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GENERACIÓN E IMPLEMENTACIÓN DE MODELOS GEOMETALÚRGICOS: GUÍA 

MULTIDISCIPLINARIA PARA LA DEFINICIÓN DE RESERVAS MINERAS 

 

 
La tesis de doctorado Generación e implementación de modelos geometalúrgicos: Guía 

multidisciplinaria para la definición de reservas mineras se enmarca en el contexto geo-minero-

metalúrgico de depósitos de pórfido cupríferos, donde se muestra la importancia para los proyectos 

mineros la generación de modelos geometalúrgicos y su implementación práctica en planificación 

de corto y largo plazo para definir reservas mineras dentro de los estándares internacionales de 

reporte de reservas NI 43-101, impactando en la disminución de los costos operacionales de 

tratamiento, además de la disminución del riesgo de un proyecto. El objetivo general de la tesis es 

establecer un método de estándar internacional para cuantificar reservas mineras considerando 

modelos geometalúrgicos en la planificación minera. Para esto, (1) se generaron modelos 

geometalúrgicos integrados considerando incertidumbre geológica y metalúrgica; (2) se realizó una 

descripción de método genérico para incluir modelos geometalúrgicos en planificación minera de 

corto y largo plazo; (3) se generó un manuscrito guía de buenas prácticas para la declaración de 

reservas considerando la geometalurgia como un factor modificante clave. 

 

El artículo 1 titulado 'Cambio de soporte usando variables no aditivas con Gibbs Sampler: 

Aplicación a recuperación metalúrgica de minerales sulfurados'  (Computer and Geoscience 2019) 

describe una metodología para la integración de la base de datos de diferentes fuentes y soportes, 

donde se discuten las ventajas y desventajas de esta nueva metodología desde un punto de vista 

geoestadístico. El artículo 2 titulado 'Simulación de bases de datos de exploración y geometalúrgica 

de depositos porfidos cupriferos con fines educacionales' (Natural Resources Research 2020) 

describe una metología de simulación de atributos geometalúrgicos, el cual permite la generación 

de base de datos sintéticas para múltiples propósitos. 

 

Se adjunta documento publicado en Predictive Geometallurgy and Geostatistics Lab, Queen's 

University el cual presenta una guía de buenas prácticas para la declaración de reservas 

considerando la geometalurgia como un factor modificante, basado en las definiciones de reservas 

minerales del código NI 43-101. 

 

 

 



ii 
 

AGRADECIMIENTOS 

 

Es un gusto agradecer a todas las personas quienes formaron parte de mi desarrollo profesional 

para lograr la finalización de mis estudios a través de esta tesis. Mis padres Dino Garrido y Maritza 

Palma por el apoyo incondicional, en todo momento y por supuesto a mis hermanas Paola, Coni y 

Diana. Brian que gracias a su gran personalidad logró que el doctorado fuera una de las mejores 

experiencias de mi vida. Agradezco a Julian Ortiz por la gran disponibilidad y apoyo que ha 

brindado durante los trabajos de publicaciones y en mi pasantía corta de investigación en Queen's 

University, Canadá. Agradezco también a Exequiel Sepúlveda quien entregó un gran apoyo a través 

de publicaciones desde la universidad de Adelaide, Australia y el apoyo de Luis Farfán con su 

expertiz profesional en REFLEX.  

 

Agradezco a mis desagradables amigos de CODEMINING Roberto Miranda y Francisco Villaseca, 

quienes indirectamente seguimos desarrollando proyectos de innovación en el área de la 

programación. También mis grandes amigos Martins, Mati, Lore, Vale, España y Fonseca. A mis 

amigos en Canadá Alvaro, Guillermo y Seba. 

 

Este trabajo ha sido parcialmente financiado con el apoyo industrial de IMDEX LIMITED - 

REFLEX INSTRUMENT South America SpA, proyecto FONDEF 'Caracterización y 

Modelamientos Geo-Minero-Metalúrgicos Predictivos: Camino a la Minería del Futuro' 

IT16M10021 y proyecto CONICYT PAI Concurso Nacional Tesis de Doctorado en el Sector 

Productivo, Convocatoria 2018 PAI7818D20001. 

  



iii 
 

TABLA DE CONTENIDO 

 

 

1. INTRODUCCION         1 

1.1. CONTEXTO          1 

1.2. MOTIVACION         2 

1.3. HIPOTESIS DE INVESTIGACION       3 

1.4. OBJETIVOS          4 

1.5. ESTADO DEL ARTE        4 

 

2. ARTICULOS PUBLICADOS        7 

2.1. Article 1: Change of support using non-additive variables with Gibbs  

Sampler: Application to metallurgical recovery of sulphides ores    8 

2.2. Article 2: Simulation of Synthetic Exploration and Geometallurgical  

Database of Porphyry Copper Deposits for Educational Purposes    17 

 

3. CONCLUSIONES         39 

 

4. BIBLIOGRAFIA          41 

 

5. ANEXOS           42 

 

 

 



1 
 

INTRODUCCIÓN 

 

En esta tesis se resumen 2 artículos de publicación científica orientadas a la generación e 

implementación de modelos geometalúrgicos de sulfuros de cobre.  

 

CONTEXTO 

La geometalurgia busca la integración de diferentes áreas de conocimiento a través de modelos 

predictivos que puedan ser utilizados en la disminución de costos operacionales ante procesamiento 

mineral. El estudio geológico del mineral extraído, tanto de mena como de ganga, es una ciencia 

ampliamente desarrollada por la geología a través de diferentes mediciones que permiten generar 

una completa caracterización del mineral. Así mismo, ensayos metalúrgicos permiten caracterizar 

el comportamiento operacional que se esperará en la planta de procesamiento mineral (desde 

conminución, hasta la separación de la mena y ganga o refinamiento). Los comportamientos 

geometalúrgicos de las rocas, unidades geológicas de un yacimiento, se determinan comúnmente 

mediante la realización de ensayos mineros. Propiedades como dureza, moliendabilidad, 

recuperación de cobre, consumos de insumos en procesamiento, entre muchos otros aspectos, se 

determinan en forma empírica, normalmente sobre un número limitado de muestras, esto debido a 

los altos costos que implican. El comportamiento del material procesado dependerá tanto de 

factores operacionales como geológicos. Los procesos metalúrgicos requieren procesar el $100\%$ 

de la roca, los costos de producción y la eficiencia de recuperación no solamente dependen de las 

características de los minerales de mena, más bien mayoritariamente de los de ganga. El enfoque 

clásico en explotación y procesamiento mineral de yacimientos se centra principalmente en la 

mena, las características de ganga normalmente quedan relegadas a las características geológicas 

de un yacimiento.  

 

La generación de modelos geometalurgicos es una herramienta necesaria en cualquier proyecto 

minero, por lo tanto su incorporación dentro de la planificación minera es un objeto de estudio 

inminente y de innovación para entidades especializadas en el área de investigación y desarrollo. 

La innovación en esta área generará nuevos estándares en el reporte de reservas mineras para la 
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industria a nivel mundial de yacimientos polimetálicos a través de la generación de guías de buenas 

prácticas para definir formalmente metodologías para incluir modelos geometalúrgicos durante el 

proceso de evaluación de yacimientos. 

 

En esta tesis se trabajó una guía metodológica que permite incluir los modelos geometalúrgicos 

dentro de la definición de reservas mineras de una compañía. El concepto de reserva se basa en 

aquellos recursos mineros estimados con buena confiabilidad que tienen posibilidades de ser 

explotados, por lo tanto son considerados parte de los activos económicos de una empresa minera. 

Para que recursos minerales sean valorizados como reservas mineras, deben ser evaluados por una 

serie de factores modificantes, por ejemplo, proceso minero/metalúrgico, geotecnia, hidrología, 

medio ambiente, factores de mercado, etc. Y la geometalurgia es un factor modificante dentro del 

proceso minero/metalúrgico que debe ser considerado para la definición de reservas mineras. No 

considerarlo implica en aumento de costos operacionales y aumento del riesgo del proyecto. El 

concepto Reserva Minera está relacionado con la industria que genera estudios bancables, puesto 

que es esencial comunicar los riesgos asociados de manera efectiva y transparente a fin de obtener 

el nivel de confianza necesario para respaldar actividades mineras. CRIRSCO es el Committee for 

Mineral Reserves International Reporting Standards, del cual miembros de todo el mundo, por 

ejemplo la Comisión Calificadora de Competencias en Recursos y Reservas Mineras de Chile, CIM 

de Canadá, SAMREC de África del Sur y JORC de Australia siguen guías de buenas prácticas para 

definir las reservas mineras. 

 

MOTIVACIÓN 

Al integrar el área de geometalurgia en la evaluación de recursos y planificación minera se logra 

una disminución de costos de procesamiento, y disminución de la incertidumbre del mineral a 

procesar. El principal desafío que limitan las actividades en el área de la geometalurgia es la 

integración de conocimiento especializado, de esta forma el geometalurgista debe tener un 

conocimiento transversal sobre geología, producción minera, procesamiento mineral, medio 

ambiente y sostenibilidad minera. En enfoque actual del geometalurgista se basa en el 

conocimiento geológico, cuya tarea de incluir estos factores geometalurgicos normalmente es 
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delegado al minero, generando interferencias en el entendimiento geometalúrgico y perdiendo el 

enfoque principal, cuyo objetivo es disminuir costos e incertidumbre del procesamiento mineral. 

 

Actualmente en la geometalurgia no se modelan procesos de interacción agua/roca desde molienda 

en adelante, donde las condiciones de composición mineral y de agua son las que regulan 

reacciones de equilibrio químico, reacciones que controlan las condiciones fisicoquímicas (pH, Eh, 

EC entre otros) e hidroquímicas del agua de proceso. Estas condiciones a su vez afectan los 

parámetros de operación, costos de insumos y eficiencia de recuperación, como también la calidad 

y condiciones del agua y material de descarte a relaves. La geología/ mineralogía de alimentación 

a planta incide sobre la operación, costos y eficiencia, por lo que modelar atributos geometalúrgicos 

en forma predictiva es fundamental para disminuir los riesgos de un proyecto minero. 

