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BENDERS DECOMPOSITION BASED ALGORITHMS FOR GENERAL AND
SECURITY STACKELBERG GAMES

Stackelberg games model situations where there exist more than one decision maker in a
leader-follower interaction, where the leader commits to a decision first and then the follower
makes a decision. When the interactions are in a security context with the leader modeling
the defender and the follower the attacker, it is referred to as Stackelberg security game.
Stackelberg games are widely used for applications in economics, transportation, biology,
finance, security, among many others. In real world, there exist security applications used to
protect ports, borders, airports and other critical targets.

Due to the use of general and security Stackelberg games in real world applications, it
becomes important to solve these problems efficiently. Thereby, users can make decisions
when required, every day or every hour. This need for efficiency has produced different
formulations and solution methods for these Stackelberg games. In this thesis we contribute
to the work on mixed integer formulations of these Stackelbeg games and decomposition
algorithms to solve them. Specifically we consider Benders cuts generated from the strong
formulation, and normalized Benders cuts as introduced by [29]. For that reason, this thesis
is focused in algorithms performance.

Recent research has studied the efficiency of different mixed integer formulations for Stack-
elberg games, including Stackelberg security games. A central finding is that the formulation
with the smallest integrality gap, which considers more variables and constraints, is the one
that has the linear relaxation that is most difficult to solve. This trade-off makes it unclear
which formulation is preferred to solve specific instances and suggests strengthening the weak
formulation (WF) with cuts from the strong formulation (SF).

This work studies the use of Benders cuts on the WF that are generated from the SF. In
particular, we investigate the effect of different regularization methods, the use of normalized
Benders cuts, and cutting only at the root node or throughout the branch & bound tree.

Our computational results consider four algorithms, for each general and security setting.
The most interesting variation studied is based in normalization of Benders decomposition,
whose objective is to reduce the number of feasibility and optimality cuts, and replace them
for just one type of cut that we called normalized cut. We find that cut & branch, with
variables in R in master problem and stabilization, outperforms the other methods considered
in all instances. We suggest opportunities to improve these decomposition strategies in future
research.
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RESUMEN DE LA TESIS PARA OPTAR
AL GRADO DE: MAGÍSTER EN GESTIÓN DE OPERACIONES
POR: INGRID ALEJANDRA ARRIAGADA FRITZ
FECHA: 2021
PROF. GUÍA: FERNANDO ORDÓÑEZ PIZARRO

BENDERS DECOMPOSITION BASED ALGORITHMS FOR GENERAL AND
SECURITY STACKELBERG GAMES

Los juegos de Stackelberg modelan situaciones donde existe más de un tomador de decisiones
en una interaccion líder-seguidor, donde el líder toma una decisión en primer lugar y luego
lo hace el seguidor. Cuando esto ocurre en un contexto de seguridad, con el líder actuando
como defensor y el seguidor como atacante, se llama juego de seguridad de Stackelberg. Los
juegos de Stackelberg son ampliamente usados para aplicaciones en economía, transportes,
biología, finanzas, seguridad, entre otros.

Debido al uso de los juegos de Stackelberg generales y de seguridad en aplicaciones del
mundo real, se ha vuelto importante resolver estos problemas en forma eficiente. De esta
forma, los usuarios pueden tomar decisiones cuando lo requieran, cada día o cada hora. Esta
necesidad de eficiencia ha producido diferentes formulaciones y métodos de solución. En
esta tesis contribuimos al trabajo en formulaciones enteras mixtas de juegos de Stackelberg
y algoritmos de descomposición para resolverlos. Específicamente, consideramos cortes de
Benders generados de la formulación fuerte, y cortes de Benders normalizados como fue
presentado por [29]. Por esta razón, esta tesis está enfocada en el desempeño de algoritmos.

La investigación reciente ha estudiado la eficiencia de diferentes formulaciones enteras
mixtas para juegos de Stackelberg, incluyendo seguridad. Un hallazgo importante es que la
formulación con el menor gap de integralidad, que considera más variables y restricciones,
es la que tiene la relajación lineal más difícil de resolver. Este intercambio hace difícil
decidir qué formulación es preferible para resolver instancias específicas, y sugiere fortalecer
la formulación débil (FD) con cortes de la formulación fuerte (FF).

Este trabajo estudia el uso de cortes de Benders en la FD que son generados por la FF.
En particular, investigamos el efecto de diferentes métodos de regularización, el uso de cortes
de Benders normalizados, y la elección de si generar cortes solo en el nodo raíz o en todo el
árbol branch & bound.

Nuestros resultados computacionales consideran cuatro algoritmos para cada tipo de juego
de Stackelberg, general y seguridad. La variación más interesante que estudiamos está basada
en la normalización de la descomposición de Benders, cuyo objetivo es reducir el numero
de cortes de optimalidad y factibilidad, y reemplazarlos por solo un tipo de corte, al que
llamamos corte normalizado. Concluimos que cut & branch, con variables en R en el problema
maestro y estabilización, supera a los otros métodos considerados en todas las instancias. Se
sugiere oportunidades para mejorar estas estrategias de descomposición en investigaciones
futuras.
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Chapter 1

Introduction

The world has billions of inhabitants who interact with each other. For that reason, there are
innumerable situations that imply the interaction between different decision makers. Many
of that interactions consider the dependence of the results with the set of decisions of all the
involved agents. For example, in soccer, when a player kicks a penalty, the result doesn’t
depend only on where the player decides to kick, but on where the goalkeeper decides to
jump too. There exist many other examples for this kind of situations, and they are studied
by Game Theory.

There exist some situations where the relationship between decision makers is a leader-
follower interaction, where leader decides first, and follower decides in function of the first.
This kind of specific game theory situations are called Stackelberg Games. Stackelberg games
are widely used for applications in economics, transportation, biology, security, among many
others.

We are interested in Stackelberg security games, where leader takes a defensive role, and
follower takes a offensive role. Leader has limited defensive resources for a bigger number
of targets to protect, and must decide which of them will cover, and follower must choose
which target to attack. There exist many real applications of this methodology, for example:
PROTECT, a system that the United States Coast Guard uses to schedule patrols in the Port
of Boston, [1]; and ARMOR, an assistant deployed in Los Ángeles International Airport to
randomize checkpoints on the roadways entering the airport and canine patrol routes within
the airport terminals.

Stackelberg security games are modeled using mixed integer linear programs. This kind of
programs are naturally challenging to solve, and get harder when facing large scale problems.
Let’s consider the problem of protecting the Chilean ground border, that is almost 8000 km
of distance. There exist many people that are interested in illegal immigration, that means
many possible attackers to face. If we think about the probabilities of face an specific attacker
(immigrant) in a specific target (zone of the border), they are negligible. The problem of
choosing which zones of the border protect everyday is a large scale problem, and should
be very difficult to solve. This could take days, months or even years of computational
processing time.
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In real world, we need applications that solve this kind of problems in practical time, that
may be used in everyday decisions. There is the importance of investigating algorithms that
help to improve these applications. For the detailed reasons, this work has an algorithmic
focus, where we introduce variations in the work of [19] for trying to get improvements of
performance.

This thesis is structured with the following chapters:

In chapter 2, we show a bibliographical review of the main fields of study involved: game
theory, Stackelberg competition, bilevel programming, Benders decomposition, mixed integer
linear problems, and its derivatives.

In chapter 3, we formally define general and security Stackelberg problems.

In chapter 4, we show a work developed in [20], where they took existing general and secu-
rity Stackelberg games formulations and transform them using programming techniques (pro-
jections, change of variables, change of constraints, Fourier-Motzkin elimination, reformulation-
linearization technique). This allows to get formulations with different advantages, which
makes possible to create algorithms that mix formulations in order to enhance performance.

In chapter 5, we workout different Benders decomposition approaches to be compared in
this thesis. We introduce a special type of decomposition based on [29], where we use only
one type of cut, which is normalized.

In chapter 6, we explain the branch & cut and cut & branch algorithms that use the
Benders decomposition approaches in chapter 5, due to [19]. These algorithms use the linear
relaxations of the fast and weak formulations from chapter 4, and strengthen them using the
Benders cut from tight formulations. In the same chapter, we briefly describe some heuristics
proposed by [19] for enhancing the algorithms performance.

In chapter 7, we run experiments in order to decide the best heuristic configurations for
our algorithms, and compare them performance against [19] algorithms.
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Chapter 2

Theoretical framework

In this thesis, we present Benders decomposition to solve mixed integer optimization formula-
tions of Stackelberg games. As such, the review of relevant literature presented in this chapter
touches on game theory and Stackelberg games models, and significant solution algorithms
for Stackelgerg games, that is: algorithms for bilevel optimization, Benders decomposition
and mixed integer optimization solution methods.

2.1 Game theory
Briefly speaking, game theory is the mathematical study of distributed decision making where
the individual has to take other individuals’ decisions into account. The reward for an agent
depends of the set of decisions of all the involved agents.

In game theory, every game includes the following concepts:

Players: individuals that make decisions with the objective of maximize their utility.

Strategy: set of actions players can select to do.

Payoffs: set of results of the game considering every possible simultaneous strategies of
the players.

2.1.1 History

In the XVIII century there were many contributions that could be considered as precursors
of game theory and led to the formal mathematical study that set the theoretical basis of
this science, [54] present a review of these. In the next century, [24] and [12] developed their
respective duopoly models, both of them using the Nash equilibrium concept.

It can be considered that game theory was formally launched by Zermelo’s theorem [64], it
was related to the game of chess, but applicable to any kind of game in which two opponents
play against each other with the exclusion of chance events. The work by [49] provides
a translation of this theorem. This is the first formal mathematical theorem in this field.
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Zermelo’s theorem states: "Either white can force a win, or black can force a win, or both
sides can force at least a draw".

In the decade of 20s, [55] proves a theorem known as Minimax Theorem. This theorem
states: "Every finite, zero-sum, two person game, has optimal mixed strategies that maximize
potential gains or minimize potential losses". In the next decade, [57] launched Stackelberg
competition.

Most authors consider [56] as the starting point of game theory as a science, because of
the huge impact of this work in the discipline. In this book, all the important concepts in
game theory are formally stated: game, strategy, payoff, etc.

In the subsequent decades, research in game theory science exploded. Some of these
works are: [43], where non-cooperative games basis were set and Nash equilibrium concept
was formally defined; [37], where extensive games formulation was introduced; [2], where the
strong equilibrium concept was introduced. Other important fact is that Game theory began
to be applied in different fields, for example: political sciences [50] and evolutive biology
[41]. Game theory was very important even during the Cold War in the 60s, in [3] there is
a collection of articles that were developed for a United States Agency related to weapons
control.

In the last decades, research in game theory has received multiple awards and recognitions,
including the Nobel Prize (John Nash, 1994; Robert Aumann 2005; among others).

2.1.2 Games representation

There are two forms to represent a game: normal and extensive form.

Normal form games are represented by a payoffs matrix. The players have a finite number
of actions, and have to choose one of them. In the case of two players (A and B), player
A’s actions are represented by rows and player B’s actions by columns respectively. When
both players actions are selected, their respective utilities are represented by the values at
the intersection of the row and column vectors of each decision.

A generic example of a normal form game is presented in table (2.1), the rows actions
represent player A, and column actions represent player B. In this game, if player A takes
action 1 and player B takes action 1, the utilities are 5 and 4 respectively. The utilities are
inverted if both players take action 2. On the other hand, if player A takes action 2 and
player B takes action 1, the utility is 0 for both players, and if we invert the actions, the
utility for both players is 1.

Action 1 Action 2
Action 1 (5,4) (1,1)
Action 2 (0,0) (4,5)

Table 2.1: Normal form game representation.

Extensive form games model situations in which there is some order between players
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actions. This games are represented by a decision tree that shows all the possible decisions
and utilities.

Figure (2.1) shows a simple example of an extensive form game, heads or tails game. The
tree shows that if player A gets "head" and player B gets the same, player A has to pay 1
unity to player B, but if player B gets "tail", player B has to pay 1 unity to player A. On
the other hand, if player A gets "tail" and player B gets "head", player B has to pay 1 unity
to player A, but if both players get "tail", player A has to pay 1 unity to player B.

Player A

Player B

(-1,1) (1,-1)

Player B

(1,-1) (-1,1)

Head

Head Tail

Tail

Head Tail

Figure 2.1: Extensive form game representation.

There are two types of strategies that players do in game theory: pure and mixed strategies.
A pure strategy is the selection of a single action of a set of possible actions. A mixed strategy
is a probability distribution over the set of actions. A mixed strategy gives the likelihood
that each action is selected by the player. A pure strategy is a particular case of a mixed
strategy, where one of the options has a probability of 1, and the remaining options have a
probability of 0.

2.1.3 Examples of games

In this section, we briefly describe a few famous examples of games.

The prisoner’s dilemma

This game models the situation in which two criminals are arrested by the police, but police
doesn’t have enough evidence to convict them, so they need a confession of the crime.

Officials separate the prisoners to question them so they can’t communicate with each
other. There are different possible results from the interrogation:

1. If both confess, they can be charged for the serious crime.
2. If nobody confesses, they can only be charged for a minor crime.
3. If one confesses and the other one doesn’t, the person that confesses has his punishment

reduced while the other one gets charged in addition with obstruction.

The most favorable action for two criminals is to not confess. The problem is that there
is no certainty about the other prisoner’s decision, and the risk of not confessing with the
other confessing is too big. So, the rational outcome is that both prisoners will confess and
are charged for the crime.
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Rock-paper-scissors

This is a well known simultaneous game where the players have to choose between three
options: rock, paper or scissors.

The rules of this game are: rock defeats scissors, paper defeats rock and scissors defeats
paper. If both players choose the same strategy, the result is a draw.

Cournot competition

In this game, there is a fixed number of firms that produce an homogeneous product.

The firms have to decide the quantity to produce simultaneously, and seek to maximize
profit. The price is defined for a demand function that is decreasing of the total quantity
produced by the market.

Volunteer’s dilemma

This game models a situation in which there are a set of players. Each player has two options:
make a sacrifice to benefit everybody or wait for someone else’s sacrifice:

1. If at least one of player sacrifices, sacrificed players get 0 utility and not sacrificed
players get a utility of 1.

2. If nobody sacrifices, everybody loses 15.

These are a few classic games, and there are several games in different fields of study, see for
example [38] and [48]. In this thesis, we work in Stackelberg games, which are described in
the next section.

2.2 Stackelberg competition
Stackelberg competition, was introduced by [57], to model a strategic game between two
firms, the leader and the follower. The leader firm decides first the quantity to produce in
order to maximize profits, and the follower, after observing the leader’s decision, chooses
a production level with the same objective. Of course, the production level chosen by the
follower is the best response to the leader’s decision.

The leader knows that the follower is observing his behavior, and makes his decisions
taking this in account.

Stackelberg games are a model of imperfect competition (because of the market power of
leader), non-cooperative and sequential.

We can compare Stackelberg competition to Cournot and Bertrand competition.

Cournot competition, as described in §2.1.3, is a model where firms decide simultaneously
the quantity to produce of an homogeneous product. The big difference with Stackelberg
competition is that the second is sequential.
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Bertrand competition is a non-cooperative model, with imperfect information and simul-
taneous, just as Cournot competition. The difference between is that Cournot compites by
deciding quantities, and Bertrand compites deciding prices.

Research on the Stackelberg game concept has extended its use to model interactions in
several fields where there is a leader-follower relationship [21]. For example, in telecommu-
nications [15], [60]; transportation [38], [18]; inventory [63], [34]; among many others.

Stackelberg competition is represented throughout this thesis as normal form game (de-
fined in §2.1.2) and played with mixed strategies.

Let’s consider a payoff bimatrix similar to (2.1), with a player represented in the rows,
and the other player in the columns. Let I and J denote the set of strategies for the row and
column players respectively, and let (R,C) be the bimatrix where R,C ∈ R|I|×|J |. Consider
the |I| and |J | dimensional simplices:

S|I| =

{
x ∈ [0, 1]|I| :

∑
i∈I

xi = 1

}
, (2.1)

S|J | =

{
q ∈ [0, 1]|J | :

∑
j∈J

qj = 1

}
, (2.2)

where x ∈ S|I| is a mixed strategy for the row player, where the i-th strategy is played with
probability xi, and q ∈ S|J | is a mixed strategy for the column player, where the j-th strategy
is played with probability qj.

2.2.1 Stackelberg equilibrium

The standard solution concept in game theory is Nash equilibrium: a strategy profile such that
no player can gain by unilaterally deviating to another strategy [36]. This notion captures a
steady state of the play of a strategic game in which each player holds the correct expectation
about the other players’ behavior and acts rationally [45].

The solution concept used throughout this thesis is Stackelberg equilibrium. This is the
solution concept of choice when the game is sequential instead of simultaneous.

According to [36], Stackelberg equilibrium is a refinement of Nash equilibrium specific to
Stackelberg games. It is a form of subgame perfect equilibrium, in which each player chooses a
best response in any subgame of the original (where subgames correspond to partial sequences
of actions).

There are two types of Stackelberg equilibria in [40], typically called strong and weak
equilibrium. The strong form assumes that the follower will always choose the optimal
strategy for the leader in cases of multiple best responses, while the weak form assumes the
opposite, the follower will choose from the multiple best responses, the worst strategy for the
leader. A strong Stackelberg game equilibrium exists in all Stackelberg games, but a weak
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Stackelberg equilibrium may not [8]. Additionally, according to [59], leader can often induce
the favorable strong equilibrium by selecting a strategy arbitrarily close to the equilibrium
that causes follower to strictly prefer the desired strategy. Strong equilibrium is also the most
commonly adopted concept in related literature [36]. For these three reasons, the equilibrium
type used throughout this thesis is the strong Stackelberg equilibrium.

Strong Stackelberg equilibrium

Let x be a leader strategy, q(x) be the follower best response strategy, Uleader the leader’s
utility and Ufollower the follower’s utility. According to [62], a profile of mixed strategies
(x, q(x)) forms a strong Stackelberg equilibrium if they satisfy the following:

1. The leader plays a strategy that maximizes its utility:

Uleader(x, q(x)) ≥ Uleader(x
′
, q(x

′
)), ∀x′

(2.3)

i.e., leader’s strategy maximizes his utility which is bigger than with any other strategy.
2. The follower plays a best response:

Ufollower(x, q(x)) ≥ Ufollower(x, q
′
), ∀x, q′ (2.4)

i.e., follower’s strategy maximizes his utility which is bigger than with any other strat-
egy.

3. The follower breaks ties optimally for the leader:

Uleader(x, q(x)) ≥ Uleader(x, τ), ∀τ ∈ S(x), (2.5)

where S(x) is the set of follower best responses to x, i.e., if follower has different
strategies that maximize his utility, he chooses the one which maximizes leader’s utility.

2.2.2 Types of games

Types of Stackelberg games addressed throughout this thesis are two: general and security
Stackelberg games. Brief definitions of them are provided in this section.

General Stackelberg games

General Stackelberg games (GSG) can model any adversarial situation between players with
different objectives, each striving to optimize a certain payoff in a sequential, one-off en-
counter. One of the players can commit to a given action first and he is referred to as the
leader, whereas the other player, which responds to the leader’s action, is referred to as the
follower [19].

Security Stackelberg games

A security Stackelberg game (SSG) is a specific case of a GSG where the pure strategies for
the leader, now referred to as the defender, involve allocating a limited number of security
resources (law enforcement officers, for example) to protect a subset of targets (critical in-
frastructure, for example) and the pure strategies for each follower type consist in attacking
a single target [19].

8



This means that for Security Stackelberg games there is a structure on the payoffs, where
a reward or penalty for each player only depends on whether the attacked target is patrolled
or not. That is if i ∈ I represents the patrolling strategy i and j ∈ J represents the strategy
of attacking target j, then

Rij =

{
RD

j if j ∈ i
PD
j o/w

and Cij =

{
PA
j if j ∈ i
RA

j o/w

Here RD
j (PA

j ) represents the reward for the defender (penalty of the attacker) of an attack
on a patrolled target j (j ∈ i) and PD

j (RA
j ) stands for the penalty for the defender (reward

for the attacker) of an attack on an unprotected target j (j 6∈ i).

