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RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE DOCTOR EN CIENCIAS DE LA INGENIERÍA,
MENCIÓN MODELACIÓN MATEMÁTICA
POR: CHRISTOPHER HUMBERTO MAULÉN MARCHANT
FECHA: 2021
PROF. GUÍA: CLAUDIO MUÑOZ CERÓN

DESCRIPTION OF DYNAMICS FOR THREE BOUSSINESQ MODELS AND TWO
HIGH-ENERGY PHYSICS MODELS

This thesis is devoted to the study of long-time asymptotic properties of five models appearing
in Physics. These are the Improved, Good, and abcd Boussinesq models, and the
Skyrme and Adkins-Nappi models. The first part of this thesis deals with the Boussinesq
models, and the second one with the remaining equations.

After a brief introduction, in Chapter 2 we consider the decay problem for the generalized
improved (or regularized) Boussinesq model with power type nonlinearity, a modification
of the originally ill-posed shallow water waves model derived by Boussinesq. The associated
decay problem has been studied by Liu, and more recently by Cho-Ozawa, showing scattering
in weighted spaces provided the power of the nonlinearity p is sufficiently large. We remove
that condition on the power p and prove decay to zero in terms of the energy space norm
L2 ˆH1, for any p ą 1, in two almost complementary regimes: (i) outside the light cone for
all small, bounded in time H1 ˆH2 solutions, and (ii) decay on compact sets of arbitrarily
large bounded in time H1 ˆH2 solutions.

In Chapter 3 we consider the Cauchy problem for pabcdq-Boussinesq system posed on one-
and two-dimensional Euclidean spaces. This model, initially introduced by Bona, Chen, and
Saut, describes a small-amplitude waves on the surface of an inviscid fluid, and is derived as a
first order approximation of incompressible, irrotational Euler equations. We mainly establish
the ill-posedness of the system under various parameter regimes, which generalize the result
of one-dimensional BBM-BBM case by Chen-Liu. The proof follows from an observation of
the high to low frequency cascade present in nonlinearity, motivated by Bejenaru and Tao.

In Chapter 4 we consider the generalized Good-Boussinesq model in one dimension, with
power nonlinearity and data in the energy space H1 ˆ L2. This model has solitary waves
with speeds ´1 ă c ă 1. When |c| approaches 1, Bona and Sachs showed orbital stability
of such waves. It is well-known from a work of Liu that for small speeds solitary waves are
unstable. We consider in more detail the long time behavior of zero speed solitary waves, or
standing waves. By using virial identities, in the spirit of Kowalczyk, Martel and Muñoz, we
construct and characterize a manifold of even-odd initial data around the standing wave for
which there is asymptotic stability in the energy space.

In Chapter 5 we consider the decay problem for the Skyrme and Adkins-Nappi equations.
We prove that the energy associated to any bounded energy solution of the Skyrme (or
Adkins-Nappi) equation decays to zero outside the light cone (in the radial coordinate).
Furthermore, we prove that suitable polynomial weighted energies of any small solution
decays to zero when these energies are bounded. The proof consists of finding three new
virial type estimates, one for the exterior of the light cone, based on the energy of the
solution, and a more subtle virial identity for the weighted energies, based on a modification
of momentum type quantities.

Finally, in Chapter 6 we conclude with some open problems to be considered in the future.
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DESCRIPTION OF DYNAMICS FOR THREE BOUSSINESQ MODELS AND TWO
HIGH-ENERGY PHYSICS MODELS

Esta tesis está dedicada al estudio de las propiedades asintóticas de cinco modelos que
aparecen en Física. Estos son los modelos Improved, Good y abcd Boussinesq, y los
modelos de Skyrme y Adkins-Nappi. La primera parte de esta tesis trata los modelos de
Boussinesq y la segunda el resto de las ecuaciones.

Después de una breve introducción, en el Capítulo 2 consideramos el problema de de-
caimiento para el modelo generalizado Improved B con no linealidad del tipo de potencia,
una modificación del modelo de ondas de aguas poco profundas originalmente mal planteado
derivado por Boussinesq. El problema de decaimiento asociado ha sido estudiado por Liu, y
más recientemente por Cho-Ozawa, mostrando scattering en espacios con peso siempre que
la potencia p de la no linealidad sea suficientemente grande. Eliminamos esa condición en la
potencia p y probamos decaimiento a cero en el espacio de energía L2 ˆH1, para cualquier
p ą 1, en dos regímenes casi complementarios: (i) fuera del cono de luz para todas las
soluciones pequeñas, acotadas en tiempo en H1 ˆ H2, y (ii) en conjuntos compactos para
soluciones arbitrariamente grandes acotadas en tiempo en tiempo H1 ˆH2.

En el Capítulo 3 consideramos el problema de Cauchy para el sistema pabcdq-Boussinesq
planteado en R1 y R2. Este modelo, introducido inicialmente por Bona, Chen y Saut, de-
scribe ondas de pequeña amplitud en la superficie de un fluido no viscoso y se deriva como
una aproximación de primer orden de ecuaciones de Euler irrotacionales e incompresibles. Es-
tablecemos el mal posicionamiento del sistema en varios regímenes, generalizando el resultado
del caso unidimensional BBM-BBM de Chen-Liu.

En el Capítulo 4 consideramos el modelo generalizado de Good-Boussinesq en una dimen-
sión, con no linealidad del tipo de potencia y datos en el espacio de energía H1 ˆ L2. Este
modelo tiene ondas solitarias con velocidades |c| ă 1. Cuando |c| se acerca a 1, Bona y Sachs
probaron la estabilidad orbital de tales ondas. Liu demuestra que para velocidades pequeñas,
las ondas solitarias son inestables. Consideramos con más detalle el comportamiento a largo
plazo de las ondas solitarias de velocidad cero. Mediante el uso de identidades viriales, en el
espíritu de Kowalczyk, Martel y Muñoz, construimos una variedad de datos iniciales alrededor
de la onda estacionaria para los cuales hay estabilidad asintótica en el espacio de energía.

En el Capítulo 5 consideramos el problema de decaimiento para las ecuaciones de Skyrme
y Adkins-Nappi. Demostramos que la energía asociada a cualquier solución de energía aco-
tada de la ecuación de Skyrme (o Adkins-Nappi) decae a cero fuera del cono de luz (en la
coordenadas radiales). Además, demostramos que las energías con pesos polinomiales de
cualquier solución pequeña decaen a cero cuando estas energías son acostadas. La prueba
consiste en encontrar tres nuevas estimaciones del tipo virial, una para el exterior del cono
de luz, basada en la energía de la solución, y una identidad virial más sutil para las energías
ponderadas, basada en una modificación del momentum.

Concluimos en el Capítulo 6 con algunos problemas abiertos para ser considerados en el
futuro.
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Chapter 1

Introduction

1.1 Preliminaries

Physics is an essential ingredient in sciences and has a key role in explaining and describing
natural phenomena. When the phenomenon to explain is highly complex, a strong back-
ground in advanced mathematics is needed. For example, partial differential equations have
often been used to describe the dissipation of heat or the behavior of waves in several media,
which originated the heat equation, the Schrödinger equation, the Eulerian formulation for
fluids, among other models. On the other side, there is a wide range of phenomena without
satisfactory explanations, requiring an equilibrium between assumptions and the precision of
the measurements, for a suitable description.

One of these challenging phenomena is to describe the behavior of a fluid under
certain conditions, called the water wave problem, first introduced by Lagrange.
Some basic assumptions are the following: the fluid is delimited below by a flat bottom and
above by a free surface; it is homogeneous, inviscid, incompressible and irrotational. These
assumptions imply that the incompressible Euler equations govern the fluid.

The understanding of the dynamics in the water waves model is a hard mathematical
problem. It consists of a quasilinear system of equations (in the Zakharov-Craig-Sulem
formulation) that contains several canonical simpler models as representatives in certain
asymptotic regimes.

Among these models, those of dispersive type (i.e., those in which waves of different
wavelength propagate at different speeds) are of great relevance, for instance: Korteweg-
de Vries, Benjamin–Bona–Mahony, Benjamin-Ono, and the family of Boussinesq equations.
These models have different properties: some are integrable, others are Hamiltonian, and
others are not. This makes the water waves problem very interesting from the point of view
of modelling.

The first aim of this thesis is to study differences between a family of Boussinesq equations,
which are obtained under similar hypotheses, despite the substantial contrast between the
properties and the dynamics. These are the Good, Improved and abcd Boussinesq

2



systems. Secondly, we want to understand the long-time behavior in Skyrme and Adkins-
Nappi models, which are high-energy equations intended to describe interactions between
nucleons and π mesons. More details on these models will be given in next sections. The
following table summarizes the models that will be studied in this thesis:

Model Equation
Good

Boussinesq B2
t u` B

4
xu´ B

2
xu´ B

2
xp|u|

p´1uq “ 0.

Improved
Boussinesq B2

t u´ B
2
xB

2
t u´ B

2
xu´ B

2
xp|u|

p´1uq “ 0.

abcd
Boussinesq

#

p1´ b∆qBtη `∇ ¨ pa∆~u` ~u` ~uηq “ 0,

p1´ d ∆qBt~u`∇
`

c∆η ` η ` 1
2
|~u|2

˘

“ 0.

Skyrme
`

1` 2α2 sin2 u
r2

˘

putt ´ urrq ´
2
r
ur `

sin 2u
r2

“

1` α2
`

u2
t ´ u

2
r `

sin2 u
r2

˘‰

“ 0.

Adkins-
Nappi utt ´ urr ´

2
r
ur `

sin 2u
r2

`
pu´sinu cosuqp1´cos 2uq

r4
“ 0.

Table 1.1: Models & equations

What is the relationship between these five models? Precisely, their wave-like character,
with more influence of the Korteweg-de Vries dynamics in the Boussinesq case, and from
Klein-Gordon in the case of Skyrme and Adkins-Nappi. Each model will have a different
nature, but, as we shall see in this thesis, the techniques used here will be transversal to all
these models and produce interesting results.

This thesis was made with important collaborations and research visits. A great part was
developed in three long visits that I did during past years. I acknowledge professors Didier
Pilod, Juan Soler, and Francisco Gancedo for their help making these travels possible.

Visit Professor

Universidad de Sevilla (4 months, 2020) Francisco Gancedo (Sevilla)
Miguel Angel Alejo (Córdoba)

Universidad de Granada (1 month, 2019) Juan Soler (Granada)
University of Bergen (1 month, 2019) Didier Pilod (Bergen)

Table 1.2: Research visits during this PhD thesis.

Before describing the models considered in this thesis, we shortly recall some important
notions. We concentrate ourselves in the notion of dispersion and decay.

1.1.1 Dispersion and Decay

As said before, models in Table 1.1 are essentially of dispersive type. We cannot understand
the notion of dispersion without understanding the notion of decay.

The most classical example to describe the interconnection between dispersion and decay
of solutions is the linear Schrödinger equation (see [44, 52]). Recall that this equation is
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given by
iBtu`∆u “ 0, pt, xq P Rˆ Rd, u P C.

It is well-known that, by applying the Fourier transform, if the initial data u0 lies in some
Sobolev space, the corresponding solution has the form uptq “ Sptqu0, where Sptq is the
Schrödinger group given by Sptq “ ei∆t. Furthermore, the operator Sptq is unitary (in L2),
and if the initial data u0 belongs to the Sobolev spaceHspRdq then Sptqu0 lies in CpR;HspRdqq.

One can observe, using the Young inequality and the properties of semigroups, that

}u}L8 À }u0}L1}St}L8 À |t|
´d{2

}u0}L1 ,

which means that our solutions decay in time at a rate |t|´d{2 as t tends to infinity, and in low-
dimension the weaker the rate of decay. This type of estimate is called decay or dispersive
estimate, key in the analysis of dispersive PDEs. On the other hand, by applying the
Plancherel Theorem, one has

}u}L2 “ }u0}L2 .

However, the mass is locally dispersed: for any R ą 0,
ż

|x|ďR

|Sptqu0pxq|
2dx À Rd

}Sptqu0}
2
L8 À

Rd

|t|d
.

Then, the localized mass tends to zero as t tends to infinity. One says then that the mass is
dispersed to infinity.

In nonlinear physical models, this apparently simple property is far from trivial since there
are many possible behaviors for general nonlinear solutions. Even worse, this estimate could
be false because of the existence of nondecaying solutions such as solitons, multi-solitons,
or the presence of even stranger objects called breathers, kinks, or lumps.

In this thesis, by using the Virial technique, we will overcome these difficulties and prove
decay properties in four of five models mentioned before.

Now we start by describing the models considered in this thesis. First we consider the
Boussinesq family.

1.2 Three Boussinesq Models
In the 1870’s, J. Boussinesq [8] deduced a system of equations to describe two-dimensional
irrotational and inviscid fluids in a uniform rectangular channel with flat bottom. He was
the first to give a favorable explanation to the traveling-waves, solitons, or solitary waves
solutions discovered by Scott Rusell thirty years earlier [49], which remained in their form
and travelled with constant velocity. He made an approximation of the Eulerian problem
to describe the two-way propagation of small amplitude gravity waves on the surface of the
water in a canal, and obtained the following simplified equation:

B
2
t φ´ B

4
xφ´ B

2
xφ´ B

2
xpφ

2
q “ 0, pt, xq P Rˆ R. (1.1)
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However, this equation is strongly linearly ill-posed; it is called the Bad–Boussinesq equa-
tion. This bad behavior is not present when the plus sign is considered in the approximation,
obtaining

B
2
t φ` B

4
xφ´ B

2
xφ´ B

2
xpφ

2
q “ 0, pt, xq P Rˆ R, (1.2)

which is called Good–Boussinesq.

Another way to overcome the unpleasant character of Bad–Boussinesq was proposed by
V. G. Makhankov [54], who followed the Boussinesq procedure, and used the wave-like zeroth
order fluid relation Bx „ Bt to deduce the model

B
2
t φ´ B

2
xB

2
t φ´ B

2
xφ´ B

2
xp|φ|

p´1φq “ 0, for p ą 1, pt, xq P Rˆ R,

which is no longer strongly ill-posed as (1.1). This is the so-called Improved–Boussinesq
equation.

A third option to regularize Bad–Boussinesq is to change the scalar character of the
equation. This method was proposed by Bona, Chen and Saut [11, 12] (see also Bona, Colins
and Lannes [13] for the two-dimsensional case). They introduced the pabcdq-Boussinesq
equation:

pabcdq

$

&

%

p1´ b∆qBtη `∇ ¨ pa∆~u` ~u` ~uηq “ 0,

p1´ d ∆qBt~u`∇
ˆ

c∆η ` η `
1

2
|~u|2

˙

“ 0.
pt,xq P Rˆ Rd, d “ 1, 2, (1.3)

where η is the elevation from the equilibrium position of the fluid, and ~u “ ~uθ is the
horizontal velocity of the flow at height θh, where h is the undisturbed depth of the fluid.

The parameters pa, b, c, dq in (1.3) are not arbitrary and follow the condition a ` b `
c ` d “ 1

3
´ τ , where τ ě 0 is the surface tension. This three-degree freedom in the

parameters makes the pabcdq–Boussinesq to contain a wide variety of regimes, for example:
the Classical Boussinesq system, the Kaup system, the Bona–Smith, BBM–BBM, KdV–
KdV, coupled KdV–BBM, coupled BBM-KdV system. Therefore, one can expect that the
dispersive properties of these models will vary depending on the choice of parameters.

The deductions above mentioned are summarized in Table 1.3.

In this thesis, my main focus is the well-understanding of small solutions, solitary waves (or
traveling waves) and the inherent properties of these equations (well- and ill-posedness). In
the history of the water waves problem, solitary waves have a long history, started with Scott
Rusell’s horseback observation [49]. Solitary waves are solutions of type Qcpx´ ctq P H

1pRq,
c P R, that maintain their form and travel at a constant velocity. They are essential for the
well-understanding the coherent wave structures. Also, their properties change depending
on the model to be studied. In particular, their stability properties have been extensively
studied sometimes, but some questions have remained open for a long time.

The first model that we will describe is the Improved Boussinesq model.
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Model Equation Origin
Bad

Boussinesq B2
t u´ B

4
xu´ B

2
xu´ B

2
xp|u|

p´1uq “ 0
Original model

deduced by Boussinesq
Good

Boussinesq B2
t u`B

4
xu´ B

2
xu´ B

2
xp|u|

p´1uq “ 0 Considering the plus sign

Improved
Boussinesq B2

t φ´ B
2
xB

2
t φ´ B

2
xφ´ B

2
xp|φ|

p´1φq “ 0 Using Bx „ Bt

pabcdq

Boussinesq

#

p1´ b∆qBtη `∇ ¨ pa∆~u` ~u` ~uηq “ 0,

p1´ d ∆qBt~u`∇
`

c∆η ` η ` 1
2
|~u|2

˘

“ 0.

First order approximation
a la Boussinesq

Table 1.3: List of deductions of the equations in this work.

1.2.1 Basic properties of the Improved Boussinesq model

Chapter 2 is concerned with the so-called generalized Improved Boussinesq equation (gIB)
[63, 22]

B
2
t u´ B

2
xB

2
t u´ B

2
xu´ B

2
xp|u|

p´1uq “ 0, pt, xq P Rˆ R, (1.4)

where u “ upt, xq is a real-valued function, and p ą 1. Sometimes referred as the Pochhammer-
Chree equation [47], this model was first introduced by Pochhammer [63] in its linear version
in 1876, and in its complete nonlinear form by Chree [22], in 1886. It was derived as a model
of the longitudinal vibration of an elastic rod, as well as a model of nonlinear waves in weakly
dispersive media, and shallow water waves.

Although (1.4) is no longer strongly ill-posed as bad Boussinesq (1.1), it is still shares
some of its unpleasant behavior, but also some nice surprising properties. In order to explain
this in detail, we write (1.4) as the system

(gIB)

#

Btu “ Bxv

Btv “ p1´ B
2
xq
´1Bxpu` |u|

p´1uq.
(1.5)

This 2ˆ2 system is Hamiltonian, but as far as we understand, not integrable. Its Hamiltonian
character leads to the conservation of energy and momentum, given by

Hpu, vq “
1

2

ż

R

`

u2
` v2

` pBxvq
2
˘

dx`
1

p` 1

ż

R
|u|p`1dx, (1.6)

P pu, vq “

ż

R
puv ` BxuBxvqdx. (1.7)

Note in particular the complex character of energy and momentum for gIB: the energy is
always nonnegative, and makes sense e.g. for u P L2 X Lp`1, and v P H1. On the other
hand, the momentum needs even more regularity than expected, and it is only well-defined
for pu, vq P H1 ˆ H1 (or L2 ˆ H2). Given this lack of concordance, completely contrary to
classical linear waves, understanding the well-posedness problem in gIB is far from trivial.

The pioneering work by Liu [48] showed local and global well-posedness for (1.4) for data
pu0, v0q P H

s ˆ Hs`1 and s ě 1. In addition, the energy and momentum (1.6)-(1.7) are
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conserved by the flow, or in other words, the L2ˆH1 norm of the solution remains bounded
in time. Note however that the H1 ˆH2 norm of the solution need not be globally bounded
in time. The method employed by Liu was essentially based in the Sobolev inclusion H1 into
L8 in one dimension, since no useful dispersive decay estimates are available for gIB. The fact
that the solvability space differs from the energy space is a property standard in quasilinear
models, and gIB has the flavor of a standard one. Consequently, we believe that this weakly
ill-posed behavior in gIB is deeply motivated and inherited by the original strongly ill-posed
bad Boussinesq equation (1.1). Additionally, Liu also showed blow up of negative energy
solutions of (1.5) but with focusing nonlinearities (minus sign in |u|p´1u instead of plus sign).
Finally, the controllability problem for gIB in a finite interval (1.5) has been recently studied
by Cerpa and Crépeau [18].

However, the gIB system (1.5) also enjoys some nice properties. Indeed, this model is also
characterized by the existence of super-luminal solitary waves, or just naively solitons, of the
form

pu, vq “ pQc,´cQcqpx´ ct´ x0q, x0 P R, |c| ą 1. (1.8)

The super-luminal character is represented by the condition |c| ą 1 on the speed. Here,
the scaled soliton is slightly different from generalized Korteweg-de Vries (gKdV): Qcpsq “

pc2 ´ 1q1{pp´1qQ

ˆ

b

c2´1
c2
s

˙

, and

Qpsq “

¨

˝

p` 1

2 cosh2
´

pp´1qs
2

¯

˛

‚

1
p´1

ą 0 (1.9)

is the soliton that solves Q2´Q`Qp “ 0, Q P H1pRq. Note that Qc must solve the modified
elliptic equation

c2Q2c ´ pc
2
´ 1qQc `Q

p
c “ 0. (1.10)

Since the speed of solitons can be arbitrarily large, it clearly implies that (1.5) possesses
infinite speed of propagation, a fact not present in standard wave-like equations. Note also
that solitons with speeds |c| Ó 1 are small in L8XH1, but they do not decay to zero as time
evolves, in any standard norm.

1.2.2 Basic properties of the pabcdq-Boussinesq system

As a rigorous derivation from the free Eulerian formulation of water waves, Bona, Chen, and
Saut [12] proposed the model called one-dimensional pabcdq-Boussinesq, as

1D pabcdq

$

&

%

p1´ bB2
xqBtη ` BxpaB

2
xu` u` uηq “ 0,

p1´ dB2
xqBtu` BxpcB

2
xη ` η `

1

2
u2
q “ 0,

pt, xq P Rˆ R. (1.11)

As two-dimensional model, Bona, Colin and Lannes [13], formulated 2D pabcdq as

2D pabcdq

$

&

%

p1´ b∆qBtη `∇ ¨ pa∆~u` ~u` ~uηq “ 0,

p1´ d ∆qBt~u`∇
ˆ

c∆η ` η `
1

2
|~u|2

˙

“ 0,
pt,xq P Rˆ R2. (1.12)
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Here, the unknowns η and u (also ~u) describe the free surface and the horizontal velocity of
fluid, respectively. Both systems (1.11) and (1.12) are all first-order approximations of the
incompressible and irrotational Euler equations assuming the small parameters defined by

α “
A

h
! 1, β “

h2

`2
! 1, α „ β,

where A and ` are typical wave amplitude and wavelength, and h is the constant depth.
Such assumptions sometimes referred to as small-amplitude long waves or Boussinesq or
simply shallow water waves regimes (see [8]). In the two-dimensional case, the irrotational
hypothesis can be (mathematically) characterized as

∇^ ~u “ 0, (1.13)

which is preserved by the evolution. Note that the condition (1.13) is not necessary in the
one-dimensional case since there is a single horizontal direction. See also [4] for relevant
result.

As said before, the parameters pa, b, c, dq in both (1.11) and (1.12) are not arbitrary.
Specifically, they holds the relations (see [12])

a “
1

2

ˆ

θ2
´

1

3

˙

ν, b “
1

2

ˆ

θ2
´

1

3

˙

p1´ νq,

c “
1

2

`

1´ θ2
˘

ν ´ τ, d “
1

2
p1´ θ2

qp1´ µq,

where θ P r0, 1s appears in the change of scaled horizontal velocity corresponding to the
depth p1 ´ θqh below the undisturbed surface, τ is the surface tension (τ ě 0), and ν, µ are
arbitrary real numbers ensuring

a` b “
1

2

ˆ

θ2
´

1

3

˙

, c` d “
1

2
p1´ θ2

q ´ τ, a` b` c` d “
1

3
´ τ.

The dispersive properties of the systems depend on the choice of the parameters. Precisely,
the pair pa, cq enhances the dispersion, while the pair pb, dq weakens it (see [17]). This
versatility makes the pabcdq-Boussinesq model interesting and challenging.

Two systems 1D pabcdq and 2Dpabcdq allow the following energies

E1Dru, ηsptq “
1

2

ż

R
p´au2

x ´ cη
2
x ` u

2
p1` ηq ` η2

qpt, xqdx,

and
E2Dr~u, ηsptq “

1

2

ż

R2

p´a|∇~u|2 ´ c|∇η|2 ` |~u|2p1` ηq ` η2
qpt, xqdx,

respectively, that both are conserved in time when b “ d and a, c ă 0. Thus local well-
posedness in H1-level space is immediately extended to the global one at least for small data.
Note that Sobolev embedding in two-dimensional case is not enough to control L8 norm of
η, but Gagliardo-Nirenberg interpolation inequality can control η|~u|2.
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1.2.3 Basic properties of the Good-Boussinesq equation

Recall that the Good Boussinesq model, in its simplified form, is given by:

B
2
t φ` B

4
xφ´ B

2
xφ` B

2
xpfpφqq “ 0, (1.14)

and if formally u “ φ and v “ B´1
x Btφ, has the following representation as 2ˆ 2 system:

pgGB)

#

Btu “ Bxv

Btv “ Bxp´B
2
xu` u´ fpuqq.

(1.15)

This will be the exact model worked in this chapter, which is Hamiltonian, and has the
following associated conserved quantities:

Eru, vs “
1

2

ż

“

v2
` u2

` pBxuq
2
´ 2F puq

‰

pEnergyq,

P ru, vs “

ż

uv pMomentumq.
(1.16)

(Here
ş

means
ş

R dx.) These laws define a standard energy space pu, vq P H1ˆL2. As well as
the Korteweg-de Vries (KdV) equation, (gGB) is considered as a canonical model of shallow
water waves, see [71]. In addition, (gGB) arises in the so-called "nonlinear string equation"
describing small nonlinear oscillations in an elastic beam (see [25]).

The study of the Boussinesq-type equations has increased recently, mainly due to the
versatility of these models when describing nonlinear phenomena. There are several authors
that focus on the good Boussinesq equation. The fundamental works Bona and Sachs [15],
using abstract techniques of Kato, proved that the Cauchy problem is locally and globally
well-posed for small data, and showed the existence of solitary waves for velocities c2 ă 1.
Linares [43, 45], using Stricharz estimates, proved that the Cauchy problem is globally well-
posed in the energy space in the case of small data. Kishimoto [32], in the case of a quadratic
nonlinearity, proved that the Cauchy problem is globally well-posed in HspRq, for s ě ´1{2,
and ill-posed for s ă ´1{2. In [62], it was proved that small solutions in the energy space
must decay to zero as time tends to infinity in proper subsets of space. Recently, Charlier
and Lenells [19] developed the inverse scattering transform and a Riemann-Hilbert approach
for the quadratic (gGB), which is integrable.

A solitary wave is a solution to (1.14) of the form

pu, vq “ pQc,´cQcqpx´ ct´ x0q, |c| ă 1, x0 P R,

with Qc solving pc2 ´ 1qQc `Q
2
c ` fpQcq “ 0 in H1pRq

In the case that f is a pure power nonlinearity of the form fpsq “ |s|p´1s for p ą 1, it is
well-known that (up to shifts) standing solitary waves have the form

upt, xq “ Qpxq “

˜

p` 1

2 cosh2
`

p´1
2
x
˘

¸1{pp´1q

, vpt, xq “ 0. (1.17)
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Here, Q satisfies the equation

Q2pxq ´Qpxq ` fpQpxqq “ 0. (1.18)

In general, solitons (solitary waves in integrable equations) are stable objects. However, this
is not the case of good Boussinesq (similar to Klein-Gordon). Indeed, small perturbations of
solitons may decay or form singularities in finite time, see [25, 47, 9, 72].

1.3 The Adkins-Nappi and Skyrme models
Now we consider two nonlinear quantum field models, known in the literature as Skyrme and
Adkins-Nappi equations. Physically these models intend to describe interactions between
nucleons and π mesons. Classical nonlinear field theories played an important role in the
description of particles as solitonic objects. A well known example of these nonlinear theories
is the SUp2q sigma model [27], obtained as a formal critical point from the action

Spψq “

ż

R1,d

ηµνpψ˚gqµν “

ż

R1,d

ηµνBµψ
A
Bνψ

BgAB ˝ ψ. (1.19)

Here ψ is a map from a p1 ` dq-dimensional Minkowski space pR1,d, ηq to a Riemannian
manifold pM, gq with metric g. From a geometrical point of view, the associated Lagrangian
is the trace of the pull-back of the metric g under the map ψ. A current choice is M “ Sd

with g the associated metric and for d “ 3, one obtains the classical SUp2q sigma model.
The Euler-Lagrange equation corresponding to the action S is called the wave maps equation.
Unfortunately, the SUp2q sigma model does not admit solitons and it develops singularities in
finite time [7, 23, 50]. To avoid these inconveniences and to prevent the possible breakdown
of the system in finite time, Skyrme [51] modified the associated Lagrangian to (1.19) by
adding higher-order terms such that breaks the scaling invariance of the initial model (making
it more rigid), which in spherical coordinates pt, r, θ, ϕq on R1,3, and co-rotational maps
ψpt, r, θ, ϕq “ pupt, rq, θ, ϕq, the Skyrme model leads to the scalar quasilinear wave equation
satisfied by the angular variable u, asit will be shown in (1.20).

This equation has a unique static solution with boundary values up0q “ 0 and limrÑ8 uprq “
π, and which is currently known as Skyrmion [53]. This existence was proved in [41] and
[53] by using variational methods and ODE techniques respectively. As far as we know, the
Skyrmion is not known in a closed form.

In this paper, we are interested in the long time asymptotics of two relevant mathematical
physics models. Firstly, as we already mentioned above for the Skyrme model is

ˆ

1`
2α2 sin2 u

r2

˙

putt ´ urrq ´
2

r
ur `

sin 2u

r2

„

1` α2

ˆ

u2
t ´ u

2
r `

sin2 u

r2

˙

“ 0, (1.20)

and the second model is a short of generalization of supercritical wave maps as it was pre-
sented by Adkins and Nappi [1]. This is a simplified version of the Skyrme model (1.20) and
it is currently known as Adkins-Nappi model

utt ´ urr ´
2

r
ur `

sin 2u

r2
`
pu´ sinu cosuq p1´ cos 2uq

r4
“ 0. (1.21)
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These two models have the following low order conserved quantities (subindices "S" and
"AN" for Skyrme and Adkins-Nappi models respectively)

ESrusptq “

ż 8

0

r2

„ˆ

1`
2α2 sin2 u

r2

˙

pu2
t ` u

2
rq ` 2

sin2 u

r2
`
α2 sin4 u

r4



dr, (1.22)

EAN rusptq “

ż 8

0

r2

«

u2
t ` u

2
r ` 2

sin2 u

r2
`
pu´ sinu cosuq2

r4

ff

dr. (1.23)

Respecting to the Cauchy problem, (1.20) is globally well-posed for small data in 9H5{2pR3q

(see [26]), and the corresponding global result for the Adkins-Nappi equation (1.21) holds in
9H2pR3q. For large-data global well-posedness results, [40] showed that it holds in H4pR3q for
Skyrme (1.20).

1.4 The Virial Technique

We describe here one of the main techniques that we will use in this thesis, the Virial
technique.

The virial identities are somehow related with Noether’s Theorem [52]. In Physics, the
Virial Theorem gives a relation between the average total kinetic energy and the total po-
tential energy of the system. Moreover, in elliptic PDEs it is known as the Pokhozhaev’s
identity, which is applicable to localized solutions to the stationary nonlinear Schrödinger
equation.

The Virial identities in its modern form were introduced by Glassey [30] to show blow up
for certain focusing nonlinear Schrödinger equation (NLS). In general, these identities are
used to show that a positive quantity involving the solution u has a monotonic behavior in
time.

Monotonic quantities recently have been used in a powerful way in the context of dispersive
equations, see [2, 3, 20, 30, 33, 34, 35, 57, 58, 56, 62]. It has allowed to describe the behavior of
several equations in a wide variety of properties, from decay to blow-up, and asymptotically
stability.

We describe in simple words how Virial works. The base of the argument is the election of
a conserved quantity. A modification of this conservation law is likely to give a virial identity
via monotonicity. This monotonicity relation is narrowly related to the behavior in time of
some particular norm of the solution. For example, for the Improved Boussinesq equation

B
2
t φ´ B

2
xB

2
t φ´ B

2
xφ´ B

2
xp|φ|

p´1φq “ 0, for p ą 1, pt, xq P Rˆ R, (1.24)

one has the equivalent system

(gIB)

#

Btu “ Bxv

Btv “ p1´ B
2
xq
´1Bxpu` |u|

p´1uq,
(1.25)
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which is Hamiltonian. Its Hamiltonian character leads to the conservation of energy and
momentum, given by

Hpu, vq “
1

2

ż

R

`

u2
` v2

` pBxvq
2
˘

dx`
1

p` 1

ż

R
|u|p`1dx,

P pu, vq “

ż

R
puv ` BxuBxvqdx,

which, are well defined in L2ˆH1 and L2ˆH2, respectively. Now, let the following functional

Ipt;L, σq “ Iptq “1

2

ż

R
ϕ

ˆ

x` σt

L

˙ˆ

u2
` v2

` pBxvq
2
`

2

p` 1
|u|p`1

˙

pt, xqdx,

where ϕ is a weight function, which is measuring a particular dynamics in our system. For
example, the localization of the mass. Then, for pu, vq global solutions of the equation (1.25),
in Chapter 2 we will prove that the following relation is satisfied:

d

dt
Iptq “ σ

2L

ż

R
ϕ1
ˆ

u2
` v2

` pBxvq
2
`

2

p` 1
|u|p`1

˙

dx

´
1

L

ż

R
ϕ1vp1´ B2

xq
´1
pu` |u|p´1uqdx.

This identity has the good sign property (for small solutions), and will be useful in our proof.
The election of the functional is not an easy task, as we will see in Chapter 2, 4 and 5.
However, the technique is very powerful and adaptable.

1.5 Results in this thesis
This thesis contains essentially four results, which are part of the following four articles:

1. C. Maulén, and C. Muñoz, Decay in the one dimensional generalized Improved Boussi-
nesq equation, published in SN Partial Differential Equations and Applications (Chapter
2).

2. C. Kwak, and C. Maulén, Ill-posedness issues on the pabcdq-Boussinesq system, preprint
arXiv:2102.01248, (Chapter 3).

3. C. Maulén, Asymptotic stability manifolds for solitons in the generalized Good- Boussi-
nesq equation, preprint arXiv:2102.01151, (Chapter 4).

4. M. A. Alejo, and C. Maulén, Decay properties in the Skyrme and Adkins-Nappi equa-
tions, preprint (Chapter 5).

1.5.1 Asymptotic dynamics of small solutions in Improved- Boussi-
nesq

In Chapter 2, we are motivated by the decay problem of solutions to gIB (1.5). This inter-
esting question has attracted the attention of several people before us. Liu [47] showed decay
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of solutions to (1.5) obtained from initial data satisfying e.g. pu0, v0q in H1 ˆ H2, u0 P L
1

and p1´ B2
xq

1{2v0 P L
1, all of them small enough. In particular, he showed that for p ą 12,

sup
tě0

´

p1` tq
1
10 }uptq}L8 ` }pu, vqptq}H1ˆH2

¯

ă `8.

He also showed that p can be taken greater than 8 if s ą 3
2
and pu0, v0q in Hs ˆHs`1. Next,

in [70], Wang and Chen extended this result to higher dimensions.

The exponent p in (1.5) was recently improved by Cho and Ozawa [21], who showed using
modified scattering techniques that p can be taken greater than 9{2 if u0 P H

s, s ą 8
5
. The

solution global in this case satisfies }uptq}L8 “ Opt´2{5q as t Ñ `8. Additionally, the same
authors showed that the asymptotics as t Ñ `8 cannot be the linear one if 1 ă p ď 2 and
near zero frequencies vanish at infinity.

Lowering the exponent p for which there is decay seems a complicated problem, due to
the quasilinear behavior of gIB. Since there should be modified dynamics, we believe that we
need different tools to attack this problem.

Our first result deals with the exterior light-cone decay problem. More precisely, we
consider the interval depending on time

Iptq “
`

´8,´p1` aqt
˘

Y
`

p1` bqt,8
˘

, t ą 0, (1.26)

where a, b ą 0 are arbitrary positive numbers. Now, we show that, regardless the power p ą 1,
any global solution pu, vq to (1.5) which is sufficiently small and regular must concentrate
inside the light cone.

Theorem 1.1 (Decay in exterior light cones). Let pu, vq P CpR, H1 ˆH2q be a global small
solution of (1.5) such that, for some εpa, bq ą 0 small, one has

sup
tPR
}puptq, vptqq}H1ˆH2 ă ε. (1.27)

Then, for Iptq as in (1.26), there is strong decay to zero in the energy space:

lim
tÑ8

}puptq, vptqq}pL2ˆH1qpIptqq “ 0. (1.28)

Additionally, one has the mild rate of decay for |σ| ą 1:
ż 8

2

ż

R
e´c0|x`σt|pu2

` v2
` pBxvq

2
qdxdt Àc0 ε

2. (1.29)

Having described the small data behavior in exterior light cones, we concentrate now in
the interior light cone behavior. Here things are much more complicated, since the energy
(1.6) is no more useful to describe the dynamics. Instead, we shall use a suitable modification
of the momentum (1.7).
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Theorem 1.2 (Full decay in interior regions). Let pu, vq be a global solution of (1.5) in the
class CpR, H1 ˆH2q XL8pR, H1 ˆH2q, not necessarily small in norm. Then for any L " 1
we have

ż 8

2

ż L

´L

`

v2
` up1´ B2

xq
´1u` |u|p`1

˘

pt, xqdxdt À 1. (1.30)

Moreover, we have strong decay to zero in the energy space pL2 ˆH1qpIq, for any I bounded
interval in space:

lim
tÑ8

}pu, vqptq}pL2ˆH1qpIq “ 0. (1.31)

Estimate (1.30) shows that the local L2 norm of v is integrable in time, and some mixed
norms of u. Note that u seems not locally L2 integrable in time. However, (1.31) shows that
this norm indeed decays to zero in time (even if it is not integrable in time). Also, Theorem
1.2 can be read as “boundedness in time in H1 ˆH2 implies L2 ˆH1 time decay in compact
sets of space”.

The proof of Theorem 1.1 follows the introduction of a new virial identity, in the spirit of
the previous results by Martel and Merle [55, 56] in the gKdV case, and [38, 2] in the BBM
case. Note however that in those cases the functional involved is related to the mass (L2

norm) of the solution. Here, we use instead a modification of the energy (1.6) of the solution.

The techniques that we use to prove Theorem 1.2 are not new, and have been used to
show decay for the Born-Infeld equation [3], the good Boussinesq system [62], the Benjamin-
Bona-Mahony (BBM) equation [38], and more recently in the more complex abcd Boussinesq
system [39, 37]. In all these works, suitable virial functionals were constructed to show decay
to zero in compact/not compact regions of space.

