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The slow calcium transient triggered by low-frequency electrical stimulation (ES) in adult
muscle fibers and regulated by the extracellular ATP/IP3/IP3R pathway has been related
to muscle plasticity. A regulation of muscular tropism associated with the MCU has also
been described. However, the role of transient cytosolic calcium signals and signaling
pathways related to muscle plasticity over the regulation of gene expression of the
MCU complex (MCU, MICU1, MICU2, and EMRE) in adult skeletal muscle is completely
unknown. In the present work, we show that 270 0.3-ms-long pulses at 20-Hz ES (and
not at 90 Hz) transiently decreased the mRNA levels of the MCU complex in mice flexor
digitorum brevis isolated muscle fibers. Importantly, when ATP released after 20-Hz ES is
hydrolyzed by the enzyme apyrase, the repressor effect of 20 Hz on mRNA levels of the
MCU complex is lost. Accordingly, the exposure of muscle fibers to 30 µM exogenous
ATP produces the same effect as 20-Hz ES. Moreover, the use of apyrase in resting
conditions (without ES) increased mRNA levels of MCU, pointing out the importance
of extracellular ATP concentration over MCU mRNA levels. The use of xestospongin
B (inhibitor of IP3 receptors) also prevented the decrease of mRNA levels of MCU,
MICU1, MICU2, and EMRE mediated by a low-frequency ES. Our results show that the
MCU complex can be regulated by electrical stimuli in a frequency-dependent manner.
The changes observed in mRNA levels may be related to changes in the mitochondria,
associated with the phenotypic transition from a fast- to a slow-type muscle, according
to the described effect of this stimulation frequency on muscle phenotype. The decrease
in mRNA levels of the MCU complex by exogenous ATP and the increase in MCU levels
when basal ATP is reduced with the enzyme apyrase indicate that extracellular ATP may
be a regulator of the MCU complex. Moreover, our results suggest that this regulation is
part of the axes linking low-frequency stimulation with ATP/IP3/IP3R.

Keywords: mitochondria, calcium handling, muscle plasticity, ATP release, IP3R

INTRODUCTION

Skeletal muscle can modify its phenotype to adapt to different external stimuli, such as disuse
(Goldspink et al., 1986; Kneppers et al., 2019), hypoxia (Baresic et al., 2014; Nguyen et al.,
2016), physical exercise (Yan et al., 2012; Joseph et al., 2016), among others (Gundersen, 2011),
in a process known as muscle plasticity. According to this, different muscles of the body
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differ in their phenotype depending on the function they
perform, expressing different isoforms of contractile proteins
and metabolic enzymes. Accordingly, muscles (and, in a more
general manner, motor units) have been broadly classified into
three groups: slow-fatigue resistance, fast-fatigue resistance, and
fast-fatigable. The model of muscle phenotype adaptation to
different types of exercise is intimately linked to patterned
electrical stimulation (ES) from the motoneurons innervating
them. The first evidence involving frequency of ES in triggering
molecular events associated with muscle plasticity was originated
on in vivo models of cross-innervation, where a transition from
fast to slow phenotype was observed in fast muscles innervated
with α-motoneurons belonging to slow motor units presenting
a low-frequency, long-lasting firing pattern (Eccles et al., 1962;
Salmons and Vrbova, 1969). We have demonstrated that the
inositol triphosphate receptor (IP3R) mediates the frequency-
dependent induced changes (excitation–transcription coupling
process) in gene expression involved in muscle plasticity of
adult skeletal muscle. In particular, our results show that IP3R
(and associated calcium signals) has a role in the activation
of transcriptional programs associated with a slow phenotype
that are activated at low frequencies of stimulation (Jorquera
et al., 2013), partially emulating muscle changes induced by
aerobic training (Klitgaard et al., 1990; Casas et al., 2010;
Jorquera et al., 2013).