2.3 Bilevel programming
Stackelberg games are an example of bilevel programming problems.

Bilevel programming refers to mathematical optimization problems that contains an op-
timization problem in the constraints. This kind of problems was introduced as a field by
[17], with influences from [58].

The contribution of [58] to this field comes from the problems involving more than one
player with conflicted positions and sequential decisions, which implies opposite optimization
problems, which could be approached with this kind of optimization programs.

Bilevel programs are specially useful when a situation of sequential decision is faced, and
the decision order is important. This is the case of Stackelberg games, where the leader
makes decisions before the follower.

The structure of these types of programs is hierarchical, with a nested optimization prob-
lem that established constraints on a variable of the main decision problem. First level prob-
lem (or main decision problem), represented by the main objective function and constraints,
constitutes the leader level, while the second level problem (or nested problem), which is
represented by the nested objective function and constraints, constitutes the follower level.

According to [6], a bilevel optimization program has the following structure:

min
x

F (x, y(x))

s.t x ∈ X = {x : H(x) ≥ 0},
min
y

f(x, y)

s.t g(x, y) ≥ 0,

y ∈ Y = {y : G(y) ≥ 0},

(2.6)

where F (x, y(x)) represents the leader objective function, H(x) and G(y) are leader’s
and follower’s constraint functions respectively, and g(x, y) represents follower’s constraint
functions given leader’s decision.
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Leader minimizes F over a feasible x, anticipating follower’s best response y(x) given x,
obtained by optimizing the second level problem. Thereby, optimal decision vector returned
by bilevel programming are a pair of mutual best responses [19].

Bilevel linear programming problems (BLPP) are bilevel problems involving only linear
objective and constraint functions. [10] and [35] show that solving BLPP is NP-hard.

According to [52], there are four main categories of solution methods based on non-linear
optimization to solve bilevel problems:

1. Single level reduction: includes reformulation techniques which transform the bilevel
program into a single level problem.

2. Descent methods: includes algorithms which extract gradient information from the
lower problem and use it to compute directional derivatives for the leader’s objective
function.

3. Penalty function methods: includes penalty algorithms, which introduce a term that
incorporates a penalty associated with the violation of certain optimality conditions,
leading this way the search towards the optimal solution.

4. Trust region methods: includes algorithms that approximate a certain region of the
objective function with a model function. The region is expanded if approximation is
good, and contracted otherwise.

Throughout this thesis, we use the same approach of [46], which is based in methods of
single level reduction, that leads to the so-called mathematical problems with complementarity
constraints (MPCC).

2.3.1 Mathematical problems with complementarity constraints

Bilevel programming problems are often reformulated using the Karush Kuhn Tucker (KKT)
conditions for the lower level problem resulting in MPCC [26].

Recall that KKT conditions are: Lagrangian aligned gradients, primal feasibility, dual
feasibility and complementary slackness [16].

The main idea is getting a single level problem, by transforming the whole nested problem
into KKT optimality conditions, i.e., a set of constraints that characterize the optimal solution
of the nested problem.

In general bilevel problems, this kind of transformation may not lead to a tractable single
level optimization problem, because the KKT constraint on the aligned gradients can lead
to non-convexity. In addition, the complementarity constraints are in general non-convex .
But in the case of BLPP, aligned gradients constraint is linear [52].

In our Stackelberg games approach, the follower’s problem is linear. Therefore, there is not
difficulty in handling the constraint on the aligned gradients. To handle the complementarity
constraints that arise when applying KKT conditions, we use an approach presented in [46].
This procedure will be detailed in §4.2.1 and §4.3.1.
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2.4 Benders decomposition methods
A linear optimization problem is known as large scale problem when it has a huge number or
variables or constraints. Large scale optimization problems are computationally challenging
and often not solvable within reasonable computational time or memory limits [7].

To address this complication, there exist decomposition methods that could allow to solve
some large scale problems in reasonable time. The main idea of the algorithms is to work
with a subset of the variables or constraints of the original problem, and iteratively increase
this subset if its needed.

There exist several kind of decomposition algorithms (for example: delayed column gen-
eration, delayed constraint generation or cutting plane method, Dantzig-Wolfe algorithm),
all of them exploiting different properties of the problems to solve.

In this thesis, we use the Benders algorithm [11]. This algorithm is described in §2.4.1.

2.4.1 Benders decomposition algorithm

Consider the generic MILP problem of the form:

min
x, y

cTx+ dTy

s.t Gx+Hy = g, both variables
Ax � a, only integer variables
By � b, only continuous variables
x ∈ Zn

y � 0

(2.7)

where y ∈ Rr, G and H have m rows, A has p rows, and B has q rows.

As can be seen, the problem has three kind of constraints: the first set of constraints
involves both types of variables, integer and continuous; the second set only involves integer
variables; and the third involves only continuous variables. This fact is very important to
understand the algorithm description in the following lines.

The work in [11] proposes to divide the problem (2.7) in two other problems: the master
problem and the subproblem. These problems are as follows:

Master problem

min
x

cTx+ θ

s.t Ax � a,

(g −Gx)Tα + bTβ ≤ θ, ∀(α, β) ∈ U
(g −Gx)Tα + bTβ ≤ 0, ∀(γ, δ) ∈ V
x ∈ Zn,

(2.8)
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where U and V are the sets of extreme points and extreme rays of the feasible region of dual
subproblem (2.10). These sets can start out as empty sets.

Subproblem

Q(x) = min
y

dTy

s.t Hy = g −Gx (α)

By � b (β)

y � 0

(2.9)

The master problem (2.8) has only the integer variables x in the objective function and
the constraints, in addition, has the θ variable that takes into account the objective function
of the subproblem.

The subproblem (2.9) is defined for every vector x and has in the objective function only
the continuous variables, and only continuous constraints (the first constraint is not mixed
but continuous, because the x variables are parameters of this problem, comming from the
master problem).

Separation problem

This is the dual of subproblem:

max
α, β

(g −Gx)Tα + bTβ

s.t HTα +BTβ � d,

β � 0

(2.10)

In a large scale optimization problem, master problem has a huge number of possible con-
straints, one constraint for every extreme point and extreme ray of the polyhedron in (2.10),
so we need to apply a method to solve it using a subset of these constraints. The Benders
algorithm uses cutting planes methods to add these constraints as needed.

We now outline the algorithm according to [13].

Algorithm

1. An iteration starts by solving the relaxed master problem (2.8) in which only a subset
of the constraints are included. Let the optimal solution vector be (x∗, θ∗).

2. We solve the separation problem (2.10).
3. If the subproblem is feasible and the optimal cost is less than or equal to θ∗ or a defined

tolerance, i.e., (g−Gx∗)Tα∗+ bTβ∗ ≤ θ∗, it means that all constraints are satisfied, we
have an optimal solution to the master problem and the algorithm terminates. (x∗, θ∗)
is the optimal solution of the problem.
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4. If the subproblem is feasible and the optimal cost is greater than θ∗, i.e., (g−Gx∗)Tα∗+
bTβ∗ > θ∗, an optimal basic feasible solution (α∗, β∗) to the dual subproblem (2.10) is
identified, and we add the following constraint to the relaxed master problem:

(g −Gx)Tα∗ + bTβ∗ ≤ θ (2.11)

5. If the subproblem is infeasible or the dual subproblem is unbounded, we identify an
extreme ray (γ∗, δ∗) of (2.10), and we add the following constraint to the relaxed master
problem:

(g −Gx)Tγ∗ + bT δ∗ ≤ 0 (2.12)

6. Repeat until the algorithm terminates.

The main complication of this algorithm arises in the solution method of relaxed master
problem, which includes integer variables. That complication is addressed in §2.5.

2.4.2 Minimally infeasible subsystems

While running Benders decomposition algorithm, some variations can be done looking to
improve its performance. In this thesis, we will work with an approach based in Farkas’
Lemma [27], as described in [31] and motivated by the work of [29] and [30].

Let’s consider a system of linear inequalities:

Ax � b (2.13)

where A is a m × n matrix and b a m-vector. Let us suppose that (2.13) is infeasible. A
minimally infeasible subsystem of (2.13) is a subsystem of infeasible inequalities that can be
made feasible by dropping just one of them from the system. Hence, those subsystems are
the smallest possible infeasible polyhedra of the system.

Recall that showing the infeasibility of a system is equivalent to showing that its dual
system is unbounded:

min
y

yT b

s.t yTA = 0,

y � 0

(2.14)

[31] prove that finding the extreme rays of (2.14) is equivalent to finding the extreme
points of the alternative polyhedron:

yTA = 0

yT b ≤ −1,

y � 0

(2.15)
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Even further, the rows of any minimally infeasible subsystem of (2.13) are indexed by the
support vertices of (2.15).

By using this fact, we can do Benders cut generation dispensing with finding extreme
rays, and we can just find extreme points of an adapted polyhedron. The application of this
to our approach is detailed in §5.2.2 and §5.3.2, for general and security Stackelberg games
respectively.

2.5 Mixed integer linear problems
A mixed integer linear problem (MILP) is a problem type in which at least one of the variables
is integer, and objective and constraint functions are linear.

Mixed integer linear problem structure looks as follows:

min
x, y

cTx+ gTy

s.t Ax+By ≤ b,

x ∈ Rn
+,

y ∈ Zp
+,

(2.16)

here, x is an n-vector of variables greater than or equal to 0 and y is a p-vector of integer
variables greater than 0. The problem has a mix of integer and continuous variables.

MILPs are present in many fields and disciplines, for that reason, several authors have
been interested in their study. For example, [14], [44] and [61], among many others.

Solving MILPs could be a very difficult task [33], much more difficult than LPs. In
particular, solution methods for MILP use LP solvers as subroutines.

Most of solution methods for MILPs start with relaxation of the problems, i.e., change
the original problem for an easier to solve problem, in order to find bounds. For example, a
linear relaxation, that consists in considering integer variables as continuous variables. If we
are lucky and the solution to the relaxed problem is feasible for the MILP, then problem is
solved. But if the solution is not integer, this relaxation (for a minimization problem) gives
a lower bound of MILP.

There are several types of solution methods that make use of this relation between MILP
and the relaxed version, for example: cutting plane methods, enumerative methods, hybrid
methods, and others.

In solving integer problems, cutting plane method is an iterative algorithm that succes-
sively tightens the relaxation of the problem by adding constraints that result valid for all
integer solutions. To do that, this method uses duality theory. It was first introduced by
[32]. There exist several kind of cutting plane methods: Gomory’s cutting plane, Benders
decomposition (defined in §2.4.1), disjuntive cuts [4], among others.
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Enumerative algorithms to solve mixed integer problems are exact. They explore feasible
solutions of the problem using a tree of possibilities, but applying rules that allow to identify
parts of the tree that do not need to be explored, either because the problem presents some
exploitable symmetry or because it can be shown that the optimal solution is not in those
zones. Some examples of enumerative methods are: branch & bound [39], backtracking
search, among others.

Hybrid methods mix cutting plane and enumerative methods. Some well known hybrid
methods are branch & cut [5] and cut & branch.

In this thesis, the used solution methods are hybrid, specifically branch & cut and cut &
branch. These are based in branch & bound method.

Branch & bound

This method was first proposed in [39], where it was briefly defined as “simple numerical
algorithm for the solution of programming problems in which some or all variables can take
only discrete values"

The branch & bound algorithm first solves the linear relaxation of the problem, i.e., the
problem without integrality constraints, and gets a lower bound (when minimizing). Then
it iteratively adds constraints that fix variables in different integer values, forming scenarios
for each of them. If all possible scenarios have been considered, the best lower bound is
the optimal value of the problem, because has been proved that there is no integer variable
solution with better result. An important remark is that all possible scenarios are considered,
but not necessarily solved, because most of them are discarded using some logical rules.

Consider the generic MILP problem (2.7). This problem has integer and linear variables.
We now define his linear relaxation:

Linear relaxation

min
x, y

cTx+ dTy

s.t Gx+Hy = g,

Ax � a,

By � b,

x � 0,

y � 0.

(2.17)

where x and y are linear variables with positive values.

We now outline the algorithm.

Algorithm

1. The root node of the tree is the solution of the linear relaxation (2.17), call it (x0, y0). If
the solution satisfies the constraints of (2.7) (integer variables), then this is the problem
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solution, and algorithm terminates.
2. If (x0, y0) is not the required solution it means that some integer variable is fractional,

say x01. Then two edges are drawn, each of them adding a different constraint to the
original problem. These constraints impose the upper and lower integer bound on
the variable that is fractional. That is for each problem we add one of the following
constraints:

x1 ≤ bx01c (2.18)

x1 ≥ dx01e (2.19)

We now have two new problems. First problem with one new constraint (P1):

min
x, y

cTx+ dTy

s.t Gx+Hy = g,

Ax � a,

By � b,

x � 0

y � 0,

x1 ≤ bx01c

(2.20)

Second problem with the other constraint (P2):

min
x, y

cTx+ dTy

s.t Gx+Hy = g,

Ax � a,

By � b,

x � 0

y � 0,

x1 ≥ dx01e

(2.21)

These constraints force the optimal solutions avoid the fractional region where the
original problem was optimal.

3. Solve two new problems. If one of the solutions satisfies the constraints of (2.7) (integer
variables), it can be saved as a possible problem solution and that branch is not explored
anymore. If we get infeasible problem, that branch is discarded.

4. If there is no problem solution or infeasibility, repeat from step 2, now in (2.20) and
(2.21), until finding possible solutions or discarding in all branches. The algorithm
terminates.

5. If we get more than one possible solution, the problem solution is the best of them. If
we don’t get any possible (integer) solution, the problem is infeasible.

Example

Figure (2.2) shows branch & bound scheme for an example maximization problem in [53]:
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max
x1, x2

100x1 + 150x2

s.t 8, 000x1 + 4, 000x2 ≤ 40, 000,

15x1 + 30x2 ≤ 200,

(x1, x2) ∈ Z2
+

(2.22)

This problem has two integer variables x1 and x2, and can be seen that the root node
linearly relaxed optimal solution is 1055.56, with x1 = 2.22 and x2 = 5.56, this solution is
infeasible to integrality constraints, so it was necessary to branch the problem.

In level 2 of the tree, P1 has optimal value of 1000 and x1 = 2.5 and x2 = 5, P2 has
optimal value of 1033 and x1 = 1.33 and x2 = 6. Integer solution is not reached and node
with max optimal value is P2, so that node is branched.

In level 2 of the tree, P2,1 has optimal value of 1025.5 and x1 = 1 and x2 = 6.17, P2,2 is
infeasible. Integer solution is not reached, so we branch the one feasible node P2,1.

In level 3, P2,1,1 has optimal value of 1,000 and x1 = 1 and x2 = 6, P2,1,2 is infeasible.
Integer solution is reached at node P2,1,1. So, the final optimal solution is (x1, x2) = (1, 6)
and optimal value is v2,1,2 = 1, 000.

P0

P1 P2

P2,1

P2,1,1 P2,1,2

P2,2

x2 ≤ 5 x2 ≥ 6

1 ≥ x1

6 ≥ x2 7 ≤ x2

2 ≤ x1

1055.56

1000 1033

1025.5

1000 infeasible

infeasible

Figure 2.2: Branch & bound algorithm scheme.

2.5.1 Branch & cut

As explained, branch & cut is an hybrid method. This algorithm mixes a cutting plane and
branch & bound method.

First main topic of this thesis is solving large scale MILP problems, using a branch &
cut algorithm with cuts generated from Benders decomposition. Benders decomposition
algorithm is used to address the large scale feature of the problem, while branch & bound is
used to manage integrality. Benders decomposition algorithm was described in §2.4.1.
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Branch & cut algorithm works in the branch & bound scheme, but adding extra cuts (if
necessary) in each node by using cutting planes methods, specifically in the work presented
here we use Benders decomposition method.

2.5.2 Cut & branch

Second main topic of this thesis is solving the same large scale MILP problems, but using
cut & branch algorithm. This algorithm works similar to branch & cut, but only adds cuts
in the root node. Remaining nodes just add the branching constraints.
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Chapter 3

Problem definition

In this chapter, we formally define Bayesian general Stackelberg games (GSGs) and their
extension to the security field, Bayesian security Stackelberg games (SSGs). Bayesian Stack-
elberg games are those where the leader may face one of multiple follower types.

3.1 General Stackelberg games
We now define the sets, parameters and variables of Bayesian GSGs.

Sets:

K: set of followers.

I: set of leader pure strategies.

J : set of follower pure strategies.

Parameters:

πk ∈ [0, 1]: probability of facing follower k ∈ K.

Rk ∈ R|I|×|J |: leader’s reward matrix when facing follower k ∈ K.

Ck ∈ R|I|×|J |: reward matrix for follower k ∈ K.

Variables:

xi ∈ [0, 1]: probability for leader to play pure strategy i ∈ I, such that
∑

i∈I xi = 1.

qkj ∈ {0, 1}: decision of follower k ∈ K to play pure strategy j ∈ J , such that
∑

j∈J q
k
j = 1.
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The expected reward for the leader is:

∑
i∈I

∑
j∈J

∑
k∈K

πkRk
ijxiq

k
j (3.1)

The expected reward for the k follower is:

∑
i∈I

∑
j∈J

Ck
ijxiq

k
j (3.2)

The following model, (BLP-Gx,q), is a bilevel programming formulation for the Bayesian
general Stackelberg game problem:

(BLP-Gx,q)

max
x, q

∑
i∈I

∑
j∈J

∑
k∈K

πkRk
ijxiq

k
j

s.t
∑
i∈I

xi = 1,

xi ∈ [0, 1] ∀i ∈ I,

qk ∈ arg maxrk

{∑
i∈I

∑
j∈J

Ck
ijxir

k
j

}
∀k ∈ K,

rkj ∈ [0, 1] ∀j ∈ J,∀k ∈ K,∑
j∈J

rkj = 1 ∀k ∈ K.

(3.3)

The objective function maximizes leader’s expected reward. First and second constraints
characterize the mixed strategies considered by the leader. Nested problem maximizes fol-
lower’s reward by playing best response to the leader’s decision.

3.2 Security Stackelberg games
A security Stackelberg game is a specific type of GSG where the leader is called defender, and
follower is called attacker. In this case, the pure strategies for the defender involve allocating
limited number of security resources to protect a subset of targets, and the pure strategies
for each attacker consist in attacking a single target [36].

Let n be the number of targets, and let m be the number of security resources available to
protect these targets, some m < n, that is the number of resources is lower than the number
of targets. Allocating resource to some target protects that target from attack.

We now define the sets, parameters and variables of Bayesian SSGs.
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Sets:

K: set of attackers.

I: set of defender pure strategies, composed of all
∑m

i=1

(
n
i

)
subsets of at most m targets

that can be protected simultaneously.

J : set of attacker pure strategies.

Parameters:

πk ∈ [0, 1]: probability of facing attacker k ∈ K.

Dk(j|c): utility of the defender when facing attacker k ∈ K, who attacks target j ∈ J
which is protected (covered).

Dk(j|u): utility of the defender when facing attacker k ∈ K, who attacks target j ∈ J
which is unprotected (uncovered).

Ak(j|c): utility of the attacker k ∈ K, attacking target j ∈ J which is covered.

Ak(j|u): utility of the attacker k ∈ K, attacking target j ∈ J which is uncovered.

About utilities, it is assumed that for each j ∈ J and k ∈ K, Dk(j|c) ≥ Dk(j|u), because
defender wants to cover the attacked targets, and Ak(j|u) ≥ Ak(j|c), because attacker wants
to attack uncovered targets.

Variables:

xi ∈ [0, 1]: probability for defender to play pure strategy i ∈ I, such that
∑

i∈I xi = 1.

cj ∈ [0, 1]: probability of coverage of target j ∈ J , such that cj =
∑

i∈I:j∈J xi,∀j ∈ J , i.e.,
is represented by the sum of the probabilities of all strategies that cover that target.

qkj ∈ {0, 1}: indicates whether the attacker k ∈ K strikes target j ∈ J .