1.5.2 Ill-posedness in abcd–Boussinesq model

In Chapter 3, we are motivated by the ill-posedness of Cauchy problem for (1.12). To
describe the ill-posedness it is necessary to understand the previous well-posedness results
to the Cauchy problem. But before presenting our results, we clarify what we mean “ill-
posedness". To do this, we first define “well-posedness". As the author’s best knowledge,
the French mathematician Jacques Hadamard initially proposed the concept of well-posed
problems as

Definition 1.3 (Well-posedness). We say that a time-dependent PDE problem is well-posed
if

• there exists a solution,
• the solution is unique,
• the solution behaves continuously with the initial condition.

Obviously, problems that are not well-posed in the sense of Hadamard are termed ill-posed,
in other words, the invalidity of one of above properties makes the problem to be ill-posed.
In this work, in order to obtain ill-posedness results, we will attack the third property in
Definition 1.3.
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Some words about the Caucht theory of abcd systems. These models have been extensively
studied (in various perspective) in the literature, see e.g. [11, 12, 16, 24, 46, 66, 64, 17, 10,
65, 39, 60, 37, 67, 68]. Among other them, we focus on Cauchy problems for these systems.
In [11, 12], Bona, Chen and Saut first studied local and global well-posedness of linear and
nonlinear problems, and established the following results (the following results only exhibit
the case when H (see (3.12)) has order 0):

1. the generic regime in HspRq ˆHspRq, for s ě 0.

2. the BBM-BBM regime in HspRq ˆHspRq, for s ě 0.

3. the KdV-KdV regime in HspRq ˆHspRq, for s ą 3{4.

In [24], Dougalis, Mitsotakis, and Saut proved that two-dimensional pabcdq–Boussinesq sys-
tem under the generic regime is locally well-posed in HspR2q ˆ HspR2q for s ą 0. Note
that this local result is indeed valid in L2pR2q ˆ L2pR2q by improving Grisvard’s bilinear
estimate [29], see Appendix 3.A (Lemma 3.16). In [46], Linares, Pilod, and Saut focused
on the strongly dispersive (KdV-KdV system) regime, and established local well-posedness
result in HspR2q ˆHspR2q for s ą 3{2. Previously, Schonbek [69] and Amick [6] considered
a version of the original Boussinesq system (a “ c “ b “ 0, b “ 1{3), and proved global well-
posedness under a non-cavitation condition via parabolic regularization. Later, Burteau [16]
improved it without a non-cavitation condition. Studies on long time existence of solutions
have been done in, for instance, [66, 61, 65, 67, 68]. In these works, the authors established
the well-posedness for large time with appropriate time scales.

As far as we know, there is only few results for ill-posedness issues. Chen and Liu [17]
established the (mild) ill-posedness result for one-dimensional system under the weakly dis-
persive regime (1D BBM-BBM system) below L2. The main idea follows the abstract theory
developed by Bejenaru-Tao [14]. The authors also discussed the formation of singularities
and provided blow-up criteria. Recently, [5] Ambrose, Bona and Milgrom have established
the ill-posedness of the one-dimensional periodic Kaup system (a “ 1{3 and b “ c “ d “ 0)
is ill-posed in any positive regularity Sobolev space, in the sense that the flow map is discon-
tinuous at the origin. They also concerned with the case that the generic condition (1.32) is
negated.

In contrast with results mentioned above, Chapter 3 concerns with the ill-posed issues on
one- and two-dimensional pabcdq-Boussinesq systems in the following cases:

1. Generic regime
a, c ă 0, b, d ą 0, (1.32)

2. KdV-KdV regime

a “ c “
1

6
, b “ d “ 0, (1.33)

3. BBM-BBM regime

a “ c “ 0, b “ d “
1

6
. (1.34)
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Now, we are ready to present our main theorem.

Theorem 1.4 ([36]). The 1D- and 2D-abcd system (1.12) are ill-posed in HspRq2 or HspRq3,
respectively, for

1. s ă ´1
2
in the generic regime.

2. s ă ´3
2
in the KdV-KdV regime.

In addition, the 2D-pabcdq-Boussinesq system (1.12) is ill-posed in HspRq3 for s ă 0 in the
BBM-BBM regime.

The BBM-BMM case of the one-dimensional pabcdq-Boussinesq system has been dealt with
by Chen and Liu [17]. However, the two-dimensional BBM-BBM system is considered here
for the first time, and together with Appendix 3.A, we completely resolve Cauchy problem
for it.

The proof of above results follows the same idea developed by Bejenaru and Tao [14], and
motivated by an observation as follows: All nonlinear interactions are quadratic, thus high
ˆ high interaction components over an appropriate short time depending on the frequency
cause resonances near the origin of the resulting frequency. For this reason, the flow cannot
disperse the high-frequency energy for this time so that the smoothness of the flow breaks
below certain regularity. Note that this observation is simply applied to a one-dimensional
problem, but it is non-trivial to construct initial data that can cause resonance in two-
dimensional case.

1.5.3 Asymptotic manifolds around the good-Boussinesq standing
wave

In Chapter 4, we are motivated by the long time behavior problem for solitary waves of the
gGB (1.14) in the case where fpsq “ |s|p´1s for p ą 1. This interesting question has attracted
the attention of several authors before us, showing that the behavior of solitary waves in the
standard energy space H1 ˆ L2 is not an easy problem. Bona and Sachs [15], applying the
theory developed by Grillakis, Shatath and Strauss (see [28]), proved that solitary waves are
stable if the speed c obeys the condition pp´1q{4 ă c2 ă 1 and p ą 4. Li, Ohta, Wu and Xue
[42] proved the orbital instability in the degenerate case 1 ă p ă 5 and speed c “ pp´ 1q{4.
Additionally, Kalantarov and Ladyzhenkaya in [31] proved that solutions associated to initial
data with nonpositive energy may blow up in some sense. Inspired by this work, Liu [48]
showed that there are solutions with initial data arbitrarily near the ground state (c “ 0)
that blow up in finite time.

It is not difficult to realize that (1.15) preserves the even-odd parity in its variables pu, vq.
In this Chapter, we will prove that any even-odd small perturbation of the static soliton
(c “ 0) in the energy space, under certain orthogonality condition, is orbitally stable and
in fact, it is (locally) asymptotically stable. Furthermore, we will construct a manifold of
initial data such that the associated solutions are orbitally stable in H1 ˆ L2, and locally
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asymptotically stable in the space L2 X L8. Our first result is:

Theorem 1.5. Let p ě 2. There exists δ ą 0 such that if a global even-odd solution
pφ, BtB

´1
x φq of (1.15) satisfies for all t ě 0,

}pφ, BtB
´1
x φqptq ´ pQ, 0q}H1pRqˆL2pRq ă δ, (1.35)

then, for any γ ą 0 small enough and any compact interval I of R,

lim
tÑ`8

`

}φptq ´Q}L2pIqXL8pIq ` }p1´ γB
2
xq
´1
Btφptq}L2pIq

˘

“ 0. (1.36)

This is, as far as we understand, the first description of the standing wave dynamics in the
Good Boussinesq model, which is unstable by nature. Clearly the data under which (1.35) is
satisfied is not empty, the soliton pQ, 0q being its most important representative. However,
(1.35) cannot define an open set in the energy space as simple as in some stable, subcritical
dynamics, such as KdV. Our second result will describe the manifold of initial data leading
to (1.35). The following result provides a description of the manifold of initial data leading
to global solutions for which (1.35) holds.

Let δ0 ą 0, and let A0 be the manifold given by

A0 “
 

ε P H1
pRq ˆ L2

pRq| ε is even-odd , }ε}H1ˆL2 ă δ0 and xε,Z`y “ 0
(

. (1.37)

Theorem 1.6. Let p ě 2. There exist C, δ0 ą 0 and a Lipschitz function h : A0 Ñ R with
hp0q “ 0 and |hpεq| ď C}ε}

3{2

H1ˆL2 such that, denoting

M “ tpQ, 0q ` ε` hpεqY` with ε P A0u , (1.38)

the following holds:

1. If φ0 PM then the solution of (1.15) with initial data φ0 is global and satisfies, for all
t ě 0,

}φptq ´ pQ, 0q}H1pRqˆL2pRq ď C}φ0 ´ pQ, 0q}H1pRqˆL2pRq. (1.39)

2. If a global even-odd solution φ of (1.15) satisfies, for all t ě 0,

}φptq ´ pQ, 0q}H1pRqˆL2pRq ď
1

2
δ0, (1.40)

then for all t ě 0, φptq PM.

The proofs of this results follow the lines of the ideas used recently by Kowalczyk, Martel
and Muñoz in [34] to understand the unstable soliton dynamics in the nonlinear Klein-Gordon
equation, and by Kowalczyk, Martel, Muñoz and Van Den Bosch [35] to study the stability
properties of kinks for (1+1)-dimensional nonlinear scalar field theories.
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More precisely, the proofs are based in a series of localized virial type arguments, similar
to the ones used in [2, 3, 34, 35, 33, 58, 56]. In our case, we will use a combination of virials
to obtain the integrability in time of the L2 ˆ L2-norm of pφptq ´ Q, p1 ´ γB2

xq
´1Btφptqq, for

any γ ą 0 small enough, and in any compact interval I, i.e.,
ż 8

0

´

}φptq ´Q}2L2pIq ` }p1´ γB
2
xq
´1
Btφptq}

2
L2pIq

¯

dt ă 8.

1.5.4 Decay in Skyrme and Adkin-Nappi field theories

In Chapter 5, we were interested in the long time asymptotics of two relevant mathematical
physics models.

Before introducing the main results of this chapter, it is needed to introduce some nota-
tions. In that follows, we use the subindices and the superindexes "S" and "AN" to reference
the Skyrme and Adkins-Nappi models respectively. Firstly, we defined the main spaces where
the energies are bounded. Let EXn the space of all finite energy data of degree n, namely

EXn “
!

pu, utq
ˇ

ˇ

ˇ
EXrusptq ă 8, u0p0q “ 0, lim

rÑ8
u0prq “ nπ

)

, (1.41)

where here X “ S refers to the Skyrme model or when X “ AN to the Adkins-Nappi model.
In what follows, we consider pu, utq P EX0 and such that is a solution of (1.20) or (1.21),
respectively.

The main goal of this work is to prove that small global solutions with enough regularity
of Skyrme (1.20) and Adkins-Nappi (1.21) equations decay to zero in a certain region of the
light cone. Furthermore, we also study the decay of an associated weighted energy for both
equations, and which we need them for analyzing their corresponding long time behavior.

More precisely let b ą 0 and consider the following subset depending on time

Rptq “ tx P R3
| |x| ą p1` bqtu Ă R3. (1.42)

We will show that any global solution u to (1.20) (or (1.21)), which is sufficiently regular and
without a previous smallness condition, must be concentrated inside the light cone.

Theorem 1.7 (Decay in exterior light cones for the Skyrme and Adkins-Nappi models).
Let pu0, u1q P EX0 , defined in (1.41), such that u is a global solution, for (1.20) when X “ S,

or (1.21) when X “ AN , respectively. Then, for Rptq as in (1.42), there is strong decay to
zero of the energy EX , in particular:

lim
tÑ8

}putptq, urptqq}L2ˆL2pR3XRptqq “ 0. (1.43)

Additionally, one has the mild rate of decay for |σ| ą 1:
ż 8

2

ż 8

0

e´c0|r`σt|r2
pu2

t ` u
2
rqdrdt Àc0 1. (1.44)
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For the next results, we have to introduce a weighted version of the spaces (1.41). Let
EX,φn the space of all finite φ-weighted energy data of degree n

EX,φn “ tpu, utq |EX,φrusptq ă 8, u0p0q “ 0, u0p8q “ nπ u , (1.45)

where EX,φ is written for the Skyrme model as

ES,φrusptq “

ż 8

0

φprq

„ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2

sin2puq

r2
`
α2 sin4puq

r4



, (1.46)

and for the Adkins-Nappi model as

EAN,φrusptq “

ż 8

0

φprq

«

u2
t ` u

2
r ` 2

sin2puq

r2
`
pu´ sinpuq cospuqq2

r4

ff

. (1.47)

In fact, one can see, that if EX,r2rusptq “ EXrusptq, then EX,r
2

n “ EXn , for X P tS,ANu.

Our second result shows that the energy EX associated to any global solution pu, utq P
EX,r

n

0 X EX,r
n´1

0 of (1.20) or (1.21), decays to zero when t goes to infinity. This means that for
any global solution u which is sufficiently regular and it satisfies a weighted integrability on
r, its energy EX,rn decays to zero when t goes to infinity for both X “ S or X “ AN cases.

Theorem 1.8 (Decay of weighted energies). Let δ ą 0 small enough. Let pu, utq P EX,r
n

0 X

EX,r
n´1

0 a global solution of (1.20) or (1.21) such that

sup
tPR

EXrusptq ă δ, for X “ AN,S. (1.48)

Then, the modified energy EX,ϕrusptq with ϕprq “ rn decays to zero, for n ą 7 (X “ S case)
or for n P

”

3`
?

41
2

, 10
ı

(X “ AN case), respectively. In particular,

lim
tÑ8

}r
n´2
2 put, urqptq}L2ˆL2pR3q “ lim

tÑ8
EX,rnptq “ 0. (1.49)

In order to prove Theorem 1.7, we follow some ideas appeared in [2, 3, 59], where decay
for Camassa-Holm, Born-Infeld and Improved-Boussinesq models were considered. The main
tool in these works was a suitable virial functional for which the dynamic of solutions is
converging to zero when it is integrated in time.

In Chapter 5, the new virial functionals give us relevant information about the dynamics
of global solutions of Skyrme and Adkins-Nappi equations. Using a proper virial estimate,
we prove that the corresponding energies associated to Skyrme and Adkins-Nappi equations
decay to zero in the subset Rptq

Rptq “ tx P R3
|x ą p1` bqtu Ă R3,
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which is the complement of the ball of radius p1` bqt, for b ą 0.

Furthermore, to prove Theorem 1.8, we will study the growth rate of polynomial weight
energies of the Skyrme and Adkins-Nappi equations. After that, assuming that their growth
is bounded, we will prove that this growth decays zero as t tends to infinity. To prove this
result, we introduce a functional associated with a sort of weighted momentum. It happens
that the virial identity associated to this functional shows no evidence of good sign conditions,
i.e. that the derivative of the functional be negative. Therefore, we have to introduce a new
functional as a linear combination of these two viral identities and for which there is a good
sign property. This ensures the integrability in time of polynomial weighted energies of degree
n. Moreover, it also guarantees the decay of polynomial weighted energy of degree n`1 over a
subsequence of times. Combining these two facts, we conclude that the polynomial weighted
energies, which are bounded, decay to zero as t tends to infinity (over R3).
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Chapter 2

Decay in the one dimensional generalized
Improved Boussinesq equation

Abstract. We consider the decay problem for the generalized improved (or regularized) Boussinesq model
with power type nonlinearity, a modification of the originally ill-posed shallow water waves model derived
by Boussinesq. This equation has been extensively studied in the literature, describing plenty of interesting
behavior, such as global existence in the space H1 ˆ H2, existence of super luminal solitons, and lack of
a standard stability method to describe perturbations of solitons. The associated decay problem has been
studied by Liu, and more recently by Cho-Ozawa, showing scattering in weighted spaces provided the power
of the nonlinearity p is sufficiently large. In this paper we remove that condition on the power p and prove
decay to zero in terms of the energy space norm L2ˆH1, for any p ą 1, in two almost complementary regimes:
(i) outside the light cone for all small, bounded in time H1 ˆH2 solutions, and (ii) decay on compact sets
of arbitrarily large bounded in time H1 ˆ H2 solutions. The proof consists in finding two new virial type
estimates, one for the exterior cone problem based in the energy of the solution, and a more subtle virial
identity for the interior cone problem, based in a modification of the momentum.
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2.1 Introduction

2.1.1 Setting

This paper is concerned with the so-called generalized Improved Boussinesq equation (gIB)
[25, 6]

B
2
t u´ B

2
xB

2
t u´ B

2
xu´ B

2
xp|u|

p´1uq “ 0, pt, xq P Rˆ R, (2.1)

where u “ upt, xq is a real-valued function, and p ą 1. Sometimes referred as the Pochhammer-
Chree equation [19], this model was first introduced by Pochhammer [25] in its linear version
in 1876, and in its complete nonlinear form by Chree [6], in 1886. It was derived as a model
of the longitudinal vibration of an elastic rod, as well as a model of nonlinear waves in weakly
dispersive media, and shallow water waves.

The model gIB (2.1) shares plenty of similarities with the so called generalized good and
bad Boussinesq models [4]

B
2
t u˘ B

4
xu´ B

2
xu´ B

2
xp|u|

p´1uq “ 0, pt, xq P Rˆ R, (2.2)

Here the plus sign denotes the good Boussinesq system, which is locally and globally well-
posed in standard Sobolev spaces [8, 9], and the minus sign represents the “bad” equation
originally derived by Boussinesq [4], which is strongly linearly ill-posed. Precisely, motivated
by the similar order of magnitude of Bx and Bt in shallow water waves, the linearized gIB model
(2.1) was discussed by Whitham [29, p. 462]. By doing the “Boussinesq trick” (changing two
Bx by two Bt) in the bad Boussinesq equation, one arrives to (2.1) and ill-posedness is no
longer present. This regularization process leads to gIB (2.1), also known as the regularized
Boussinesq equation.

Although (2.1) is no longer strongly ill-posed as bad Boussinesq (2.2), it is still shares
some of its unpleasant behavior, but also some nice surprising properties. In order to explain
this in detail, we write (2.1) as the system

(gIB)

#

Btu “ Bxv

Btv “ p1´ B
2
xq
´1Bxpu` |u|

p´1uq.
(2.3)

This 2ˆ2 system is Hamiltonian, but as far as we understand, not integrable. Its Hamiltonian
character leads to the conservation of energy and momentum, given by

Hpu, vq “
1

2

ż

R

`

u2
` v2

` pBxvq
2
˘

dx`
1

p` 1

ż

R
|u|p`1dx, (2.4)

P pu, vq “

ż

R
puv ` BxuBxvqdx. (2.5)

Note in particular the complex character of energy and momentum for gIB: the energy is
always nonnegative, and makes sense e.g. for u P L2 X Lp`1, and v P H1. On the other
hand, the momentum needs even more regularity than expected, and it is only well-defined
for pu, vq P H1 ˆ H1 (or L2 ˆ H2). Given this lack of concordance, completely contrary to
classical linear waves, understanding the well-posedness problem in gIB is far from trivial.

28



Indeed, it turns out that L2 ˆH1 seems not well suited to have a well-defined energy, so in
this work we shall work in the proper subspace H1 ˆH2, for the reasons explained below.

The pioneering work by Liu [19] showed local and global well-posedness for (2.1) for data
pu0, v0q P H

s ˆ Hs`1 and s ě 1. In addition, the energy and momentum (2.4)-(2.5) are
conserved by the flow, or in other words, the L2ˆH1 norm of the solution remains bounded
in time. Note however that the H1 ˆH2 norm of the solution need not be globally bounded
in time. The method employed by Liu was essentially based in the Sobolev inclusion H1 into
L8 in one dimension, since no useful dispersive decay estimates are available for gIB. The fact
that the solvability space differs from the energy space is a property standard in quasilinear
models, and gIB has the flavor of a standard one. Consequently, we believe that this weakly
ill-posed behavior in gIB is deeply motivated and inherited by the original strongly ill-posed
bad Boussinesq equation (2.2). Additionally, Liu also showed blow up of negative energy
solutions of (2.3) but with focusing nonlinearities (minus sign in |u|p´1u instead of plus sign).
Finally, the controllability problem for gIB in a finite interval (2.3) has been recently studied
by Cerpa and Crépeau [5].

However, the gIB system (2.3) also enjoys some nice properties. Indeed, this model is also
characterized by the existence of super-luminal solitary waves, or just naively solitons, of the
form

pu, vq “ pQc,´cQcqpx´ ct´ x0q, x0 P R, |c| ą 1. (2.6)

The super-luminal character is represented by the condition |c| ą 1 on the speed. Here,
the scaled soliton is slightly different from generalized Korteweg-de Vries (gKdV): Qcpsq “

pc2 ´ 1q1{pp´1qQ

ˆ

b

c2´1
c2
s

˙

, and

Qpsq “

¨

˝

p` 1

2 cosh2
´

pp´1qs
2

¯

˛

‚

1
p´1

ą 0 (2.7)

is the soliton that solves Q2´Q`Qp “ 0, Q P H1pRq. Note that Qc must solve the modified
elliptic equation

c2Q2c ´ pc
2
´ 1qQc `Q

p
c “ 0. (2.8)

Since the speed of solitons can be arbitrarily large, it clearly implies that (2.3) possesses
infinite speed of propagation, a fact not present in standard wave-like equations. Note also
that solitons with speeds |c| Ó 1 are small in L8XH1, but they do not decay to zero as time
evolves, in any standard norm.

In this paper, we are motivated by the decay problem of solutions to gIB (2.3). This
interesting question has attracted the attention of several people before us. Liu [19] showed
decay of solutions to (2.3) obtained from initial data satisfying e.g. pu0, v0q in H1 ˆ H2,
u0 P L

1 and p1 ´ B2
xq

1{2v0 P L
1, all of them small enough. In particular, he showed that for

p ą 12,
sup
tě0

´

p1` tq
1
10 }uptq}L8 ` }pu, vqptq}H1ˆH2

¯

ă `8.
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He also showed that p can be taken greater than 8 if s ą 3
2
and pu0, v0q in Hs ˆHs`1. Next,

in [10], Wang and Chen extended this result to higher dimensions.

The exponent p in (2.3) was recently improved by Cho and Ozawa [11], who showed using
modified scattering techniques that p can be taken greater than 9{2 if u0 P H

s, s ą 8
5
. The

solution global in this case satisfies }uptq}L8 “ Opt´2{5q as t Ñ `8. Additionally, the same
authors showed that the asymptotics as t Ñ `8 cannot be the linear one if 1 ă p ď 2 and
near zero frequencies vanish at infinity. Lowering the exponent p for which there is decay
seems a complicated problem, due to the quasilinear behavior of gIB.

2.1.2 Main results

In this paper, we are interested in the asymptotics of gIB solutions in the lower p case,
namely any possible p ą 1. Since there should be modified dynamics, we believe that we
need different tools to attack this problem.

Our first result deals with the exterior light-cone decay problem. More precisely let a, b ą 0
be arbitrary positive numbers. We consider the interval depending on time

Iptq “
`

´8,´p1` aqt
˘

Y
`

p1` bqt,8
˘

, t ą 0. (2.9)

Our first result shows that, regardless the power p ą 1, any global solution pu, vq to (2.3)
which is sufficiently small and regular must concentrate inside the light cone.

Theorem 2.1 (Decay in exterior light cones). Let pu, vq P CpR, H1 ˆH2q be a global small
solution of (2.3) such that, for some εpa, bq ą 0 small, one has

sup
tPR
}puptq, vptqq}H1ˆH2 ă ε. (2.10)

Then, for Iptq as in (2.9), there is strong decay to zero in the energy space:

lim
tÑ8

}puptq, vptqq}pL2ˆH1qpIptqq “ 0. (2.11)

Additionally, one has the mild rate of decay for |σ| ą 1:
ż 8

2

ż

R
e´c0|x`σt|pu2

` v2
` pBxvq

2
qdxdt Àc0 ε

2. (2.12)

Remark 2.1. Note that Theorem 2.1 is sharp, since it does not persist in the large data
case. Indeed, solitons (2.6) can be arbitrarily large and do not decay in the energy norm
inside Iptq as time tends to infinity.

Remark 2.2. The smallness condition (2.10) is needed in the proof to get a well-defined
flow and good boundedness properties of the L8t,x norm of u, and we do not know if it can be
improved to }pu0, v0q}L2ˆH1 ă ε only. Note also that only the conditions }pu0, v0q}L2ˆH1 ă ε
and suptPR }puptq, vptqq} 9H1ˆ 9H2 ă ε are essentially needed in the proofs here.
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The proof of Theorem 2.1 follows the introduction of a new virial identity, in the spirit of
the previous results by Martel and Merle [20, 21] in the gKdV case, and [12, 1] in the BBM
case. Note however that in those cases the functional involved is related to the mass (L2

norm) of the solution. Here, we use instead a modification of the energy (2.4) of the solution.

Having described the small data behavior in exterior light cones, we concentrate now in
the interior light cone behavior. Here things are much more complicated, since the energy
(2.4) is no more useful to describe the dynamics. Instead, we shall use a suitable modification
of the momentum (2.5).

Theorem 2.2 (Full decay in interior regions). Let pu, vq be a global solution of (2.3) in the
class CpR, H1 ˆH2q XL8pR, H1 ˆH2q, not necessarily small in norm. Then for any L " 1
we have

ż 8

2

ż L

´L

`

v2
` up1´ B2

xq
´1u` |u|p`1

˘

pt, xqdxdt À 1. (2.13)

Moreover, we have strong decay to zero in the energy space pL2 ˆH1qpIq, for any I bounded
interval in space:

lim
tÑ8

}pu, vqptq}pL2ˆH1qpIq “ 0. (2.14)

Remark 2.3. Estimate (2.13) shows that the local L2 norm of v is integrable in time,
and some mixed norms of u. Note however that u seems not locally L2 integrable in time.
However, (2.14) shows that this norm indeed decays to zero in time (even if it is not integrable
in time).

Remark 2.4. The fact that explicit higher regularity is needed in Theorem 2.2 is certainly
a consequence of a sort of quasilinear behavior of gIB. See also [2] for a similar behavior in
a fully quasilinear model, the 1+1 dimensional Born-Infeld. In some sense, although gIB is
well-posed, still shares some bad behavior coming from the originally ill-posed Bad Boussinesq
model (2.2). Note that this phenomenon does not occur in the Good Boussinesq case [24].
Also, Theorem 2.2 can be read as “boundedness in time in H1 ˆ H2 implies L2 ˆ H1 time
decay in compact sets of space”.

Remark 2.5. Note that arbitrary size solitons (2.6)-(2.7) satisfy the hypotheses in Theorem
2.2. Hence, (2.14) it is also true for large solutions.

The techniques that we use to prove Theorem 2.2 are not new, and have been used to
show decay for the Born-Infeld equation [2], the good Boussinesq system [24], the Benjamin-
Bona-Mahony (BBM) equation [12], and more recently in the more complex abcd Boussinesq
system [14, 13]. In all these works, suitable virial functionals were constructed to show decay
to zero in compact/not compact regions of space.

However, the case of gIB is different by several reasons: first of all, the small data long
time dynamics in all the aforementioned models is not singular, in the sense that using well-
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cooked virial identities, one always gets integrability in time of the whole associated energy
norm. This is a nice property present in plenty of Hamiltonian models so far. The gIB case
is different because this last property is not true at all: we only gets integrability in time of
very particular portions of the L2 ˆ H1 norm (see (2.13)). This fact complicates matters,
since proving (2.14) will require to prove additional estimates, not coming from the virial
itself, but instead coming from tricky bounds and preservation of sign conditions under the
nonlocal operator p1´B2

xq
´1, namely the maximum principle. Second, finding the right virial

identity for gIB was a very complicate process, since no clear notion of decay is shown by
computing variations of energy and momentum. For instance, the derivation of a localized
version of the momentum law (see (2.16))

J ptq “
ż

R
ϕ
´x

L

¯

puv ` BxuBxvq pt, xqdx, L " 1,

leads to the badly behaved identity (see (2.39))

d

dt
J ptq “ 1

2L

ż

R
ϕ1
ˆ

u2
`

2

p` 1
|u|p`1

´ v2
´ pBxvq

2

˙

dx

´
1

L

ż

R
ϕ1up1´ B2

xq
´1
pu` |u|p´1uqdx.

No evidence of good sign conditions is clearly shown here. This identity, valid only for the
gIB case, is far from being useful (actually, it is the first case among the above mentioned
equations where it fails to give decay information). The key to prove decay is an additional
term in the virial, called N ptq (see (2.19)-(2.20)), that allows us to recover the positivity of
the virial in (2.40):

´
d

dt
pJ ptq `N ptqq “ 1

2L

ż

R
ϕ1v2dx`

1

2L

ż

R
ϕ1up1´ B2

xq
´1udx

`
p´ 1

pp` 1qL

ż

R
ϕ1|u|p`1dx`

1

2L

ż

R
ϕ1up1´ B2

xq
´1
p|u|p´1uqdx,

and therefore the decay property. In that sense, we believe that estimate (2.40) is a true
finding, since it is the only positivity property that we have found so far in gIB around
compact sets. Note also that at this point we are not able to fully recover the decay of the L2

norm of u locally in space, but instead only a portion of it, expressed in terms of the estimate
ş8

1

ş

R ϕ
1up1´B2

xq
´1upt, xq dxdt ă `8. In order to prove the more demanding decay property

(2.14), we need additional estimates where the hypothesis pu, vq P L8pR, H1 ˆH2q seems to
be essential. We have no direct clue about whether or not this condition is also necessary,
but it seems to appear in several quasilinear models [2].

2.1.3 More about solitons

One important question left open in this paper is the stability/instability of solitons (2.6)-
(2.7). But, as we shall explain below, this question is far from being trivial. However, we
believe that part of the techniques introduced in this work could be useful to show a certain
degree of (asymptotic) stability of the IB soliton.

Let us be more precise. In an influential work, Grillakis, Shatah, Strauss [7] (GSS) ob-
tained sharp conditions for the orbital stability/instability of ground state solutions for a
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class of abstract Hamiltonian systems. This result was extended to another class of Hamil-
tonians of KdV type by Bona, Souganidis and Strauss [3]. Hamiltonian systems as the ones
considered in [7] allow us to introduce the Lyapunov functional F :“ H ´ cI, where H is
the Hamiltonian and I is functional generated by the translation invariance of the equation
(usually, mass or momentum). Here, c is the corresponding speed of the solitary wave. The
stability of the solitary wave is then reduced to the understanding of the second variation of
F , in the sense that B2F ą 0 leads to stability. Also, if the former positive condition is not
satisfied, but the corresponding nonpositive manifold is spanned by two elements (directions)
which are associated to the two degrees of freedom of the solitary waves (scaling and shifts),
it is still is possible prove stability using B2F , but it is also necessary to restrict the class of
perturbations to those which are orthogonal to the nonpositive directions.

Smereka in [28] studied the soliton of IB (2.1) and observed that this soliton fits into the
class of abstract Hamiltonian system studied by GSS. However, it is not possible to apply the
GSS method since an important hypothesis is not satisfied. In fact, he observed that B2F is
nonpositive on an infinite number of directions, where two of them can be associated to the
point spectrum, and the remaining with the continuous spectrum. Therefore, GSS is useless
in this case. However, the same author showed numerical evidence that if dIpQcq{dc ă 0, then
the solitary waves are stable, and if dIpQcq{dc ą 0 the solitary waves seem to be unstable.

In a very important paper, Pego and Weinstein [26] proved (among other things) that Qc

is linearly exponentially unstable in H1 when

1 ă c2
ă

ˆ

3pp´ 1q

4` 2pp´ 1q

˙2

, with p ą 5.

Their method combines the use of the Evans function as well as ODE techniques. They also
showed [27] that the linear equation around Qc for c „ 1 satisfies a convective stability
property, based on the similarity of IB with KdV for small speeds. This result has been
successfully adapted to a more general setting by Mizumachi in a series of works [22, 23].
Whether or not the asymptotic stability results by Martel and Merle [20, 21] can be applied
to this case, is a challenging problem. An interesting result in this direction can be found in
the recent work [18].

Organization of this chapter

This paper is organized as follows: Section 2.2 deals with two new virial identities introduced
in this paper. Section 2.3 is devoted to the proof of Theorem 2.1. In Section 2.4 we prove
Theorem 2.2.

Acknowledgments
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2.2 Virial identities

In this section we present two new virial identities for the gIB equation (2.3). One is related
with the exterior light cone behavior (Theorem 2.1), and the other is useful for understanding
the compact in space region (Theorem 2.2).

Let L ą 0 be a large parameter, and ϕ “ ϕpxq be a smooth, bounded weight function, to
be chosen later. For each t, σ P R and L ą 0, we consider the following functionals.

Ipt;L, σq “ Iptq “1

2

ż

R
ϕ

ˆ

x` σt

L

˙ˆ

u2
` v2

` pBxvq
2
`

2

p` 1
|u|p`1

˙

pt, xqdx, (2.15)

J pt;L, σq “ J ptq “
ż

R
ϕ

ˆ

x` σt

L

˙

puv ` BxuBxvq pt, xqdx. (2.16)

Note that both functionals are generalizations of the energy and momentum introduced in
(2.4)-(2.5), and they are well-defined if pu, vq P H1ˆH2. This fact is essential for the proofs,
and it is the key ingredient in both Theorems 2.1-2.2. The following result describes the time
variation of both functionals.

Lemma 2.3 (Energy and Momentum local variations). For any t P R, one has

d

dt
Iptq “ σ

2L

ż

R
ϕ1
ˆ

u2
` v2

` pBxvq
2
`

2

p` 1
|u|p`1

˙

dx

´
1

L

ż

R
ϕ1vp1´ B2

xq
´1
pu` |u|p´1uqdx, (2.17)

and

d

dt
J ptq “ σ

L

ż

R
ϕ1 puv ` BxuBxvq dx`

1

2L

ż

R
ϕ1
ˆ

u2
`

2

p` 1
|u|p`1

´ v2
´ pBxvq

2

˙

dx (2.18)

´
1

L

ż

R
ϕ1up1´ B2

xq
´1
pu` |u|p´1uqdx.

Proof of Lemma 2.3. We have two identities to prove.

Proof of (2.17). We compute using (2.3):

d

dt
Iptq “ σ

2L

ż

R
ϕ1
ˆ

u2
` v2

` pBxvq
2
`

2

p` 1
|u|p`1

˙

dx

`

ż

R
ϕ
`

uBtu` vBtv ` BxvB
2
xtv ` |u|

p´1uBtu
˘

dx
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

I1ptq

.
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We deal first with the term I1. We have from (2.3)

I1ptq “

ż

R
ϕ
`

uBtu` vBtv ` BxvB
2
xtv ` |u|

p´1uBtu
˘

dx

“

ż

R
ϕ
`

u` B2
xtv ` |u|

p´1u
˘

Btudx`

ż

R
ϕvBtvdx

“

ż

R
ϕBtup1´ B

2
xq
´1
pu` |u|p´1uqdx`

ż

R
ϕvp1´ B2

xq
´1
pu` |u|p´1uqxdx

“

ż

R
ϕBtup1´ B

2
xq
´1
pu` |u|p´1uqdx´

ż

R
Bxpϕvqp1´ B

2
xq
´1
pu` |u|p´1uqdx

“

ż

R

ˆ

ϕBtu´
ϕ1v

L
´ ϕBxv

˙

p1´ B2
xq
´1
pu` |u|p´1uqdx

“´
1

L

ż

R
ϕ1vp1´ B2

xq
´1
pu` |u|p´1uqdx.

Finally, using this last identity, and replacing in the derivative of Iptq, we obtain

d

dt
Iptq “ σ

2L

ż

R
ϕ1
ˆ

u2
` v2

` pBxvq
2
`

2

p` 1
|u|p`1

˙

dx

´
1

L

ż

R
ϕ1vp1´ B2

xq
´1
pu` |u|p´1uqdx,

as desired.

Proof of (2.18). The proof here is similar to the previous one. We have

d

dt
J ptq “ σ

L

ż

R
ϕ1 puv ` BxuBxvq dx`

ż

R
ϕ
`

Btuv ` uBtv ` BxtuBxv ` BxuB
2
xtv

˘

dx

“
σ

L

ż

R
ϕ1 puv ` BxuBxvq dx`

ż

R
ϕ
`

Bxvv ` uBtv ` B
2
xvBxv ` BxuB

2
xtv

˘

dx

“
σ

L

ż

R
ϕ1 puv ` BxuBxvq dx`

1

2

ż

R
ϕBx

`

v2
` pBxvq

2
˘

dx

`

ż

R
ϕ
`

uBtv ` BxuB
2
xtv

˘

dx

“
σ

L

ż

R
ϕ1 puv ` BxuBxvq dx´

1

2L

ż

R
ϕ1
`

v2
` pBxvq

2
˘

dx

`

ż

R
ϕ
`

uBtv ` BxuB
2
xtv

˘

dx.
looooooooooooooomooooooooooooooon

J2ptq
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Now, integrating by parts,

J2ptq “

ż

R
ϕuBtvdx´

ż

R
BxpϕB

2
xtvqudx “

ż

R
ϕuBtvdx´

1

L

ż

R
ϕ1B2

xtvudx´

ż

R
ϕB3

txxvudx

“

ż

R
ϕup1´ B2

xqBtvdx´
1

L

ż

R
ϕ1B2

xtvudx

“

ż

R
ϕup1´ B2

xqp1´ B
2
xq
´1
Bxpu` |u|

p´1uqdx´
1

L

ż

R
ϕ1B2

xtvudx

“

ż

R
ϕuBxpu` |u|

p´1uqdx´
1

L

ż

R
ϕ1B2

xtvudx

“

ż

R
ϕBx

ˆ

1

2
u2
`

p

p` 1
|u|p`1

˙

dx´
1

L

ż

R
ϕ1uB2

xtvdx

“ ´
1

L

ż

R
ϕ1
ˆ

1

2
u2
`

p

p` 1
|u|p`1

˙

dx´
1

L

ż

R
ϕ1up1´ B2

xq
´1
B

2
xpu` |u|

p´1uqdx

“ ´
1

L

ż

R
ϕ1
ˆ

1

2
u2
`

p

p` 1
|u|p`1

˙

dx´
1

L

ż

R
B

2
xpϕ

1uqp1´ B2
xq
´1
pu` |u|p´1uqdx.

looooooooooooooooooooooomooooooooooooooooooooooon

J3ptq

We consider now the term J3ptq:

J3ptq “

ż

R
ppϕ1uqxx ´ ϕ

1u` ϕ1uqp1´ B2
xq
´1
pu` |u|p´1uqdx

“ ´

ż

R
p1´ B2

xqpϕ
1uqp1´ B2

xq
´1
pu` |u|p´1uqdx`

ż

R
ϕ1up1´ B2

xq
´1
pu` |u|p´1uqdx

“ ´

ż

R
ϕ1pu2

` |u|p`1
qdx`

ż

R
ϕ1up1´ B2

xq
´1
pu` |u|p´1uqdx.

Therefore,

d

dt
J ptq “ σ

L

ż

R
ϕ1 puv ` BxuBxvq dx´

1

2L

ż

R
ϕ1
`

v2
` pBxvq

2
˘

dx

´
1

L

ż

R
ϕ1
ˆ

1

2
u2
`

p

p` 1
|u|p`1

˙

dx`
1

L

ż

R
ϕ1pu2

` |u|p`1
qdx

´
1

L

ż

R
ϕ1up1´ B2

xq
´1
pu` |u|p´1uqdx

“
σ

L

ż

R
ϕ1 puv ` BxuBxvq dx´

1

2L

ż

R
ϕ1
`

v2
` pBxvq

2
˘

dx

`
1

L

ż

R
ϕ1
ˆ

1

2
u2
`

1

p` 1
|u|p`1

˙

dx´
1

L

ż

R
ϕ1up1´ B2

xq
´1
pu` |u|p´1uqdx

“
σ

L

ż

R
ϕ1 puv ` BxuBxvq dx`

1

2L

ż

R
ϕ1
ˆ

u2
`

2

p` 1
|u|p`1

´ v2
´ pBxvq

2

˙

dx

´
1

L

ż

R
ϕ1up1´ B2

xq
´1
pu` |u|p´1uqdx.

