
GMDB that can be used because the data needed
are usually subject to confidentiality agreements.
This fact is the motivation to offer a methodology
for the simulation of GMDB, exemplified here with
a porphyry copper type deposit, but it can be applied
to any other type of mineral deposit.

There are several methodologies for building
such GMBM (Garrido et al. 2018b). The primary-
response framework for building geometallurgical
models is a very solid methodology for geometal-
lurgical modeling (Coward et al. 2009). Primary at-
tributes, such as grades, lithology and alteration, can
be proxies to response attributes such as grindability
indices, recovery, metallurgical rock properties
(Deutsch 2016), among others. As many of those
response attributes are not additive, traditional lin-
ear estimation methods are not valid and should not
be used to build the block model (Carrasco et al.
2008). Typically, there are three complementary
approaches to populate the GMBM with response
variables. The first approach is the use of predictive
regression models, from simple linear regressions
(Montoya et al. 2011; Boisvert et al. 2013), nonlinear
regressions (Carmona and Ortiz 2010; Keeney and
Walters 2011; Sepilveda et al. 2017) and clustering
(Hunt and Jorgensen 2011). The second approach is
simulating the processing stage (Suazo et al. 2010).
The third approach is the use of mineralogy as the
main proxy. Mineralogy is of enormous importance
for geometallurgy as it plays a fundamental role in
the characterization of metallurgical responses
(Lamberg 2011; Hunt et al. 2013; Yildirim et al.
2014; Lund et al. 2015). This approach, nevertheless,
requires having the mineralogy characterization of
the deposit, which is expensive, often resulting in
limited data available.

The only related research on methodologies for
the simulation of geometallurgical block models, so
far according to the literature review done in this
paper, is Lishchuk (2016) thesis. In this thesis, a
methodology, termed geometallurgical testing

framework, was proposed for building a synthetic
ore deposit model with focus on geometallurgy. This
framework has three main modules: (1) a geological
module, (2) a mineral processing module and (3) an
economic module. The first two modules are the
most relevant modules for the simulation of syn-
thetic geometallurgical ore bodies. Imposing multi-
variate spatial correlations, which is missing in
Lishchuk’s methodology, is critical to ensure that the
desired spatial characteristics are reproduced with
geological sense and coherence (Maksaev et al.
2007).

In the mineral processing stage, there are very
limited simulation models available. A few com-
mercial simulators exist, but these do not disclose
the methods and parameters used to create the
models, and in most cases, are simple nonlinear
predictors that do not consider the uncertainty
associated with the response variable. Commercial
simulators are not designed to estimate the uncer-
tainty associated with geological variability, since
mineral characterization is a “‘constant™ input and
does not vary over time processing.

The contribution of this paper is a robust
methodology to simulate a GMDB using openly
available geostatistical tools, which preserves the
coherent relationship among primary attributes,
mineralogy and geometallurgical response attri-
butes.

METHODOLOGY

To simulate a GMDB, the following steps are
needed:

1. Identification of variable types

2. Generation of a consolidated database

3. Simulation of geological primary variables
a. Definition of geometallurgical domains
b. Simulation of domains
c. Compositional geostatistical simulation

of minerals

d. Geochemical simulation

4. Simulation of geometallurgical responses
a. Simulation of variables for comminution
process
b. Simulation of variables for flotation
process
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5. Simulation of spatial drill holes
a. Topographic simulation
b. Simulation of density of drill holes
c. Survey and length simulation

These steps and some tools recommended for
this stage are provided in Figure 1. This methodol-
ogy allows simulating a GMDB for different pur-
poses. In this research, we show an application to
geometallurgical uncertainty in mine planning (long
term).

SIMULATING A GEOMETALLURGICAL
DATABASE

Through a case study, we illustrate the appli-
cation of the proposed methodology in a synthetic
typical porphyry copper deposit. The methods pre-
sented are not new, and their details are available in
the published references cited herein (Table 1);
however, the proposed workflow is novel in the
sense that it provides the logical steps for the con-
struction of the exploration and geometallurgical
database, including the design of a realistic drilling
campaign, according to the typical exploration pro-
cess.

Identification of Variable Types

Different types of variables must be treated
differently. Conventionally, variables are classified
as categorical or continuous; however, some con-
siderations must be kept in mind before modeling:

Categorical variables take a unique discrete
value within a pool of exhaustive and mutually
exclusive outcomes, in other words, at every location
one and only one of the K categories prevail.
However, categorical variables may be nominal or
ordinal:

e Nominal categories have no order relation
between them. Typical examples are the
lithological codes assigned to samples, which
can also be represented with numerical codes,
or the mineralization zone assigned to each
sample or location. In general, estimation and
simulation domains can be seen as nominal
categorical variables.

e Ordinal variables are ranked categories usu-
ally with unknown distance between the cat-
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egories. An example of an ordinal variable is
the alteration intensity, labeled with a scale of
the type absent, low, moderate, high, or the
corresponding numerical values 0, 1, 2 and 3.

Continuous variables take values with an arbi-
trary precision, defined by the number of digits and
decimal places, within a continuous range. They may
be unbounded, but are most often bounded, e.g.,
positive. Furthermore, some continuous variables
are labeled as compositional, when they are part of a
multivariate observation and each represents a rel-
ative part of a whole. Typical examples of compo-
sitional variables are mineral proportions, relative
weight in a particle size distribution or geochemistry.
The main complication associated with composi-
tional variables is that their pairwise correlations
depend on the other variables considered in the
whole.

Although not formally a variable type, it is
important to distinguish between continuous vari-
ables sampled abundantly, typically grades of valu-
able or detrimental elements, some geotechnical
parameters such as rock quality designation, fracture
frequency or uniaxial compressive strength, and
those sampled scarcely, typically the case for
geometallurgical variables such as grindability, acid
consumption, flotation kinetics, to name a few.

From a geometallurgical perspective, there are
also two types of variables. Variables that are
intrinsic rock properties, termed primary variables,
and variables that reflect a response to a specific
process, termed response variables (Coward et al.
2009). Primary variables are among others, grade,
alteration, mineralization styles and density,
whereas examples of response variables are grind-
ability indices, e.g., Bond work index (BWI), semi-
autogenous grinding (SAG) power index and
recoveries, e.g., flotation recovery and consumption
of acid in leaching. In general, response variables are
not additive, which complicates the way in that these
variables can be propagated in the GMBM (Car-
rasco et al. 2008).

We carried out a case study to show the appli-
cation of the proposed methodology. The database
consists of (1) geological information (logging of
mineral zones and alterations, categorical variables)
to define and simulate the geometallurgical units or
domains (GMU), (2) geochemistry (percentage of
total copper by analysis X ray fluorescence or in-
duced plasm coupled), (3) mineral characterization
(percentage of most important minerals by infrared
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Figure 1. Global methodology and tools for each stage.

spectroscopy, continuous variables) to simulate with
compositional geostatistics, and (4) geometallurgical
responses (BWI test and rougher recovery test) to
cosimulate with conventional geostatistics, e.g.,
sequential Gaussian simulation.

Generation of a Consolidated Database

The available information must be formatted
for processing by the different modeling methods.
This apparently trivial task may consume a signifi-
cant amount of time, so it should not be minimized.
The main objective is to prepare the database for the
application of conventional geostatistical tools. This
requires that every piece of information must be
attached to spatial coordinates. This allows the cal-
culation of spatial correlations, and also the cross
correlations between variables, which are necessary
for the application of estimation and simulation
techniques (Isaaks and Srivastava 1989; Goovaerts
1997; Deutsch and Journel 1998);
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For most multivariate statistical techniques, it is
also required that the data be homotopic, that is, all
variables must be available at the same location for
cokriging or cosimulation, and they must be mea-
sured at a consistent volumetric support (Carrasco
et al. 2008; Chiles and Delfiner 2012; Garrido et al.
2016). Imputation is necessary to replace missing
data by values that are statistically consistent with
the non-missing data, both in a statistical and spatial
sense (Munoz et al. 2010; Barnett et al. 2013). These
values should reproduce the variability expected at
their location and honor the spatial relationship with
neighboring samples. There are several imputation
methods, among the most used are (a) impute
missing values by Gibbs sampling methods, (b)
multiple imputation from predictive distribution, (c)
impute with regressions or (d) optimization ap-
proach.

Regarding the issue of the volumetric support,
the idea is to bring all the available data to the same
support. For example, geochemistry analyses, geo-
logical logging, structural information, geometallur-



Table 1. Summary of references by each stage of the methodology

Stage of the
methodology

References

Comments

Consolidate data-
base

Simulation of geo-
logical domains

Simulation of geo-
logical continuous
attributes

Simulation of
geometallurgical
industrial re-
sponses

Mine planning

Tran et al. (1999), Pardo-Iguzguiza et al. (2006), Car-
rasco et al. (2008), Munoz et al. (2010), Chiles and
Delfiner (2012), Barmett et al. (2013), Garrido et al.
(2016), Deutsch et al. (2016), Garrido et al. (2018a)

Isaaks and Srivastava (1989), Goovaerts (1997), Deutsch
and Journel (1998), Armstrong et al. (2003), Deutsch
(2006), Maksaev et al. (2007), Carmona and Ortiz
(2010), Sillitoe (2010), Mariethoz and Caers (2015),
Beucher and Renard (2016), Jackson and Young
(2016), Sepulveda et al. (2017)

Davis (1986), Webster and Oliver (1990), Goovaerts
(1997), Desbarats and Dimitrakopoulos (2000), Paw-
lowsky-Glahn and Olea (2004), Babak and Deutsch
(2009), Manchuk and Deutsch (2012), Mueller and
Ferreira (2012), Barett et al. (2013), Boluwade and
Madramootoo (2014), Bolgkoranou and Ortiz 2019)

King 2001), Suthers et al. (2004), Coleman et al. 2007),
Vann et al. 2011)

Gholamnejad and Osanloo (2007), Suazo et al. (2010),
Lamghari and Dimitrakopoulos (2012), Kumral
(2013), Silva et al. (2015), Garrido et al. (2017)

Discussion on the problem of multivariate simulation of
heterotopic attributes, imputation of missing data,
upscaling and down-scaling problems

Discussion on ore type concept, clustering and the
importance of understanding geological setting to
simulate geological domains. References to conven-
tional geostatistics methods to simulate ore body de-
posits, such as sequential indicator simulation,
truncated Gaussian, pluri-Gaussian, multi-point sim-
ulation algorithms

Tools for dimensionality reduction in the modeling
process, such as principal components analysis, mini-
mum/maximum autocorrelation factors, independent
component analysis, uniformly—weighted exhaustive
diagonalization with gauss iterations and projection-
pursuit multivariate transform. Log ratio transforma-
tion to simulate mineralogical attributes and use of
geostatistical simulation in continuous attributes

To support industrial simulation of geometallurgical
variables. Use of industrial processing or prediction of
plant process performance, upscaling of laboratory to
industrial scale, use of JKSim and mathematical
models

Incorporation of geometallurgical models in mine
planning and quantification of the uncertainty of the
inputs to mine planning optimization problems

gical samples should be considered to enrich the
model, but their volumetric supports may be differ-
ent by orders of magnitude. Geochemical samples
may be taken over diamond drill holes samples at
I m support, while geometallurgical samples may be
taken over bulk volumes representing 15 or 30 m of
a reverse circulation hole. Upscaling by compositing
is common practice (Chiles and Delfiner 2012).
Down-scaling techniques are sometimes required to
bring the data to the smallest support where more
abundant information exists. This can be achieved
by using geostatistical cosimulation and applying
constraints to the simulated values to impose
reproduction of the sample value at the larger sup-
port (Tran et al. 1999; Pardo-Iguzguiza et al. 2006;
Deutsch et al. 2016; Garrido et al. 2018a).
Variables can be dropped if deemed irrelevant
for the model, by using statistical techniques for
variable selection or machine learning, and
accounting for domain knowledge, that is under-
standing of the geological setting (Carmona and
Ortiz 2010). They can also be merged, to reduce the

dimensionality in the modeling process, using data
integration such as cokriging (Babak and Deutsch
2009), or dimensionality reduction techniques, such
as principal components analysis (Davis 1986;
Webster and Oliver 1990; Goovaerts 1997). In this
case study application, the consolidated database is
used to learn the geometallurgical relationships re-
quired to generate realistic simulations.

Simulation of Primary Geological Variables
Definition of Geometallurgical Domains

Hydrothermal ore deposits, in general, present
zoning of different mineral associations (Sillitoe
2010), which correspond to GMU and, within these
domains, there is also variability in the composition
of rock. The concept of ore type provides a frame-
work to form a common perspective around the
performance of material, to make decisions (Jackson
and Young 2016). This implies that, depending on
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the perspective, the definition of GMU is given
through the orebody knowledge, rock characteristics
and performance engineering. For example, from a
blasting perspective, the performance type is the
fragmentation distribution (target to optimize pro-
cess), and this depends on the geological domains
(joint characteristics, rock strength, rock density and
rock mass description rating) and the blast design
(operational factor). However, from a mill perspec-
tive, the performance target is the throughput that
depends on the fragmentation distribution, impact
resistance and grinding hardness (material type and
geological domains) and the milling circuit (opera-
tional factor).

To support the definitions of GMU, supervised
and unsupervised algorithms can be used. For
example, Sepulveda et al. (2018a) give a methodol-
ogy to clustering with spatial corrections to define
GMU. It is important that the definition has geo-
logical foundation that validates the behavior of an
ore type. Another common option is to combine
different criteria to define the GMU through several
iterations: geological knowledge, statistical analysis,
multivariate iso-grades and spatial modeling. Fi-
nally, the GMU can be validated through geosta-
tistical tools, such as spatial data analysis,
cumulative probability plots and boxplot by cate-
gory, among others, to discriminate the different
statistical population. This is a subjective process
requiring many iterations, and, in this context, there
may be many valid interpretations of GMU for the
same deposit.

In the case study, five GMUs have been mod-
eled. These are associated with the copper mineral
zones of the deposit:

e GMU1: Oxidized copper ores with evidence
of leaching on the groundwater level of the
deposit;

e GMU?2: Sulfides such chalcocite and digenite
(enrichment sulfides layer);

e GMU3: Primary hypogene sulfides with high
chalcopyrite—pyrite ratio;

e GMU4: Primary hypogene sulfides with low
chalcopyrite—pyrite ratio; and

e GMUS: Waste and gravel without economic
content associated with copper.

Simulation of Domains

Simulation of categorical variables can be car-
ried out with many different algorithms. In the
geostatistical toolbox, the following methods are
widely known and could be used for this stage: pluri-
Gaussian simulation (Armstrong et al. 2003),
sequential indicator simulation (Deutsch 2006),
multiple-point simulation (Mariethoz and Caers
2015) and truncated Gaussian simulation (Beucher
and Renard 2016). Most of these methods aim at
reproducing the indicator variograms between the
different categories. This entails reproducing the
number of transitions from one category to different
categories. Control over the transition’s changes
with different methods; therefore, some methods
work well under mostly unstructured (mosaic type)
categorical models (indicator simulation), while
others aim at preserving specific [eatures such as
hierarchies (truncated Gaussian and pluri-Gaussian
simulation) or even curvilinear features and trends
(multiple-point statistical simulation).

In this research, we simulate categorical GMU
and calculate the probability of occurrence. Figure 2
shows a plan view with (left) the expected GMU and
the iso-curves with probability of GMU contacts,
and (right) the confidence level of model (40% to
100% of confidence).

GMU are simulated in the deposit by indicator
simulation. The actual implementation used here is
the block sequential indicators simulations algo-
rithm (Deutsch 2006), which implements the map-
ping pixel smoothing algorithm—maximum a
posteriori selection (Deutsch 1998) to improve the
contact among categories and preserve their im-
posed proportions.

Compositional Geostatistical Simulation of Minerals

Compositional variables are modeled after a so-
called log ratio transformation (Pawlowsky-Glahn
and Olea 2004). A full review of this approach is
given by Tolosana-Delgado et al. (2019). There are
several ways to approach this transformation, but
the simplest is presented here. Assume (p—1)
variables are available and form a composition, for
example, a set of mineralogical proportions. Since
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Figure 2. (Left) Plan view with the expected GMU and (right) the confidence level of model.

these variables form part of a whole, a filler variable
is calculated to complete the set. For example, if
proportions are reported in percent, this filler vari-
able can be:

R(uy) = 100% — Xi(uy)

p
i=1

The additive log ratio transforms (Aitchison
1982) can be computed:

Zi(u) = log (112((;1())>

These new variables are unbounded, that is, they can
take values between —oo and +oo, but are also
spatially correlated. Therefore, simulation can be
done by applying a decorrelation transformation and
simulating independently each component, or jointly
simulating all the log ratio transformed variables
using conventional geostatistical methods.
Decorrelation can be done by using a collocated
factorization such as principal component analysis,
which does not impose decorrelation of the variables
in space, but most of the time significantly reduces
the spatial cross-correlation of the principal com-

ponents (Bolgkoranou and Ortiz 2019). Other
methods for decorrelation are maximum autocorre-
lation factors (Desbarats and Dimitrakopoulos
2000), uniformly—weighted exhaustive diagonaliza-
tion with gauss iterations (Mueller and Ferreira
2012) and independent component analysis (Bolu-
wade and Madramootoo 2014). Projection-pursuit
multivariate transform (Barnett et al. 2013) finds
successively directions where the projection has the
maximum univariate non-Gaussian index and per-
forms the normal score transformation to that
specific direction.