The expected utility for the defender is:

∑
j∈J

∑
k∈K

πkqkj
{
cjD

k(j|c) + (1− cj)Dk(j|u)
}

(3.4)

The expected utility for the k attacker is:

∑
j∈J

qkj
{
cjA

k(j|c) + (1− cj)Ak(j|u)
}

(3.5)
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Figure (3.1) shows an example of security Stackelberg game. The map covers the Chilean
northern border with Perú and Bolivia. Green and red location icons represent protected
and unprotected targets (illegal immigration zones), respectively. Blue arrow is an attacker
k ∈ K who chooses a covered target j ∈ J , and gets the negative utility of Ak(j|c), and the
defender gets the positive utility of Dk(j|c). Yellow arrow is an attacker k ∈ K who chooses
an uncovered target j ∈ J , and gets a positive utility of Ak(j|u), and the defender gets the
negative utility of Dk(j|u). Second yellow line that crosses the location icon means that the
attacker gets in the territory (and that is his utility or reward).

Unsuccesful patrol

Covered target Uncovered target

Succesful patrol

Figure 3.1: Graphic example of security Stackelberg game in the Chilean border.

The following model, (BLP-Sx,c,q), is a bilevel programming formulation for the Bayesian
security Stackelberg game problem:

(BLP-Sx,c,q)
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max
x, c, q

∑
j∈J

∑
k∈K

πkqkj
{
cjD

k(j|c) + (1− cj)Dk(j|u)
}

s.t
∑
i∈I

xi = 1,

xi ≥ 0 ∀i ∈ I,

cj =
∑

i∈I:j∈J

xi ∀j ∈ J,

qk ∈ arg maxrk

{∑
j∈J

rkj
{
cjA

k(j|c) + (1− cj)Ak(j|u)
}}

∀k ∈ K,

rkj ∈ [0, 1] ∀j ∈ J,∀k ∈ K,∑
j∈J

rkj = 1 ∀k ∈ K.

(3.6)

The objective function maximizes defender’s expected utility. The first to third set of con-
straints characterize the exponentially many mixed strategies considered by the defender and
relate them to coverage frequencies over the targets. Nested problem maximizes attacker’s
utility by attacking the target which represents his best response to defender’s strategy.

A more compact formulation involving a polynomial number of variables and constraints
can be obtained if projecting out the exponentially many x variables does not lead to ex-
ponentially many constraints. To show that the number of constraints in the projection is
polynomial, [19] provides a mathematical proof that makes use of Farkas’ Lemma [27]. This
projection of x variables from constraints in the defender problem leads to the following
constraints:

∑
j∈J

cj ≤ m, (3.7)

c ∈ [0, 1]|J |. (3.8)

Constraint (3.7) enforces that the total coverage provided to the targets cannot exceed m,
the number of available security resources, and constraint (3.8) guarantees that the coverage
probabilities are in range of probabilities.

This lead us to the following problem depending only on variables c and q.

(BLP-Sc,q)

23



max
c, q

∑
j∈J

∑
k∈K

πkqkj
{
cjD

k(j|c) + (1− cj)Dk(j|u)
}

s.t
∑
j∈J

cj ≤ m,

c ∈ [0, 1]|J |,

qk ∈ arg maxrk

{∑
j∈J

rkj
{
cjA

k(j|c) + (1− cj)Ak(j|u)
}}

∀k ∈ K,

rkj ∈ [0, 1] ∀j ∈ J,∀k ∈ K,∑
j∈J

rkj = 1 ∀k ∈ K.

(3.9)

Given an optimal solution to this formulation, a probability vector x can be obtained by
solving the system of linear inequalities:∑

i∈I

xi = 1, xi ≥ 0 ∀i ∈ I, cj =
∑

i∈I:j∈J

xi ∀j ∈ J, (3.10)

This system involves n+ 1 equalities (|J |+ 1), there exist a solution in which the number
of variables xi with a strictly positive value is not larger than n+ 1, i.e., the output size of a
SSG is polynomial in the input size.

In the next subsection, we present an algorithm that, given an optimal coverage proba-
bilities on the targets, recovers an optimal mixed strategy that satisfies that coverage prob-
abilities. This algorithm is used in [19].

3.2.1 The box method

The box method algorithm presented in this subsection provides a simple graphic way of
recovering an optimal mixed strategy x that solves SSG formulation (BLP-Sx,c,q), and which
is easily implementable by the leader, based on the vector c of optimal coverage probabilities
returned by the compact SSG formulation (BLP-Sc,q).

The algorithm used for scheduling comes from [42]. In this paper, the authors need to
schedule J = 1, . . . , n tasks on m processors. Tasks can be split in any numbers of ways in
the processors, but processors cannot work on the same task at the same time. Each task
j ∈ J has a processing time cj.

In our setting, we have m security resources, and we have n targets that need to be
covered, and the processing time of a task corresponds to the coverage probability on target.
We do not want to assign the same target twice in a single pure strategy i, because we want
to cover most possible targets.

The following theorem is a particular case adapted from the general case presented in [42].
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Theorem 3.1 If
∑

j∈J cj ≤ m, then a necessary and sufficient condition that there exists
a distribution in which the coverage probabilities of all targets are considered is that cj ≤
1, ∀j ∈ J .

Proof. The necessary condition is directly seen from
∑

j∈J cj ≤ m, because if it is not true,
it is impossible to consider the coverage probabilities of all targets.

For the sufficient condition, assume each cj ≤ 1. We now show how the coverage probabili-
ties can be considered so that after each coverage probability has been assigned, the following
condition is fulfilled: the total probability of every security resource (1) with possible exception
of one, is either entirely filled up or is entirely empty. Assigning target j = 1 entirely in the
first security resource, there will be 1− c1 probability left on the first security resource to be
filled. The condition is fulfilled because we have just one security resource partially filled, or
none in extreme case c1 = 1.

Now assume the j − 1 targets, 1, 2, . . . , j − 1, have been assigned and the the condition is
fulfilled. We show that it is possible to assign the jth such that the condition is still fulfilled.
Note that if j ≤ n, after the first j − 1 targets have been assigned the total resources
unassigned probabilities is greater than or equal to cj, because m ≥

∑n
j=1 cj implies that

cj ≤ m−
∑j−1

k=1 ck−
∑n

k=j+1 ck and unassigned probability is up = m−
∑n

k=j ck. Which leads
to cj ≤ up. But we don’t want to assign the target j twice in the same pure strategy, so we
cannot be sure that j can be assigned.

To handle this, we have three cases:

1. There is no security resource whose probability is partially filled: then assign j on an
empty resource. The condition is still fulfilled.

For the following cases, let the security resource R be the resource whose probability is
not yet filled; suppose it has π units of probabilities left unassigned, and hence 1 − π
assigned.

2. π ≥ cj: then assign j wholly on the security resource with the partially filled probability.
The condition is still fulfilled.

3. π < cj: assign j from 1 − π to 1, and from 0 to cj − π on a new resource. Since each
cj ≤ 1, this guaranties that no target is assigned twice in a same pure strategy. The
condition is still fullfilled.

Since these considerations are valid for j ≤ n, the proof is complete.

The schedule is constructed as follows. One pile up the optimal cj values consecutively
inside m columns, which represent the security resources, of height one, from left to right.
Whenever a column is filled, one can start filling up the next column with the remaining
quantity of unassigned cj from the previous column. After that, upon inspection of the
resulting diagram, one can determine, before a processor switches task, all tasks that are
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currently being processed and the time taken before a given configuration of tasks being
processed changes.

In our setting these configuration correspond to the pure strategies (coverage ofm targets)
and the time taken between configuration changes , corresponds to the probability with which
coverage configuration prior to the change occurs.

Algorithm 1 summarizes the steps required to recover the defender’s implementable mixed
strategy.

Algorithm 1: Box method
Input: c, m columns of height 1
Result: Defender’s mixed strategy

1 Fill up optimal cj inside the columns;
2 Make transversal cuts in the box every time there is a configuration change along the

columns and final cut at height 1;
3 Read off the mixed strategy as follows:

1. Starting from the bottom of the box, the pure strategies correspond to the different
configurations of resources covering target separated by the transversal cuts.

2. Each configuration’s probability is given by the height of the corresponding
configuration.

The following example shows the implementation of the box method, used to recover an
optimal mixed strategy x, this was taken from [19].

Consider a security instance with J = 4, K = 1 and m = 3. Let the optimal coverage
probabilities obtained by solving (3.9) be c = (0.7, 0.7, 0.65, 0.95). Stacking up the values of
the coverage probabilities cj into m = 3 columns of the algorithm 1 produces the drawing of
figure (3.2).

0.05
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0.7

1
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T1 T2 T3 T4

Figure 3.2: The box method.
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As can be seen, we can do four transversal cuts in here. First cut in 0.05, second in 0.4,
third in 0.7 and fourth in 1. The results are described in the next table:

Defender pure strategy Targets protected Weight in mixed strategy
1 (1,2,3) 0.05
2 (1,2,4) 0.35
3 (1,3,4) 0.3
4 (2,3,4) 0.3

Table 3.1: Optimal defender mixed strategy.

This show that in the 5% of times, defender will apply strategy 1, i.e, protect targets 1,
2 and 3. Strategy 2 will be applied 35% of times, protecting targets 1, 2 and 4. Defender
will apply strategy 3 and 4 30% of times, protecting targets 1, 2 and 4; and 2, 3 and 4,
respectively.
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Chapter 4

General and security Stackelberg game
formulations

4.1 Introduction

4.2 General Stackelberg games

4.2.1 Single level formulations

[46] tackle the problem of solving the bilevel formulation presented earlier, (BLP-Gx,q) in
(3.3) by using a MILP reformulation based in optimality conditions [16] applied to the nested
problem.

Given the second level convex problem linear relaxation for the k follower:

max
q

∑
i∈I

∑
j∈J

Ck
ijxiq

k
j

qkj ≥ 0 ∀j ∈ J,∑
j∈J

qkj = 1.

(4.1)

Its dual is given by:

min
ν

νk

νk ≥
∑
i∈I

Ck
ijxi ∀j ∈ J. (4.2)

Problem (4.1) can be replaced by the following set of constraints:
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∑
j∈J

qkj = 1, (4.3)

qkj ∈ {0, 1} ∀j ∈ J, (4.4)

0 ≤ (sk −
∑
i∈I

Ck
ijxi) ≤ (1− qkj )M2 ∀j ∈ J. (4.5)

where sk ∈ R ∀k ∈ K and M2 is a big-M constant. The two inequalities in constraint
(4.5) ensure that qkj = 1 only for a pure strategy that maximizes the follower’s payoff.

Mixed integer quadratic formulation

This transformation leads to the following formulation, (MIQP-Gx,q,s), which is a quadratic
single level problem for the GSG where the only quadratic term appears in the objective
function.

(MIQP-Gx,q,s)

max
x, q, s

∑
i∈I

∑
j∈J

∑
k∈K

πkRk
ijxiq

k
j

s.t
∑
i∈I

xi = 1,

xi ≥ 0 ∀i ∈ I,∑
j∈J

qkj = 1 ∀k ∈ K,

qkj ∈ {0, 1} ∀j ∈ J,∀k ∈ K,

0 ≤ (sk −
∑
i∈I

Ck
ijxi) ≤ (1− qkj )M2 ∀j ∈ J,∀k ∈ K,

s ∈ R|K|.

(4.6)

Mixed integer linear formulations

The above formulation, (MIQP-Gx,q,s), can be linearized in two alternative ways.

In the first alternative, [46] eliminate non-linearity of the objective function in (MIQP-
Gx,q,s) by adding an additional variable z that represents the product between x and q,
zkij = xiq

k
j ∀i ∈ I,∀j ∈ J,∀k ∈ K. This action leads to the following formulation called

(DOBSSq,z,s)
.

(DOBSSq,z,s)
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max
q, z, s

∑
i∈I

∑
j∈J

∑
k∈K

πkRk
ijz

k
ij

s.t
∑
j∈J

qkj = 1 ∀k ∈ K,

qkj ∈ {0, 1} ∀j ∈ J,∀k ∈ K,∑
j∈J

zkij =
∑
j∈J

z1ij ∀i ∈ I,∀k ∈ K,∑
i∈I

zkij = qkj ∀j ∈ J,∀k ∈ K,

zkij ≥ 0 ∀i ∈ I,∀j ∈ J,∀k ∈ K,

0 ≤ (sk −
∑
i∈I

∑
h∈J

Ck
ijz

k
ih) ≤ (1− qkj )M2 ∀j ∈ J,∀k ∈ K,

s ∈ R|K|.

(4.7)

Second alternative to eliminate non-linearity, is presented by [36], and consists in avoid
the quadratic term in the objective function by adding |K| new variables and introducing a
second family of constraints involving a big-M constant, this is called (D2x,q,s,f ).

(D2x,q,s,f )

max
x, q, s, f

∑
k∈K

πkfk

s.t
∑
i∈I

xi = 1,

xi ≥ 0 ∀i ∈ I,∑
j∈J

qkj = 1 ∀k ∈ K,

qkj ∈ {0, 1} ∀j ∈ J,∀k ∈ K,

0 ≤ (sk −
∑
i∈I

Ck
ijxi) ≤ (1− qkj )M2 ∀j ∈ J,∀k ∈ K,

fk ≤
∑
i∈I

Rk
ijxi + (1− qkj )M1 ∀j ∈ J,∀k ∈ K,

s, f ∈ R|K|.

(4.8)

Projected formulations

Additionally, we can get two new equivalent formulations by applying Fourier-Motzkin elim-
ination [25] to (DOBSSq,z,s) and (D2x,q,s,f ) respectively. This procedure is applied in [19].

Fourier-Motzkin elimination (FME) is an algorithm useful to eliminate variables of a linear
inequalities system. It creates a new system without the selected variable, but with the same
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solution in the remaining variables. We apply this algorithm to eliminate sk variables, we are
not interested in their solutions, because are dual variables of the nested problem of bilevel
formulation of the Bayesian GSG, (BLP-Gx,q).

First, we apply FME to (DOBSSq,z,s). This leads the constraint:

0 ≤ (sk −
∑
i∈I

∑
h∈J

Ck
ijz

k
ih) ≤ (1− qkj )M2 ∀j ∈ J,∀k ∈ K, (4.9)

to the new constraint:

∑
i∈I

∑
h∈J

(Ck
ij − Ck

il)z
k
ih ≤ (1− qkl )M2 ∀j, l ∈ J,∀k ∈ K. (4.10)

This elimination yields (DOBSSq,z).

Second, we apply FME to (D2x,q,s,f ). This changes the constraint:

0 ≤ (sk −
∑
i∈I

Ck
ijxi) ≤ (1− qkj )M2 ∀j ∈ J,∀k ∈ K, (4.11)

for the new constraint:

∑
i∈I

(Ck
ij − Ck

il)xi ≤ (1− qkl )M2 ∀j, l ∈ J,∀k ∈ K. (4.12)

This yields (D2x,q,f ).

[19] analyzes the behavior of (DOBSSq,z) and (D2x,q,f ) compared to their unprojected
counterparts to see if removing variables sk at the expense of adding constraints is worthwhile.

Reformulation-linearization technique formulation

Reformulation-linearization technique (RLT) is a technique mainly used to generate tight
equivalent representations for mixed integer (binary) programming problems. It consists of
multiplying a constraint by a variable, and after linearizing it by change of variable. This
technique is described in [51].

We now present a new formulation, referred as (MIP-p-Gq,z) by [19]. This formulation is
mainly composed by (DOBSSq,z,s) mixed with RLT projected constraints (4.12) of (D2x,q,f ),
and is a Bayesian extension to a single follower formulation in [22].

It consists in replacing constraints:
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0 ≤ (sk −
∑
i∈I

∑
h∈J

Ck
ijz

k
ih) ≤ (1− qkj )M2 ∀j ∈ J,∀k ∈ K, (4.13)

for the constraints

∑
i∈I

(Ck
ij − Ck

il)z
k
ij ≥ 0 ∀j, l ∈ J,∀k ∈ K. (4.14)

This yields (MIP-p-Gq,z):

max
q, z

∑
i∈I

∑
j∈J

∑
k∈K

πkRk
ijz

k
ij

s.t
∑
j∈J

qkj = 1 ∀k ∈ K,

qkj ∈ {0, 1} ∀j ∈ J,∀k ∈ K,∑
j∈J

zkij =
∑
j∈J

z1ij ∀i ∈ I,∀k ∈ K,∑
i∈I

zkij = qkj ∀j ∈ J,∀k ∈ K,

zkij ≥ 0 ∀i ∈ I,∀j ∈ J,∀k ∈ K,∑
i∈I

(Ck
ij − Ck

il)z
k
ij ≥ 0 ∀j, l ∈ J,∀k ∈ K.

(4.15)

Briefly, constraints (4.14) were derived by multiplying projected constraints (4.12) by qkl .
It makes the right hand side to be 0, because it is a binary variable. About the left hand side,
it has a nonlinear term xiq

k
l and can be changed by xiqkj and change the inequality sense.

Finally, this term is linearized using change of variables xiqkj = zkij as in (DOBSSq,z,s).

4.2.2 Theoretical comparison of the formulations

[46] proves the equivalence of (DOBSSq,z,s) and (MIQP-Gx,q,s). On the other hand, [36]
gives the proof that (D2x,q,s,f ) is equivalent to (MIQP-Gx,q,s). Therefore, (DOBSSq,z,s) and
(D2x,q,s,f ) are equivalent formulations.

[19] proves that (MIP-p-Gq,z) is equivalent to (MIQP-Gx,q,s).

Finally, by FME [25], (DOBBSq,z) and (D2x,q,f ), the projected formulations, are both
equivalent to their respective unprojected formulations (DOBSSq,z,s) and (D2x,q,s,f ).

Hence, formulations so far are all equivalent.
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Linear relaxations

In this section, the formulations are compared about their linear relaxations. The results
shown here are obtained by [19].

Given a formulation F , we define the following concepts:

F̄ : linear relaxation of F .

P(F̄ ): feasible region of F̄ .

v(F ): optimal value of F .

[19] proofs that:

P(MIP − p−Gq,z) ⊆ P(DOBSSq,z) ⊆ P(D2x,q,s,f ), (4.16)

in consequence:

v(MIP − p−Gq,z) ≤ v(DOBSSq,z) ≤ v(D2x,q,s,f ). (4.17)

.

4.2.3 Computational comparison of the formulations

[19] realized computational experiments for the formulations presented in the previous sec-
tion. We sumarize his findings in this section.

He solved instances where the payoff matrices for the leader and follower were randomly
generated in two ways:

1. 100% of elements randomly generated between 0 and 10 (referred to as instances with
no variability).

2. 90% of elements randomly generated between 0 and 10 and 10% of elements between
0 and 100 (referred to as instances with variability).

About instances size, he considered instances for |I| ∈ {10, 20, 30}, |J | ∈ {10, 20, 30} and
|K| ∈ {2, 4, 6}. Generating, for each size, 5 instances of no variability, and 5 instances with
variability. In total, 135 instances of each variability level.

He compared formulations in 4 metrics: total running time to solve the integer problem,
running time to solve the linear relaxation of the integer problem, total number of nodes
explored in the branch & bound solving scheme and gap percentage in the root node. We
summarize his results:

33



Total running time to solve the integer problem

In this point of comparison, when there is no variability (DOBSSq,z,s) and (MIP-p-Gq,z) are
the two most competitive formulations. (D2x,q,s,f ) can be solved efficiently for instances not
too big, but not in difficult instances.

When variability in the payoff matrices is introduced, best performance comes from (MIP-
p-Gq,z) and (DOBSSq,z,s) again, followed by (D2x,q,s,f ) which comes noncompetitive when
instances are difficult.

Running time to solve the linear relaxation of the integer problem

According to linear relaxation, when there is no variability, the best performance formulation
is (D2x,q,s,f ) and the worst performance comes from (MIP-p-Gq,z).

When variability is introduced, best performance formulation is the same, and worst
changes to (DOBSSq,z), but (MIP-p-Gq,z) is the second worst formulation.