 

A pesar de los estudios para generación de modelos geometalúrgicos, la metodología y su 

implementación en la cadena productiva minera aún presenta dudas, se desconocen sus potenciales 

usos y no se cuenta con una guía clara para su manejo. La planificación (de mina como de planta) 

permite generar planes de respuesta en el corto, mediano y largo plazo a fin de aumentar la vida 

del proyecto minero, disminuir costos operacionales y maximizar el beneficio económico de 

retorno. El proyecto minero se basa en una buena planificación para minimizar los riesgos 

asociados a la extracción, procesamiento y venta del mineral. Los modelos geometalúrgicos no son 

considerados explícitamente dentro de la planificación minera, ya que no existe una guía clara y 

concisa de cómo unificar estas áreas multidisciplinarias y las herramientas comerciales adecuadas 

para su ejecución. 

 

HIPÓTESIS DE LA INVESTIGACIÓN 

La hipótesis de esta investigación es que la integración de modelos en geometalurgia permite 

mejorar resultados en procesamiento de minerales, disminuyendo la incertidumbre y costos de 

proceso. 
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OBJETIVOS 

El objetivo principal de la investigación es establecer un método de estándar internacional para 

cuantificar reservas mineras considerando modelos geometalúrgicos en la planificación minera. 

Para esto, se ha separado en 3 etapas, con diferentes objetivos específicos: 

 

1. Metodología para generación de modelos geometalúrgicos integrados considerando 

incertidumbre geológica y metalúrgica.  

2. Desarrollo e implementación de método genérico para incluir modelos geometalúrgicos en 

planificación minera de corto y largo plazo para operaciones de rajo abierto.  

3. Generar un manuscrito guía de buenas prácticas para la declaración de reservas 

considerando la geometalurgia como un factor modificante, basado en las definiciones de 

reservas minerales de códigos internacionales. 

 

ESTADO DEL ARTE 

Los modelos geometalúrgicos predictivos permiten estimar, con diferentes niveles de confianza y 

riesgo, el comportamiento insitu de un material en base a su caracterización mineral. Este resultado 

es escalado a nivel industrial en la planificación de corto plazo para poder optimizar los parámetros 

operacionales y disminuir los costos asociados al tratamiento del mineral. En un yacimiento 

mineral del tipo pórfido cuprífero es posible tener una diversidad de unidades litológicas, de 

alteración, de mineralización y estructuras, cuya combinatoria implica una alta variabilidad en los 

materiales de alimentación a planta de procesamiento. Comportamientos diferenciales según 

alimentación, ya sea de frentes de extracción singulares o bien mediante programas de mezcla 

controladas, son lo esperable en producción. Estudios que aborden los impactos geológicos / 

minerales, composición de aguas de proceso, reacciones de equilibrio agua / roca en procesamiento 

y los impactos de estos en flotación y recuperación, o en lixiviación en el caso de procesamiento 

mediante lixiviación en pilas, son escasos. 
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En la conferencia Procemin-GEOMET del año 2019 realizada en Chile se han discutido varios 

temas relacionados con esta investigación, destacando los siguientes problemas relacionados con 

la generación de modelos geometalúrgicos y su implementación en la planificación minera:  

 

1. Integración de datos con diferentes fuentes de muestreo, diferentes incertidumbres 

asociadas y representatividad de muestras. 

2. Variables claves que permitan generar modelos predictivos con una confiabilidad aceptable 

dependiendo de la etapa del proyecto minero (estudio de perfil, estudio preliminar, pre-

factibilidad, factibilidad y operación mina). 

3. Predicción de variables de naturaleza no aditivas, y su cuantificación del riesgo en la 

estimación. 

4. Optimización del valor del proyecto que considere costos asociados a la roca, por ejemplo, 

minerales con alta presencia de arcilla presentan problemas operacionales en la planta de 

flotación, disminuyendo la recuperación metalúrgica y aumentando los costos de 

procesamiento. 

 

A continuación, se describe los 3 objetivos principales de esta tesis: 

 

1. En la generación de modelos geometalúrgicos integrados, considerando incertidumbre 

geológica y metalúrgica, el objetivo específico es generar modelos geometalúrgicos 

integrados considerando incertidumbre geológica y metalúrgica combinada, que sirvan 

como input en la segunda etapa de planificación minera. Además, los modelos 

geometalúrgicos pueden ser utilizados en planificación de corto plazo para definir 

parámetros operacionales en el procesamiento de diferentes minerales de alimentación. 

Herramientas de medición en linea permiten proveer estimaciones de minerales en corto 

plazo. 

2. En el desarrollo e implementación de metodología para integrar modelos geometalúrgicos 

en planificación minera de corto y largo plazo para operaciones, el objetivo específico es 

establecer un método genérico para incluir modelos geometalúrgicos en planificación 

minera de corto y largo plazo. Dentro de los resultados académicos, se incluye una 
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publicación científica-tecnológica relacionada con el área de planificación minera y 

utilización de modelos geometalúrgicos para disminuir los riesgos del proyecto minero. 

3. En la generación de un manuscrito guía de buenas prácticas para la declaración de reservas 

considerando la geometalurgia como un factor modificante, el objetivo específico es 

generar un manuscrito guía de buenas prácticas basado en las definiciones de reservas 

minerales de códigos internacionales. El resultado tiene un impacto directo en el sector 

productivo de empresas mineras y consultoras privadas que prestan servicios de apoyo. 
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ARTÍCULOS PUBLICADOS 

 

ARTICLE 1: CHANGE OF SUPPORT USING NON-ADDITIVE VARIABLES 

WITH GIBBS SAMPLER: APPLICATION TO METALLURGICAL RECOVERY 

OF SULPHIDES ORES. 

 

El artículo 1 adjunto a continuación permite cambiar de soporte para variables no aditivas (en este 

caso, aplicado al ensayo geometalurgico de recuperación rougher) conservando características 

geoestadísticas de la base de datos para evitar artefactos matemáticos en la consolidación de base 

de datos de diferentes fuentes de información (logeo geológico, geoquímico, mineralógico, 

geofísico, geomecánico y geometalúrgico). La consolidación correcta de la base de datos permite 

generar modelos georeferenciados en el espacio de atributos geometalúrgicos. 

  



8 
 

  



9 
 

  



10 
 

  



11 
 

  



12 
 

  



13 
 

  



14 
 

  



15 
 

  



16 
 

 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



17 
 

ARTÍCULOS PUBLICADOS 

 

ARTICLE 2: SIMULATION OF SYNTHETIC EXPLORATION AND 

GEOMETALLURGICAL DATABASE OF PORPHYRY COPPER DEPOSITS 

FOR EDUCATIONAL PURPOSES. 

 

El segundo artículo adjunto a continuación entrega una metodología para simular 

geoestadísticamente variables geometalúrgicas considerando gran parte de los problemas y 

desafíos que implica este proceso a nivel industrial, donde incluye una robusta revisión 

bibliográfica de las metodologías disponibles para este procedimiento. El primer artículo describe 

una metodología para consolidar diferentes fuentes de información, el cual puede ser usado como 

base de datos input en la metodología propuesta del artículo 2. Además, se ha dado un enfoque de 

innovación al permitir, en base a estas simulaciones y escenarios geometalúrgicos, generar base de 

datos sintéticas con distribución espacial y coherencia geológicas creíbles con fines de uso 

académico. Esto presenta una gran ventaja desde un punto de vista de investigación ya que uno de 

los principales problemas en el desarrollo del área geometalúrgica es la escases y dificultad para 

acceder a bases de datos. 
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CONCLUSIONES 

 

En la investigación se han desarrollado herramientas de tipo multidisciplinarias en el área de la geo 

minero metalurgia extractiva. Los principales resultados científicos se resumen en los dos artículos. 

El manuscrito 1,'Change of support using non-additive variables with Gibbs Sampler: Application 

to metallurgical recovery of sulphide ores', presenta una metodología para cambiar de soporte de 

variables no aditivas (en este caso, aplicado al ensayo geometalurgico de recuperación rougher) la 

cual conserva características geoestadística de la base de datos que evita artefactos matemáticos en 

la consolidación de base de datos de diferentes fuentes de información (logeo geológico, 

geoquímico, mineralógico, geofísico, geomecánico y geometalúrgico). La consolidación correcta 

de la base de datos permite generar modelos georeferenciados en el espacio de atributos 

geometalúrgicos. 

 

El segundo artículo 'Simulation of Synthetic Exploration and Geometallurgical Database of 

Porphyry Copper Deposits for Educational Purposes' entrega una metodología para simular 

geoestadísticamente variables geometalúrgicas considerando gran parte de los problemas y 

desafíos que implica este proceso a nivel industrial, donde incluye una robusta revisión 

bibliográfica de las metodologías disponibles para este procedimiento. Además, se ha dado un 

enfoque de innovación al permitir, en base a estas simulaciones y escenarios geometalúrgicos, 

generar base de datos sintéticas con distribución espacial y coherencia geológicas con fines de uso 

académico. Esto presenta una ventaja desde un punto de vista de investigación, ya que las bases de 

datos geometalurgicas son de restringido acceso. Adicional a esto, se incluye en el anexo el 

manuscrito publicado en Predictive Geometallurgy and Geostatistics Lab, Queen's University, 

Canada, el cual describe una forma para validar las simulaciones generadas desde un enfoque 

geológico. 