Excitation–transcription coupling is a process linking
patterned depolarization of the muscle fibers with the activation
of specific signaling pathways downstream. After a train of
electrical stimuli, the process is triggered by the activation
of the voltage-dependent L-type calcium channel Cav1.1 or
dihydropyridine receptor (DHPR) (Jaimovich et al., 2000;
Araya et al., 2003). At low frequencies of stimulation, DHPR
activates the release of adenosine triphosphate (ATP), from
the inside of the muscle fiber to the extracellular medium,
through type 1 pannexin channels (Panx1). Extracellular ATP
and its metabolites can thus act in an autocrine and paracrine
manner, activating purinergic receptors, which, in turn, activate
phosphatidylinositol 3-kinase (PI3K) and downstream pathway
that favors the production of the second messenger 1,4,5
triphosphate (IP3) (Araya et al., 2003; Buvinic et al., 2009;
Jorquera et al., 2013). Subsequently, IP3 binds to the membrane
receptor of the sarcoplasmic reticulum (SR) and the nuclear
envelope, causing Ca2+ release from the SR and the consequent
increase in the cytosolic and nuclear Ca2+ concentration, which
modulates the activity of several transcription factors to foster
transcription (Carrasco et al., 2003).

During muscle contraction, the energy requirements of the
muscle fiber are increased several times compared to rest
(Weibel and Hoppeler, 2005). In muscle cells, mitochondria are
the main source of ATP, and its function can be stimulated
by various molecules, such as adenosine diphosphate (ADP),
adenosine monophosphate (AMP), and Ca2+ (Lazarowski et al.,
2003; Yi et al., 2011). In the mitochondrial matrix, different
enzymes, such as isocitrate dehydrogenase and α-ketoglutarate
dehydrogenase, have Ca2+ as a co-factor (Cortassa et al., 2003).
Consequently, increases in the intramitochondrial concentration
of Ca2+ increase the activity of these enzymes, increasing the

speed of the Krebs cycle as well as the production of reduced
compounds (NADH and FADH2) that feed the electron transport
chain and ATP synthesis (Diaz-Vegas et al., 2019). Therefore,
Ca2+ entry into the mitochondria is key to maintain the balance
between the metabolic requirements and the synthesis of ATP in
the skeletal muscle (Baughman et al., 2011; Tarasov et al., 2012;
Diaz-Vegas et al., 2019).

The mitochondrial calcium uniporter (MCU) is a highly
selective Ca2+ channel located in the inner mitochondrial
membrane. MCU mediates an electrogenic Ca2+ influx from
the intermembrane space to the mitochondrial matrix (Wan
et al., 1989; O’Donnell et al., 1998; Carafoli, 2010). Furthermore,
MCU is associated with different regulatory proteins that
modulate their affinity for Ca2+ (Fan et al., 2020). MCU and its
regulatory proteins are collectively known as the MCU complex,
where MCU is the protein forming the pore of the channel
(Chaudhuri et al., 2013; Shanmughapriya et al., 2015). The
main components of the MCU complex expressed in adult
skeletal muscle are MCU, essential MCU regulator (EMRE),
mitochondrial Ca2+ uptake 1 (MICU1), and mitochondrial Ca2+

uptake 2 (MICU2) (Murgia and Rizzuto, 2015). Among these,
the MICU1/MCU ratio appears to be particularly important
for the regulation of mitochondrial Ca2+ uptake (Paillard
et al., 2017). Increases in cytosolic Ca2+ levels generate an
increase in mitochondrial Ca2+ through MCU. This process
takes place after depolarization of the muscle fiber, where a
high increase in intracellular Ca2+ concentration occurs. The
consequent rise in mitochondrial Ca2+ depends on the activation
of ryanodine receptor 1 (RyR1) (a fast component of Ca2+

release) as well as IP3R (a slow component of calcium release)
(Diaz-Vegas et al., 2018).