Total number of nodes explored

(MIP-p-Gq,z) is the formulation that uses the fewest nodes, in both variability levels. This
makes sense, because is the tightest formulation. On the other hand, formulation that uses
the biggest nodes in both variability levels is (D2x,q,s,f ).

Gap percentage in the root node

According to the gap obtained across the instances solved, (MIP-p-Gq,z) is dramatically the
best formulation, (DOBSSq,z,s) is in the middle and (D2x,q,s,f ) is the worst.

According to the results described, we choose two formulations to make an hybrid algorithm, a
fast linearly relaxed formulation, and a tight formulation. Fast formulation chosen, according
to the theoretical and computational proofs, is (D2x,q,s,f ). The tight formulation chosen is
(MIP-p-Gq,z), which is transformed by changing the constraint

∑
j∈J

zkij =
∑
j∈J

z1ij ∀i ∈ I,∀k ∈ K, (4.18)

for the constraint

∑
j∈J

zkij = xi ∀i ∈ I,∀k ∈ K. (4.19)

This yiels (MIP-p-Gx,q,z), that will be shown in the next chapter.
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4.3 Security Stackelberg games

4.3.1 Single level formulations

In this section, we derive single level formulations applying to security the same procedure of
[46] in the general setting, to compact security formulation (BLP-Sc,q) in (3.9), i.e., we apply
optimality conditions to the nested security problem.

Given the second level convex problem linear relaxation for the k attacker:

max
q

∑
j∈J

qkj
{
cjA

k(j|c) + (1− cj)Ak(j|u)
}

qkj ≥ 0 ∀j ∈ J,∑
j∈J

qkj = 1.

(4.20)

Its dual is given by:

min
ν

νk

νk ≥ cjA
k(j|c) + (1− cj)Ak(j|u) ∀j ∈ J.

(4.21)

(4.20) can be replaced by the following set of constraints:

∑
j∈J

qkj = 1, (4.22)

qkj ∈ {0, 1} ∀j ∈ J, (4.23)

0 ≤ (sk − cjAk(j|c)− (1− cj)Ak(j|u) ≤ (1− qkj )M2 ∀j ∈ J. (4.24)

where sk ∈ R ∀k ∈ K and M2 is a big-M constant. The two constraints (4.24) ensure
that qkj = 1 only for a pure strategy that maximizes the attacker’s payoff.

Mixed integer quadratic formulation

This transformation leads us to the following formulation (MIQP-Gc,q,s) which is a quadratic
single level problem for the SSG, where the only quadratic term appears in the objective
function.

(MIQP-Sc,q,s)
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max
c, q, s

∑
j∈J

∑
k∈K

πkqkj
{
cjD

k(j|c) + (1− cj)Dk(j|u)
}

s.t
∑
j∈J

cj ≤ m,

c ∈ [0, 1]|J |,∑
j∈J

qkj = 1 ∀k ∈ K,

qkj ∈ {0, 1} ∀j ∈ J,∀k ∈ K,
0 ≤ (sk − cjAk(j|c)− (1− cj)Ak(j|u) ≤ (1− qkj )M2 ∀j ∈ J,∀k ∈ K,
s ∈ R|K|.

(4.25)

Mixed integer linear formulations

The above formulation, (MIQP-Sc,q,s), can be linearized in two alternative ways.

In the first alternative, [46] eliminate non-linearity of the objective function in (MIQP-
Sc,q,s) by adding an additional variable y that represents the product between C and q, ykjj =
cjq

k
j ∀j ∈ J,∀k ∈ K. This action leads to the following formulation called SDOBSSq,s,y in

[19].

(SDOBSSq,s,y)

max
q, s, y

∑
j∈J

∑
k∈K

{
πk(Dk(j|c)ykjj +Dk(j|u)(qkj − ykjj))

}
s.t

∑
j∈J

qkj = 1 ∀k ∈ K,

qkj ∈ {0, 1} ∀j ∈ J,∀k ∈ K,∑
j∈J

yklj =
∑
j∈J

y1lj ∀l ∈ J,∀k ∈ K,∑
l∈J

yklj ≤ mqkj ∀j ∈ J,∀k ∈ K,

0 ≤ yklj ≤ qkj ∀l, j ∈ J,∀k ∈ K,

0 ≤ sk − Ak(j|c)
∑
h∈J

ykjh − Ak(j|u)(1−
∑
h∈J

ykjh) ≤

(1− qkj )M2 ∀j ∈ J,∀k ∈ K,
s ∈ R|K|.

(4.26)

Second alternative to eliminate non-linearity, is presented by [36], and consists in avoiding
the quadratic term in the objective function by adding |K| new variables and introducing a
second family of constraints involving a big-M constant, this is called (ERASERc,q,s,f ).
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(ERASERc,q,s,f )

max
c, q, s, f

∑
k∈K

πkfk

s.t
∑
j∈J

cj ≤ m,

0 ≤ cj ≤ 1 ∀j ∈ J,∑
j∈J

qkj = 1 ∀k ∈ K,

qkj ∈ {0, 1} ∀j ∈ J,∀k ∈ K,
fk ≤ Dk(j|c)cj +Dk(j|u)(1− cj)

+ (1− qkj )M1 ∀j ∈ J,∀k ∈ K,
0 ≤ sk − Ak(j|c)cj − Ak(j|u)(1− cj) ≤
(1− qkj )M2 ∀j ∈ J,∀k ∈ K,
s, f ∈ RK .

(4.27)

Projected formulations

As in GSG, we can get two new equivalent formulations projecting out the s variables by
applying Fourier-Motzkin elimination [25] to (SDOBSSq,s,y) and (ERASERc,q,s,f ) respectively.
This procedure is applied in [19].

First, we apply FME to (SDOBSSq,s,y). This leads the constraint:

0 ≤ sk − Ak(j|c)
∑
h∈J

ykjh − Ak(j|u)(1−
∑
h∈J

ykjh) ≤ (1− qkj )M2 ∀j ∈ J,∀k ∈ K, (4.28)

to the new constraint:

(Ak(j|c)− Ak(j|u))
∑
g∈J

ykjg + (Ak(l|u)− Ak(l|c))
∑
g∈J

yklg+

Ak(j|u)− Ak(l|u) ≤ (1− qkl )M2 j, l ∈ J,∀k ∈ K.
(4.29)

This constraint transformation yields (SDOBSSq,y).

Second, we apply FME to (ERASERc,q,s,f ). This changes the constraint:

0 ≤ sk − Ak(j|c)cj − Ak(j|u)(1− cj) ≤
(1− qkj )M2 ∀j ∈ J,∀k ∈ K,

(4.30)
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for the new constraint:

(Ak(j|c)− Ak(j|u))cj + (Ak(l|u)− Ak(l|c))cl+
Ak(j|u)− Ak(l|u) ≤ (1− qkl )M2 ∀j, l ∈ J,∀k ∈ K.

(4.31)

This yields (ERASERc,q,f ).

Reformulation-linearization technique formulation

We now present a new formulation, referred as (MIP-p-Sq,y) by [19]. This formulation is
mainly composed by (SDOBSSq,s,y) mixed with RLT projected constraints (4.31) of (ERASERc,q,f ).
This new formulation is a Bayesian extension to a single follower formulation in [22].

It consists in replacing constraints:

0 ≤ sk − Ak(j|c)
∑
h∈J

ykjh − Ak(j|u)(1−
∑
h∈J

ykjh) ≤ (1− qkj )M2 ∀j ∈ J,∀k ∈ K,

(4.32)

for the constraints

Ak(j|c)ykjj + Ak(j|u)(qkj − ykjj)− Ak(l|c)yklj−
Ak(l|u)(qkj − yklj) ≥ 0 ∀j, l ∈ J,∀k ∈ K.

(4.33)

This yields (MIP-p-Sq,y):

(MIP-p-Sq,y)

max
q, y

∑
j∈J

∑
k∈K

{
πk(Dk(j|c)ykjj +Dk(j|u)(qkj − ykjj))

}
s.t

∑
j∈J

qkj = 1 ∀k ∈ K,

qkj ∈ {0, 1} ∀j ∈ J,∀k ∈ K,∑
j∈J

yklj =
∑
j∈J

y1lj ∀l ∈ J,∀k ∈ K,∑
l∈J

yklj ≤ mqkj ∀j ∈ J,∀k ∈ K,

0 ≤ yklj ≤ qkj ∀l, j ∈ J,∀k ∈ K,
Ak(j|c)ykjj + Ak(j|u)(qkj − ykjj)−
Ak(l|c)yklj − Ak(l|u)(qkj − yklj) ≥ 0 ∀j, l ∈ J,∀k ∈ K.

(4.34)
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Briefly, constraints (4.33) were derived by multiplying projected constraints (4.31) by qkl .
It makes the right hand side to be 0, because it is a binary variable. About the left hand side,
it has a nonlinear term cjq

k
l and can be changed by cjqkj and change the inequality sense.

Finally, this term is linearized using change of variables cjqkj = ykjj as in (SDOBSSq,s,y).

4.3.2 Theoretical comparison of the formulations

[46] proves the equivalence of (SDOBSSq,s,y) and (MIQP-Sc,q,s). On the other hand, [36] gives
the proof that (ERASERc,q,s,f ) is equivalent to (MIQP-Sc,q,s). Therefore, (SDOBSSq,s,y) and
(ERASERc,q,s,f ) are equivalent formulations.

[19] proves that (MIP-p-Sq,y) is equivalent to (MIQP-Sc,q,s).

Finally, by FME [25], (SDOBBSq,y) and (ERASERc,q,f ), the projected formulations, are
both equivalent to their respective unprojected formulations (DOBSSq,s,y) and (ERASERc,q,s,f ).

Hence, formulations so far are all equivalent.

Linear relaxations

In this section, the formulations are compared about their linear relaxations. The results
shown here are obtained by [19].

Notation used in this section is defined in section (4.2.2).

[19] proofs that:

P(MIP − p− Sq,y) ⊆ P(SDOBSSq,y) ⊆ P(ERASERc,q,s,f ), (4.35)

in consequence:

v(MIP − p− Sq,y) ≤ v(SDOBSSq,y) ≤ v(ERASERc,q,s,f ). (4.36)

4.3.3 Computational comparison of the formulations

As in GSG setting, [19] realized computational experiments for the formulations presented
in the previous section. We sumarize his findings in this section.

He solved instances where the payoff matrices for the leader and follower were randomly
generated in two ways:

1. 100% of elements of penalty matrices randomly generated between 0 and 5, and reward
matrices between 5 and 10 (referred to as no variability instances).

2. 90% of elements of penalty matrices randomly generated between 0 and 5, and reward
matrices between 5 and 10. 10% of elements of penalty matrices between 0 and 50, and
reward matrices between 50 and 100 (referred to as variability instances).
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About instances size, he considered different parameters for no variability and variability
instances. Considering 5 instances of each size in each variability level, 300 instances in total.

For no variability instances, |J | ∈ {10, 20, 30, 40, 50}, |K| ∈ {2, 4, 6, 8},m = {25%, 50%, 75%}
of the number of targets.

For variability instances, |J | ∈ {30, 40, 50, 60, 70}, |K| ∈ {6, 8, 10, 12},m = {25%, 50%, 75%}
of the number of targets.

We summarize his results:

Total running time to solve the integer problem

When there is no variability (MIP-p-Sq,y) is the most competitive formulation for diffi-
cult instances to solve the integer problem, while (ERASERc,q,s,f ) is for easier instances.
(SDOBBSq,y,s) has the worst performance.

When payoff matrices has variability, (ERASERc,q,s,f ) is the best formulation in almost
all instances, except for the very difficult ones.

Running time to solve the linear relaxation of the integer problem

According to linear relaxation, (ERASERc,q,s,f ) is dramatically better than the other for-
mulations, in any variability level. (MIP-p-Sq,y) is the slowest. This makes sense, since
(MIP-p-Sq,y) is the tightest formulation and (ERASERc,q,s,f ) is the lightest.

Total number of nodes explored

(MIP-p-Sq,y) is the formulation that uses the fewest nodes, in both variability levels. This
makes sense, because is the tightest formulation. On the other hand, formulation that uses
the biggest nodes in both variability levels is (ERASERc,q,s,f ).

Gap percentage in the root node

According to the gap obtained in the root node across the instances solved, (MIP-p-Sq,y) is
dramatically the best formulation, (SDOBSSq,y,s) is in the middle and (ERASERc,q,s,f ) is the
worst, just as in GSG.

According to the results described, we choose two formulations to make an hybrid algo-
rithm, a fast linearly relaxed formulation, and a tight formulation, just as in the general
setting. Fast formulation chosen, according to the theoretical and computational proofs,
is (ERASERc,q,s,f ). The tight formulation chosen is (MIP-p-Sq,y), which is transformed by
changing the constraint

∑
j∈J

yklj =
∑
j∈J

y1lj ∀l ∈ J,∀k ∈ K, (4.37)
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for the constraint

∑
j∈J

yklj = cl ∀l ∈ J,∀k ∈ K. (4.38)

This yiels (MIP-p-Sc,q,y), that will be shown in the next chapter.
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Chapter 5

Benders decomposition approaches

5.1 Introduction
In this chapter, we derive the decomposition approaches described in §2.4.1, whose results
will be used in next chapters. These decompositions are applied to the tight formulations
chosen in the previous chapter, (MIP-p-Gx,q,z) and (MIP-p-Sc,q,y), for general and security
Stackelberg games respectively.

5.2 General Stackelberg games
The approaches of this section are derived from formulation (MIP-p-Gx,q,z):

max
x, q, z

∑
i∈I

∑
j∈J

∑
k∈K

πkRk
ijz

k
ij

s.t
∑
j∈J

qkj = 1 ∀k ∈ K,

qkj ∈ {0, 1} ∀j ∈ J,∀k ∈ K,∑
j∈J

zkij = xi ∀i ∈ I,∀k ∈ K,∑
i∈I

zkij = qkj ∀j ∈ J,∀k ∈ K,

zkij ≥ 0 ∀i ∈ I,∀j ∈ J,∀k ∈ K,∑
i∈I

(Ck
ij − Ck

il)z
k
ij ≥ 0 ∀l, j ∈ J,∀k ∈ K.

(5.1)

We first apply standard Benders decomposition to this formulation, keeping q in master
problem. Additionally, we derive a special normalized approach as described in section §2.4.2
with the same variables in master problem. We further derive normalized approaches for
standard Benders decomposition approaches in [19], which includes x and x and q in master
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problem.

5.2.1 q remains in master problem

The first Benders decomposition approach derived is when q remains in master problem, and
x and z are sent to subproblem.

Recall that the subproblem contains the constraints where the variables x or z appear.
Additionally, it contains the parts of the objective function where the same variables are,
leaving in the master problem the parts containing exclusively q variables.

Subproblem

max
x, z

∑
k∈K

∑
i∈I

∑
j∈J

πkRk
ijz

k
ij

s.t
∑
j∈J

zkij − xi = 0 ∀i ∈ I,∀k ∈ K (αk
i ),∑

i∈I

zkij = qkj ∀j ∈ J,∀k ∈ K (βk
j ),∑

i∈I

(Ck
ij − Ck

il)z
k
ij ≥ 0 ∀l, j ∈ J,∀k ∈ K (γkjl),

zkij ≥ 0 ∀i ∈ I,∀j ∈ J,∀k ∈ K.

(5.2)

The separation problem where the cuts are generated is the following:

Separation problem

This is the dual of subproblem:

min
α, β, γ

∑
j∈J

∑
k∈K

βk
j q

k
j

s.t
∑
k∈K

αk
i = 0 ∀i ∈ I,

αk
i + βk

j +
∑

l∈J :l 6=j

(Ck
ij − Ck

il)γ
k
jl ≥

πkRk
ij ∀i ∈ I,∀j ∈ J,∀k ∈ K,

γkjl ≤ 0 ∀i ∈ I,∀j ∈ J,∀k ∈ K.

(5.3)

Finally, these are the cuts to be added to master problem:

θ ≤
∑
j∈J

∑
k∈K

βkg
j

∗
qkj ∀g ∈ extreme points, (5.4)
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0 ≤
∑
j∈J

∑
k∈K

δkhj
∗
qkj ∀h ∈ extreme rays. (5.5)

5.2.2 q remains in master problem, normalized

The second Benders decomposition approach is an extension of the previous, i.e., q appears
in master problem and x and z in subproblem, but in addition we apply a normalization
procedure described in [29] and [30].

From the previous approach, we know that the cut generation procedure is the following:

We first solve the separation problem. If the problem is unbounded, we generate the
following feasibility cut:

0 ≤
∑
j∈J

∑
k∈K

δkj
∗
qkj , (5.6)

Otherwise, if we get an optimal solution such that

∑
j∈J

∑
k∈K

βk
j

∗
qkj
∗
< θ∗, (5.7)

we generate the following optimality cut

∑
j∈J

∑
k∈K

βk
j

∗
qkj ≥ θ. (5.8)

So, we generate cuts if and only if the following polyhedron is infeasible:

Cut generation problem∑
k∈K

∑
i∈I

∑
j∈J

πkRk
ijz

k
ij ≥ θ∗ (λ),∑

j∈J

zkij − xi = 0 ∀i ∈ I,∀k ∈ K (αk
i ),∑

i∈I

zkij = qkj
∗ ∀j ∈ J,∀k ∈ K (βk

j ),∑
i∈I

(Ck
ij − Ck

il)z
k
ij ≥ 0 ∀l, j ∈ J,∀k ∈ K (γkjl),

zkij ≥ 0 ∀i ∈ I,∀j ∈ J,∀k ∈ K.

(5.9)

Which is the same than finding dual unboundedness:
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Dual cut generation problem

min
α, β, γ, λ

∑
j∈J

∑
k∈K

βk
j q

k
j

∗
+ λθ∗

s.t
∑
k∈K

αk
i = 0 ∀i ∈ I,

αk
i + βk

j +
∑

l∈J :l 6=j

(Ck
ij − Ck

il)γ
k
jl+

λπkRk
ij ≥ 0 ∀i ∈ I,∀j ∈ J,∀k ∈ K,

γkjl ≤ 0 ∀i ∈ I,∀j ∈ J,∀k ∈ K,
λ ≤ 0.

(5.10)

Hence, if this occurs, the cut to be generated is:

0 ≤
∑
j∈J

∑
k∈K

δkhj
∗
qkj + λ∗θ (5.11)

We now apply the procedure described in [29] and [30].

Finding unboundedness in (5.10) consists of finding the set of extreme rays that satisfy:

∑
j∈J

∑
k∈K

βk
j q

k
j + λθ < 0, (5.12)

this because if the objective function of this problem is less than 0, this function goes
to −∞. But if we could fix the objective function to a negative value different to this, the
problem would still be a unboundedness problem, but represented as an optimality problem.
We now set the optimal value to:

∑
j∈J

∑
k∈K

βk
j q

k
j + λθ = −1, (5.13)

So now we can find extreme points that represent extreme rays.

With this, we get a polyhedron known in [31] as alternative polyhedron:
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Alternative polyhedron ∑
k∈K

αk
i = 0 ∀i ∈ I,

αk
i + βk

j +
∑

l∈J :l 6=j

(Ck
ij − Ck

il)γ
k
jl+

λπkRk
ij ≥ 0 ∀i ∈ I,∀j ∈ J,∀k ∈ K,

γkjl ≤ 0 ∀i ∈ I,∀j ∈ J,∀k ∈ K,
λ ≤ 0,∑
j∈J

∑
k∈K

βk
j q

k
j + λθ = −1.

(5.14)

We now select a generic objective function as suggested by [29]:

min
∑
j∈J

∑
k∈K

βk
j + λ = −1 (5.15)

[29] proposes to switch the roles of the objective function (5.15) and the normalization
condition of polyhedron (5.14). See Appendix A.