 

En adición al trabajo presentado en los artículos, se ha desarrollado un documento extendido el 

cual describe el uso de buenas prácticas en el área de geometalurgia para la definición de recursos 

y reservas mineras basadas según el código canadiense CIM Estimation of Minerals Resources and 

Mineral Reserves Best Practice Guidelines (documento canadiense público en mrmr.cim.org 
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v2019). Además, se ha generado una versión resumida de este documento el cual fue publicado en 

Predictive Geometallurgy and Geostatistics Lab, Queen's University. Estos documentos fueron 

escritos en base a la revisión bibliográfica hasta el 2020 en el área de la geometalurgia, y se han 

basado en experiencias profesionales documentadas en conferencias internacionales, trabajos de 

consultoría realizados en geometalurgia y visitas industriales técnicas. 
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ANEXOS 

 

ANEXO GARRIDO ET AL. 2020A 

Geostatistical simulations of ore body deposits are useful to quantify risk and 

uncertainty, testing mine planing algorithms, generating drill holes databases, among 

others. Geostatistical simulations are a common tool to generate different scenarios, 

but these are mathematical algorithms that need to be validated with geological 

approach. Tools such as histograms, correlations and variograms can validate 

distributions, numerical associations and spatial variability in a simulation, but many 

other tools can be used to validate geological coherence (e.g. lithological facies, 

correlations in minerals of hydrothermal alterations, mineral zones, etc). This article 

summarizes some of these tolos that can be used to interpret data with a geological 

approach, with the aim of avoiding geological inconsistencies. Validations are show 

in a case study, a porphyry copper deposit locate in north Peru, Cajamarca region in 

Andean mountain.  
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ANEXOS 

 

ANEXO GARRIDO ET AL. 2020B 

To incorporate benefits into the mining value chain, for example the ore quality on 

mine planning, plant performance, lower costs, and product quality, key 

geometallurgical responses and proxy variables need to be incorporated into the 

mineral resources and miningreserve s estimation. The Canadian Institute of Mining, 

Metallurgy and Petroleum (CIM) Definition Standards on mineral resources and 

reserves establish definitions and guidance on the definitions for mineral resources, 

mineral reserves, and mining Project studies. In this research we show a case study 

that incorporate geometallurgical study in the mining project, and suggest of the good 

practices in the CIM Estimation of Mineral Resources and Mineral Reserves 

document about geometallurgy area. Key studies such as integrating the 

geometallurgical attributes to sampling and modelling, importance of mineralogical 

data interpretation, definition of geometallurgical units and importance of 

geochemical proxies in the geometallurgical modelling are highlight. Based in 

results, we suggest critical elements to estimate (based in geology characterization), 

use of nonlinear or multivariate estimation methods and the importance of 

relationship between geometallurgy and short-long term mine planning must be 

incorporated in the mineral resources and mineral reserves assessment. 
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ANEXOS 

 

ANEXO GARRIDO ET AL. 2017A 

Modeling of geological attributes is a fundamental step in the mining process where quality 

resources are defined for mining and metallurgical processing. The metallurgical recovery of 

sulphide minerals in the flotation stage is a variable that depends not only on geological attributes 

such as ore type, alteration, etc., it also depends on operational parameters such as pH, quantity 

and quality of chemicals such as thickeners and collectors, residence time, granulometry, etc. These 

factors make modeling difficult, since the recovery might depend on factors external to geology. 

In this research we studied multivariable correlations that allow prediction of metallurgical 

recovery (Rec30 - percentage recovery of the ore after 30 minutes of flotation) through multivariate 

geostatistics: for this purpose an estimation of the recovery using co-kriging was performed taking 

into account variables that have high correlations.  

In this case study a high correlation between iron grades and recovery in potassium-rich alterations 

was found, which is attributed mainly to the amount of pyrite that makes the process difficult. 

Additionally, the incorporation of co-kriging allows increasing the estimated tonnage, when there 

is little information about the primary variable (but not the secondary variable). The advantage of 

using classical geostatistics is that recovery models can be obtained with good results in terms of 

cross-validation (good prediction), which overcomes the problem of non-additivity in the case of 

the generation of a block model for geometallurgical variables. In addition, the advantage of using 

co-kriging is that the information of this secondary variable is much denser, hence provides 

improved model resolution. The metallurgical recovery samples are usually expensive and few, the 

incorporation of secondary well correlated variable then generate a more robust and reliable 

recovery model. 
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ABSTRACT 

Modeling of geological attributes is a fundamental step in the mining process where quality resources are 

defined for mining and metallurgical processing. The metallurgical recovery of sulphide minerals in the 

flotation stage is a variable that depends not only on geological attributes such as ore type, alteration, etc., 

it also depends on operational parameters such as pH, quantity, and quality of chemicals such as thickeners 

and collectors, residence time, granulometry, etc. These factors make modeling difficult since the recovery 

might depend on factors external to geology. 

In this research we studied multivariable correlations that allow prediction of metallurgical recovery (Rec30 

- percentage recovery of the ore after 30 minutes of flotation) through multivariate geostatistics: for this 

purpose, an estimation of the recovery using co-kriging was performed considering variables that have high 

correlations. In this case study a high correlation between iron grades and recovery in potassium-rich 

alterations was found, which is attributed mainly to the amount of pyrite that makes the process difficult. 

Additionally, the incorporation of co-kriging allows increasing the estimated tonnage when there is little 

information about the primary variable (but not the secondary variable). 

The advantage of using classical geostatistics is that recovery models can be obtained with good results in 

terms of cross-validation (good prediction), which overcomes the problem of non-additivity in the case of 

the generation of a block model for geometallurgical variables. In addition, the advantage of using co-

kriging is that the information of this secondary variable is much denser, hence provides improved model 

resolution. The metallurgical recovery samples are usually expensive and few, the incorporation of 

secondary well correlated variable then generate a more robust and reliable recovery model.  

 

INTRODUCTION 

Modeling of geometallurgical variables has become a fundamental step in the evaluation of mining project 

[Brissete, 2014], [Lund, 2015]. In this context 2 different modeling approaches are considered: The former 

consists of adding geometallurgical parameters without scaling to the block model (SPI, BWi, Recovery, 

kinetic process factors, acid consumption, sedimentation rate, etc.). The latter consists of generating process 

models for industry scaling, in which laboratory and pilot plant tests are considered using statistical data 

from operation. Sampling data from plant is also used [Lamberg, 2011].  
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Metallurgical recovery is a non-additive variable and depends on in situ geological attributes such as: 

mineralization, lithology, alteration, mineral associations, among others. On the other hand, recovery also 

is affected by metallurgical attributes such as: flotation time, amount, and quality of collectors, frother, 

surfractant, pH, etc. Classical geostatistical methods cannot be applied to geometallurgical recovery due to 

the following factors [Deutsch, 2015]: 

● Nonlinearity: Estimates at different support from measurement can lead to bias. This drawback is 

also present in reblocking.  

● Unequal Sampling: Recovery test are expensive, hence are usually applied in few drillholes, those 

with economic profit.  

● Multiscale Sampling: Recovery is usually measured over a support of 30 meters, much longer than 

other variables which are typically measured every 1 or 2 meters.  

 

Usually, the recovery is estimated with different regression models that depend on other variables such as 

the amount of total copper, the solubility rate, amount of analytical acid, etc. To be able to apply these 

models, different geometallurgical estimation units must be modeled for the variable recovery. The 

definition of these units assumes a metallurgical behavior comparable between samples within each unit. 

In other words, 2 geometallurgical units are considered different if they show significant differences in the 

outcome of metallurgical processes, given a particular circuit. 

 

This research defines potassic-rich altered rocks as a geometallurgical unit, this according to a geostatistical 

study [Garrido, 2016]. In addition to this, the type of potassic alteration is commonly associated with 

magnetite or hematite, anhydrite, and carbonates with iron while the clay minerals are absent. In some 

types of deposits, the feldspar is associated with biotite and anhydrite through a replacement by diffusion. 

 

 

Figure 1 Optical micrographs illustrating the copper ore mineralogy and textures. Source: Benzaazoua (2002). 

 

The sulfur/metal ratio is moderate, the proportion in pyrite being 3:1 (Figure 1, right). The pyrite (Fe2S) is a 

sulfide with high content of iron present in minerals of hypogene origin, has a disseminated distribution 



77 
 

and is strongly associated with the chalcopyrite (CuFeS2), the main mineral recovered in copper flotation. 

Pyrite usually brings complications from an operation point of view because [Majima, 1969]: 

 

● It generates electrochemical problems in milling, including galvanizing and corrosive effects to 

machinery. 

● If pyrite and chalcopyrite are intergrown and liberation of chalcopyrite is low, recovery will 

decrease. This occurs because chalcopyrite requires at least 70% free surface for proper flotation. 

● If the proportion of pyrite is very high it requires further alkalization of the flotation cell to achieve 

adequate depression of pyrite, problem which also increases reagents consumption. 

 

Due to the negative impacts of pyrite on the recovery, a multivariable study was conducted [Wackernagel, 

2003] between the potassic alteration units and recovery, looking for statistical correlations and space. 

 

METODOLOGY 

Geometallurgical unit and multivariate correlations 

The potassic alteration associated with biotite was defined as geometallurgical unit (there are no significant 

presence of clays, mineralogy is relatively constant and given the lithology there should be no 

granulometric differences or hardness that may affect the grinding process). 

 

 

Figure 2 Statistical distribution (normal) for recuperation (geometallurgical variable) 

 

The probability graph shows a unimodal distribution, without important breaks on the trend line. The 

histogram in Figure 2 shows a normal distribution for the recovery, with an average of approximately 81% 

considering 484 composite data over 30 m approximately. In the case where the proportion of feldspar 

potassium (according to login) is greater than the biotite, for sulfide minerals (mainly chalcopyrite), we 

found a significant statistical correlation (-0.8) between the amount of iron and the value of the recovery 

(Figure 3). 
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Figure 3 Scatterplot and correlation between Fe and Rec30. 

 

This high negative correlation can be explained by the amount of pyrite present in the chalcopyrite ore rock. 

The pyrite has high iron content and reduces the recovery of copper due to low liberation of the 

chalcopyrite, when intergrown. Low iron contents (<1.5%) indicate that pyrite is not found massively to 

substantially decrease the free surface of chalcopyrite and affect recovery. 