There is evidence pointing to a possible role of MCU in
muscle plasticity. Indeed, the silencing of MCU has been
suggested to induce muscular atrophy, and its overexpression
generates muscular hypertrophy in murine models (Mammucari
et al., 2015), although these results are somehow controversial
(Kwong et al., 2018). Also, 9 weeks of strength training or
high-frequency EE (60 Hz) in humans induces hypertrophy
and increases MCU protein levels in skeletal muscle
(Zampieri et al., 2016). Interestingly, microarray analysis
of muscles overexpressing MCU or underexpressing MCU
showed differential changes in expression of genes related to
sarcomere organization, calcium regulation, differentiation,
and development. Notably, when MCU was overexpressed, an
increase in expression of genes related to Ca2+ homeostasis was
observed (Chemello et al., 2015).

Recently, the role of Ca2+ in the control of expression of
MCU has been studied using the Ca2+ ionophore ionomycin
to increase intracellular calcium concentration (Shanmughapriya
et al., 2015). The results showed that CREB binds to the
MCU promoter and alterations in cytosolic Ca2+ levels induced
changes in MCU levels. Interestingly, these results suggest
the existence of a crosstalk between cytosolic Ca2+ levels
and the control of mitochondrial Ca2+ buffering capacity
mechanisms (Shanmughapriya et al., 2015). Studies using more
physiological stimuli are thus needed to further explore this
mechanism. Furthermore, in hippocampal and cortical neurons,
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a reduction of MCU levels after increases in cytosolic Ca2+

through activation of NMDA receptor has been described
(Qiu et al., 2013).

These works reveal the importance of understanding the role
that transient changes in cytosolic Ca2+ levels (induced by a
physiological stimulus) play in the regulation of gene expression
of MCU, MICU1.1, MICU2, and EMRE in a tissue such as
skeletal muscle where Ca2+ is a key factor. Such regulation
could modulate the Ca2+ buffering efficiency of mitochondria,
generating a physiological control loop of intracellular Ca2+

signals. In the case of adult skeletal muscle, a phenotypic change
is observed under low-frequency ES, with modifications, among
others, in the expression of oxidative related metabolic enzymes
and an increase in mitochondria content (Hood et al., 1989;
Putman et al., 2004; Petrie et al., 2015). The possible changes in
mitochondrial proteins related to its Ca2+ buffering capacity is a
subject that remains poorly studied until now.

In this work, we show a decrease in mRNA levels of MCU,
MICU1, MICU2, and EMRE specifically after low-frequency
ES. Moreover, the changes observed appear in line with an
asymmetric distribution of some of these proteins between fast
and slow phenotype muscle fibers.

RESULTS

20-Hz ES Produces a Decrease in mRNA
Levels of the MCU Complex
We have previously demonstrated that ES of muscle fibers with
270 pulses, 0.3 ms long, at 20 Hz, induces changes in mRNA
levels related to a slow-to-fast phenotypic transition, whereas
the same amount of pulses at 90 Hz induces the inverse effect
(Jorquera et al., 2013). We evaluated the effect of ES on mRNA
levels of the MCU complex finding a significant decrease in MCU

FIGURE 1 | Low-frequency electrical stimulation (ES) transiently reduces mRNA levels of MCU complex in skeletal muscle fibers. Muscle fibers isolated from the
Flexor Digitorium Brevis (fdb) muscle were stimulated with 270 pulses, 0.3 ms each (A) at 20 Hz (n = 6–8 per condition) or (B) 90 Hz (n = 5–7 per condition). mRNA
levels of MCU decreased 1h post-ES (A); while high-frequency stimulation produced no change (B). The low frequency stimulation also decreased mRNA levels of
MICU1 (n = 5–10 per condition) (C), MICU2 (n = 4–9 per condition) (D) and EMRE (n = 4–9 per condition) (E) 1 h post ES. For (A) using the Kruskal–Wallis test with
post hoc Dunn’s was applied. Values are presented as mean ± SEM. 18S was used as normalizer. *p < 0.05; **p < 0.01; ***p < 0.001.
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mRNA levels 30 min (1.00 ± 0.06 vs 0.81 ± 0.05 at 30 min) and
1 h (1.002 ± 0.061 vs 0.669 ± 0.216 at 1 h) after 20-Hz ES of
isolated fdb muscle fibers (Figure 1A). High-frequency, 90-Hz
ES did not produce changes in MCU mRNA levels (Figure 1B).
Moreover, a decrease in the mRNA levels of MICU1 (1.03± 0.23;
vs 0.761± 0.091 at 20 Hz), MICU2 (1.01± 0.16; vs 0.83± 0.07 at
20 Hz), and EMRE (1.01± 0.17 vs 0.73± 0.15 at 20 Hz) was also
observed 1 h after 20-Hz ES, whereas 90-Hz ES did not generate
any changes in mRNA levels of these genes (Figures 1C–E).