In this step, we relate mineralogy with geology.
Mineralogy is often determined by mineralogical
test work, such as quantitative evaluation of mate-
rials by scanning electron microscopy (Fennel et al.
2015), which provides mineralogical proportions.
For each geological domain, a multivariate spatial
lineal model of coregionalization (LMC) is imposed,
if a correlation between variables exists. This LMC
is determined according to the relationships between
minerals in each geological domain, for example,
cuprite and chalcocite should be found in the mixed
or secondary enriched zone. The relationship can be
determined by correlation matrices. The simulation
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Figure 3. (Left) simulated proportions of chalcopyrite. (Right) simulated proportions of chalcocite in percent.

within each geologic domain is performed by the
ultimate sequential Gaussian simulation algorithm
(Manchuk and Deutsch 2012).

In this case study, compositional mineralogical
simulation was performed over each realization of
geological simulation (cascade approach), in order
for the geological uncertainty be propagated to the
simulation of mineralogical proportions. Figure 3
shows the E-Type (average of 50 realizations) of
chalcopyrite and chalcocite simulated over the same
plan view shown previously.

Correlations found in the exploratory data
analysis were replicated in the compositional simu-
lation. The relative proportions of minerals are
preserved, which are different for each GMU. Fig-
ure 4 shows that GMU2 has a higher proportion of
chalcocite’s sulfides and GMU3 has a higher pro-
portion of primary hypogene sulfides with high
chalcopyrite-pyrite ratio, which is congruent with
simulated GMU .

Geochemistry

As minerals contain the chemical elements of
interest, simulating the geochemistry could signifi-
cantly improve the simulation of responses at the
plant, which will be dependent on the mineral

occurrence of these elements. In geometallurgy, the
elements of interest should not only be those of
economic interest, such as copper, gold, molybde-
num, silver and iron, but also deleterious elements,
such as sulfur, fluorine or arsenic. From the
geometallurgical perspective, deleterious elements
could be crucial in the beneficiation process and in
minimizing contaminants that affect the quality and
economic value of the final product (Lane 1988). A
geometallurgical block model should include both
kinds of elements.

There are two approaches to have elements and
minerals in the GMBM: (1) predicting mineralogy
from grades and (2) predicting grades from miner-
alogy. Some researchers have linked chemistry
composition to mineralogy to predict the mineral
proportions from element concentrations (Lamberg
2011; Townley et al. 2018; Abildin et al. 2019).

The other approach is deducing element con-
centrations from mineral proportions. The grade of
each element is a function of the minerals present:

The ge function is derived from the chemical com-
position of the M minerals. For example, if there are
three minerals hosting copper: bornite, chalcopyrite
and chalcocite; we have:
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Bornite = CusFeS; — 63.31%Cu
Chalcopyrite = CuFeS; — 34.63%Cu
Chalcocite = Cu,S — 79.85%Cu

gcul(my, ny, m3) = m163.31% + m,34.63% + m379.85%

where my, m, and m3 are the percentage of bornite,
chalcopyrite and chalcocite, respectively. The limi-
tation of this methodology is that mineral propor-
tions are most commonly derived from qualitative or
semi-qualitative estimates, usually with high degrees
of uncertainty. In addition, mineral proportions
estimates would only account for the theoretical
copper present but exclude trace elements such as
gold or silver that may be present.

Mineralogy also helps establishing the rela-
tionship of grade and mineralization zones. For
illustration, in a porphyry copper deposit, we could

eralogical approach.

find the following relationships of copper grade in
different mineralization zones: the total copper
content in secondary enrichment, which is charac-
terized by minerals with high copper content such as
chalcocite and covellite, is in general higher than the
total copper in primary rocks characterized by sulfur
with high content of chalcopyrite.

In the case study, mineral proportions were
used to calculate geochemical composition of total
copper, molybdenum (commodities) and arsenic
(pollutant). For example, the sum of copper in
chalcopyrite, bornite, covellite and oxides minerals
represents the total copper in minerals. The original
database contains total copper (in samples), and it
was compared through quantile—quantile plot with
the Total copper in minerals (Fig. 5). In addition,
spatial continuity was validated for total copper in
minerals, at a range of 70 m approx.
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Figure 5. Validation of statistical distribution and spatial variability for total copper grade in minerals.

Simulation of Geometallurgical Response from Drill
Core Samples

Metallurgical batch tests are performed on drill
core samples to generate mineral processing pre-
dictive models. However, such tests are not enough
to predict industrial performance as these do not
necessarily account for ore rock blending of feed
through the process and scale-up factors from batch
to industrial scale are not always known, especially
in exploration projects. Batch laboratory tests are a
useful tool to identify, through geometallurgical
modeling, trends and optimal conditions that are
proposed to be implemented later in the plant. In
this work, two instances of geometallurgical model-
ing are presented: comminution and flotation pro-
cesses.

Simulation of Comminution Process

There are roughly two kinds of models: power-
based models, which are based on grinding param-
eters that allow estimating the energy consumption
associated with a given size reduction, and popula-
tion mass balance models that can also be used to
predict the behavior of the rocks, from a particulate
system perspective, and how the particle size distri-
bution evolves during grinding. In each case, the
product particle size, characterized by P80, e.g., the
80% passing size is an important variable since it is
directly related to the liberation degree.

The following is a list of common comminution
tests: Bond work index for ball mill: the grindability
test determines the hardness of the ore rock. The
work index is used when determining the size of the
mill and grinding power required in producing the
required ore throughput in a ball mill. SAG power
index or Starkey test for SAG mill: provides the time
(minutes) required to perform a specific milling
work, from a feed size to an output size. SAG mill
comminution (Morrell 2006): it is a function be-
tween the specific energy applied and the percentage
of product generated in the impact fracture of a
specific particle size.

From these comminution tests, the specific en-
ergy consumption can be calculated, and later used
to optimize the process at industrial scale. When
simulating these variables, the use of multivariate
tools is recommended as it allows improving the
models’ robustness.

Simulation of Flotation Process Performance

Flotation is a selective separation process that is
based on the difference in hydrophobicity of min-
erals at given physical-chemical conditions. In this
case, unlike comminution tests, the flotation tests are
not standardized, and, in general, the flotation re-
sults correspond to a combination of ore character-
istics and the way the flotation tests were performed,
expressed in operational variables such as pH, P80,
solid weight and aeration conditions. In the case of

28



Slice: midz

Bond work index

600

400

200

midy

-200

-400

-600

midx

midy

Slice: midz

Figure 6. (Left) Bond Work Index BWI simulated (kwh/tc). (Right) Rougher recovery simulated (%).

flotation modeling, the performance depends on the
head grade, rate constant, mineralogy and liberation
degree, which determines the maximum recovery.
All these variables can be simulated using multi-
variate tools to improve models’ robustness without
increasing unnecessarily the number of tests.

The flotation test can have many variants, for
example, the most common is the open cycle test: (1)
rougher primary flotation, (2) secondary flotation
optional cleaner, (3) optional scavenger tertiary
flotation, (4) optional re-grinding before the flota-
tion cleaner. Combinations of these tests can be
performed to replicate the industrial flotation cell to
maximize the recovered ore and its concentration.
The following information is usually obtained from
these tests: kinetics of flotation k Klimpel, maximum
recovery with prolonged flotation time or “infinity™,
mineral characterization and head geochemistry
(feed), mineral and geochemical characterization of
concentrate, at 1.5 min, 3 min, 6 min, 12 min and
15 min of flotation, mineral and geochemical char-
acterization of tailings, at 1.5 min, 3 min, 6 min,
12 min and 15 min of flotation, among others.

The mineral characterization consists of bri-
quette preparation, quantitative mineralogy, mineral
association identifications, granulometric distribu-
tion, among others. From these tests, a database is

obtained with many variables that are used to opti-
mize the flotation process performance at an indus-
trial scale (Jackson et al. 2011).

The metallurgical process is related with the
industrial processing or prediction of plant process
performance (Suthers et al. 2004) of the ore that has
been removed from the in situ ore deposit. The ore
is processed continuously at industrial scale, through
a process of crushing, conveyor belt, grinding,
flotation, thickening and filtration, among others,
and this can be modeled and simulated (King 2001).
Many industrial simulators are used for this purpose,
for example the JKTech simulators: JKSimMet for
comminution and classification circuits, or JKSim-
Float (Vann et al. 2011) for simulation for steady
state performance in flotation plants. The software
can simulate operational parameters (e.g., flowsheet
of the processing plant) and tests its performance
(metal recovery and concentrate grade, water
recovery, residence time, gas holdup, froth recovery,
mass balance on a size by assay basis) to achieve the
best consistent data set and simulate the effect of
changes in the flowsheet to predict flows, size dis-
tributions and element distribution, among others.

Predictive models can be implemented by dif-
ferent mathematical adjustment models, such as
Australian minerals industry research association to
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Figure 7. Topography area that is an exploration target with four drill holes.

floatability component (Coleman et al. 2007). The
most important limitation of these simulators 1s that
they allow varying the configuration of industrial
machines (and other operational factors) consider-
ing a constant mineral feed, neglecting the geologi-
cal variability associated with the deposit and
blending factors. Another limitation of these simu-
lators is that the simulation of geometallurgical at-
tributes generates many possible processing
scenarios, which are not directly used in these sim-
ulators (industrial simulators receive a deterministic
input, not a stochastic geological input). Metallur-
gical response can be estimated by regression mod-
els calibrated from test work or reconciliation data,
which is the approach used in this paper.

In this case study, cosimulation for BWI and
rougher recovery was performed for each GMU
(Fig. 6). Rougher recovery was calculated as a sum
of individual mineral recoveries, assuming there is
no cross-interference that affects the flotation pro-
cess. Rougher recovery has a negative correlation
with chalcocite, consistent with laboratory perfor-
mance of assays to flotation.

Finally, the block model has been simulated
with geological variables, mineralogical variables,
geochemical variables and geometallurgical re-
sponse. Each simulation was simplified for research
purposes, but the methodology is flexible and can be
implemented to other more sophistically types of
simulations (see ‘‘Simulation of Spatial Drill Holes”
section).

Simulation of Spatial Drill Holes

To generate a database that looks realistic,
different conditions must be simulated for explo-
ration campaigns. In this context, simulations of
topographical area, density of information and sur-
vey of drill holes are simulated.

Topographic Simulation

To simulate elevation, non-conditional simula-
tion was performed. Smooth simulations are appro-
priate for realistic surface modeling. Z-elevation
collar position of drill holes 1s a known function of x-
east and y-north coordinates. Figure 7 shows an
exploration target area (estimated with geochem-
istry, petrological, geophysics and geochronology
knowledge). This area can be simulated with cate-
gorical simulation of boundary and synthetic pseu-
do-drill holes. This is the first campaign whose
objective is to find deep mineralized bodies.

Simulation of Density of Drill Holes

If the ore body is found in the first campaign, a
second campaign is performed with different objec-
tives: define the prospect dimensions, develop the
first estimation of ore grades and improve the geo-
logical knowledge for interpretation.
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The geological interpretation of metallogenic
controls of mineralization is important at this stage
to design the next exploration plan. Geostatistical
tools can improve the geological knowledge to de-
fine domains, for example exploratory data analysis
may help showing distributions of different geolog-
ical properties (Figure 8 shows of the logging of drill
holes with 5 geological codes and the cumulative
probability plot of chalcopyrite in each unit), for the
purpose of identifying relevant economic domains
and quantifying the possible mining resources.

Depending on the exploration stage, a given
drilling spacing is targeted, in consideration of the
associated risks of finding the resources and bud-
getary constraints. The expected orebody geometry
determines the orientation and depth of the drill
holes. Figure 9 shows a regular mesh (collars of drill
holes, in surface) that depends of the geological
continuity of ore body.

Survey and Length Simulation

In depth, drill holes may be oriented in partic-
ular directions with the objective of intersecting
perpendicularly a tabular body, structural vein, etc.
At this stage, structural information is important to
define the orientation of the drill holes (azimuth and
dip). Structural zones must be identified through the
oriented drill holes. Figure 10 shows oriented drill
holes with an azimuth and dip calculated based on
structural information.

The lengths of the drill holes depend on the
depth of ore body and long-term scheduling (based
on feasibility studies). In regular deposits near to
surface, the length drill holes can range from 50 m to
500 m in depth. We use a normal distribution to
simulate the length of the drill holes, for example a
normal distribution with mean of 300 m and stan-
dard deviation of 100 m. Finally, a random subset of
the available drill holes samples is informed with
geometallurgical attributes, to represent the typical
scarcity of geometallurgical information. In our
example, 10% of all simulated samples contains
geometallurgical test values.

Application to Uncertainty in Mine Planning

Uncertainty in mine planning optimization
plays a critical role not only in finding the optimal
economic valuation through the maximization of net
present value, but also in risk assessment. Most of
the research focuses on incorporating grade uncer-
tainty in strategic mine planning, and medium- and
short-term scheduling optimization problems. Be-
cause scheduling transforms a three-dimensional
resource model into a temporal model, one cannot
assign a profit value at block scale (or selective
mining unit scale) before the decision on where,
when and what to mine is made by the optimizer.
Traditionally, this simplification is often done, but a
realistic schedule of the profit of a set of blocks in a
temporal interval should depend on geological
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Figure 10. Oriented drill holes campaign with an azimuth and dip calculated based on structural information.

properties and response properties of the complete
set of blocks, and to the specific plant conditions. In
case of early stages, design plant condition needs to
be used, whereas in productive stages, real plant
conditions need to be considered.

Any response attribute can be modeled as a
transfer function f with inputs: set of blocks B and
their attributes, a set of plant parameters P, and a
timeframe At.

p =.f(B’P’At)

Therefore, accounting for the uncertainty of pro-
cesses requires not only carrying the uncertainty of
inputs to the model, but also, the uncertainty of the
processes themselves. Incorporating the uncertainty
of the inputs to mine planning optimization prob-
lems is a very active research topic. Grade is the
main geological attribute that was incorporated to
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many production planning optimization problems
(Gholamnejad and Osanloo 2007; Lamghari and
Dimitrakopoulos 2012; Kumral 2013; Silva et al.
2015; Goodfellow and Dimitrakopoulos 2016).
Nevertheless, accounting for geometallurgical
uncertainty is very limited. Kumral (2011) incorpo-
rated uncertainty of revenue and cost by many sce-
narios based on simulations. Sepulveda et al. (2018b)
used several geometallurgical wvariables under
uncertainty to optimize production scheduling in a
block caving operation by a multi-objective ap-
proach. The uncertainty of geometallurgical attri-
butes was quantified by geostatistical simulations of
primary variables and nonlinear regression models
for response variables.

One approach, which is the most used and the
simplest, is defining transfer functions from stan-
dardized response variables to specific plant condi-
tions. The approach that reflects the responses to
processes of a set of blocks in a timeframe is by
simulating the processes, while the optimization is
being performed. Obviously, this approach is very
challenging because simulating the processes re-
quires large computing power. Populating any

geometallurgical resource model with response at-
tributes should be avoided because it implicitly as-
sumes (1) a block responds independently to the
other extracted blocks, which is not the case, and (2)
the throughput is constant. However, there is limited
research in this direction. Garrido et al. (2017) de-
fined the concept of geometallurgical dilution to
account for the impact of feeding blocks of different
geometallurgical domains to the plant, if different
geometallurgical domains have different responses.
They showed that geometallurgical attributes can be
effectively included as part of the optimization
process. More research needs to be done to incor-
porate the response simulation as part of the opti-
mization process.

In our case study, to transfer spatial variability
of geometallurgical variables to temporal variability,
a mining scheduling (life of mine) was calculated
with the Lerchs and Grossman algorithm (Lerchs
and Grossman 1965) for the E-Type of the gener-
ated simulations. Figure 11 shows the 20 phases of
the project, calculated with real economic and de-
sign parameters of a porphyry copper ore body open

pit.
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Figure 12. Re-dimensioned scaled recovery variability by blocks (for one realization) and by year (for all realizations).
Mean recovery by block with 95% confidence interval is shown.
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Geometallurgical variability can be measured
by period (in this case, by phase or year). Known
temporal behavior of mineral processing may allow
industrial metallurgical simulations. In this case, to
simplify the research application, a correction factor
of rougher recovery was applied to calculate indus-
trial recovery. This correction factor was calculated
for each GMU, as in the Collahuasi case study
(Suazo et al. 2010).

Figure 12 shows the rougher recovery variabil-
ity by year (E-Type vs. uncertainty in simulations).
It shows how geological variability is propagated to
metallurgical variability. The results show years with
low metallurgical variability (for example, phase 12)
and years with high metallurgical variability (phase
7) for one realization. This variability is fully at-
tributed to geological variability, and it does not
consider the operational variability. Case phase 7
shows low recovery because sulfides mineral zones
include secondary enrichment (GMU?2), and chal-
cocite affects recovery negatively, increasing uncer-
tainty.

This application shows how geological uncer-
tainty is propagated to metallurgical responses.
Usually, conciliations show differences that can be
attributed to geological variability and operational
interferences.

CONCLUSIONS

We have presented a reproducible methodology
for the simulation of a synthetic geometallurgical
drill holes dataset, with special interest in preserving
the coherence between geology, mineralogy and
grades. Response attributes were included in the
drill hole database, comminution process and flota-
tion performance. Simulations can be self-explained,
any algorithm aligned with the generating method
will appear to work well—other algorithms will ap-
pear to have poor performance, and this condition is
a limitation to any method. One of the main con-
tributions of this article is the summary of geo-
statistics tools that can be used.