�
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We introduce now a second functional. Let

N ptq :“
1

2L

ż

R
ϕ1
´x

L

¯

uBxvdx. (2.19)

Lemma 2.4. We have for ϕ1 “ ϕ1
`

x
L

˘

,

d

dt
N ptq “ 1

2L

ż

R
ϕ1
´

pBxvq
2
´ u2

` up1´ B2
xq
´1u

¯

dx

`
1

2L

ż

R
ϕ1
´

´ |u|p`1
` up1´ B2

xq
´1
p|u|p´1uq

¯

dx.

(2.20)

Proof. We compute using (2.3)

2L
d

dt
N ptq “ d

dt

ż

R
ϕ1uBxvdx “

ż

R
ϕ1pBtuBxv ` uBxtvqdx

“

ż

R
ϕ1ppBxvq

2
` up1´ B2

xq
´1
B

2
xpu` |u|

p´1uqqdx

“

ż

R
ϕ1pBxvq

2dx`

ż

R
ϕ1up1´ B2

xq
´1
p|u|p´1uqdx

`

ż

R
ϕ1up1´ B2

xq
´1
pB

2
xu´ u` u` B

2
xp|u|

p´1uqqdx

“

ż

R
ϕ1pBxvq

2dx´

ż

R
ϕ1u2dx`

ż

R
ϕ1up1´ B2

xq
´1udx

`

ż

R
ϕ1up1´ B2

xq
´1
pB

2
x ´ 1` 1qp|u|p´1uqdx

“

ż

R
ϕ1pBxvq

2dx´

ż

R
ϕ1u2dx`

ż

R
ϕ1up1´ B2

xq
´1udx

´

ż

R
ϕ1|u|p`1dx`

ż

R
ϕ1up1´ B2

xq
´1
p|u|p´1uqdx.

The final result arrives after multiplication by 1
2L
. �

2.3 Decay in exterior light cones. Proof of Theorem 2.1
In this Section we prove Theorem 2.1. Recall that we have from (2.17):

d

dt
Iptq “ σ

2L

ż

R
ϕ1
ˆ

u2
` v2

` pBxvq
2
`

2

p` 1
|u|p`1

˙

dx

´
1

L

ż

R
ϕ1vp1´ B2

xq
´1
pu` |u|p´1uqdx. (2.21)

In what follows, fix σ P R such that |σ| ą 1. Controlling this last term requires some work.
Indeed, we shall need the following definition (see [15, 14, 12] and references therein for more
details)
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Definition 2.5 (Canonical variable). Let u P L2 be a fixed function. We say that f is
canonical variable for u if f uniquely solves the equation

p1´ B2
xqf “ u, f P H2

pRq. (2.22)

In this case, we denote f “ p1´ B2
xq
´1u.

Using f as canonical variable for u, we obtain the following result:

Lemma 2.6. One has
ż

R
ϕ1u2dx “

ż

R
ϕ1pf 2

` 2pBxfq
2
` pB

2
xfq

2
qdx´

1

L2

ż

R
ϕ3f 2dx, (2.23)

and
ż

R
ϕ1vp1´ B2

xq
´1
pu` |u|p´1uqdx “

ż

R
ϕ1vpf ` p1´ B2

xq
´1
|u|p´1uqdx. (2.24)

Proof. Computing,
ż

R
ϕ1u2dx “

ż

R
ϕ1pf ´ B2

xfq
2dx “

ż

R
ϕ1pf 2

` pB
2
xfq

2
´ 2fB2

xfqdx.

Integrating by parts, we have
ż

R
ϕ1fB2

xfdx “ ´

ż

R
ϕ1pBxfq

2dx`
1

2L2

ż

R
ϕ3f 2dx.

Therefore,
ż

R
ϕ1u2dx “

ż

R
ϕ1pf 2

` 2pBxfq
2
` pB

2
xfq

2
qdx´

1

L2

ż

R
ϕ3f 2dx.

This proves (2.23). The proof of (2.24) is direct. �

Using Lemma 2.6 we can rewrite (2.21) as follows:

d

dt
Iptq “ Qptq ` SQptq ` PQptq,

where

Qptq :“
σ

2L

ż

R
ϕ1
`

f 2
` 2pBxfq

2
` pB

2
xfq

2
` v2

` pBxvq
2
˘

dx´
1

L

ż

R
ϕ1vfdx, (2.25)

SQptq :“ ´
σ

2L3

ż

R
ϕ3f 2dx, (2.26)

PQptq :“
σ

Lpp` 1q

ż

R
ϕ1|u|p`1dx´

1

L

ż

R
ϕ1vp1´ B2

xq
´1
|u|p´1udx. (2.27)

Now we are ready to prove a first virial estimate.
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Lemma 2.7. Assume σ “ ´p1` bq ă ´1 and ϕ “ tanh. Then one has

Qptq ÀL,b ´
ż

R
ϕ1
`

u2
` v2

` pBxvq
2
˘

dx. (2.28)

Similarly, assume now σ “ 1` a ą 1 and ϕ “ ´ tanh. Then one has

Qptq ÀL,a ´
ż

R
|ϕ1|

`

u2
` v2

` pBxvq
2
˘

dx. (2.29)

Proof. First we prove (2.28). We concentrate on Qptq in (2.25). Note that, if ϕ1 ą 0, we have

ˇ

ˇ

ˇ

ˇ

ż

R
ϕ1vfdx

ˇ

ˇ

ˇ

ˇ

ď
1

2

ż

R
ϕ1v2dx`

1

2

ż

R
ϕ1f 2dx.

Consequently, if b ą 0, σ :“ ´p1` bq ă ´1, and ϕ “ tanh, we have in (2.25)

Qptq ď σ

2L

ż

R
ϕ1
`

f 2
` 2pBxfq

2
` pB

2
xfq

2
` v2

` pBxvq
2
˘

dx

`
1

2L

ż

R
ϕ1v2dx`

1

2L

ż

R
ϕ1f 2dx

“
σ ` 1

2L

ż

R
ϕ1
`

f 2
` v2

˘

dx`
σ

2L

ż

R
ϕ1
`

2pBxfq
2
` pB

2
xfq

2
` pBxvq

2
˘

dx

“
´b

2L

ż

R
ϕ1
`

f 2
` v2

˘

dx´
p1` bq

2L

ż

R
ϕ1
`

2pBxfq
2
` pB

2
xfq

2
` pBxvq

2
˘

dx.

Now we need the following result about equivalence of norms in terms of f and u.

Lemma 2.8 ([12, 14]). Let f be as in (2.22). Let ϕ̃ be a positive, smooth, bounded weight
function satisfying |ϕ̃1| ď λϕ̃ for some small but fixed 0 ă λ ! 1. Then, for any a1, a2, a3 ą 0,
there exist c1, C1 ą 0, depending of aj and λ ą 0, such that

c1

ż

R
ϕ̃u2dx ď

ż

R
ϕ̃
`

a1f
2
` a2pBxfq

2
` a3pB

2
xfq

2
˘

dx ď C1

ż

R
ϕ̃u2dx. (2.30)

Using Lemma 2.8 with λ “ L´1 ! 1 and ϕ̃ “ ϕ1, we conclude

Qptq ÀL,b ´
ż

R
ϕ1pf 2

` pBxfq
2
` pB

2
xfq

2
` v2

` pBxvq
2
q

„ ´

ż

R
ϕ1
`

u2
` v2

` pBxvq
2
˘

. (2.31)

This proves (2.28). Now we sketch the proof of (2.29), which is similar to the previous case.
Set σ “ 1` a, a ą 0. Choosing ϕ “ ´ tanh it is clear that ϕ1 “ ´sech2

ă 0. From (2.25) we
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have

Qptq “ ´|σ|
2L

ż

R
|ϕ1|

`

f 2
` 2pBxfq

2
` pB

2
xfq

2
` v2

` pBxvq
2
˘

dx`
1

L

ż

R
|ϕ1|vfdx

ď ´
|σ|

2L

ż

R
|ϕ1|

`

f 2
` 2pBxfq

2
` pB

2
xfq

2
` v2

` pBxvq
2
˘

dx

`
1

2L

ż

R
|ϕ1|v2dx`

1

2L

ż

R
|ϕ1|f 2dx

“ ´
a

2L

ż

R
|ϕ1|

`

f 2
` v2

˘

dx´
|σ|

2L

ż

R
|ϕ1|

`

2pBxfq
2
` pB

2
xfq

2
` pBxvq

2
˘

dx.

Therefore, by Lemma 2.8 again,

Qptq ÀL,a ´
ż

R
|ϕ1|

`

u2
` v2

` pBxvq
2
˘

dx.

This ends the proof of (2.29). �

Now we consider the two terms in (2.26) and (2.27). First of all, note that in both cases
(2.28) and (2.29),

ˇ

ˇ

ˇ

ˇ

σ

2L3

ż

R
ϕ3f 2dx

ˇ

ˇ

ˇ

ˇ

À
1

L3

ż

R
|ϕ1|f 2dx À

1

L3

ż

R
|ϕ1|u2dx.

Therefore, for L large enough,

Qptq ` SQptq ÀL,a,b ´
ż

R
|ϕ1|

`

u2
` v2

` pBxvq
2
˘

dx. (2.32)

Finally, note that in both cases (2.28) and (2.29),

σ

Lpp` 1q

ż

R
ϕ1|u|p`1dx “ ´

|σ|

Lpp` 1q

ż

R
|ϕ1||u|p`1dx ď 0.

Finally, we deal with the last term in (2.27):
ˇ

ˇ

ˇ

ˇ

1

L

ż

R
ϕ1vp1´ B2

xq
´1
|u|p´1udx

ˇ

ˇ

ˇ

ˇ

ď
maxta, bu

8L

ż

R
|ϕ1|v2

`
C

maxta, buL

ż

R
|ϕ1|

`

p1´ B2
xq
´1
|u|p´1u

˘2
.

(2.33)

The first term on the RHS can be absorbed by Qptq in (2.32). In what follows, we need the
following auxiliary result.

Lemma 2.9 ([15], see also [14]). The operator p1 ´ B2
xq
´1 satisfies the comparison priciple:

for any u, v P H1

v ď w ùñ p1´ B2
xq
´1v ď p1´ B2

xq
´1w. (2.34)
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Now, coming back to (2.33), suppose u ě 0. Then 0 ď |u|p´1u ď }u}p´1
L8 u, so that using

(2.10) (this is the only place where we use this hypothesis)

0 ď p1´ B2
xq
´1
p|u|p´1uq ď }u}p´1

L8 p1´ B
2
xq
´1u Àa,b ε

p´1f.

(Note that ε depends on a, b.) Consequently, in this region

|ϕ1|pp1´ B2
xq
´1
p|u|p´1uqq2 “ |ϕ1|pp1´ B2

xq
´1
p|u|p´1uqqpp1´ B2

xq
´1
p|u|p´1uqq

À ε2pp´1q
|ϕ1|f 2.

If now u ă 0, just note that

|ϕ1|pp1´ B2
xq
´1
p|u|p´1uqq2 “ |ϕ1|pp1´ B2

xq
´1
p| ´ u|p´1

p´uqqq2,

which leads to the previous case. Finally, we conclude that the second term on the RHS of
(2.33) is bounded by

C

maxta, buL

ż

R
|ϕ1|

`

p1´ B2
xq
´1
|u|p´1u

˘2
À
ε2pp´1q

L

ż

R
|ϕ1|f 2dx

Consequently, for ε small we obtain

d

dt
Iptq “ Qptq ` SQptq ` PQptq ÀL,a,b ´

ż

R
|ϕ1|

`

u2
` v2

` pBxvq
2
˘

dx. (2.35)

Integrating in time, we have proved (2.12) in Theorem 2.1.

2.3.1 End of proof of Theorem 2.1

Now we conclude the proof of Theorem 2.1. It only remains to prove (2.11). First, we
prove decay in the right hand side region, namely pp1 ` bqt,`8q, b ą 0. Now we choose
ϕpxq “ 1

2
p1` tanhpxqq, σ “ ´p1 ` bq, σ̃ “ ´p1 ` b̃q with b ą 0 and b̃ “ b{2. Consider the

modified energy functional, for t P r2, t0s:

It0ptq :“
1

2

ż

R
ϕ

ˆ

x` σt0 ´ σ̃pt0 ´ tq

L

˙ˆ

u2
` v2

` pBxvq
2
`

2

p` 1
|u|p`1

˙

dx. (2.36)

Note that σ ă σ̃ ă 0. From Lemma 2.3 and proceeding exactly as in (2.35), we have

d

dt
It0ptq Àb,L ´

ż

R
sech2

ˆ

x` σt0 ´ σ̃pt0 ´ tq

L

˙

`

u2
` v2

` pBxvq
2
˘

dx ď 0 (2.37)

what it means that the new functional It0 is decreasing in r2, t0s. Therefore, we have
ż t0

2

d

dt
It0ptqdt “ It0pt0q ´ It0p2q ď 0 ùñ It0pt0q ď It0p2q.

On the other hand, since limxÑ´8 ϕpxq “ 0, we have

lim sup
tÑ8

ż

R
ϕ

ˆ

x´ βt´ γ

L

˙

`

u2
` v2

` pBxvq
2
˘

pδ, xqdx “ 0, (2.38)
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for β, γ, δ ą 0 fixed. This yields

0 ď

ż

R
ϕ

ˆ

x´ p1` bqt0
L

˙

`

u2
` v2

` pBxvq
2
˘

pt0, xqdx

ď

ż

R
ϕ

˜

x´ b
2
t0 ´ p2` bq

L

¸

`

u2
` v2

` pBxvq
2
˘

p2, xqdx,

which implies,

lim sup
tÑ8

ż

R
ϕ

ˆ

x´ p1` bqt

L

˙

`

u2
` v2

` pBxvq
2
˘

pt, xqdx “ 0.

In view of (2.35), an analogous argument can be applied for the left side, i.e p´8,´p1`aqtq,
but in this case we choose ϕpxq “ 1

2
p1´ tanhpxqq. The proof of (2.11) is complete.

2.4 Decay in compact sets: Proof of Theorem 2.2

Let us find the key virial estimate to understand the dynamics on compact sets in space.
Recall that from (2.18), if σ “ 0, we have the identity on J :

d

dt
J ptq “ 1

2L

ż

R
ϕ1
ˆ

u2
`

2

p` 1
|u|p`1

´ v2
´ pBxvq

2

˙

dx

´
1

L

ż

R
ϕ1up1´ B2

xq
´1
pu` |u|p´1uqdx.

(2.39)

Assume that ϕ1 ą 0. From (2.39) and (2.20) we obtain the positivity estimate

´
d

dt
pJ ptq `N ptqq “ 1

2L

ż

R
ϕ1v2dx`

1

2L

ż

R
ϕ1up1´ B2

xq
´1udx

`
p´ 1

pp` 1qL

ż

R
ϕ1|u|p`1dx`

1

2L

ż

R
ϕ1up1´ B2

xq
´1
p|u|p´1uqdx.

(2.40)

Note the surprising fact that each term in the RHS above is nonnegative.

Lemma 2.10. For any ϕ bounded smooth and such that ϕ1 ą 0, and for any u P H1pRq,
ż

R
ϕ1up1´ B2

xq
´1
p|u|p´1uqdx ě 0. (2.41)

Remark 2.6. Note that this result is independent of the size of u. Note also that in order
to prove this lemma, we need at least u P H1{2`pRq. Therefore, we see that pu, vq P L2 ˆH1

(the energy space) seems not sufficient for our purposes.

Proof of Lemma 2.10. Suppose ϕ1 ą 0. If u ě 0, we have |u|p´1u ě 0. From Lemma 2.9 we
conclude

ż

R
ϕ1up1´ B2

xq
´1
p|u|p´1uqdx ě 0.

In a similar way, if the case u ď 0 follows. �
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From the previous Lemma and (2.41) we obtain

´
d

dt
pJ ptq `N ptqq

ě
1

2L

ż

R
ϕ1v2dx`

1

2L

ż

R
ϕ1up1´ B2

xq
´1udx`

p´ 1

pp` 1qL

ż

R
ϕ1|u|p`1dx.

(2.42)

This last estimate tells us exactly what are the quantities in gIB which integrate in time. As
far as we could understand, it was not possible to get integrability in time of the L2 norm of
u, nor Bxv. A corollary from this last estimate is the following result.

Corollary 2.11. Let pu, vq be a global solution of (2.3) in the class pC X L8qpR, H1 ˆH2q,
with initial data pu, vqpt “ 0q “ pu0, v0q P H

1ˆH2. Let ϕpxq :“ tanh pxq in (2.40), such that
ϕ1 “ sech2

ą 0. Then we have the following consequences of (2.42):

1. Integrability in time:
ż

R

ż

R
sech2

´x

L

¯

pv2
` up1´ B2

xq
´1u` |u|p`1

qdxdt Àu0,v0,L 1. (2.43)

2. Sequential decay to zero: there exists tn Ò 8 such that

lim
nÑ8
Iptnq “ 0. (2.44)

Remark 2.7. Note that the smallness condition on pu, vq is not needed here; only bounded-
ness in time of the H1ˆH2 norm. Also, property (2.44) is not trivially obtained from (2.43)
as in previous works; some additional estimates are needed in order to ensure full decay along
a subsequence of the local energy norm present in Iptnq.

Remark 2.8 (About the equivalence of norms for canonical variables). Note that if f “
p1´ B2

xq
´1u, then for L large,

ż

R
sech2

´x

L

¯

up1´ B2
xq
´1udx “

ż

R
sech2

´x

L

¯

fpf ´ B2
xfqdx

“

ż

R
sech2

´x

L

¯

pf 2
` pBxfq

2
qdx`

1

L

ż

R
psech2

q
1
´x

L

¯

fBxfdx

Á
1

2

ż

R
sech2

´x

L

¯

pf 2
` pBxfq

2
qdx.

Consequently, from (2.43),
ż

R

ż

R
sech2

´x

L

¯

pf 2
` pBxfq

2
qdxdt Àu0,v0,L 1.

This information will be useful in what follows.
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Proof of Corollary 2.11. Estimate (2.43) is direct from (2.42). On the other hand, from
(2.43) we clearly have the existence of an increasing sequence tn Ò 8 such that

lim
nÑ`8

ż

R
sech2

´x

L

¯

pv2
` up1´ B2

xq
´1u` |u|p`1

qptn, xqdxdt “ 0.

From this fact and the L8 boundedness in time of u we easily have

lim
nÑ8

ż

R
sech2

´x

L

¯

u2
ptn, xqdx “ 0.

Indeed, from Remark 2.8 we have

lim
nÑ8

ż

R
sech2

´x

L

¯

pf 2
` pBxfq

2
qptn, xqdx “ 0.

Hence, using interpolation, and L " 1,
›

›

›
sech2

´x

L

¯

B
2
xfptnq

›

›

›

2

L2
À

›

›

›
sech2

´x

L

¯

Bxfptnq
›

›

›

L2

›

›

›
B

3
x

´

sech2
´x

L

¯

fptnq
¯
›

›

›

L2

À

›

›

›
sech2

´x

L

¯

Bxfptnq
›

›

›

L2
,

therefore we obtain the desired result. Finally, again from interpolation, the boundedness of
vptnq in H2, L " 1, we have the estimate

›

›

›
sech2

´x

L

¯

Bxvptnq
›

›

›

2

L2
À

›

›

›
sech2

´x

L

¯

vptnq
›

›

›

L2

›

›

›
B

2
x

´

sech2
´x

L

¯

vptnq
¯
›

›

›

L2

À

›

›

›
sech2

´x

L

¯

vptnq
›

›

›

L2
,

so } sech2
`

x
L

˘

Bxvptnq}L2 Ñ 0 as nÑ `8. This proves (2.44). �

2.4.1 End of proof of Theorem 2.2

Consider Iptq in (2.15) with σ “ 0, ϕ “ sech2. From (2.17) we have

d

dt
Iptq “ ´ 1

L

ż

R
ϕ1vp1´ B2

xq
´1
pu` |u|p´1uqdx.

Let g :“ p1´ B2
xq
´1pu` |u|p´1uq, so that g “ f ` p1´ B2

xq
´1p|u|p´1uq. We have

d

dt
Iptq “ ´ 1

L

ż

R
ϕ1vgdx “ ´

1

L

ż

R
ϕ1v

`

f ` p1´ B2
xq
´1
p|u|p´1uq

˘

dx.

Therefore,
ˇ

ˇ

ˇ

ˇ

d

dt
Iptq

ˇ

ˇ

ˇ

ˇ

À
1

L

ż

R
sech2

´x

L

¯

pv2
` f 2

` pp1´ B2
xq
´1
p|u|p´1uqq2qdx. (2.45)

Suppose u ě 0. Then 0 ď |u|p´1u ď }u}p´1
L8 u, so that from Lemma 2.9

0 ď p1´ B2
xq
´1
p|u|p´1uq ď }u}p´1

L8 p1´ B
2
xq
´1u À f.
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(Here we use the boundedness character of u in L8.) Consequently, in this region

sech2
´x

L

¯

pp1´ B2
xq
´1
p|u|p´1uqq2 “ sech2

´x

L

¯

pp1´ B2
xq
´1
p|u|p´1uqqpp1´ B2

xq
´1
p|u|p´1uqq

À sech2
´x

L

¯

f 2.

If now u ă 0, just note that

sech2
´x

L

¯

pp1´ B2
xq
´1
p|u|p´1uqq2 “ sech2

´x

L

¯

pp1´ B2
xq
´1
p| ´ u|p´1

p´uqqq2,

which leads to the previous case. Finally, we conclude that (2.45) is bounded by
ˇ

ˇ

ˇ

ˇ

d

dt
Iptq

ˇ

ˇ

ˇ

ˇ

À
1

L

ż

R
sech2

´x

L

¯

pv2
` f 2

qdx.

Integrating in rt, tns, we have (using Remark 2.8)

|Iptq ´ Iptnq| À
ż tn

t

1

L

ż

R
sech2

´x

L

¯

pv2
` f 2

qdxdt.

Sending n to infinity, we have from (2.44) that Iptnq Ñ 0 and

|Iptq| À
ż 8

t

1

L

ż

R
sech2

´x

L

¯

pv2
` f 2

qdxdt.

Finally, if t Ñ 8, we conclude. Since for L2 ˆ H1 data Iptq Á }pu, vqptq}2L2ˆH1 , this proves
Theorem 2.2.

45



Bibliography

[1] M. A. Alejo, F. Cortez, C. Kwak and C. Muñoz, On the dynamics of zero-speed solutions
for Camassa-Holm type equations, preprint arXiv:1810.09594, to appear in IMRN.

[2] M. A. Alejo, and C. Muñoz, Almost sharp nonlinear scattering in one-dimensional Born-
Infeld equations arising in nonlinear Electrodynamics, Proc. AMS 146 (2018), no. 5,
2225–2237.

[3] J. Bona, P. Souganidis, and W. Strauss, Stability and instability of solitary waves of
Korteweg-de Vries type, Proc. R. Soc. Lond. A 1987 411, 395–412.

[4] J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d’un canal
rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses
sensiblement pareilles de la surface au fond, J. Math. Pure Appl. (2) 17 (1872), 55–108.

[5] E. Cerpa, and E. Crépeau, On the control of the improved Boussinesq equation, SIAM
J. Control Optim., Vol. 56, No. 4, 2018, pp. 3035–3049.

[6] Chree, C. Longitudinal Vibrations of a Circular Bar. The Quarterly Journal of Pure and
Applied Mathematics, 21, 287-298,(1886).

[7] M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of
symmetry. I. J. Funct. Anal. 74 (1987), no. 1, 160-197.

[8] F. Linares, Notes on Boussinesq Equation, available at http://preprint.impa.br/
FullText/Linares__Fri_Dec_23_09_48_59_BRDT_2005/beq.pdf, 71pp. (2005).

[9] N. Kishimoto, Sharp local well-posedness for the “good” Boussinesq equation. J. Differ.
Eqns. 254, 2393–2433 (2013).

[10] S. Wang, G. Chen. Small amplitude solutions of the generalized IMBq equation. J. Math.
Anal. Appl. 274(2002) 846–866.

[11] Y. Cho, T. Ozawa, Remarks on Modified Improved Boussinesq Equations in One Space
Dimension, Proceedings: Mathematical, Physical and Engineering Sciences, Vol. 462,
No. 2071 (2006), pp. 1949–1963.

[12] C. Kwak, C. Muñoz, Extended Decay Properties for Generalized BBM Equations, to
appear in Fields Institute Comm. preprint 2018.

46

http://preprint.impa.br/FullText/Linares__Fri_Dec_23_09_48_59_BRDT_2005/beq.pdf
http://preprint.impa.br/FullText/Linares__Fri_Dec_23_09_48_59_BRDT_2005/beq.pdf


[13] C. Kwak, and C. Muñoz, Asymptotic dynamics for the small data weakly dispersive one-
dimensional hamiltonian ABCD system, preprint arXiv:1902.00454. To appear in T. of
the AMS.

[14] C. Kwak, C. Muñoz, F. Poblete, and J.C. Pozo, The scattering problem for the Hamilto-
nian abcd Boussinesq system in the energy space, J. Math. Pures Appl. (9) 127 (2019),
121–159.

[15] K. El Dika, Smoothing effect of the generalized BBM equation for locelized solutions
moving to the right. Discrete and Contin. Dyn. Syst. 12(2005), no 5, 973–982.

[16] M. Kowalczyk, Y. Martel, and C Muñoz, Kink dynamics in the φ4 model: asymptotic
stability for odd perturbations in the energy space, J. of the AMS 30 (2017), 769–798.

[17] M. Kowalczyk, Y. Martel, and C Muñoz, Nonexistence of small, odd breathers for a class
of nonlinear wave equations, L. Math. Phys. May 2017, Vol. 107, 5, pp. 921–931.

[18] M. Kowalczyk, Y. Martel, and C Muñoz, Soliton dynamics for the 1D NLKG equation
with symmetry and in the absence of internal modes, preprint arXiv:1903.12460.

[19] Y. Liu, Existence and Blow up of Solutions of a Nonlinear Pochhammer-Chree Equation,
Indiana University Mathematics Journal Vol. 45, No. 3 (Fall, 1996), pp. 797–816.

[20] Y. Martel, and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV
equations, Arch. Ration. Mech. Anal. 157 (2001), no. 3, 219–254.

[21] Y. Martel, and F. Merle, Asymptotic stability of solitons for subcritical gKdV equations
revisited, Nonlinearity, 18 (2005), no. 1, 55–80.

[22] T. Mizumachi, Stability of line solitons for the KP-II equation in R2, Mem. Amer. Math.
Soc. 238 (2015), no. 1125, vii+95 pp.

[23] T. Mizumachi, Stability of line solitons for the KP-II equation in R2. II. Proc. Roy. Soc.
Edinburgh Sect. A 148 (2018), no. 1, 149–198.

[24] C. Muñoz, F. Poblete, and J.C. Pozo, Scattering in the energy space for Boussinesq
equations, Comm. Math. Phys. 361 (2018), no. 1, 127–141.

[25] L. Pochhammer, Ueber die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in
einem unbegrenzten isotropen Kreiscylinder. Journal für die Reine und Angewandte
Mathematik 81 (1876): 324-336.

[26] R. Pego, M. Weinstein, Eigenvalues, and instabilities of solitary waves. Philos. Trans.
Roy. Soc. London Ser. A 340 (1992), no. 1656, 47–94.

[27] R. Pego, M. Weinstein, Convective Linear Stability of Solitary Waves for Boussinesq
Equations, Studies in Applied Mathematics, 99, pp. 311-375 (1997).

[28] P. Smereka, A remark on the solitary wave stability for a Boussinesq equation. Nonlinear

47



dispersive wave systems (Orlando, FL, 1991), 255-263, World Sci. Publ., River Edge,
NJ, 1992.

[29] Whitham, Linear and nonlinear waves, Pure and Applied Mathematics, John Wiley,
1974, 636pp.

48



Chapter 3

Ill-posedness issues on pabcdq-Boussinesq
system

Abstract. In this paper, we consider the Cauchy problem for pabcdq-Boussinesq system posed on one- and
two-dimensional Euclidean spaces. This model, initially introduced by Bona, Chen, and Saut [5, 6], describes
a small-amplitude waves on the surface of an inviscid fluid, and is derived as a first order approximation
of incompressible, irrotational Euler equations. We mainly establish the ill-posedness of the system under
various parameter regimes, which generalize the result of one-dimensional BBM-BBM case by Chen and Liu
[14]. Among results established here, we emphasize that the ill-posedness result for two-dimensional BBM-
BBM system is optimal. The proof follows from an observation of the high to low frequency cascade present
in nonlinearity, motivated by Bejenaru and Tao [10].
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3.1 Introduction

3.1.1 Setting

As a rigorous derivation from the free Eulerian formulation of water waves, Bona, Chen, and
Saut [6] proposed the model called one-dimensional pabcdq-Boussinesq, as

1D pabcdq

$

&

%

p1´ bB2
xqBtη ` BxpaB

2
xu` u` uηq “ 0,

p1´ dB2
xqBtu` BxpcB

2
xη ` η `

1

2
u2
q “ 0,

pt, xq P Rˆ R. (3.1)

As two-dimensional model, Bona, Colin and Lannes [7], formulated 2D pabcdq as

2D pabcdq

$

&

%

p1´ b∆qBtη `∇ ¨ pa∆~u` ~u` ~uηq “ 0,

p1´ d ∆qBt~u`∇
ˆ

c∆η ` η `
1

2
|~u|2

˙

“ 0,
pt,xq P Rˆ R2. (3.2)

Here, unknowns η and u (also ~u) describe the free surface and the horizontal velocity of
fluid, respectively. Both systems (3.1) and (3.2) are all first-order approximations of the
incompressible and irrotational Euler equations assuming the small parameters defined by

α “
A

h
! 1, β “

h2

`2
! 1, α „ β,

where A and ` are typical wave amplitude and wavelength, and h is the constant depth.
Such assumptions sometimes referred to as small-amplitude long waves or Boussinesq or
simply shallow water waves regimes (see [9]). In the two-dimensional case, the irrotational
hypothesis can be (mathematically) characterized as

∇^ ~u “ 0, (3.3)
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which is preserved by the evolution. Note that the condition (3.3) is not necessary in the
one-dimensional case since there is a single horizontal direction. See also [1] for relevant
result.

The parameters pa, b, c, dq in both (3.1) and (3.2) are not arbitrary and hold the relations
(see [6])

a “
1

2

ˆ

θ2
´

1

3

˙

ν, b “
1

2

ˆ

θ2
´

1

3

˙

p1´ νq,

c “
1

2

`

1´ θ2
˘

ν ´ τ, d “
1

2
p1´ θ2

qp1´ µq,

where θ P r0, 1s appears in the change of scaled horizontal velocity corresponding to the
depth p1 ´ θqh below the undisturbed surface, τ is the surface tension (τ ě 0), and ν, µ are
arbitrary real numbers ensuring

a` b “
1

2

ˆ

θ2
´

1

3

˙

, c` d “
1

2
p1´ θ2

q ´ τ, a` b` c` d “
1

3
´ τ.

The dispersive properties of the systems depend on the choice of the parameters. Precisely,
the pair pa, cq enhances the dispersion, while the pair pb, dq weakens it (see [14]). This
versatility makes the pabcdq-Boussinesq model interesting and challenging.

Two systems 1D pabcdq and 2Dpabcdq allow the following energies

E1Dru, ηsptq “
1

2

ż

R
p´au2

x ´ cη
2
x ` u

2
p1` ηq ` η2

qpt, xqdx,

and
E2Dr~u, ηsptq “

1

2

ż

R2

p´a|∇~u|2 ´ c|∇η|2 ` |~u|2p1` ηq ` η2
qpt, xqdx,

respectively, that both are conserved in time when b “ d and a, c ă 0. Thus local well-
posedness in H1-level space is immediately extended to the global one at least for small data.
Note that Sobolev embedding in two-dimensional case is not enough to control L8 norm of
η, but Gagliardo-Nirenberg interpolation inequality can control η|~u|2.

These models have been extensively studied (in various perspective) in the literature, see
e.g. [5, 6, 11, 15, 22, 29, 27, 14, 4, 28, 21, 23, 20, 30, 31]. Among other them, we focus on
Cauchy problems for these systems. In [5, 6], Bona, Chen and Saut first studied local and
global well-posedness of linear and nonlinear problems, and established the following results
(the following results only exhibit the case when H (see (3.12)) has order 0):

1. the generic regime in HspRq ˆHspRq, for s ě 0.

2. the BBM-BBM regime in HspRq ˆHspRq, for s ě 0.

3. the KdV-KdV regime in HspRq ˆHspRq, for s ą 3{4.

In [15], Dougalis, Mitsotakis, and Saut proved that two-dimensional pabcdq Boussinesq system
under the generic regime is locally well-posed in HspR2q ˆHspR2q for s ą 0. Note that this
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local result is indeed valid in L2pR2q ˆ L2pR2q by improving Grisvard’s bilinear estimate
[16], see Appendix 3.A (Lemma 3.16). In [22], Linares, Pilod, and Saut focused on the
strongly dispersive (KdV-KdV system) regime, and established local well-posedness result
in HspR2q ˆ HspR2q for s ą 3{2. Previously, Schonbek [32] and Amick [2] considered a
version of the original Boussinesq system (a “ c “ b “ 0, b “ 1{3), and proved global well-
posedness under a non-cavitation condition via parabolic regularization. Later, Burteau [11]
improved it without a non-cavitation condition. Studies on long time existence of solutions
have been done in, for instance, [29, 24, 28, 30, 31]. In these works, the authors established
the well-posedness for large time with appropriate time scales.

In contrast with results mentioned above, this paper concerns with the ill-posed issues on
one- and two-dimensional pabcdq-Boussinesq systems in the following cases:

1. Generic regime
a, c ă 0, b, d ą 0, (3.4)

2. KdV-KdV regime

a “ c “
1

6
, b “ d “ 0, (3.5)

3. BBM-BBM regime

a “ c “ 0, b “ d “
1

6
. (3.6)

As far as the authors know, there is only few results for ill-posedness issues. Chen and
Liu [14] established the (mild) ill-posedness result for one-dimensional system under the
weakly dispersive regime (1D BBM-BBM system) below L2. The main idea follows the
abstract theory developed by Bejenaru-Tao [10]. The authors also discussed the formation
of singularities and provided blow-up criteria. Recently, [3] Ambrose, Bona and Milgrom
have established the ill-posedness of the one-dimensional periodic Kaup system (a “ 1{3 and
b “ c “ d “ 0) is ill-posed in any positive regularity Sobolev space, in the sense that the
flow map is discontinuous at the origin. They also concerned with the case that the generic
condition (3.4) is negated.

3.1.2 Main results

Before presenting our results, we clarify what we mean “ill-posedness". To do this, we first
define “well-posedness" of Partial Differential equations problems. As the author’s best knowl-
edge, The French mathematician Jacques Hadamard initially proposed the concept of well-
posed problems as

Definition 3.1 (Well-posedness). The mathematical models of physical phenomena should
have the following properties:

• there exists a solution,
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• the solution is unique,

• the solution behaves continuously with the initial condition.

Obviously, problems that are not well-posed in the sense of Hadamard are termed ill-
posed, in other words, invalidity of one of above properties makes problems be ill-posed. In
this paper, in order to obtain ill-posedness results, we attack the third property in Definition
3.1. A precise strategy follows the negation of Proposition 3.5.

We are now ready to present our main theorems.

Theorem 3.2. The 1D-abcd system (3.1) is ill-posed in the sense that the flow map from
initial data to solutions is discontinuous at the origin in HspRq ˆHspRq, where

1. s ă ´1
2
for the generic case (see (3.4)).

2. s ă ´3
2
for the KdV-KdV case (see (3.5)).

Analogously,

Theorem 3.3. The 2D-abcd system (3.2) is ill-posed in the sense that the flow map from
initial data to solutions is discontinuous at the origin in HspR2q ˆHspR2q, where

1. s ă ´1
2
for the generic case (see (3.4)).

2. s ă ´3
2
for the KdV-KdV case (see (3.5)) .

3. s ă 0 for the BBM-BBM case (see (3.6)).

Remark 3.1. The BBM-BMM case of the one-dimensional pabcdq-Boussinesq system has
been dealt with by Chen and Liu [14]. However, the two-dimensional BBM-BBM system is
considered here for the first time, and together with Appendix 3.A, we completely resolve
Cauchy problem for it.

The proofs of theorems follows the same idea developed by Bejenaru and Tao [10], and
motivated by an observation as follows: All nonlinear interactions are quadratic, thus high
ˆ high interaction components over an appropriate short time depending on the frequency
cause resonances near the origin of the resulting frequency. For this reason, the flow cannot
disperse the high-frequency energy for this time so that the smoothness of the flow breaks
below certain regularity. Note that this observation is simply applied to a one-dimensional
problem, but it is non-trivial to construct initial data that can cause resonance in two-
dimensional case.

It is easy to see that pabcdq systems are completely coupled systems, thus an attempt
at decoupling of (at least) the linear system must take precedence in order to observe its
propagators. Under generic regime, standard transforms (see (3.11) and (3.26) for one- and
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two-dimensional cases, respectively) diagonalize the linear operator with eigenvalues σ (see
(3.13)) for one-dimensional case and ρ (3.22) for two-dimensional case of order 0, while those
under BBM-BBM and KdV-KdV regimes have order ´2 and 2, respectively. The difference
of orders of eigenvalues directly affect the dispersive properties of solutions, thus so flow maps
of stronger dispersive systems can take rougher initial data. Such observations can be seen
in, for instance, Lemma 3.8, and relevant lemmas.

Our results are coherent with one-dimensional BBM-BBM system, generalized BBM equa-
tion and KdV equation. On one hand, In [8], the authors established that the flow map is
not of class C2, and warned that their result is not suitable to assert that the BBM-equation
is ill-posed in Hs for negative values of s. Conversely, in [12], the authors proved the discon-
tinuity of the flow map at the origin in Hs for s ă 0. On the other hand, our result for the
KdV-KdV system differs from the ill-posedness result of the original KdV equation estab-
lished by Molinet [25]. The proof follows from an argument of functional analysis together
with the discontinuity Miura transform and the validity of Kato smoothing effect of mKdV
solutions. However, the same argument may not apply to the KdV-KdV system, since it has
no such good structure. We also refer to, e.g., [17, 18, 19, 13, 26, 14] for relevant ill-posedness
problems of single equations.