Changes in mRNA Levels of the MCU
Complex Are Dependent on Extracellular
ATP and IP3R
To evaluate the downstream signaling after low-frequency ES,
responsible for the observed changes in mRNA levels of MCU
complex genes, we searched to determine the role of extracellular
ATP. We have demonstrated that 20-Hz ES induces a release
of ATP to the extracellular milieu trough Pannexin-1 channels
(Jorquera et al., 2013). The ATP released acts over purinergic
receptors to activate signaling cascades that activate, among
others, the production of IP3 and the release of Ca2+ through
IP3R, inducing changes in transcriptional activity of several
genes (Casas et al., 2010). Figure 2 shows changes in MCU
mRNA level in fdb muscle fibers pre-incubated with 2 U/ml
of the ecto-nucleotidase apyrase to reduce extracellular ATP
levels. The decrease observed in mRNA levels of MCU, MICU1,
MICU2, and EMRE after a 20-Hz ES was absent when fibers were
pre-incubated with apyrase (Figures 2A–E), when compared
to control fibers. A significant increase in MCU mRNA levels
(C = 1.02 ± 0.14; Apy = 1.32 ± 0.19) was also observed after
incubation with apyrase (Figure 2A) in basal conditions (without
ES). This effect of apyrase was not observed in MICU1, MICU2,
and EMRE mRNA levels.

To evaluate if ATP alone (in absence of ES) can induce
the observed changes in mRNA levels after 20-Hz ES, we
stimulated fdb muscle fibers with 30 µM of exogenous

ATP and measured mRNA levels of the MCU complex. We
observed that ATP exposure resulted in a significant decrease
(C = 1.02 ± 0.20; 0.5 h = 0.74 ± 0.20) in mRNA levels of
MCU after 30 min (Figure 3A). The same was observed at
30 min for mRNA levels of MICU1 (Control = 1.01 ± 0.17;
30 µM = 0.78 ± 0.17), MICU2 (Control = 1.02 ± 0.15;
30 µM = 0.79 ± 0.25), and EMRE (Control = 1.01 ± 0.13;
30 µM = 0.74 ± 0.15) after (Figures 3B–D). Similar effects were
produced by extracellular ATP in an ex vivo model of complete
fdb muscle (Supplementary Figure 1).

As it was previously mentioned, signaling downstream ATP
release and purinergic receptors activation can be mediated
by the production of IP3 and Ca2+ released through IP3R.
To test the role of IP3R, we blocked this intracellular Ca2+

channel using xestospongin B. No changes in MCU, MICU1,
0.MICU2, and EMRE mRNA levels after 20 Hz ES were observed
when fibers were pre-incubated with 10 µM of xestospongin B
(Figures 4A–D), suggesting a role of Ca2+ released through IP3R
in the regulation of mRNA levels of the MCU complex.