 

Estimation and study cases 

Due to heterotopic condition, which is usually present in geometallurgical variables, traditional co-kriging 

was performed as an estimation method for the recovery, with iron as secondary variable. To estimate non-

additive variables, the support of the estimation (usually block model) is the same or like the support of 

measurement of samples (composites). In this case, if block dimensions are like the drilling diameter and 

the length of the block is the length of the composite measurement, then recovery on the composite can be 

considerate like the recovery of the block support. This hypothesis enables discrete estimation reducing the 

bias that would be generated by a non-additive variable estimation. 

 

Dense simulation of the metallurgical recovery and the iron measured in tests was performed. A total of 13 

test cases were selected with different sampling density of the primary variable (recovery) and full sampling 

of the secondary variable total iron Fe. In this case a total of 5,000 samples are considered. The test cases are 

summarized in the following table (Table 1): 
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Table 1 study cases for testing co-kriging estimation. 

Case Number Number of 

samples (all) 

# Fe assay 

samples 

# Rec assay 

samples 

Percentage 

1 5,000 5,000 25 0.5% 

2 5,000 5,000 31 0.6% 

3 5,000 5,000 50 1% 

4 5,000 5,000 100 2% 

5 5,000 5,000 152 3% 

6 5,000 5,000 200 4% 

7 5,000 5,000 250 5% 

8 5,000 5,000 500 10% 

9 5,000 5,000 1,000 20% 

10 5,000 5,000 1,500 30% 

11 5,000 5,000 2,000 40% 

12 5,000 5,000 2,500 50% 

13 5,000 5,000 5,000* 100% 

Percentage: Rec assay samples / Fe assay samples 

*Equal sampling or Homotopic sampling 
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RESULTS AND DISCUSSION 

In case study 1 only 0.5% of the samples contain hard data on recovery, equivalent to 25 samples compared 

to 5,000 Fe assays. In contrast, in case study 12, 2,500 recovery data points contrast respect to 5,000 Fe assay 

samples, this last case providing robust statistics: 

 

 

Figure 4 Histogram of rec30 for study case study 1 and 12. 

 

For each case study, we proceeded to estimate using ordinary kriging and ordinary co-kriging to observe 

the changes in the predictive models in terms of robustness, precision, and accuracy. 

 

The Figure 5 shows a comparison between the estimates of ordinary kriging and co-kriging for the 13th case 

(homotopic sampling), where we can visually observe that in both cases, they achieve reproduction of local 

means without major differences. 

 

 

Figure 5 (Left) Estimation KO in case 13. (Right) Estimation Co-KO using Fe as second variable. 
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Figure 6 shows the comparison for case study 7, where 250 samples of recovery contrast respect to 5,000 Fe 

assay samples. In this case smoothing differences can be seen in the estimated models. 

 

 

Figure 6 (Left) Estimation KO in case 1. (Right) Estimation coKO using Fe as second variable. 

 

The results (Figure 7) indicate that co-kriging reproduces the average better than the kriging. In addition, 

variance is higher, thus estimating results with greater dispersion. On the other hand, the co-kriging in the 

first case estimated recoveries over 100% leading to incongruence.  

 

 

Figure 7 (Left) Boxplot rec30 estimated (KO and co-KO) and composites in case 1 (Left) and case 8 (Right) 

 

To reproduce the global means in the block model on every estimation unit, 3% of sampling is required. 

This can be observed in Figure 8 (left) where the global averages are summarized for different percentages 

of sampling, for the kriging and the co-kriging. 
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Figure 8 (Left) Average recovery estimated in diferent cases. (Right) Kriging variance (error of estimation) and data 

estimate with co-kriging (Red) and Ordinary Kriging (blue). 

 

The vertical lines in Figure 8 (left) show the standard deviation of the estimate (associated with the error 

variance). For greater sampling densities, the estimation error decreases (precision) and the average rate is 

close to the real (accuracy).  

 

CONCLUSION 

According to Figure 8, it is not recommended to do estimates with sampling representing less than 3 per 

cent of the data as it can lead to significant bias. Figure 8 (right) shows the number of estimated data and 

the error estimation for different sampling densities. In this case, the technique of co-kriging presents an 

important improvement in low sampling densities, since (using secondary information) allows estimating 

more data. Despite this, the error is greater in these cases than kriging. 

For a higher sampling density (> 2%), co-kriging is presented as a better estimation technique than kriging, 

reducing the estimation error and generating more robust models with greater variability than kriging. 

When sampling is homotopic (sampling density of 100%) kriging and co-kriging provide comparable 

results, where it is recommended to use kriging in terms of computational time and additional work 

modeling the LMC. 

Finally, co-kriging presents advantages when correlations are detected on a geometallurgical unit of 

estimation if secondary variables with high information density are available. The use of this secondary 

information can improve the quantity and quality of results. 
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ANEXOS 

 

ANEXO GARRIDO ET AL. 2017B 

Mine planning in open pit defines the material to be extracted when it will be extracted and its 

destination. Conventional scheduling usually considers block values based on geological 

parameters such as grade of the metal of interest, its mineralogy, and parameters external to 

geology. The latter parameters correspond, for example, to economic parameters, opportunity 

costs, types of plant and plant processes. The scope of this research is to consider geometallurgical 

constraints into the optimization problem known in mine planning as constrained pit limit problem 

(CPIT). 

In the last years, numerous works have proven that there is a strong effect of clays on the flotation 

recovery process (chalcopyrite or bornite minerals). This impact generates operational problems 

that, if not controlled, can decrease metallurgical recovery. For example, due to clays are usually 

soft rocks, the grinding time is modified, thus, the recovery which is related to the granulometry. 

In addition, clays increase the costs associated on water input, since they require additional 

consumption to obtain the expected recovery. All these factors can be handled over long periods 

of time, but in short times operation the response is not as immediate and effective as required to 

be economical. 

In this work, we propose a methodology which add a homogeneity condition to the optimization 

problem. It consists in the extraction of minerals with similar geometallurgical properties (in this 

case, the modeled amount of clay) on each period, and therefore the operational parameters in the 

plant would remain relatively the same. The algorithm was applied to a case study where zones 

with different levels of alteration and clay content were modeled. The valuation considered 

standard economic parameters of the mining industry.  
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ABSTRACT 

Mine planning in open pit defines the material to be extracted when it will be extracted and its destination. 

Conventional scheduling usually considers block values based on geological parameters such as grade of 

the metal of interest, its mineralogy, and parameters external to geology. The latter parameters correspond, 

for example, to economic parameters, opportunity costs, types of plant and plant processes. The scope of 

this research is to consider geometallurgical constraints into the optimization problem known in mine 

planning as constrained pit limit problem (CPIT). 

In the last years, numerous works have proven that there is a strong effect of clays on the flotation recovery 

process (chalcopyrite or bornite minerals). This impact generates operational problems that, if not 

controlled, can decrease metallurgical recovery. For example, due to clays are usually soft rocks, the 

grinding time is modified, thus, the recovery which is related to the granulometry. In addition, clays 

increase the costs associated on water input, since they require additional consumption to obtain the 

expected recovery. All these factors can be handled over long periods of time, but in short times operation 

the response is not as immediate and effective as required to be economical. 

In this work, we propose a methodology which add a homogeneity condition to the optimization problem. 

It consists in the extraction of minerals with similar geometallurgical properties (in this case, the modeled 

amount of clay) on each period, and therefore the operational parameters in the plant would remain 

relatively the same. The algorithm was applied to a case study where zones with different levels of alteration 

and clay content were modeled. The valuation considered standard economic parameters of the mining 

industry. 
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INTRODUCTION 

An approach often used in mine planning is to maximize the net present value (NPV) subject to different 

operational conditions, creating a optimization problem that can consider many restrictions (Lane, 1988). 

In the case of an open pit, they tend to define precedence constraints, which represent a geometric constraint 

associated with rock slope stability (Whittle, 2009). In mining industry, algorithms which deliver 

satisfactory solutions by defining different pushback and final pit are widely used, in which way maximize 

the NPV along a mining project (Fytas et al., 1993; Ohnson, 1969). Normally, these numerically correct 

solutions are not operationally feasible; therefore, design modifications are applied to finally define the 

reserves to exploit. 

Different restrictions can be added to the optimization problem, for example: mine production, plant 

capacity, multiple destinations (stockpile), schedule or sequences (Kim & Zhao, 1994), secondary variables 

of interest, among others. However, by adding additional constraints, the optimization problem becomes 

very complex, requiring large calculation time and sometimes surpasses the available memory. This 

scenario, motivate us to search alternatives methodologies that could handle such complexity from a 

computational point of view. 

In this research, we consider geometallurgical variables for the optimization problem. Different types of 

clays generate operational metallurgical problems in flotation processes. Some minerals, include kaolinite 

(stratified silicate), illite (phyllosilicate) and others are grouped by quantity in four categories: large (> 30%), 

moderate (10% -30%), small (2% -10%) and minimum (<2%) (Chipera & Bish, 2001). Models of clay grades 

are usually built using categorical variables based on geological mapping and/or X-ray diffraction (analysis 

of clay speciation XRD). Clay variability in the metallurgical plant, generates many operations problems 

which negatively influence the recovery of the metal of interest, generating mineral and economic losses. 

Bulatovic quotes: “Clays are the main reason for low recoveries of copper and gold by flotation” (Bulatovic, 1997). 

The focus of this research is to generate a multi-objective optimization algorithm, which can minimize the 

variation of clay to be processed in the short term. This optimization problem was modeled considering the 

Constrained Pit Limit Problem (CPIT) as base, which consists of the maximization of the NPV over a time 

horizon, subject to block precedence and operational constraints; and, additionally, the minimization of the 

variation of clay by period. To solve this optimization multi-objective problem, we considered the 

metaheuristic called Tabu Search (Glover & Laguna, 1997), which can find solutions with a high level of 

accuracy in reasonable computational time.  