In Appendix 3.A, we give a bilinear estimates of p1 ´ ∆q∇pfgq, which slightly improve
Grisvard’s result [16]. This improvement enable us to obtain the local well-posedness of
two-dimensional pabcdq system under generic and BBM-BBM regimes in L2pR2q ˆ L2pR2q ˆ

L2pR2q. As mentioned in Remark 3.1, the well-posedness result for two-dimensional BBM-
BBM system, in addition to Theorem 3.3 (3), asserts the completion of Cauchy problem for
it. The proof is based on Littlewood-Paley theory, and is completed by a delicate observation
of frequency interactions.

Organization of this chapter

This paper is organized as follows: Section 3.2 devotes to introducing abstract and general
well- and ill-posedness arguments developed by Bejenaru and Tao [10], and to representing
Boussinesq equations as linearly decoupled forms. In Sections 3.3 and 3.4 we prove Theorems
3.2 and 3.3, respectively. In Appendix 3.A we briefly provide a refined bilinear estimate to
establish the well-posedness of some classes of systems. In Appendices 3.B, 3.C and 3.D, we
give precise computations for decomposition of quadratic terms in the nonlinearities.

Notations

For x, y P R` (“ R X p0,8q), x À y means that there exists C ą 0 such that x ď Cy, and
x „ y means x À y and y À x. For a Schwartz function f in x P Rd, we denote the Fourier
transform of f by Fpfq or pf defined by

pfpξq “

ż

Rd

e´ix¨ξfpxq dx, ξ P Rd,

and f̌ denotes the inverse Fourier transform of f defined by

f̌pξq “
1

p2πqd

ż

Rd

eix¨ξfpξq dξ, x P Rd.
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In the rest of sections, the following properties of the Fourier transform among others will
be used frequently:

Fpf ˚ gqpξq “ pfpξqpgpξq and FpBxifq “ iξi
pfpξq, 1 ď i ď d.

3.2 Preliminaries

3.2.1 Bejenaru-Tao’s abstract theory

Here, we briefly present the abstract well- and ill-posed theory initially introduced in [10].
Consider the abstract equation

~v “ Lp~v0q `N2p~v,~vq, (3.7)

where ~v0 P D is the initial data, and ~v P S is a solution of abstract equation. Here, Lp~v0q

and N2p~v,~vq are the linear and bilinear part of Duhamel’s formula, respectively.

In the context of this work, ~v is a solution to the pabcdq system (3.1) (~v “ pη, uq) or (3.2)
(~v “ pη, ~uq “ pη, u1, u2q). First, we introduce the definition of quantitative well-posedness
introduced in [10].

Definition 3.4 (Quantitative well-posedness, [10]). Let pD, } ¨ }Dq be a Banach space of
initial data, and pS, } ¨ }Sq be a Banach space of space-time functions. We say that (3.7) is
quantitatively well-posed in D,S if one has the estimate of the form

}Lp~v0q}S À }~v0}D

and
}N2p~v,~vq}S À }~v}

2
S, (3.8)

for all ~v0 P D and ~v P S.

As we can see in the introduction, it is known that abcd-system (in one- or two-dimensional
case) is locally well-posed in the sense of Definition 3.4 (see [6]).

The following theorem asserts that the quantitative well-posedness indeed guarantees the
analytic well-posedness, that is, the flow from given initial data to a solution is represented
as a power series expansion of continuous nonlinear maps.

Theorem 3.5 (Theorem 3 in [10]). Suppose that (3.7) is quantitatively well-posed in the
space D,S. Then, there exist constants C0, ε0 ą 0 such that for all ~v0 P BDp0, ε0q, there
exists a unique solution ~vr~v0s P BSp0, C0ε0q to (3.7). More specifically, if we define the
non-linear maps An : D Ñ S for n P Zą0 by the recursive formula

A1p~v0q :“ Lp~v0q

Anp~v0q :“
ÿ

n1,n2ě1
n1`n2“n

N2pAn1p~v0q, An2p~v0qq, n ą 1,
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then we have the absolutely convergent (in S) power series expansion

~vr~v0s “

8
ÿ

n“1

Anp~v0q,

for all ~v0 P BDp0, ε0q.

On the other hand, Theorem 3.5 alternatively says that one can prove ill-posedness of
(3.7), once showing discontinuity of An, for some n, i.e., An does not satisfy (3.8). This
observation can be precisely stated as follows:

Proposition 3.6 (Proposition 1 in [10]). Suppose that (3.7) is quantitatively well-posed in
the Banach spaces D and S, with a solution map f ÞÑ urf s from a ball BD in D to a ball
BS in S. Suppose that these spaces are then given other norms D1 and S 1, which are weaker
than D and S in the sense that

}~v0}D1 À }~v0}D , }~v}S1 À }~v}S .

Suppose that the solution map ~v0 ÞÑ ~vr~v0s is continuous from pBD, } }D1q to pBS, } }S1q. Then
for each n, the non-linear operator An : D Ñ S is continuous from from pBD, } }D1q to
pS, } }S1q.

3.2.2 Equivalent representation of abcd systems

This subsection devotes to rewriting pabcdq systems (3.1) and (3.2) in the form of (3.7). We
follow the arguments in [6] and [15] for the one- and two-dimensional cases, respectively.

One-dimensional case.

We first deal with one-dimensional case. Applying the Fourier transform to the linear abcd
system ((3.1) without uη and 1

2
u2), we obtain

d

dt

ˆ

pη
pu

˙

` iξ

ˆ

0 ω1pξq
ω2pξq 0

˙ˆ

pη
pu

˙

“ 0, (3.9)

where
ω1pξq :“

1´ aξ2

1` bξ2
and ω2pξq :“

1´ cξ2

1` dξ2
. (3.10)

Using the transform
ˆ

η
u

˙

“

ˆ

H H
1 ´1

˙ˆ

v
w

˙

, (3.11)

where H is the Fourier multiplier defined by

xHfpξq “ hpξq pfpξq, with hpξq :“

ˆ

ω1pξq

ω2pξq

˙
1
2

“

ˆ

p1´ aξ2qp1` dξ2q

p1´ cξ2qp1` bξ2q

˙
1
2

, (3.12)

the system (3.9) becomes a symmetric form as

d

dt

ˆ

pv
pw

˙

` iξ

ˆ

σpξq 0
0 ´σpξq

˙ˆ

pv
pw

˙

“ 0,
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where

σpξq :“ pω1pξqω2pξqq
1
2 “

ˆ

p1´ aξ2qp1´ cξ2q

p1` bξ2qp1` dξ2q

˙
1
2

. (3.13)

Note that (3.10) and (3.12) are well-defined whenever the parameters a, b, c and d satisfy the
generic or KdV-KdV cases. Therefore, the system is written in the form

B

Bt

ˆ

v
w

˙

`B

ˆ

v
w

˙

“ 0,

where
B

ˆ

v
w

˙

:“

ˆ

iξ

ˆ

σpξq 0
0 ´σpξq

˙ˆ

pv
pw

˙˙_

,

Coming back to the original variables η and u, we write the linear system as

B

Bt

ˆ

η
u

˙

` A

ˆ

η
u

˙

“ 0,

where an operator A is determined by (also explicitly computed by taking the Fourier trans-
form)

A “

ˆ

H H
1 ´1

˙

B

ˆ

H H
1 ´1

˙´1

,

and thus the solutions to the linear abcd system are of the form
ˆ

η
u

˙

pt, xq “ Sptq

ˆ

η0

u0

˙

pxq,

where Sptq is associated to the linear flow of the system generated by A. It is clear that Sptq
is a unitary group on HspRq ˆHspRq for any s P R. When

ω1pξqω2pξq ą 0,

the linear flow Sptq can be expressed

F
ˆ

Sptq

ˆ

f
g

˙˙

:“

¨

˚

˚

˝

cospξσpξqtq ´i sinpξσpξqtq
ω1pξq

σpξq

´i sinpξσpξqtq
ω2pξq

σpξq
cospξσpξqtq

˛

‹

‹

‚

ˆ

pf
pg

˙

. (3.14)

Note that
ω1pξq

σpξq
“

ˆ

ω1pξq

ω2pξq

˙
1
2

“ hpξq and
ω2pξq

σpξq
“

ˆ

ω2pξq

ω1pξq

˙
1
2

“
1

hpξq
,

where h is as in (3.12). Let

pL1pt, ξq “ cospξσpξqtq and pL2pt, ξq “ i sinpξσpξqtq. (3.15)

Then we rewrite (3.14) as

F
ˆ

Sptq

ˆ

f
g

˙˙

:“

˜

pL1pt, ξq ´hpξqpL2pt, ξq

´phpξqq´1
pL2pt, ξq pL1pt, ξq

¸

ˆ

pf
pg

˙

. (3.16)
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Duhamel’s principle for the nonlinear system (3.1) yields
ˆ

η
u

˙

“ Sptq

ˆ

η0

u0

˙

´

ż t

0

Spt´ sqBx

ˆ

p1´ bB2
xq
´1pηuq

p1´ dB2
xq
´1p1

2
u2q

˙

psq ds

“: Sptq

ˆ

η0

u0

˙

`N2

ˆˆ

η
u

˙

,

ˆ

η
u

˙˙

.

(3.17)

KdV-KdV regime. Making a simple additional scaling, one may assume that a “ c “ 1,
and obtain that the linear system of (3.1) satisfies

d

dt

ˆ

pη
pu

˙

` iξp1´ ξ2
q

ˆ

0 1
1 0

˙ˆ

pη
pu

˙

“ 0.

Analogously, we obtain

that the linear propagator SKptq is represented as

F
ˆ

SKptq

ˆ

f
g

˙˙

:“

˜

xLK1 pt, ξq ´xLK2 pt, ξq

´xLK2 pt, ξq
xLK1 pt, ξq

¸

ˆ

pf
pg

˙

, (3.18)

where

xLK1 pt, ξq “ cospξσKpξqtq,
xLK2 pt, ξq “ i sinpξσKpξqtq and σKpξq “ 1´ ξ2. (3.19)

Two-dimensional case.

We write the two-dimensional linear abcd system ((3.2) without ~uη and 1
2
|~u|2) in the equiv-

alent form (in the Fourier space, for fixed ξ P R2zt0u)

Bt

¨

˝

pη
pu1

pu2

˛

‚` i|ξ|Apξq

¨

˝

pη
pu1

pu2

˛

‚“ 0, (3.20)

where

Apξq “

¨

˚

˚

˚

˝

0 ξ1
|ξ|

´

1´a|ξ|2

1`b|ξ|2

¯

ξ2
|ξ|

´

1´a|ξ|2

1`b|ξ|2

¯

ξ1
|ξ|

´

1´c|ξ|2

1`d|ξ|2

¯

0 0

ξ2
|ξ|

´

1´c|ξ|2

1`d|ξ|2

¯

0 0

˛

‹

‹

‹

‚

. (3.21)

Define the Fourier symbol %p|ξ|q by

%p|ξ|q “

ˆ

p1´ a|ξ|2qp1´ c|ξ|2q

p1` b|ξ|2qp1` d|ξ|2q

˙
1
2

. (3.22)

A straightforward computation yields that the matrix Apξq has three eigenvalues 0, %pξq and
´%pξq, thus the matrix Apξq is diagonalized as follows:

P´1
pξqApξqPpξq “

¨

˝

0 0 0
0 %p|ξ|q 0
0 0 ´%p|ξ|q

˛

‚,
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where the block matrix and its inverse are given by

Ppξq “

¨

˚

˝

0 ςp|ξ|q ´ςp|ξ|q

´
ξ2
|ξ|

ξ1
|ξ|

ξ1
|ξ|

ξ1
|ξ|

ξ2
|ξ|

ξ2
|ξ|

˛

‹

‚

(3.23)

and

P´1
pξq “

1

2ςp|ξ|q

¨

˚

˝

0 ´2ςp|ξ|q ξ2
|ξ|

2ςp|ξ|q ξ1
|ξ|

1 ςp|ξ|q ξ1
|ξ|

ςp|ξ|q ξ2
|ξ|

´1 ςp|ξ|q ξ1
|ξ|

ςp|ξ|q ξ2
|ξ|

˛

‹

‚

, (3.24)

respectively, for

ςp|ξ|q “

ˆ

p1´ a|ξ|2qp1` d|ξ|2q

p1´ c|ξ|2qp1` b|ξ|2q

˙
1
2

. (3.25)

We consider the following change of variables:

¨

˝

pµ
pν1

pν2

˛

‚“ P´1
pξq

¨

˝

pη
pu1

pu2

˛

‚“

¨

˚

˝

´
ξ2
|ξ|
pu1 `

ξ1
|ξ|
pu2

pη
2ςp|ξ|q

`
ξ1

2|ξ|
pu1 `

ξ2
2|ξ|

pu2

´
pη

2ςp|ξ|q
`

ξ1
2|ξ|

pu1 `
ξ2

2|ξ|
pu2

˛

‹

‚

. (3.26)

Note that pµ “ 0, since the fluid is irrotational (equivalently, (3.3)). Thus, new variables
pν1, ν2q finally determine an equivalent expression of the system (3.20), and for (3.2), as

Bt

ˆ

ν1

ν2

˙

` Bp´i∇q
ˆ

ν1

ν2

˙

“ 0,

ˆ

ν1pt “ 0q
ν2pt “ 0q

˙

“

ˆ

ν1,0

ν2,0

˙

,

where Bp´i∇q is the 2 ˆ 2 matrix operator whose entries are pseudo-differential operators,
with symbol

i|ξ|

ˆ

%p|ξ|q 0
0 ´%p|ξ|q

˙

,

which is the skew-Hermitian matrix.

Coming back to the original variables η, u1 and u2, we write the linear system as

B

Bt

¨

˝

η
u1

u2

˛

‚`A

¨

˝

η
u1

u2

˛

‚“ 0,

where the linear operator A is indeed given by the inverse Fourier transform of i|ξ|Apξq as
in (3.20). Thus, the solutions to the linear abcd system are of the form

¨

˝

η
u1

u2

˛

‚pt, xq “ Sptq

¨

˝

η0

u1,0

u2,0

˛

‚pxq,
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where Sptq is associated to the linear flow of the system, generated by A. When, a, b, c and
d satisfy the generic condition, the linear flow Sptq can be expressed as,

F

¨

˝Sptq

¨

˝

f
g
h

˛

‚

˛

‚

:“ Ppξq

¨

˝

0 0 0
0 ei|ξ|%p|ξ|qt 0
0 0 e´i|ξ|%p|ξ|qt

˛

‚P´1
pξq

¨

˝

pf
pg
ph

˛

‚

“

¨

˚

˚

˝

pJ1pt, ξq ςp|ξ|q iξ1
|ξ|

pJ2pt, ξq ςp|ξ|q iξ2
|ξ|

pJ2pt, ξq
iξ1

ςp|ξ|q|ξ|
pJ2pt, ξq

ξ21
|ξ|2

pJ1pt, ξq
ξ1ξ2
|ξ|2

pJ1pt, ξq
iξ2

ςp|ξ|q|ξ|
pJ2pt, ξq

ξ1ξ2
|ξ|2

pJ1pt, ξq
ξ22
|ξ|2

pJ1pt, ξq

˛

‹

‹

‚

¨

˝

pf
pg
ph

˛

‚,

(3.27)

where
pJ1pt, ξq “ cosp|ξ|%p|ξ|qtq, pJ2pt, ξq “ sinp|ξ|%p|ξ|qtq, (3.28)

and %p|ξ|q is defined in (3.22).

Duhamel’s principle for the nonlinear system (3.2) yields
¨

˝

η
u1

u2

˛

‚“ Sptq

¨

˝

η0

u1,0

u2,0

˛

‚´

ż t

0

Spt´ sq

¨

˝

p1´ b∆q´1p∇ ¨ pη~uqq
1
2
p1´ d ∆q´1Bx1 |~u|

2

1
2
p1´ d ∆q´1Bx2 |~u|

2

˛

‚psq ds

“: Sptq

¨

˝

η0

u1,0

u2,0

˛

‚`N2

¨

˝

¨

˝

η
u1

u2

˛

‚,

¨

˝

η
u1

u2

˛

‚

˛

‚.

(3.29)

Remark 3.2. Notice that the eigenvalues σ and % (see (3.13) and (3.22), respectively) have
the same radial behavior regardless of the dimension.

Case a “ c and b “ d ě 0.

In this case, we insert the conditions a “ c and b “ d into (3.21), we then have

Bt

¨

˝

pη
pu1

pu2

˛

‚` i|ξ|%abp|ξ|qAabpξq

¨

˝

pη
pu1

pu2

˛

‚“ 0, ξ P R2
zt0u (3.30)

where

Aabpξq “

¨

˚

˝

0 ξ1
|ξ|

ξ2
|ξ|

ξ1
|ξ|

0 0
ξ2
|ξ|

0 0

˛

‹

‚

and %abp|ξ|q “
1´ a|ξ|2

1` b|ξ|2
. (3.31)

Analogously as above (for the generic case), we can find three eigenvalues 0, 1 and ´1 of the
matrix Aabpξq. Thus the matrix Aabpξq is diagonalized as follows:

P´1
ab pξqAabpξqPabpξq “

¨

˝

0 0 0
0 1 0
0 0 ´1

˛

‚,
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where the block matrix Pab and its inverse are represented as in (3.23) and (3.24), respectively,
with ςp|ξ|q “ 1. Change the variables analogous to (3.26), then we have

¨

˝

pµ
pν1

pν2

˛

‚“ P´1
ab pξq

¨

˝

pη
pu1

pu2

˛

‚“

¨

˚

˝

´
ξ2
|ξ|
pu1 `

ξ1
|ξ|
pu2

pη
2
`

ξ1
2|ξ|

pu1 `
ξ2

2|ξ|
pu2

´
pη
2
`

ξ1
2|ξ|

pu1 `
ξ2

2|ξ|
pu2

˛

‹

‚

.

As same as before, pµ “ 0, and new variables pν1, ν2q determine an equivalent expression of
the system (3.30) as

Bt

ˆ

ν1

ν2

˙

` Babp´i∇q
ˆ

ν1

ν2

˙

“ 0,

ˆ

ν1pt “ 0q
ν2pt “ 0q

˙

“

ˆ

ν1,0

ν2,0

˙

,

where Babp´i∇q is the 2ˆ 2 matrix operator whose entries are pseudo-differential operators,
with symbol

i|ξ|%abp|ξ|q

ˆ

1 0
0 ´1

˙

,

which is the skew-Hermitian matrix.

Solutions to the linear pabcdq system are of the form
¨

˝

η
u1

u2

˛

‚pt, xq “ Sabptq

¨

˝

η0

u1,0

u2,0

˛

‚pxq,

where Sabptq is associated to the linear flow of the system, precisely expressed as,

F

¨

˝Sabptq

¨

˝

f
g
h

˛

‚

˛

‚“

¨

˚

˚

˝

pJab1 pt, ξq
iξ1
|ξ|

pJab2 pt, ξq
iξ2
|ξ|

pJab2 pt, ξq
iξ1
|ξ|

pJab2 pt, ξq
ξ21
|ξ|2

pJab1 pt, ξq
ξ1ξ2
|ξ|2

pJab1 pt, ξq
iξ2
|ξ|

pJab2 pt, ξq
ξ1ξ2
|ξ|2

pJab1 pt, ξq
ξ22
|ξ|2

pJab1 pt, ξq

˛

‹

‹

‚

¨

˝

pf
pg
ph

˛

‚, (3.32)

where
pJab1 pt, ξq “ cosp|ξ|%abp|ξ|qtq, pJab2 pt, ξq “ sinp|ξ|%abp|ξ|qtq, (3.33)

and %abp|ξ|q is defined in (3.31).

Duhamel’s principle for the nonlinear system (3.2) yields
¨

˝

η
u1

u2

˛

‚“ Sabptq

¨

˝

η0

u1,0

u2,0

˛

‚´

ż t

0

Sabpt´ sq

¨

˝

p1´ b∆q´1p∇ ¨ pη~uqq
1
2
p1´ b∆q´1Bx1 |~u|

2

1
2
p1´ b∆q´1Bx2 |~u|

2

˛

‚psq ds

“: Sabptq

¨

˝

η0

u1,0

u2,0

˛

‚`N2

¨

˝

¨

˝

η
u1

u2

˛

‚,

¨

˝

η
u1

u2

˛

‚

˛

‚.

(3.34)

The above case covers KdV-KdV and BBM-BBM regimes, but we distinguish them below
for simplicity.
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KdV-KdV regime. As same as the one-dimensional case, one may assume that a “ c “ 1.
Then, the system (3.2) has the form

#

Btη `∇ ¨ p∆~u` ~u` ~uηq “ 0, pt,xq P Rˆ R2,

Bt~u`∇
`

∆η ` η ` 1
2
|~u|2

˘

“ 0.

Analogously, we have
%Kp|ξ|q “ 1´ |ξ|2. (3.35)

Due to %Kp|ξ|q P R, the semigroup has the form

F pSKptqq “

¨

˚

˚

˝

pJK1 pξ, tq
iξ1
|ξ|

pJK2 pξ, tq
iξ2
|ξ|

pJK2 pξ, tq
iξ1
|ξ|

pJK2 pξ, tq
ξ21
|ξ|2

pJK1 pξ, tq
ξ1ξ2
|ξ|2

pJK1 pξ, tq
iξ2
|ξ|

pJK2 pξ, tq
ξ1ξ2
|ξ|2

pJK1 pξ, tq
ξ22
|ξ|2

pJK1 pξ, tq

˛

‹

‹

‚

.

where
pJK1 pξ, tq “ cosp|ξ|%Kp|ξ|qtq, pJK2 pξ, tq “ sinp|ξ|%Kp|ξ|qtq. (3.36)

BBM-BBM regime Let a “ c “ 0 and b “ d “ 1{6. Then, the system (3.2) has the form

$

’

’

&

’

’

%

ˆ

1´
1

6
∆

˙

Btη `∇ ¨ p~u` ~uηq “ 0,

ˆ

1´
1

6
∆

˙

Bt~u`∇
ˆ

η `
1

2
|~u|2

˙

“ 0,

pt,xq P Rˆ R2.

Analogously, we have

%Bp|ξ|q “

ˆ

1`
1

6
|ξ|2

˙´1

.

Due to %B P R and ςBp|ξ|q “ 1, the semigroup is

F pSBptqq “

¨

˚

˚

˝

pJB1 pξ, tq
iξ1
|ξ|

pJB2 pξ, tq
iξ2
|ξ|

pJB2 pξ, tq
iξ1
|ξ|

pJB2 pξ, tq
ξ21
|ξ|2

pJB1 pξ, tq
ξ1ξ2
|ξ|2

pJB1 pξ, tq
iξ2
|ξ|

pJB2 pξ, tq
ξ1ξ2
|ξ|2

pJB1 pξ, tq
ξ22
|ξ|2

pJB1 pξ, tq

˛

‹

‹

‚

,

where
pJB1 pξ, tq “ cosp|ξ|%Bp|ξ|qtq, pJB2 pξ, tq “ sinp|ξ|%Bp|ξ|qtq. (3.37)

3.3 Proof of Theorem 3.2

3.3.1 Generic regime: a, c ă 0 and b, d ą 0

Before proving Theorem 1, we address the following two lemmas, which play key roles in our
proof.
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Lemma 3.7. Let σpξq be as in (3.13). For |ξ| „ N , we have the following relation:

σpξq “

c

ac

bd
` σ̃pξq,

where N is sufficiently large and σ̃pξq “ Opξ´2q as |ξ| Ñ 8.

Proof. A straightforward computation gives

pσpξqq2 “
p1´ aξ2qp1´ cξ2q

p1` bξ2qp1` dξ2q
“

ac

bd

ˆ

1`
αξ2 ` β

p1` bξ2qp1` dξ2q

˙

,

where

α “ ´pb` dq ´
bdpa` cq

ac
and β “

bd

ac
´ 1,

which implies

σpξq “

c

ac

bd

d

1`
αξ2 ` β

p1` bξ2qp1` dξ2q
.

Using the binomial series expansion, we know

p1` xq1{2 “
8
ÿ

k“0

ˆ

1
2

k

˙

xk “ 1`
1

2
x`Opx2

q for |x| ă 1.

Thus, we can write

σpξq “

c

ac

bd
` σ̃pξq,

where

σ̃pξq “

c

ac

bd
¨

αξ2 ` β

2p1` bξ2qp1` dξ2q
`Opξ´4

q as |ξ| " 1,

since
ˇ

ˇ

ˇ

ˇ

αξ2 ` β

p1` bξ2qp1` dξ2q

ˇ

ˇ

ˇ

ˇ

! 1 for |ξ| " 1.

This concludes the proof. �

Lemma 3.7 enables us to capture a specific nonlinear interaction among other interactions
which makes non-smoothness of the flow, see Lemma 3.8 below.

Lemma 3.8. Let N " 1 be sufficiently large, T “ 1
100N

and 0 ď s ď t ď T . If |ξ1|, |ξ ´ ξ1| „

N and |ξ| „ 1, then
ˆ

1` dξ2

1` bξ2

˙

hpξ1q

hpξq
pL2pt´ s, ξqpL2ps, ξ1qpL1ps, ξ ´ ξ1q `

1

2
pL1pt´ s, ξqpL1ps, ξ1qpL1ps, ξ ´ ξ1q ě

1

32
,

where h and pLj, j “ 1, 2 are as in (3.12) and (3.15), respectively.
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Proof. A direct observation gives
ˇ

ˇ

ˇ

ˇ

1` dξ2

1` bξ2

ˇ

ˇ

ˇ

ˇ

ď max

ˆ

1,
d

b

˙

.

From the definition of h and the sizes of ξ and ξ1, we immediately know
ˇ

ˇ

ˇ

ˇ

hpξ1q

hpξq

ˇ

ˇ

ˇ

ˇ

À max
´

1,
ac

bd

¯

.

Moreover, we also know from Lemma 3.7 that

ξσpξq “

c

ac

bd
ξ `Opξ´1

q,

as |ξ| Ñ 8. On one hand, the conditions |ξ| „ 1 and 0 ď s ď t ď T with T “ 1
100N

yield

| sinpξσpξqpt´ sqq| À
1

N
,

which implies
hpξ1q

hpξq

ˇ

ˇ

ˇ

pL2pt´ s, ξqpL2ps, ξ1qpL1ps, ξ ´ ξ1q

ˇ

ˇ

ˇ
ď

1

32
,

for sufficiently large N . On the other hand, since

|ξ|σpξq|t´ s|, |ξ1|σpξ1q|s|, |ξ ´ ξ1|σpξ ´ ξ1q|s| ď
π

3
,

for sufficiently large N , we obtain

1

2
pL1pt´ s, ξqpL1ps, ξ1qpL1ps, ξ ´ ξ1q ě

1

16
.

Collecting all, we complete the proof of Lemma 3.8. �

Proof of Theorem 3.2 (1). We use a contradiction argument. Suppose that the flow map
~v0 ÞÑ ~vr~v0s is continuous in Hs, s ă ´1

2
. Then, from Proposition 3.6, the map ~v0 ÞÑ A2p~v0q

is also continuous, where
A2p~v0q “ N2pA1p~v0q, A1p~v0qq.

In what follows, we are going to prove that the map ~v0 ÞÑ A2p~v0q violates the following
inequality:

}A2p~v0q}Xs1
T
À }~v0}

2
s,

for s ă ´1
2
and s1 P R, which completes the proof.

Let ~v0 be an initial datum, which will be chosen later. Using (3.16), we write

~v1 “

ˆ

η1

u1

˙

“ Sptq

ˆ

η0

u0

˙

“

ˆ

L1η0 ´ hp´iBxqL2u0

´php´iBxqq
´1L2η0 ` L1u0

˙

, (3.38)
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where h and Lj, j “ 1, 2, are as in (3.12) and (3.15), respectively. Let

A2p~v0q “

ż t

0

Spt´ sqBx

¨

˝

p1´ bB2
xq
´1pη1u1q

p1´ dB2
xq
´1u

2
1

2

˛

‚psq ds “:

ż t

0

ˆ

Q1psq
Q2psq

˙

ds, (3.39)

as in (3.17).

For N large enough, we choose the initial data η0 as the zero function and u0 as a large
frequency localized function, more precisely, ~v0 “ pη0, u0q so that

pη0 “ 0 and pu0pξq “ N´sχAN pξq, (3.40)

where χ is the characteristic function and the set AN is given by

AN “
"

ξ P R : N ´
1

2
ď |ξ| ď N `

1

2

*

.

Note that }u0}Hs „ 1. Inserting the initial data (3.40) into (3.38), thus (3.39), we obtain
Q2 “ Q21 `Q22, where

pQ21 “
iξ

hpξqp1` bξ2q

ż

R
hpξ1qpL2pt´ s, ξqpL2ps, ξ1qpL1ps, ξ ´ ξ1q pu0pξ1q pu0pξ ´ ξ1qdξ1

and
pQ22 “

iξ

2p1` dξ2q

ż

R

pL1pt´ s, ξqpL1ps, ξ1qpL1ps, ξ ´ ξ1q pu0pξ1q pu0pξ ´ ξ1qdξ1.

A precise computation is given in Appendix 3.B. From the supports of pu0pξ1q and pu0pξ´ ξ1q,
the possible values of ξ satisfy

2N ´ 1 ď |ξ| ď 2N ` 1 or |ξ| ď 1.

Moreover, by Lemma 3.7, we have

|ξ1σpξ1q|, |pξ ´ ξ1qσpξ ´ ξ1q| „

c

ac

bd
N `OpN´1

q,

for sufficiently large N . Set t :“ 1
100N

. Then, from Lemma 3.8, we obtain

}A2p~v0q}Hs1 pRqˆHs1 pRq ě

›

›

›

›

›

xξys
1

ż t

0

˜

pQ1

pQ2

¸

ds

›

›

›

›

›

pL2ˆL2qp|ξ|ď1q

ě

›

›

›

›

xξys
1

ż t

0

pQ2ds

›

›

›

›

L2p|ξ|ď1q

ě
1

32

›

›

›

›

xξys
1 iξ

1` dξ2

ż t

0

ż

R
pu0pξ1qpu0pξ ´ ξ1q dξ1ds

›

›

›

›

L2p|ξ|ď1q

Á N´2s´1
}ξ}L2p|ξ|ď1q,

which does not guarantee the uniform boundedness of }A2p~v0q}Hs1 pRqˆHs1 pRq for s ă ´
1
2
. This

complete the proof. �
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3.3.2 KdV-KdV regime: b “ d “ 0 and a “ c “ 1
6

In order to prove Theorem 3.2 (2), we need a modification of Lemma 3.8, which was essential
to prove the generic case. We have

Lemma 3.9. Let N " 1 be sufficiently large and T “ 1
100N3 and 0 ď s ď t ď T . If

|ξ1|, |ξ ´ ξ1| „ N and |ξ| „ 1, then we have

xLK2 pt´ s, ξq
xLK2 ps, ξ1q

xLK1 ps, ξ ´ ξ1q `
1

2
xLK1 pt´ s, ξq

xLK1 ps, ξ1q
xLK1 ps, ξ ´ ξ1q ě

1

32
,

where σK and xLKj , j “ 1, 2 are as in (3.19), respectively.

Proof. The proof is analogous to the proof of Lemma 3.8, thus we omit the details. �

Proof of Theorem 3.2 (2). The proof follows the proof of Theorem 3.2 (1). Suppose that
the flow map ~v0 ÞÑ ~vr~v0s is continuous in Hs, s ă ´3{2.

Let ~v0 “ pη0, u0q be initial data given by (3.40), and

~v1 “

ˆ

η1

u1

˙

“ SKptq

ˆ

η0

u0

˙

,

where SKptq is given by (3.18). Then, we write

A2p~v0q “

ż t

0

SKpt´ sqBx

¨

˝

η1u1

u2
1

2

˛

‚psq ds “:

ż t

0

ˆ

Q1psq
Q2psq

˙

ds.

A straightforward computation enables us to decompose Q1 and Q2 as Q1 “ Q11 `Q12 and
Q2 “ Q21 `Q22, where

pQ11 “ ´iξ

ż

R

pLK1 pt´ s, ξq
pLK2 ps, ξ1qpL

K
1 ps, ξ ´ ξ1q pu0pξ1q pu0pξ ´ ξ1qdξ1,

pQ12 “ ´
iξ

2

ż

R

pLK2 pt´ s, ξq
pLK1 ps, ξ1qpL

K
1 ps, ξ ´ ξ1q pu0pξ1q pu0pξ ´ ξ1qdξ1,

pQ21 “ iξ

ż

R

pLK2 pt´ s, ξq
pLK2 ps, ξ1qpL

K
1 ps, ξ ´ ξ1q pu0pξ1q pu0pξ ´ ξ1qdξ1

and
pQ22 “

iξ

2

ż

R

pLK1 pt´ s, ξq
pLK1 ps, ξ1qpL

K
1 ps, ξ ´ ξ1q pu0pξ1q pu0pξ ´ ξ1qdξ1,

where LKj , j “ 1, 2, are given in (3.19). On the supports of pu0pξ1q and pu0pξ´ξ1q, the resulting
frequency ξ possibly lies in the regions

2N ´ 1 ď |ξ| ď 2N ` 1 or |ξ| ď 1.
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Moreover, for sufficiently large N , we observe

|ξ1σKpξ1q|, |pξ ´ ξ1qσKpξ ´ ξ1q| „ N3.

Set t :“ 1
100N3 . From Lemma 3.9, we conclude

}A2p~v0q}Hs1 pRqˆHs1 pRq ě

›

›

›

›

ż t

0

pQ2ds

›

›

›

›

L2p|ξ|ď1q

ě
1

32

›

›

›

›

xξys
1

iξ

ż t

0

ż

R
pu0pξ1qpu0pξ ´ ξ1q dξ1ds

›

›

›

›

L2
ξp|ξ|ď1qq

Á N´2s´3
}ξ}L2p|ξ|ď1q,

which does not guarantee the uniform boundedness of }A2p~v0q}Hs1 pRqˆHs1 pRq for s ă ´
3
2
and

this completes the proof. �

3.4 Proof of Theorem 3.3

3.4.1 Generic regime: a, c ă 0 and b, d ą 0

We first address the following lemma, which plays a similar role as Lemma 3.8.

Lemma 3.10. Let N " 1 be sufficiently large, and T “ 1
100N

and 0 ď s ď t ď T . If
|κ|, |ξ ´ κ| „ N , |ξ| „ 1 and pκ´ ξq ¨ κ ą 0 , then we have

p1` d|ξ|2q

p1` b|ξ|2q

ξ ¨ κ

|ξ||κ|

ςp|ξ ´ κ|q

ςp|ξ|q
pJ2pt, ξq pJ2ps, ξ ´ κq pJ1ps, κq

`
pκ´ ξq ¨ κ

|ξ ´ κ||κ|

1

2
pJ1pt, ξq pJ1ps, ξ ´ κq pJ1ps, κq ě

1

16

ˆ

pκ´ ξq ¨ κ

|ξ ´ κ||κ|
´

1

2

˙

where ¨ denotes the standard inner product in Euclidean space, and ς, pJj, j “ 1, 2 are as in
(3.22), (3.28), respectively.

Proof. A direct computation yields
ˇ

ˇ

ˇ

ˇ

ςp|ξ ´ κ|q

ςp|ξ|q

ˇ

ˇ

ˇ

ˇ

ď max

ˆ

1,
ab

cb

˙

and
ˇ

ˇ

ˇ

ˇ

ξ ¨ κ

|ξ||κ|

p1` d|ξ|2q

p1` b|ξ|2q

ˇ

ˇ

ˇ

ˇ

ď max

ˆ

1,
d

b

˙

.

Note that Lemma 3.7 is valid for %, thus

|κ|%p|κ|q “

c

ac

bd
|κ| `Op|κ|´1

q,

as |κ| Ñ 8. On one hand, since |ξ| „ 1 and 0 ď s ď t ď T with T “ 1
100N

, we know
| sinp|ξ|%p|ξ|qpt´ sqq| À 1

N
, hence

ˇ

ˇ

ˇ

ˇ

ξ ¨ κ

|ξ||κ|

ςp|ξ ´ κ|q

ςp|ξ|q

p1` d|ξ|2q

p1` b|ξ|2q
pJ2pt´ s, ξq pJ2ps, ξ ´ κq pJ1ps, κq

ˇ

ˇ

ˇ

ˇ

ď
1

32
,
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for N large enough. On the other hand, since

|ξ|%p|ξ|q|t´ s|, |κ|%p|κ|q|s|, |ξ ´ κ|%p|ξ ´ κ|q|s| ď
π

3
,

we have
1

2
pJ1pt´ s, ξq pJ1ps, κq pJ1ps, ξ ´ κq ě

1

16
.

We complete the proof from the last frequency condition

pκ´ ξq ¨ κ

|κ´ ξ||ξ|
ą 0.

�

Remark 3.3. The last condition pκ ´ ξq ¨ κ ą 0 in Lemma 3.10 is not artificial under the
rest conditions |κ|, |ξ ´ κ| „ N and |ξ| „ 1, since the low resulting frequency from two high
frequencies interaction occurs only when two high frequencies lie in the opposite side around
the origin. A precise observation will be seen in the proof of Theorem 3.3 below.

Proof of Theorem 3.3 (1). Analogously to Theorem 3.2 (1), suppose that the flow map
~v0 ÞÑ ~vr~v0s is continuous in Hs, s ă ´1

2
.

Let ~v0 “ pη0, u01, u02q be an initial data to be chosen later. Let

~v1 “

¨

˝

η1

u11

u12

˛

‚“ Sptq

¨

˝

η0

u01

u02

˛

‚“

¨

˚

˚

˝

J1η0 ` ςp|∇|q
Bx1
|∇|J2u01 ` ςp|∇|q

Bx2
|∇|J2u02

Bx1
ςp|∇|q|∇|J2η0 `

´B2x1
|∇|2 J1u01 `

´Bx1Bx2
|∇|2 J1u02

Bx2
ςp|∇|q|∇|J2η0 `

´Bx1Bx2
|∇|2 J1u01 `

´B2x2
|∇|2 J1u02

˛

‹

‹

‚

, (3.41)

where J1, J2 are defined in (3.28), and ςp|ξ|q is given in (3.25).

For N large enough, set

SN :“

"

κ P R2 : N ´
1

2
ď κ1 ď N `

1

2
and |κ2| ď 1

*

Y

"

κ P R2 : ´N ´
1

2
ď κ1 ď ´N `

1

2
and |κ2| ď 1

*

“: S`N Y S´N .