Mitochondria From Fast Muscles Have a
Higher Content of MCU Complex
Proteins
We found a decrease in mRNA levels of the MCU complex
after low-frequency ES. Considering that low-frequency ES is
appropriate for slow-type motor units and that this type of ES
can trigger transcriptional changes related to muscle fast-to-
slow phenotype transitions, we hypothesized that proteins of the
MCU complex could be differentially expressed in slow compared
with fast phenotype adult muscles. We evaluated the levels of
MCU and MICU1 proteins in a fast (fdb) and a slow (soleus)
muscle by Western blot. We found a smaller amount of MCU
(fdb = 1.00 ± 0.18; sol = 0.47 ± 0.13) (Figure 5A) and MICU1
(fdb = 1.00± 0.32; sol = 0.55± 0.24) (Figure 6A) in soleus muscle
compared with fdb muscles. The protein content was normalized
by TOM20, indicating that the relative amount of the MCU

FIGURE 2 | Low-frequency ES-dependent reduction in mRNA levels of MCU complex is dependent on extracellular ATP. Muscle fibers isolated from the fdb muscle
were pre-incubated 30 min with apyrase (2 U/ml) before ES (as in Figure 1). The mRNA was extracted 1 h after the ES. MCU mRNA levels increased with
pre-incubation with apyrase in the absence of ES (A). Preincubation with apyrase prevented the low frequency-dependent reduction in mRNA levels of MCU (n = 8)
(A), MICU1 (n = 6) (B), MICU2 (n = 6) (C), and EMRE (n = 6) (D). Values are presented as mean ± SEM. 18s was used as normalizer. *p < 0.05; **p < 0.01;
***p < 0.001.
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FIGURE 3 | Extracellular ATP is sufficient to reduce mRNA levels of the MCU complex in skeletal muscle fibers. Muscle fibers fdb muscle and stimulated with
exogenous ATP (30 µM). A decrease in mRNA levels of all the MCU complex components after 30 min of stimulation is observed. mRNA levels are shown
normalized by mRNA level of control fibers. mRNA levels for MCU (n = 4–14) (A), MICU1 (n = 8) (B), MICU2 (n = 8) (C), and EMRE (n = 5) (D) were measured. Values
are presented as mean ± SEM. 18S was used as normalizer. *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 4 | IP3R is involved in low-frequency ES-dependent reduction of mRNA levels of MCU complex. Muscle fibers fdb muscle were pretreated with the IP3R
blocker, XB (10 µM) by 30 min before being electrically stimulated (as in Figure 1). The mRNA was extracted 1 h after electrical stimulation. Preincubation with XB
prevented the low frequency-dependent reduction in mRNA levels of MCU (n = 6) (A), MICU1 (n = 5) (B), MICU2 (n = 5) (C), and EMRE (n = 6) (D). For (C) using the
Kruskal–Wallis test with post hoc Dunn’s was applied. Values are presented as mean ± SEM. 18S was used as normalizer. *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 5 | Mitochondria from Flexor Digitorium Brevis (fdb) muscle presented a higher content of MCU protein than soleus (sol) muscle. Representative Western
Blot and quantification show the levels of the MCU protein in homogenates of fdb and Sol normalized by mitochondrial content using TOM20 as a normalizing
protein (n = 4) (A,B). When MCU content was normalized by total protein content, no differences between these two muscles were observed (n = 2) (C,D). Values
are presented as mean ± S.E.M. Values are presented as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 6 | Mitochondria from Flexor Digitorium Brevis (fdb) muscle presented a higher content of MICU1 protein than mitochondria from soleus (sol) muscle.
Representative Western Blot and quantification show the levels of the MICU1 protein in homogenates of fdb and sol, normalized by a mitochondrial marker (n = 5)
(A,B) and total protein (n = 4) (C,D). For (C) using the Mann-Whitney test was applied. Values are presented as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001.

complex is lower in mitochondria from soleus muscle compared
to fdb. This difference is not significant when normalized
by total proteins (Figures 5C, 6C). This is probably due to
the intrinsic difference in mitochondria content between these
muscles, a difference that is compensated by the normalization
of MCU protein content with a marker of mitochondria such
as TOM20. MCU, MICU1, and TOM20 membranes are shown
(Supplementary Figures 2, 3).