Starting with real or synthetic drill holes and
following the six steps in the proposed methodology,
a GMDB can be successfully simulated. All pro-
grams used in the methodology can be found in open
source software, free software or commercial soft-
ware.

The article discusses how we understand a
geometallurgical unit, which may depend on the

geological setting, the metallurgical process and
the implementation in the operation, unlike the
conventional geological domains that only depend
on geological characteristics associated with the
rock.

The geometallurgical variable (associated with
a rock process in situ) is differentiated from the
metallurgical variable (associated with a continuous
process in time). The geometallurgical variables
(such as BWI, rougher recovery, specific acid con-
sumption and soluble copper) can be simulated by
geostatistical tools in spatial block model, subject to
the correct definition of the GMU. The loss of pre-
dictive processing capacity generates problems in
mining reconciliation, increased uncertainty and in-
creased costs. With a correct and careful application
of this methodology, the geometallurgical uncer-
tainty can be evaluated by implementing preventive
protocols to reduce processing costs.

We have also included in the complementary
material the simulated inputs and GMDB of the
case study for academic and teaching purposes
which are also available for downloading in the
public repository https://github.com/exepulveda/geo
met_datasets.
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CONCLUSIONES

En la investigacion se han desarrollado herramientas de tipo multidisciplinarias en el &rea de la geo
minero metalurgia extractiva. Los principales resultados cientificos se resumen en los dos articulos.
El manuscrito 1,'Change of support using non-additive variables with Gibbs Sampler: Application
to metallurgical recovery of sulphide ores', presenta una metodologia para cambiar de soporte de
variables no aditivas (en este caso, aplicado al ensayo geometalurgico de recuperacion rougher) la
cual conserva caracteristicas geoestadistica de la base de datos que evita artefactos matematicos en
la consolidacion de base de datos de diferentes fuentes de informacion (logeo geoldgico,
geoquimico, mineraldgico, geofisico, geomecanico y geometalirgico). La consolidacion correcta
de la base de datos permite generar modelos georeferenciados en el espacio de atributos

geometallrgicos.

El segundo articulo 'Simulation of Synthetic Exploration and Geometallurgical Database of
Porphyry Copper Deposits for Educational Purposes' entrega una metodologia para simular
geoestadisticamente variables geometalurgicas considerando gran parte de los problemas vy
desafios que implica este proceso a nivel industrial, donde incluye una robusta revision
bibliografica de las metodologias disponibles para este procedimiento. Ademas, se ha dado un
enfoque de innovacion al permitir, en base a estas simulaciones y escenarios geometallrgicos,
generar base de datos sintéticas con distribucién espacial y coherencia geoldgicas con fines de uso
académico. Esto presenta una ventaja desde un punto de vista de investigacion, ya que las bases de
datos geometalurgicas son de restringido acceso. Adicional a esto, se incluye en el anexo el
manuscrito publicado en Predictive Geometallurgy and Geostatistics Lab, Queen's University,
Canada, el cual describe una forma para validar las simulaciones generadas desde un enfoque

geoldgico.

En adicién al trabajo presentado en los articulos, se ha desarrollado un documento extendido el
cual describe el uso de buenas préacticas en el &rea de geometalurgia para la definicion de recursos
y reservas mineras basadas segun el codigo canadiense CIM Estimation of Minerals Resources and

Mineral Reserves Best Practice Guidelines (documento canadiense publico en mrmr.cim.org
39



v2019). Ademas, se ha generado una version resumida de este documento el cual fue publicado en
Predictive Geometallurgy and Geostatistics Lab, Queen's University. Estos documentos fueron
escritos en base a la revision bibliografica hasta el 2020 en el area de la geometalurgia, y se han
basado en experiencias profesionales documentadas en conferencias internacionales, trabajos de

consultoria realizados en geometalurgia y visitas industriales técnicas.
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ANEXOS

ANEXO GARRIDO ET AL. 2020A

Geostatistical simulations of ore body deposits are useful to quantify risk and
uncertainty, testing mine planing algorithms, generating drill holes databases, among
others. Geostatistical simulations are a common tool to generate different scenarios,
but these are mathematical algorithms that need to be validated with geological
approach. Tools such as histograms, correlations and variograms can validate
distributions, numerical associations and spatial variability in a simulation, but many
other tools can be used to validate geological coherence (e.g. lithological facies,
correlations in minerals of hydrothermal alterations, mineral zones, etc). This article
summarizes some of these tolos that can be used to interpret data with a geological
approach, with the aim of avoiding geological inconsistencies. Validations are show
In a case study, a porphyry copper deposit locate in north Peru, Cajamarca region in

Andean mountain.
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Abstract

Geostatistical simulations of ore body deposits are useful to quantify risk and uncer-
tainty, testing mine planing algorithms, generating drill holes databases, among others.
Geostatistical simulations are a common tool to generate different scenarios, but these
are mathematical algorithins that need to be validated with a geological approach. Tools
such as histograms, correlations and variograms can validate distributions, numerical as-
sociations and spatial variability in a simulation, but many other tools can be used
to validate geological coherence (e.g. lithological facies, correlations in minerals of hy-
drothermal alterations, mineral zones, etc). This article summarizes some of these tools
that can be used to interpret data with a geological approach, with the aim of avoiding
geological inconsistencies. Validations are shown in a case study, a porphyry copper
deposit located in northern Peru, Cajamarca region in Andean mountains.

1. Introduction

The access to real exploration databases is very limited in practice, making it difficult for practitioners,
researchers and students to test methods, models and reproduce results in the field of geological modelling.
From the point of view of practitioners, researchers, teachers and students, there is an important lack of
available databases that can be used, because the data of those are usually subject to confidentiality agree-
ments. Non conditional simulations can be used to generate different scenarios without the use of specific
local data, which may be an advantage when real databases are not available. These type of simulations of
ore body deposits can be useful to generate exploration drill holes campaigns (Garrido et al., 2018). For this
research, geostatistics is used to generate different scenarios, because it allows to manage the distributions
of the simulated attributes and their spatial covariance / correlations.

Non conditional simulation can be separated in (1) geological domains and (2) geological continuous
attributes (Jackson and Young, 2016). For the first purpose, many tools are available, such as sequential
indicator simulation (Deutsch, 2006) (Deutsch, 1998), truncated gaussian simulation (Beucher and Renard,
2016), plurigaussian simulations (Armstrong et al., 2011) or multiple-point simulation (Mariethoz and Caers,
2014), among others. For the second type of simulations, classic tools of geostatistics are well established
(Goovaerts et al., 1997) (Chilés and Delfiner, 2012) (Isaaks and Srivastava, 1989), and for multivariate simu-

lations, a flexible sequential Gaussian simulation program USGSIM is recommended (Manchuk and Deutsch,
2012).

Validations of these models must consider the consistency with geological knowledge. In a non conditional
simulation, the spatial distribution of minerals and their relationships must be validated to make sense with
different geological criteria. In the case of a porphyry copper deposit, many tools can be used to validate
with a geological approach. In this research, some criteria to validate are explained.

1 Cite as: Garrido, M., Townley B. and Ortiz J. (2020) Validation of Geostatistical Simulations of Porphyry Deposit through
Geological Approach using ioGAS, Predictive Geometallurgy and Geostatistics Lab, Queen’s University, Annual Report 2020,
paper 2020-10, 170-185.
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2.

Methodology

Three different validations are considered, with different approaches based on geological knowledge:

1. Regional metallogeny framework: This consists on interpretative regional location of the porphyry ore

body, for example basins (e.g. for Principal Andean Cordillera are Farellones, Abanico, Azapa, Loa,
etc), Tectonic orogeny (e.g. Pehuenche, Incaica, K-T, etc) and use of isochronous to date the rock
type. This interpretation can be use to validate the simulated facies of matrix rock or the ore body.

. Hypogene metasomatism water-rock contact: This consists on interpretative hydrothermal alterations

of the porphyry ore body. Minerals in alterations zones may be validated through associations (e.g.
potassic alteration with principal minerals such as feldK - Biotite and secoundary minerals as qtz -
mag - ser - chl). It depends on physicochemical factors such as Eh-pH, temperature, rate sulfur:oxigen,
among others.

. Supergene metasomatism water-rock contact: This consists on interpretative mineral zones related

with mineral processing relationships. Supergene enrichment are characterized by meteoric water in
oxide conditions, that generate different mineral zones (e.g. leached low copper grade; oxides minerals;
secondary sulphur from enrichment process).

The methodology is summarized in Figure 1, that shows the final geological model in each step, with

geological and geostatistical approach.
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2 Geological validation of non conditional simulations
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Figure 1: Summary of methodology to validate databases from geological approach, geostatistical approach to geological mod-

elling.
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3. Geological attributes in porphyry copper deposit

Usually the porphyry ore body simulation consists in a categorical simulation (geological facies) and
continuous simulation (mineralization grades). The categorical simulation considers (in cascade or joint
simulation approach): (1) lithology unit, (2) hydrothermal alteration unit and (3) mineral zone unit.

3.1. Lithology unit

Some lithologies are advantageous to generate economical porphyry copper deposits, in particular when
related with batholith magmatic events at a regional scale. The lithology unit are interpreted with a regional
metallogeny framework. The main unit is the host rock, where intrusive units modify the mineralogy and
geochemistry. The regional group to classify lithology are the basins, for example, a description of Abanico
Extensional Basin along the Principal Andean Cordillera is given (Charrier et al., 2009):

"Abanico Formation is in the Principal Cordillera, between 29°S and 39°S, dated from middle-late Eocene
to early Miocene. Cinsists of a locally strongly folded, 2000 m thick sucession of volcanic, pyroclastic
volcaniclastic and sedimentary deposits including abundant subvolcanic intrusions of the same age, with a
well developed paragenesis of low grade metamorphic minerals” (Aguirre et al., 2000) (Bevis et al., 2003)

(Fuentes, 2004)

The regional metallogeny framework provides a geological map of surface at scale 1:1,000,000 (more
details are provided at scales 1:100,000 or 1:25,000). This indicates the relationship of genetic processes in
tecto-magmatic evolution of the ore body. In this context, rock types can be volcanic, basaltic, andesitic,
malfic, felsic, tholeitic, chalco-alkaline, etc. Chronological dating must be consistent with rock types for-
mation. In porphyry deposits, intrusive bodies are also important to define the origin of hydrothermal
hyper-saline fluids, metallogenic deposit precursors. Other geophysics tools can be used to validate the
definition of rock types, such as magnetic or gravimetric tools that show possible lithological units contacts.
All of these contacts are abrupt, not transitional.

From a geostatistical approach, some tools are provided to validate some criteria:

1. Spatial context: Origin basin rock types was deposited horizontally (by sedimentation) but folding
by compressive stress can change the shape or anisotropy. The geostatistical anisotropy is linked to the
rock mass tensor stress. Figure 2 shows three diferent anisotropies; (a) logging of Andean Cordillera
by different orogenic process and lithological composition (Pinto et al., 2017), NS anisotropy; (b) an
horizontal anisotropy correlated with structural orientation faults of different formations (geological
map of Northern Hokkaido (Niizato et al., 2010) (Takahasi et al., 1984), anisotropy controlled by
structural faults); and (c) a vertical anisotropy of different lithology groups modelled in Chuquicamata
district, northern Chile (Barra et al., 2013).
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Figure 2: Schematic example of lithological modelling of rock types of different grouping criteria.

(a) Andean Cordillera

from (Pinto et al., 2017); (b) geological map of Northern Hokkaido, from (Niizato et al., 2010) (Takahasi et al., 1984); (c)
Chuquicamata district, northern Chile (Barra et al., 2013).

2. Statistical correlations: Some elements trends and concentrations correspond to known formation
areas. For example, Figure 3 shows two plots with different areas highlighted, based on geochemical
relationships. For example, if the ratio Sr/Y is low and SiO2 is in the range 45-75, then the geochemical
relationship is similar to that of barren intrusions rock type footprints, or if the rates V/Sc and
Nb/Ti are high, geochemical samples are probably associated to prospective areas for porphyry copper
deposits that correspond to strongly oxidized magma (Halley et al., 2015).

3. Rock type associated to intrusive event: Porphyry copper deposits need compatible lithologies
to originate high grade mineralization, such as intrusive porphyry or dickes, for example. These bodies
usually have high continuity in depth, that exploration drillholes are not able to capture. Usually, all
lithological contacts are hard, no transitional facies are detected.
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Figure 3: Examples of geological interpretation of rock types based on geochemical relationships. Geochemical ratio of Sr:Y wvs
Si02 and Nb:Ti vs V:Sc are consistent with prospective areas for porphyry copper (Halley et al., 2015)

i0GAS software has implemented many tools to verify if the geochemistry is consistent with porphyry
Cu exploration. For example (Richards et al., 2012) shows that adakites sub-group that contains high Sr/Y
magmas reflect arc maturity, high magmatic water content, and porphyry Cu +/- Mo +/- Au potential;
(Cohen et al., 2010) shows diagram related with advances in exploration geochemistry between 1998 - 2007
and (Rohrlach and Loucks, 2005) related the geochemistry of volatiles in a lower crustal magma reservoir.
Many such diagrams can be provided for validation of geostatistical simulations through geochemical ap-
proach (Loucks, 2014) (Halley et al., 2015) (Maitre, 1989) (Bas et al., 1986) (Rollinson, 2013).

In this case study, Figure 4 shows the location of porphyry copper deposits. An first lithological validation
is consistent with the regional extension area. The case study is located on the Cu-Au and Cu-Mo porphyry
Miocene belt. Logging shows different intrusive events and dioritic phases of fine to medium textures, in
addition to layer dacitic composition phases with abundant quartz and biotite crystals. Pulses of intrusive
mineralization were identified, these events cross carbonate sequences from the Pariatambo and Yumagual
basins.
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Figure 4: Location of case study in miocene belt, Cajamarca region, Peru, South America (Ramirez, 2012).

3.2. Hydrothermal alteration rock type

Hydrothermal alterations are interpreted as hypogene metasomatism in the water-rock interaction. This
generates chemical instability in some minerals, and depends on the stability of sulphides, permeability
of structures and transport of ions through molecular ligands. The hydrothermal alterations affect both
mineral and waste rock, and it is very important to relate the set of minerals to describe any alteration.

This set of minerals can be classified through temperature and Eh-pH association. (Corbett and T, 1998)

present a very complete study of mineral associations based on temperature and pH. Figure 5 shows the
common alteration mineralogy relationships in hydrothermal systems.
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Figure 5: Common Alteration Mineralogy in Hydrothermal Systems, from (Corbett and T, 1998)

Mineral Abbreviations: Ab - albite; Act - actinolite; Ad - adularia; Al - alunite; And - andalusite; Cb -
carbonate (Ca, Mg, Mn, Fe); Ch - chlorite; Chab - chabazite; Chd - chalcedony; Ch-Sm - chlorite-smectite;
Cor - corundum; Cpx - clinopyroxene; Cr - cristobalite; Ct - calcite; Do - dolomite; Dik - dickite; Dp -
diaspore; Ep - epidote; Fsp - feldspar; Ga - garnet; Hal - halloysite; Heu - heulandite; I - illite; I-Sm -
illite-smectite; K - kaolin-ite; Lau - laumonite; Mt - magnetite; Mor - mordenite; Nat - natrolite; Op -
opaline silica; Pyr - pyrophyllite; Q - quartz; Ser - sericite; Sid - siderite; Sm - smectite; Stb - stilbite; Tt -
tremolite; Tri - tridymite; Ves - vesuvianite; Wai - wairakite; Wo - wollastonite; Zeo - zeolite

It is important to validate which minerals are compatible and which are not. Many hydrothermal alter-
ations have transitional contacts, unlike lithology characterization. An important reference of hydrothermal
alterations in porphyry ore body is (Sillitoe, 2010), that describes different hydrothermal alterations based
on proportions of some minerals. In addition, alterations are zoned in the porphyry copper system, as show
in Figure 6: sericitic alteration may project vertically downward as an annulus separating the potassic and
propylitic zones as well as cutting the potassic zone centrally as shown. Sericitic alteration tends to be
more abundant in porphyry Cu-Mo deposits, whereas chlorite-sericite alteration develops preferentially in
porphyry Cu-Au deposits.

50



Vuggy residual
quartz /silicification

Quartz-
kaolinite

alunite

Intermediate
argillic

Chloritic I/—’——'

Decalcification

More

kly
altered

sulfide

Unaltered

Propylitic
1km

1km

Figure 6: Generalized alteration-mineralization zoning pattern for telescoped porphyry copper deposits, from (Sillitoe, 2010)

From a geostatistical approach, validation of hydrothermal criteria are very important because much of
the economical mineralization is concentrated in this stage. Some tools are provided to validate this criteria:

1. Spatial context: Usually alterations such as potassic, propylitic, chlorite, Sericite and Argillic are
common in an hydrothermal alteration process, among others. Locations and contacts have radial
anisotropy with respect to intrusive event (defined in lithological simulation). Figure 6 shows an
example of the spatial distribution of some alterations.