We choose the initial data ~v0 “ pη0, u01, u02q as

η0 “ 0, and u01 “ u02 “ ψN , (3.42)

where pψNpξq “ N´sχSN pξq. Note that }ψN}Hs „ 1. Moreover, on the supports of pψNpξ ´ κq

and pψNpκq, the resulting frequency ξ belongs to

SL :“ tξ P R2 : |ξj| ď 2, j “ 1, 2u
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or
SH :“

 

ξ P R2 : 2N ´ 1 ď |ξ1| ď 2N ` 1, |ξ2| ď 2
(

.

From (3.29), we have

A2p~v1q “

ż t

0

Spt´ sq

¨

˝

p1´ b∆q´1rBx1pη1u11q ` Bx2pη1u12qs

2´1p1´ d∆q´1Bx1pu
2
11 ` u

2
12q

2´1p1´ d∆q´1Bx2pu
2
11 ` u

2
12q

˛

‚“:

ż t

0

¨

˝

Q1psq
Q2psq
Q3psq

˛

‚ds. (3.43)

Inserting (3.42) into (3.41), thus (3.43), we obtain pQ2 as Q2 “ Q21 `Q22, where

pQ21 “´ iξ1

ż

R2

ppξ, κq

p1` b|ξ|2q

ξ ¨ κ

|ξ||κ|

ςp|ξ ´ κ|q

ςp|ξ|q
pJ2pt, ξq pJ2ps, ξ ´ κq pJ1ps, κq pψNpξ ´ κq pψNpκqdκ,

pQ22 “´ iξ1

ż

R2

pκ´ ξq ¨ κ

|ξ ´ κ||κ|

ppξ, κq

p1` d|ξ|2q

1

2
pJ1pt, ξq pJ1ps, ξ ´ κq pJ1ps, κq pψNpξ ´ κq pψNpκqdκ,

for
ppξ, κq “

pξ1 ` ξ2 ´ κ1 ´ κ2q

|ξ ´ κ|

pκ1 ` κ2q

|κ|
. (3.44)

See Appendix 3.C for precise computations of Qj, j “ 1, 2, 3.

For ξ´κ, κ PĂ SN , the resulting frequency ξ lies in SL only when the vectors ξ´κ and κ
are located in the opposite side around the origin, that is, ξ ´ κ P S`N and κ P S´N or κ P S`N
and ξ ´ κ P S´N . Then, the angle β between two vectors ξ ´ κ and κ satisfies

π ´ tan´1

ˆ

1

N ´ 1
2

˙

ă β ă π ` tan´1

ˆ

1

N ´ 1
2

˙

.

Then, by taking sufficiently large N , we make

´
3

4
ě cospβq “

pξ ´ κq ¨ κ

|ξ ´ κ||κ|
. (3.45)

Moreover, on each support of φNpξ ´ κq and φNpκq, we have

´ppξ, κq “
pκ1 ´ ξ1 ` κ2 ´ ξ2q

|ξ ´ κ|

pκ1 ` κ2q

|κ|
ě

`

N ´ 3
2

˘2

1` p1
2
`Nq2

ě
3

4
, (3.46)

provided that N ą 16. Thus, for t :“ 1
100N

, by Lemma 3.10, (3.45) and (3.46), we get

}A2p~v0q}Hs1 pRqˆHs1 pRqˆHs1 pRq ě

›

›

›

›

›

›

›

xξys
1

ż t

0

¨

˚

˝

pQ1

pQ2

pQ3

˛

‹

‚

ds

›

›

›

›

›

›

›

pL2ˆL2ˆL2qpR2q

ě

›

›

›

›

xξys
1

ż t

0

pQ2ds

›

›

›

›

L2pR2q

ě
1

64
¨

3

4

›

›

›

›

xξys
1 ξ1

p1` d|ξ|2q

ż t

0

ż

R2

pψNpκq pψNpξ ´ κqdκds

›

›

›

›

L2
ξpSLq

Á N´2s´1

›

›

›

›

xξys
1 ξ1

p1` d|ξ|2q

›

›

›

›

L2
ξpSLq

which does not guarantee the uniform boundedness of }A2p~v0q}Hs1 pR2qˆHs1 pR2q for s ă ´1
2
.

This completes the proof. �
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Remark 3.4. Thanks to the symmetric structure of Q2 and Q3 (see Appendix 3.C for more
details), the same conclusion is obtained by taking Q3 as a target instead of Q2 in the proof
of Theorem 3.3 (1).

3.4.2 KdV-KdV regime: b “ d “ 0 and a “ c “ 1
6

1 For %K is given in (3.35), from the observation below

||ξ|%Kp|ξ|q| “ |ξ||1´ |ξ|
2
| „ |ξ|3,

for |ξ| " 1, we have

Lemma 3.11. Let N " 1 be sufficiently large, T “ 1
100N3 , and 0 ď s ď t ď T . If |κ|, |ξ´κ| „

N , |ξ| „ 1 and pκ´ ξq ¨ κ ą 0, then we have

ξ ¨ κ

|ξ||κ|
pJK2 pt, ξq

pJK2 ps, ξ ´ κq
pJK1 ps, κq `

pκ´ ξq ¨ κ

|ξ ´ κ||κ|

1

2
pJK1 pt, ξq

pJK1 ps, ξ ´ κq
pJK1 ps, κq

ě
1

16

ˆ

pκ´ ξq ¨ κ

|ξ ´ κ||κ|
´

1

2

˙

where xJKj , j “ 1, 2 are as in (3.36).

Proof. The proof is analogous to the proof of Lemma 3.10, thus we omit the details. �

Proof of Theorem 3.3 (2)
Suppose that the flow map ~v0 ÞÑ ~vr~v0s is continuous in Hs, s ă ´3

2
. Taking the initial data

~v0 “ pη0, u01, u02q as in (3.40), we obtain

~v1 “

¨

˝

η1

u11

u12

˛

‚“ SKptq

¨

˝

η0

u01

u02

˛

‚“

¨

˚

˚

˝

JK1 η0 `
Bx1
|∇|J

K
2 u01 `

Bx2
|∇|J

K
2 u02

Bx1
|∇|J

K
2 η0 `

´B2x1
|∇|2 J

K
1 u01 `

´Bx1Bx2
|∇|2 JK1 u02

Bx2
|∇|J

K
2 η0 `

´Bx1Bx2
|∇|2 JK1 u01 `

´B2x2
|∇|2 J

K
1 u02

˛

‹

‹

‚

,

thus so

A2p~v1q “

ż t

0

SKpt´ sq

¨

˝

Bx1pη1u11q ` Bx2pη1u12q

2´1Bx1pu
2
11 ` u

2
12q

2´1Bx2pu
2
11 ` u

2
12q

˛

‚“:

ż t

0

¨

˝

Q1psq
Q2psq
Q3psq

˛

‚ds.

Analogously to the proof of Theorem 3.3 (1), we focus on Q2. A direct computation yields
that Q2 is decomposed as Q2 “ Q21 `Q22, where

pQ21 “´ iξ1

ż

R2

ξ ¨ κ

|ξ||κ|
ppξ, κq pJK2 pt, ξq

pJK2 ps, ξ ´ κq
pJK1 ps, κq

pψNpξ ´ κq pψNpκqdκ

pQ22 “iξ1

ż

R2

pξ ´ κq ¨ κ

|ξ ´ κ||κ|
ppξ, κq

1

2
pJK1 pt, ξq

pJK1 ps, ξ ´ κq
pJK1 ps, κq

pψNpξ ´ κq pψNpκqdκ,

1By scaling, we make a “ c “ 1 as one dimensional case.
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for p given by (3.44). Note that all computations in Appendix 3.D are available for KdV-KdV
case (by putting b “ d “ 0 and a “ c “ 1). Thus, for t :“ 1

100N3 , by Lemma 3.11 , (3.45) and
(3.46), we get

}A2p~v0q}Hs1 pRqˆHs1 pRqˆHs1 pRq ě
1

64
¨

3

4

›

›

›

›

xξys
1

ξ1

ż t

0

ż

R2

pψNpκq pψNpξ ´ κqdκds

›

›

›

›

L2
ξpSLq

Á N´2s´3
›

›

›
xξys

1

ξ1

›

›

›

L2
ξpSLq

which does not guarantee the uniform boundedness of }A2p~v0q}Hs1 pR2qˆHs1 pR2q for s ă ´3
2
.

This completes the proof.

3.4.3 BBM-BBM regime: a “ c “ 0 and b “ d “ 1{6

We have

Lemma 3.12. Let N " 1 be sufficiently large, and T “ 1
1000

and 0 ď s ď t ď T . If
|κ|, |ξ ´ κ| „ N and |ξ| „ 1, then we have

ξ ¨ κ

|ξ||κ|
pJB2 pt, ξq

pJB2 ps, ξ ´ κq
pJB1 ps, κq`

pκ´ ξq ¨ κ

|ξ ´ κ||κ|

1

2
pJB1 pt, ξq

pJB1 ps, ξ ´ κq
pJB1 ps, κq

ě
1

16

ˆ

pκ´ ξq ¨ κ

|ξ ´ κ||κ|
´

1

2

˙

,

where ς and xJBj with j “ 1, 2 are as in (3.22), (3.37) and respectively.

Proof. The proof is analogous to the proof of Lemma 3.10 with

|ξ|%Bp|ξ|q “
|ξ|

p1` 1
6
|ξ|2q

„ |ξ|´1,

for |ξ| " 1. �

Proof of Theorem 3.3 (3)
Suppose that the flow map ~v0 ÞÑ ~vr~v0s is continuous in Hs, s ă 0. Taking the same initial
data ~v0 “ pη0, u01, u02q as in (3.40), we compute

~v1 “

¨

˝

η1

u11

u12

˛

‚“ SBptq

¨

˝

η0

u01

u02

˛

‚“

¨

˚

˚

˝

JB1 η0 `
Bx1
|∇|J

B
2 u01 `

Bx2
|∇|J

B
2 u02

Bx1
|∇|J

B
2 η0 `

´B2x1
|∇|2 J

B
1 u01 `

´Bx1Bx2
|∇|2 JB1 u02

Bx2
|∇|J

B
2 η0 `

´Bx1Bx2
|∇|2 JB1 u01 `

´B2x2
|∇|2 J

B
1 u02

˛

‹

‹

‚

,

where JB1 and JB2 defined by (3.37), thus so

A2p~v1q “

ż t

0

SBpt´ sq

¨

˝

p1´ 1
6
∆q´1rBx1pη1u11q ` Bx2pη1u12qs

2´1p1´ 1
6
∆q´1Bx1pu

2
11 ` u

2
12q

2´1p1´ 1
6
∆q´1Bx2pu

2
11 ` u

2
12q

˛

‚“:

ż t

0

¨

˝

Q1psq
Q2psq
Q3psq

˛

‚ds.
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Note also that all computations in Appendix 3.D are available for KdV-KdV case (by putting
a “ c “ 0 and b “ d “ 1{6).Thus, Q2 is decomposed as Q2 “ Q21 `Q22, where

pQ21 “´ iξ1

ż

R2

ξ ¨ κ

|ξ||κ|

ppξ, κq

p1` 1
6
|ξ|2q

pJB2 pt, ξq
pJB2 ps, ξ ´ κq

pJB1 ps, κq
pψNpξ ´ κq pψNpκqdκ,

pQ22 “iξ1

ż

R2

pξ ´ κq ¨ κ

|ξ ´ κ||κ|

ppξ, κq

p1` 1
6
|ξ|2q

1

2
pJB1 pt, ξq

pJB1 ps, ξ ´ κq
pJB1 ps, κq

pψNpξ ´ κq pψNpκqdκ,

for p given by (3.44). Thus, for t :“ 1
1000

, by Lemma 3.12, (3.45) and (3.46), we get

}A2p~v0q}Hs1 pRqˆHs1 pRqˆHs1 pRq ě
1

64
¨

3

4

›

›

›

›

xξys
1

ξ1

ż t

0

ż

R2

pψNpκq pψNpξ ´ κqdκds

›

›

›

›

L2
ξpSLq

Á N´2s
›

›

›
xξys

1

ξ1

›

›

›

L2
ξpSLq

,

which does not guarantee the uniform boundedness of }A2p~v0q}Hs1 pR2qˆHs1 pR2q for s ă 0, this
ends the proof.

�
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Appendices

3.A Local Well-Posedness
This section briefly shows the local well-posedness of (3.1) and (3.2) including BBM-BBM
case, but not KdV-KdV case. This result may not be optimal except for BBM-BBM case.
The well-known well-posedness theorem is given by

Theorem 3.13. Let n “ 1, 2. Fix s ě 0. For any pu0, v0q P H
spRnq ˆHspRnq , there exists

a T pu0, v0q ą 0 and a unique solution pu, vq P Xs
T (for a suitable solution space Xs

T ) of the
initial value problem (3.1). The maximal existence time T “ Ts for the solution has the
property that

Ts ě
Cs

}pu0, v0q}HspRqˆHspRq

where the positive constant Cs depends only on s.

It is well-known that Theorem 3.13 immediately follows from multilinear estimates, thus
in what follows, we only focus on bilinear estimate (see Section 3.A.3 below).

3.A.1 Notations

We define Bessel and Riesz potentials (Js and Ds, respectively) of order ´s, s P R, as Fourier
multipliers by

Jsfpxq :“ F´1
´

p1` |ξ|2q
s
2 pf
¯

and Dsfpxq :“ F´1
´

|ξ|s pf
¯

.

In particular,
?
´∆ “ D1 “ D is the Fourier multiplier of the symbol |ξ|.

3.A.2 Littlewood-Paley Decomposition

This section devotes to explaining the Littlewood-Paley decomposition, which is an useful
way to improve the bilinear estimate for the local well-posedness theory. As well-known, the
Littlewood-Paley decomposition is a particular way to write a single function as a superpo-
sition of a countably infinite family of functions of varying frequencies.

Let ϕpξq be a real-valued radially symmetric bump function on Rn with the support
tξ P Rn : |ξ| ď 2u which is identical to 1 on the set tξ P Rn : |ξ| ď 1u and is decreasing on
tξ P Rn : 1 ď |ξ| ď 2u. Define a dyadic number N P 2Zě0 of the form N “ 2k, k P Zě0. Let
denote ϕ1 “ ϕ and define

ϕNpξq “ ϕ

ˆ

ξ

N

˙

´ ϕ

ˆ

2ξ

N

˙

, N ě 2.

By construction, the sequence of ϕN satisfies
ÿ

Ně1 : dyadic

ϕNpξq ” 1.
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We simply write
ř

Ně1 by dropping "dyadic". This provides a typical partition of unity which
allows to define the projection operator (one of the so-called Littlewood-Paley projection
operator) on L2pRnq by PNfpxq “ F´1

´

ϕNpξq pf
¯

pxq. Using the projection operators, one
decompose any function f in L2pRq as

f “
ÿ

Ně1

PNf.

We sometimes denote PNf by simply fN . Note that fN belongs to any Sobolev space HspRnq,
s ě 0 (or smooth), whenever f P L2pRnq. The following lemma is well-known Bernstein
inequality, which is to upgrade low Lebesgue integrability to high Lebesgue integrability with
the price of some powers of N :

Lemma 3.14 (Bernstein’s inequalities). Let f P L2pRnq, 1 ď p ď q ď 8, and s ě 0. Then,
we have

›

›D˘sfN
›

›

Lp
„ N˘s

}fN}Lp (3.47)

and
}fN}Lq À N

n
p
´n
q }fN}Lp . (3.48)

The implicit constants in both (3.47) and (3.48) depend only on s, n, p and q.

3.A.3 Bilinear estimates

Lemma 3.15. Let f, g P L2pRnq. Then, we have

}P1pfgq}L2 À }f}L2 }g}L2 .

Proof. The proof follows from |p pf ˚ pgqpξq| À }f}L2 }g}L2 and
ş

|ξ|ď1
dξ À 1. �

Lemma 3.16 (Refined bilinear estimate). Let s ě n´2
2

and f, g P HspRnq. Then, we have
›

›J´1Dpfgq
›

›

Hs À }f}Hs }g}Hs . (3.49)

Proof. From the duality argument, it suffices for the left-hand side of (3.49) to estimate
ż

R2

`

Js´1Dpfgq
˘

w dx,

where w P L2 with }w}L2 “ 1. We make the Littlewood-Paley decomposition of f, g and w
as

f “
ÿ

N1ě1

fN1 , g “
ÿ

N2ě1

gN2 and w “
ÿ

Ně1

wN ,

respectively. Without loss of generality, we may assume N1 ď N2. By Lemma 3.15, we are
now reduced to establishing

ÿ

Ną1

ÿ

N1,N2ě1

N´1`s

ż

fN1gN2wN dx À }f}Hs }g}Hs . (3.50)
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We separate (3.50) into two cases : N „ N2 Á N1 and N2 „ N1 " N .

(Case I.) N „ N2 Á N1. Using Hölder’s and Bernstein’s (3.48) inequalities, one has
ż

fN1gN2wN dx ď }fN1}L8 }gN2}L2 }wN}L2 À N
n
2

1 }fN1}L2 }gN2}L2 }wN}L2 .

With this, we further reduce (3.50) to
ÿ

Ną1

ÿ

N2„N

ÿ

N1ÀN2

N´1`sN´s
2 N

n
2
´s

1 }fN1}Hs }gN2}Hs }wN}L2 À }f}Hs }g}Hs , (3.51)

thanks to (3.47). We denote the multiplier in the left-hand side of (3.51) by mpN,N1, N2q,
namely, mpN,N1, N2q “ N´1`sN´s

2 N1´s
1 . Note that the number of N2 is finite, and then

ÿ

N

ÿ

N2„N

}gN2}
2
L2 „

ÿ

N

}gN}
2
L2 .

With this observation, Cauchy-Schwarz inequality yields

LHS of (3.51) À

¨

˚

˝

sup
Ną1

ÿ

1ďN1ÀN2
N2„N

m2
pN,N1, N2q

˛

‹

‚

1
2

}f}Hs }g}Hs }w}L2 .

Hence, it remains to prove

sup
Ną1

ÿ

N2„N

ÿ

1ďN1ÀN2

N´2`2sN´2s
2 Nn´2s

1 À 1. (3.52)

This is sometimes referred as Schur’s test, see, for instance, [33, Lemma 3.11] for more details.
Then, one gets if s ą n

2

ÿ

N2„N

ÿ

1ďN1ÀN2

N´2`2sN´2s
2 Nn´2s

1 À
ÿ

N2„N

N´2`2sN´2s
2 À N´2,

otherwise (s ď n
2
),

ÿ

N2„N

ÿ

1ďN1ÀN2

N´2`2sN´2s
2 Nn´2s

1 À
ÿ

N2„N

N´2`2sNn´4s
2 À Nn´2´2s.

Thus, (3.52) holds true if s ě n´2
2
.

(Case II.) N2 „ N1 " N . Analogously, using Hölder’s and Bernstein’s (3.48) inequalities,
one obtains

ż

fN1gN2wN dx ď }fN1}L2 }gN2}L2 }wN}L8 À N
n
2 }fN1}L2 }gN2}L2 }wN}L2 ,

which ensures (3.49) provided that

sup
N2ą1

ÿ

N1„N2

ÿ

1ăNÀN1

N´2s
2 N´2s

1 Nn´2`2s
À 1. (3.53)

One immediately obtains (3.53) for s ě n´2
2
, we thus complete the proof. �
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Remark 3.5. Lemma 3.16 slightly improves the bilinear estimates by Grisvard [16], par-
ticularly, validity of the bilinear estimates in H

n´2
2 . This seems to facilitate the global

well-posedness in the energy space for 4-dimensional problem.

Remark 3.6. Replacing the Bessel potential J´1 by p1 ´ b∆q´1 or p1 ´ d∆q´1 in Lemma
3.16 affects only the constant in the left-hand side, precisely, the implicit constant should
depend on b or d.

Remark 3.7. The standard Picard iteration method immediately assures the (smooth) local
well-posedness in HspRnq, s “ maxp0, n´2

2
q. Thus, BBM-BBM case is optimal in the sense

that the flow map is analytic.

3.B Decomposition of pQ1, Q2q on the generic regime: one-
dimensional case

This section provides a precise computation of Qj, j “ 1, 2, for one-dimensional case. Recall
(3.39)

A2p~v1q “

ż t

0

Spt´ sq

ˆ

p1´ bB2
xq
´1Bxpη1u1q

2´1p1´ dB2
xq
´1Bxpu

2
1q

˙

“:

ż t

0

ˆ

Q1

Q2

˙

ds,

where the linear propagator S is given in (3.16). A direct computation yields

pQ1 “ iξ

„

1

p1` bξ2q
pL1pt´ s, ξqyη1u1ps, ξq ´

hpξq

2p1` dξ2q
pL2pt´ s, ξq pu2

1ps, ξq



pQ2 “ iξ

„

´
1

hpξqp1` bξ2q
pL2pt´ s, ξqyη1u1ps, ξq `

1

2p1` dξ2q
pL1pt´ s, ξq pu2

1ps, ξq

 (3.54)

Inserting the initial data ~v0 “ pη0, u0q “ p0, φq into (3.38), we have

F
ˆ

η1

u1

˙

“ F
ˆ

Sptq

ˆ

η0

u0

˙˙

“

˜

´hpξqpL2pt, ξqpφ
pL1pt, ξqpφ

¸

.

With this, a direct computation gives

yη1u1pξq “

ż

R
pη1pξ1q pu1pξ ´ ξ1qdξ1 “ ´

ż

R
hpξ1qpL2pt, ξ1qpL1pt, ξ ´ ξ1q

pφpξ1q
pφpξ ´ ξ1q

and

zu1u1pξq “

ż

R
pu1pξ ´ ξ1q pu1pξ1qdξ1 “

ż

R

pL1pt, ξ1qpL1pt, ξ ´ ξ1q
pφpξ1q

pφpξ ´ ξ1qdξ1.

Thus, by inserting them into (3.54), we conclude that

pQ1 “ ´iξ

«

1

p1` bξ2q

ż

R
hpξ1qpL1pt´ s, ξqpL2ps, ξ1qpL1ps, ξ ´ ξ1q

pφpξ1q
pφpξ ´ ξ1qdξ1

`
hpξq

2p1` dξ2q

ż

R

pL2pt´ s, ξqpL1ps, ξ1qpL1ps, ξ ´ ξ1q
pφpξ1q

pφpξ ´ ξ1qdξ1

ff
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and

pQ2 “ iξ

«

1

hpξqp1` bξ2q

ż

R
hpξ1qpL2pt´ s, ξqpL2ps, ξ1qpL1ps, ξ ´ ξ1q

pφpξ1q
pφpξ ´ ξ1qdξ1

`
1

2p1` dξ2q

ż

R

pL1pt´ s, ξqpL1ps, ξ1qpL1ps, ξ ´ ξ1q
pφpξ1q

pφpξ ´ ξ1qdξ1

ff

.

3.C Decomposition of pQ1, Q2, Q3q: generic case
This section provides a precise computation of Qj, j “ 1, 2, 3, for two-dimensional case.
Recall (3.27)

F

¨

˝Sptq

¨

˝

f
g
h

˛

‚

˛

‚“

¨

˚

˝

pJ1pt, ξq pf ` ςp|ξ|q
i
|ξ|
pJ2pt, ξq

“

ξ1pg ` ξ2
ph
‰

iξ1
ςp|ξ|q|ξ|

pJ2pt, ξq pf `
ξ1
|ξ|2

pJ1pt, ξq
“

ξ1pg ` ξ2
ph
‰

iξ2
ςp|ξ|q|ξ|

pJ2pt, ξq pf `
ξ2
|ξ|2

pJ1pt, ξq
“

ξ1pg ` ξ2
ph
‰

˛

‹

‚

, (3.55)

where Jj, j “ 1, 2, are given in (3.28). Inserting the initial data ~v0 “ pη0, u01, u02q “

p0, φ, φq “ pf, g, hq into (3.55), we have

F

¨

˝

η1

u11

u12

˛

‚“

¨

˚

˝

ςp|ξ|q ipξ1`ξ2q
|ξ|

pJ2pt, ξqpφ
ξ1pξ1`ξ2q
|ξ|2

pJ1pt, ξqpφ
ξ2pξ1`ξ2q
|ξ|2

pJ1pt, ξqpφ

˛

‹

‚

. (3.56)

Recall the integral part in (3.29)

A2p~v1q “

ż t

0

Spt´ sq

¨

˝

p1´ b∆q´1rBx1pη1u11q ` Bx2pη1u12qs

2´1p1´ d∆q´1Bx1pu
2
11 ` u

2
12q

2´1p1´ d∆q´1Bx2pu
2
11 ` u

2
12q

˛

‚“:

ż t

0

¨

˝

Q1

Q2

Q3

˛

‚ds.

A direct computation on Qj, j “ 1, 2, 3, yields

pQ1 “
i

p1` b|ξ|2q
pJ1pt, ξq rξ1pzη1u11q ` ξ2pzη1u12qs ´

ςp|ξ|q|ξ|

2p1` d|ξ|2q
pJ2pt, ξq

´

xu2
11 `

xu2
12

¯

,

pQ2 “´
ξ1

ςp|ξ|q|ξ|

pJ2pt, ξq

p1` b|ξ|2q
rξ1pzη1u11q ` ξ2pzη1u12qs `

iξ1

2p1` d|ξ|2q
pJ1pt, ξq

´

xu2
11 `

xu2
12

¯

,

pQ3 “´
ξ2

ςp|ξ|q|ξ|

pJ2pt, ξq

p1` b|ξ|2q
rξ1pzη1u11q ` ξ2pzη1u12qs `

iξ2

2p1` d|ξ|2q
pJ1pt, ξq

´

xu2
11 `

xu2
12

¯

.

(3.57)

With (3.56), we first compute nonlinear interactions

zη1u11pξq “ i

ż

R2

ςp|κ|qppξ, kq
pξ1 ´ κ1q

|ξ ´ κ|
pJ2pt, κq pJ1pt, ξ ´ κqpφpκqpφpξ ´ κq dκ,

zη1u12pξq “ i

ż

R2

ςp|κ|qppξ, kq
pξ2 ´ κ2q

|ξ ´ κ|
pJ2pt, κq pJ1pt, ξ ´ κqpφpκqpφpξ ´ κq dκ,
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xu2
11pξq “

ż

R2

ppξ, kq
κ1

|κ|

pξ1 ´ κ1q

|ξ ´ κ|
pJ1pt, κq pJ1pt, ξ ´ κqpφpκqpφpξ ´ κq dκ,

and
xu2

12pξq “

ż

R2

ppξ, kq
κ2

|κ|

pξ2 ´ κ2q

|ξ ´ κ|
pJ1pt, κq pJ1pt, ξ ´ κqpφpκqpφpξ ´ κq dκ,

where

ppξ, κq “
pξ1 ` ξ2 ´ κ1 ´ κ2q

|ξ ´ κ|

pκ1 ` κ2q

|κ|
.

Inserting them into (3.57), we obtain

pQ1 “´
1

p1` b|ξ|2q

ż

R2

ςp|κ|qppξ, κq
ξ ¨ pξ ´ κq

|ξ ´ κ|
pJ1pt, ξq pJ2ps, ξ ´ κq pJ1ps, κqpφpκqpφpξ ´ κqdκ

´
ςp|ξ|q|ξ|

2p1` d|ξ|2q

ż

R2

ppξ, κq
κ ¨ pξ ´ κq

|ξ ´ κ||κ|
pJ2pt, ξq pJ1ps, ξ ´ κq pJ1ps, κqpφpκqpφpξ ´ κqdκ,

pQ2 “´
iξ1

p1` b|ξ|2q

ż

R2

ppξ, κq
ςp|κ|q

ςp|ξ|q

ξ ¨ pξ ´ κq

|ξ||ξ ´ κ|
pJ2pt, ξq pJ2ps, ξ ´ κq pJ1ps, κqpφpκqpφpξ ´ κqdκ

`
iξ1

2p1` d|ξ|2q

ż

R2

pξ ´ κq ¨ κ

|ξ ´ κ||κ|
ppξ, κq pJ1pt, ξq pJ1ps, ξ ´ κq pJ1ps, κqpφpκqpφpξ ´ κqdκ

and

pQ3 “´
iξ2

p1` b|ξ|2q

ż

R2

ppξ, κq
ςp|κ|q

ςp|ξ|q

ξ ¨ pξ ´ κq

|ξ||ξ ´ κ|
pJ2pt, ξq pJ2ps, ξ ´ κq pJ1ps, κqpφpκqpφpξ ´ κqdκ

`
iξ2

2p1` d|ξ|2q

ż

R2

pξ ´ κq ¨ κ

|ξ ´ κ||κ|
ppξ, κq pJ1pt, ξq pJ1ps, ξ ´ κq pJ1ps, κqpφpκqpφpξ ´ κqdκ.

3.D Decomposition of pQ1, Q2, Q3q: a “ c and b “ d ě 0

This section provides a precise computation of Qj, j “ 1, 2, 3, for two-dimensional case when
a “ c and b “ d ě 0. Note that the decomposition here is valid for both KdV-KdV and
BBM-BBM cases. Recall (3.32)

F

¨

˝Sabptq

¨

˝

f
g
h

˛

‚

˛

‚“

¨

˚

˝

pJab1 pt, ξq
pf ` i

|ξ|
pJab2 pt, ξq

“

ξ1pg ` ξ2
ph
‰

iξ1
|ξ|

pJab2 pt, ξq
pf ` ξ1

|ξ|2
pJab1 pt, ξq

“

ξ1pg ` ξ2
ph
‰

iξ2
|ξ|

pJab2 pt, ξq
pf ` ξ2

|ξ|2
pJab1 pt, ξq

“

ξ1pg ` ξ2
ph
‰

˛

‹

‚

,

where Jabj , j “ 1, 2, are given in (3.33). Inserting the initial data ~v0 “ pη0, u01, u02q “

p0, φ, φq “ pf, g, hq into ~v1 “ Sab~v0 , we have

F

¨

˝

η1

u11

u12

˛

‚“

¨

˚

˝

ipξ1`ξ2q
|ξ|

pJab2 pt, ξq
pφ

ξ1pξ1`ξ2q
|ξ|2

pJab1 pt, ξq
pφ

ξ2pξ1`ξ2q
|ξ|2

pJab1 pt, ξq
pφ

˛

‹

‚

. (3.58)

78



Recall the integral part in (3.34)

A2p~v1q “

ż t

0

Sabpt´ sq

¨

˝

p1´ b∆q´1rBx1pη1u11q ` Bx2pη1u12qs

2´1p1´ b∆q´1Bx1pu
2
11 ` u

2
12q

2´1p1´ b∆q´1Bx2pu
2
11 ` u

2
12q

˛

‚“:

ż t

0

¨

˝

Q1

Q2

Q3

˛

‚ds.

A direct computation on Qj, j “ 1, 2, 3, yields

pQ1 “
i

p1` b|ξ|2q
pJab1 pt, ξq rξ1pzη1u11q ` ξ2pzη1u12qs ´

|ξ|

2p1` b|ξ|2q
pJab2 pt, ξq

´

xu2
11 `

xu2
12

¯

,

pQ2 “´
ξ1

|ξ|

pJab2 pt, ξq

p1` b|ξ|2q
rξ1pzη1u11q ` ξ2pzη1u12qs `

iξ1

2p1` b|ξ|2q
pJab1 pt, ξq

´

xu2
11 `

xu2
12

¯

,

pQ3 “´
ξ2

|ξ|

pJab2 pt, ξq

p1` b|ξ|2q
rξ1pzη1u11q ` ξ2pzη1u12qs `

iξ2

2p1` b|ξ|2q
pJab1 pt, ξq

´

xu2
11 `

xu2
12

¯

.

(3.59)

With (3.58), we first compute nonlinear interactions

zη1u11pξq “ i

ż

R2

ppξ, kq
pξ1 ´ κ1q

|ξ ´ κ|
pJab2 pt, κq

pJab1 pt, ξ ´ κq
pφpκqpφpξ ´ κq dκ,

zη1u12pξq “ i

ż

R2

ppξ, kq
pξ2 ´ κ2q

|ξ ´ κ|
pJab2 pt, κq

pJab1 pt, ξ ´ κq
pφpκqpφpξ ´ κq dκ,

xu2
11pξq “

ż

R2

ppξ, kq
κ1

|κ|

pξ1 ´ κ1q

|ξ ´ κ|
pJab1 pt, κq

pJab1 pt, ξ ´ κq
pφpκqpφpξ ´ κq dκ,

and
xu2

12pξq “

ż

R2

ppξ, kq
κ2

|κ|

pξ2 ´ κ2q

|ξ ´ κ|
pJab1 pt, κq

pJab1 pt, ξ ´ κq
pφpκqpφpξ ´ κq dκ,

where
ppξ, κq “

pξ1 ` ξ2 ´ κ1 ´ κ2q

|ξ ´ κ|

pκ1 ` κ2q

|κ|
.

Inserting them into (3.59), we obtain

pQ1 “´
1

p1` b|ξ|2q

ż

R2

ppξ, κq
ξ ¨ pξ ´ κq

|ξ ´ κ|
pJab1 pt, ξq

pJab2 ps, ξ ´ κq
pJab1 ps, κq

pφpκqpφpξ ´ κqdκ

´
|ξ|

2p1` b|ξ|2q

ż

R2

ppξ, κq
κ ¨ pξ ´ κq

|ξ ´ κ||κ|
pJab2 pt, ξq

pJab1 ps, ξ ´ κq
pJab1 ps, κq

pφpκqpφpξ ´ κqdκ,

pQ2 “´
iξ1

p1` b|ξ|2q

ż

R2

ppξ, κq
ξ ¨ pξ ´ κq

|ξ||ξ ´ κ|
pJab2 pt, ξq

pJab2 ps, ξ ´ κq
pJab1 ps, κq

pφpκqpφpξ ´ κqdκ

`
iξ1

2p1` b|ξ|2q

ż

R2

pξ ´ κq ¨ κ

|ξ ´ κ||κ|
ppξ, κq pJab1 pt, ξq

pJab1 ps, ξ ´ κq
pJab1 ps, κq

pφpκqpφpξ ´ κqdκ

and

pQ3 “´
iξ2

p1` b|ξ|2q

ż

R2

ppξ, κq
ξ ¨ pξ ´ κq

|ξ||ξ ´ κ|
pJab2 pt, ξq

pJab2 ps, ξ ´ κq
pJab1 ps, κq

pφpκqpφpξ ´ κqdκ

`
iξ2

2p1` b|ξ|2q

ż

R2

ppξ, κq
pξ ´ κq ¨ κ

|ξ ´ κ||κ|
pJab1 pt, ξq

pJab1 ps, ξ ´ κq
pJab1 ps, κq

pφpκqpφpξ ´ κqdκ.
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Chapter 4

Asymptotic stability manifolds for
solitons in the generalized Good
Boussinesq equation

Abstract. We consider the generalized Good-Boussinesq model in one dimension, with power nonlinearity
and data in the energy space H1 ˆ L2. This model has solitary waves with speeds ´1 ă c ă 1. When |c|
approaches 1, Bona and Sachs showed orbital stability of such waves. It is well-known from a work of Liu that
for small speeds solitary waves are unstable. In this paper we consider in more detail the long time behavior
of zero speed solitary waves, or standing waves. By using virial identities, in the spirit of Kowalczyk, Martel
and Muñoz, we construct and characterize a manifold of even-odd initial data around the standing wave for
which there is asymptotic stability in the energy space.
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4.1 Introduction

4.1.1 Setting

In the 1870’s, J. Boussinesq [7] deduced a system of equations to describe two-dimensional
irrotational and inviscid fluids in a uniform rectangular channel with flat bottom. He was
the first to give a favorable explanation to the traveling-waves, solitons, or solitary waves
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solutions discovered by Scott Rusell thirty years earlier [31], which remained in their form
and travelled with constant velocity.

In a first order approximation, Boussinesq’s matrix model reduces to a scalar, fourth order
model

B
2
t φ´ B

4
xφ´ B

2
xφ` B

2
xpfpφqq “ 0, (4.1)

However, this model, known as the bad Boussinesq equation, is strongly linearly ill-posed.
Consequently, in order to repair this problem, the following equation was proposed [36, 28]:

B
2
t φ` B

4
xφ´ B

2
xφ` B

2
xpfpφqq “ 0. (4.2)

Here the physical model considers the nonlinearity as quadratic, i.e. fpφq “ φ2 and φpt, xq
is a real-valued function. This model is called good Boussinesq, and if formally u “ φ and
v “ B´1

x Btφ, this model has the following representation as 2ˆ 2 system:

pgGB)

#

Btu “ Bxv

Btv “ Bxp´B
2
xu` u´ fpuqq.

(4.3)

This will be the exact model worked in this paper, which is Hamiltonian, and has the following
associated conserved quantities:

Eru, vs “
1

2

ż

“

v2
` u2

` pBxuq
2
´ 2F puq

‰

pEnergyq,

P ru, vs “

ż

uv pMomentumq.
(4.4)

(Here
ş

means
ş

R dx.) These laws define a standard energy space pu, vq P H1ˆL2. As well as
the Korteweg-de Vries (KdV) equation, (gGB) is considered as a canonical model of shallow
water waves, see [35]. In addition, (gGB) arises in the so-called "nonlinear string equation"
describing small nonlinear oscillations in an elastic beam (see [11]).

The study of the Boussinesq-type equations has increased recently, mainly due to the
versatility of these models when describing nonlinear phenomena. There are several authors
that focus on the good Boussinesq equation. The fundamental works Bona and Sachs [6],
using abstract techniques of Kato, proved that the Cauchy problem is locally and globally
well-posed for small data, and showed the existence of solitary waves for velocities c2 ă 1.
Linares [22, 14], using Stricharz estimates, proved that the Cauchy problem is globally well-
posed in the energy space in the case of small data. Kishimoto [16], in the case of a quadratic
nonlinearity, proved that the Cauchy problem is globally well-posed in HspRq, for s ě ´1{2,
and ill-posed for s ă ´1{2. In [30], it was proved that small solutions in the energy space
must decay to zero as time tends to infinity in proper subsets of space. Recently, Charlier
and Lenells [9] developed the inverse scattering transform and a Riemann-Hilbert approach
for the quadratic (gGB), which is integrable. In general, solitons (solitary waves in integrable
equations) are stable objects. However, this is not the case of good Boussinesq (similar to
Klein-Gordon). Indeed, small perturbations of solitons may decay or form singularities in
finite time, see [11, 23, 3, 36].
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In this paper, we are motivated by the long time behavior problem for solitary waves of
the gGB (4.2) in the case where fpsq “ |s|p´1s for p ą 1. A solitary wave is a solution to
(4.2) of the form

pu, vq “ pQc,´cQcqpx´ ct´ x0q, |c| ă 1, x0 P R,

with Qc solving pc2´1qQc`Q
2
c`fpQcq “ 0 in H1pRq. This interesting question has attracted

the attention of several authors before us, showing that the behavior of solitary waves in the
standard energy space H1 ˆ L2 is not an easy problem. Bona and Sachs [6], applying the
theory developed by Grillakis, Shatath and Strauss (see [13]), proved that solitary waves are
stable if the speed c obeys the condition pp´1q{4 ă c2 ă 1 and p ą 4. Li, Ohta, Wu and Xue
[21] proved the orbital instability in the degenerate case 1 ă p ă 5 and speed c “ pp´ 1q{4.
Additionally, Kalantarov and Ladyzhenkaya in [15] proved that solutions associated to initial
data with nonpositive energy may blow up in some sense. Inspired by this work, Liu [23]
showed that there are solutions with initial data arbitrarily near the ground state (c “ 0)
that blow up in finite time.