DISCUSSION

We have demonstrated that low-frequency ES results in a
decrease in the mRNA levels of MCU, MICU1, MICU2, and
EMRE, while high-frequency ES does not generate modifications.
Our laboratory has described a fine-tuned mechanism that relates
the decoding of the frequency of stimulation by Cav1.1, ATP
release, IP3R activation, and transcription changes related to
fast-to-slow muscle phenotype transition (Jorquera et al., 2013).
Therefore, if there is a differential calcium management between
different types of muscle fibers (Carroll et al., 1997), it is to be
expected that genes that regulate mitochondrial calcium uptake
could be regulated by different stimulation frequencies. In the
present work, we showed that mRNA levels of MCU, MICU1,
MICU2, and EMRE are also regulated in a frequency-dependent
manner, being affected only by low-frequency ES. We have
pooled the data from all controls and 20 Hz from the different
experiments (Supplementary Figure 4). The observed changes
suggest a new process related to the phenotypic transition of a
fast to slow muscle fiber, in this case, related to mitochondrial
proteins other than those related to oxidative metabolism,
classically described before in the plasticity process from fast to
slow muscle phenotype transition.

Our results showed that in fibers stimulated at 20 Hz after
pre-incubation with apyrase, mRNA of the MCU complex did
not decrease (as it does when they are only ES at 20 Hz),
showing no significant statistical difference between control
and 20 Hz + Apy conditions, indicating that the effect of
20-Hz ES in the decrease of MCU complex mRNAs is lost

when fibers are pre-incubated with apyrase. The same is
observed when fibers are pre-incubated with xestospongin B
(IP3R blocker). No statistical difference was found between
mRNA levels of the MCU complex from fibers electrically
stimulated at 20 Hz compared to those electrically stimulated
at 20 Hz and pre-incubated with apyrase or xestospongin B.
However, these results, together with those showing an increase
in mRNA levels of the MCU complex after stimulation with
exogenous ATP, although not conclusive, are consistent with
the idea that the transcriptional effects observed on MCU,
MICU1, MICU2, and EMRE after low-frequency ES would be
mediated by slow calcium transients activated by the extracellular
ATP/IP3 production/IP3R signaling pathway (Buvinic et al., 2009;
Jorquera et al., 2013). The role of mitochondrial Ca2+ uptake
over cytosolic Ca2+ signals after muscle fiber depolarization
has been shown previously to play a role in excitation–
contraction coupling (Yi et al., 2011). Moreover, there is also
evidence that protein levels of MCU are susceptible to change
after exercise and to ES in humans (Zampieri et al., 2016).
Interestingly, it has been postulated that protective synaptic
activity is related to a decrease in MCU protein levels, which
is lost in the presence of a CaM kinase inhibitor, suggesting
a role of cytoplasmic Ca2+ in MCU regulation (Qiu et al.,
2013). On the other hand, the reduction in mRNA levels
of the MCU complex is observed at shorter times (30 min
compared to 60 min for ES) when fibers are stimulated with
exogenous ATP; this phenomenon could be related to the
final concentration of ATP reached in the T-tubules and their
affinity for purinergic receptors (Lazarowski et al., 2003) or
the activation of these receptors without the process involving
depolarization sensing by Cav1.1 and triggering of ATP release
through pannexin-1 channels.

The results showing an increase in mRNA levels of MCU in the
presence of apyrase, in the absence of further stimulus, suggest
that basal levels of ATP present in the extracellular medium
would be inhibiting or repressing the transcription of this gene.