The next section will describe the methodology used to create a simulated deposit, which reproduce the 

problem of mixing different clays on flotation process. Finally, a case study will present the application of 

Tabu Search over the synthetic deposit, to maximize NPV and minimize the variation of clays. Results and 

conclusions are shown. 
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METHODOLOGY 

The simulated study case corresponds to the surface area of a copper porphyry deposit. The hydrothermal 

system is larger than the ore body, strongly affecting the foreign rock. The rock mass is composed primarily 

of andesite. The deposit is dated from the late-eocene and the intrusive complex is of the diorite-type. 

Kaolinite clays are strongly associated to sericitic alteration, which is presented superficially and covers the 

largest area of the study. The mineralization is mainly composed of disseminate chalcopyrite (ore of 

economic value) with poor indicators of secondary supergene processes. Dimensions of the body are not 

known in depth, but to this research have been delimited to work with resources with low uncertainty 

(Measured-Indicated Resources). Figure 1 shows a cross section with the orebody shape of interest. 

 

 

Figure 1 Ore body delimitation model section 

 

Clays were modeled based on the model of sericitic alteration, in which four categories were proposed as 

areas of large, moderate, small, and minimum presence of clay (increasing towards the edges and surface 

of the area). The models were made based on geological mapping. 

 

 

Figure 2 Clays model section: Blue is minimum clay and red is large clay. 

 

The approach of the multi-objective optimization problem is defined as follows: The main objective is 

formulated according to CPIT (Espinoza et al., 2013) in which maximize NPV subject to precedence 

constrains (pit form) and temporality (schedule). The second objective will be addressed as minimize 

dilution of the exploitation over the time horizon T (Equation 1). Dilution (in mining) is the relationship 

between waste and mineral in the extraction process. In this case, mineral will be considered as the most 

frequent alteration in a time window, and waste represent the rest of the alterations (or grade clays). Using 
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this definition, dilution can be described as the amount of majority material in a period (Equation 2). Clays 

attribute will be represented as ai = {0, 1, 2, 3} where 0 is minimum clays, and 3 correspond to large clays.  

Then, the minimization dilution problem is described as: 

 

(1) 

 

Where Dt is dilution in the period t: 

 

(2) 

 

 

Mineral (Mt) and Waste (Et) represented as the main alteration in the period t: 

 

(3) 

 

 

(4) 

 

It can be calculated: 

 

(5) 

 

 

And the parameters to consider if is waste or mineral are defined as: 

 

(6) 

 

 

Tabu Search (TS) were created by Glover at the end of the 1980s (Glover & Laguna, 1997), which is a 

metaheuristic search method that take advantage of local search. Giving the combinatorial aspect of the 

formulation, we considered appropriate the use of these algorithms that sacrifice accuracy in the solution 

to significantly reduce the processing times, allowing us to have good solutions in a reasonable execution 

time. 
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RESULTS AND DISCUSION 

Figure 3 shows the resources to be extracted in the different periods of time. It should be noted that the 

solution seeks to maximize the NPV and decrease the "geometallurgical dilution" per period. In addition, 

Figure 4, shows variability of dilution by periods, specifying the times where to expect higher dilution. The 

information generated by this process can be considered, from a predictive point of view, to manage 

operational parameters at the processing plant by considering the variability of clays which were modeled 

as dilution. 

 

Figure 3: Schedule for different periods each color (contour plot) 

 

In Figure 4, the chart summarizes the general planning for the different periods of time from a point of view 

tonnage / grade. The optimization did not consider keeping mine or plant tonnages constant over time (this 

condition could be added in future work). 
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Figure 4: Tonnage and grades average by period 

 

The results obtained with the TS algorithm, were compared with the optimization problem solved without 

dilution restriction (CPIT). Table 1 shows the values of NPV for Dilution case and Base case. Dilution case 

gives results very like to Base case in terms of grades and extracted tonnages. Both cases present low 

differences in tonnage for period, which causes a decrease of the NPV in Dilution case (6% of difference in 

average). The dilution decreases notably in most of the periods, generating a feed in the metallurgical 

process with greater homogeneity. The reduction of dilution avoids economic losses that are not considered 

in the evaluation since they are difficult to quantify. 

 

Table 1 Comparison between base case and dilution case  

  Base case** Dilution case Percentage difference* 

Period Dilution NPV [MUS$] Dilution NPV [MUS$] Dilution NPV [MUS$] 

1 10% 135 2.5% 95 -76.0% -30% 

2 0.0% 249 0.0% 201 - -19% 

3 0.0% 327 0.0% 294 - -10% 

4 0.0% 413 0.0% 396 - -4% 

5 0.0% 500 0.0% 486 - -3% 

6 0.0% 577 0.0% 562 - -3% 

7 0.0% 649 0.0% 631 - -3% 
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8 0.0% 716 0.0% 698 - -2% 

9 0.0% 775 0.0% 756 - -2% 

10 4.1% 825 2.4% 808 -42% -2% 

11 14% 868 15% 851 7.0% -2% 

12 32% 896 24% 879 -26% -2% 

13 28% 910 16% 883 -43% -3% 

14 9.6% 928 8.8% 901 -8.3% -3% 

* Difference: dilution case - base case 

** Base case does not consider plant processing costs 

 

CONCLUSIONS 

Scheduling in mine planning is widely used in the mining industry. We propose an addition to traditional 

optimization of the NPV, by considering other variables. Considering additional variables can improve the 

operation of the short and medium term, but the complexity of the optimization problem is increased. We 

considered the dilution generated by the management and metallurgical process of clays, which is inherent 

characteristic of sericitic alterations. The problem was solved using the Tabu Search metaheuristic, which 

results were compared to the CPIT formulation, used as Base case. In terms of tonnage and grade of metal, 

the application of this methodology shown promising results. In addition to this, the methodology delivers 

sequences with lower temporal dilution (higher homogeneity), which improves the predictive capacity of 

the metallurgist. 

The metaheuristic approach used in this work, helped to add new constraints that cannot be considered on 

traditional formulation; and, due to the complexity of the numerical model, makes impossible to find an 

optimal solution. We strongly recommend the use of this metaheuristic (or any other) to tackle additional 

constraints that in mining project are not usually considered. 
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ANEXOS 

 

ANEXO GARRIDO ET AL. 2018 

The access to real geometallurgical block models is very limited in practice, making difficult for 

practitioners, researchers, and students to test methods, models and reproduce results in the field 

of geometallurgy. The aim of this work is to propose a methodology to simulate synthetic 

geometallurgical block models with geostatistical tools preserving the coherent relationship among 

primary attributes, such as grades and geology, with mineralogy and some response attributes, for 

example, grindability, throughput, kinetic flotation performance and recovery. The methodology 

is based in three main components: (i) multivariate geostatistics, (ii) froth flotation simulation 

models, and (iii) well known performance plant parameters. The simulated geometallurgical block 

models look very realistic, and they are coherent in terms of geology and mineralogy, and 

processing metallurgical performance responses are consistent with what is seen in practice. These 

simulations can be used for several proposes, for example, benchmarking geometallurgical 

modelling methods and mine planning optimization solvers. Simulations at small scales also serve 

to represent drill holes campaigns and generate sample dataset incorporating geometallurgical 

attributes and real spatial variability. The methodology is completely reproducible with no use of 

proprietary models or methods. Implementations of all methods can be found in public domain 

software, and different ore body types may be incorporated with little effort. 
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ABSTRACT 

The access to real geometallurgical block models is very limited in practice, making difficult for 

practitioners, researchers, and students to test methods, models and reproduce results in the field of 

geometallurgy. The aim of this work is to propose a methodology to simulate synthetic geometallurgical 

block models with geostatistical tools preserving the coherent relationship among primary attributes, such 

as grades and geology, with mineralogy and some response attributes, for example, grindability, 

throughput, kinetic flotation performance and recovery. The methodology is based in three main 

components: (i) multivariate geostatistics, (ii) froth flotation simulation models, and (iii) well known 

performance plant parameters. The simulated geometallurgical block models look very realistic, and they 

are coherent in terms of geology and mineralogy, and processing metallurgical performance responses are 

consistent with what is seen in practice. These simulations can be used for several proposes, for example, 

benchmarking geometallurgical modelling methods and mine planning optimization solvers. Simulations 

at small scales also serve to represent drill holes campaigns and generate sample dataset incorporating 

geometallurgical attributes and real spatial variability. The methodology is completely reproducible with 

no use of proprietary models or methods. Implementations of all methods can be found in public domain 

software, and different ore body types may be incorporated with little effort. 
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INTRODUCTION 

Geometallurgy has become an important sub-field in mining engineering because of its benefits on the ore 

quality on mine planning, plant performance and product quality. To incorporate these benefits into the 

mining value chain, key metallurgical responses and proxy variables need to be captured into the block 

model, which is the main input to solve many optimization problems in mine planning (Ortiz et al. 2015). 

This enriched block model with geometallurgical variables is commonly termed a geometallurgical block 

model (GMBM). 

There are several methodologies for building such GMBM. The primary-response framework for building 

geometallurgical models is a very solid methodology for geometallurgical modeling (Coward et al. 2009). 

Primary attributes, such as grades, lithology and alteration can be proxies to response attributes such as 

grindability indices, recovery, among others. As many of those response attributes are not additive, 

traditional linear estimation methods are not valid to be used in the block model (Carrasco et al. 2008). 

Typically, there are three complementary approaches to populate the GMBM with response variables. The 

first approach is the use of predictive regression models, from simple linear regressions (Montoya et al. 

2011; Boisvert et al. 2013), non-linear regressions (Carmona and Ortiz 2010; Keeney and Walters 2011; 

Sepulveda et al. 2017), and clustering (Hunt and Jorgensen 2011). The second approach is simulating the 

processing processes (Suazo et al. 2010). The third approach is the use of mineralogy as the main proxy. 

Mineralogy is of enormous importance for geometallurgy as it plays a fundamental role in the 

characterization of metallurgical responses (Lamberg 2011; Hunt et al. 2013; Yildirim et al. 2014; Lund et al. 

2015). This approach, nevertheless, requires having the mineralogy characterization of the deposit, which 

is expensive, often resulting in limited data available.  