4.1.2 Standing waves

In the case that f is a pure power nonlinearity of the form fpsq “ |s|p´1s for p ą 1, it is
well-known that (up to shifts) standing solitary waves have the form

upt, xq “ Qpxq “

˜

p` 1

2 cosh2
`

p´1
2
x
˘

¸1{pp´1q

, vpt, xq “ 0. (4.5)

Here, Q satisfies the equation

Q2pxq ´Qpxq ` fpQpxqq “ 0. (4.6)

Let us consider a perturbation in (4.3) of Q of the form

upt, xq “ Qpxq ` wpt, xq, vpt, xq “ zpt, xq.

Then one can see that this perturbation satisfies the following linear system at first order:
#

Btw “ Bxz

Btz “ BxLw,
(4.7)

where

Lpwq “ ´B2
xw ` V0pxqw, with V0pxq “ 1´ f 1pQq. (4.8)

L is the classical Schrödinger operator associated to the soliton Q. This operator has been
extensively studied in [8] for instance.

Therefore, from (4.7) one has B2
tw “ B

2
xLw. Consequently, for the well-understanding of

the problem we require to study the fourth order operator ´B2
xL, much in the spirit of the
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fundamental works by Pego and Weinstein results [32, 33]. In Appendix 4.A, we will prove
the following: for any p ą 1, the linear operator

´ B
2
xLpuq “ B4

xu´ B
2
xu` B

2
xppQ

p´1uq, (4.9)

has a unique eigenfunction φ0pxq associated to a negative first eigenvalue ´ν2
0 ă 0, satisfying

xB
´1
x φ0, B

´1
x φ0y “ 1, ´B

2
xLpφ0q “ ´ν

2
0φ0, |φ0pxq| À e´1´|x|. (4.10)

Note that we also have B´1
x φ0 well-defined, exponentially decreasing and part of L2. Here x¨, ¨y

is the inner product in L2pRq, and 1´ is a number slightly below 1. The second eigenvalue
of ´B2

xL is 0 but it is also a resonance in the classical sense (in L8zL2), but the unique L2

eigenvalue is φ1pxq “ c1Q
1pxq. Therefore, by the Spectral Theorem, orthogonal to φ0 the

operator ´B2
xL is nonnegative. See Appendix 4.A for more details and full proofs of all the

previous statements.

Let
Y ˘ “

ˆ

φ0

˘ν0B
´1
x φ0

˙

, Z˘ “

ˆ

B´2
x φ0

˘ν´1
0 B´1

x φ0

˙

. (4.11)

These are even-odd functions, i.e. the first coordinate is even and the second odd (see
Appendix 4.41). The functions u˘pt, xq “ e˘ν0tY˘pxq are solutions of the linearized problem
(4.7), showing the presence of exponentially stable and unstable linear manifolds relevant for
the dynamics of nonlinear solutions in a neighborhood of the soliton.

In that follows, we refers to global solution of (4.3) to a function Cpr0,8q, H1 ˆ L2q that
satisfies (4.3) for all t ě 0.

4.1.3 Main results

It is not difficult to realize that (4.3) preserves the even-odd parity in its variables pu, vq. In
this paper, we will prove that any even-odd small perturbation of the static soliton (c “ 0)
in the energy space, under certain orthogonality condition, is orbitally stable and in fact, it
is (locally) asymptotically stable. Furthermore, we will construct a manifold of initial data
such that the associated solutions are orbitally stable in H1ˆL2, and locally asymptotically
stable in the space L2 X L8. Our first result is:

Theorem 4.1. Let p ě 2. There exists δ ą 0 such that if a global even-odd solution
pφ, BtB

´1
x φq of (4.3) satisfies for all t ě 0,

}pφ, BtB
´1
x φqptq ´ pQ, 0q}H1pRqˆL2pRq ă δ, (4.12)

then, for any γ ą 0 small enough and any compact interval I of R,

lim
tÑ`8

`

}φptq ´Q}L2pIqXL8pIq ` }p1´ γB
2
xq
´1
Btφptq}L2pIq

˘

“ 0. (4.13)

This is, as far as we understand, the first description of the standing wave dynamics in the
Good Boussinesq model, which is unstable by nature. Clearly the data under which (4.12) is
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satisfied is not empty, the soliton pQ, 0q being its most important representative. However,
(4.12) cannot define an open set in the energy space as simple as in some stable, subcritical
dynamics, such as KdV. Our second result will describe the manifold of initial data leading
to (4.12), but first we need to clarify some remarks.

Remark 4.1 (On the lack of decay of derivatives). Estimate (4.13) provides a clean and
clear description of the local decay of φptq in the Lebesgue spaces L2 X L8. However, no
clear description of the derivative Bxφptq has been found, which remains an interesting open
problem.

Remark 4.2 (On the BtB´1
x φ term). We have been unable to provide a clean description

of decay for the second component of the Good Boussinesq system. This is due to some
deep problems present at the level of the dynamics. However, (4.13) provides additional
information on the decay of a suitable modification of the second variable. The constant γ
depends on δ, but it can be taken arbitrarily small if needed.

Remark 4.3 (About general data). The construction performed in this paper uses in several
steps the parity of the data. Extending our results to general data is a challenging problem,
mainly because one needs to introduce shifts that may affect in a strong fashion the dynamics.
We hope to consider this problem in a forthcoming publication.

Remark 4.4 (About the condition p ě 2). The condition p ě 2 is of technical type, and it
is needed to ensure a control on the unstable direction, sufficiently good for our purposes.
We believe that the situation for p close to 1 may be very complicated because of the weak
decay of the amplitude associated to the unstable direction.

The following result provides a description of the manifold of initial data leading to global
solutions for which (4.12) holds.

Let δ0 ą 0, and let A0 be the manifold given by

A0 “
 

ε P H1
pRq ˆ L2

pRq| ε is even-odd , }ε}H1ˆL2 ă δ0 and xε,Z`y “ 0
(

. (4.14)

Theorem 4.2. Let p ě 2. There exist C, δ0 ą 0 and a Lipschitz function h : A0 Ñ R with
hp0q “ 0 and |hpεq| ď C}ε}

3{2

H1ˆL2 such that, denoting

M “ tpQ, 0q ` ε` hpεqY` with ε P A0u , (4.15)

the following holds:

1. If φ0 PM then the solution of (4.3) with initial data φ0 is global and satisfies, for all
t ě 0,

}φptq ´ pQ, 0q}H1pRqˆL2pRq ď C}φ0 ´ pQ, 0q}H1pRqˆL2pRq. (4.16)
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2. If a global even-odd solution φ of (4.3) satisfies, for all t ě 0,

}φptq ´ pQ, 0q}H1pRqˆL2pRq ď
1

2
δ0, (4.17)

then for all t ě 0, φptq PM.

Remark 4.5 (About blow-up). Liu [23] showed that initial data pu0, v0q for which Epu0, v0q ă

0, or Epu0, v0q ě 0 and less than a particular function of Im
ş

B´1
x u0v0 (which is zero in our

case), lead to blow up solutions in finite time. In our case, we work with perturbation of the
soliton pQ, 0q. One can easily check that EpQ, 0q “ p´1

2pp`1q

ş

Qp`1 ą 0, therefore we are not in
the blow-up regime determined by Liu.

Remark 4.6 (Extension to other models). We believe that our results open the door to the
understanding of long time solitary wave dynamics in several other Boussinesq models. We
mention for instance the asymptotic stability of abcd solitary waves, at least in the zero speed
even data case [4, 5], and the more involved case of the Improved Boussinesq solitary wave;
see [29] for further details on this challenging problem.

4.1.4 Idea of the proof

The proofs in this paper follow the lines of the ideas used recently by Kowalczyk, Martel and
Muñoz in [18] to understand the unstable soliton dynamics in the nonlinear Klein-Gordon
equation, and by Kowalczyk, Martel, Muñoz and Van Den Bosch [19] to study the stability
properties of kinks for (1+1)-dimensional nonlinear scalar field theories.

More precisely, the proofs are based in a series of localized virial type arguments, similar
to the ones used in [1, 2, 18, 19, 17, 25, 27]. In our case, we will use a combination of virials
to obtain the integrability in time of the L2 ˆ L2-norm of pφptq ´ Q, p1 ´ γB2

xq
´1Btφptqq, for

any γ ą 0 small enough, and in any compact interval I, i.e.,
ż 8

0

´

}φptq ´Q}2L2pIq ` }p1´ γB
2
xq
´1
Btφptq}

2
L2pIq

¯

dt ă 8.

However, some important issues, not present in the previously mentioned works [18, 19] will
appear along the proofs. The beginning of the proof is similar to [18]: The first step is to
decompose the solution close to the solitary waves in an adequate way. We will consider
pu1, u2q P H

1ˆL2 be an even-odd perturbation of the solitary waves, which are in some sense
orthogonal to Y ` and Y ´, and the flow on these directions: for a1, a2 unique,

#

upt, xq “ Qpxq ` a1ptqφ0pxq ` u1pt, xq,

vpt, xq “ a2ptqν0B
´1
x φ0pxq ` u2pt, xq.

Then, we will focus on pu1, u2q P H
1 ˆ L2, which satisfy the linearized equation (4.7). Fol-

lowing [30], for an adequate weight function ϕA placed at scale A large, we obtain the virial
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estimate
d

dt

ż

ϕApxqu1u2 ď´
1

2

ż

“

w2
2 ` 2pBxw1q

2
`
`

1´ C1A
´1
˘

w2
1

‰

` C1a
4
1 ` C1

ż

sech pxqu2
1,

(4.18)

where pw1, w2q is localized version of pu1, u2q at A scale, and C1 denotes a fixed constant.
This virial estimate has no good sign because of the term C1

ş

sech pxqu2
1. Then we require to

transform the system to a new one which has better virial estimates, in the spirit of Martel
[24]. For any γ ą 0 small enough, we define new variables pv1, v2q P H

1 ˆH2 by
#

v1 “ p1´ γB
2
xq
´1Lu1,

v2 “ p1´ γB
2
xq
´1u2.

(see (4.56)). Note that pv1, v2q P H1 ˆ H2, which is bad news because of the lack of a
correct regularity order in the variables. This will cause problems later on. However, the
new system for pv1, v2q (see (4.57)) satisfies, for an adequate weight function ψA,B, B ! A,
the virial estimate

d

dt

ż

ψA,Bv1v2 ď´
1

2

ż

“

z2
1 ` pV0pxq ´ C2B

´1
qz2

2 ` 2pBxz2q
2
‰

`B´1C2

ˆ

}w1}
2
L2 ` }w2}

2
L2

˙

` C2|a1|
3,

(4.19)

where pz1, z2q is a lozalized version of pv1, v2q, at the smaller scale B, V0 given by (4.8), and
C2 denotes a fixed constant.

Following [18], in order to combine estimates (4.18) and (4.19) we need an estimate for
the last term in (4.18). However, unlike previous works, here we have the following coercivity
estimate in terms of the variables pw1, w2q and pz1, z2q:

ż

sechpxqu2
1 À B´1{2

`

}w1}L2 ` }Bxw1}
2
L2

˘

`B1{2
}z1}

2
L2 `B´4

}Bxz1}
2
L2 . (4.20)

We can directly observe that the term Bxz1 does not appears in (4.19), leading to the main
obstruction present in this paper. This problem is deeply related to the fact that pv1, v2q P

H1 ˆH2, i.e., the new variables are in opposed order of regularity.

In order to overcome this problem, we introduce a series of modifications that will allow
us to close estimates (4.18) and (4.19) properly. First, we must gain derivates. In a new
virial estimate for the system of pBxv1, Bxv2q (see (4.98)), we obtain the third virial estimate

d

dt

ż

ψA,BBxv1Bxv2 ď ´
1

2

ż

`

pBxz1q
2
`
`

V0pxq ´ C3B
´1
˘

pBxz2q
2
` 2pB2

xz2q
2
˘

` C3}z2}
2
L2 ` C3B

´1
}z1}

2
L2

` C3B
´1

`

}Bxw1}
2
L2 ` }w1}

2
L2 ` }w2}

2
L2

˘

` C3|a1|
3,

(4.21)

with C3 ą 0 fixed. This new estimate give us local L2 control on Bxz1 and B2
xz2, which was

not present before. Finally, our last contribution is a transfer virial estimate that exchanges
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information between Bxz1, Bxz2 and B2
xz2, in the form of

1

2

ż

pBxz1q
2
ď

d

dt

ż

ρA,BBxv1v2 ` C4

ż

“

pB
2
xz2q

2
` pBxz2q

2
` z2

2 ` z
2
1

‰

` C4B
´3

ˆ

}w1}
2
L2 ` }w2}

2
L2

˙

` C4|a1|
3.

(4.22)

Here C4 ą 0 is fixed and ρA,B is a suitable weight function. Finally, we consider a functional
H being a well-chosen linear combination of (4.18), (4.19), (4.21), (4.20) and (4.22). We get

d

dt
Hptq ď ´ C2B

´1
`

}w1}
2
L2 ` }Bxw1}

2
L2 ` }w2}

2
L2

˘

` C5|a1|
3, for all t ě 0.

This final estimate allows us to close estimates, and prove local decay for u1 after some
standard change of variables from wj to uj.

Organization of this chapter

This paper is organized as follows. Section 4.2 deals with a first virial estimate for a de-
composition system, namely (4.23). In Section 4.3 we introduce the transformed problem
and prove first virial estimates on that system. In Section 4.4 we obtain virial estimates for
higher order derivatives of the transformed problem. Section 4.5 is devoted to a technical
transfer estimate dealing with higher order transformed variables. Finally, in Section 4.6 we
prove Theorem 4.1, and in Section 4.7 we prove Theorem 4.2.
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4.2 A virial identity for the (gGB) system
Recall the (gGB) system (4.3). The first step in our proof is to consider a small even-odd
perturbation of soliton pQ, 0q. In what follows we will describe this decomposition, introduce
some notation, and develop a virial estimate for the good Boussinesq system.

4.2.1 Decomposition of the solution in a vicinity of the soliton

Let pu, vq “ pφ, BtB´1
x φq be a solution of (4.3) satisfying (4.12) for some small δ ą 0. Using

Y` as in (4.11), we decompose pu, vq as follows
#

upt, xq “ Qpxq ` a1ptqφ0pxq ` u1pt, xq,

vpt, xq “ a2ptqν0B
´1
x φ0pxq ` u2pt, xq,

(4.23)

where (see (4.10))

a1ptq “ xuptq ´Q, ν
´2
0 Lφ0y “ xuptq ´Q, B

´2
x φ0y,

a2ptq “
1

ν0

xBxv, ν
´2
0 BxLφ0y “

1

ν0

xv, B´1
x φ0y,
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such that
xu1ptq, B

´2
x φ0y “ 0 “ xu2ptq, B

´1
x φ0y, (4.24)

or equivalently,
xu1ptq,Lφ0y “ 0 “ xu2ptq, BxLφ0y. (4.25)

Orthogonalities (4.24) are nonstandard particular choices motivated by key cancelation prop-
erties. See Appendix 4.A for a detailed construction of B´1

x φ0 and B´2
x φ0. Setting

b` “
1

2
pa1 ` a2q, b´ “

1

2
pa1 ´ a2q, (4.26)

from (4.12), we have for all t P R`

}u1ptq}H1 ` }u2ptq}L2 ` |a1ptq| ` |a2ptq| ` |b`ptq| ` |b´ptq| ď C0δ. (4.27)

Moreover, using (4.6), (4.10) and (4.24), pa1, a2q satisfies the following differential system

$

&

%

9a1 “ ν0a2

9a2 “ ν0a1 `
N0

ν0

,
or equivalently

$

’

’

&

’

’

%

9b` “ ν0b` `
N0

2ν0

9b´ “ ´ν0b´ ´
N0

2ν0

.

(4.28)

where
N “ Bx pfpQq ` f

1
pQqpa1φ0 ` u1q ´ fpQ` a1φ0 ` u1qq ,

NK
“ N ´N0B

´1
x φ0, and N0 “ xN, B

´1
x φ0y.

(4.29)

Then, pu1, u2q satisfies the system
#

9u1 “ Bxu2

9u2 “ BxLpu1q `N
K,

(4.30)

with u1 even and u2 odd.

4.2.2 Notation for virial argument

We consider a smooth even function χ : RÑ R satisfying

χ “ 1 on r´1, 1s, χ “ 0 on p´8, 2s Y r2,8q, χ1 ď 0 on r0,8q. (4.31)

For A ą 0, we define the functions ζA and ϕA as follows

ζApxq “ exp

ˆ

´
1

A
p1´ χpxqq|x|

˙

, ϕApxq “

ż x

0

ζ2
Apyqdy, x P R. (4.32)

For B ą 0, we also define

ζBpxq “ exp

ˆ

´
1

B
p1´ χpxqq|x|

˙

, ϕBpxq “

ż x

0

ζ2
Bpyqdy, x P R. (4.33)

We consider the function ψA,B defined as

ψA,Bpxq “ χ2
ApxqϕBpxq where χApxq “ χ

´ x

A

¯

, x P R. (4.34)
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These functions will be used in two distinct virial arguments with different scales

1 ! B ! B10
! A. (4.35)

The following remark will be essential for the well-boundedness of some nonlinear terms
in what follow.

Remark 4.7. One can see that for each function v
ż

χ2
Av

2
ď

ż

|x|ď2A

v2
ď C

ż

|x|ď2A

e´4|x|{Av2
À

ż

v2ζ4
A ď }ζ

2
Av}

2
L2 .

This estimate will be useful later on (see Subsections 4.3.5 and 4.3.5).

4.2.3 Virial estimate

Set

Iptq “
ż

R
ϕApxqu1u2, (4.36)

and
wi “ ζAui, i “ 1, 2. (4.37)

Here, pw1, w2q represents a localized version of pu1, u2q at scale A. The following virial
argument has been used in [18, 19] in a similar context.

Proposition 4.3. There exist C1 ą 0 and δ1 ą 0 such that for any 0 ă δ ď δ1, the following
holds. Fix A “ δ´1. Assume that for all t ě 0, (4.27) holds. Then for all t ě 0,

d

dt
Iptq ď ´ 1

2

ż

“

w2
2 ` 2pBxw1q

2
`
`

1´ C1A
´1
˘

w2
1

‰

` C1a
4
1 ` C1

ż

sech
´x

2

¯

w2
1. (4.38)

Some remarks are in order.

Remark 4.8. This virial has several similarities with the developed in [18] for nonlinear
Klein-Gordon equation. In that paper, the main part of the virial is composed by the 9H1-
norm of w1. In our case, this main part is similar to the H1 ˆ L2-norm of pw1, w2q, and
the rest of the terms are the same. Unlike [18], we did not use a correction term since the
momentum of the equation (4.4) works well in this case. This virial was already used in [30]
in a different context (small solutions around zero).

The proof of Proposition 4.3 follows after the next intermediate lemma.
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Lemma 4.4. Let pu1, u2q P H
1pRq ˆ L2pRq a solution of (4.30). Consider ϕA “ ϕApxq a

smooth bounded function to be chosen later. Then

d

dt
Iptq “ ´ 1

2

ż

ϕ1A
`

u2
2 ` u

2
1 ` 3pBxu1q

2
˘

`
1

2

ż

ϕ3Au
2
1

`

ż

pϕ1Au1 ` ϕABxu1q
`

fpQq ` f 1pQqa1φ0 ´ fpQ` a1φ0 ` u1q ´N0B
´2
x φ0

˘

.

(4.39)

Proof. Taking derivative in (4.36) and using (4.30),

d

dt
Iptq “

ż

ϕAp 9u1u2 ` u1 9u2q “

ż

ϕApBxu2u2 ` u1pBxLpu1q `N
K
qq

“ ´
1

2

ż

ϕ1Au
2
2 `

ż

ϕAu1BxLpu1q `

ż

ϕAu1N
K.

(4.40)

For the second integral in the RHS of the above equation, we have

ż

ϕAu1BxLpu1q “

ż

ϕAu1p´B
3
xu1 ` Bxu1 ´ Bxpf

1
pQqu1qq

“ ´

ż

ϕAu1B
3
xu1 `

1

2

ż

ϕABxpu
2
1q ´

ż

ϕAu1Bxpf
1
pQqu1q.

Integrating by parts

ż

ϕAu1BxLpu1q “ ´
1

2

ż

ϕ1Au
2
1 `

ż

pϕ1Au1 ` ϕABxu1qB
2
xu1 ´

ż

ϕAu1Bxpf
1
pQqu1q

“ ´
1

2

ż

ϕ1A
“

u2
1 ` pBxu1q

2
‰

`

ż

ϕ1Au1B
2
xu1 ´

ż

ϕAu1Bxpf
1
pQqu1q.

(4.41)

Integrating by parts in the second integral in the RHS of the above equation, we get

ż

ϕ1Au1B
2
xu1 “´

ż

pϕ2Au1 ` ϕ
1
ABxu1qBxu1

“´

ż
ˆ

ϕ2A
Bxpu

2
1q

2
` ϕ1ApBxu1q

2

˙

“ ´

ż

ϕ1ApBxu1q
2
`

ż

ϕ3A
u2

1

2
.

For the last integral in the RHS of (4.40), separating terms and integrating by parts we
obtain

ż

ϕAu1N
K
“

ż

ϕAu1

`

Bx pfpQq ` f
1
pQqpa1φ0 ` u1q ´ fpQ` a1φ0 ` u1qq ´N0B

´1
x φ0

˘

“´

ż

pϕ1Au1 ` ϕABxu1q pfpQq ` f
1
pQqa1φ0 ´ fpQ` a1φ0 ` u1qq

`

ż

ϕAu1Bxpf
1
pQqu1q ´N0

ż

ϕAu1B
´1
x φ0.
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Cancelling terms, we finally obtain

d

dt
Iptq “ ´

ż

ϕ1A

ˆ

u2
2

2
`
u2

1

2
` pBxu1q

2
`
pBxu1q

2

2

˙

`

ż

ϕ3A
u2

1

2
´

ż

ϕAu1Bxpf
1
pQqu1q

`

ż

pϕ1Au1 ` ϕABxu1q pfpQq ` f
1
pQqa1φ0 ´ fpQ` a1φ0 ` u1qq

`

ż

ϕAu1Bxpf
1
pQqu1q ´N0

ż

ϕAu1B
´1
x φ0

“´
1

2

ż

ϕ1A
`

u2
2 ` u

2
1 ` 3pBxu1q

2
˘

`
1

2

ż

ϕ3Au
2
1 ´N0

ż

ϕAu1B
´1
x φ0.

`

ż

pϕ1Au1 ` ϕABxu1q pfpQq ` f
1
pQqa1φ0 ´ fpQ` a1φ0 ` u1qq .

(4.42)

This concludes the proof. �

Now we rewrite the main part of the virial identity using the new variables pw1, w2q.

Lemma 4.5. It holds
ż

ϕ1A
`

u2
2 ` u

2
1 ` 3pBxu1q

2
˘

´

ż

ϕ3Au
2
1 “

ż
ˆ

w2
2 ` 3pBxw1q

2
`

ˆ

1`
ζ2A
ζA
´ 2

pζ 1Aq
2

ζ2
A

˙

w2
1

˙

,

with
ˇ

ˇ

ˇ

ˇ

ζ2A
ζA
´ 2

pζ 1Aq
2

ζ2
A

ˇ

ˇ

ˇ

ˇ

À
1

A
. (4.43)

Proof. Considering wi “ ζAui, i “ 1, 2, and ϕ1A “ ζ2
A, we have

ż

ϕ1A
`

u2
2 ` u

2
1

˘

“

ż

ζ2
A

`

u2
2 ` u

2
1

˘

“

ż

`

w2
2 ` w

2
1

˘

. (4.44)

Also,
ż

ϕ1ApBxu1q
2
“

ż

pBxw1q
2
`

ż

w2
1

ζ2A
ζA
. (4.45)

In the case of the last terms we have,
ż

ϕ3Au
2
1 “

ż

pζ2
Aq
2

ζ2
A

w2
1 “ 2

ż
ˆ

ζ2A
ζA
`
pζ 1Aq

2

ζ2
A

˙

w2
1.

By (4.32), we have
ζ 1A
ζA
“ ´

1

A
r´χ1pxq|x| ` p1´ χpxqsgnpxqqs ,

ζ2A
ζA
“

ˆ

ζ 1A
ζA

˙2

`
1

A
rχ2pxq|x| ` 2χ1pxqsgnpxqs .

(4.46)
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Then, substracting

ζ2A
ζA
´ 2

ˆ

ζ 1A
ζA

˙2

“´
1

A2
r´χ1pxq|x| ` p1´ χpxqqsgnpxqs2 `

1

A
rχ2pxq|x| ` 2χ1pxqsgnpxqs .

For 1 ď |x| ď 2, one can see that
ˇ

ˇ

ˇ

ˇ

ˇ

ζ2A
ζA
´ 2

ˆ

ζ 1A
ζA

˙2
ˇ

ˇ

ˇ

ˇ

ˇ

À
1

A
`

1

A2
.

For |x| ě 2, we have that
ˇ

ˇ

ˇ

ˇ

ˇ

ζ 1A
ζA
´ 2

ˆ

ζ 1A
ζA

˙2
ˇ

ˇ

ˇ

ˇ

ˇ

“
1

A2
.

Then,
ˇ

ˇ

ˇ

ˇ

ˇ

ζ2A
ζA
´ 2

ˆ

ζ 1A
ζA

˙2
ˇ

ˇ

ˇ

ˇ

ˇ

À

ˆ

1

A
`

1

A2

˙

1t|x|ě1u À
1

A
.

This ends the proof. �

Next, we deal with the nonlinear terms.

Lemma 4.6.
ˇ

ˇ

ˇ

ˇ

ż

pϕ1Au1 ` ϕABxu1q pfpQ` a1φ0 ` u1q ´ fpQq ´ f
1
pQqa1φ0q ´N0

ż

ϕAu1B
´1
x φ0

ˇ

ˇ

ˇ

ˇ

À a4
1 `

ż

sech
´x

2

¯

w2
1 ` A

2
}u1}

p´1
L8

ż

|Bxw1|
2.

(4.47)

Proof. First, we treat the term N0

ş

ϕAu1B
´1
x φ0. Noticing that

N0 “ xN, B
´1
x φ0y “ ´xfpQq ` f

1
pQqpa1φ0 ` u1q ´ fpQ` a1φ0 ` u1q, φ0y, (4.48)

and by Taylor’s expansion, one has

|fpQ`a1φ0`u1q´fpQq´f
1
pQqpa1φ0`u1q| À a2

1f
2
pQqφ2

0`f
2
pQqu2

1`|a1|
pφp0`|u1|

p. (4.49)

Thus, by exponential decay estimates on Q and φ0 (see Appendix 4.A), and by (4.27),
|a1| À 1, }u1}L8 ď }u1}H1 À 1, it holds

|N0| À a2
1 `

ż

sechp9x{10qu2
1, (4.50)

taking A ě 4, we have

|N0| À a2
1 `

ż

sech
´x

2

¯

w2
1. (4.51)

Noticing that for all x P R, |ϕA| ď |x|,

|ϕAB
´1
x φ0| À |x sechp9x{10q| ď

ˇ

ˇ

ˇ

ˇ

sech

ˆ

3

4
x

˙
ˇ

ˇ

ˇ

ˇ

,
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and using Hölder inequality, we have
ˇ

ˇ

ˇ

ˇ

ż

u1ϕAB
´1
x φ0

ˇ

ˇ

ˇ

ˇ

À

ˇ

ˇ

ˇ

ˇ

ż

w1 sech
´x

2

¯

ˇ

ˇ

ˇ

ˇ

À

ˇ

ˇ

ˇ

ˇ

ż

w2
1 sech

´x

2

¯

ˇ

ˇ

ˇ

ˇ

1{2 ˇ
ˇ

ˇ

ˇ

ż

sech
´x

2

¯

ˇ

ˇ

ˇ

ˇ

1{2

À

ˇ

ˇ

ˇ

ˇ

ż

w2
1 sech

´x

2

¯

ˇ

ˇ

ˇ

ˇ

1{2

.

(4.52)

We conclude using Cauchy-Schwarz inequality
ˇ

ˇ

ˇ

ˇ

N0

ż

ϕAu1B
´1
x φ0

ˇ

ˇ

ˇ

ˇ

À |N0|
2
`

ˇ

ˇ

ˇ

ˇ

ż

u1ϕAB
´1
x φ0

ˇ

ˇ

ˇ

ˇ

2

À a4
1 `

ż

sech
´x

2

¯

w2
1.

For the remaining terms, we consider the following decomposition
ż

pϕABxu1 ` ϕ
1
Au1q rfpQ` a1φ0 ` u1q ´ fpQq ´ f

1
pQqa1φ0s

“

ż

ϕABx rF pQ` a1φ0 ` u1q ´ F pQ` a1φ0q ´ pfpQq ` f
1
pQqa1φ0qu1s

´

ż

ϕAQ
1
rfpQ` a1φ0 ` u1q ´ fpQ` a1φ0q ´ pf

1
pQq ` f2pQqa1φ0qu1s

´ a1

ż

ϕABxφ0 rfpQ` a1φ0 ` u1q ´ fpQ` a1φ0q ´ f
1
pQqu1s

`

ż

ϕ1Au1rfpQ` a1φ0 ` u1q ´ fpQq ´ f
1
pQqa1φ0s

“: I1 ` I2 ` I3 ` I4,

and rewriting as

I1 “´

ż

ϕ1A rF pQ` a1φ0 ` u1q ´ F pQ` a1φ0q ´ F
1
pQ` a1φ0qu1 ´ F pu1qs

´

ż

ϕ1A rfpQ` a1φ0q ´ fpQq ` f
1
pQqa1φ0qsu1 ´

ż

ϕ1AF pu1q,

I2 “´

ż

ϕAQ
1
rfpQ` a1φ0 ` u1q ´ fpQ` a1φ0q ´ f

1
pQ` a1φ0qu1ss

´

ż

ϕAQ
1
pf 1pQ` a1φ0q ´ f

1
pQq ` f2pQqa1φ0qu1,

I3 “´ a1

ż

ϕABxφ0 rfpQ` a1φ0 ` u1q ´ fpQ` a1φ0q ´ f
1
pQ` a1φ0qu1s

´ a1

ż

ϕABxφ0 pf
1
pQ` a1φ0q ´ f

1
pQqqu1,

and
I4 “

ż

ϕ1Au1rfpQ` a1φ0 ` u1q ´ fpQ` a1φ0q ´ fpu1qs

`

ż

ϕ1Au1rfpQ` a1φ0q ´ fpQq ´ f
1
pQqa1φ0s `

ż

ϕ1Au1fpu1q.
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By Taylor expansion, p ě 1, |a1|, }u1}L8 À 1, we have

|F pQ`a1φ0 ` u1q ´ F pQ` a1φ0q ´ F
1
pQ` a1φ0qu1 ´ F pu1q|,

À |Q` a1φ0|
p´1u2

1 ` |Q` a1φ0||u1|
p,

À |Q` a1φ0|
p´1u2

1 ` |Q` a1φ0||u1|
2
À sechp9x{10qu2

1 À sech
´x

2

¯

w2
1.

Similarly, using (4.32) and A ě 4, we find the following estimates

|ϕAQ
1
rfpQ` a1φ0 ` u1q ´ fpQ` a1φ0q ´ f

1
pQ` a1φ0qu1s | À sech

´x

2

¯

w2
1,

|a1ϕABxφ0 rfpQ` a1φ0 ` u1q ´ fpQ` a1φ0q ´ f
1
pQ` a1φ0qu1s | À sech

´x

2

¯

w2
1,

|ϕ1Au1 rfpQ` a1φ0 ` u1q ´ fpQ` a1φ0q ´ fpu1qs | À sech
´x

2

¯

w2
1.

Furthermore, once again by Taylor expansion, we have

|ϕ1A rfpQ` a1φ0q ´ fpQq ` f
1
pQqa1φ0qsu1|

` |ϕAQ
1
rf 1pQ` a1φ0q ´ f

1
pQq ` f2pQqa1φ0su1|

` |a1ϕABxφ0 rf
1
pQ` a1φ0q ´ f

1
pQqsu1|

` |ϕ1Au1 rfpQ` a1φ0q ´ fpQq ´ f
1
pQqa1φ0s |

À sech
´x

2

¯

|a1|
2
|u1| À sech

´x

2

¯

|w1|
2
` sech

´x

4

¯

|a1|
4.

(4.53)

For the last step, we need the following claim proved in [18].

Claim 4.7. It holds
ż

ζ2
A|u1|

p`1
“

ż

ζ´p`1
A |w1|

p`1
À A2

}u1}
p´1
L8

ż

|Bxw1|
2.

Using this claim, we have

ˇ

ˇ

ˇ

ˇ

ż

ϕ1AF pu1q

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

ϕ1Au1fpu1q

ˇ

ˇ

ˇ

ˇ

À

ż

ζ2
A|u1|

p`1
À A2

}u1}
p´1
L8

ż

|Bxw1|
2.

Finally, we get

ˇ

ˇ

ˇ

ˇ

ż

pBxϕAu1 ` ϕABxu1q
`

fpQ` a1φ0 ` u1q ´ fpQq ´ f
1
pQqa1φ0 `N0ν

´2
0 Lφ0

˘

ˇ

ˇ

ˇ

ˇ

À a4
1 `

ż

sech
´x

2

¯

w2
1 ` A

2
}u1}

p´1
L8

ż

|Bxw1|
2.

(4.54)

This ends the proof of Lemma 4.6. �
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4.2.4 End of Proposition 4.3

Applying Lemmas 4.5 and 4.6, and taking }u1}L8 ď δA, for δA small enough, we have proved

d

dt
Iptq ď ´ 1

2

ż
„

w2
2 ` 3pBxw1q

2
`

ˆ

1´

ˆ

1

A
`

1

A2

˙

1t|x|ě1u

˙

w2
1



` C1a
4
1 ` C1

ż

sech
´x

2

¯

w2
1 ` A

2
}u1}

p´1
L8

ż

|Bxw1|
2

ď´
1

2

ż
„

w2
2 ` 2pBxw1q

2
`

ˆ

1´
C1

A

˙

w2
1



` C1a
4
1 ` C1

ż

sech
´x

2

¯

w2
1.

(4.55)

This concludes the proof.

4.3 Transformed problem and second virial estimates
Following the idea of Martel [24], we will consider the function v1 “ Lu1 instead u1 to obtain
a transformed problem with better virial properties. However, we must be careful since our
original variables pu1, u2q belong to H1pRq ˆ L2pRq, and by using L, the new variables are
not well-defined. Therefore, we need a regularization procedure, as in [18].

4.3.1 The transformed problem

Let γ ą 0 small, to be determined later, set
#

v1 “ p1´ γB
2
xq
´1Lu1,

v2 “ p1´ γB
2
xq
´1u2.

(4.56)

From the system (4.30), follows that pv1, v2q P H
1pRq ˆH2pRq, and satisfies the system

#

9v1 “ LpBxv2q `Gpxq,

9v2 “ Bxv1 `Hpxq,
(4.57)

where
Hpxq “ p1´ γB2

xq
´1NK,

Gpxq “ γp1´ γB2
xq
´1

“

B
2
xpf

1
pQqqBxv2 ` 2Bxpf

1
pQqqB2

xv2

‰

.
(4.58)

Now we compute a second virial estimate, this time on pv1, v2q.

4.3.2 Virial functional for the transformed problem

Set now
J ptq “

ż

ψA,Bv1v2, (4.59)

with
ψA,B “ χ2

AϕB, zi “ χAζBvi, i “ 1, 2. (4.60)

Here, pz1, z2q represents a localized version of the variables pv1, v2q at the scale B. This scale
is intermediate, and J ptq involves a cut-off at scale A, which is needed to bound some bad
error and nonlinear terms; see [19] for a similar procedure.
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Proposition 4.8. There exist C2 ą 0 and δ2 ą 0 such that for γ “ B´4 and for any
0 ă δ ď δ2, the following holds. Fix B “ δ´1{8. Assume that for all t ě 0, (4.27) holds. Then
for all t ě 0,

d

dt
J ptq ď ´ 1

2

ż

“

z2
1 ` pV0pxq ´ C2B

´1
qz2

2 ` 2pBxz2q
2
‰

` C2B
´1

ˆ

}w1}
2
L2 ` }w2}

2
L2

˙

` C2|a1|
3,

(4.61)

where V0pxq is given by (4.8).

The rest of this section is devoted to the proof of this proposition, which has been divided
in several subsections.

4.3.3 Proof of Proposition 4.8: first computations

We have from (4.59) and (4.57),

d

dt
J ptq “

ż

ψA,B

„

pLBxv2qv2 `
1

2
Bxpv

2
1q `Hpxqv1 `Gpxqv2



“

ż

ψA,BpLBxv2qv2 ´
1

2

ż

ψ1A,Bv
2
1 `

ż

ψA,B rGpxqv2 `Hpxqv1s .

(4.62)

In a similar way to the computation in (4.41), we have
ż

ψA,BpLBxv2qv2 “´
1

2

ż

ψ1A,B
`

v2
2 ` 3pBxv2q

2
˘

`
1

2

ż

ψ3A,Bv
2
2 ´

1

2

ż

ψA,Bf
1
pQqBxpv

2
2q.

We consider now the following decomposition

d

dt
J ptq “ ´ 1

2

ż

ψ1A,B
`

v2
1 ` v

2
2 ` 3pBxv2q

2
˘

`
1

2

ż

ψ3A,Bv
2
2

´
1

2

ż

ψA,Bf
1
pQqBxpv

2
2q `

ż

ψA,BGpxqv2 `

ż

ψA,BHpxqv1

“: pJ1 ` J2q ` pJ3 ` J4 ` J5q.

(4.63)

By definition of ψA,B (see (4.60)), it follows that

ψ1A,B “ χ2
Aζ

2
B ` pχ

2
Aq
1ϕB,

ψ2A,B “ χ2
Apζ

2
Bq
1
` 2pχ2

Aq
1ζ2
B ` pχ

2
Aq
2ϕB,

ψ3A,B “ χ2
Apζ

2
Bq
2
` 3pχ2

Aq
1
pζ2
Bq
1
` 3pχ2

Aq
2ζ2
B ` pχ

2
Aq
3ϕB.

(4.64)

Also, by the definition of zi in (4.60), we have:

´2J1 “

ż

ψ1A,B
`

v2
1 ` v

2
2 ` 3pBxv2q

2
˘

“

ż

pχ2
Aζ

2
B ` pχ

2
Aq
1ϕBq

`

v2
1 ` v

2
2 ` 3pBxv2q

2
˘

“

ż

pz2
1 ` z

2
2q `

ż

pχ2
Aq
1ϕB

`

v2
1 ` v

2
2 ` 3pBxv2q

2
˘

` 3

ż

χ2
Aζ

2
BpBxv2q

2.