Our data provide new information on the relative amount of
MCU and MICU1 in muscle of different phenotypes, showing
the existence of higher protein levels of MCU and MICU1
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per mitochondria in fdb than those belonging to the soleus.
Therefore, the decrease in mRNA of the MCU complex after low-
frequency ES of isolated fibers of the fdb muscle would favor a
lower level of the MCU and MICU1 per mitochondrion, such
as that present in a slow muscle. This could be considered an
early metabolic response to the phenotypic shift from fast to
slow muscle fiber (Loucif et al., 2020). The gradual increase in
the number of mitochondria, together with a decrease in MCU
complex content in response to a low-frequency stimulus, will
allow adapting mitochondrial Ca2+ homeostasis to finally reach
that of a slow muscle. Besides, the higher levels of TOM20
in slow muscle compared to fast muscle are consistent with
that described with other mitochondrial proteins, such as ATP
synthase and succinate dehydrogenase (Schiaffino and Reggiani,
2011; Khodabukus and Baar, 2015). Moreover, the kinetics of
Ca2+ entry to the mitochondria have also been reported to be
different between different fiber types (Sembrowich et al., 1985;
Picard et al., 2008). Interestingly, it has been described that MCU
overexpression causes neuronal death (Granatiero et al., 2019).
On the other hand, stimulation of cortical and hippocampal
neurons results in a decrease in mRNA and protein levels of
MCU (Qiu et al., 2013), which have been associated with a
protective effect preventing mitochondrial Ca2+ overload, thus
preventing cytochrome C from triggering cell death. Likewise,
it has been observed that the decrease in MCU in a model
of cells from colon cancer results in a resistance to apoptosis
(Marchi et al., 2013; Nemani et al., 2018). It appears then
that a fine regulation of the MCU protein complex is needed
to balance protection and cell death after different stimuli.
In this sense, it has been proposed that the concentration
of mitochondrial Ca2+ necessary to exceed the threshold to
trigger the opening of the mitochondrial permeability transition
pore (mPTP) is lower in a slow fiber compared to a fast
fiber (Picard et al., 2008, 2012). Therefore, since the muscle
contraction of a slow phenotype fiber results in regular and
prolonged elevations in cytosolic (and possibly mitochondrial)
(Ca2+), we can hypothesize that low-frequency ES appropriate
for slow-type muscles could induce a decrease in the MCU
complex to regulate the entry of Ca2+ to the mitochondria and
to prevent mPTP opening and thus protect the muscle fiber
from triggering cell death. Even if muscle contraction in slow
phenotype muscle relies strongly on mitochondrial production
of ATP, which depends on mitochondrial Ca2+, the lower
protein abundance of MCU and MICU1 per mitochondria in
the soleus muscle could be compensated in the first place by
the higher mitochondrial content in slow phenotype muscle
and also by phenotypic adaptations of the slow muscle, such
as an increase in sensitivity to Ca2+ by the enzymes isocitrate
dehydrogenase and α-ketoglutarate dehydrogenase, maintaining
the metabolism according to energy requirements (McCormack
and Denton, 1989; Hurst et al., 2017). Not only has the protein
level been described as a regulator of mitochondrial calcium
uptake (Qiu et al., 2013), the stoichiometry of MCU/MICU1
(Paillard et al., 2017), mitochondrial endoplasmic reticulum
interaction (Ainbinder et al., 2015), calcium release from the IP3R
(Diaz-Vegas et al., 2018), and mitochondrial membrane potential
(Diaz-Vegas et al., 2018) have also been described. Also, it has

been described that an adaptive process of a cell is supported
by a previous metabolic change, such as the case of metabolic
changes associated with the activation of T-cell (Loucif et al.,
2020). Exercise increases transcription factors of mitochondrial
biogenesis and muscle hypertrophy in humans (Ruas et al., 2012).
Deletion of PGC-1α (regulator of mitochondrial biogenesis)
decreases the number and size of the mitochondria and the
mass of the soleus and affects muscle performance (Leone et al.,
2005). Thus, the changes observed at the level of the MCU
complex in fdb could signify a prior process for the regulation
of cytoplasmic Ca2+ signals mediated by the mitochondria,
changing the regulation of genes related to contractility and
favoring muscle plasticity. Therefore, future research is required
to evaluate changes induced by ES in protein expression of the
MCU complex and the consequences of a reduction of the MCU
complex in the different functions of a skeletal muscle fiber, in the
muscle plasticity process.

MATERIALS AND METHODS

Animals
This study was carried out following the guidelines of the
Bioethics Committee of the Faculty Medicine, University of Chile
(FONDECYT #1151293). Eight- to 10-week-old male C57/BL6J
mice were obtained from the Central Animal Facility of the
Faculty of Medicine, University of Chile. Mice were kept in a
room with controlled temperature in a light–dark cycle of 12 h
and fed ad libitum.