2. Statistical correlations: Simulated minerals (that have coherence shown in Figure 5) are used
to calculate the geochemical element proportions. For example, the molecular formula of mineral
sericite is K Ala(AlSi3010)(OH)2 (Table 1). Geochemical grades are very important to validate if
the elemental relationships are consistent with the hydrothermal alteration footprint. Figure 7 shows
binary and ternary diagrams with relationships of elements for each hydrothermal alteration. In this
case study, elements Al, Ca, Na, K and Mg are important to discriminate types of alteration: FRE
(fresh rock) has high grade of Ca; ARG (argilic) has low grade of Ca and high Mg; K (potassic) has
high grade of K and medium grade of Ca; SIL (sillica) has low concentration of Al and Ca; SIL ALT
(sillica high degree alteration) has low grade of Ca and high of Al. These trends are transitional and
it is difficult to define a hard boundary between the transitions zones.
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Figure 7: Geochemical grades relationship for each hydrothermal alteration and minerals.

The codes of alterations are FRE (fresh alteration), K (potassic), ARG (advanced argillic), SIL ALT
(mainly silicification with argillic olverlap alteration) and SIL (fresh silicification alteration). In this
context, diagrams show trends and clustering of alteration as a function of the relationship between
Al - Ca - Mg ratios. In addition, FRE is characterized by epidote mineral and K for montmorillonite
mineral. Chrolite, biotite, ankerite and dolomite are not present because of the lower magnesium
concentration (see Table 1 for molecular formulas).

Table 1: Molecular formula

Name of mineral Molecular formula
Sericite KAIQ(AJSigOlo)(OH)Q
Epidote Ca2FeAlsSi3012(0OH)
Montmorillonite 0.66(0.5Ca, Na)Alsg 34M g0.66Si3090 (O H)4,nHs0
Chrolite Mg5AEQSi3010(OH)3
Biotite KMQ‘1.5F€1_5A£S£3010(OH)2
Ankerite Ca(Fe*t, Mg, Mn)(COs3),
Dolomite CaMg(CO3)s

In general, characteristic elements related to hydrothermal alteration are Al, Ca, Na, K, Mg, among
others. A multivariate study is recommended to select the pathfinders that support the hydrothermal study
(Davis and Sampson, 1986), (Webster et al.; 1990) or generation of synthetics variables (Townley et al.,
2018) (Yildirim et al., 2014). ioGAS software has implemented many diagrams to support the hydrothermal
alteration classification based in geochemistry: (Large, 2001) (Williams and Davidson, 2004) (Warren et al.,
2007) (Grunsky, 2013) (Whitbread and Moore, 2004) (Kishida and Kerrich, 1987) (Bruce, 2007) (Ishikawa
et al., 1976) (Saeki and Date, 1980)

3.3. Mineral zone units

Mineral zones are interpreted as supergene metasomatism in the water-rock interaction. The meteoric
water tickle through faults of geomechanical structures in an oxidizing environment, change the mineralog-
ical compositions generating different mineral zones. These mineral zones affect directly the commodity
minerals, and define the mineral processing (leaching, bio-leaching, selective flotation recovery or waste).
These geological processes are known as supergene sulfide enrichment or secondary enrichment, and may
take place by a simple mechanical process, by chemical means, or by a combination of these. First, the en-
richment may be primarily the result of the chemical removal of a large part of the gangue minerals, in which
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case the copper migrates slowly downwards by gravity or is left behind as a residual component (Boyle, 1987).

Figure 8 shows a schematic view of a sulphide vein. It shows the oxidation zone, consisting of the gossan,
the leached zone and the oxidised zone. The reducing zone consists of the enrichment zone and the area of
primary mineralization (Asmus, 2013) (Paras et al., 2017) (Sillitoe and Mckee, 1996)

W
\\\\\ A
H,0 + CO, —= H,CO, \ - // \\\ \\
et

Gossan

4FeS, + 150, + 14 H,0 —= 4 Fe(OH); + 8 H,SO, :
4 CuFeS; + 170, + 10 0 —= 4 Fe(OH), + 4 H.5O, + 4 CuSO, limonite Fe(OH),

Leached zone o

=

D

2 CUSOuq + 2 N&;COyy —= CU,{CONOH); + 2 Na; SO, + CO,

zuc toal 2,0, U3 (COINOH); + 2 Na;SO4 i + CO; CU* g native copper Cu o
Uy(CO(OH), + H,O0 —= 3 Cu,(CO;HOH); + CO, x

. malachite Cuz(COa)(OH). | ©

Oxide zone azurite Cus(CO;)z(OH)z
cuprite Cu,0
chrysocolla CuSiO4H,0
5FeS, + 14 CuSO, + 12H,0 — 7Cu,S +5 FeSO, + 12 H,50, Wokeriatie
CuFeS, + CuSO; —= 2 CuS + FeSO, chalcocite Cu,S

PbS + CuSO4 —= CuS + PbSO, covelliet CuS g
Enrichment zone : C

bomite CusFeS, 3

iel

g

chalcopyrite CuFeS;

Primary mineralisation,
Protore

Figure 8: Schematic view of a sulphide vein. The ozidation zone can be seen, consisting of the gossan, the leached zone and
the ozidised zone, modified from (Evans, 1992) and (Ottaway, 1994)

The mineral zone is related with the geometallurgical process. The main commodities must be consistent
with the simulated region [for example Chilean Andes metallogenic belts are defined based in regional aspects
(Sillitoe, 1981)]. From a geostatistical approach, tools are provided to validate some of these criteria:

1. Spatial context: Classical mineral zones are: gravel, leached, oxides, primary sulphur, secondary
sulphur and host rock. In many cases, gravel, leached, oxides and secondary sulphur are presented as
horizontal layers (tabular bodies, horizontal anisotropy with width of each body between =10 - 100
m) with irregular degree. Usually this order is preserved (Figure 8), but in few cases the secondary
enrichment may be present in structural veins and faults (sub-vertical anisotropy).

2. Mineral proportions: The gravel lithofacies is usually not mineralized and is characterized by uncon-
solidated rock deposits. Leached lithofacies or gossan is characterized by low economic mineralization
and a lot of iron minerals (goetite, jarosite, hematite, limonite, among others) (Bateman, 1950). The
oxides lithofacies contains economical minerals (as cuprite, malachite, azurite, among others) that
require leaching as process and is delimited from above by gossan lithofacies and from below by wa-
tertable. Secondary sulphur is the enrichment zone that may contain different proportions of minerals
(chalcocite, covelliet, digenite, among others). This zone is the ’transition’ to primary mineralization,
then oxide minerals and sulphur minerals can both be found. Finally primary sulphur is characterized
by mainly chalcopyrite and bornite. Others minerals as Tennantite are economic minerals too but
with pollutants. All sulphur minerals are processed with selective flotation. Figure 9 shows the Cu:S
geochemical rate and how it is correlated with mineral.
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Figure 9: Copper minerals Cu:S rate and molar formula of each mineral.

To validate mineral proportion in each mineral zone the rate between economical metal and sulphur
or oxide proportion are important (i.e CuT:CuS rate, total copper : soluble copper). A molar diagram
for copper sulphide minerals shows different slope values that describes different copper sulphide minerals.
These diagrams can be projected or corrected for the presence of barite, pyrite, galena, sphalerite, and
arsenopyrite. In case of Iron ore, it uses Si0Oy and Fe data to assess mineralogical controls on iron ore grade.
It is used to classify the various types of Fe ore based on Fe and clay content (Goethite, hematite, magnetite,
ete) (Jeffcoate et al., 2013).

In the case study, three minerals zones are define based on CuT:CusS rate. FigurelO shows the difference
between oxide zone, enrichment zone and primary mineralization.
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Figure 10: Mineral zone definition of oride, enrichment and primary based on CuT:CusS rate.

This definition is important from a geometallurgical processing point of view: the oxide zone has minerals
such as malachite, azurite, cuprite, chrysocolla, among others, than can be recovered by acid leaching;
the enrichment zone has chalcocite, covelite, digenite, amongh others, than can be recovered by acid bio-
leaching or generate blending / mixing programs to optimize the mineral processing; and primary zone has
chalcopyrite mainly can be recovered by selective flotation of sulphur.

4. Conclusions

Many tools for geostatistical simulations are used to generate different geological scenarios. The aim of
this article is to give some tools to validate these geostatistical scenarios from a geological approach. In
conditional simulation, distributions and spatial variance can be validated, but these validations are not
sufficient. To generate geological consistent simulations, we have recommended tools that can support the
geological framework.

Correlations and spatial distribution are important for geologists. Mineralogical simulation in each geo-
logical unit can be performed, and geochemical grades can be calculated from molar formula. Many tools
to validate the consistency of data using a geochemistry approach are provided, and i0GAS software have
implemented these tools.
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ANEXOS

ANEXO GARRIDO ET AL. 2020B

To incorporate benefits into the mining value chain, for example the ore quality on
mine planning, plant performance, lower costs, and product quality, key
geometallurgical responses and proxy variables need to be incorporated into the
mineral resources and miningreserve s estimation. The Canadian Institute of Mining,
Metallurgy and Petroleum (CIM) Definition Standards on mineral resources and
reserves establish definitions and guidance on the definitions for mineral resources,
mineral reserves, and mining Project studies. In this research we show a case study
that incorporate geometallurgical study in the mining project, and suggest of the good
practices in the CIM Estimation of Mineral Resources and Mineral Reserves
document about geometallurgy area. Key studies such as integrating the
geometallurgical attributes to sampling and modelling, importance of mineralogical
data interpretation, definition of geometallurgical units and importance of
geochemical proxies in the geometallurgical modelling are highlight. Based in
results, we suggest critical elements to estimate (based in geology characterization),
use of nonlinear or multivariate estimation methods and the importance of
relationship between geometallurgy and short-long term mine planning must be

incorporated in the mineral resources and mineral reserves assessment.
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Abstract

Key geometallurgical responses and proxy variables need to be incorporated into the
mineral resources and mining reserves estimation, to improve the performance of mining
projects. The Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Defini-
tion Standards on mineral resources and reserves establishes guidance on the definitions
of mineral resources, mineral reserves, and mining project studies. In this research we
show a case study that incorporates a geometallurgical study in the mining project to
demonstrate the impact of accounting for these variables, and we suggest good practices
that could be added to the CIM Estimation of Mineral Resources and Mineral Reserves
document about geometallurgy. Key studies such as integrating the geometallurgical at-
tributes to sampling and modelling, the importance of mineralogical data interpretation,
definition of geometallurgical units and the identification of geochemical proxies in the
geometallurgical modelling are highlighted. Based on these results, we suggest critical el-
ements to estimate (based in geology characterization), use of non-linear or multivariate
estimation methods and the importance of relationship between geometallurgy and mine
planning must be incorporated in the mineral resources and mineral reserves assessment.

1. Introduction

Geometallurgy has become an important field in mining engineering because of its benefits on the ore
quality on mine planning, plant performance, lower costs, and product quality. To incorporate these benefits
into the mining value chain, key metallurgical responses and proxy variables need to be accounted for in
the block model, which is the main input to solve many optimization problems in mine planning
et al., 2015) (Dominy et al.;2018). Many mining companies have a superintendence of geometallurgy, aimed
at generating geometallurgical models to improve the mineral processing (guided with a sampling protocol,
validation of dataset, data management, geological interpretations, geostatistics modelling and mine planning
implementation). In this context, geometallurgy is considered an important task in the workflow of mineral
resources and mineral reserve assessment. An important example is Antucoya Copper Oxide Mine, Region
de Antofagasta, Chile (Avila et al.,2019) where geometallurgical studies showed that sulfate minerals with
a high content of szomolnokite (hydrated iron sulfate) formed a gel that cements during the humidification,
preventing irrigation and leaching of the heap. In this context, a blending program is implemented for
the grade of szomolnokite to be diluted, to avoid compacting the heap, improving the performance in the
leaching process. Geometallurgical practice improve the mineral processing performance, that can affect
the costs and increase the heterogeneity of the product. An example is Mina Salobo in Maraba, Brazil
(Sousa et al.| [2019) that shows a high variability in metallurgical recovery of copper (average 82.47% + /-
14%). The application of a geometallurgy program, showed early results where the trend of metallurgical

! Cite as: Garrido, M., Townley B., Ortiz J., Castro, J. (2020) Integrating geometallurgical best practices in CIM definition
standards guidelines, Predictive Geometallurgy and Geostatistics Lab, Queen’s University, Annual Report 2020, paper 2020-15,
257-270.
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recovery of copper changes significantly (average 86.76% +/- 4%). Geometallurgical studies integrating
data that is already available (e.g. textures, mineralogy, hardness, geophysics, geochemistry, among others)
can significantly improve the planning and reduce the variability in performance during operations. It is
therefore cheap (no additional cost) to account for information already available.

The Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Definition Standards on mineral
resources and reserves establishes guidance on the definitions of mineral resources, mineral reserves, and
mining studies. The Mineral Resources, Mineral Reserve, and Mining study definitions are incorporated, by
reference, into National Instrument 43-101 — Standards of Disclosure for Mineral Projects (NI 43-101). This
document is intended as general guidance to assist professional geoscientists (or equivalent) and engineers
(or equivalent) in preparing high quality estimates of mineral resources and mining reserves that incorpo-
rate sound geoscientific, engineering, evaluation, and design practices. They are based on well-established
estimation and mine planning principles and are designed to provide general guidelines of best professional
practices employed in the preparation of mineral resources and mining reserves estimates. (CIM MRMR
BP 2019) The goal of this research is to improve best practices by identifying paragraphs in the “CIM
Estimation of Minerals Resources and Mineral Reserves Best Practice Guidelines” document (published in
mrmr.cim.org v2019) where geometallurgical best practices can complement the conventional definition of
mineral resources and mining reserves. The aim is to demonstrate the importance of geometallurgical in-
formation and models in the development of mining project, particularly for metals. This will be supported
through industry case studies already published in the literature.

2. Geometallurgical variables and modelling

2.1. Attributes for sampling and modelling

In general, some common geometallurgical variables that require different definitions are:

o High Definition Mineralogy: in this approach, grade of minerals (ore and gangue) are more im-
portant than geological code (for example lithology, alteration, mineral zone, structural zone). Un-
derstanding key minerals and distributions can support the geometallurgical models. Assays such as
XRD or QEMScan are common in the mining industry, and combination of different techniques, e.g.
modal mineralogy using geochemistry samples (analytic methods ICP, XRF, ASS, among others) and
model calibrations using XRD or QEMScan data. In this context, grain size, degree of liberation and
associations of minerals may be included.

o Grindability: Bond Work Index for ball mill (BW1i) test determines the hardness of the rock (it is a
proxy to estimate the throughput in mineral processing). The Work Index is used when determining
the size of the mill and grinding power required to produce the required ore throughput in a ball mill
. Simulations and modeling of this test show that factors as Particle Size, feed, % passing,
makeup water, etc. are operational factors difficult to standardized (Tavares and Kallemback, 2013),
and changes in these factors are critical in results. SAG Power Index (SPI) or Starkey Test for SAG
mill: provides the time (minutes) required to perform a specific milling work, from a feed size to an
output size. SAG Mill Comminution (SMC) is another test, grindability is a function of the specific
energy applied and the percentage of product generated in the impact fracture of a specific particle
size.

« Leaching test: aqua regia digestion or multi-acid (4-acid) digestions, are very effective dissolution
procedures for multi-element analysis at trace levels of detection. However, there can be a loss of
volatile elements (e.g. B, As, Pb, Ge, Sb) during these types of digestion and some refractory minerals
(especially oxide minerals) are only partially digested. Other attributes are important in this test, for
example soluble grade key elements, net acid consumption by tonnage processing and permeability.

+« Kinetics of Rougher Flotation: maximum recovery with prolonged flotation time or "infinity”,
mineral characterization, and geochemistry (feed or concentrate) in a flotation process, etc. (SGS

2007)
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e Others: for example pollutant grades, rheological behavior, sedimentation, specific gravity, density,
etc.

In case of high definition mineralogy grade, this is the most important to understand the geometallurgical
behavior in mineral processing. Many case studies are known and published related with the mineral
characterization in the geometallurgical studies. A case study of a porphyry copper deposits in Peru, Cerro
Corona, in Cajamarca region is presented as an example a fully geometallurgical study.

2.2. Case study: mineralogical predictions

In the case study, we show an application of mineralogical information to define GMUs (Geo Metallurgical
Units). Cerro Corona is a mining operation that is located in Cajamarca, Peru (1), it is a Cu / Au
porphyry deposit hosted in diorite (14.4 to 13.35 million years) that intrudes the calcareous phase (yumahual-
cretaceous). It has been operated by Gold Fields Limited since 2004, it has mineral reserves of 767 Mlb
copper and 1.9 Moz gold.

Figure 1: Cerro Corona mine location.

A dataset of XRD (quantitative X ray diffraction ray X) and QEMScan (semi-quantitative evaluation of
materials by scanning electron microscopy) are available. Characteristics of these tests are expensive and
take time to obtain results. To implement geometallurgical models in short term mine planning, we use the
IR (infra-red wavelet measurement) to predict mineralogical grades, calibrating the model with XRD and
QEMScan values. Using Machine Learning algorithms (Random Forest regression) we identify the range of
the IR curve that may predict the grade of different minerals. Figure [2|shows the spectrum of one sample
(blue curve) and range of importance that is correlated with the KFeld grade estimation (gray curve).
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Figure 2: Standardized spectrum of one sample (blue curve) and range of importance that is correlated with the KFeld grade
estimation (lead curve), algorithm Random Forest Regression.