(4.65)
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Derivating z2 “ ζBχAv2, replacing and integrating by parts, we obtain
ż

χ2
Aζ

2
BpBxv2q

2
“

ż

ζ2B
ζB
z2

2 `

ż

pBxz2q
2
`

ż
„

χ2A ` 2χ1A
ζ 1B
ζB



χAζ
2
Bv

2
2. (4.66)

Then, for J1 we obtain

´2J1 “

ż

pz2
1 ` z

2
2q ` 3

ż

ζ2B
ζB
z2

2 ` 3

ż

pBxz2q
2

` 3

ż
„

χ2A ` 2χ1A
ζ 1B
ζB



χAζ
2
Bv

2
2 `

ż

pχ2
Aq
1ϕB

`

v2
1 ` v

2
2 ` 3pBxv2q

2
˘

.

(4.67)

Now we turn into J2. By (4.64), J2 satisfies the following decomposition

2J2 “

ż

pχ2
Apζ

2
Bq
2
` 3pχ2

Aq
1
pζ2
Bq
1
` 3pχ2

Aq
2ζ2
B ` pχ

2
Aq
3ϕBqv

2
2

“ 2

ż

«

ˆ

ζ 1B
ζB

˙2

`
ζ2B
ζB

ff

z2
2 `

ż

p3pχ2
Aq
1
pζ2
Bq
1
` 3pχ2

Aq
2ζ2
B ` pχ

2
Aq
3ϕBqv

2
2.

For J3, integrating by parts and using the definition of z2, we obtain

´2J3 “´

ż

BxpψA,Bf
1
pQqqv2

2 “ ´

ż

“

pχ2
Aζ

2
B ` pχ

2
Aq
1ϕBqf

1
pQq ` χ2

AϕBBxpf
1
pQqq

‰

v2
2

“´

ż
„

f 1pQq ` Bxpf
1
pQqq

ϕB
ζ2
B



z2
2 ´

ż

pχ2
Aq
1ϕBf

1
pQqv2

2.

Finally, we obtain that the main part of the virial can be write as

J1 ` J2 ` J3 “ ´
1

2

ż

“

z2
1 ` V pxqz

2
2 ` 3pBxz2q

2
‰

` J̃1,

where

V pxq “ 1`
ζ2B
ζB
´ 2

pζ 1Bq
2

ζ2
B

´ f 1pQq ´ Bxpf
1
pQqq

ϕB
ζ2
B

,

and the error term is given by

J̃1 “´
1

2

ż
„

3
`

χ2AχA ´ pχ
2
Aq
2
˘

ζ2
B ´

3

2
pχ2

Aq
1
pζ2
Bq
1
`
`

pχ2
Aq
1
´ pχ2

Aq
3
˘

ϕB



v2
2

`
1

2

ż

pχ2
Aq
1ϕBf

1
pQqv2

2 ´
1

2

ż

pχ2
Aq
1ϕBv

2
1 ´

3

2

ż

pχ2
Aq
1ϕBpBxv2q

2.

(4.68)

To control the main part of the virial is necessary a lower bound for the potential V pxq. We
have the following result:

Lemma 4.9. There are C ą 0 and B0 ą 0 such that for all B ě B0, one has

V pxq ě V0pxq ´ CB
´1, where V0pxq “ 1´ f 1pQq. (4.69)
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Proof. First, recalling (4.43) and changing the scale, we have
ˇ

ˇ

ˇ

ˇ

ˇ

ζ2B
ζB
´ 2

ˆ

ζ 1B
ζB

˙2
ˇ

ˇ

ˇ

ˇ

ˇ

À
1

B
. (4.70)

Using that for x P r0,8q ÞÑ ζBpxq is a non-increasing function, we have for x ą 0,

ϕB
ζ2
B

“

şx

0
ζ2
B

ζ2
B

ą 0,

and Bxpf 1pQqq ă 0 for x ą 0. Then,

V pxq ě 1´ CB´1
´ f 1pQq ` |Bxpf

1
pQqqx| ě 1´ CB´1

´ f 1pQq “ V0pxq ´ CB
´1. (4.71)

The case x ď 0 is similar. These estimates hold for any x P R. This concludes the proof. �

First conclusion. Using this lemma, and the above definition of J̃1, we conclude

d

dt
J ptq ď ´1

2

ż

“

z2
1 ` pV0 ´ CB

´1
qz2

2 ` 3pBxz2q
2
‰

` J̃1 ` J4 ` J5, (4.72)

where J4 and J5 are related with the nonlinear term in (4.63). To control the terms J̃1, J4, J5,
and the terms that will appear in the sections below, some technical estimates will be needed.

4.3.4 First technical estimates

For γ ą 0, let p1 ´ γB2
xq
´1 be the bounded operator from L2 to H2 defined by its Fourier

transform as
{pp1´ γB2

xq
´1gqpξq “

pgpξq

1` γξ2
, for any g P L2.

We start with a basic but essential result, in the spirit of [19].

Lemma 4.10. Let f P L2pRq and 0 ă γ ă 1, we have the following estimates

piq }p1´ γB2
xq
´1f}L2pRq ď }f}L2pRq,

piiq }p1´ γB2
xq
´1Bxf}L2pRq ď γ´1{2}f}L2pRq,

piiiq }p1´ γB2
xq
´1f}H2pRq ď γ´1}f}L2pRq.

We also enunciate the following result that appears in [19, 18]:

Lemma 4.11. There exist γ1 ą 0 and C ą 0 such that for any γ P p0, γ1q, 0 ă K ď 1 and
g P L2, the following estimates holds

›

›sech pKxq p1´ γB2
xq
´1g

›

›

L2 ď C
›

›p1´ γB2
xq
´1
rsech pKxq gs

›

›

L2 , (4.73)

and
›

›cosh pKxq p1´ γB2
xq
´1
rsech pKxq gs

›

›

L2 ď C
›

›p1´ γB2
xq
´1g

›

›

L2 .
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From this lemma, we obtain the following result.

Corollary 4.12. For any 0 ă K ď 1 and γ ą 0 small enough, for any f P L2,

} sechpKxqp1´ γB2
xq
´1
Bxf}L2 À γ´1{2

} sechpKxqf}L2 , (4.74)

where the implicit constant is independent of γ and K.

Proof. Using (4.73) and rewriting, we have

} sechpKxqp1´ γB2
xq
´1
Bxf}L2 À }p1´ γB2

xq
´1
rsechpKxqBxf s }L2

À }p1´ γB2
xq
´1
Bx rsechpKxqf s }L2

` }p1´ γB2
xq
´1
pBx sechpKxqqf}L2 .

The proof concludes applying Lemma 4.10. �

Following the spirit of Lemma 4.11, we obtain

Lemma 4.13. For any 0 ă K ď 1 and γ ą 0 small enough, for any f P L2,

} sechpKxqp1´ γB2
xq
´1
p1´ B2

xqf}L2 À γ´1
} sechpKxqf}L2 , (4.75)

where the implicit constant is independent of γ and K.

Proof. Set h “ sech pKxq p1´ γB2
xq
´1p1´ B2

xqf and k “ sech pKxq f . We have

cosh pKxqh “ p1´ γB2
xq
´1
p1´ B2

xq rcoshpKxqks . (4.76)

Thus, we obtain

cosh pKxqh “ p1´ γB2
xq
´1
rcoshpKxqks ´ B2

xp1´ γB
2
xq
´1
rcoshpKxqks

“ p1´ γB2
xq
´1
rcoshpKxqks ` γ´1

p1´ γB2
x ´ 1qp1´ γB2

xq
´1
rcoshpKxqks

“ p1´ γB2
xq
´1
rcoshpKxqks ` γ´1 coshpKxqk ´ γ´1

p1´ γB2
xq
´1
rcoshpKxqks .

Thus,
γh “pγ ´ 1q sech pKxq p1´ γB2

xq
´1
rcoshpKxqks ` k,

using Lemma 4.11 and dividing by γ, we obtain

}h}L2 À γ´1
}k}L2 .

This concludes the proof. �

We need some additional auxiliary estimates to related the several variables defined.

Lemma 4.14. One has:
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(a) Estimates on v1:
}v1} À γ´1

}u1}L2 ,

}Bxv1} À γ´1{2
}f 1pQqu1}L2 ` γ´1

}Bxu1}
2
L2 .

(4.77)

(b) Estimates on v2:
}v2}L2 À }u2}L2 , }Bxv2}L2 À γ´1{2

}u2}L2 ,

}B
2
xv2}L2 À γ´1

}u2}L2 .
(4.78)

The proof of the above results are a direct application of Lemma 4.10.

Lemma 4.15. Let 1 ď K ď A fixed and ζK as in (4.33). Then

(a) Estimates on v1:
}ζKv1} À γ´1

}w1}L2 ,

}ζKBxv1} À γ´1
}Bxw1}L2 ` γ´1

}w1}L2 .
(4.79)

(b) Estimates on v2:
}ζKv2}L2 À }w2}L2 ,

}ζKBxv2}L2 À γ´1{2
}w2}L2 ,

}ζKB
2
xv2}L2 À γ´1

}w2}L2 .

(4.80)

Proof. Proof of (4.79). piq Applying the definition of v1 (4.56), we have

}ζKv1}L2 À }ζKp1´ γB
2
xq
´1

“

p1´ B2
xqpu1q ´ f

1
pQqu1

‰

}L2 .

Using Lemma 4.13 and Lemma 4.10, (4.32) and 1 ď K ď A, we conclude

}ζKv1}L2 À γ´1
}ζKu1}L2 ` }ζKf

1
pQqu1}L2

À γ´1
}ζKζ

´1
A w1}L2 ` }ζKζ

´1
A f 1pQqw1}L2 À γ´1

}w1}L2 .

Proof of piiq. First, by the definition of w1 (4.37), we get

ζKBxu1 “ ζKζ
´1
A

ˆ

Bxw1 ´
ζ 1A
ζA
w1

˙

. (4.81)

Then, by definition of v1 in (4.56),

}ζKBxv1}L2 À }ζKp1´ γB
2
xq
´1
p1´ B2

xqBxu1}L2 ` }ζKp1´ γB
2
xq
´1
Bxrf

1
pQqu1s}L2 .

and using Lemma 4.13,

}ζKBxv1}L2 À γ´1
}ζKBxu1}L2 ` }ζKf

1
pQqu1}L2

À γ´1
p}Bxw1}L2 ` A´1

}w1}L2q ` }w1}L2

À γ´1
p}Bxw1}L2 ` }w1}L2q.

This ends the proof of (4.79). Following the preceding steps for v2, the proof concludes. �
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Now we perform some technical estimates on the variable zi.

Corollary 4.16. One has:

(a) Estimates on z1:
}z1} À γ´1

}w1}L2 ,

}Bxz1} À γ´1
}Bxw1}L2 ` γ´1

}w1}L2 .
(4.82)

(b) Estimates on z2:
}z2}L2 À }w2}L2 ,

}Bxz2}L2 À γ´1{2
}w2}L2 ,

}B
2
xz2}L2 À γ´1

}w2}L2 .

(4.83)

Proof. Proof of (4.82). For piq, from definition of z1 “ χAζBv1, we have

}z1}L2 À }ζBv1}L2 ,

and using Lemma 4.15, we conclude

}z1}L2 À γ´1
}w1}L2 .

For piiq, derivating z1, we obtain

Bxz1 “ χ1AζBv1 ` χAζ
1
Bv1 ` χAζBBxv1

“ χ1AζBv1 `
ζ 1B
ζB
z1 ` χAζBBxv1.

Then, by Lemma 4.15 we have

}Bxz1} ď γ´1
`

}w1}L2 ` }Bxw1}L2

˘

.

For z2 we use the same strategy, and we skip the details. This ends the proof. �

Lemma 4.17. One has:

(a) Estimates on u1:
›

›

›
sech1{2

pxqu1

›

›

›

L2
À }w1}L2 ,

›

›

›
sech1{2

pxqBxu1

›

›

›

L2
À }Bxw1}L2 ` }w1}L2 .

(4.84)

(b) Estimates on u2:
›

›

›
sech1{2

pxqu2

›

›

›

L2
À }w2}L2 . (4.85)

Proof. Proof of (4.84). Recalling definition of wi “ ζAui for i “ 1, 2.. We have

} sech1{2
pxqui}L2 À } sech1{2

pxqζ´1
A wi}L2 ď }wi}L2 .
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Furthermore, derivating w1, we have

ζABxu1 “ Bxw1 ´
ζ 1A
ζA
w1.

Then,

} sech1{2
pxqBxu1}L2 “

›

›

›

›

sech1{2
pxqζ´1

A

ˆ

Bxw1 ´
ζ 1A
ζA
w1

˙
›

›

›

›

ď }Bxw1}L2 ` A´1
}w1}L2 .

This concludes the proof. �

4.3.5 Controlling error and nonlinear terms

By the definition of ζB and χA in (4.33) and (4.34), it holds

ζBpxq ď e´
|x|
B , |ζ 1Bpxq| À

1

B
e´

|x|
B , |ϕB| À B,

|pχ2
Aq
1
| À A´1, |pχ2

Aq
2
| À A´2, |pχ2

Aq
3
| À A´3.

(4.86)

Control of J̃1.

Considering the following decomposition J̃1:

J̃1 “´
1

2

ż

pχ2
Aq
1ϕBrv

2
1 ` 3pBxv2q

2
s `

1

2

ż

“

pχ2
Aq
1f 1pQq `

`

pχ2
Aq
3
´ pχ2

Aq
1
˘‰

ϕBv
2
2

´
3

2

ż
„

`

χ2AχA ´ pχ
2
Aq
2
˘

´ pχ2
Aq
1 ζ
1
B

ζB



ζ2
Bv

2
2 “: H1 `H2 `H3.

For H1 and H2, using |pχ2
Aq
1ϕB| À A´1B and Remark 4.7, we obtain

|H1| À A´1Bp}v1}
2
L2p|x|ď2Aq ` }Bxv2}

2
L2p|x|ď2Aqq À A´1Bp}ζ2

Av1}
2
L2 ` }ζ2

ABxv2}
2
L2q,

and
|H2| À A´1B}v2}

2
L2pAď|x|ď2Aq À A´1B}v2}

2
L2p|x|ď2Aq À A´1B}ζ2

Av2}
2
L2 .

For H3, using (4.86), we have

|H3| ď
3

2

ż

ˇ

ˇ

ˇ

ˇ

`

χ2AχA ´ pχ
2
Aq
2
˘

´ pχ2
Aq
1 ζ
1
B

ζB

ˇ

ˇ

ˇ

ˇ

ζ2
Bv

2
2

À pABq´1
}ζBv2}

2
L2p|x|ď2Aq À pABq

´1
}ζBv2}

2
L2 .

Finally, we get
|J̃1| À A´1B

`

}ζAv1}
2
L2 ` }ζAv2}

2
L2 ` }ζABxv2}

2
L2

˘

, (4.87)

since ζB À ζA.
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Control of J4.

Recall that

J4 “ γ

ż

ψA,Bv2p1´ γB
2
xq
´1

“

2BxpBxpf
1
pQqqBxv2q ´ B

2
xpf

1
pQqqBxv2

‰

.

Using Hölder’s inequality

|J4| À γ}ψA,Bv2}L2 }p1´ γB2
xq
´1
r2BxpBxpf

1
pQqqBxv2q ´ B

2
xpf

1
pQqqBxv2s}L2

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

J1
4

.

First we focus on J1
4 . Using (4.10),

J1
4 À γ´1{2

}pBxpf
1
pQqqBxv2}L2 ` }B

2
xpf

1
pQqqBxv2}L2 .

Recall that |Bxpf 1pQqq|, |B2
xpf

1pQqq| „ Qp´2|Q1| À e´pp´1q|x|. Therefore, we are led to the
estimate of

}e´pp´1q|x|
Bxv2}L2 .

Differentiating z2 “ χAζBv2, we obtain

χAζBBxv2 “ Bxz2 ´
ζ 1B
ζB
z2 ´ χ

1
AζBv2,

we get

e´2pp´1q|x|
pBxv2q

2

“ e´2pp´1q|x|χ2
ApBxv2q

2
` e´2pp´1q|x|

p1´ χ2
AqpBxv2q

2

À e´pp´1q|x|

«

pBxz2q
2
`

ˆ

ζ 1B
ζB

˙2

z2
2 ` pχ

1
AζBv2q

2

ff

` e´pp´1qAe´pp´1q|x|
pBxv2q

2

À e´pp´1q|x|

„

pBxz2q
2
`

1

B2
z2

2



` e´pp´1q|x|
pχ1AζBv2q

2
` e´pp´1qAe´pp´1q|x|

pBxv2q
2.

Hence,
}e´|x|Bxv2}L2 À }Bxz2}L2 ` }z2}L2 ` e´pp´1qA

p}ζBv2}L2 ` }ζBBxv2}L2q.

By the above inequality, we have

J1
4 À γ´1{2

ˆ

}Bxz2}L2 ` }z2}L2 ` e´pp´1qA
p}ζBv2}L2 ` }ζBBxv2}L2q

˙

. (4.88)

Second, using ψA,B “ χ2
AϕB in (4.60), and Remark 4.7, one can see that

}ψA,Bv2}L2 À B}χAv2}L2 À B}v2}L2p|x|ă2Aq À B}ζ2
Av2}L2 .

We conclude

|J4| À γ1{2B}ζ2
Av2}L2

ˆ

}Bxz2}L2 ` }z2}L2 ` e´pp´1qA
p}ζBv2}L2 ` }ζBBxv2}L2q

˙

. (4.89)
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Control of J5.

Recalling that ψA,B “ χ2
AϕB, using the Hölder inequality and Remark 4.7, we get

|J5| “

ˇ

ˇ

ˇ

ˇ

ż

ψA,BHpxqv1

ˇ

ˇ

ˇ

ˇ

À }χAϕBv1}L2}χAp1´ γB
2
xq
´1NK

}L2

À }χAϕBv1}L2}ζ2
Ap1´ γB

2
xq
´1NK

}L2 .

By the definition of NK (see (4.29)), it follows that

}ζ2
Ap1´ γB

2
xq
´1NK

}L2 ď }ζ2
Ap1´ γB

2
xq
´1N}L2 ` |N0|}ζ

2
Ap1´ γB

2
xq
´1
B
´1
x φ0}L2

À }ζ2
Ap1´ γB

2
xq
´1N}L2 ` |N0|,

since B´1
x φ0 P L

2 and 0 ď ζA À 1.
Furthermore, by definition of N in (4.29), and using Corollary 4.12, (4.49) and Lemma 4.10,
we have

}ζ2
Ap1´ γB

2
xq
´1N}L2

ď γ´1{2
}ζ2
ArfpQq ` f

1
pQqpa1φ0 ` u1q ´ fpQ` a1φ0 ` u1qs}L2

ď γ´1{2
}ζ2
Ara

2
1f
2
pQqφ2

0 ` f
2
pQqu2

1 ` |a1|
pφp0 ` |u1|

p
s}L2

ď γ´1{2
`

a2
1}f

2
pQqζ2

Aφ
2
0}L2 ` }f2pQqζAw

2
1}L2 ` |a1|

p
}ζ2
Aφ

p
0}L2 ` }ζA|u1|

p´1w1}L2

˘

À γ´1{2
`

a2
1 ` }u1}L8}f

2
pQqw1}L2 ` |a1|

p
` }u1}

p´1
L8 }w1}L2

˘

À γ´1{2
`

a2
1 ` }u1}L8}w1}L2

˘

.

(4.90)

Note that we have used that p ě 2. Since |χAϕB| À B, we have

}χAϕBv1}L2 À B}χAv1}L2 À B}v1}L2p|x|ă2Aq À B}ζ2
Av1}L2 . (4.91)

Finally, by (4.51), (4.90) and (4.91) , we conclude

|J5| À Bγ´1{2
}ζ2
Av1}L2

`

a2
1 ` }u1}L8}w1}L2

˘

. (4.92)

4.3.6 End of proof of Proposition 4.8

From (4.87), (4.89), (4.92), and choosing

0 ă γ “ B´4, (4.93)

it follows

|J̃1 ` J4 ` J5| À A´1B
`

}ζAv1}
2
L2 ` }ζAv2}

2
L2 ` }ζABxv2}

2
L2

˘

` γ1{2B}ζAv2}L2

ˆ

}Bxz2}L2 ` }z2}L2 ` e´pp´1qA
p}ζBv2}L2 ` }ζBBxv2}L2q

˙

`Bγ´1{2
}ζAv1}L2

ˆ

a2
1 ` }u1}L8}w1}L2

˙

.

(4.94)
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Applying Lemma 4.15-(4.79) and (4.35), we obtain

|J̃1 ` J4 ` J5| À B´1

ˆ

}w1}
2
L2 ` }w2}

2
L2 ` }z2}

2
L2 ` }Bxz2}

2
L2

˙

`B8

ˆ

a4
1 ` }u1}

2
L8}w1}

2
L2

˙

.

(4.95)

Choosing
B ď δ´1{8, (4.96)

(to be fixed later) and using (4.27), we arrive to

B8
pa4

1 ` }u1}
2
L8}w1}

2
L2q À δ´1

pa4
1 ` }u1}

2
L8}w1}

2
L2q À |a1|

3
` δ}w1}

2
L2 .

Then, using the above estimates, we obtain that the error term and the associated to the
nonlinear part are bounded as follows:

|J̃1 ` J4 ` J5| À B´1
`

}w1}
2
L2 ` }w2}

2
L2 ` }z2}

2
L2 ` }Bxz2}

2
L2

˘

` |a1|
3.

Finally, the virial estimate is concluded as follows: for some C2 ą 0 independent of B large,
d

dt
J ptq ď ´

1

2

ż

“

z2
1 ` pV0pxq ´ CB

´1
qz2

2 ` 3pBxz2q
2
‰

` CB´1

ˆ

}w1}
2
L2 ` }w2}

2
L2 ` }z2}

2
L2 ` }Bxz2}

2
L2

˙

` C|a1|
3.

ď ´
1

2

ż

“

z2
1 ` pV0pxq ´ C2B

´1
qz2

2 ` 2pBxz2q
2
‰

` C2B
´1

ˆ

}w1}
2
L2 ` }w2}

2
L2

˙

` C2|a1|
3.

(4.97)

This ends the proof of Proposition 4.8.

4.4 Gain of derivatives via transfer estimates
We must note that in (4.38) the last term is a localized one, which in the language of estimate
(4.97) will correspond to a term of type Bxz1, not appearing in this last estimate. However,
this new term will be well-defined by the regularity of the original variables pu1, u2q. We think
that this problem appears as a product of the lack of balance in the regularity of pv1, v2q (see
Subsection 4.56). Therefore, we need new estimates to control Bxz1.

To solve this new problem, we will focus on a new virial obtained for a new system of
equations involving the variables ṽi “ Bxvi, for i “ 1, 2. Formally taking derivatives in (4.57),
we have

#

9̃v1 “ LpBxṽ2q ´ Bxpf
1pQqqv2 ` G̃pxq, G̃pxq “ BxGpxq,

9̃v2 “ Bxṽ1 ` H̃pxq, H̃pxq “ BxHpxq,
(4.98)

where G and H are given in (4.58).
For this new system, we consider the virial

Mptq “
ż

φA,B ṽ1ṽ2 “

ż

φA,BBxv1Bxv2. (4.99)

Later we will choose φA,B “ ψA,B “ χ2
AϕB (see (4.60)).
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4.4.1 A virial estimate related to Mptq

Lemma 4.18. Let pv1, v2q P H
1pRq ˆ H2pRq a solution of (4.57). Consider φA,B an odd

smooth bounded function to be a choose later. Then

d

dt
Mptq “ ´ 1

2

ż

φ1A,B
`

pBxv1q
2
` pBxv2q

2
` 3pB2

xv2q
2
˘

`
1

2

ż

φ3A,BpBxv2q
2

´
1

2

ż

φA,Bf
1
pQqBxppBxv2q

2
q `

ż

φA,BG̃pxqBxv2 `

ż

φA,BH̃pxqBxv1.

(4.100)

The identity (4.100) is interesting because it has exactly the same structure that
d

dt
J ptq

in (4.63). This holds despite the new derivative terms appearing in (4.98). To obtain this we
will benefit from a cancellation given by the parity of the data.

Proof of Lemma 4.18. From (4.57), (4.98) and (4.63), we have

d

dt
Mptq “ ´ 1

2

ż

φ1A,B
`

ṽ2
1 ` ṽ

2
2 ` 3pBxṽ2q

2
˘

`
1

2

ż

φ3A,B ṽ
2
2

´
1

2

ż

φA,Bf
1
pQqBxpṽ

2
2q `

ż

φA,B
“

´ Bxpf
1
pQqqv2 ` G̃pxq

‰

ṽ2 `

ż

φA,BH̃pxqṽ1.

(4.101)
Rewriting the above identity in term of the variables pv1, v2q, we have

d

dt
Mptq “ ´ 1

2

ż

φ1A,B
`

pBxv1q
2
` pBxv2q

2
` 3pB2

xv2q
2
˘

`
1

2

ż

φ3A,BpBxv2q
2

´
1

2

ż

φA,Bf
1
pQqBxppBxv2q

2
q ´

ż

φA,BBxpf
1
pQqqv2Bxv2

`

ż

φA,BG̃pxqBxv2 `

ż

φA,BH̃pxqBxv1.

(4.102)

Noticing that v2Bxv2, Bxpf 1pQqq and φA,B are odd functions (see (4.56) and (4.30)), we have
ż

φA,BBxpf
1
pQqqv2Bxv2 “ 0.

This ends the proof of Lemma 4.18. �

The following proposition connects two virial identities in the variable pz1, z2q. Recall that
from (4.93) and (4.96), γ “ B´4, B ď δ´1{8.

Proposition 4.19. There exist C3 ą 0 and δ3 ą 0 such that for any 0 ă δ ď δ3, the following
holds. Fix B “ δ´1{19 ď δ´1{8. Assume that for all t ě 0, (4.27) holds. Then for all t ě 0,

d

dt
Mptq ď ´

1

2

ż

`

pBxz1q
2
`
`

V0pxq ´ C3B
´1
˘

pBxz2q
2
` 2pB2

xz2q
2
˘

` C3}z2}
2
L2 ` C3B

´1
}z1}

2
L2

` C3B
´1

`

}Bxw1}
2
L2 ` }w1}

2
L2 ` }w2}

2
L2

˘

` C3|a1|
3.

(4.103)
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The proof of the above result requires some technical estimates. We first state them, to
then prove Proposition 4.19 (Subsection 4.4.3).

4.4.2 Second set of technical estimates

Now, we recall the following technical estimates on the variables ζB and other related error
terms. These estimates are similar to the ones obtained in (4.43), therefore we only prove
the new ones.

Lemma 4.20. Let ζB and χ be defined by (4.33) and (4.31), respectively. Then

ζ 1B
ζB
“ ´

1

B
r´χ1pxq|x| ` p1´ χpxqqsgnpxqs,

ζ2B
ζB
“

ˆ

ζ 1B
ζB

˙2

`
1

B
rχ2pxq|x| ` 2χ1pxqsgnpxqs,

(4.104)
and

ζ3B
ζB
“ 3

ζ2B
ζB

ζ 1B
ζB
´ 2

ˆ

ζ 1B
ζB

˙3

`B´1
rχ3pxq|x| ` 3χ2pxqsgnpxqs ,

ζ
p4q
B

ζB
“ 4

ζ3B
ζB

ζ 1B
ζB
` 3

ˆ

ζ2B
ζB

˙2

´ 12
ζ2B
ζB

ˆ

ζ 1B
ζB

˙2

` 6

ˆ

ζ 1B
ζB

˙4

`
1

B

“

χp4qpxq|x| ` 4χ3pxqsgnpxq
‰

.

(4.105)

Proof. Direct. �

Remark 4.9. From the previous lemma we observe that
ˇ

ˇ

ˇ

ˇ

ζ 1B
ζB

ˇ

ˇ

ˇ

ˇ

À B´11t|x|ą1upxq,

ˇ

ˇ

ˇ

ˇ

ζ2B
ζB

ˇ

ˇ

ˇ

ˇ

À B´21t|x|ą1upxq `B
´11t1ă|x|ă2upxq À B´2

`B´1 sechpxq,

ˇ

ˇ

ˇ

ˇ

ζ3B
ζB

ˇ

ˇ

ˇ

ˇ

À B´3
`B´1 sechpxq,

ˇ

ˇ

ˇ

ˇ

ˇ

ζ
p4q
B

ζB

ˇ

ˇ

ˇ

ˇ

ˇ

À B´4
`B´1 sechpxq.

In particular, for A large enough, the following estimates hold:
ˇ

ˇ

ˇ

ˇ

ζ 1B
ζB

ˇ

ˇ

ˇ

ˇ

À B´1,

ˇ

ˇ

ˇ

ˇ

1tAă|x|ă2Au
ζ2B
ζB

ˇ

ˇ

ˇ

ˇ

À B´2,

ˇ

ˇ

ˇ

ˇ

1tAă|x|ă2Au
ζ3B
ζB

ˇ

ˇ

ˇ

ˇ

À B´3,

ˇ

ˇ

ˇ

ˇ

ˇ

1tAă|x|ă2Au
ζ
p4q
B

ζB

ˇ

ˇ

ˇ

ˇ

ˇ

À B´4.

(4.106)

Finally,
ˇ

ˇ

ˇ

ˇ

ζ2B
ζB

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ζ3B
ζB

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ζ
p4q
B

ζB

ˇ

ˇ

ˇ

ˇ

ˇ

À B´1. (4.107)
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These estimates will be useful in Claim 4.22. Now we prove a formula for changing
variables.

Claim 4.21. Let P P W 1,8pRq, vi be as in (4.56), and zi be as in (4.60). Then
ż

P pxqχ2
Aζ

2
BpBxviq

2
“

ż

P pxqpBxziq
2
`

ż
„

P 1pxq
ζ 1B
ζB
` P pxq

ζ2B
ζB



z2
i

`

ż

E1pP pxq, xqζ
2
Bv

2
i ,

(4.108)

where

E1pP pxq, xq “ P pxq

„

χ2AχA ` pχ
2
Aq
1 ζ
1
B

ζB



`
1

2
P 1pxqpχ2

Aq
1, (4.109)

and
|E1pP pxq, xq| À A´1

}P 1}L8 ` pABq
´1
}P }L8 . (4.110)

For the proof of these results, see Appendix 4.B.1.

Remark 4.10. For P “ 1, we get
ż

χ2
Aζ

2
BpBxviq

2
“

ż

pBxziq
2
`

ż

ζ2B
ζB
z2

i `

ż

E1p1, xqζ
2
Bv

2
i , (4.111)

where
E1p1, xq “

1

2
χ2AχA ` pχ

2
Aq
1 ζ
1
B

ζB
. (4.112)

Finally, one has the following estimate:

}χAζBBxvi}
2
À }Bxzi}

2
L2 `B´1

}zi}
2
L2 ` pABq´1

}wi}
2
L2 .

We need a second claim on the second derivative of vi.

Claim 4.22. Let R be a W 2,8pRq function, vi be as in (4.56), and zi be as in (4.60). Then
ż

Rpxqχ2
Aζ

2
BpB

2
xviq

2
“

ż

RpxqpB2
xziq

2
`

ż

R̃pxqz2
i `

ż

PRpxqpBxziq
2

`

ż
„

P 1Rpxq
ζ 1B
ζB
` PRpxq

ζ2B
ζB



z2
i `

ż

E2pRpxq, xqζ
2
Bv

2
i

`

ż

E1pPRpxq, xqζ
2
Bv

2
i `

ż

E3pRpxq, xqζ
2
BpBxviq

2,

where

R̃pxq “ ´ 2Rpxq

«

ζ
p4q
B

ζB
`
ζ3B
ζB

ζ 1B
ζB

ff

´ 2R1pxq
ζ3B
ζB
´R2pxq

ζ2B
ζB
, (4.113)
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PRpxq “ Rpxq

„

4
ζ2B
ζB
´ 2

ˆ

ζ 1B
ζB

˙2

` 2R1pxq
ζ 1B
ζB
, (4.114)

E1 is defined in (4.109),

E2pRpxq, xq “ ´Rpxq

ˆ

χ
p4q
A χA ` 4χ3AχA

ζ 1B
ζ2
B

` 6χ2AχA
ζ2B
ζB
` 2pχ2

Aq
1 ζ
3
B

ζB

˙

´R1pxq

ˆ

2χ3AχA ` 6χ2AχA
ζ 1B
ζB
` 6χ1AχA

ζ2B
ζB

˙

´R2pxq

ˆ

χ2AχA `
1

2
pχ2

Aq
1 ζ
1
B

ζB

˙

,

(4.115)

and
E3pRpxq, xq “ Rpxq

„

4χ2AχA ´ 2pχ1Aq
2
` 2

ζ 1B
ζB
pχ2

Aq
1



`R1pxqpχ2
Aq
1. (4.116)

Finally, PR, E2 and E3 satisfy the following inequalities

|PR| À B´1
}R1}L8 `B

´1
}R}L8 ,

|P 1R| À B´1
}R2}L8 `B

´1
}R1}L8 `B

´1
}R}L8 ,

|E2| À pABq
´1
}R2}L8 ` pAB

2
q
´1
}R1}L8 ` pAB

3
q
´1
}R}L8 ,

|E3| À A´1
}R1}L8 ` pABq

´1
}R}L8 .

(4.117)

For the proof of these results, see Appendix 4.B.2.

Remark 4.11. For R “ 1, we obtain
ż

χ2
Aζ

2
BpB

2
xviq

2
“

ż

pB
2
xziq

2
`

ż

R̃1pxqz
2
i `

ż

P1pxqpBxziq
2
`

ż
„

P 11pxq
ζ 1B
ζB
` P1pxq

ζ2B
ζB



z2
i

`

ż

E2p1, xqζ
2
Bv

2
i `

ż

E1pP1pxq, xqζ
2
Bv

2
i `

ż

E3p1, xqζ
2
BpBxviq

2,

(4.118)
where,

R̃1pxq “ ´2

«

ζ
p4q
B

ζB
`
ζ3B
ζB

ζ 1B
ζB

ff

, P1pxq “ 4
ζ2B
ζB
´ 2

ˆ

ζ 1B
ζB

˙2

, (4.119)

E1 is defined in (4.109),

E2p1, xq “ ´

ˆ

χ
p4q
A χA ` 4χ3AχA

ζ 1B
ζ2
B

` 6χ2AχA
ζ2B
ζB
` 2pχ2

Aq
1 ζ
3
B

ζB

˙

, (4.120)

and
E3p1, xq “ 4χ2AχA ´ 2pχ1Aq

2
` 2

ζ 1B
ζB
pχ2

Aq
1. (4.121)

By Lemma 4.15, we obtain the estimate:

}χAζBB
2
xvi} À }B

2
xzi}

2
L2 `B´1

}Bxzi}
2
L2 `B´1

}zi}
2
L2 ` A´1B3

}wi}
2
L2 .
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4.4.3 Start of proof of Proposition 4.19

The proof of this result is based in the following computation:

Lemma 4.23. Let pv1, v2q P H
1pRq ˆH2pRq a solution of (4.57). Consider φA,B “ ψA,B “

χ2
AϕB. Then

d

dt
M “´

1

2

ż
ˆ

pBxz1q
2
`

ˆ

V0pxq ´
ϕB
ζ2
B

Bxpf
1
pQqq

˙

pBxz2q
2
` 3pB2

xz2q
2

˙

`
1

2

ż

ϕB
ζ2
B

ζ 1B
ζB
B

2
xpf

1
pQqqz2

2 `Rzptq `Rvptq `DRvptq

`

ż

φA,BG̃pxqBxv2 `

ż

φA,BH̃pxqBxv1,

(4.122)

where Rzptq, Rvptq and DRvptq are error terms that satisfy the following bounds

|Rzptq| ` |Rvptq| ` |DRvptq| À B´1
`

}w1}
2
L2 ` }Bxw1}

2
L2 ` }w2}

2
L2

˘

`B´1
`

}z1}
2
L2 ` }z2}

2
L2 ` }Bxz2}

2
L2

˘

,
(4.123)

valid for B sufficiently large.

Proof. First, we recall that zi “ χAζBvi, and by (4.64) and Claim 4.21

ż

φ1A,B
“

pBxv1q
2
` pBxv2q

2
‰

“

ż

pBxz1q
2
` pBxz2q

2
`

ż

ζ2B
ζB

`

z2
1 ` z

2
2

˘

`

ż

E1p1, xqζ
2
B

`

v2
1 ` v

2
2

˘

`

ż

pχ2
Aq
1ϕB

“

pBxv1q
2
` pBxv2q

2
‰

,

(4.124)
where E1p1, xq is given by (4.112). Now, using Remark 4.11 (4.118), we get

ż

φ1A,BpB
2
xv2q

2
“

ż

pB
2
xz2q

2
`

ż

P1pxqpBxz2q
2
`

ż
„

R̃1pxq ` P
1
1pxq

ζ 1B
ζB
` P1pxq

ζ2B
ζB



z2
2

`

ż

E2p1, xqζ
2
Bv

2
2 `

ż

E1pP1pxq, xqζ
2
Bv

2
2 `

ż

E3p1, xqζ
2
BpBxv2q

2

`

ż

pχ2
Aq
1ϕBpB

2
xv2q

2,

(4.125)

where R̃1pxq, P1pxq, E2p1, xq, E3p1, xq are given by (4.119), (4.120), (4.121), and E1 is gyven
by (4.109).
Now, continuing with the second integral in the RHS of (4.100), we have

ż

φ3A,BpBxv2q
2
“

ż

pζ2
Bq
2

ζ2
B

χ2
Aζ

2
BpBxv2q

2
`

ż
„

6pχ2
Aq
1 ζ
1
B

ζB
` 3pχ2

Aq
2
` pχ2

Aq
3ϕB
ζ2
B



ζ2
BpBxv2q

2,
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and using Claim 4.21,
ż

φ3A,BpBxv2q
2
“

ż

pζ2
Bq
2

ζ2
B

pBxz2q
2
`

ż

pζ2
Bq
2

ζ2
B

ζ2B
ζB
z2

2 `

ż
ˆ

pζ2
Bq
2

ζ2
B

˙1
ζ 1B
ζB
z2

2

`
1

2

ż

pζ2
Bq
2

ζ2
B

„

χ2AχA ` 2pχ2
Aq
1 ζ
1
B

ζB



ζ2
Bv

2
2 `

1

2

ż
ˆ

pζ2
Bq
2

ζ2
B

˙1

pχ2
Aq
1ζ2
Bv

2
2

`

ż
„

6pχ2
Aq
1 ζ
1
B

ζB
` 3pχ2

Aq
2
` pχ2

Aq
3ϕB
ζ2
B



ζ2
BpBxv2q

2.