From the point of view of practitioners, researchers, teachers and students, there is another issue with 

GMBM: an important lack of available GMBM for them to use, because the data of those are usually subject 

to confidentiality agreements. This fact is the motivation to offer a methodology for the simulation of 

GMBM, exemplified here with a porphyry ore body type, but it can be applied for any other type of mineral 

deposit. 

The only related research on methodologies for the simulation of geometallurgical block models, so far 

according to the literature review done in this paper, is Lishchuk's thesis (Lishchuk 2016). In this thesis, a 

methodology, termed geometallurgical testing framework, was proposed for building a synthetic ore 

deposit model with focus on geometallurgy. This framework has three main modules: (i) a geological 

module, (ii) a mineral processing module, and (iii) an economic module. The first two modules are the most 

relevant modules for the simulation of synthetic geometallurgical ore bodies. 

The main weakness of Lishchuk's methodology is the naïve approach to simulate the spatial characteristic 

of geology and grades using just simple ellipsoids enveloping the zone of influence of a particular lithology. 

Imposing multivariate spatial correlations is critical to ensure the desired spatial characteristics are 

reproduced with geological sense and coherence. 

The contribution of this paper is a robust methodology to simulate a GMBM with openly available 

geostatistical tools preserving the coherent relationship among primary attributes, mineralogy, and 

response attributes. 
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METHODOLOGY 

To simulate the GMBM, four steps are performed: (i) Geological simulation, (ii) Mineralogy simulation, 

(iii) Geochemical simulation, and (iv) Metallurgical simulation. 

Geological Simulation 

In this step the desired geology is imposed by real or synthetic drill holes. These synthetic drill holes are 

built based on the geological knowledge and metallogenic characteristic of the targeted deposit type 

(Maksaev 1990; Sillitoe 2010).  

Usually codes for lithology, alteration type and mineralization zone are assigned to samples in drill holes. 

These geological properties are simulated in the deposit by indicator simulation (Deutsch 1998; Chilés and 

Delfiner 2012; Pyrcz and Deutsch 2014). The actual implementation used here is the algorithm BlockSIS 

(Deutsch 2006), which implements the smoothing algorithm MAPS (Deutsch 1998) to improve the contact 

among categories and preserves their imposed proportions. 

Mineralogy Simulation 

In this step we relate mineralogy with geology. Mineralogy is often determined by mineralogical testwork, 

such as QEMSCAN (Fennel et al. 2015), which provides mineralogical proportions. For each geological 

domain, a multivariate spatial lineal model of coregionalization (LMC) is imposed. This LMC is determined 

according to the relationships between minerals in each geological domain, for example, cuprite and 

chalcocite should be found in the mixed or secondary enriched zone. The relationship can be determined 

by correlation matrices or by (Baeza et al. 2016). The simulation within each geologic domain is performed 

by the USGSIM algorithm  (Manchuk and Deutsch 2012). 

Geochemical Simulation 

The elements of interest, such as copper, gold, molybdenum, silver and iron, and also deleterious elements, 

such as sulphur, arsenic and fluorine, are often simulated directly with conventional geostatistics 

(co)simulations methods (Chilés and Delfiner 2012). From the geometallurgical perspective, deleterious 

elements could be crucial in beneficiation process and also in minimizing contaminants that affect the 

economic value of the final product (Lane 1988). 

Some researchers have linked chemistry composition to mineralogy in order to predict from elements the 

minerals proportions (Lamberg 2011). Our approach goes in the other direction. From the simulations of 

mineral proportions, we deduce element content. For illustration, in a porphyry copper deposit, we could 

find the following relationships of copper grade in different mineralization zones: 

CuT (%) in EnrSec > CuT(%) in Oxides > CuT(%) in PrimCpy > CuT(%) in PrimPy 

 

where CuT(%) is the total copper grade. EnrSec (rock with secondary enrichment) is characterized by 

minerals with high copper content such as chalcocite and covellite. Oxides are minerals affected by 

oxidation/reduction reactions such as cuprite and chrysocolla. PrimCpy are primary rocks characterized by 

sulphurs with high content of chalcopyrite. PrimPY are primary rocks characterized by low content of 

chalcopyrite and high pyrite. Therefore, the mineral composition in each mineralization zone can be used 

to derive the elements grades. 
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Metallurgical Simulation 

Metallurgical response can be estimated by regression models calibrated from testwork or reconciliation 

data, which is the approach used in this paper, or by process simulation. Metallurgical simulators are based 

on geological and operational parameters (Lishchuk 2016). The geological parameters are mainly controlled 

by the mineralogical composition of the feed, whereas the operational parameters are controlled by the 

attributes specific to the processes, for example in flotation, reagents have a high impact on recovery. Most 

of the operational parameters are well-known for each mineralogy composition of the feed. Therefore, the 

simulated mineralogy is used as input to metallurgical simulators (we focus on flotation process) and the 

results are propagated into the GMBM. 

CASE STUDY 

This case study illustrates the application of the proposed methodology. A typical porphyry copper deposit 

is simulated with four mineralized zones: oxides, primary enrichments (with chalcopyrite and pyrite as 

main minerals), and secondary enrichment. For confidentiality, the database has been altered and 

transformed to Gaussian distribution. 

Geological Modeling 

The main mineralized zones are: Oxides, containing oxides minerals; EnrSec, secondary enrichment; 

PrimCpy, with high content of chalcopyrite; and PrimPy, with high content of pyrite. Figure 1 shows one 

realization of the mineralized zones, obtained by indicator simulation. 

 

Figure 1  Distribution of mineralized zones, realization 1. 

Geostatistical simulation allows to generate different equally probable scenarios conditioned to the 

geological profile of a porphyry copper deposit.  

Multivariate mineral characterization 

The bivariate correlations were calculated for all mineralization zones. This correlation matrix was used for 

co-simulating the proportions of minerals by multi-Gaussian methods. 
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Figure 2  Plot of simulated mineral proportions in primary zone with high chalcopyrite content (PrimCpy). 

Geometallurgical simulation of the head copper grade 

The values of geochemical variables are simulated based on the mineral characterization in order to 

generate coherent element grades. For example, copper grade would be in a zone with chalcopyrite, bornite 

or chalcocite, which are sulphured minerals hosting copper mineralization. The total grade of copper 

contained in the simulated minerals can be calculated directly from bornite, chalcopyrite and chalcocite, 

using the proportion of copper according to their chemical formulas. For example, Bornite (𝐶𝑢5𝐹𝑒𝑆2), 

Chalcopyrite (𝐶𝑢𝐹𝑒𝑆2) and Chalcocite (𝐶𝑢2𝑆)  have a 63.30%, 34.61% and 78.85% of copper, respectively. 

The resulting copper grades calculated from minerals in PrimCpy zone are shown in Figure 3. 

 

Figure 3  Derivation of copper grade from minerals containing copper in PrimCpy zone. 
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Geometallurgical Simulation of Grindability and Specific Energy Consumption 

One index for characterizing the grindability response is the Bond ball work index (BWi). Good correlations 

exist with some geochemical attributes (Fe3O4, soluble Fe, total Fe, Ni y Ni2O). However, a synthetic variable 

defined as: 

 

𝐵𝑊𝑖 = 𝑓(𝐹𝑒3𝑂4, 𝐹𝑒𝑆, 𝐹𝑒𝑇,𝑁𝑖, 𝑁𝑎2𝑂) = 𝐹𝑒3𝑂4 ∗ 𝐹𝑒𝑆 ∗ 𝐹𝑒𝑇 ∗ 𝑁𝑖/𝑁𝑎2𝑂 

 

It shows higher correlation of 0.7 approximately. This new synthetic variable, which is now a proxy for BWi, 

was co-simulated in order to spatially correlate BWi with mineralogy. This is used to calculate the specific 

energy consumption by: 

 

𝑊 =
𝑃

𝐺𝑠
= 10 ∗ 𝐸 ∗ 𝐵𝑊𝑖 ∗ (

1

√𝑃80
−

1

√𝐹80
) 

 

where W is the specific energy consumption of work required to grind a head ore of F80 to P80 [kWh/short 

t], P is the consumed power [kW], Gs is the mass flow of ore [short t /h], BWi is the Bond work index [kWh/ 

short t], F80 is the passing size below 80% of the feed [um], and P80 is the passing size below 80% of the 

product [um]. 

Doing so, the specific energy consumption can be calculated in all zones in the deposit preserving the spatial 

variability related to BWi. 

 

 
Figure 4  Spatial simulation of specific energy consumption. 

Geometallurgical simulation of flotation 

In order to simulate the concentrate copper grade in froth flotation, the recovery of each mineral containing 

copper (bornite, chalcopyrite y chalcocite) was characterized as a random variable following a normal 

distribution, 𝒩(µ𝑚, σ𝑚), where m represents each mineral. The simulation is performed by Monte Carlo 

method using those distributions.  

The copper grade in concentrate is similarly calculated to the head copper grade, i.e., each mineral will 

contribute with some recovered copper in concentrate. The percentage of recovered copper is calculated as 

the ratio between the copper grade in concentrate and the copper grade in the block. This calculation does 

not require additivity and is consequent from the geometallurgical perspective under the constraint: 
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𝑅𝑠𝑖𝑚(𝐵𝑜𝑟𝑛𝑖𝑡𝑒) > 𝑅𝑠𝑖𝑚(𝐶ℎ𝑎𝑙𝑐𝑜𝑝𝑦𝑟𝑖𝑡𝑒) > 𝑅𝑠𝑖𝑚(𝐶ℎ𝑎𝑙𝑐𝑜𝑐𝑖𝑡𝑒) 

 

The parameters of the normal distribution for recovery will depend on operational factors of the flotation 

process and the gangue material associated to the feed. These parameters are mine dependent and can be 

determined by standardized rougher flotation testwork for sulphured copper minerals. 