Adult FBD Fiber Isolation
The isolated adult muscle fibers were obtained from the fdb
muscle by enzymatic digestion of the whole muscle with 450–
500 units/ml of collagenase type II (Worthington) for 90 min,
followed by mechanical dissociation with Pasteur pipettes of
different diameters as described previously (Casas et al., 2010).
Fibers were plated in ECM (Sigma)-covered 35-mm plates in
culture medium [Dulbecco’s modified Eagle’s medium (DMEM),
10% horse serum, and 1% penicillin/streptomycin]. Fibers were
used for analysis 20 h after seeding.

Electrical Stimulation
The skeletal muscle fibers were electrically stimulated by field
stimulation with a device consisting of parallel platinum wires
with alternate polarity, as described previously (Casas et al.,
2010). The protocol consisted of 270 pulses, 0.3 ms each at 20 Hz
or 90 Hz (Jorquera et al., 2013).

mRNA Isolation, cDNA, and Real-Time
qPCR
Total mRNA was isolated from the muscle complete of the
fdb by using TRIzol R© reagent (Invitrogen) according to the
manufacturer’s protocol. The same extraction protocol was used
to obtain total RNA from isolated fibers after ES. The cDNA
was obtained by reverse transcription reaction of 1 µg of total
RNA using random primer and polyDT primers. Real-time
qPCR was performed according to the recommendations of
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EvaGreen R© qPCR Mix Plus (ROX) using the following primers:
MCU-fw: 5′-GTGCGCCTGTTTGTAACTCA-3′ and MCU-rv:
5′-CAAGACTCGCTAAGCCCTTT-3′, MICU1.1-fw: 5′-CTTTG
ATGGAAAGGAGTTCTGGC-3′ and MICU1.1-rv: 5′-CCTCCA
TGTCTACCTCTCCGT-3′, MICU2-fw: 5′-TGGAGCACGACG
GAGAGTAT-3′ and MICU2-rv: 5′-GCCAGCTTCTTGACCA
GTGT-3′, EMRE-fw: 5′-AACTTCGCTGCTCTGCTTGA-3′ and
EMRE-rv: 5′-TGAGGCTGAGGGCTTTCCTT-3′, 18 s. The
design of primers was performed using the AmplifX program and
validated by Primer-BLAST.

Western Blot
The fdb and soleus samples were homogenized with an
electric homogenizer (Fluko, Shanghai, China) in a lysis buffer
containing 20 mM Tris–HCl (pH 7.5), 1% Triton X-100,
2 mM EDTA, 20 mM NaF, 1 mM Na2P2O7, 10% glycerol,
150 mM NaCl, 10 mM Na3VO4, 1 mM PMSF, and protease
inhibitors (CompleteTM, Roche Applied Science). Proteins were
separated using SDS-PAGE and transferred to PVDF membranes.
The following antibodies and their dilutions were used: MCU
(1:2,000; HPA016480, Sigma), MICU1 (1:2,000; HPA037480,
Sigma), and TOM20 (1:10,000; ab186735, ABCAM). The protein
bands in the blots were visualized using a WESTAR Supernova
detection kit (Cyanagen, Bologna, Italy), super-resolution, and,
further, ChemiDocTM MP System (Bio-Rad, United States).
The intensity of the bands was determined with ImageJ
densitometry analysis.

Statistical analysis
The results were expressed as mean ± standard error (±SEM).
For the difference between data groups, the two-tailed paired
t test was used. For comparison of more than two groups, the
one-tailed one-way ANOVA was used followed by Dunnett’s
multiple comparisons test. In cases where the data could not
pass Levene’s equal variance test and Shapiro–Wilk test, Mann–
Whitney test, and Kruskal–Wallis test with post hoc Dunn’s,
a non-parametric test, as indicated in the figure legend, was

applied. The level of significance was set at p < 0.05. All statistical
analyses were performed in GraphPad Prism 7 and SPSS25.
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