That model to predict KFeld was calibrated with QEMScan dataset, and used to predict the KFeld in

XRD dataset. Figure |3|shows the cross validation between KFeld predicted and KFeld measurement with
XRD.
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Figure 3: Cross validation between KFeld predicted with IR curve and KFeld measurement with XRD.

This calibration is performed for all minerals that are identify as key variables to predict geometallurgical
attributes. The advantage of this methodology is the speed of measurement of KFeld grade, as it may take
only few minutes and portable IR measurement are available in the commercial market.
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2.3. Case study: definition GMUs

In this application, work index was modeled based on mineralogy to define GMUs and geochemistry as a
secondary variable for multivariate estimation. A study based on geological logging and behavior of mineral
processing, show that hydrothermal alteration is a good preliminary proxy to define GMUs. It is proposed
to define the hydrothermal alterations based on a corresponding nomenclature with the mineral associations
composition of major minerals for each type of alteration, common in porphyry copper deposits, from the
mineral characterization by predominant QEMScan mineralogy of each one. These are presented in their
probable paragenetic order, from earliest to latest.

=

0.1

0.01

0.001

0.0001

0.00001

Potassium alteration — K: This corresponds to the earliest and highest temperature alteration, charac-
terized by the association feldspar-K, albite, biotite / muscovite (sericite / illite), quartz, with accessory
minerals pyrite, calcite, montmorillonite, magnetite, chlorite and chalcopyrite (Figure .

Quartz-Sericite / Sericite-Chlorite alteration — QS: The quartz-sericite and / or sericite-chlorite al-
teration corresponds to a hydrolytic alteration superimposed with medium intensity on the earliest
potassium alteration. The mineral association is composed mainly of quartz, micas (sericite) and
feldspar-K, and accessories goethite-limonite, pyrite, albite, and montmorillonite.

Quartz-sericite-clay alteration - QSCC: Alteration majority association of quartz, micas (sericite-illite),
microcrystalline pyrite, reflects a process of hydrolytic alteration of increasing intensity compared to
the QS alteration, alteration that overlaps and destroys previous K and QS alterations, as evidenced
by the occurrence of remaining K-feldspar.

Advanced argillic alteration — AA: The advanced argillic alteration, characterized mainly by quartz,
reflects the state of greatest intensity of hydrolytic alterations, with pyrite mineralization, and mineral
residuals from pre-existing alterations, such as feldspar-K and micas, and a diversity of accessory
minerals.
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Figure 4: Modal proportion of mineral associations for potassium alteration K.

The mineralogical information is important to define the GMUs based on geological variability and
trends. These GMUs can be modeled in space, generating solids with volume / tonnage that characterize
the geometallurgical attribute (Figure. This model was validated from a statistical, geological and spatial
standpoints.
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Figure 5: Modelling of geometallurgical units, plant view.

2.4. Case study: geochemical proxies

The available information must be formatted for processing by the different modeling methods. This
apparently trivial task may consume a significant amount of time, so it should not be minimized. The
main objective is to prepare the database for the application of conventional statistics / geostatistical tools.
This requires that every piece of information must be attached to spatial coordinates. This allows the
calculation of spatial correlations, and also the cross correlations between variables, which are necessary
for the application of estimation and simulation techniques (Isaaks and Srivastava, 1989) (Goovaerts, 1997)
(Deutsch and Journel| [1998). Figure [6] shows plots of variation of the concentrations of the elements Al,
Ca, K, Mg and Na as a function of Work Index, and discriminated according to the type of hydrothermal
alteration, based on their geochemical classification. Although there are overlaps between the variations
of Work Indexand concentrations of these major elements according to the lithofacies of hydrothermal
alteration, the trend of higher values of this parameter in potassium alteration, to lower values in advanced
argillic alteration is clear.
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Figure 6: Plots of variation of the concentrations of the elements Al, Ca, K, Mg and Na according to WORKINDEX,
determined according to the type of alteration based on geochemical classification. Legend: FRE = fresh rock; Alterations: K
= potassium; QS = quartz-sericite / sericite-chlorite; QSCC = quartz-sericite-clays; AA = advanced argillic.

2.5. Case study: geometallurgical modelling

In the case study, the traditional kriging approach does not have goods performance, because the density
of information for Work Index was not enough to create a robust block model prediction. Figure[7]summarizes
the methodology of cross validation to select the best estimation tool to populate the block model.
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Figure 7: Cross validation methodology must be clear and reproducible to choose best estimator.

The cross validation was performed to select the best estimator in the case study based on linear corre-
lation between true / estimated value, using Ordinary Kriging (p=0.36), Cokriging (p=0.41), Multivariate
linear regression (p=0.79) and regression Random Forest (p=0.81). Figure |§ presents a workflow diagram
showing the recommended methodology for estimating the geometallurgical block model. To estimate the
comminution geometallurgical parameter, it is necessary to first estimate the total rock geochemistry in
space. This estimation can be made; (1) considering a single domain (without separating estimation units,
not recommended) thus generating soft limits, (2) considering different domains (GMUs) generating hard
limits or, (3) by means of indicator kriging by domains to generate probabilistic limits. In this case, the geo-
statistical estimation of geochemistry was performed by domains using ordinary kriging. Once the geochem-
istry has been estimated, the geometallurgical variable Work Index is calculated using linear multivariate
regression based only on geochemistry data.
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Figure 8: Hecommended methodology for estimating the geometallurgical block model.

Ordinary kriging estimation was used to populate the geochemical attributes for all blocks. For each
block, the linear equations were applied to calculate Work Index. Figureshows a cross-sectional view (left)
and a plan view (right) at elevation 3805 m.
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Figure 9: Estimated block model for the Work Index variable. View in cross section (left) and in plan (right). The highest
values are in red and the lowest in blue.

3. Geometallurgy on CIM Estimation of Mineral Resources and Mineral Reserves

This section enumerates some paragraphs to propose good practices in the CIM Estimation of Mineral
Resources and Mineral Reserves document about geometallurgy.

3.1. Suggestion 1: Critical elements to estimate (based in geological characterization)

Page 16 (line 17), section Mineral Resource Estimation, Introduction:
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Critical elements to a Mineral Resource estimate are:

o consideration of the appropriate geological interpretation,
e assumed mining method and mining rate,
e assumed mineral processing method and recoveries, and

e the application of reasonably developed economic parameters based on generally accepted
industry practice, experience, and understanding based on deposit location, shape, and available
testwork of rock characteristics, product recoverability and value.

In this section, the document specifies ‘critical elements to a Mineral Resource estimate are assumed min-
eral processing method and recoveries’ but it is not clear which geometallurgical attributes, methodologies
and the sources of information. We recommend using multivariate geostatistics, using geological information
as input to model (e.g. logging, mineralogical, geochemical, geophysics, among others). For example in the
case study shown in the previous section, the use of geochemical variables supports the estimation of Work
Index. The mineralogical data was used to validate the definition of GMUs based on geological logging
and geochemical grades, and the block model estimation was performed with multivariate linear regression.
Figure |10 shows the cross validation and equation to calculate Work Index.

WORKINDX = (0.3786 * AG_PPM) + (-0.1553 * AL_PCT) + (-

— ‘ 0.001801 * AS_PPM) + (-7.4813E-4 * BA_PPM)
_ — +(0.7821 * BE_PPM) + (-0.01732 * BI_PPM) +
o] olour (0.3986 * CA_PCT) + (-0.05719 * CD_PPM) +
s | ®QSARG3) (0.02691 * CO_PPM) + (9.155E-4 * CR_PPM) +
ol |aancny o+ AR - (-0.3603 * CU_PCT) + (-0.1206 * FE_PCT) + (-
s | | @QSCCSIL- ARG.1 + ARG.3) st 0.003554 * GA_PPM) + (0.1338 * K_PCT) + (-
T V4 0.03566 * LA_PPM) + (0.02738 * LI_PPM) +
N O it _ (1.2491 * MG_PCT) + (5.1287E-4 * MN_PPM) +
g ... LY (-9.1102E-4 * MO_PPM) + (2.604 * NA_PCT) +
§ e ¢ SORSPKERRY, (-0.06083 * NB_PPM) + (0.02288 * NI_PPM) +
__{"1'-;,'-:- : (5.4861E-4 * P_PPM) + (0.002567 * PB_PPM) +
o o - (0.01073 * S_PCT) + (0.006196 * SB_PPM) +
R i (0.1692 * SC_PPM) + (0.004008 * SR_PPM) + (-
- * I 7.9119 * TI_PCT) + (0.01703 * V_PPM) + (-
e AR S . 0.07155 * W_PPM) + (-0.251 * Y_PPM) + (-
e & ot 5.6452E-4 * ZN_PPM) + (-0.008661 * ZR_PPM)
6Wa W5 A via e b W aSIe WD We Wa we wb we +(-0.2809 * AU_PPM) + 13.0801

Figure 10: Cross validation in estimation of WORKINDX using geochemistry variables.

3.2. Suggestion 2: Use of non-linear estimation methods or multivariate

Page 21 (line 22) section Mineral Resource Estimation, Mineral Resource Block model:
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appropriate estimation method(s) or techniques for the resource model. Estimation methods include
polygonal, nearest neighbour, inverse distance to a power, various kriging approaches (e.g. ordinary
kriging, simple kriging, and multiple indicator kriging), conditional simulation, and other non- linear
estimation methods. The choice of method(s) should be based on the geology, the attribute/variable being
modelled, quantity and spatial distribution of data, complexity of grade distribution within the deposit,
presence ot high-grade outliers, results of reconciliation studies for projects with production histories, and
the anticipated end use of the Mineral Resource block model.

In this section, the document specifies ‘The Practitioners must select appropriate estimation method(s)
or techniques for the resource model’. In the geometallurgical block model estimation, it is important to
highlight the multivariate tools, for example the multiple linear regression. To support geometallurgical
modelling, multivariate geostatistical techniques are recommended (Wackernagel, 2003). Geometallurgical
samples are usually scarce and expensive, then the support of secondary variables or proxies (geochemistry as
ICP, geophysical as Natural Gamma, structural information as UCS, ete.) are recommended to obtain more
robust models (Garrido et al.| 2020). Multi-element geochemistry can provide bulk mineral characterization
of hydrothermal alteration associations to support predictive geometallurgical modeling in Porphyry copper
deposits (Townley et all [2018). The use of synthetic variables (mathematical combination of secondary
variables that have good correlation with primary variable) are highly recommended to obtain robust models
with acceptable time and effort of users (Baeza et al.| 2018). One critical aspect of predicting response
geometallurgical variables is that they are usually nonadditive (the response of block is not necessarily the
average of the response of the discretization of the block), and traditional linear methods, such as Kriging,
will not work well on such non-linearities. The use of non-linear regression models may alleviate this where
additive proxies are used to predict non-additive responses (Sepulveda et al. 2017). Using geostatistical
simulations, if they exhibit spatial correlation, is also a wvalid approach. In this stage, geometallurgical
variables are estimated in space (Bilal, 2017), (Deutsch et al.| 2015) (Deutsch, 2016) (Boisvert et al., 2013)
(Coward and Dowd| 2015) but the mining scheduling and mineral processing values depend on the time (costs
by tonnage processed, efficiency, recovery, tonnage per day, etc.) For example, to estimate geometallurgical
variables in a block model (Deutsch et al., 2015)) usually the geostatistician or orebody modeler estimates
the georeferenced variables in space (corregionalized variable).

3.3. Suggestion 3: Relationship of geometallurgy and mine planning

Page 45 (line 46) section Mineral Processing, Development Stage Properties:

Mineral processing recovery, design and cost requirements in support of the preparation of Mineral
Reserve statements for development-stage projects should include test work on samples of mineralized
material and waste material that might be incorporated i the feed to the process plant. Test work can
be performed on one or more master composites selected and prepared so as to represent the material
that 1s expected to be delivered to the process plant. The testing objectives are to determine the optimal
processing selection, the nature of the variability within the deposit, metal or mineral recovery level to
a saleable product(s), mineral hardness and abrasion values, and required consumables such as reagents
to achieve the predicted recovery. In the course of such testing, the handling or treatment for deleterious
elements should be determined and samples for tailings disposal design will be generated.

In this context, the nature of the variability within the deposit conditions the geometallurgical factors
to determine the optimal processing selection. The metallurgical performance may change with the mixing
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of material, then mine planning should be considered in this paragraph. In short term mine planning, the
correct incorporation of geometallurgical factors can decrease operational cost (real time capacity response,
mineral characterization, correlations, mixing blending, among others), in long term mine planning account-
ing for geometallurgical constraints can improve the NPV avoiding bias and decreasing uncertainty. In
this context, the Table below shows many consequences of considering geometallurgical models in mining
planning,.

Table: comparison between plan with/out consider GMM model

Source Plan with GMM Plan without GMM
Uncertainty High quality model Bias VPN

SAG Mill Cost of blending Bottleneck problem: non-compliance

SAG Mill Cost of blending Increase size mill output

Recovery Optimal recovery and grade concentrate Low recovery and grade concentrate

Recovery Cost of blending: Homogeneity Lost value conditioning time

The Table shows how geometallurgical models may affect the NPVand mineral resources assessment. In
this context, geological knowledge can be included in the estimation of metallurgical attributes. If estimation
of geometallurgical attributes is not of good quality, mine plans will have high uncertainty (maybe bias) and
the scheduling in long term will define the NPV, affect the value of the project.

In Cerro Corona case study, the long-term geometallurgical model is based on modified equations and
has been used for long-term planning. High quality proxy variables were used to estimate geometallurgical
attributes in long term. For example, semi-quantitative analysis may have less precision than quantitative
analysis (perhaps suitable for short-term planning models). In the long-term case, geological proxies were
geochemical attributes, because these samples are validated through a good sampling protocol and have
reasonable quality accuracy and quality control. The models were reconciled between short / long term
with good results. The conciliation is similar to mineral resources, measurements of long / short term are
compared in a reasonable time frame.

4. Conclusions

The aim of the paper is to show good practices in the estimation of geometallurgical attributes considering
CIM standards, for which the key points were highlighted. The importance of including geology in estimating
geometallurgical attributes was discussed: estimation of these attributes requires secondary information due
to the small dataset size for of information for these tests, which requires the use of secondary information
with high sampling density (logging, geochemistry, model mineralogy, geophysics, etc.) The use of geological
data can help from an interpretative point of view (to generate GMUs for example) or quantitatively (support
of secondary variables for the co-estimation of geometallurgical attributes). In the eventual case of use as a
secondary variable, the accuracy of the geological data and its representativeness in terms of QAQC sampling
protocols must ensure an estimation error that is within the temporal scope of mine planning.

Mine planning is known to define NPV and long-term scheduling. Geometallurgical models affect the
NPV and the evaluation of mineral resources and mining reserves: if the geometallurgical models are not
considered in the planning of the mine, the real economic benefit decreases, which can generate a bias in
the estimation of the value of the project (plus additional uncertainty). The best practice according to CIM
must consider geometallurgical variables in the estimation of mineral resources and mining reserves, which
have been described in this article.
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ANEXOS

ANEXO GARRIDO ET AL. 2017A

Modeling of geological attributes is a fundamental step in the mining process where quality
resources are defined for mining and metallurgical processing. The metallurgical recovery of
sulphide minerals in the flotation stage is a variable that depends not only on geological attributes
such as ore type, alteration, etc., it also depends on operational parameters such as pH, quantity
and quality of chemicals such as thickeners and collectors, residence time, granulometry, etc. These
factors make modeling difficult, since the recovery might depend on factors external to geology.
In this research we studied multivariable correlations that allow prediction of metallurgical
recovery (Rec30 - percentage recovery of the ore after 30 minutes of flotation) through multivariate
geostatistics: for this purpose an estimation of the recovery using co-kriging was performed taking

into account variables that have high correlations.

In this case study a high correlation between iron grades and recovery in potassium-rich alterations
was found, which is attributed mainly to the amount of pyrite that makes the process difficult.
Additionally, the incorporation of co-kriging allows increasing the estimated tonnage, when there
is little information about the primary variable (but not the secondary variable). The advantage of
using classical geostatistics is that recovery models can be obtained with good results in terms of
cross-validation (good prediction), which overcomes the problem of non-additivity in the case of
the generation of a block model for geometallurgical variables. In addition, the advantage of using
co-kriging is that the information of this secondary variable is much denser, hence provides
improved model resolution. The metallurgical recovery samples are usually expensive and few, the
incorporation of secondary well correlated variable then generate a more robust and reliable

recovery model.
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ABSTRACT

Modeling of geological attributes is a fundamental step in the mining process where quality resources are
defined for mining and metallurgical processing. The metallurgical recovery of sulphide minerals in the
flotation stage is a variable that depends not only on geological attributes such as ore type, alteration, etc.,
it also depends on operational parameters such as pH, quantity, and quality of chemicals such as thickeners
and collectors, residence time, granulometry, etc. These factors make modeling difficult since the recovery
might depend on factors external to geology.

In this research we studied multivariable correlations that allow prediction of metallurgical recovery (Rec30
- percentage recovery of the ore after 30 minutes of flotation) through multivariate geostatistics: for this
purpose, an estimation of the recovery using co-kriging was performed considering variables that have high
correlations. In this case study a high correlation between iron grades and recovery in potassium-rich
alterations was found, which is attributed mainly to the amount of pyrite that makes the process difficult.
Additionally, the incorporation of co-kriging allows increasing the estimated tonnage when there is little
information about the primary variable (but not the secondary variable).