This yields to the separation problem:

Separation problem

min
α, β, γ, λ

∑
j∈J

∑
k∈K

βk
j q

k
j

∗
+ λθ∗

s.t
∑
k∈K

αk
i = 0 ∀i ∈ I,

αk
i + βk

j +
∑

l∈J :l 6=j

(Ck
ij − Ck

il)γ
k
jl+

λπkRk
ij ≥ 0 ∀i ∈ I,∀j ∈ J,∀k ∈ K,

γkjl ≤ 0 ∀i ∈ I,∀j ∈ J,∀k ∈ K,
λ ≤ 0,∑
j∈J

∑
k∈K

βk
j + λ = −1.

(5.16)

With this, the cuts to be added to master problem are:

0 ≤
∑
j∈J

∑
k∈K

βkg
j q

k
j + λθ ∀g ∈ extreme points. (5.17)

5.2.3 x remains in master problem, normalized

[19] applied standard Benders decomposition and got the following separation problem:

46



Standard k separation problem

min
α, β, γ, δ

αk +
∑
i∈I

γki xi

s.t αk − βk
j ≥ 0 ∀j ∈ J,

βk
j + γki +

∑
l∈J :l 6=j

(Ck
il − Ck

ij)δ
k
lj ≥ Rk

ij ∀i ∈ I,∀j ∈ J,

δklj ≥ 0 ∀l, j ∈ J : l 6= j.

(5.18)

We now apply the same as in §5.2.2 and obtain the following normalized separation prob-
lem:

Normalized k separation problem

min
α, β, γ, δ, λ

αk +
∑
i∈I

γki xi + λkθk

s.t αk − βk
j ≥ 0 ∀j ∈ J,

βk
j + γki +

∑
l∈J :l 6=j

(Ck
il − Ck

ij)δ
k
lj + λkRk

ij ≥ 0 ∀i ∈ I,∀j ∈ J,∑
i∈I

γki + λk = −1,

λk ≤ 0,

δklj ≥ 0 ∀l, j ∈ J : l 6= j.

(5.19)

The cuts to be added to the master problem are:

0 ≤ αkg∗ +
∑
i∈I

γkgi
∗
xi + λkg

∗
θk ∀g ∈ extreme points,∀k ∈ K. (5.20)

5.2.4 x and q remains in master problem, normalized

[19] applied standard Benders decomposition and got the following separation problem:

Standard k separation problem

min
α, β, γ

∑
j∈J

αk
j q

k
j +

∑
i∈I

βk
i xi

s.t αk
j + βk

i +
∑

l∈J :l 6=j

(Ck
il − Ck

ij)γ
k
lj ≥ Rk

ij ∀i ∈ I,∀j ∈ J,

γklj ≥ 0 ∀l, j ∈ J : l 6= j.

(5.21)

We now apply the same as in §5.2.2 and obtain the following normalized separation prob-
lem:
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Normalized k separation problem

min
α, β, γ, λ

∑
j∈J

αk
j q

k
j +

∑
i∈I

βk
i xi + λkθk

s.t αk
j + βk

i +
∑

l∈J :l 6=j

(Ck
il − Ck

ij)γ
k
lj + λkRk

ij ≥ 0 ∀i ∈ I,∀j ∈ J,∑
j∈J

αk
j +

∑
i∈I

βk
i + λk = −1,

γklj ≥ 0 ∀l, j ∈ J : l 6= j,

λk ≤ 0.

(5.22)

The cuts to be added to the master problem are:

0 ≤
∑
j∈J

αkg
j

∗
qkgj +

∑
i∈I

βkg
i

∗
xi + λkg

∗
θk ∀g ∈ extreme points,∀k ∈ K. (5.23)

5.3 Security Stackelberg games
The approaches of this section are derived from formulation (MIP-p-Sc,q,y), which is the
thightest SSG formulation found in the previous chapter:

max
c, q, y

∑
j∈J

∑
k∈K

{
πk(Dk(j|c)ykjj +Dk(j|u)(qkj − ykjj))

}
s.t

∑
j∈J

qkj = 1 ∀k ∈ K,

qkj ∈ {0, 1} ∀j ∈ J,∀k ∈ K,∑
j∈J

yklj = cl ∀l ∈ J,∀k ∈ K,∑
l∈J

yklj ≤ mqkj ∀j ∈ J,∀k ∈ K,

0 ≤ yklj ≤ qkj ∀l, j ∈ J,∀k ∈ K,
Ak(j|c)ykjj + Ak(j|u)(qkj − ykjj)−
Ak(l|c)yklj − Ak(l|u)(qkj − yklj) ≥ 0 ∀j, l ∈ J,∀k ∈ K.

(5.24)

5.3.1 q remains in the master problem

The first Benders decomposition approach derived is when q remains in master problem, and
c and y are sent to subproblem.

Recall that subproblem contains the constraints where the variables c or y appear. Addi-
tionally, it contains the parts of the objective function where the same variables are, leaving
in the master problem the parts containing exclusively x variables.
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Subproblem

max
c, y

∑
j∈J

∑
k∈K

πk(Dk(j|c)ykjj −Dk(j|u)ykjj)

s.t
∑
j∈J

yklj − cl = 0, ∀l ∈ J,∀k ∈ K (αk
l ),∑

l∈J

yklj ≤ mqkj , ∀j ∈ j,∀k ∈ K (βk
j ),

yklj ≤ qkj , ∀l, j ∈ J,∀k ∈ K (γklj),

(Ak(j|c)− Ak(j|u))ykjj + (Ak(l|u)− Ak(l|c))yklj ≥
(Ak(l|u)− Ak(j|u))qkj ∀l, j ∈ J,∀k ∈ K (µk

lj),

yklj ≥ 0 ∀l, j ∈ J,∀k ∈ K.

(5.25)

Separation problem

This consists of the dual of subproblem:

min
α, β, γ, µ

m
∑
j∈J

∑
k∈K

qkj β
k
j +

∑
j∈J

∑
l∈J

∑
k∈K

{qkj γklj + (Ak(j|u)− Ak(l|u))qkj µ
k
lj}

s.t
∑
k∈K

αk
l = 0 ∀l ∈ J,

αk
l + βk

j + γklj + (Ak(l|c)− Ak(l|u))µk
lj ≥ 0 ∀l, j ∈ J : l 6= j,∀k ∈ K,

αk
j + βk

j + γkjj +
∑

l∈J :l 6=j

(Ak(j|u)− Ak(j|c))µk
lj ≥

πk(Dk(j|c)−Dk(j|u)) ∀j ∈ J,∀k ∈ K,
βk
j ≥ 0 ∀j ∈ J,∀k ∈ K,
γkjl ≥ 0 ∀l, j ∈ J,∀k ∈ K,
µk
jl ≥ 0 ∀l, j ∈ J,∀k ∈ K.

(5.26)

We obtain the following master problem which includes all cuts:
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Reduced master problem

max
q, θ

θ +
∑
j∈J

∑
k∈K

πkDk(j|u)qkj

s.t
∑
j∈J

qkj = 1 ∀k ∈ K,

qkj ∈ {0, 1} ∀j ∈ J,∀k ∈ K,

θ ≤ m
∑
j∈J

∑
k∈K

qkj β
kg
j +∑

j∈J

∑
l∈J

∑
k∈K

{qkj γ
kg
lj + (Ak(j|u)− Ak(l|u))qkj µ

kg
lj } ∀g ∈ extreme points,

0 ≤ m
∑
j∈J

∑
k∈K

qkj δ
kh
j +∑

j∈J

∑
l∈J

∑
k∈K

{qkj νkhlj + (Ak(j|u)− Ak(l|u))qkj η
kh
lj } ∀h ∈ extreme rays.

(5.27)

But, for our algorithms structure, we need to have a different objective function of master
problem. So, we move the second term of the objective function to the optimality cuts. This
yields the following cuts to be added to master problem:

θ ≤
∑
j∈J

∑
k∈K

πkDk(j|u)qkj +m
∑
j∈J

∑
k∈K

qkj β
kg
j

∗
+∑

j∈J

∑
l∈J

∑
k∈K

{qkj γ
kg
lj

∗
+ (Ak(j|u)− Ak(l|u))qkj µ

kg
lj

∗} ∀g ∈ extreme points,
(5.28)

0 ≤ m
∑
j∈J

∑
k∈K

qkj δ
kh
j

∗
+∑

j∈J

∑
l∈J

∑
k∈K

{qkj νkhlj
∗

+ (Ak(j|u)− Ak(l|u))qkj η
kh
lj

∗} ∀h ∈ extreme rays.
(5.29)

5.3.2 q remains in the master problem, normalized

The second Benders decomposition approach is an extension of the previous and analogous
to the general setting, we apply the same normalization procedure described in [29] and [30].

From the previous approach, we know that the cut generation procedure is the following:

We know that for generating Benders cuts, we first solve the separation problem. If this
problem is unbounded, we generate the following feasibility cut

0 ≤ m
∑
j∈J

∑
k∈K

qkj δ
k
j

∗
+
∑
j∈J

∑
l∈J

∑
k∈K

{qkj νklj
∗

+ (Ak(j|u)− Ak(l|u))qkj η
k
lj

∗} (5.30)
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Otherwise, if we get an optimal solution such that∑
j∈J

∑
k∈K

πkDk(j|u)qkj
∗

+m
∑
j∈J

∑
k∈K

qkj
∗
βk
j

∗
+∑

j∈J

∑
l∈J

∑
k∈K

{qkj
∗
γklj
∗

+ (Ak(j|u)− Ak(l|u))qkj
∗
µk
lj

∗} < θ∗
(5.31)

we generate the following optimality cut

∑
j∈J

∑
k∈K

πkDk(j|u)qkj +m
∑
j∈J

∑
k∈K

qkj β
k
j

∗
+∑

j∈J

∑
l∈J

∑
k∈K

{qkj γklj
∗

+ (Ak(j|u)− Ak(l|u))qkj µ
k
lj

∗} ≥ θ
(5.32)

So, we generate cuts if and only if the following problem is infeasible.

Cut generation problem∑
j∈J

∑
k∈K

πk(Dk(j|c)ykjj −Dk(j|u)ykjj) ≥ θ∗ −
∑
j∈J

∑
k∈K

πkDk(j|u)qkj
∗

(λ),∑
j∈J

yklj − cl = 0, ∀l ∈ J,∀k ∈ K (αk
l ),∑

l∈J

yklj ≤ mqkj
∗
, ∀j ∈ j,∀k ∈ K (βk

j ),

yklj ≤ qkj
∗
, ∀l, j ∈ J,∀k ∈ K (γklj),

(Ak(j|c)− Ak(j|u))ykjj + (Ak(l|u)− Ak(l|c))yklj ≥
(Ak(l|u)− Ak(j|u))qkj ∀l, j ∈ J,∀k ∈ K (µk

lj),

yklj ≥ 0 ∀l, j ∈ J,∀k ∈ K.

(5.33)

Which is the same that unbounded dual:
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Dual cut generation problem

min
α, β, γ, µ, λ

m
∑
j∈J

∑
k∈K

qkj
∗
βk
j +∑

j∈J

∑
l∈J

∑
k∈K

{qkj
∗
γklj + (Ak(l|u)− Ak(j|u))qkj

∗
µk
lj}+ λ(θ∗ −

∑
j∈J

∑
k∈K

πkDk(j|u)qkj
∗
)

s.t
∑
k∈K

αk
l = 0 ∀l ∈ J,

αk
l + βk

j + γklj+

(Ak(l|u)− Ak(l|c))µk
lj ≥ 0 ∀l, j ∈ J : l 6= j,∀k ∈ K,

αk
l + βk

j + γklj +
∑

l∈J :l 6=j

(Ak(j|c)− Ak(j|u))µk
lj+

λπk(Dk(j|c)−Dk(j|u)) ≥ 0 ∀j ∈ J,∀k ∈ K,
βk
j ≥ 0 ∀j ∈ J,∀k ∈ K,
γkjl ≥ 0 ∀l, j ∈ J,∀k ∈ K,
µk
jl ≤ 0 ∀l, j ∈ J,∀k ∈ K,
λ ≤ 0.

(5.34)

The cut will be:

0 ≤ m
∑
j∈J

∑
k∈K

qkj β
k
j +

∑
j∈J

∑
l∈J

∑
k∈K

{qkj γklj + (Ak(l|u)− Ak(j|u))qkj µ
k
lj}+

λ(θ −
∑
j∈J

∑
k∈K

πkDk(j|u)qkj )

(5.35)

We now apply the procedure described in [29] and [30].

Finding unboundedness in (5.34) consists of finding the set of extreme rays that satisfy:

m
∑
j∈J

∑
k∈K

qkj
∗
βk
j +

∑
j∈J

∑
l∈J

∑
k∈K

{qkj
∗
γklj + (Ak(l|u)− Ak(j|u))qkj

∗
µk
lj}+

λ(θ∗ −
∑
j∈J

∑
k∈K

πkDk(j|u)qkj
∗
) < 0,

(5.36)

this because if the objective function of this problem is less than 0, this function goes
to −∞. But if we could fix the objective function to a negative value different to this, the
problem would still be a unboundedness problem, but represented as an optimality problem.
We now set the optimal value to:
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m
∑
j∈J

∑
k∈K

qkj
∗
βk
j +

∑
j∈J

∑
l∈J

∑
k∈K

{qkj
∗
γklj + (Ak(l|u)− Ak(j|u))qkj

∗
µk
lj}+

λ(θ∗ −
∑
j∈J

∑
k∈K

πkDk(j|u)qkj
∗
)∗ = −1.

(5.37)

So now we can find extreme points that represent extreme rays.

With this, we get the alternative polyhedron:

Alternative polyhedron∑
k∈K

αk
l = 0 ∀l ∈ J,

αk
l + βk

j + γklj+

(Ak(l|u)− Ak(l|c))µk
lj ≥ 0 ∀l, j ∈ J : l 6= j,∀k ∈ K,

αk
l + βk

j + γklj +
∑

l∈J :l 6=j

(Ak(j|c)− Ak(j|u))µk
lj+

λπk(Dk(j|c)−Dk(j|u)) ≥ 0 ∀j ∈ J,∀k ∈ K,

m
∑
j∈J

∑
k∈K

qkj
∗
βk
j +

∑
j∈J

∑
l∈J

∑
k∈K

{qkj
∗
γklj + (Ak(l|u)− Ak(j|u))qkj

∗
µk
lj}+

λ(θ∗ −
∑
j∈J

∑
k∈K

πkDk(j|u)qkj
∗
) = −1,

βk
j ≥ 0 ∀j ∈ J,∀k ∈ K,
γkjl ≥ 0 ∀l, j ∈ J,∀k ∈ K,
µk
jl ≤ 0 ∀l, j ∈ J,∀k ∈ K
λ ≤ 0.

(5.38)

We now apply the same procedure than §5.2.2, and obtain the separation problem by
switching roles between objective function and normalization condition:
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Separation problem

min
α, β, γ, µ, λ

m
∑
j∈J

∑
k∈K

qkj
∗
βk
j +∑

j∈J

∑
l∈J

∑
k∈K

{qkj
∗
γklj + (Ak(j|u)− Ak(l|u))qkj

∗
µk
lj}+

λ(
∑
j∈J

∑
k∈K

πkDk(j|u)qkj
∗ − θ∗)

s.t
∑
k∈K

αk
l = 0 ∀l ∈ J,

αk
l + βk

j + γklj+

(Ak(l|c)− Ak(l|u))µk
lj ≥ 0 ∀l, j ∈ J : l 6= j,∀k ∈ K,

αk
l + βk

j + γklj +
∑

l∈J :l 6=j

(Ak(j|u)− Ak(j|c))µk
lj+

λπk(Dk(j|u)−Dk(j|c)) ≥ 0 ∀j ∈ J,∀k ∈ K,
βk
j ≥ 0 ∀j ∈ J,∀k ∈ K,
γkjl ≥ 0 ∀l, j ∈ J,∀k ∈ K,
µk
jl ≥ 0 ∀l, j ∈ J,∀k ∈ K,
λ ≥ 0,∑
j∈J

∑
k∈K

βk
j +

∑
j∈J

∑
l∈J

∑
k∈K

(γklj − µk
lj)− λ = −1.

(5.39)

The cuts to be added to master problem are:

0 ≤ m
∑
j∈J

∑
k∈K

qkj β
kg
j

∗
+
∑
j∈J

∑
l∈J

∑
k∈K

{qkj γ
kg
lj

∗
+ (Ak(j|u)− Ak(l|u))qkj µ

kg
lj

∗}−

λ∗(θ −
∑
j∈J

∑
k∈K

πkDk(j|u)qkj ) ∀g ∈ extreme points.
(5.40)

5.3.3 c remains in master problem, normalized

[19] applied standard Benders decomposition and got the following separation problem:
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Standard k separation problem

min
α, β, γ, δ, ε

∑
l∈J

βk
l cl + αk

s.t −mγkj −
∑
l∈J

δklj + αk+∑
l∈J

(Ak(l|u)− Ak(j|u))εklj ≥ Dk(j|u) ∀j ∈ J,

βk
j + γkj + δkjj+∑

l∈J :l 6=j

(Ak(j|u)− Ak(j|c))εklj ≥ Dk(j|c)−Dk(j|u) ∀j ∈ J,

βk
l + γkj + δklj + (Ak(l|c)− Ak(l|u))εklj ≥ 0 ∀l, j ∈ J : l 6= j,

γkj ≥ 0 ∀j ∈ J,
δklj ≥ 0 ∀l, j ∈ J,
εklj ≥ 0 ∀l, j ∈ J.

(5.41)

We now apply the same as in §5.3.2 and obtain the following normalized separation prob-
lem:

Normalized k separation problem

min
α, β, γ, δ, ε, λ

∑
l∈J

βk
l cl + αk + λkθk

s.t −mγkj −
∑
l∈J

δklj + αk+∑
l∈J

(Ak(l|u)− Ak(j|u))εklj + λkDk(j|u) ≥ 0 ∀j ∈ J,

βk
j + γkj + δkjj +

∑
l∈J :l 6=j

(Ak(j|u)− Ak(j|c))εklj+

λk(Dk(j|c)−Dk(j|u)) ≥ 0 ∀j ∈ J,
βk
l + γkj + δklj + (Ak(l|c)− Ak(l|u))εklj ≥ 0 ∀l, j ∈ J : l 6= j,∑
l∈J

βk
l + λk = −1,

γkj ≥ 0 ∀j ∈ J,
δklj ≥ 0 ∀l, j ∈ J,
εklj ≥ 0 ∀l, j ∈ J,
λk ≤ 0.

(5.42)

The cuts to be added to master problem are:

0 ≤
∑
l∈J

βkg
l

∗
cl + αkg∗ + λkg

∗
θk ∀g ∈ extreme points,∀k ∈ K. (5.43)
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5.3.4 c and q remains in master problem, normalized

[19] applied standard Benders decomposition and got the following separation problem:

Standard k separation problem

min
α, β, γ, δ

∑
l∈J

δkl cl +m
∑
j∈J

αk
j q

k
j +

∑
l∈J

∑
j∈J

{βk
ljq

k
j + (Ak(j|u)− Ak(l|u))γkljq

k
j }

s.t δkl + αk
j + βk

lj + (Ak(l|c)− Ak(l|u))γklj ≥ 0 ∀l, j ∈ J : l 6= j,

δkj + αk
j + βk

jj + (Ak(j|u)− Ak(j|c))
∑

l∈J :l 6=j

γklj ≥

(Dk(j|c)−Dk(j|u)) ∀j ∈ J,
αk
j ≥ 0 ∀j ∈ J
βk
lj ≥ 0 ∀l, j ∈ J,
γklj ≥ 0 ∀l, j ∈ J.