In order to scale-up recovery, the flotation kinetic 𝐾 of Klimpel can be determined according to the 

following equation (Amelunxen et al. 2014): 

 

𝑅 = 𝑅∞(1 − 𝑒−𝐾𝑡) 

 

where 𝑅 is the recovery, which has been simulated, 𝑅∞ is the infinity time recovery, which is assumed to be 

1.0, and 𝑡 is the flotation time, which was set to 15 minutes. 

Calculating the Klimpel’s 𝐾 constant allows scaling-up the recovery for any design of a flotation plant. For 

example, using data from the plant, Suazo et al. (2010) were able to calculate an inherent floatability  

parameter at laboratory scale, which is linked to Klimpel’s 𝐾 constant, and then use it for scaling-up at plant 

conditions. 

CONCLUSION  

We have presented a reproducible methodology for the simulation of a geometallurgical block model, with 

special interest in preserving the coherence between geology, mineralogy, and grades. Four response 

attributes were included in the GMBM, BWi, specify energy consumption, copper recovery, and Klimpel’s 

𝐾 constant.  

Starting with real or synthetic drill holes and following the four steps in the proposed methodology, a 

GMBM can be successfully simulated. All methods and programs used in the methodology are public and 

free to use. 
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ANEXOS 

 

ANEXO GARRIDO ET AL. 2019 

Public reports are prepared to inform investors or potential investors and their advisers on 

exploration results, mineral resources, or mineral reserves. To convert mineral resources to 

mineral reserves, mineral processing and geometallurgical factors are used. The International 

Reporting Template (IRT) is a document that represents the best of the CRIRSCO-style codes: 

reporting standards that are recognized and adopted world-wide for market-related reporting and 

financial investment. In this reporting, geometallurgy represents a key component in the checklist 

for reserve assessments and reporting criteria: (1) mining factors or assumptions: in order to 

demonstrate realistic potential for eventual economic extraction, (2) metallurgical factors or 

assumptions: to demonstrate realistic potential for eventual economic and optimal extraction, (3) 

study status of mineral reserves for all modifying factors that have been considered and (4) cut-

off parameters: the cut-off parameters may be economic value per-block rather than grade, and 

the costs of processing a block depends on geometallurgical parameters. 

An overview of good practice to estimation and modelling techniques of geometallurgical data is 

given. A discussion is provided that of ore-type definition, types of test samples are critical, 

density of sampling per geometallurgical domain, relationship between mineral characterization 

and behavior of mineral processing to support geometallurgical modelling (some multivariable 

tools are proposed), how geometallurgical modelling supports the long term scheduling (costs, 

efficiency, recovery and mineral mixing among others); and simulations of geometallurgical 

scenarios to quantify uncertainty and risk of mineral processing. Currently, no guide exists for the 

construction of geometallurgical models and their management in the quantification of reserves, 

therefore, this research supports companies that declare mining reserves in bankability studies 

and private consultants that generate this type of reports.  
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ABSTRACT 

Public reports are prepared to inform investors or potential investors and their advisers on exploration 

results, mineral resources, or mineral reserves. To convert mineral resources to mineral reserves, mineral 

processing and geometallurgical factors are used. The International Reporting Template (IRT) is a document 

that represents the best of the CRIRSCO-style codes: reporting standards that are recognized and adopted 

world-wide for market-related reporting and financial investment. In this reporting, geometallurgy 

represents a key component in the checklist for reserve assessments and reporting criteria: (1) mining factors 

or assumptions: in order to demonstrate realistic potential for eventual economic extraction, (2) 

metallurgical factors or assumptions: to demonstrate realistic potential for eventual economic and optimal 

extraction, (3) study status of mineral reserves for all modifying factors that have been considered and (4) 

cut-off parameters: the cut-off parameters may be economic value per-block rather than grade, and the costs 

of processing a block depends on geometallurgical parameters. 

An overview of good practice to estimation and modelling techniques of geometallurgical data is given. A 

discussion is provided that of ore-type definition, types of test samples are critical, density of sampling per 

geometallurgical domain, relationship between mineral characterization and behavior of mineral 

processing to support geometallurgical modelling (some multivariable tools are proposed), how 

geometallurgical modelling supports the long term scheduling (costs, efficiency, recovery and mineral 

mixing among others); and simulations of geometallurgical scenarios to quantify uncertainty and risk of 

mineral processing. Currently, no guide exists for the construction of geometallurgical models and their 

management in the quantification of reserves, therefore, this research supports companies that declare 

mining reserves in bankability studies and private consultants that generate this type of reports. 
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INTRODUCTION 

In Chile, the decline in grades in deposits and the increase in operational costs mainly due to the 

deepening of mining operations, among others, is encouraging mining companies to investigate 

different areas for processes optimization [Acosta 2018]. Geometallurgy is a key factor in 

optimizing and understanding the risk of metallurgical mining processes.  

 

The International Reporting Template (IRT) is a document that represents the best of the 

CRIRSCO-style codes: reporting standards that are recognized and adopted world-wide for 

market-related reporting and financial investment. In Chile, The Chilean Mining Commission is 

the institution responsible to ensure the assessment of mining reserves in agreement to 

international standards. The Qualifying Commission of Mining Resources and Reserves 

Competencies defines the requirements for a Qualified Person (QP) to be qualified to inform and 

publicly certify exploration prospects and mining resources and reserves. Topics such as 

sampling, drilling, laboratory tests, location of the samples, density and distribution of samples, 

estimation and modelling techniques, mining and metallurgical factors, mining plan and 

scheduling, costs and revenues, marketing, etc. are considered by the QP to certify mining 

reserves [Code CM2012]. In this context, the geometallurgical knowledge is essential to ensure the 

correct estimate of a mining reserve (expected value and risk).  

 

There are multiple definitions of geometallurgy. Geometallurgy has been defined by SGS as the 

integration of geological, mining, metallurgical, environmental and economic information to 

maximize the net present value (NPV) of a deposit while minimizing operational and technical 

risk. To implement the geometallurgy applied in a mining project, it is necessary to select relevant 

and sufficient samples that will be subjected to tests to determine the metallurgical parameters 

and geostatistical distribution of these parameters along a deposit using accepted techniques to 

support the process of geometallurgical modelling [Chiles and Delfines 2012], [Deutsch and 

Journel 1998], [Goovaerts 1997], [Isaaks and Srivastava 2989]. In this research, an overview of good 

practices in use of geometallurgy to support mining reserves in copper sulfides has been compiled 

through geometallurgical papers and case studies.  

METHODOLOGY 

To compile the overview for copper sulfides processing, we considered: published articles, 

international conferences, public reports, academic publications and experience of mining 

industry professionals. The overview was summarized in the topics (1) Ore type definition, (2) 

Geometallurgical sampling, (3) Geometallurgical modeling and (4) Geometallurgy in support of 

mine planning and scheduling 
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RESULTS AND DISCUSSION 

A compilation of literature is presented. The review of the literature has resulted in the good 

practices relating to the geometallurgical factors in reserves estimations being categorized into 

four aspects:  

1. Ore type definition: As Geological Unit (GU) to estimate some attribute (for example copper grade 

[%]). The ore type is called Geo Metallurgical Unit (GMU) and depends of geology factors and type 

of metallurgical process. 

2. Geometallurgical sampling: Laboratory tests are usually done in standards conditions, but 

geometallurgical tests can be different in some deposits (for example rougher test). 

3. Geometallurgical modelling: In mining resources, conventional techniques are used, for example 

univariate geostatistics tools. For geometallurgical modelling, we recommend the use of 

multivariate geostatistics tools, to support the robust estimation. 

4. Geometallurgy in support of mine planning and scheduling: mining and metallurgical modelled 

factors must be considered in mine planning and scheduling to estimate costs and revenues. The 

expected value and risk are important in this stage.  

Ore type Definition  

Orebody knowledge from a geometallurgy perspective involves the characterization of 

subsurface material to enable the prediction of how the material will respond to processes within 

the mining value chain. These processes include blast fragmentation, loading, material handling, 

crushing, grinding, flotation, leaching, among others. [Jackson 2017]. 

The deposits have zoning where they present different mineral characterizations (also called 

GMU geometallurgical units) and within these domains there is also variability in the composition 

of the rock and process characteristics [Hunt 2014]. According to this concept: what do we mean 

by ore type? What is the objective of modeling different ore types? [Jackson 2016]. The ore type is 

a classification of ore with similar metallurgical performance also known as domain, end member, 

ore zone, entity to enable optimum processing methods to be selected, expected revenue and 

operating costs leading to the appropriate ore blending and mine planning. Thus, the concept of 

ore type provides a framework to form a common perspective around the performance of 

material, in order to make decisions. This implies that, depending on the perspective, the 

definition of ore type is given through the orebody knowledge/rock characteristics and performance 

engineering. For example, from a blasting perspective, the performance type is the fragmentation 

distribution (target to optimize process), and this depends on the Geological Domains (Joint 

characteristics, rock strength, rock density, RMD rating, etc.) and the blast design (operational 

factor). But from a Mill perspective, the performance target is the Throughput, that depends on 

fragmentation distribution, impact resistance and grinding hardness (material type + geological 

domains), and the milling circuit (operational factor).   
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In general, some common geometallurgical variables that require different ore type definitions 

are: 

• Bond Work Index for ball mill (BWi): The grindability test determines the hardness of the 

ore rock. The Work Index is used when determining the size of the mill and grinding 

power required to produce the required ore throughput in a ball mill [Bond 1961]. 

Simulations and modeling of this test show that factors as Particle Size, feed, % passing, 

makeup water, etc. are operational factors difficult to standardized [Tavares 2012], and a 

change of these factors are critical in results. 

• SAG Power Index SPI or Starkey Test for SAG mill: provides the time (minutes) required 

to perform a specific milling work, from a feed size to an output size [Starkey 1994]. 

• SAG Mill Comminution SMC: It is a function between the specific energy applied and 

the percentage of product generated in the impact fracture of a specific particle size 

[Morrell 2006]. 