The advantage of using classical geostatistics is that recovery models can be obtained with good results in
terms of cross-validation (good prediction), which overcomes the problem of non-additivity in the case of
the generation of a block model for geometallurgical variables. In addition, the advantage of using co-
kriging is that the information of this secondary variable is much denser, hence provides improved model
resolution. The metallurgical recovery samples are usually expensive and few, the incorporation of
secondary well correlated variable then generate a more robust and reliable recovery model.

INTRODUCTION

Modeling of geometallurgical variables has become a fundamental step in the evaluation of mining project
[Brissete, 2014], [Lund, 2015]. In this context 2 different modeling approaches are considered: The former
consists of adding geometallurgical parameters without scaling to the block model (SPI, BWi, Recovery,
kinetic process factors, acid consumption, sedimentation rate, etc.). The latter consists of generating process
models for industry scaling, in which laboratory and pilot plant tests are considered using statistical data
from operation. Sampling data from plant is also used [Lamberg, 2011].
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Metallurgical recovery is a non-additive variable and depends on in situ geological attributes such as:
mineralization, lithology, alteration, mineral associations, among others. On the other hand, recovery also
is affected by metallurgical attributes such as: flotation time, amount, and quality of collectors, frother,
surfractant, pH, etc. Classical geostatistical methods cannot be applied to geometallurgical recovery due to
the following factors [Deutsch, 2015]:

e Nonlinearity: Estimates at different support from measurement can lead to bias. This drawback is
also present in reblocking.

e Unequal Sampling: Recovery test are expensive, hence are usually applied in few drillholes, those
with economic profit.

e Multiscale Sampling: Recovery is usually measured over a support of 30 meters, much longer than

other variables which are typically measured every 1 or 2 meters.

Usually, the recovery is estimated with different regression models that depend on other variables such as
the amount of total copper, the solubility rate, amount of analytical acid, etc. To be able to apply these
models, different geometallurgical estimation units must be modeled for the variable recovery. The
definition of these units assumes a metallurgical behavior comparable between samples within each unit.
In other words, 2 geometallurgical units are considered different if they show significant differences in the
outcome of metallurgical processes, given a particular circuit.

This research defines potassic-rich altered rocks as a geometallurgical unit, this according to a geostatistical
study [Garrido, 2016]. In addition to this, the type of potassic alteration is commonly associated with
magnetite or hematite, anhydrite, and carbonates with iron while the clay minerals are absent. In some
types of deposits, the feldspar is associated with biotite and anhydrite through a replacement by diffusion.

Figure 1 Optical micrographs illustrating the copper ore mineralogy and textures. Source: Benzaazoua (2002).

The sulfur/metal ratio is moderate, the proportion in pyrite being 3:1 (Figure 1, right). The pyrite (FezS) is a
sulfide with high content of iron present in minerals of hypogene origin, has a disseminated distribution
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and is strongly associated with the chalcopyrite (CuFeS2), the main mineral recovered in copper flotation.
Pyrite usually brings complications from an operation point of view because [Majima, 1969]:

e [t generates electrochemical problems in milling, including galvanizing and corrosive effects to
machinery.

e If pyrite and chalcopyrite are intergrown and liberation of chalcopyrite is low, recovery will
decrease. This occurs because chalcopyrite requires at least 70% free surface for proper flotation.

e If the proportion of pyrite is very high it requires further alkalization of the flotation cell to achieve

adequate depression of pyrite, problem which also increases reagents consumption.

Due to the negative impacts of pyrite on the recovery, a multivariable study was conducted [Wackernagel,
2003] between the potassic alteration units and recovery, looking for statistical correlations and space.

METODOLOGY

Geometallurgical unit and multivariate correlations

The potassic alteration associated with biotite was defined as geometallurgical unit (there are no significant
presence of clays, mineralogy is relatively constant and given the lithology there should be no
granulometric differences or hardness that may affect the grinding process).
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Figure 2 Statistical distribution (normal) for recuperation (geometallurgical variable)

The probability graph shows a unimodal distribution, without important breaks on the trend line. The
histogram in Figure 2 shows a normal distribution for the recovery, with an average of approximately 81%
considering 484 composite data over 30 m approximately. In the case where the proportion of feldspar
potassium (according to login) is greater than the biotite, for sulfide minerals (mainly chalcopyrite), we
found a significant statistical correlation (-0.8) between the amount of iron and the value of the recovery

(Figure 3).
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Figure 3 Scatterplot and correlation between Fe and Rec30.

This high negative correlation can be explained by the amount of pyrite present in the chalcopyrite ore rock.
The pyrite has high iron content and reduces the recovery of copper due to low liberation of the
chalcopyrite, when intergrown. Low iron contents (<1.5%) indicate that pyrite is not found massively to
substantially decrease the free surface of chalcopyrite and affect recovery.

Estimation and study cases

Due to heterotopic condition, which is usually present in geometallurgical variables, traditional co-kriging
was performed as an estimation method for the recovery, with iron as secondary variable. To estimate non-
additive variables, the support of the estimation (usually block model) is the same or like the support of
measurement of samples (composites). In this case, if block dimensions are like the drilling diameter and
the length of the block is the length of the composite measurement, then recovery on the composite can be
considerate like the recovery of the block support. This hypothesis enables discrete estimation reducing the
bias that would be generated by a non-additive variable estimation.

Dense simulation of the metallurgical recovery and the iron measured in tests was performed. A total of 13
test cases were selected with different sampling density of the primary variable (recovery) and full sampling
of the secondary variable total iron Fe. In this case a total of 5,000 samples are considered. The test cases are
summarized in the following table (Table 1):
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Table 1 study cases for testing co-kriging estimation.

Case Number Number of # Fe assay # Rec assay Percentage
samples (all) samples samples
1 5,000 5,000 25 0.5%
2 5,000 5,000 31 0.6%
3 5,000 5,000 50 1%
4 5,000 5,000 100 2%
5 5,000 5,000 152 3%
6 5,000 5,000 200 4%
7 5,000 5,000 250 5%
8 5,000 5,000 500 10%
9 5,000 5,000 1,000 20%
10 5,000 5,000 1,500 30%
11 5,000 5,000 2,000 40%
12 5,000 5,000 2,500 50%
13 5,000 5,000 5,000* 100%

Percentage: Rec assay samples / Fe assay samples

*Equal sampling or Homotopic sampling
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RESULTS AND DISCUSSION

In case study 1 only 0.5% of the samples contain hard data on recovery, equivalent to 25 samples compared
to 5,000 Fe assays. In contrast, in case study 12, 2,500 recovery data points contrast respect to 5,000 Fe assay
samples, this last case providing robust statistics:

Histogram Rec, number of data: 0.5% Histogram Rec, number of data: 50%
— Number of Data 25 N Number of Data 2500
number trimmed 4975 | number trimmed 2500
mean 85.893 mean 83.827
200 std. dev. 4.641 ) std. dev. 5.402
coef. of var .054 1204 coef. of var .064
maximum 91.085 4 maximum 98.794
upper quartile 89.250 upper quartile 88.448
150 median 87.280 1 median 83.990
lower guamle 82.998 B lower quartile 80.180
minimum  74.100 080 _] minimum  39.670

Frequency
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Figure 4 Histogram of rec30 for study case study 1 and 12.
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For each case study, we proceeded to estimate using ordinary kriging and ordinary co-kriging to observe
the changes in the predictive models in terms of robustness, precision, and accuracy.

The Figure 5 shows a comparison between the estimates of ordinary kriging and co-kriging for the 13t case
(homotopic sampling), where we can visually observe that in both cases, they achieve reproduction of local
means without major differences.

Figure 5 (Left) Estimation KO in case 13. (Right) Estimation Co-KO using Fe as second variable.
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Figure 6 shows the comparison for case study 7, where 250 samples of recovery contrast respect to 5,000 Fe
assay samples. In this case smoothing differences can be seen in the estimated models.

rec30

84.0

84.0

81.0

81.0

]

Figure 6 (Left) Estimation KO in case 1. (Right) Estimation coKO using Fe as second variable.

The results (Figure 7) indicate that co-kriging reproduces the average better than the kriging. In addition,
variance is higher, thus estimating results with greater dispersion. On the other hand, the co-kriging in the
first case estimated recoveries over 100% leading to incongruence.
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cv 0.0644 0.0393 0.0499 cV [ 0.0644 0.0479 0.0483 cVv
Skewness -0.694 -0.5856 -0.6836 Skewness Skewness 20.694 -0.5835 -0.5701 Skewness

Figure 7 (Left) Boxplot rec30 estimated (KO and co-KO) and composites in case 1 (Left) and case 8 (Right)

To reproduce the global means in the block model on every estimation unit, 3% of sampling is required.
This can be observed in Figure 8 (left) where the global averages are summarized for different percentages
of sampling, for the kriging and the co-kriging.
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Figure 8 (Left) Average recovery estimated in diferent cases. (Right) Kriging variance (error of estimation) and data
estimate with co-kriging (Red) and Ordinary Kriging (blue).

The vertical lines in Figure 8 (left) show the standard deviation of the estimate (associated with the error
variance). For greater sampling densities, the estimation error decreases (precision) and the average rate is
close to the real (accuracy).

CONCLUSION

According to Figure 8, it is not recommended to do estimates with sampling representing less than 3 per
cent of the data as it can lead to significant bias. Figure 8 (right) shows the number of estimated data and
the error estimation for different sampling densities. In this case, the technique of co-kriging presents an
important improvement in low sampling densities, since (using secondary information) allows estimating
more data. Despite this, the error is greater in these cases than kriging.

For a higher sampling density (> 2%), co-kriging is presented as a better estimation technique than kriging,
reducing the estimation error and generating more robust models with greater variability than kriging.
When sampling is homotopic (sampling density of 100%) kriging and co-kriging provide comparable
results, where it is recommended to use kriging in terms of computational time and additional work
modeling the LMC.

Finally, co-kriging presents advantages when correlations are detected on a geometallurgical unit of
estimation if secondary variables with high information density are available. The use of this secondary
information can improve the quantity and quality of results.
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ANEXOS

ANEXO GARRIDO ET AL. 2017B

Mine planning in open pit defines the material to be extracted when it will be extracted and its
destination. Conventional scheduling usually considers block values based on geological
parameters such as grade of the metal of interest, its mineralogy, and parameters external to
geology. The latter parameters correspond, for example, to economic parameters, opportunity
costs, types of plant and plant processes. The scope of this research is to consider geometallurgical
constraints into the optimization problem known in mine planning as constrained pit limit problem
(CPIT).

In the last years, numerous works have proven that there is a strong effect of clays on the flotation
recovery process (chalcopyrite or bornite minerals). This impact generates operational problems
that, if not controlled, can decrease metallurgical recovery. For example, due to clays are usually
soft rocks, the grinding time is modified, thus, the recovery which is related to the granulometry.
In addition, clays increase the costs associated on water input, since they require additional
consumption to obtain the expected recovery. All these factors can be handled over long periods
of time, but in short times operation the response is not as immediate and effective as required to
be economical.

In this work, we propose a methodology which add a homogeneity condition to the optimization
problem. It consists in the extraction of minerals with similar geometallurgical properties (in this
case, the modeled amount of clay) on each period, and therefore the operational parameters in the
plant would remain relatively the same. The algorithm was applied to a case study where zones
with different levels of alteration and clay content were modeled. The valuation considered
standard economic parameters of the mining industry.
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ABSTRACT

Mine planning in open pit defines the material to be extracted when it will be extracted and its destination.
Conventional scheduling usually considers block values based on geological parameters such as grade of
the metal of interest, its mineralogy, and parameters external to geology. The latter parameters correspond,
for example, to economic parameters, opportunity costs, types of plant and plant processes. The scope of
this research is to consider geometallurgical constraints into the optimization problem known in mine
planning as constrained pit limit problem (CPIT).

In the last years, numerous works have proven that there is a strong effect of clays on the flotation recovery
process (chalcopyrite or bornite minerals). This impact generates operational problems that, if not
controlled, can decrease metallurgical recovery. For example, due to clays are usually soft rocks, the
grinding time is modified, thus, the recovery which is related to the granulometry. In addition, clays
increase the costs associated on water input, since they require additional consumption to obtain the
expected recovery. All these factors can be handled over long periods of time, but in short times operation
the response is not as immediate and effective as required to be economical.

In this work, we propose a methodology which add a homogeneity condition to the optimization problem.
It consists in the extraction of minerals with similar geometallurgical properties (in this case, the modeled
amount of clay) on each period, and therefore the operational parameters in the plant would remain
relatively the same. The algorithm was applied to a case study where zones with different levels of alteration
and clay content were modeled. The valuation considered standard economic parameters of the mining
industry.
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INTRODUCTION

An approach often used in mine planning is to maximize the net present value (NPV) subject to different
operational conditions, creating a optimization problem that can consider many restrictions (Lane, 1988).
In the case of an open pit, they tend to define precedence constraints, which represent a geometric constraint
associated with rock slope stability (Whittle, 2009). In mining industry, algorithms which deliver
satisfactory solutions by defining different pushback and final pit are widely used, in which way maximize
the NPV along a mining project (Fytas et al., 1993; Ohnson, 1969). Normally, these numerically correct
solutions are not operationally feasible; therefore, design modifications are applied to finally define the
reserves to exploit.

Different restrictions can be added to the optimization problem, for example: mine production, plant
capacity, multiple destinations (stockpile), schedule or sequences (Kim & Zhao, 1994), secondary variables
of interest, among others. However, by adding additional constraints, the optimization problem becomes
very complex, requiring large calculation time and sometimes surpasses the available memory. This
scenario, motivate us to search alternatives methodologies that could handle such complexity from a
computational point of view.

In this research, we consider geometallurgical variables for the optimization problem. Different types of
clays generate operational metallurgical problems in flotation processes. Some minerals, include kaolinite
(stratified silicate), illite (phyllosilicate) and others are grouped by quantity in four categories: large (> 30%),
moderate (10% -30%), small (2% -10%) and minimum (<2%) (Chipera & Bish, 2001). Models of clay grades
are usually built using categorical variables based on geological mapping and/or X-ray diffraction (analysis
of clay speciation XRD). Clay variability in the metallurgical plant, generates many operations problems
which negatively influence the recovery of the metal of interest, generating mineral and economic losses.
Bulatovic quotes: “Clays are the main reason for low recoveries of copper and gold by flotation” (Bulatovic, 1997).

The focus of this research is to generate a multi-objective optimization algorithm, which can minimize the
variation of clay to be processed in the short term. This optimization problem was modeled considering the
Constrained Pit Limit Problem (CPIT) as base, which consists of the maximization of the NPV over a time
horizon, subject to block precedence and operational constraints; and, additionally, the minimization of the
variation of clay by period. To solve this optimization multi-objective problem, we considered the
metaheuristic called Tabu Search (Glover & Laguna, 1997), which can find solutions with a high level of
accuracy in reasonable computational time.

The next section will describe the methodology used to create a simulated deposit, which reproduce the
problem of mixing different clays on flotation process. Finally, a case study will present the application of
Tabu Search over the synthetic deposit, to maximize NPV and minimize the variation of clays. Results and

conclusions are shown.
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METHODOLOGY

The simulated study case corresponds to the surface area of a copper porphyry deposit. The hydrothermal
system is larger than the ore body, strongly affecting the foreign rock. The rock mass is composed primarily
of andesite. The deposit is dated from the late-eocene and the intrusive complex is of the diorite-type.
Kaolinite clays are strongly associated to sericitic alteration, which is presented superficially and covers the
largest area of the study. The mineralization is mainly composed of disseminate chalcopyrite (ore of
economic value) with poor indicators of secondary supergene processes. Dimensions of the body are not
known in depth, but to this research have been delimited to work with resources with low uncertainty
(Measured-Indicated Resources). Figure 1 shows a cross section with the orebody shape of interest.
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Figure 1 Ore body delimitation model section

Clays were modeled based on the model of sericitic alteration, in which four categories were proposed as
areas of large, moderate, small, and minimum presence of clay (increasing towards the edges and surface
of the area). The models were made based on geological mapping.
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Figure 2 Clays model section: Blue is minimum clay and red is large clay.

The approach of the multi-objective optimization problem is defined as follows: The main objective is
formulated according to CPIT (Espinoza et al., 2013) in which maximize NPV subject to precedence
constrains (pit form) and temporality (schedule). The second objective will be addressed as minimize
dilution of the exploitation over the time horizon T (Equation 1). Dilution (in mining) is the relationship
between waste and mineral in the extraction process. In this case, mineral will be considered as the most
frequent alteration in a time window, and waste represent the rest of the alterations (or grade clays). Using
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this definition, dilution can be described as the amount of majority material in a period (Equation 2). Clays
attribute will be represented as ai = {0, 1, 2, 3} where 0 is minimum clays, and 3 correspond to large clays.

Then, the minimization dilution problem is described as:

T
min { Z Dy } )

t=1

Where D is dilution in the period t:

E; )

Dzi
"TE M,

Mineral (M:) and Waste (E:) represented as the main alteration in the period #:
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It can be calculated:
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And the parameters to consider if is waste or mineral are defined as:
m; = mode{a; }

e = {a; | a; # my}

(6)

Tabu Search (TS) were created by Glover at the end of the 1980s (Glover & Laguna, 1997), which is a
metaheuristic search method that take advantage of local search. Giving the combinatorial aspect of the
formulation, we considered appropriate the use of these algorithms that sacrifice accuracy in the solution
to significantly reduce the processing times, allowing us to have good solutions in a reasonable execution
time.