(5.44)

We now apply the same as in §5.3.2 and obtain the following normalized separation prob-
lem:

Normalized k separation problem

min
α, β, γ, δ, λ

∑
l∈J

δkl cl +m
∑
j∈J

αk
j q

k
j +

∑
l∈J

∑
j∈J

{βk
ljq

k
j + (Ak(j|u)− Ak(l|u))γkljq

k
j }

+ λk(θk −
∑
j∈J

Dk(j|u)qkj )

s.t δkl + αk
j + βk

lj + (Ak(l|c)− Ak(l|u))γklj ≥ 0 ∀l, j ∈ J : l 6= j,

δkj + αk
j + βk

jj + (Ak(j|u)− Ak(j|c))
∑

l∈J :l 6=j

γklj+

λk(Dk(j|c)−Dk(j|u)) ≥ 0 ∀j ∈ J,∑
l∈J

δkl +
∑
j∈J

αk
j +

∑
j∈J

∑
l∈J

(βk
lj + γklj) + λk = −1,

αk
j ≥ 0 ∀j ∈ J,
βk
lj ≥ 0 ∀l, j ∈ J,
γklj ≥ 0 ∀l, j ∈ J,
λk ≤ 0.

(5.45)

The cuts to be added to master problem are:

0 ≤
∑
l∈J

δkgl
∗
cl +m

∑
j∈J

αkg
j

∗
qkj +

∑
l∈J

∑
j∈J

{βkg
lj

∗
qkj + (Ak(j|u)− Ak(l|u))γkglj

∗
qkj }+

λkg
∗
(θk −

∑
j∈J

Dk(j|u)qkj ) ∀g ∈ extreme points,∀k ∈ K.
(5.46)
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Chapter 6

Branching algorithms

6.1 Introduction
In this chapter, we propose a few cutting plane schemes for the general and security Stack-
elberg games, due to [19].

The cut generation algorithms consist in strengthening the linear relaxation of fast and
weak formulations, (D2x,q,s,f ) and (ERASERc,q,s,f ) derived in chapter 4, by using the cuts
obtained from the Benders decomposition approaches of (MIP-p-Gx,q,z) and (MIP-p-Sc,q,z )-
tight formulations- derived in chapter 5. Given that both formulations are equivalent, the
respective cuts are valid for (D2x,q,s,f ) and (ERASERc,q,s,f ), and cut the polyhedron of its
linear relaxation.

According to [19], the resulting formulations (D2x,q,s,f )+{valid cuts} or (ERASERc,q,s,f )+
{valid cuts} will have the same tight bound as the linear relaxations of (MIP-p-Gx,q,z) and
(MIP-p-Sc,q,z), but will be significantly sparser in terms of variables and constraints, leading
to an improved performance of the approach over the tightest formulation.

This cut generation is applied only in the root node or in the whole branching tree,
depending on the type of branching algorithm. Recall that branching algorithms consist of
explore the nodes of the branching tree with a branch & bound scheme described in §2.5. If
the cut generation is applied in the root node and across the whole tree, in addition with the
integer bounds, the algorithm is called branch & cut. If the cut generation is applied only in
the rode node, and integer bounds are added across the tree, the algorithm is called cut &
branch.

6.2 Branch & cut algorithm
In this thesis, we perform two branch & cut algorithms for general and security Stackelberg
games respectively. The first performed algorithm consists of using the standard Benders
decomposition approach with q in master problem for generating cuts, and the second one
uses the normalized Benders decomposition approach keeping the same variable in master
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problem.

We now draw the cutting planes algorithms that will be used in a

Before drawing the algorithms, we define some concepts:

MASTER: linear relaxation of (D2x,q,s,f ) or (ERASERc,q,s,f ), for general or security Stack-
elberg games, respectively.

v(MASTER): optimal value of MASTER.

SEPARATION PROBLEM : separation problems for different decomposition approaches
in chapter 5.

Standard Benders decomposition approach

In this section, we outline the cut generation algorithm that uses as separation problem the
standard Benders decomposition approach with q in master problem. Algorithm 2 can be
used in general or security setting.

Algorithm 2: Cut generation algorithm for standard Benders decomposition ap-
proach.
Data: Game data
Result: Integer solution

1 initialization;
2 UB := +∞;
3 DualLB := −∞;
4 PrimalLB := CPLEX.Incumbent;
5 while UB − PrimalLB > εUB do
6 Solve MASTER;
7 Identify optimal MASTER fractional solution;
8 Update UB=v(MASTER);
9 while UB −DualLB > εUB do

10 Feed solution into SEPARATION PROBLEM;
11 Solve SEPARATION PROBLEM;
12 if SEPARATION PROBLEM is unbounded then
13 Generate feasibility cut (5.6) or (5.30);
14 else
15 Generate optimality cut (5.8) or (5.32);
16 end
17 if ∃ generated cuts which are violated then
18 Add cuts to MASTER;
19 end
20 Update DualLB to objective value of SEPARATION PROBLEM;
21 end
22 end
23 Finish CPLEX solve;

58



From line 5, the algorithm 2 shows the cut generation procedure that is applied across
the whole branch & bound search tree. This algorithm specifies the conditions for generating
feasibility and optimality cuts and the stopping criteria. Algorithm 2 is used inside the
algorithm described in [23], in the cut generation step.

Normalized Benders decomposition approach

In this section, we outline the cut generation algorithm that uses as separation problem the
normalized Benders decomposition approach with q in master problem. Algorithm 3 can be
used in general or security setting.

Algorithm 3: Cut generation algorithm for normalized Benders decomposition ap-
proach.
Data: Game data
Result: Integer solution

1 initialization;
2 UB := +∞;
3 DualLB := −∞;
4 PrimalLB := CPLEX.Incumbent;
5 while UB − PrimalLB > εUB do
6 Solve MASTER;
7 Identify optimal MASTER fractional solution;
8 Update UB=v(MASTER);
9 while UB −DualLB > εUB do

10 Feed solution into SEPARATION PROBLEM;
11 Solve SEPARATION PROBLEM;
12 if SEPARATION PROBLEM is optimal then
13 Generate normalized cut (5.17) or (5.40);
14 end
15 Add cuts to MASTER;
16 Update DualLB to objective value of SEPARATION PROBLEM;
17 end
18 end
19 Finish CPLEX solve;

Algorithm 3 also generates cuts in the whole search tree, but only one type of cut, the
normalized cut. This algorithm specifies that, if exists, the normalized cut is generated, not
having to be violated for doing it. Algorithm 3 is used inside the algorithm described in [23],
in the cut generation step.

6.3 Cut & branch algorithm
In this thesis, we perform two cut & branch algorithms for general and security Stackelberg
games respectively. The first algorithm consists of using normalized Benders decomposition
approaches with x or c in master problem, and the second uses normalized Benders decom-
position approaches with x and q or c and q, respectively. It is important to mention that
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cut & branch algorithms for the same approaches but in standard Benders decomposition
were already developed in [19].

We now outline the cut generation algorithm for the four situations explained in the
previous paragraph. Algorithm 4 can be used in general and security setting.

Algorithm 4: Cut generation algorithm for normalized Benders decomposition ap-
proach.
Data: Game data
Result: Integer solution

1 initialization;
2 UB := +∞;
3 DualLB := −∞;
4 PrimalLB := CPLEX.Incumbent;
5 while UB − PrimalLB > εUB do
6 Solve MASTER;
7 Identify optimal MASTER fractional solution;
8 Update UB=v(MASTER);
9 if Node=root then

10 while UB −DualLB > εUB do
11 Feed solution into SEPARATION PROBLEM;
12 Solve SEPARATION PROBLEM;
13 if SEPARATION PROBLEM is optimal then
14 Generate normalized cut of (5.20), (5.23), (5.43) or (5.46);
15 end
16 Add cuts to MASTER;
17 Update DualLB to objective value of SEPARATION PROBLEM;
18 end
19 end
20 end
21 Finish CPLEX solve;

Algorithm 4 shows that the cut generation procedure is applied only in root node, that’s
specified in line 9. Algorithm 3 is used inside the algorithm described in [23], in the cut
generation step.

6.4 Implementation
When implementing branching algorithms for general and security Stackelberg games, [19]
found some useful heuristics that improved performance in some of them. For completeness,
we briefly describe each of them. For detailed discussion see [19].

6.4.1 Cut loop stabilization

The purpose of a cut loop stabilization procedure is reducing the number of times we have
to solve the separation problems before to conclude solving the problem. The classical cut
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generation scheme is known to have a very slow convergence. [28] point out that the con-
vergence performance of the cut strategy depends on the point chosen to be separated in
each iteration, therefore the performance of the cut loop can be improved using a simple
in-out stabilization procedure like the one shown in [9]. The heuristic procedure is simple:
we first get a fractional solution from solving the master problem (aout), and a feasible solu-
tion for the original MILP (ain). In the standard cut generation scheme, we feed the aout to
the separation problems, but with this cut loop stabilization heuristics, we feed instead and
intermediate point:

asep = λaout + (1− λ)ain (6.1)

where 0 < λ ≤ 1.

It’s easy to see that λ = 1 implies no stabilization.

This heuristic will tried in most of instances.

6.4.2 Initial feasible solution

This heuristic is based in [47], where they limit the possible leader mixed strategies to choose,
by using s-uniform strategies. s-uniform strategies are those where the probability of playing
a given pure strategy is a multiple of 1/s, for some integer s. They solve for this strategy
a formulation similar to (DOBSS) or (SDOBSS) respectively, where the xi or cj variables
are forced to take values in the set {0, 1/s, 2/s, . . . , 1}, through the use of auxiliary integer
variables ri ∈ {0, 1, 2, . . . , s} such that sxi = ri.

[19] applies the same strategy, but using (MIP-p-Gx,q,z) and (MIP-p-Sc,q,y) instead of
(DOBSS) and (SDOBSS), due to its enhanced computational results. This solution returns
an s-uniform leader mixed strategy which is feasible in GSG or SSG and gives a lower bound
on the optimum value.

This heuristic will be applied in every single instance and algorithm, and is the only
method we use to get the initial feasible solution.

6.4.3 Lower bound enhancing heuristics

[19] proposes two lower bound enhancing heuristics, basic and advanced. These are briefly
described next.

Basic heuristic

Given a leader mixed strategy x̄, from optimal solution of the master problem, the best
response to x̄ of each follower have to be computed. For doing this, we first have to compute
expected utility for selecting each pure strategy j ∈ J :

FEUk
j =

∑
i∈I

Ck
ijx̄i for general setting, or (6.2)
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AEUk
j = Ak(j|c)c̄j + Ak(j|u)(1− c̄j) for security setting, (6.3)

and select the strategy j(k) that maximizes each follower’s expected utility over all the
pure strategies j ∈ J :

j(k) = arg max
j ∈ J

FEUk
j for general setting, or (6.4)

j(k) = arg max
j ∈ J

AEUk
j for security setting. (6.5)

Then, construct the follower’s strategy q∗ such that qkj
∗

= 1 for j ∈ J = j(k) and qkj
∗

= 0
for j ∈ J : j 6= j(k). Then (x̄, q∗) (or (c̄, q∗) for security setting) is a feasible solution to the
integer problem with objective value:

∑
i∈I

∑
j∈J

∑
k∈K

πkRk
ijx̄iq

k
j

∗ for general setting, or (6.6)

∑
j∈J

∑
k∈K

qkj
∗
πk(Dk(j|c)c̄j +Dk(j|u)(1− c̄j)) for security setting. (6.7)

Advanced heuristic

The advanced heuristic optimizes the leader strategy over all mixed strategies for which q∗
from the basic heuristic is a best response, by solving the following problem for general
Stackelberg games:

max
∑
i∈I

∑
k∈K

πkRk
ij(k)xi

s.t
∑
i∈I

xi = 1,

xi ≥ 0 ∀i ∈ I,∑
i∈I

Cij(k)xi ≥
∑
i∈I

Cijxi ∀k ∈ K, ∀j ∈ J : j 6= j(k),

(6.8)

or the following for security Stackelberg games:
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max
∑
k∈K

πk(Dk(j(k)|c)cj(k) +Dk(j(k)|u)(1− cj(k))

s.t
∑
j∈J

cj ≤ m,

cj ∈ [0, 1] ∀j ∈ J,
Ak(j(k)|c)cj(k) + Ak(j(k)|u)(1− cj(k)) ≥
Ak(j|c)cj + Ak(j|u)(1− cj) ∀k ∈ K, ∀j ∈ J : j 6= j(k).

(6.9)

If this optimal solution (basic or advanced) is better than incumbent solution, then we have
to update the incumbent solution and incumbent value.

6.4.4 Upper bound enhancing heuristics

This heuristic consists of selecting a subset of q variables and setting it to binary in the tight
formulation (variables that are not binary in the current solution).

This heuristic can be used to enhance the quality of upper bound after solve the root node
with any of the cutting plane approaches.

We next outline the algorithm, but we first need some definitions:

(rMIP-p-Gx,q,z): relaxation of (MIP-p-Gx,q,z), by setting a subset of the continuous q
variables to binary.

(rMIP-p-Sc,q,y): relaxation of (MIP-p-Sc,q,y), by setting a subset of the continuous q vari-
ables to binary.

Algorithm 5: Upper bound heuristic.
Data: Fraccional solution from MASTER, current upper bound
Result: Upper bound cut or nothing

1 initialization;
2 if First time in node 1 then
3 Construct (rMIP-p-Gx,q,z) or (rMIP-p-Sc,q,y);
4 Solve (rMIP-p-Gx,q,z) or (rMIP-p-Sc,q,y);
5 if ((rMIP-p-Gx,q,z) or (rMIP-p-Sc,q,y)) < UB then
6 Add cut to MASTER:

∑
k∈K π

kθk ≤ ((rMIP-p-Gx,q,z) or (rMIP-p-Sc,q,y)) ;
7 end
8 end

63



Chapter 7

Computational experiments

7.1 Introduction
In this chapter, we compare the performance of the different solution methods across different
sets of instances.

We first select a subset of our most competitive algorithms and their best heuristic con-
figurations. After doing this, we compare them with the most competitive algorithms in
[19].

7.2 Instances
Instances used to compare the algorithms performance are constructed according [19]. Each
configuration is detailed in its respective section.

7.2.1 General Stackelberg games

Table (7.1) shows the sizes of the two sets of general instances to be evaluated in our exper-
iments.

Set |Leader pure strategies (I)| |Follower pure strategies (J)| |Followers (K)|
A {5} {5} {25,30,. . . ,95}
B {5,6,7,8,9,10} {5,6,7,8,9,10} {23}

Table 7.1: Sizes of GSG instances to compare.

Set A fixes the number of pure strategies for leader and follower, and scales up the number
of followers. Set B fixes the number of followers, and scales up the number of pure strategies
for leader and follower.

Additionally, leader and follower payoff values are uniform randomly generated between
0 and 10. The probability distribution over follower types is generated randomly in [0, 1]|K|.
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The number of instances generated for each size is 5, which sums 75 instances in set A and
30 instances in set B.

7.2.2 Security Stackelberg games

Table (7.2) shows the main parameters of the two sets of security instances that will be
evaluated.

Set |Targets (J)| |Sec. resources (m)| |Attackers (K)|
A {5} 50% |J | {45,50,. . . ,95}
B {8,10,12,14} 50% |J | {25}

Table 7.2: Sizes of SSG instances to compare.

Set A fixes the number of targets, and scales up the number of attackers. Set B fixes
the number of attackers, and scales up the number of targets. Security resources are 50%
of number of targets in both sets of instances. When the number of targets J is odd, the
number of resources is the ceiling of its half.

Additionally, penalties for defender and attacker are randomly generated between 0 and
5, and rewards for both of them between 5 and 10. The probability distribution over attacker
types is generated randomly in [0, 1]|K|. The number of instances generated for each size is
5, which sums 55 instances in set A and 20 instances in set B.

7.3 Computational resources
The computational infrastructure used to run the experiments consists of 2×Intel® Xeon®
E5-2660 V2, 2.20 GHz. This is equipped with 10 cores, 48 GB RAM and operating system
CentOS Linux release 7.5.1804.

The programming language used for coding is Python 2.7 and the solver is CPLEX®
Optimization Studio V12.8.

7.4 Best configuration
We compare four different algorithms for general and security setting. We evaluate the use
of different heuristic configurations for the promising variants of the algorithms, according
to §6.4: cut loop stabilization, lower bound enhancing heuristics and upper bound enhancing
heuristics, in order to decide the best candidates with best heuristic configurations.

7.4.1 General Stackelberg games

In this section, we compare four general algorithms: branch & cut with q in master problem,
normalized branch & cut with q in master problem, normalized cut & branch with x in master
problem and normalized cut & branch with x and q in master problem.
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We separate experiments by set of instances, in order to identify the best algorithm for
each type of them separately.

Instances A

Table (7.3) shows the performance of four algorithms in the set of general instances A with
no heuristic configurations. The whole set of 75 instances is considered for this.

Algorithm Av. time % solve
(B&Cq) 8061 40%

(B&Cqnorm) 6496 50%
(C&Bxnorm) 4881 68%
(C&Bx,qnorm) 4856 68%

Table 7.3: Algorithms performance for set of general instances A without heuristic configu-
rations.

We can see that the best performance is produced by (C&Bxnorm) and (C&Bx,qnorm),
both normalized cut & branch algorithms. Next, we try some heuristic configurations to
decide the best configuration for these algorithms.

For trying the different heuristic configurations, we select a subset of instances: I = J =
{5}, K = {25, 30, . . . , 80}.

Impact of cut loop stabilization Table (7.4) shows average results for set of general
instances A using different stabilization parameters. λ = 0.2 means aggressive stabilization
and λ = 1 means no stabilization. We can see that the best average time performance, in
both algorithms, is produced without stabilization. The table even shows an inverse relation
between stabilization and average solution time. For the first algorithm, λ = 1 solves the
relaxation faster than others, but with a very little difference. The second algorithm performs
much better with λ = 1, solving the relaxation in 65% of time of its nearest competitor. This
could have a big influence in the better performance of this parameter in the average time.
For the first algorithm, λ = 1 explores fewer number of nodes, but only a difference of 0.5%
with its nearest competitor. This little difference, plus the little difference in the relaxation
time, explain the little average time difference. For the second algorithm, λ = 0.7 explores the
less number of nodes, but with a difference 0.5% against λ = 1 (which got the best relaxation
time). This difference is not as important as the relaxation time difference, because it wasn’t
enough to get a better average time.

Figure (7.1) shows the percentage of problems solved as time goes by. Time limit is
10.800 seconds (3 hours). Grey line represents no stabilization. The graph shows the same as
table (7.4): no stabilization outperforms other stabilization parameters for both algorithms,
although the difference is very low, almost unreadable.
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λ (C&Bxnorm) (C&Bx,qnorm)
Average time

0.2 3506 3455
0.5 3455 3448
0.7 3440 3375
1 3401 3370

Average LP time
0.2 29.54 20.83
0.5 29.35 18.75
0.7 28.33 16.8
1 28.21 11.03

Average nodes
0.2 4854361 5379266
0.5 4854361 5235678
0.7 4854664 4852219
1 4828434 4870836

Table 7.4: Algorithms average time, average LP time and average nodes for set of general
instances A comparing different stabilization parameters.
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Figure 7.1: Effect of stabilization on solution time for set of general instances A.

With this analysis, we can conclude that the best stabilization parameter for (C&Bxnorm)
and (C&Bx,qnorm) is λ = 1.

Impact of lower bound enhancing heuristics Table (7.5) shows the average results
with different LB heuristic configurations for set of general instances A. We can see clearly
that the best average time performance in both algorithms is produced with no LB heuristic
configuration. We can see that LP time is better for basic LB heuristic, for both algorithms,
but the difference is minimal between all configurations. We can conclude that the LB
heuristic configurations doesn’t have an impact in the root node. The advanced LB heuristic
explores less nodes for both algorithms and, for the left algorithm, it does together with
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basic and advanced heuristic. No LB heuristic explores the highest number of nodes for both
algorithms.

Configuration (C&Bxnorm) (C&Bx,qnorm)
Average time

No LB heuristic 3401 3370
Basic LB heuristic 3971 4022

Basic and advanced LB heuristic 4015 3915
Advanced LB heuristic 4048 3903

Average LP time
No LB heuristic 28.2 11.03

Basic LB heuristic 28.18 10.75
Basic and advanced LB heuristic 28.21 10.77

Advanced LB heuristic 28.49 10.76
Average nodes

No LB heuristic 4828434 4870836
Basic LB heuristic 4458280 4533744

Basic and advanced LB heuristic 4287074 4345168
Advanced LB heuristic 4287074 4336773

Table 7.5: Algorithms average time, average LP time and average nodes for set of general
instances A comparing different parameters of LB heuristics.