• Kinetics of Rougher Flotation, maximum recovery with prolonged flotation time or 

"infinity", mineral characterization and geochemistry (feed or concentrate) in a flotation 

process, etc. [SGS 2007] 

The mineral associations are used to optimize flotation parameters in copper sulfides, in order 

to increase the grade of the concentrate and the recovery of the valuable metal. For example, 

Figure 1 shows two minerals after the rougher flotation test laboratory: Left shows a mineral 

in tail and Right shows a mineral in concentrate. In this example, mineral in concentrate is 

recovered because the chalcopyrite is liberated and mineral of tail contains occluded 

chalcopyrite, therefore it is not recovered. 

 

 

Figure 1: Mineral associations for samples in (left) tail and (right) concentrate of flotation 

performance 
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Examples of common geological factors that impact on ore type definitions for two different 

aspects of mineral processing in porphyry copper sulfide deposits are outlined below. 

 

• Grindability: Grinding usually depends on host rock lithology type and hydrothermal 

alteration (for example in deposit Los Bronces Chile, “Sulfatos” project, phyllosilicates have 

high tenacity tending to behave more elastically than tectosilicates hence, more difficult to 

break): it is related with de resistance to mill (resulting from combination of different 

minerals) [Gamal 2012]. Another example is degree of alteration: areas with greater degree 

of hydrothermal alteration have a lower hardness. For example, in SPENCE 

geometallurgical trends, high argilization zones presents destruction of feldspars replaced 

to clay minerals, then having a greater grinding capacity. Another example are the 

structural veins (micro-structures): Depending of mineral present in the structure, these can 

increase the resistance to grinding by acting as fracture reagent in the rock (e.g. Quartz, 

anhydrite, calcite, among others). Another example is the texture [Oyarzún 2011]: In 

Teniente, Chile, porphyric basalt has a low grinding due to abundant microcrystals with 

evidence of mutual interference between adjacent crystals, unlike the gabbro lithology, 

which has smaller crystals that take the form of the interstices between the larger crystals, 

showing greater grinding. These examples demonstrate that having knowledge of the ore 

and gange mineralogy and texture can provide valuable information for effective design 

of a concentrator flowsheet [Tungpalan 2015], [Lund 2015], [Lamberg 2011]. A lot of factors 

can be relevant to define the GMUs, and these usually depend on geological variability. 

All case studies must be analyzed carefully.  

•  

• Flotation tests: In this case, recovery and copper degree of concentrate is relevant. Test 

usually are designed for primary sulfides minerals, such as chalcopyrite or bornite [Hunt 

2011] recovered above 80%. Copper oxides (chrysocolla, atacamite, etc) are not recovered in 

flotation test. Secondary copper sulfides (as covellite, chalcocite, digenite, etc) usually have 

low recoveries. Clay minerals affect negatively the test [Bulatovic 1999], increasing the 

makeup of water. Other factors such as granulometry, texture, minerals associations, liberation, 

etc. also are relevant, affecting the recovery and costs in production. Pyrite is a very 

common mineral in copper-porphyry deposits, but in the processing stages it usually 

generates many operational interferences due to its high capacity to react chemically with 

the medium (water-rock interaction), changes the Eh-pH during the milling and having a 

high reducing capacity (increases the consumption of steel in grinding) [Mular and Barratt 

2002] [Hu 2009] [Garrido 2017]. 
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The geological inputs and relationship to process parameters must be analyzed carefully. These 

and other factors are relevant for defining the ore type or GMU, and these geological properties 

can be modeled in deposits and hence GMUs can be modelled. Some techniques to define and 

model GMUs has been published (geological criteria, spatial and statistical criteria), for example 

fuzzy clustering with spatial correction has been implemented [Sepúlveda 2018]. 

 

Geometallurgical Sampling  

The geometallurgical tests are different to copper grade sampling. For example, a common 

practice is measuring the copper grade through sampling, sample preparation and AAS 

measurement (Atomic Absorption Spectroscopy [Hannaford 1998]). This methodology is 

relatively conventional and known by the specialists, but geometallurgical test are not standard. 

We recommended implementing to standard methodology for geometallurgical tests, for 

example: 

• Select samples without mixing different GMUs. 

• Select several samples of each GMU. 

• In case of drillholes, choose a constant length of sampling. In production, choose a constant mass. 

• Use the standard conditions for testing.  

The last condition is difficult to standardize, in particular for flotation tests. This test is designed 

for each deposit according the geological and operational constrains, also can be different for each 

GMU. This test should not consider mixing between different GMUs, because there are properties 

that depends only on the georeferenced variable (for the purpose of modelling), for the purpose 

of scaling up from laboratory test to industrial performance recovery, mixing should be 

considered according to mine planning. 

 

A common question in geometallurgical sampling is: What density of data should be sampled to 

obtain efficient predictive models? It is a difficult question, it depends on the geology of the ore 

body, operational parameters of mining and operational parameters in mineral processing.  

 

In general, highly variable domains (high variance) are “difficult” GMUs to model or process and 

require more analysis than homogeneous domains. If a database has a poor sampling density, 

then the short-term models will be smoothed and will not represent the real variability of the 

mineral feed, losing the short-term predictability [Garrido 2017] and, therefore, decreasing the 

metallurgist's ability to react preventively before the change of ore type occurs.  
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Geometallurgical Modelling 

To support geometallurgical modelling, multivariable geostatistics techniques are recommended 

[Wackernagel 1995]. Geometallurgical samples are usually scarse and expensive, then the support 

of secondary variables or proxies (geochemistry as ICP, geophysical as Natural Gamma, structural 

information as UCS, etc.) are recommended to obtain more robust models [Garrido 2018]. 

Multielement geochemistry can provide bulk mineral characterization of hydrothermal alteration 

associations to support predictive geometallurgical modeling in Porphyry copper deposits 

[Townley 2018]. The use of synthetic variables (mathematical combination of secondary variables 

that have good correlation with primary variable) are highly recommended to obtain robust 

models in an acceptable time and effort of users [Baeza 2018]. 

 

One critical aspect of predicting response geometallurgical variables is that they are usually non-

additive (the response of block is not necessarily the average of the response of the discretization 

of the block), and traditional linear methods, such as Kriging, will not work well on such non-

linearities. The use of non-linear regression models may alleviate this where additive proxies are 

used to predict non-additive responses [Sepulveda 2017]. Using geostatistical simulations, if 

they exhibit spatial correlation, is also a valid approach.  

 

In this stage, geometallurgical variables are estimated in space [Bilal 2017], [Deutsch 2015] 

[Deutsch 2016] [Boisvert 2013] [Coward 2015] but the mining scheduling and mineral processing 

values depends of the time (costs by tonnage processed, efficiency, recovery, tonnage per day, 

etc.). For example, to estimate geometallurgical variables in a block model [Deutsch 2015] usually 

the geostatistician or orebody modeler estimates the georeferenced variables in space 

(corregionalized variable). The metallurgist or material scientist estimates the variables in time 

when a plant is being fed (temporal variable). Mine planning generates the match between spatial 

variability and temporal variability, as indicated in Figure 2 (Top: short-term model with 

production drillholes. Bottom: Rougher recovery in process plant, block by block sequencing). 

 

Mine planning generates mixing or blending of minerals. In geometallurgical properties, the 

results of blending are difficult to predict. For example, [Tavares 2013] show how the grindability 

of binary ore blends changes in ball mills: The Bond work index of the mixtures is often higher than the 

weighed-average value of the individual components in the mixture. This implies that predicting the 

behavior of blends is difficult because the additivity is questionable. The same case occurs in 

flotation performance, scale-up of laboratory flotation process recovery require another technique 

as Principle of Dimensional Similitude [Truter 2010], because interaction water-rock and physic-

chemical cross effects affect the additivity properties [Carrasco 2008]. 
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Figure 2: (Top) short-term model with production drillholes. (Bottom) Rougher recovery in 

process plant, block by block sequencing 

 

Geometallurgy in support of mine planning and scheduling 

The spatial variability associated with geometallurgical variables is transferred to a temporal 

variability when the material is extracted and processed.  

It is in this transferring where geometallurgy plays the most important role. The standardized 

response properties must be transformed to the specific plan conditions and 

scale. Geometallurgical attributes with distributional scale is still challenging [van den Boogaart 

and R. Tolosana-Delgado, 2018]. There are several approaches to this. A scale factor for each 

defined GMUs was considered for scaling-up recovery from standardized flotation tests to plant 

in Collahuasi mine, Chile [Suazo 2010]. Other approach is using predictive models of plant 

performance by plant simulators or machine learning real-time predicting models. These 
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predictive models together with the production scheduling must use geometallurgical attributes 

to ensure an optimal plant operation and to minimize deleterious elements in saleable products, 

among other factors. The next generation of plant simulators need to use geometallurgical 

attributes as inputs allowing the main objective of geometallurgy.  

 

Finally, the models are validated / reconciled through short-term data to improve the predictive 

capacity of the geometallurgical variables that allow reducing the risk in production and improve 

the expected values of benefits and costs in the mining reserves assessment. The conventional use 

of geometallurgical variables in mine planning is the use of geometallurgical cut-off grades to 

define mining reserves. An example on the change of mining reserves considering 

geometallurgical variables has been published in [Garrido 2017] where it has been shown that the 

mine planning can vary considering the mining mixing of areas with clay minerals. Temporal 

variance of this mineral generates operational problems of makeup water, among others, 

increasing processing costs.  

 

CONCLUSION 

The area of geometallurgy is being very relevant to ensure the reliability of mining reserves 

extraction. A formal methodology of incorporation in the estimation of reserves is important. The 

review in this article demonstrates the complexity and non-standardization in criteria to define, 

model and incorporate geometallurgical parameters in the estimation of mining reserves.  

 

Some good practices are recommended: the correct definition of UGMs based on geological-

operational criteria, the use of mineral characterization variables to support the multivariable 

estimation of geometallurgical attributes, the operational scaling of these parameters considering 

mining temporal mixing, and the quantification of risk through different scenarios to quantify  

geological – operational uncertainty are practices that should ensure a good management of 

geometallurgical data and its incorporation into mining reserves. 
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