88



RESULTS AND DISCUSION

Figure 3 shows the resources to be extracted in the different periods of time. It should be noted that the
solution seeks to maximize the NPV and decrease the "geometallurgical dilution" per period. In addition,
Figure 4, shows variability of dilution by periods, specifying the times where to expect higher dilution. The
information generated by this process can be considered, from a predictive point of view, to manage
operational parameters at the processing plant by considering the variability of clays which were modeled

as dilution.

Schedule for open pit
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Figure 3: Schedule for different periods each color (contour plot)

In Figure 4, the chart summarizes the general planning for the different periods of time from a point of view
tonnage / grade. The optimization did not consider keeping mine or plant tonnages constant over time (this
condition could be added in future work).
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Schedule (tonnage and grades) by period
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Figure 4: Tonnage and grades average by period

The results obtained with the TS algorithm, were compared with the optimization problem solved without
dilution restriction (CPIT). Table 1 shows the values of NPV for Dilution case and Base case. Dilution case
gives results very like to Base case in terms of grades and extracted tonnages. Both cases present low
differences in tonnage for period, which causes a decrease of the NPV in Dilution case (6% of difference in
average). The dilution decreases notably in most of the periods, generating a feed in the metallurgical
process with greater homogeneity. The reduction of dilution avoids economic losses that are not considered
in the evaluation since they are difficult to quantify.

Table 1 Comparison between base case and dilution case

Base case** Dilution case Percentage difference*

Period Dilution NPV [MUS$] Dilution NPV [MUS$] Dilution NPV [MUSS$]

1 10% 135 2.5% 95 -76.0% -30%
2 0.0% 249 0.0% 201 - -19%
3 0.0% 327 0.0% 294 - -10%
4 0.0% 413 0.0% 396 - -4%
5 0.0% 500 0.0% 486 - -3%
6 0.0% 577 0.0% 562 - -3%
7 0.0% 649 0.0% 631 - -3%
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8 0.0% 716 0.0% 698 - -2%

9 0.0% 775 0.0% 756 - -2%
10 4.1% 825 2.4% 808 -42% -2%
11 14% 868 15% 851 7.0% -2%
12 32% 896 24% 879 -26% -2%
13 28% 910 16% 883 -43% -3%
14 9.6% 928 8.8% 901 -8.3% -3%

* Difference: dilution case - base case

** Base case does not consider plant processing costs

CONCLUSIONS

Scheduling in mine planning is widely used in the mining industry. We propose an addition to traditional
optimization of the NPV, by considering other variables. Considering additional variables can improve the
operation of the short and medium term, but the complexity of the optimization problem is increased. We
considered the dilution generated by the management and metallurgical process of clays, which is inherent
characteristic of sericitic alterations. The problem was solved using the Tabu Search metaheuristic, which
results were compared to the CPIT formulation, used as Base case. In terms of tonnage and grade of metal,
the application of this methodology shown promising results. In addition to this, the methodology delivers
sequences with lower temporal dilution (higher homogeneity), which improves the predictive capacity of

the metallurgist.

The metaheuristic approach used in this work, helped to add new constraints that cannot be considered on
traditional formulation; and, due to the complexity of the numerical model, makes impossible to find an
optimal solution. We strongly recommend the use of this metaheuristic (or any other) to tackle additional
constraints that in mining project are not usually considered.
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ANEXOS

ANEXO GARRIDO ET AL. 2018

The access to real geometallurgical block models is very limited in practice, making difficult for
practitioners, researchers, and students to test methods, models and reproduce results in the field
of geometallurgy. The aim of this work is to propose a methodology to simulate synthetic
geometallurgical block models with geostatistical tools preserving the coherent relationship among
primary attributes, such as grades and geology, with mineralogy and some response attributes, for
example, grindability, throughput, kinetic flotation performance and recovery. The methodology
is based in three main components: (i) multivariate geostatistics, (ii) froth flotation simulation
models, and (iii) well known performance plant parameters. The simulated geometallurgical block
models look very realistic, and they are coherent in terms of geology and mineralogy, and
processing metallurgical performance responses are consistent with what is seen in practice. These
simulations can be used for several proposes, for example, benchmarking geometallurgical
modelling methods and mine planning optimization solvers. Simulations at small scales also serve
to represent drill holes campaigns and generate sample dataset incorporating geometallurgical
attributes and real spatial variability. The methodology is completely reproducible with no use of
proprietary models or methods. Implementations of all methods can be found in public domain
software, and different ore body types may be incorporated with little effort.
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ABSTRACT

The access to real geometallurgical block models is very limited in practice, making difficult for
practitioners, researchers, and students to test methods, models and reproduce results in the field of
geometallurgy. The aim of this work is to propose a methodology to simulate synthetic geometallurgical
block models with geostatistical tools preserving the coherent relationship among primary attributes, such
as grades and geology, with mineralogy and some response attributes, for example, grindability,
throughput, kinetic flotation performance and recovery. The methodology is based in three main
components: (i) multivariate geostatistics, (ii) froth flotation simulation models, and (iii) well known
performance plant parameters. The simulated geometallurgical block models look very realistic, and they
are coherent in terms of geology and mineralogy, and processing metallurgical performance responses are
consistent with what is seen in practice. These simulations can be used for several proposes, for example,
benchmarking geometallurgical modelling methods and mine planning optimization solvers. Simulations
at small scales also serve to represent drill holes campaigns and generate sample dataset incorporating
geometallurgical attributes and real spatial variability. The methodology is completely reproducible with
no use of proprietary models or methods. Implementations of all methods can be found in public domain
software, and different ore body types may be incorporated with little effort.
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INTRODUCTION

Geometallurgy has become an important sub-field in mining engineering because of its benefits on the ore
quality on mine planning, plant performance and product quality. To incorporate these benefits into the
mining value chain, key metallurgical responses and proxy variables need to be captured into the block
model, which is the main input to solve many optimization problems in mine planning (Ortiz et al. 2015).
This enriched block model with geometallurgical variables is commonly termed a geometallurgical block
model (GMBM).

There are several methodologies for building such GMBM. The primary-response framework for building
geometallurgical models is a very solid methodology for geometallurgical modeling (Coward et al. 2009).
Primary attributes, such as grades, lithology and alteration can be proxies to response attributes such as
grindability indices, recovery, among others. As many of those response attributes are not additive,
traditional linear estimation methods are not valid to be used in the block model (Carrasco et al. 2008).
Typically, there are three complementary approaches to populate the GMBM with response variables. The
first approach is the use of predictive regression models, from simple linear regressions (Montoya et al.
2011; Boisvert et al. 2013), non-linear regressions (Carmona and Ortiz 2010; Keeney and Walters 2011;
Sepulveda et al. 2017), and clustering (Hunt and Jorgensen 2011). The second approach is simulating the
processing processes (Suazo et al. 2010). The third approach is the use of mineralogy as the main proxy.
Mineralogy is of enormous importance for geometallurgy as it plays a fundamental role in the
characterization of metallurgical responses (Lamberg 2011; Hunt et al. 2013; Yildirim et al. 2014; Lund et al.
2015). This approach, nevertheless, requires having the mineralogy characterization of the deposit, which
is expensive, often resulting in limited data available.

From the point of view of practitioners, researchers, teachers and students, there is another issue with
GMBM: an important lack of available GMBM for them to use, because the data of those are usually subject
to confidentiality agreements. This fact is the motivation to offer a methodology for the simulation of
GMBM, exemplified here with a porphyry ore body type, but it can be applied for any other type of mineral
deposit.

The only related research on methodologies for the simulation of geometallurgical block models, so far
according to the literature review done in this paper, is Lishchuk's thesis (Lishchuk 2016). In this thesis, a
methodology, termed geometallurgical testing framework, was proposed for building a synthetic ore
deposit model with focus on geometallurgy. This framework has three main modules: (i) a geological
module, (ii) a mineral processing module, and (iii) an economic module. The first two modules are the most
relevant modules for the simulation of synthetic geometallurgical ore bodies.

The main weakness of Lishchuk's methodology is the naive approach to simulate the spatial characteristic
of geology and grades using just simple ellipsoids enveloping the zone of influence of a particular lithology.
Imposing multivariate spatial correlations is critical to ensure the desired spatial characteristics are
reproduced with geological sense and coherence.

The contribution of this paper is a robust methodology to simulate a GMBM with openly available
geostatistical tools preserving the coherent relationship among primary attributes, mineralogy, and
response attributes.
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METHODOLOGY

To simulate the GMBM, four steps are performed: (i) Geological simulation, (ii) Mineralogy simulation,
(iii) Geochemical simulation, and (iv) Metallurgical simulation.

Geological Simulation

In this step the desired geology is imposed by real or synthetic drill holes. These synthetic drill holes are
built based on the geological knowledge and metallogenic characteristic of the targeted deposit type
(Maksaev 1990; Sillitoe 2010).

Usually codes for lithology, alteration type and mineralization zone are assigned to samples in drill holes.
These geological properties are simulated in the deposit by indicator simulation (Deutsch 1998; Chilés and
Delfiner 2012; Pyrcz and Deutsch 2014). The actual implementation used here is the algorithm BlockSIS
(Deutsch 2006), which implements the smoothing algorithm MAPS (Deutsch 1998) to improve the contact
among categories and preserves their imposed proportions.

Mineralogy Simulation

In this step we relate mineralogy with geology. Mineralogy is often determined by mineralogical testwork,
such as QEMSCAN (Fennel et al. 2015), which provides mineralogical proportions. For each geological
domain, a multivariate spatial lineal model of coregionalization (LMC) is imposed. This LMC is determined
according to the relationships between minerals in each geological domain, for example, cuprite and
chalcocite should be found in the mixed or secondary enriched zone. The relationship can be determined
by correlation matrices or by (Baeza et al. 2016). The simulation within each geologic domain is performed
by the USGSIM algorithm (Manchuk and Deutsch 2012).

Geochemical Simulation

The elements of interest, such as copper, gold, molybdenum, silver and iron, and also deleterious elements,
such as sulphur, arsenic and fluorine, are often simulated directly with conventional geostatistics
(co)simulations methods (Chilés and Delfiner 2012). From the geometallurgical perspective, deleterious
elements could be crucial in beneficiation process and also in minimizing contaminants that affect the
economic value of the final product (Lane 1988).

Some researchers have linked chemistry composition to mineralogy in order to predict from elements the
minerals proportions (Lamberg 2011). Our approach goes in the other direction. From the simulations of
mineral proportions, we deduce element content. For illustration, in a porphyry copper deposit, we could
find the following relationships of copper grade in different mineralization zones:

CuT (%) in EnrSec > CuT(%) in Oxides > CuT(%) in PrimCpy > CuT(%) in PrimPy

where CuT(%) is the total copper grade. EnrSec (rock with secondary enrichment) is characterized by
minerals with high copper content such as chalcocite and covellite. Oxides are minerals affected by
oxidation/reduction reactions such as cuprite and chrysocolla. PrimCpy are primary rocks characterized by
sulphurs with high content of chalcopyrite. PrimPY are primary rocks characterized by low content of
chalcopyrite and high pyrite. Therefore, the mineral composition in each mineralization zone can be used
to derive the elements grades.
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Metallurgical Simulation

Metallurgical response can be estimated by regression models calibrated from testwork or reconciliation
data, which is the approach used in this paper, or by process simulation. Metallurgical simulators are based
on geological and operational parameters (Lishchuk 2016). The geological parameters are mainly controlled
by the mineralogical composition of the feed, whereas the operational parameters are controlled by the
attributes specific to the processes, for example in flotation, reagents have a high impact on recovery. Most
of the operational parameters are well-known for each mineralogy composition of the feed. Therefore, the
simulated mineralogy is used as input to metallurgical simulators (we focus on flotation process) and the
results are propagated into the GMBM.

CASE STUDY

This case study illustrates the application of the proposed methodology. A typical porphyry copper deposit
is simulated with four mineralized zones: oxides, primary enrichments (with chalcopyrite and pyrite as
main minerals), and secondary enrichment. For confidentiality, the database has been altered and
transformed to Gaussian distribution.

Geological Modeling

The main mineralized zones are: Oxides, containing oxides minerals; EnrSec, secondary enrichment;
PrimCpy, with high content of chalcopyrite; and PrimPy, with high content of pyrite. Figure 1 shows one

realization of the mineralized zones, obtained by indicator simulation.
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Figure 1 Distribution of mineralized zones, realization 1.

Geostatistical simulation allows to generate different equally probable scenarios conditioned to the
geological profile of a porphyry copper deposit.

Multivariate mineral characterization

The bivariate correlations were calculated for all mineralization zones. This correlation matrix was used for
co-simulating the proportions of minerals by multi-Gaussian methods.
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Figure 2 Plot of simulated mineral proportions in primary zone with high chalcopyrite content (PrimCpy).

Geometallurgical simulation of the head copper grade

The values of geochemical variables are simulated based on the mineral characterization in order to
generate coherent element grades. For example, copper grade would be in a zone with chalcopyrite, bornite
or chalcocite, which are sulphured minerals hosting copper mineralization. The total grade of copper
contained in the simulated minerals can be calculated directly from bornite, chalcopyrite and chalcocite,
using the proportion of copper according to their chemical formulas. For example, Bornite (CusFeS,),
Chalcopyrite (CuFeS,) and Chalcocite (Cu,S) have a 63.30%, 34.61% and 78.85% of copper, respectively.
The resulting copper grades calculated from minerals in PrimCpy zone are shown in Figure 3.
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Figure 3 Derivation of copper grade from minerals containing copper in PrimCpy zone.
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Geometallurgical Simulation of Grindability and Specific Energy Consumption

One index for characterizing the grindability response is the Bond ball work index (BWi). Good correlations
exist with some geochemical attributes (FesOs, soluble Fe, total Fe, Ni y Ni2O). However, a synthetic variable
defined as:

BWi = f(Fe30,,FeS,FeT,Ni,Na,0) = Fe;0, * FeS * FeT * Ni/Na,0
It shows higher correlation of 0.7 approximately. This new synthetic variable, which is now a proxy for BWi,

was co-simulated in order to spatially correlate BWi with mineralogy. This is used to calculate the specific
energy consumption by:

P 1 1
W=—=10+E x BWi =

Gs Voo Fao

where W is the specific energy consumption of work required to grind a head ore of F80 to P80 [kWh/short
t], P is the consumed power [kW], Gs is the mass flow of ore [short t /h], BWi is the Bond work index [kWh/
short t], F80 is the passing size below 80% of the feed [um], and P80 is the passing size below 80% of the
product [um)].

Doing so, the specific energy consumption can be calculated in all zones in the deposit preserving the spatial
variability related to BWi.
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Figure 4 Spatial simulation of specific energy consumption.

Geometallurgical simulation of flotation

In order to simulate the concentrate copper grade in froth flotation, the recovery of each mineral containing
copper (bornite, chalcopyrite y chalcocite) was characterized as a random variable following a normal
distribution, NV (W, 0,,), where m represents each mineral. The simulation is performed by Monte Carlo
method using those distributions.

The copper grade in concentrate is similarly calculated to the head copper grade, i.e., each mineral will
contribute with some recovered copper in concentrate. The percentage of recovered copper is calculated as
the ratio between the copper grade in concentrate and the copper grade in the block. This calculation does
not require additivity and is consequent from the geometallurgical perspective under the constraint:
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Rgim (Bornite) > Ry (Chalcopyrite) > Ry (Chalcocite)

The parameters of the normal distribution for recovery will depend on operational factors of the flotation
process and the gangue material associated to the feed. These parameters are mine dependent and can be
determined by standardized rougher flotation testwork for sulphured copper minerals.

In order to scale-up recovery, the flotation kinetic K of Klimpel can be determined according to the
following equation (Amelunxen et al. 2014):

R = R, (1 —e¥%)

where R is the recovery, which has been simulated, R, is the infinity time recovery, which is assumed to be
1.0, and t is the flotation time, which was set to 15 minutes.

Calculating the Klimpel’s K constant allows scaling-up the recovery for any design of a flotation plant. For
example, using data from the plant, Suazo et al. (2010) were able to calculate an inherent floatability
parameter at laboratory scale, which is linked to Klimpel’s K constant, and then use it for scaling-up at plant
conditions.

CONCLUSION

We have presented a reproducible methodology for the simulation of a geometallurgical block model, with
special interest in preserving the coherence between geology, mineralogy, and grades. Four response
attributes were included in the GMBM, BWi, specify energy consumption, copper recovery, and Klimpel’'s
K constant.

Starting with real or synthetic drill holes and following the four steps in the proposed methodology, a
GMBM can be successfully simulated. All methods and programs used in the methodology are public and
free to use.
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ANEXQOS

ANEXO GARRIDO ET AL. 2019

Public reports are prepared to inform investors or potential investors and their advisers on
exploration results, mineral resources, or mineral reserves. To convert mineral resources to
mineral reserves, mineral processing and geometallurgical factors are used. The International
Reporting Template (IRT) is a document that represents the best of the CRIRSCO-style codes:
reporting standards that are recognized and adopted world-wide for market-related reporting and
financial investment. In this reporting, geometallurgy represents a key component in the checklist
for reserve assessments and reporting criteria: (1) mining factors or assumptions: in order to
demonstrate realistic potential for eventual economic extraction, (2) metallurgical factors or
assumptions: to demonstrate realistic potential for eventual economic and optimal extraction, (3)
study status of mineral reserves for all modifying factors that have been considered and (4) cut-
off parameters: the cut-off parameters may be economic value per-block rather than grade, and
the costs of processing a block depends on geometallurgical parameters.