Figure (7.2) shows the effect of lower bound heuristics on average solution time for each
number of follower types. In this graph, we present average value of the five instances in each
size. Again, we can see clearly that the best performance is produced for both algorithms
with no LB heuristics, for every instance size.
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Figure 7.2: Effect of LB heuristics on average solution time for general instances A.

Figure (7.3) shows the effect of lower bound heuristics on average relaxation time for each
number of follower types. In this graph, we present average value of the five instances in each
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size. We can see that the lines are very close to each other across all the instances (we can see
that scale of the graphs is 50 seconds). Is interesting to see that, for the second algorithm,
the relaxation time is not necessarily increasing with the number of follower types.
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Figure 7.3: Effect of LB heuristics on average relaxation time for general instances A.

Figure (7.4) shows the effect of lower bound heuristics on average nodes explored for each
number of follower types. In this graph, we present average value of the five instances in each
size. We can see clearly a difference for no LB heuristic, which explores the highest number
of nodes as the number of followers increases, but explores similar numbers than others in
the bottom instances.
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Figure 7.4: Effect of LB heuristics on average nodes explored for general instances A.

We can see that despite of the highest number of nodes explored, no LB heuristic performs
better in average time for both algorithms. With this, we conclude that the best configuration
is no LB heuristic for both algorithms.
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Impact of upper bound enhancing heuristics Table (7.6) shows the average results
with different UB configurations for set of general instances A. We can see that, for both
algorithms, no UB heuristic produces the best average solution time. We can see that the best
average UB improvement is achieved by the second parameter for both algorithms, which
is consistent with the average time. The UB heuristic with parameter 0.01-0.25 explores
the less number of average nodes for both algorithms. No UB heuristic explores the highest
number of average nodes, more than 200% of the smallest.

Configuration (C&Bxnorm) (C&Bx,qnorm)
Average time

No UB heuristic 3401 3370
0.01-0.1 3990 4015
0.01-0.25 3744 3493
0.9-0.99 3940 3874

Average UB improvement
0.01-0.1 62.84% 63.97%
0.01-0.25 67.76% 69.06%
0.9-0.99 62.56% 63.58%

Average nodes
No UB heuristic 4828435 4870837

0.01-0.1 3046069 2870734
0.01-0.25 1881274 1757594
0.9-0.99 3091600 2971586

Table 7.6: Algorithms average time, average UB improvement and average nodes for set of
general instances A comparing different parameters of UB heuristics.

Figure (7.5) shows the effect of upper bound heuristics on average solution time for each
number of follower types. In this graph, we present average value of the five instances in each
size. We can see clearly that the best performance is produced for both algorithms with no
UB heuristics, for the most of instance sizes.

Figure (7.6) shows the heuristic effect on average upper bound improvement for each
number of follower types. In this graph, we present average value of the five instances in each
size. We can see that, for every instance size, the second UB parameter outperforms others
in both algorithms. This difference is bigger in medium instances.

Figure (7.7) shows the effect of upper bound heuristics on average number of nodes ex-
plored for each number of follower types. In this graph, we present average value of the five
instances in each size. Yellow line that represents no UB heuristic configurations is above
along the whole graph, which means that this configuration explores the highest number of
nodes for each instance size. In the other hand, parameter 0.01-0.25 is below along the whole
graph, which means the opposite.
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Figure 7.5: Effect of UB heuristics on average solution time for general instances A.
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Figure 7.6: Effect of UB heuristics on average upper bound improvement for general instances
A.
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Figure 7.7: Effect of UB heuristics on average nodes explored for general instances A.
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It is interesting to observe that the upper bound heuristics improve the UB and the nodes
explored, but it can’t be observed in the average solution time. It could be explained by the
heuristic execution time, which is bigger than the time saved exploring less nodes.

With this analysis, we conclude that the upper bound heuristics don’t improve the algo-
rithms performance.

Best configuration Table (7.7) shows the best heuristic configuration chosen for the algo-
rithms for this set of instances. This configuration is used in §7.5 to compare our algorithms
with [19].

Algorithm Stabilization LB heuristics UB heuristics
(C&Bxnorm) 1 No LB heuristic No UB heuristic
(C&Bx,qnorm) 1 No LB heuristic No UB heuristic

Table 7.7: Best configuration set of general instances A.

Instances B

Table (7.8) shows the performance of four algorithms with no heuristic configurations. The
whole set of 30 instances is considered for this.

Algorithm Av. time % solve
(B&Cq) 7425 47%

(B&Cqnorm) 6127 50%
(C&Bxnorm) 4930 70%
(C&Bx,qnorm) 4823 70%

Table 7.8: Algorithms performance for set of general instances B without heuristic configu-
rations.

We can see that both cut & branch algorithms outperform branch & cut algorithms, in
average time and percentage of solved instances. For that reason, we decide to try heuristic
configurations only in these ones.

For trying the different heuristic configurations, we select a subset of instances: I = J =
{5, 6, 7, 8}, K = {23}.

Impact of cut loop stabilization Table (7.9) shows average results for set of general
instances B. λ = 0.2 means aggressive stabilization and λ = 1 means no stabilization. For
this set of general instances, algorithm (C&Bxnorm) performs a better average time using
λ = 0.2, and (C&Bx,qnorm) using λ = 0.5. We can see that λ = 1 performs faster relaxation
time for both algorithms. For the first algorithm, we can see that there is not a big difference
in number of nodes explored. If we observe, λ = 1 has a faster relaxation time than λ = 0.2
just for three hundredths of a second, but λ = 0.2 explores 50.000 less nodes, which explains
the average time performance. In the second algorithm, λ = 0.5 takes 3 additional seconds
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for solving the relaxation than λ = 1, but explores 500.000 less nodes. Apparently, it has an
impact bigger than the relaxation time difference.

λ (C&Bxnorm) (C&Bx,qnorm)
Average time

0.2 1985 1919
0.5 1997 1711
0.7 2001 1883
1 2003 1856

Average LP time
0.2 13.72 8.39
0.5 14.22 7.58
0.7 18.38 6.93
1 13.69 4.73

Average nodes
0.2 5234638 5135372
0.5 5204186 4600292
0.7 5204186 5031151
1 5283496 5072613

Table 7.9: Algorithms average time, average LP time and average nodes for set of general
instances B comparing different stabilization parameters.

The analysis of figures here is similar to the set of instances A. For that reason, in this
section we just summarize the results.

Figure (7.8) shows the percentage of problems solved as time goes by.
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Figure 7.8: Effect of stabilization on solution time for general instances B.

We can conclude that the best stabilization parameters are λ = 0.2 and λ = 0.5, for
(C&Bxnorm) and (C&Bx,qnorm), respectively.
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Impact of lower bound enhancing heuristics Table (7.10) shows the average results
for different heuristic configurations for set of general instances B. We can see that no LB
heuristic has the very best average time performance in both algorithms. The time is 20%
and 25% smaller than its nearest competitor for first and second algorithm. The relaxation
is solved faster with no LB heuristic and basic LB heuristic for first and second algorithm,
respectively. Basic LB heuristic explores the lowest number of nodes for both algorithms.

Configuration (C&Bxnorm) (C&Bx,qnorm)
Average time

No LB heuristic 1986 1711
Basic LB heuristic 2750 2576

Basic and advanced LB heuristic 2557 2626
Advanced LB heuristic 2794 2595

Average LP time
No LB heuristic 13.72 7.58

Basic LB heuristic 14.47 6.68
Basic and advanced LB heuristic 13.87 7.4

Advanced LB heuristic 14.4 7.36
Average nodes

No LB heuristic 5234638 4600292
Basic LB heuristic 4292678 4097152

Basic and advanced LB heuristic 4752631 4353817
Advanced LB heuristic 4752631 4353817

Table 7.10: Algorithms average time, average LP time and average nodes for set of general
instances B comparing different parameters of LB heuristics.

Figure (7.9), (7.10) and (7.11) show the effect of lower bound heuristics on average solu-
tion time, average relaxation time and average nodes explored for different number of pure
strategies.
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Figure 7.9: Effect of LB heuristics on average solution time for general instances B.
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Figure 7.10: Effect of LB heuristics on average relaxation time for general instances B.
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Figure 7.11: Effect of LB heuristics on average nodes explored for general instances B.

For the first algorithm, we can see that no LB heuristic has the best relaxation time
and the worst number of nodes explored, but the general performance is better than the
other configurations. In the second algorithm, no LB heuristic has the worst performance in
average relaxation time and nodes explored, but better average time. We can’t explain the
internal process that occurs to get this, but we can conclude that that LB heuristics do not
improve the performance of any algorithm.

Impact of upper bound enhancing heuristics Table (7.11) shows the average results
with different UB configurations for set of general instances B. We can see that no UB
heuristic outperforms the other configurations in average solution time for both algorithms.
The second parameter 0.01-0.025 outperforms others in average UB improvement for both
algorithms, for approximately 5%. We can see clearly that the UB heuristic with parameter
0.01-0.25 explores the less number of average nodes for both algorithms. No UB heuristic
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explores the highest number of average nodes, more than 200% of the smallest. These results
are similar than set of general instances A.

Configuration (C&Bxnorm) (C&Bx,qnorm)
Average time

No UB heuristic 1986 1711
0.01-0.1 2152 2129
0.01-0.25 2098 2100
0.9-0.99 2176 1973

Average UB improvement
0.01-0.1 64.67% 64.68%
0.01-0.25 69.11% 69.04%
0.9-0.99 63.86% 63.87%

Average nodes
No UB heuristic 5234638 4600293

0.01-0.1 2794384 2599122
0.01-0.25 2239967 2209362
0.9-0.99 2833451 2756206

Table 7.11: Algorithms average time, average UB improvement and average nodes for set of
general instances B comparing different parameters of UB heuristics.

Figure (7.12), (7.13) and (7.14) show the effect of upper bound heuristics in average
solution, average upper bound improvement and average nodes explored for each number of
pure strategies.
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Figure 7.12: Effect of UB heuristics on average solution time for general instances B.
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Figure 7.13: Effect of UB heuristics on average upper bound improvement for general in-
stances B.
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Figure 7.14: Effect of UB heuristics on average nodes explored for general instances B.

It is interesting to observe that the upper bound heuristics improve the UB and the nodes
explored, but it can’t be observed in the average solution time. It could be explained by the
heuristic execution time, which is bigger than the time saved exploring less nodes.

Best configuration Table (7.12) shows the best heuristic configuration chosen for the al-
gorithms for this set of instances. This configuration is used in §7.5 to compare our algorithms
with [19].

Algorithm Stabilization LB heuristics UB heuristics
(C&Bxnorm) 0.2 No LB heuristic No UB heuristic
(C&Bx,qnorm) 0.5 No LB heuristic No UB heuristic

Table 7.12: Best configuration set of general instances B.
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7.4.2 Security Stackelberg games

In this section, we compare four different algorithms: branch & cut with q in master problem,
normalized branch & cut with q in master problem, normalized cut & branch with c in master
problem and normalized cut & branch with c and q in master problem. Complementary set
of algorithms is compared in [19].

We separate experiments by set of instances, in order to identify the best algorithm for
each type of them separately.

Instances A

Table (7.13) shows the performance of four algorithms with no heuristic configurations. The
whole set of 55 instances is considered for this.

Algorithm Av. time % solve
(B&Cq) - 0%

(B&Cqnorm) - 0%
(C&Bcnorm) 3316 98%
(C&Bc,qnorm) 1570 100%

Table 7.13: Algorithms performance for set of security instances A without heuristic config-
urations.

First and second algorithms didn’t solve any instance, and the other two solved almost all
instances. For that reason, we continue trying heuristic configurations in these two.

For trying the different heuristic configurations, we select a subset of instances: J = {25},
K = {45, 50, . . . , 80}.

Impact of cut loop stabilization Table (7.14) shows the average results of both algo-
rithms with different stabilization parameters. We can see that average solution time is better
using parameter λ = 1 for both normalized cut & branch algorithms. The first algorithm
solves the relaxation faster when it is not stabilizing, but the difference between parameters
is very small, less than 2 second with the farthest. In the second algorithm there is no differ-
ence between parameters. For the first algorithm, λ = 1 explores 4.0000 more nodes than its
hardest competitor, however it does this with the fastest average solution time. The second
algorithm doesn’t show any difference of average nodes explored for different parameters. So,
stabilization doesn’t have any effect in the average performance.

Figure (7.15) shows the percentage of problems solved as time goes by. Time limit is
10.800 seconds (3 hours). For the first algorithm, we can’t see clearly a grey line separated
from others, except in the slower algorithms, where is above others. In the second algorithm,
is impossible distinguish the lines, which is consistent with the tight difference of average
solution times in table (7.14).
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λ (C&Bcnorm) (C&Bc,qnorm)
Average time

0.2 1750 870
0.5 1806 869
0.7 1734 870
1 1732 868

Average LP time
0.2 27.88 1.25
0.5 27.94 1.25
0.7 27.11 1.25
1 26.5 1.25

Average nodes
0.2 2146771 1206877
0.5 2146771 1206877
0.7 2140763 1206877
1 2144672 1206877

Table 7.14: Algorithms average time, average LP time and average nodes for set of security
instances A comparing different stabilization parameters.
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Figure 7.15: Effect of stabilization on solution time for security instances A.

With this analysis, we can conclude that λ = 1 is the best stabilization parameter for this
set of security instances.

Impact of lower bound enhancing heuristics Table (7.15) shows the average results
for different LB heuristic configurations. We can see that no LB heuristic performs better in
average time for both algorithms. No LB heuristic solves the relaxation in an average time
better than other configurations for both algorithms. We can see that basic LB heuristic
explores the lowest number of average nodes in the branching tree for both algorithms.
Is interesting to see that the differences are less than 15% between configurations in both
algorithms.
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Configuration (C&Bcnorm) (C&Bc,qnorm)
Average time

No LB heuristic 1732 868
Basic LB heuristic 2260 980

Basic and advanced LB heuristic 2348 981
Advanced LB heuristic 2280 984

Average LP time
No LB heuristic 26.5 1.25

Basic LB heuristic 28 3.61
Basic and advanced LB heuristic 28.35 1.29

Advanced LB heuristic 27.78 1.28
Average nodes

No LB heuristic 2144672 1206877
Basic LB heuristic 2109396 1039362

Basic and advanced LB heuristic 2124009 1057649
Advanced LB heuristic 2124009 1057649

Table 7.15: Algorithms average time, average LP time and average nodes for set of security
instances A comparing different parameters of LB heuristics.

Figure (7.16) shows the effect of lower bound heuristics on average solution time for
different number of attacker types. In this graph, we present average value of the five instances
in each size. We can see that for every instance size, no LB heuristic performs better than
others, for both algorithms, although in the first algorithm the difference is pretty much
clearer.
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Figure 7.16: Effect of LB heuristics on average solution time for security instances A.

Figure (7.17) shows the effect of lower bound heuristics on average relaxation time for
different number of attacker types. In this graph, we present average value of the five instances
in each size. For the first algorithm, we see that no LB heuristic performs better. For the

80



second algorithm, we see that in almost every instance size the relaxation time is almost the
same, except in the instances of 45 and 50 attacker types, where is pretty higher.
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Figure 7.17: Effect of LB heuristics on average relaxation time for security instances A.

Figure (7.18) shows the effect of lower bound heuristics on the average number of nodes
explored for different number of attacker types. In this graph, we present average value of the
five instances in each size. For the first algorithm, we see that basic LB heuristic performs
better in most of the graph, and no LB heuristic is the worst. For the second algorithm, the
results are similar.
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Figure 7.18: Effect of LB heuristics on average nodes explored for security instances A.

In both algorithms, no LB heuristic has the fastest relaxation time, but the highest number
of nodes. We see that the time of processing those extra nodes is not enough to make it slower
than others. For that reason, we conclude that LB heuristics don’t improve the algorithms
performance for this set of instances.
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Impact of upper bound enhancing heuristics Table (7.16) shows the average results
with different UB configurations for set of security instances A. Both algorithms have better
performances in avergae time when they are not using UB heuristics. The best average UB
improvement is achieved for the second parameter for both algorithms. We can see The
UB heuristic with parameter 0.9-0.99 explored the less number of average nodes for both
algorithms and no UB heuristic explores the highest number of average nodes.

Configuration (C&Bcnorm) (C&Bc,qnorm)
Average time

No UB heuristic 1732 868
0.01-0.1 3436 1507
0.01-0.25 3477 1555
0.9-0.99 3122 1388

Average UB improvement
0.01-0.1 72.02% 73.05%
0.01-0.25 73.36% 74.35%
0.9-0.99 71.74% 72.83%

Average nodes
No UB heuristic 2144673 1206877

0.01-0.1 2014947 960204
0.01-0.25 1969874 991641
0.9-0.99 1900627 946540

Table 7.16: Algorithms average time, average UB improvement and average nodes for set of
security instances A comparing different parameters of UB heuristics.

Figure (7.19) shows the effect of upper bound heuristics on average solution time for each
number of attacker types. In this graph, we present average value of the five instances in
each size. We can see clearly that the best performance is produced for both algorithms with
no UB heuristics, for every instance size.
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Figure 7.19: Effect of UB heuristics on average solution time for security instances A.
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Figure (7.20) shows the heuristic effect on average upper bound improvement for each
number of attacker types. In this graph, we present average value of the five instances in
each size. We can see with the orange line that, for every instance size, the second UB
parameter outperforms others in both algorithms.
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Figure 7.20: Effect of UB heuristics on average upper bound improvement for security in-
stances A.

Figure (7.21) shows the effect of upper bound heuristics on average number of nodes
explored for each number of attacker types. In this graph, we present average value of the
five instances in each size. Yellow line that represents no UB heuristic is above in most of
the graph (in both algorithms), which means that for separate instances no UB heuristics
explores the highest number of nodes too. Conversely, grey line is below in most of the
graph, which means that the parameter 0.9-0.99 explores the smallest number of nodes in
each instance size.
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Figure 7.21: Effect of UB heuristics on average nodes explored for security instances A.
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Upper bound heuristic configurations produce big improvements to the upper bound after
solving the root node, which leads to explore less nodes. But time saved in solving less nodes
doesn’t make up the time of executing the heuristic algorithm. For that reason, average time
is better in absence of UB heuristics.

Best configuration Table (7.17) shows the best heuristic configuration chosen for the al-
gorithms for this set of instances. This configuration is used in §7.5 to compare our algorithms
with [19].

Algorithm Stabilization LB heuristics UB heuristics
(C&Bcnorm) 1 No LB heuristic No UB heuristic
(C&Bc,qnorm) 1 No LB heuristic No UB heuristic

Table 7.17: Best configuration set of security instances A.

Instances B

Table (7.18) shows the performance of four algorithms with no heuristic configurations. The
whole set of 20 instances is considered for this.

Algorithm Av. time % solve
(B&Cq) - 0%

(B&Cqnorm) - 0%
(C&Bcnorm) 8458 35%
(C&Bc,qnorm) 8304 40%

Table 7.18: Algorithms performance for set of security instances B without heuristic config-
urations.

We can see that both cut & branch algorithms outperform branch & cut algorithms, in
average time and percentage of solved instances. For that reason, we decide to try heuristic
configurations only in these ones.

For trying the different heuristic configurations, we select a subset of instances: I = J =
{8, 10, 12}, K = {25}.