An overview of good practice to estimation and modelling techniques of geometallurgical data is
given. A discussion is provided that of ore-type definition, types of test samples are critical,
density of sampling per geometallurgical domain, relationship between mineral characterization
and behavior of mineral processing to support geometallurgical modelling (some multivariable
tools are proposed), how geometallurgical modelling supports the long term scheduling (costs,
efficiency, recovery and mineral mixing among others); and simulations of geometallurgical
scenarios to quantify uncertainty and risk of mineral processing. Currently, no guide exists for the
construction of geometallurgical models and their management in the quantification of reserves,
therefore, this research supports companies that declare mining reserves in bankability studies
and private consultants that generate this type of reports.
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ABSTRACT

Public reports are prepared to inform investors or potential investors and their advisers on exploration
results, mineral resources, or mineral reserves. To convert mineral resources to mineral reserves, mineral
processing and geometallurgical factors are used. The International Reporting Template (IRT) is a document
that represents the best of the CRIRSCO-style codes: reporting standards that are recognized and adopted
world-wide for market-related reporting and financial investment. In this reporting, geometallurgy
represents a key component in the checklist for reserve assessments and reporting criteria: (1) mining factors
or assumptions: in order to demonstrate realistic potential for eventual economic extraction, (2)
metallurgical factors or assumptions: to demonstrate realistic potential for eventual economic and optimal
extraction, (3) study status of mineral reserves for all modifying factors that have been considered and (4)
cut-off parameters: the cut-off parameters may be economic value per-block rather than grade, and the costs
of processing a block depends on geometallurgical parameters.

An overview of good practice to estimation and modelling techniques of geometallurgical data is given. A
discussion is provided that of ore-type definition, types of test samples are critical, density of sampling per
geometallurgical domain, relationship between mineral characterization and behavior of mineral
processing to support geometallurgical modelling (some multivariable tools are proposed), how
geometallurgical modelling supports the long term scheduling (costs, efficiency, recovery and mineral
mixing among others); and simulations of geometallurgical scenarios to quantify uncertainty and risk of
mineral processing. Currently, no guide exists for the construction of geometallurgical models and their
management in the quantification of reserves, therefore, this research supports companies that declare
mining reserves in bankability studies and private consultants that generate this type of reports.
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INTRODUCTION

In Chile, the decline in grades in deposits and the increase in operational costs mainly due to the
deepening of mining operations, among others, is encouraging mining companies to investigate
different areas for processes optimization [Acosta 2018]. Geometallurgy is a key factor in
optimizing and understanding the risk of metallurgical mining processes.

The International Reporting Template (IRT) is a document that represents the best of the
CRIRSCO-style codes: reporting standards that are recognized and adopted world-wide for
market-related reporting and financial investment. In Chile, The Chilean Mining Commission is
the institution responsible to ensure the assessment of mining reserves in agreement to
international standards. The Qualifying Commission of Mining Resources and Reserves
Competencies defines the requirements for a Qualified Person (QP) to be qualified to inform and
publicly certify exploration prospects and mining resources and reserves. Topics such as
sampling, drilling, laboratory tests, location of the samples, density and distribution of samples,
estimation and modelling techniques, mining and metallurgical factors, mining plan and
scheduling, costs and revenues, marketing, etc. are considered by the QP to certify mining
reserves [Code CM2012]. In this context, the geometallurgical knowledge is essential to ensure the
correct estimate of a mining reserve (expected value and risk).

There are multiple definitions of geometallurgy. Geometallurgy has been defined by SGS as the
integration of geological, mining, metallurgical, environmental and economic information to
maximize the net present value (NPV) of a deposit while minimizing operational and technical
risk. To implement the geometallurgy applied in a mining project, it is necessary to select relevant
and sufficient samples that will be subjected to tests to determine the metallurgical parameters
and geostatistical distribution of these parameters along a deposit using accepted techniques to
support the process of geometallurgical modelling [Chiles and Delfines 2012], [Deutsch and
Journel 1998], [Goovaerts 1997], [Isaaks and Srivastava 2989]. In this research, an overview of good
practices in use of geometallurgy to support mining reserves in copper sulfides has been compiled
through geometallurgical papers and case studies.

METHODOLOGY

To compile the overview for copper sulfides processing, we considered: published articles,
international conferences, public reports, academic publications and experience of mining
industry professionals. The overview was summarized in the topics (1) Ore type definition, (2)
Geometallurgical sampling, (3) Geometallurgical modeling and (4) Geometallurgy in support of
mine planning and scheduling
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RESULTS AND DISCUSSION

A compilation of literature is presented. The review of the literature has resulted in the good
practices relating to the geometallurgical factors in reserves estimations being categorized into
four aspects:

1. Ore type definition: As Geological Unit (GU) to estimate some attribute (for example copper grade
[%]). The ore type is called Geo Metallurgical Unit (GMU) and depends of geology factors and type
of metallurgical process.

2. Geometallurgical sampling: Laboratory tests are usually done in standards conditions, but
geometallurgical tests can be different in some deposits (for example rougher test).

3. Geometallurgical modelling: In mining resources, conventional techniques are used, for example
univariate geostatistics tools. For geometallurgical modelling, we recommend the use of
multivariate geostatistics tools, to support the robust estimation.

4. Geometallurgy in support of mine planning and scheduling: mining and metallurgical modelled
factors must be considered in mine planning and scheduling to estimate costs and revenues. The

expected value and risk are important in this stage.

Ore type Definition

Orebody knowledge from a geometallurgy perspective involves the characterization of
subsurface material to enable the prediction of how the material will respond to processes within
the mining value chain. These processes include blast fragmentation, loading, material handling,
crushing, grinding, flotation, leaching, among others. [Jackson 2017].

The deposits have zoning where they present different mineral characterizations (also called
GMU geometallurgical units) and within these domains there is also variability in the composition
of the rock and process characteristics [Hunt 2014]. According to this concept: what do we mean
by ore type? What is the objective of modeling different ore types? [Jackson 2016]. The ore type is
a classification of ore with similar metallurgical performance also known as domain, end member,
ore zone, entity to enable optimum processing methods to be selected, expected revenue and
operating costs leading to the appropriate ore blending and mine planning. Thus, the concept of
ore type provides a framework to form a common perspective around the performance of
material, in order to make decisions. This implies that, depending on the perspective, the
definition of ore type is given through the orebody knowledge/rock characteristics and performance
engineering. For example, from a blasting perspective, the performance type is the fragmentation
distribution (target to optimize process), and this depends on the Geological Domains (Joint
characteristics, rock strength, rock density, RMD rating, etc.) and the blast design (operational
factor). But from a Mill perspective, the performance target is the Throughput, that depends on
fragmentation distribution, impact resistance and grinding hardness (material type + geological
domains), and the milling circuit (operational factor).
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In general, some common geometallurgical variables that require different ore type definitions

are:

Bond Work Index for ball mill (BWi): The grindability test determines the hardness of the
ore rock. The Work Index is used when determining the size of the mill and grinding
power required to produce the required ore throughput in a ball mill [Bond 1961].
Simulations and modeling of this test show that factors as Particle Size, feed, % passing,
makeup water, etc. are operational factors difficult to standardized [Tavares 2012], and a
change of these factors are critical in results.

SAG Power Index SPI or Starkey Test for SAG mill: provides the time (minutes) required
to perform a specific milling work, from a feed size to an output size [Starkey 1994].

SAG Mill Comminution SMC: It is a function between the specific energy applied and
the percentage of product generated in the impact fracture of a specific particle size
[Morrell 2006].

Kinetics of Rougher Flotation, maximum recovery with prolonged flotation time or
"infinity", mineral characterization and geochemistry (feed or concentrate) in a flotation
process, etc. [SGS 2007]

The mineral associations are used to optimize flotation parameters in copper sulfides, in order

to increase the grade of the concentrate and the recovery of the valuable metal. For example,

Figure 1 shows two minerals after the rougher flotation test laboratory: Left shows a mineral

in tail and Right shows a mineral in concentrate. In this example, mineral in concentrate is

recovered because the chalcopyrite is liberated and mineral of tail contains occluded

chalcopyrite, therefore it is not recovered.

Anhydrite
Biotite
Bornite

W Chalcopyrite
B Rutile

Clinechlore

Figure 1: Mineral associations for samples in (left) tail and (right) concentrate of flotation

performance
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Examples of common geological factors that impact on ore type definitions for two different
aspects of mineral processing in porphyry copper sulfide deposits are outlined below.

e Grindability: Grinding usually depends on host rock lithology type and hydrothermal
alteration (for example in deposit Los Bronces Chile, “Sulfatos” project, phyllosilicates have
high tenacity tending to behave more elastically than tectosilicates hence, more difficult to
break): it is related with de resistance to mill (resulting from combination of different
minerals) [Gamal 2012]. Another example is degree of alteration: areas with greater degree
of hydrothermal alteration have a lower hardness. For example, in SPENCE
geometallurgical trends, high argilization zones presents destruction of feldspars replaced
to clay minerals, then having a greater grinding capacity. Another example are the
structural veins (micro-structures): Depending of mineral present in the structure, these can
increase the resistance to grinding by acting as fracture reagent in the rock (e.g. Quartz,
anhydrite, calcite, among others). Another example is the texture [Oyarzan 2011]: In
Teniente, Chile, porphyric basalt has a low grinding due to abundant microcrystals with
evidence of mutual interference between adjacent crystals, unlike the gabbro lithology,
which has smaller crystals that take the form of the interstices between the larger crystals,
showing greater grinding. These examples demonstrate that having knowledge of the ore
and gange mineralogy and texture can provide valuable information for effective design
of a concentrator flowsheet [Tungpalan 2015], [Lund 2015], [Lamberg 2011]. A lot of factors
can be relevant to define the GMUs, and these usually depend on geological variability.

All case studies must be analyzed carefully.

o Flotation tests: In this case, recovery and copper degree of concentrate is relevant. Test
usually are designed for primary sulfides minerals, such as chalcopyrite or bornite [Hunt
2011] recovered above 80%. Copper oxides (chrysocolla, atacamite, etc) are not recovered in
flotation test. Secondary copper sulfides (as covellite, chalcocite, digenite, etc) usually have
low recoveries. Clay minerals affect negatively the test [Bulatovic 1999], increasing the
makeup of water. Other factors such as granulometry, texture, minerals associations, liberation,
etc. also are relevant, affecting the recovery and costs in production. Pyrite is a very
common mineral in copper-porphyry deposits, but in the processing stages it usually
generates many operational interferences due to its high capacity to react chemically with
the medium (water-rock interaction), changes the Eh-pH during the milling and having a
high reducing capacity (increases the consumption of steel in grinding) [Mular and Barratt
2002] [Hu 2009] [Garrido 2017].
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The geological inputs and relationship to process parameters must be analyzed carefully. These
and other factors are relevant for defining the ore type or GMU, and these geological properties
can be modeled in deposits and hence GMUs can be modelled. Some techniques to define and
model GMUs has been published (geological criteria, spatial and statistical criteria), for example
fuzzy clustering with spatial correction has been implemented [Sepulveda 2018].

Geometallurgical Sampling

The geometallurgical tests are different to copper grade sampling. For example, a common
practice is measuring the copper grade through sampling, sample preparation and AAS
measurement (Atomic Absorption Spectroscopy [Hannaford 1998]). This methodology is
relatively conventional and known by the specialists, but geometallurgical test are not standard.
We recommended implementing to standard methodology for geometallurgical tests, for
example:

e Select samples without mixing different GMUs.
e Select several samples of each GMU.
e In case of drillholes, choose a constant length of sampling. In production, choose a constant mass.

e Use the standard conditions for testing.

The last condition is difficult to standardize, in particular for flotation tests. This test is designed
for each deposit according the geological and operational constrains, also can be different for each
GMU. This test should not consider mixing between different GMUs, because there are properties
that depends only on the georeferenced variable (for the purpose of modelling), for the purpose
of scaling up from laboratory test to industrial performance recovery, mixing should be
considered according to mine planning.

A common question in geometallurgical sampling is: What density of data should be sampled to
obtain efficient predictive models? It is a difficult question, it depends on the geology of the ore
body, operational parameters of mining and operational parameters in mineral processing.

In general, highly variable domains (high variance) are “difficult” GMUs to model or process and
require more analysis than homogeneous domains. If a database has a poor sampling density,
then the short-term models will be smoothed and will not represent the real variability of the
mineral feed, losing the short-term predictability [Garrido 2017] and, therefore, decreasing the
metallurgist's ability to react preventively before the change of ore type occurs.
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Geometallurgical Modelling

To support geometallurgical modelling, multivariable geostatistics techniques are recommended
[Wackernagel 1995]. Geometallurgical samples are usually scarse and expensive, then the support
of secondary variables or proxies (geochemistry as ICP, geophysical as Natural Gamma, structural
information as UCS, etc.) are recommended to obtain more robust models [Garrido 2018].
Multielement geochemistry can provide bulk mineral characterization of hydrothermal alteration
associations to support predictive geometallurgical modeling in Porphyry copper deposits
[Townley 2018]. The use of synthetic variables (mathematical combination of secondary variables
that have good correlation with primary variable) are highly recommended to obtain robust
models in an acceptable time and effort of users [Baeza 2018].

One critical aspect of predicting response geometallurgical variables is that they are usually non-
additive (the response of block is not necessarily the average of the response of the discretization
of the block), and traditional linear methods, such as Kriging, will not work well on such non-
linearities. The use of non-linear regression models may alleviate this where additive proxies are
used to predict non-additive responses [Sepulveda 2017]. Using geostatistical simulations, if
they exhibit spatial correlation, is also a valid approach.

In this stage, geometallurgical variables are estimated in space [Bilal 2017], [Deutsch 2015]
[Deutsch 2016] [Boisvert 2013] [Coward 2015] but the mining scheduling and mineral processing
values depends of the time (costs by tonnage processed, efficiency, recovery, tonnage per day,
etc.). For example, to estimate geometallurgical variables in a block model [Deutsch 2015] usually
the geostatistician or orebody modeler estimates the georeferenced variables in space
(corregionalized variable). The metallurgist or material scientist estimates the variables in time
when a plant is being fed (temporal variable). Mine planning generates the match between spatial
variability and temporal variability, as indicated in Figure 2 (Top: short-term model with
production drillholes. Bottom: Rougher recovery in process plant, block by block sequencing).

Mine planning generates mixing or blending of minerals. In geometallurgical properties, the
results of blending are difficult to predict. For example, [Tavares 2013] show how the grindability
of binary ore blends changes in ball mills: The Bond work index of the mixtures is often higher than the
weighed-average value of the individual components in the mixture. This implies that predicting the
behavior of blends is difficult because the additivity is questionable. The same case occurs in
flotation performance, scale-up of laboratory flotation process recovery require another technique
as Principle of Dimensional Similitude [Truter 2010], because interaction water-rock and physic-
chemical cross effects affect the additivity properties [Carrasco 2008].
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Figure 2: (Top) short-term model with production drillholes. (Bottom) Rougher recovery in
process plant, block by block sequencing

Geometallurgy in support of mine planning and scheduling

The spatial variability associated with geometallurgical variables is transferred to a temporal
variability when the material is extracted and processed.

It is in this transferring where geometallurgy plays the most important role. The standardized
response properties must be transformed to the specific plan conditions and
scale. Geometallurgical attributes with distributional scale is still challenging [van den Boogaart
and R. Tolosana-Delgado, 2018]. There are several approaches to this. A scale factor for each
defined GMUs was considered for scaling-up recovery from standardized flotation tests to plant
in Collahuasi mine, Chile [Suazo 2010]. Other approach is using predictive models of plant
performance by plant simulators or machine learning real-time predicting models. These
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predictive models together with the production scheduling must use geometallurgical attributes
to ensure an optimal plant operation and to minimize deleterious elements in saleable products,
among other factors. The next generation of plant simulators need to use geometallurgical
attributes as inputs allowing the main objective of geometallurgy.

Finally, the models are validated / reconciled through short-term data to improve the predictive
capacity of the geometallurgical variables that allow reducing the risk in production and improve
the expected values of benefits and costs in the mining reserves assessment. The conventional use
of geometallurgical variables in mine planning is the use of geometallurgical cut-off grades to
define mining reserves. An example on the change of mining reserves considering
geometallurgical variables has been published in [Garrido 2017] where it has been shown that the
mine planning can vary considering the mining mixing of areas with clay minerals. Temporal
variance of this mineral generates operational problems of makeup water, among others,
increasing processing costs.

CONCLUSION

The area of geometallurgy is being very relevant to ensure the reliability of mining reserves
extraction. A formal methodology of incorporation in the estimation of reserves is important. The
review in this article demonstrates the complexity and non-standardization in criteria to define,
model and incorporate geometallurgical parameters in the estimation of mining reserves.

Some good practices are recommended: the correct definition of UGMs based on geological-
operational criteria, the use of mineral characterization variables to support the multivariable
estimation of geometallurgical attributes, the operational scaling of these parameters considering
mining temporal mixing, and the quantification of risk through different scenarios to quantify
geological — operational uncertainty are practices that should ensure a good management of
geometallurgical data and its incorporation into mining reserves.
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