Impact of cut loop stabilization Table (7.19) shows average results for both algorithms
with different stabilization parameters. We can see that the first algorithm performs better
in average time when using λ = 1, but with a difference of less than 11 seconds with all
competitors. The second algorithms performs better when using λ = 0.7 but, as the first
algorithm, presents a little difference with competitors. For the first algorithm, we can see
that the average relaxation time is very similar for the set of parameters, except for λ = 0.2,
where it takes 50% more time. The second algorithm presents similar performances for the
set of parameters, except for λ = 1, where it takes a 50% more of time. For both algorithms,
each stabilization parameter presents the same number of average nodes explored.
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λ (C&Bcnorm) (C&Bc,qnorm)
Average time

0.2 7693 7485
0.5 7693 7478
0.7 7684 7469
1 7678 7472

Average LP time
0.2 3.05 1.16
0.5 2.47 1.11
0.7 2.43 1.22
1 2.47 1.94

Average nodes
0.2 11331462 11661948
0.5 11331462 11661948
0.7 11331462 11661948
1 11331462 11661948

Table 7.19: Algorithms average time, average LP time and average nodes for set of security
instances B comparing different stabilization parameters.

The analysis of figures here is similar to the set of instances A. For that reason, in this
section we just summarize the results.

Figure (7.22) shows the percentage of problems solved as time goes by. We can see that
lines can’t be separated in both graphs, which is consistent with table (7.19), the difference
in performance is not clear.
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Figure 7.22: Effect of stabilization on solution time for security instances B.

In spite of the little differences in performance of parameters, we decided to configure the
first algorithm with λ = 1, and the second algorithm with λ = 0.7.
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Impact of lower bound enhancing heuristics Table (7.20) shows the average results for
different LB heuristic configurations. No LB heuristic performs better than others in average
solution time for both algorithms. No LB heuristic and basic LB heuristic perform better
average relaxation time for first and second algorithm, respectively. For the first algorithm,
we see that basic LB heuristic explores the lowest number of nodes. For the second algorithm,
the lowest number of nodes is shared between basic and advanced LB heuristic, and advanced
LB heuristic. In both algorithms, the differences are huge.

Configuration (C&Bcnorm) (C&Bc,qnorm)
Average time

No LB heuristic 7678 7469
Basic LB heuristic 7866 7673

Basic and advanced LB heuristic 7914 9134
Advanced LB heuristic 7896 8980

Average LP time
No LB heuristic 2.47 1.11

Basic LB heuristic 2.64 1.1
Basic and advanced LB heuristic 3.69 1.65

Advanced LB heuristic 2.68 1.23
Average nodes

No LB heuristic 11331462 11661948
Basic LB heuristic 6931852 6819968

Basic and advanced LB heuristic 7363507 3149237
Advanced LB heuristic 7363507 3149237

Table 7.20: Algorithms average time, average LP time and average nodes for set of security
instances B comparing different parameters of LB heuristics.

Figure (7.23),(7.24) and (7.25) show the effect of lower bound heuristics in average solution
time, average relaxation time and average nodes explored for different number of targets.
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Figure 7.23: Effect of LB heuristics on average solution time for security instances B.
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Figure 7.24: Effect of LB heuristics on average relaxation time for security instances B.
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Figure 7.25: Effect of LB heuristics on average nodes explored for security instances B.

We can conclude that LB heuristic don’t improve the performance of the algorithms.

Impact of upper bound enhancing heuristics Table (7.21) shows the average results
with different UB configurations for set of security instances B. We can see that, for both
algorithms, no UB heuristic performs better solution times. We can see that the second
parameter presents the best average UB improvement for both algorithms. For the first
algorithm, we see that parameter 0.01-0.1 explores the smallest number of nodes. For the
second algorithm, it occurs with parameter 0.9-0.99. The worst performance occurs with no
UB heuristic for both algorithms.

Figure (7.26), (7.27) and (7.28) show the effect of upper bound heuristics in average
solution, average upper bound improvement and average nodes explored for each number of
targets.
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Configuration (C&Bcnorm) (C&Bc,qnorm)
Average time

No UB heuristic 7678 7469
0.01-0.1 8282 8154
0.01-0.25 9110 8760
0.9-0.99 8319 8140

Average UB improvement
0.01-0.1 73.40% 73.35%
0.01-0.25 75.84% 75.95%
0.9-0.99 73.19% 72.80%

Average nodes
No UB heuristic 11331462 11661948

0.01-0.1 2344616 2383662
0.01-0.25 4387286 3218063
0.9-0.99 2742852 2304021

Table 7.21: Algorithms average time, average LP time and average nodes for set of security
instances B comparing different parameters of UB heuristics.
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Figure 7.26: Effect of UB heuristics on average solution time for security instances B.
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Figure 7.27: Effect of UB heuristics on average upper bound improvement for security in-
stances B.
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Figure 7.28: Effect of UB heuristics on average nodes explored for security instances B.

Upper bound heuristic configurations produce big improvements to the upper bound after
solving the root node, which leads to explore less nodes. But time saved in solving less nodes
doesn’t make up the time of executing the heuristic algorithm. For that reason, average time
is better in absence of UB heuristics.

Best configuration Table (7.22) shows the best heuristic configuration chosen for the al-
gorithms for this set of instances. This configuration is used in §7.5 to compare our algorithms
with [19].
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Algorithm Stabilization LB heuristics UB heuristics
(C&Bcnorm) 1 No LB heuristic No UB heuristic
(C&Bc,qnorm) 0.7 No LB heuristic No UB heuristic

Table 7.22: Best configuration set of security instances B.

7.5 Comparing algorithms
In this section, we compare our best algorithms chosen in §7.4 with those presented in [19].

7.5.1 General Stackelberg games

Instances A

We compare our best configured algorithms against the (C&Bx,q) algorithm, which was the
best in [19] for this set of instances. Its best configuration is: 0.2 stabilization and no LB or
UB heuristic.

Figure (7.29) shows the average solution time for the different algorithms, scaling up the
number of follower types. We can see that (C&Bx,q) taken from [19] is the fastest solution
method for every number of follower types.
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Figure 7.29: Average solution time scaling up the number of follower types.

Figure (7.30) presents performance profile graphs to compare solution time, relaxation
time, solution time of the last linear problem of the root node relaxation and number of
nodes explored.
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Figure 7.30: Performance profile graphs over general instances A.

We can see that (C&Bx,q) is the fastest algorithm, and (C&Bxnorm) is the slowest. With
regard to relaxation time, we observe that (C&Bx,qnorm) has the fastest LP time. If we
compare the solution time of the last linear problem of the root node, we see that (C&Bxnorm)
produces relaxations easier to solve than others. Finally, we can see that (C&Bx,q) explored
the smallest number of nodes. With this information, we can say that the linear relaxations of
(C&Bx,q) are better than for other algorithms, and this causes less nodes explored that make
up for the slower relaxations, which leads to better solution times. The average relaxation
objectives are drawn in figure (7.31), where the (C&Bx,q) relaxations of [19] are clearly better
than our relaxations.
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Figure 7.31: Average linear relaxation objective scaling up the number of follower types.

Instances B

We compare our best configured algorithms against (C&Bx) algorithm, which was the best
in [19] for this set of instances. Its best configuration is: 0.5 stabilization and no LB or UB
heuristic.

Figure (7.32) shows the average solution time for the different algorithms, scaling up the
number of pure strategies. We can see that (C&Bx) taken from [19] is the fastest solution
method for every number of pure strategies.

5 6 7 8 9 10
0

2000

4000

6000

8000

10000

Number of pure strategies

Ti
m

e 
(s

.)

Scaling up the number of pure strategies 

C&B norm x C&B norm x,q C&B x

Figure 7.32: Average solution time scaling up the number of pure strategies.

Figure (7.33) presents performance profile graphs to compare solution time, LP solution
time, solution time of the last linear problem of the root node relaxation and nodes explored.
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Figure 7.33: Performance profile graphs over general instances B.

We can see that (C&Bx) is the fastest algorithm, and (C&Bxnorm) is the slowest, as in the
set of general instances A. With regard to relaxation time, we observe that (C&Bx,qnorm)
has the fastest LP time in the most of instances, and (C&Bxnorm) has the slowest. If we
compare the solution time of the last linear problem of the root node, we see that (C&Bxnorm)
produces relaxations easier to solve than others in the most of instances. Finally, we can see
that (C&Bx) explores the smallest number of nodes. With this information, we can say that
the linear relaxations of (C&Bx) are better than for other algorithms, and this causes less
nodes explored that make up for the slower relaxations, which leads to better solution times.
This can be seen in figure (7.34), where the linear relaxations of (C&Bx) are much better
than ours. These results are almost identical to the set of general instances A.
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Figure 7.34: Average linear relaxation objective scaling up the number of pure strategies.

7.5.2 Security Stackelberg games

Instances A

We compare our best configured algorithms against (C&Bc,q) algorithm, which was the best
in [19] for this set of instances. Its best configuration is: 0.7 stabilization, advanced LB
heuristic and UB heuristic with parameter 0.01− 0.25.

Figure (7.35) shows the average solution time for the different algorithms, scaling up the
number of attacker types. We can see that (C&Bc,q) taken from [19] is the fastest solution
method for every number of attacker types.
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Figure 7.35: Average solution time scaling up the number of attacker types.

Figure (7.36) presents performance profile graphs to compare solution time, LP solution
time, solution time of the last linear problem of the root node relaxation and nodes explored.
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Figure 7.36: Performance profile graphs over security instances A.

We can see that (C&Bc,q) is the fastest algorithm, and (C&Bcnorm) is the slowest. With
regard to relaxation time, we observe that (C&Bc,qnorm) has the fastest LP time, and
(C&Bcnorm) has the slowest in the most of the instances. If we compare the solution time of
the last linear problem of the root node, we see that (C&Bcnorm) produces relaxations easier
to solve than others in the most of instances, and (C&Bc,qnorm) does the opposite. Finally,
we can see that (C&Bc,q) explores the smallest number of nodes. With this information, we
can say that the linear relaxations of (C&Bc,q) are better than for other algorithms, and this
causes less nodes explored that make up for the slower relaxations, which leads to better
solution times. The linear relaxations of the different algorithms are drawn in figure (7.37),
where (C&Bc,q) presents relaxations much better than others.
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Figure 7.37: Average linear relaxation objective scaling up the number of attacker types.

Instances B

We compare our best configured algorithms against (C&Bc,q) algorithm, which was the best
in [19] for this set of instances. Its best configuration is: 0.7 stabilization, advanced LB
heuristic and UB heuristic with parameter 0.01− 0.25. This algorithm is the same used for
security instances A.

Figure (7.38) shows the average solution time for the different algorithms, scaling up the
number of targets. We can see that (C&Bc,q) taken from [19] is the fastest solution method
for every number of targets.
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Figure 7.38: Average solution time scaling up the number of targets.

Figure (7.39) presents performance profile graphs to compare solution time, LP solution
time, solution time of the last linear problem of the root node relaxation and nodes explored.
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Figure 7.39: Performance profile graphs over security instances B.

We can see that (C&Bc,q) is the fastest algorithm, and (C&Bcnorm) is the slowest, even
both normalized algorithms just solved 40% of the problems. With regard to relaxation time,
we observe that (C&Bc,qnorm) has the fastest LP time followed very close by (C&Bcnorm).
If we compare the solution time of the last linear problem of the root node, we see that
(C&Bc,q) produces relaxations easier to solve than others in the most of instances. Finally,
we can see that (C&Bc,q) explores the smallest number of nodes. With this information, we
can say that the linear relaxations of (C&Bc,q) are better than for other algorithms, and this
causes less nodes explored that make up for the slower relaxations, which leads to better
solution times. The linear relaxations are drawn in figure (7.40), where is clear that (C&Bc,q)
has much better relaxations than our algorithms.
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Figure 7.40: Average linear relaxation objective scaling up the number of targets.
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Chapter 8

Conclusion

In this thesis we studied branching algorithms based in Benders decomposition, for solving
general and security Stackelberg games. Our algorithms are based in the idea of [19], who
mixed different general and security Stackelberg games formulations for creating efficient
cut & branch algorithms by using Benders decomposition for generating the cuts, keeping
fractional variables in master problem. These algorithms outperformed others existing until
then.

We first studied a branch & cut algorithm, for general and for security setting, gener-
ating optimality and feasibility cuts based in Benders decomposition, in the whole search
tree. We used as master problem the linear relaxation of a fast formulation, (D2x,q,s,f ) or
(ERASERc,q,s,f ), and the dual of subproblems of (MIP-p-Gx,q,z) and (MIP-p-Sc,q,z) for gen-
erating the cuts. In our setting, we kept integer variables in master problem and generated
cuts across the wholw search tree. This algorithm solved less than half of the general in-
stances and 0% of security instances in the time limit. Therefore, its performance was very
poor compared against the cut & branch algorithms created by [19], which kept different
combinations of fractional variables in master problem and generated cuts only in the root
node, and solved all the instances in time limit. We considered two types of instances for
each Stackelberg setting: scaling up the number of follower types or the number of pure
strategies, for general; and scaling up the number of attacker types or the number of targets,
for security.

Furthermore, we studied a normalized branch & cut algorithm. This algorithm is a variant
of the standard branch & cut studied first. The normalization consisted of converting the
standard Benders cut generation conditions, optimality and feasibility, in one polyhedron
that included both. Then, we normalized it by bounding the objective function and adding
some constraints to dual variables. This algorithm outperforms the previous branch & cut,
but its performance is still poor against [19].

After normalization of the branch & cut algorithms and the subtle performance improve-
ment, we decided to normalize the cut & branch algorithms of [19]. Two similar algorithms
with different fractional variables in master problem. These algorithms had so much better
performance than the previous branch & cut algorithms. Therefore, we choose them for
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trying different heuristics and compare against [19]. We studied the application of different
heuristics in the chosen algorithms, taken from [19]. Cut loop stabilization heuristics im-
proved the performance of our algorithms in some types of instances; lower bound enhancing
heuristics didn’t help to improve any algorithm performance in any type of instance; and
upper bound enhancing heuristics didn’t help either.

After configuring our algorithms with best heuristics, we carried out the comparison across
different set of instances, and the algorithms of [19] were much better:

• Our algorithms were much slower to solve.
• Our algorithms had faster linear relaxations, but the competitor relaxations were

tighter.
• Our algorithms visited larger number of nodes than competitor.

8.1 Other results and research proposals
The normalization helped to improve the branch & cut algorithms, but not the cut & branch.
Recall that normalization reduces the total number of cuts generated and, as branch & cut
generate cuts in the whole branching tree, it has a bigger impact in this type of algorithm.

We also found that our normalized algorithms produced very weak linear relaxations
against the standard cut & branch algorithms compared in this thesis. In particular, upper
bounds from these relaxations were much bigger than others. It would be interesting to study
the way to strengthen the relaxations of the normalized general and security Stackelberg
versions.

We used the heuristics proposed by [19] that worked in his algorithms. It would be
interesting to research other heuristics that could help better in normalized algorithms.
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Appendix A

Switching roles between objective
function and normalization condition

We demonstrate the equivalence of two problems in normalized Benders decomposition ap-
proach: alternative polyhedron and separation problem. We first show a demonstration for
a particular approach: general case with q in master problem. After doing that, we show a
generalization that can be applied to remaining normalized approaches.

General case with q in master problem
Let’s consider the alternative polyhedron:

min
α, β, γ, λ

∑
j∈J

∑
k∈K

βk
j + λ

s.t
∑
k∈K

αk
i = 0 ∀i ∈ I,

αk
i + βk

j +
∑

l∈J :l 6=j

(Ck
ij − Ck

il)γ
k
jl+

λπkRk
ij ≥ 0 ∀i ∈ I,∀j ∈ J,∀k ∈ K,

γkjl ≤ 0 ∀i ∈ I,∀j ∈ J,∀k ∈ K,
λ ≤ 0∑
j∈J

∑
k∈K

βk
j q

k
j

∗
+ λθ∗ = −1.

(A.1)

and the separation problem:
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min
α, β, γ, λ

∑
j∈J

∑
k∈K

βk
j q

k
j

∗
+ λθ∗

s.t
∑
k∈K

αk
i = 0 ∀i ∈ I,

αk
i + βk

j +
∑

l∈J :l 6=j

(Ck
ij − Ck

il)γ
k
jl+

λπkRk
ij ≥ 0, ∀i ∈ I,∀j ∈ J,∀k ∈ K,

γkjl ≤ 0 ∀i ∈ I,∀j ∈ J,∀k ∈ K,
λ ≤ 0,∑
j∈J

∑
k∈K

βk
j + λ = −1.

(A.2)

We demonstrate the equivalence between both problems of section §5.2.2, where the nor-
malization condition is switched with the objective function.

We know that two optimization problems are equivalent if a solution for one of them can
be used to construct a solution for the other.

Let’s consider a solution for problem (A.1):

(β∗, λ∗) = (β̃, λ̃)

This yields an objective value of

∑
j∈J

∑
k∈K

β̃k
j + λ̃, (A.3)

and the normalization condition gets

∑
j∈J

∑
k∈K

β̃k
j q

k
j

∗
+ λ̃θ∗ = −1. (A.4)

Now consider a solution for problem (A.2), as a function of the first problem solution:

(β∗, λ∗) = (β̂, λ̂) = −

(
1∑

j∈J
∑

k∈K β̃
k
j + λ̃

)
(β̃, λ̃)

This yields the following objective value:

−
∑
j∈J

∑
k∈K

(
1∑

j∈J
∑

k∈K β̃
k
j + λ̃

)
β̃k
j q

k
j

∗ −

(
1∑

j∈J
∑

k∈K β̃
k
j + λ̃

)
λ̃θ∗
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and with some algebra we get:

−
∑

j∈J
∑

k∈K β̃
k
j q

k
j
∗

+ λ̃θ∗∑
j∈J
∑

k∈K β̃
k
j + λ̃

.

The upper side gets equal to −1 for the normalization condition (A.4). This gives the
final objective value:

1∑
j∈J
∑

k∈K β̃
k
j + λ̃

. (A.5)

We now try the feasibility of the last constraint in the separation problem (A.2):

−
∑
j∈J

∑
k∈K

(
1∑

j∈J
∑

k∈K β̃
k
j + λ̃

)
β̃k
j −

(
1∑

j∈J
∑

k∈K β̃
k
j + λ̃

)
λ̃,

and with some algebra we get

−

(∑
j∈J
∑

k∈K β̃
k
j + λ̃∑

j∈J
∑

k∈K β̃
k
j + λ̃

)
= −1, (A.6)

which makes the constraint feasible.

Generalization
Let’s consider general Benders decomposition approach from the generic problem used in
[30]:

min
x, y

cTx+ dty

s.t Ax ≥ b,

Tx+Qy ≥ r,

x ∈ Zn
+, y ∈ Rt

+.

(A.7)

We have the following alternative polyhedron:
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max
π, π0

m∑
i=1

wiπi + w0π0

s.t πTQ ≤ π0d
T ,

πT (r − Tx∗)− π0η∗ = 1,

(π, π0) ≥ 0.

(A.8)

We show that problem (A.8) is equivalent to separation problem (A.9):

max
π, π0

πT (r − Tx∗)− π0η∗

s.t πTQ ≤ π0d
T ,

m∑
i=1

wiπi + w0π0 = 1,

(π, π0) ≥ 0.

(A.9)

Let’s consider a solution for problem (A.8):

(π∗, π∗0) = (π̃, π̃0)

This yields an objective value of

m∑
i=1

wiπ̃i + w0π̃0 (A.10)

and the normalization condition gets:

π̃T (r − Tx∗)− π̃0η∗ = 1 (A.11)

Now consider a solution for problem (A.9), as a function of the first problem solution:

(π∗, π∗0) = (π̂, π̂0) =

(
1∑m

i=1wiπ̃i + w0π̃0

)
(π̃, π̃0)

This yields the following objective value:

π̃T (r − Tx∗)− π̃0η∗∑m
i=1wiπ̃i + w0π̃0

.
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The upper side gets equal to 1 for the normalization condition (A.11). This gives the final
objective value:

1∑m
i=1wiπ̃i + w0π̃0

. (A.12)

We now try the feasibility of the last constraint in separation problem (A.9)

m∑
i=1

(
1∑m

i=1wiπ̃i + w0π̃0

)
π̃i +

(
1∑m

i=1wiπ̃i + w0π̃0

)
π̃0,

and with some algebra we get:

∑m
i=1wiπ̃i + w0π̃0∑m
i=1wiπ̃i + w0π̃0

= 1, (A.13)

which makes the constraint feasible.
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