(4.126)

For the third integral in the RHS of (4.100), integrating by parts
ż

φA,Bf
1
pQqBxppBxv2q

2
q “ ´

ż
ˆ

f 1pQq `
ϕB
ζ2
B

Bxpf
1
pQqq

˙

χ2
Aζ

2
BpBxv2q

2

´

ż

pχ2
Aq
1ϕBf

1
pQqpBxv2q

2.

By the extended version of Claim 4.21 and expanding the derivates in terms of z2, we have
ż

φA,Bf
1
pQqBxppBxv2q

2
q

“ ´

ż
„ˆ

f 1pQq `
ϕB
ζ2
B

Bxpf
1
pQqq

˙

ζ2B
ζB
´

ˆ

2Bxpf
1
pQqq ´

ϕBpζ
2
Bq
1

ζ4
B

Bxpf
1
pQqq `

ϕB
ζ2
B

B
2
xpf

1
pQqq

˙

ζ 1B
ζB



z2
2

´

ż
ˆ

f 1pQq `
ϕB
ζ2
B

Bxpf
1
pQqq

˙

pBxz2q
2
´

1

2

ż
ˆ

f 1pQq `
ϕB
ζ2
B

Bxpf
1
pQqq

˙„

χ2AχA ` 2pχ2
Aq
1 ζ
1
B

ζB



ζ2
Bv

2
2

´
1

2

ż

Bx

ˆ

f 1pQq `
ϕB
ζ2
B

Bxpf
1
pQqq

˙

pχ2
Aq
1ζ2
Bv

2
2 ´

ż

pχ2
Aq
1ϕBf

1
pQqpBxv2q

2.

(4.127)
Collecting (4.124), (4.125),(4.126) and (4.127), we obtain

d

dt
M “´

1

2

ż

pBxz1q
2
`

ˆ

V0pxq ´
ϕB
ζ2
B

Bxpf
1
pQqq

˙

pBxz2q
2
` 3pB2

xz2q
2

`
1

2

ż
„

ϕB
ζ2
B

ζ 1B
ζB
B

2
xpf

1
pQqq `

ϕB
ζ2
B

ζ2B
ζB
Bxpf

1
pQqq



z2
2 `Rzptq `Rvptq `DRvptq

`

ż

φA,BG̃pxqBxv2 `

ż

φA,BH̃pxqBxv1,

where the error terms are the following: associated to pz1, z2q is

Rzptq “ ´
1

2

ż

ζ2B
ζB

`

z2
1 ` z

2
2

˘

´
3

2

ż
„

R̃1pxq ` P
1
1pxq

ζ 1B
ζB
` P1pxq

ζ2B
ζB



z2
2

`
1

2

ż
„

pζ2
Bq
2

ζ2
B

ζ2B
ζB
`

ˆ

pζ2
Bq
2

ζ2
B

˙1
ζ 1B
ζB



z2
2

`
1

2

ż
„

f 1pQq
ζ2B
ζB
`

ˆ

2Bxpf
1
pQqq ´ 2

ϕB
ζ2
B

ζ 1B
ζB
Bxpf

1
pQqq

˙

ζ 1B
ζB



z2
2

`
1

2

ż
ˆ

pζ2
Bq
2

ζ2
B

´ 3P1pxq

˙

pBxz2q
2,

(4.128)
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associated to pv1, v2q is

Rvptq “ ´
1

2

ż

E1p1, xqζ
2
B

`

v2
1 ` v

2
2

˘

´
3

2

ż
„

E2p1, xq ` E1pP1pxq, xq



ζ2
Bv

2
2

`
1

4

ż

pζ2
Bq
2

ζ2
B

„

χ2AχA ` 2pχ2
Aq
1 ζ
1
B

ζB



ζ2
Bv

2
2 `

1

4

ż
ˆ

pζ2
Bq
2

ζ2
B

˙1

pχ2
Aq
1ζ2
Bv

2
2

`
1

4

ż
ˆ

f 1pQq `
ϕB
ζ2
B

Bxpf
1
pQqq

˙„

χ2AχA ` 2pχ2
Aq
1 ζ
1
B

ζB



ζ2
Bv

2
2

`
1

4

ż

Bx

ˆ

f 1pQq `
ϕB
ζ2
B

Bxpf
1
pQqq

˙

pχ2
Aq
1ζ2
Bv

2
2,

(4.129)

and associated to pBxv1, Bxv2q is

DRvptq “ ´
1

2

ż

pχ2
Aq
1ϕB

“

pBxv1q
2
` pBxv2q

2
` 3pB2

xv2q
2
‰

´
3

2

ż

E3p1, xqζ
2
BpBxv2q

2

`
1

2

ż

“

3pχ2
Aq
1
pζ2
Bq
1
` 3pχ2

Aq
2ζ2
B ` pχ

2
Aq
3ϕB ` pχ

2
Aq
1ϕBf

1
pQq

‰

pBxv2q
2.

(4.130)

We have obtained the identity (4.122). To conclude the proof of Lemma 4.23, we must
estimate the error terms.

4.4.4 Controlling error terms

We consider the following decomposition for Rzptq from (4.128),

Rzptq “ R1
zptq `R2

zptq `R3
zptq,

where

R1
zptq “ ´

1

2

ż

ζ2B
ζB

`

z2
1 ` z

2
2

˘

`
1

2

ż
„

pζ2
Bq
2

ζ2
B

ζ2B
ζB
`

ˆ

pζ2
Bq
2

ζ2
B

˙1
ζ 1B
ζB
´ 3R̃1pxq



z2
2 ,

R2
zptq “ ´

3

2

ż
„

P 11pxq
ζ 1B
ζB
` P1pxq

ζ2B
ζB



z2
2 `

1

2

ż
ˆ

pζ2
Bq
2

ζ2
B

´ 3P1pxq

˙

pBxz2q
2,

R3
zptq “

1

2

ż
„

f 1pQq
ζ2B
ζB
`

ˆ

2Bxpf
1
pQqq ´ 2

ϕB
ζ2
B

ζ 1B
ζB
Bxpf

1
pQqq

˙

ζ 1B
ζB



z2
2 .

For R1
zptq, recalling estimate (4.107) and R̃1 (see (4.119)), and we obtain

|R1
zptq| ď B´1

}z1}
2
L2 `B´1

}z2}
2
L2 . (4.131)

For R2
zptq, we recall the form of P1 (see (4.119)) and by (4.107), we conclude

|R2
zptq| À B´1

}z2}
2
L2 `B´1

}Bxz2}
2
L2 . (4.132)

For R3
zptq, first we note

ˇ

ˇ

ˇ

ˇ

ϕB
ζ2
B

Bxpf
1
pQqq

ˇ

ˇ

ˇ

ˇ

À B,

and by (4.106), we obtain
|R3

zptq| À B´1
}z2}

2
L2 . (4.133)
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Collecting (4.131),(4.132) and (4.133), we have

|Rzptq| ď B´1

ˆ

}z1}
2
L2 ` }z2}

2
L2 ` }Bxz2}

2
L2

˙

. (4.134)

For Rvptq, given by (4.129), we consider the following decomposition

R1
vptq “ ´

1

2

ż

E1p1, xqζ
2
B

`

v2
1 ` v

2
2

˘

´
3

2

ż
„

E2p1, xq ` E1pP1pxq, xq



ζ2
Bv

2
2

`
1

4

ż

pζ2
Bq
2

ζ2
B

„

χ2AχA ` 2pχ2
Aq
1 ζ
1
B

ζB



ζ2
Bv

2
2 `

1

4

ż
ˆ

pζ2
Bq
2

ζ2
B

˙1

pχ2
Aq
1ζ2
Bv

2
2,

R2
vptq “

1

4

ż

Bx

ˆ

f 1pQq `
ϕB
ζ2
B

Bxpf
1
pQqq

˙

pχ2
Aq
1ζ2
Bv

2
2

`
1

4

ż
ˆ

f 1pQq `
ϕB
ζ2
B

Bxpf
1
pQqq

˙„

χ2AχA ` 2pχ2
Aq
1 ζ
1
B

ζB



ζ2
Bv

2
2.

We note that the terms E1pP1pxq, xq and E2p1, xq (see (4.109), (4.119) and (4.120)), by (4.106),
are bounded and satisfy the following estimates:

|E2p1, xq| À pAB
3
q
´1, and |E1pP1pxq, xq| À pAB

3
q
´1,

and for E1p1, xq in (4.112),
|E1p1, xq| À pABq

´1.

Then, we have
|R1

vptq| À pABq
´1

`

}ζBv1}
2
L2 ` }ζBv2}

2
L2

˘

.

For R2
vptq, expanding the derivative and using (4.86), we obtain

ˇ

ˇR2
vptq

ˇ

ˇ À A´1

ż

ˇ

ˇ

ˇ

ˇ

ϕB
ζ2
B

B
2
xpf

1
pQqq ` 2

ˆ

1´
ζ 1B
ζB

ϕB
ζ2
B

˙

Bxpf
1
pQqq

ˇ

ˇ

ˇ

ˇ

ζ2
Bv

2
2

` A´1

ż

ˇ

ˇ

ˇ

ˇ

f 1pQq `
ϕB
ζ2
B

Bxpf
1
pQqq

ˇ

ˇ

ˇ

ˇ

ζ2
Bv

2
2 À A´1B}ζBv2}

2
L2 .

Then,
|Rvptq| À A´1B

`

}ζBv1}
2
L2 ` }ζBv2}

2
L2

˘

. (4.135)

For DRv, given by (4.130), computing directly and using Remark 4.7, we have

|DRvptq| ÀBA
´1

`

}ζ2
ABxv1}

2
L2 ` }ζ2

ABxv2}
2
L2 ` }ζ2

AB
2
xv2}

2
L2

˘

. (4.136)

And, by (4.134), (4.135) and (4.136), we obtain

|Rzptq| ` |Rvptq| ` |DRvptq|

À BA´1
`

}ζ2
ABxv1}

2
L2 ` }ζ2

ABxv2}
2
L2 ` }ζ2

AB
2
xv2}

2
L2 ` }ζBv1}

2
L2 ` }ζBv2}

2
L2

˘

`B´1
`

}z1}
2
L2 ` }z2}

2
L2 ` }Bxz2}

2
L2

˘

.

Using Lemma 4.15, we conclude

|Rzptq| ` |Rvptq| ` |DRvptq| À A´1B9
`

}w1}
2
L2 ` }Bxw1}

2
L2 ` }w2}

2
L2

˘

`B´1
`

}z1}
2
L2 ` }z2}

2
L2 ` }Bxz2}

2
L2

˘

.
(4.137)

This ends the proof of Lemma 4.23. �
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4.4.5 Controlling nonlinear terms

Recall (4.122). We set

M2 “

ż

φA,BG̃pxqBxv2, M1 “

ż

φA,BH̃pxqBxv1.

These are the two remaining terms in (4.122) to be controlled.

Control of M2

Recalling that G̃pxq “ BxGpxq and G is given by (4.58), we have

M2 “´ γ

ż

ppχ2
Aq
1ζ2
B ` χ

2
Apζ

2
Bq
1
qBxv2p1´ γB

2
xq
´1

“

B
2
xpf

1
pQqqBxv2 ` 2Bxpf

1
pQqqB2

xv2

‰

´ γ

ż

χ2
AϕBB

2
xv2p1´ γB

2
xq
´1

“

B
2
xpf

1
pQqqBxv2 ` 2Bxpf

1
pQqqB2

xv2

‰

“: M21 `M22.

First, we focus on M21. Using Remark 4.10 and Lemma 4.15, we have

}ppχ2
Aq
1ζ2
B ` χ

2
Apζ

2
Bq
1
qBxv2}L2 À A´1

}ζ2
BBxv2}L2 `B´1

}χAζBBxv2}L2

À A´1B2
}w2}L2 `B´1

“

}Bxz2}L2 `B´1
}z2}L2 ` pABq´1{2

}w2}L2

‰

À B´1
“

}Bxz2}L2 ` }z2}L2

‰

`B´5
}w2}L2 ,

and by (4.88), we conclude

|M21| À B´3

„

}Bxz2}
2
L2 ` }z2}

2
L2 ` }w2}

2
L2



. (4.138)

Secondly, for M22. Set ρpxq “ sechpx{10q, making the following separation

|M22| À γ}χ2
AϕBρpxqB

2
xv2}L2

›

›

›

›

pρpxqq´1
p1´ γB2

xq
´1

„

B
2
xpf

1
pQqqBxv2 ` 2Bxpf

1
pQqqB2

xv2


›

›

›

›

L2

ÀγB}χAζBB
2
xv2}L2

›

›

›

›

pρpxqq´1
p1´ γB2

xq
´1

„

B
2
xpf

1
pQqqBxv2 ` 2Bxpf

1
pQqqB2

xv2


›

›

›

›

L2
loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

M23

.

Using Lemma 4.11 in M23, we obtain

M23 “

›

›

›

›

pρpxqq´1
p1´ γB2

xq
´1

„

ρpxq
 

B
2
xpf

1
pQqqpρpxqq´1

Bxv2 ` 2Bxpf
1
pQqqpρpxqq´1

B
2
xv2

(


›

›

›

›

L2

ď

›

›

›

›

p1´ γB2
xq
´1

„

pB
2
xpf

1
pQqqpρpxqq´1

Bxv2 ` 2Bxpf
1
pQqqpρpxqq´1

B
2
xv2q


›

›

›

›

L2

À}pB
2
xpf

1
pQqqpρpxqq´1

Bxv2}L2 ` }Bxpf
1
pQqqpρpxqq´1

B
2
xv2q}L2 .

(4.139)

Since B2
xpf

1pQqqρ´1 „ e´4|x|{5 and making the following decomposition, we have

e´8|x|{5
pBxv2q

2
“e´8|x|{5ζ´2

B pχAζBBxv2q
2
` e´8|x|{5ζ´2

A p1´ χ
2
AqpζABxv2q

2.
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Since e´4|x|{5ζ´1
B ď 1 and e´8A{5ζ´2

A pAq „ e´2A{5, using Remark 4.10 and Lemma 4.15, we
conclude

}e´4|x|{5
Bxv2}L2 À

“

}Bxz2}L2 `B´1
}z2}L2 ` A´1

}ζBv2}L2

‰

` e´A{5}ζABxv2}L2

À }Bxz2}L2 `B´1
}z2}L2 ` A´1

}w2}L2 .

And, for the second term in the RHS of (4.139). We note Bxpf 1pQqqρ´1 „ e´4|x|{5 and
repeating the decomposition, we have

e´8|x|{5
pB

2
xv2q

2
“e´8|x|{5ζ´2

B χ2
Aζ

2
BpB

2
xv2q

2
` e´8|x|{5ζ´2

A p1´ χ
2
Aqζ

2
ApB

2
xv2q

2.

By a similar argument as before, e´4|x|{5ζ´1
B ď 1 and e´8A{5ζ´2

A pAq „ e´2A{5, applying Remark
4.11 and Lemma 4.15, we have

}e´4|x|{5
B

2
xv2}L2 À }χAζBB

2
xv2}L2 ` e´A{5}ζAB

2
xv2}L2

À }B
2
xz2}L2 `B´1

}Bxz2}L2 `B´2
}z2}L2 ` pA´1B3

q
1{2
}w2}L2 .

Finally, for M22 we have

|M22| À B´3
`

}B
2
xz2}

2
L2 ` }Bxz2}

2
L2 `B´2

}z2}
2
L2 ` A´1B3

}w2}
2
L2

˘

. (4.140)

Collecting (4.138) and (4.140), we conclude

M2 À B´3

„

}B
2
xz2}

2
L2 ` }Bxz2}

2
L2 ` }z2}

2
L2 ` }w2}

2
L2



. (4.141)

Control of M1.

Recalling that H̃ “ BxH, H is given by (4.58) and using Lemma 4.10, we obtain

|M1| À }χAϕBBxv1}L2}χAp1´ B
2
xq
´1
BxN

K
}L2

À }χAϕBBxv1}L2}ζ2
Ap1´ B

2
xq
´1
BxN

K
}L2 .

Now, by a similar computation that (4.90), we have

}ζ2
Ap1´ γB

2
xq
´1
BxpN

K
q}L2 ď γ´1

pa2
1 ` }u1}L8}w1}L2q. (4.142)

Then, by (4.91), Lemma 4.15, (4.51) and the above estimates, we conclude

|M1| À γ´2B}w1}L2pa2
1 ` }u1}L8}w1}L2q

2

À B´1
}w1}

2
L2 ` γ´4B3

pa4
1 ` }u1}

4
L8}w1}

2
L2q.

(4.143)

4.4.6 End of proof Proposition 4.19

Using a similar computation that Lemma 4.9, we are able to estimates d
dt
M. Set B “ δ´1{19,

and considering (4.137), (4.143), and (4.141), we obtain
d

dt
M ď ´

1

2

ż
ˆ

pBxz1q
2
`

ˆ

V0pxq ´
ϕB
ζ2
B

Bxpf
1
pQqq

˙

pBxz2q
2
` 2pB2

xz2q
2

˙

`
1

2

ż
ˆ

ϕB
ζ2
B

ζ 1B
ζB
B

2
xpf

1
pQqq `

ϕB
ζ2
B

ζ2B
ζB
Bxpf

1
pQqq

˙

z2
2

` C maxtB9A´1, B´1, δu
`

}Bxw1}
2
L2 ` }w1}

2
L2 ` }w2}

2
L2

˘

` CB´1

„

}Bxz2}
2
L2 ` }z2}

2
L2 ` }z1}

2
L2



` C|a1|
3.
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Since
ϕB
ζ2
B

Bxpf
1
pQqq ă 0, and

ˇ

ˇ

ˇ

ˇ

ϕB
ζ2
B

ζ 1B
ζB
B

2
xpf

1
pQqq `

ϕB
ζ2
B

ζ2B
ζB
Bxpf

1
pQqq

ˇ

ˇ

ˇ

ˇ

À 1,

we conclude

d

dt
M ď ´

1

2

ż

pBxz1q
2
`
`

V0pxq ´ CB
´1
˘

pBxz2q
2
` 2pB2

xz2q
2

` C}z2}
2
L2 ` CB´1

}z1}
2
L2

` C maxtB9A´1, B´1, δu
`

}Bxw1}
2
L2 ` }w1}

2
L2 ` }w2}

2
L2

˘

` C|a1|
3.

Calling C3 “ C, and using (4.35), the proof is completed.

4.5 A second transfer estimate
The variation of the virialMptq involve the terms Bxz1 and B2

xz2, these terms do not appear
in the variation of the virial related to the dual problem. Hence, we need to find a way to
transfer information between the terms Bxz1 to B2

xz2. The virial N , defined as

N “

ż

ρA,B ṽ1v2 “

ż

ρA,BBxv1v2, (4.144)

where ρA,B is a well-chosen localized weight depending on A and B, its variation will give
us that relation. A similar quantity was considered in [19]. Note that the virial N considers
the dynamics in (4.57) and (4.98).

4.5.1 A virial identity for N ptq

Lemma 4.24. Let pv1, v2q P H
1pRq ˆ H2pRq a solution of (4.57). Consider ρA,B an even

smooth bounded function to be a choose later. Then

d

dt
N “ 2

ż

ρ2A,BpBxv2q
2
´

ż

ρA,B
“

pB
2
xv2q

2
` V0pxqpBxv2q

2
‰

`

ż

ρA,BpBxv1q
2

`
1

2

ż

B
2
xrρA,BV0pxqsv

2
2 ´

1

2

ż

ρ
p4q
A,Bv

2
2 `

ż

ρA,Bv2G̃pxq `

ż

ρA,BBxv1Hpxq.

(4.145)

Proof. Computing the variation of N , using (4.57) and (4.98), we obtain

d

dt
N “

ż

ρA,Bv2LBxṽ2 `

ż

ρA,B ṽ
2
1 `

ż

ρA,Bv2pG̃pxq ´ Bxpf
1
pQqqv2q `

ż

ρA,B ṽ1Hpxq.

Integrating by parts the first integral of the RHS, we have
ż

ρA,Bv2LBxṽ2 “

ż

ρA,Bv2p´B
3
xṽ2 ` V0pxqBxṽ2q

“ ´

ż

B
2
xpρA,Bv2qBxṽ2 ´

ż

`

BxrρA,BV0pxqsv2ṽ2 ` ρA,BV0pxqṽ
2
2

˘

“

ż

ρ3A,Bv2ṽ2 ` 2

ż

ρ2A,B ṽ
2
2 ´

ż

ρA,B
`

pBxṽ2q
2
` V0pxqṽ

2
2

˘

´

ż

BxrρA,BV0pxqsv2ṽ2.
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Then, we get

d

dt
N “ ´

ż

ρA,B
`

pBxṽ2q
2
` V0pxqṽ

2
2

˘

`

ż

ρA,B ṽ
2
1 ` 2

ż

ρ2A,B ṽ
2
2 ´

ż

BxrρA,BV0pxqsv2ṽ2

`

ż

ρ3A,Bv2ṽ2 `

ż

ρA,Bv2pG̃pxq ´ Bxpf
1
pQqqv2q `

ż

ρA,B ṽ1Hpxq.

Rewriting the last expression in terms of pv1, v2q, we obtain

d

dt
N “ ´

ż

ρA,B
`

pB
2
xv2q

2
` V0pxqpBxv2q

2
˘

`

ż

ρA,BpBxv1q
2
` 2

ż

ρ2A,BpBxv2q
2
´

1

2

ż

ρ
p4q
A,Bv

2
2

`
1

2

ż

B
2
xrρA,BV0pxqsv

2
2 `

ż

ρA,Bv2pG̃pxq ´ Bxpf
1
pQqqv2q `

ż

ρA,BBxv1Hpxq.

The proof concludes from the fact that ρA,Bv2
2 is even and Bxpf 1pQqq is an odd function. �

Now we choose the weight function ρA,B. As in [19], let

ρA,Bpxq “ χ2
Aζ

2
B, (4.146)

with χA and ζB introduced in (4.34) and (4.33).

We will make the connection between (4.145) and the variables pz1, z2q, through the fol-
lowing result. Recall that from (4.93) and Proposition 4.19, γ “ B´4, B “ δ´1{19.

Proposition 4.25. Under (4.146), the following holds. There exist C4 and δ4 ą 0 such that
for γ “ B´4 and for any 0 ă δ ď δ4, the following holds. Fix B “ δ´1{5 holds. Assume that
for all t ě 0, (4.27) holds. Then, for all t ě 0,

d

dt
N ptq ě 1

2

ż

pBxz1q
2
´ C4

ż

“

pB
2
xz2q

2
` pBxz2q

2
` z2

2 ` z
2
1

‰

´ C4δ
14{19

ˆ

}w1}
2
L2 ` }w2}

2
L2 ` |a1|

3

˙

.

(4.147)

4.5.2 Start of proof of Proposition 4.25

The proof of this result is based in the following result, which relates Lemma 4.24 and the
variables zi.

Lemma 4.26. Let pv1, v2q P H
1pRq ˆ H2pRq a solution of (4.57). Consider ρA,B “ χ2

Aζ
2
B,

then

d

dt
N “´

ż
„

pB
2
xz2q

2
` p1´ f 1pQqq pBxz2q

2
`

1

2
B

2
xpf

1
pQqqz2

2



`

ż

pBxz1q
2

`RZptq `RVptq `RDVptq `
ż

ρA,Bv2G̃pxq `

ż

ρA,BBxv1Hpxq,

(4.148)
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where RZptq, RVptq and RDVptq are error term that satisfy the following estimates

|RZptq| À B´2
}z1}

2
L2 `B´1

}z2}
2
L2 `B´2

}Bxz2}
2
L2 ,

|RVptq| À pABq´1γ´2
}w1}

2
L2 ` A´1

}w2}
2
L2 ,

|RDVptq| À pABq´1γ´1
}w2}

2
L2 .

Proof. First, we consider the following decomposition from (4.145):

d

dt
N “

ż

ρA,BpBxv1q
2
´

ż

ρA,BpB
2
xv2q

2
´

ż

ρA,BV0pxqpBxv2q
2
` 2

ż

ρ2A,BpBxv2q
2

`
1

2

ż

B
2
xrρA,BV0pxqsv

2
2 ´

1

2

ż

ρ
p4q
A,Bv

2
2 `

ż

ρA,BBxv1Hpxq `

ż

ρA,Bv2G̃pxq

“: pN1 `N2 `N3 `N4q ` pN5 `N6q ` pN1 `N2q.

(4.149)

Secondly, from the definition of ρA,B (4.146)

ρ1A,B “pχ
2
Aq
1ζ2
B ` χ

2
Apζ

2
Bq
1,

ρ2A,B “ pχ
2
Aq
2ζ2
B ` 2pχ2

Aq
1
pζ2
Bq
1
` χ2

Apζ
2
Bq
2,

ρ3A,B “ pχ
2
Aq
3ζ2

B ` 3pχ2
Aq
2
pζ2
Bq
1
` 3pχ2

Aq
1
pζ2
Bq
2
` χ2

Apζ
2
Bq
3,

ρ
p4q
A,B “ pχ

2
Aq
p4qζ2

B ` 4pχ2
Aq
3
pζ2
Bq
1
` 6pχ2

Aq
2
pζ2
Bq
2
` 4pχ2

Aq
1
pζ2
Bq
3
` χ2

Apζ
2
Bq
p4q.

(4.150)

For N3, applying Claim 4.21 with i “ 2 and P pxq “ V0pxq, we have

´N3 “

ż

V0pxqpBxz2q
2
`

ż
„

V0pxq
ζ2B
ζB
` BxpV0pxqq

ζ 1B
ζB



z2
2 `

ż

E1pV0pxq, xqζ
2
Bv

2
2, (4.151)

where E1 is given by (4.109) For N4, by (4.150), we have

1

2
N4 “

ż

rpχ2
Aq
2ζ2
B ` pχ

2
Aq
1
pζ2
Bq
1
spBxv2q

2
`

ż

pζ2
Bq
2

ζ2
B

χ2
Aζ

2
BpBxv2q

2, (4.152)

and using Claim 4.21, with i “ 2 and P pxq “ pζ2
Bq
2{ζ2

B, we get

1

2
N4 “

ż

pζ2
Bq
2

ζ2
B

pBxz2q
2
`

ż
„ˆ

pζ2
Bq
2

ζ2
B

˙1
ζ 1B
ζB
`
pζ2
Bq
2

ζ2
B

ζ2B
ζB



z2
2 `

ż

E1

ˆ

pζ2
Bq
2

ζ2
B

, x

˙

ζ2
Bv

2
2

`

ż

rpχ2
Aq
2
` 2pχ2

Aq
1 ζ
1
B

ζB
sζ2
BpBxv2q

2.

(4.153)

Now, for N5, expanding the derivative, replacing (4.150) and using definition of z2, we have

N5 “´

ż
„

´B
2
xpV0pxqq ´

pζ2
Bq
2

ζ2
B

V0pxq ´ 2
pζ2
Bq
1

ζ2
B

BxpV0pxqq



z2
2

`

ż
ˆ„

2pχ2
Aq
1 ζ
1
B

ζB
` pχ2

Aq
2



V0pxq ` 2pχ2
Aq
1
BxpV0pxqq

˙

ζ2
Bv

2
2.

(4.154)

Finally, for N6, reeplacing (4.150), we have

N6 “

ż

pζ2
Bq
p4q

ζ2
B

z2
2 `

ż
„

4pχ2
Aq
1 pζ

2
Bq
3

ζ2
B

` 6pχ2
Aq
2 pζ

2
Bq
2

ζ2
B

` 8pχ2
Aq
3 ζ

1
B

ζB
` pχ2

Aq
p4q



ζ2
Bv

2
2. (4.155)
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Therefore, collecting (4.118), (4.111), (4.151), (4.153), (4.154) and (4.155) (and also for N1

and N2 we use the relations in Remarks 4.10 and 4.11), we conclude

d

dt
N “´

ż
„

pB
2
xz2q

2
` V0pxqpBxz2q

2
`

1

2
B

2
xpf

1
pQqqz2

2



`

ż

pBxz1q
2

`RZptq `RVptq `RDVptq `
ż

ρA,Bv2G̃pxq `

ż

ρA,BBxv1Hpxq,

where the error term related to z “ pz1, z2q is

RZptq “
ż

ζ2B
ζB
z2

1 ´

ż
„

V0pxq
ζ2B
ζB
` BxpV0pxqq

ζ 1B
ζB



z2
2

´
1

2

ż
„

´
pζ2
Bq
2

ζ2
B

V0pxq ´ 2
pζ2
Bq
1

ζ2
B

BxpV0pxqq `
pζ2
Bq
p4q

ζ2
B



z2
2

´

ż
„

R̃1pxq ` P
1
1pxq

ζ 1B
ζB
` P1pxq

ζ2B
ζB



z2
2

` 2

ż
„ˆ

pζ2
Bq
2

ζ2
B

˙1
ζ 1B
ζB
`
pζ2
Bq
2

ζ2
B

ζ2B
ζB



z2
2 `

ż
„

2
pζ2
Bq
2

ζ2
B

´ P1pxq



pBxz2q
2,

the related to pv1, v2q is

RVptq “
ż

E1p1, xqζ
2
Bv

2
1

´

ż
„

E1pV0pxq, xq ` E2p1, xq ` E1pP1pxq, xq ´ 2E1

ˆ

pζ2
Bq
2

ζ2
B

, x

˙

ζ2
Bv

2
2

`
1

2

ż
„ˆ

2pχ2
Aq
1 ζ
1
B

ζB
` pχ2

Aq
2

˙

V0pxq ` 2pχ2
Aq
1
BxpV0pxqq



ζ2
Bv

2
2

´
1

2

ż
„

4pχ2
Aq
1 pζ

2
Bq
3

ζ2
B

` 6pχ2
Aq
2 pζ

2
Bq
2

ζ2
B

` 8pχ2
Aq
3 ζ

1
B

ζB
` pχ2

Aq
p4q



ζ2
Bv

2
2,

and the related to Bxv2 is

RDVptq “ 2

ż
„

pχ2
Aq
2
` pχ2

Aq
1 ζ
1
B

ζB
´

1

2
E3p1, xq



ζ2
BpBxv2q

2.

It is clear, from (4.107), that the error terms satisfies the following estimates

|RZptq| À B´1

ˆ

}z1}
2
L2 ` }z2}

2
L2 ` }Bxz2}

2
L2

˙

, (4.156)

and
|RVptq| À pABq´1

}ζBv1}
2
L2 ` A´1

}ζBv2}
2
L2 ,

|RDVptq| À pABq´1
}ζBBxv2}

2
L2 .

Recalling that γ “ B´4 and applying Lemma 4.15 , we conclude

|RVptq| À A´1B7
}w1}

2
L2 ` A´1

}w2}
2
L2 ,

|RDVptq| À A´1B7
}w2}

2
L2 .

(4.157)

This concludes the proof of the Lemma 4.26. �
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4.5.3 Control of nonlinear terms

The nonlinear terms in (4.148) are denoted

N2 “

ż

ρA,Bv2G̃pxq, N1 “

ż

ρA,BBxv1Hpxq.

Control of N2. Recalling that G̃ “ BxG and G is given by (4.58), using definition of z2 and
(4.146), we have

|N2| “

ˇ

ˇ

ˇ

ˇ

ż

ppχAζBq
1z2 ` χAζBBxz2qGpxq

ˇ

ˇ

ˇ

ˇ

À γp}z2}L2 ` }Bxz2}L2q}G}L2 .

By Cauchy-Schwarz inequality, (4.88) and Lemma 4.15, we conclude

|N2| À γ1{2
p}z2}L2 ` }Bxz2}L2q

ˆ

}Bxz2}L2 ` }z2}L2 ` e´pp´1qA
p}ζBv2}L2 ` }ζBBxv2}L2q

˙

À γ1{2

ˆ

}Bxz2}
2
L2 ` }z2}

2
L2 ` e´2pp´1qA

p}ζBv2}
2
L2 ` }ζBBxv2}

2
L2q

˙

À γ1{2

ˆ

}Bxz2}
2
L2 ` }z2}

2
L2 ` e´2pp´1qAγ´1

}w2}
2
L2

˙

.

(4.158)

Control of N1. We observe that

pχAζBq
2
Bxv1 “ χAζBBxz1 ´ pχAζBq

1z1,

then, we have

N1 “

ż

rχAζBBxz1 ´ pχAζBq
1z1sHpxq.

Recalling that Hpxq is given by (4.58). Moreover, using (4.90), (4.51) and (4.27) we have

|N1| À B´1
`

}Bxz1}
2
L2 ` }z1}

2
L2

˘

`B5
`

a4
1 ` }u1}

2
L8}w1}

2
L2

˘

À B´1
`

}Bxz1}
2
L2 ` }z1}

2
L2

˘

`B5δ
`

|a1|
3
` }w1}

2
L2

˘

.
(4.159)

4.5.4 End of proof of Proposition 4.25

Since γ “ B´4 and B “ δ´1{19, collecting (4.156), (4.157), (4.158) and (4.159), we obtain for
some C4 ą 0 fixed in (4.148)

d

dt
N ptq ě

ż

pBxz1q
2
´

ż
„

pB
2
xz2q

2
` p1´ f 1pQqq pBxz2q

2
`

1

2
B

2
xpf

1
pQqqz2

2



´ |RZptq| ´ |RVptq| ´ |RDVptq| ´ |N1| ´ |N2|

ě
1

2

ż

pBxz1q
2
´ C4

ż

“

pB
2
xz2q

2
` pBxz2q

2
` z2

2 ` z
2
1

‰

´ C4 maxtA´1B7, δ14{19
u

ˆ

}w1}
2
L2 ` }w2}

2
L2 ` |a1|

3

˙

.

Using (4.35), A´1B7 ! B´3 ! δ14{19. This ends the proof.
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4.6 Proof of Theorem 4.1
Before starting the proof of Theorem 4.1, we need a coercivity result to deal with the term

ż

sechpxqw2
1

that appears in the virial estimates of Iptq (see (4.38)). We will decompose this term in
terms of the variables pw1, w2q and pz1, z2q. The last ones involve the variables pv1, v2q; then
we should be able to reconstruct the operator L from our computations.

4.6.1 Coercivity

We shall prove a coercivity result adapted to the orthogonality conditions xu,Q1y “ xu,Lpφ0qy “

0 in (4.24), where φ0 was introduced in (4.10). The idea is to follow the strategy used in [34]
and [10]. Recently, in [18] the operator L was appeared in a similar setting. It has a unique
negative single eigenvalue τ0 “ ´pp` 1qpp` 3q{4, associated to an L2 eigenfunction denoted
Y0.

Our first result is a coercivity property for L whenever the first eigenfunction Y0 is changed
by Lpφ0q.

Lemma 4.27 (Coercivity lemma). Consider the bilinear form

Hpu, vq “ xLpuq, vy “
ż

pBxuBxv ` uv ´ f
1
pQquvq.

Then, there exists λ ą 0 such that

Hpv, vq ě λ}v}2H1 , (4.160)

for all v P H1pRq satisfying xv,Q1y “ xv,Lpφ0qy “ 0.

Proof. See Appendix 4.C. �

We will need a weighted version of the previous result. See e.g. Côte-Muñoz-Pilod-Simpson
[10] for a very similar proof of this result.

Lemma 4.28 (Coercivity with weight function). Consider the bilinear form

Hφ`pu, vq “ x
a

φ`Lpuq,
a

φ`vy “

ż

φ`pBxuBxv ` uv ´ f
1
pQquvq.

for φ` smooth and bounded and such that 0 ă φ1` ď C`φ`, where C is independent from `.
Then, there exists λ ą 0 independent of ` small such that

Hφ`pv, vq ě λ

ż

φ`ppBxvq
2
` v2

q,

for all v P H1pRq satisfying xv,Q1y “ xv,Lpφ0qy “ 0, and provided ` is taken small enough.
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The key element of the proof of Theorem 4.1 is the following transfer estimate.

Lemma 4.29. Let u1 be even and satisfying (4.25), pw1, w2q be as in (4.37), and pz1, z2q as
in (4.60). Then, for any B large enough, it holds

ż

sechpxqu2
1 À B´1{2

`

}w1}
2
L2 ` }Bxw1}

2
L2

˘

`B1{2
}z1}

2
L2 ` γ}Bxz1}

2
L2 . (4.161)

Proof. Set 2
B
ă ` ă mint1

2
, 1

4

?
λu ď 1

2
. We note that

ż

sechpxqu2
1 À

ż

sech2
p`xqu2

1.

Now, we focus on the term on the RHS of the last equation. Applying Lemma 4.28 for
φ “ sech2

p`xq, since |φ1| ď C`φ. We obtain
ż

sech2
p`xqu2

1 ď

ż

sech2
p`xq

“

u2
1 ` pBxu1q

2
‰

ď
1

λ

ż

sech2
p`xq

“

u2
1 ` pBxu1q

2
´ f 1pQqu2

1

‰

.

Now, integrating by parts
ż

sechp`xqpBxu1q
2
“´

ż

sech2
p`xqu1B

2
xu1 `

1

2

ż

psech2
p`xqq2u2

1,

and by
|psech2

p`xqq2| ď `2 sech2
p`xq.

Choosing ` small enough (0 ă ` ď
?
λ

4
), we obtain

ż

sech2
p`xqu2

1 À

ż

sech2
p`xqLpu1qu1.

Now, using definition of v1, we obtain
ż

sech2
p`xqLpu1qu1 À

ż

sech2
p`xqu1v1 ´ γ

ż

sech2
p`xqu1B

2
xv1. (4.162)

For the first integral in RHS of (4.162), using definition of z1 and w1, one can see that
ż

sech2
p`xqu1v1 “

ż

χ3
A sech2

p`xqu1v1 `

ż

p1´ χ3
Aq sech2

p`xqu1v1

“

ż

χ2
A sech2

p`xq pζAζBq
´1w1z1 `

ż

p1´ χ3
Aq sech2

p`xq ζ´2
A w1pζAv1q

À max
|x|ă2A

tsech2
p`xq pζAζBq

´1
u}w1}L2}z1}L2 ` max

|x|ąA
tsech2

p`xq ζ´2
A u}w1}L2}ζAv1}L2

À max
|x|ă2A

tsech2
p`xq pζAζBq

´1
u}w1}L2}z1}L2 ` γ´1 max

|x|ąA
tsech2

p`xq ζ´2
A u}w1}

2
L2

À ε}w1}
2
L2 ` ε´1

}z1}
2
L2 ` γ´1e´

A
4B }w1}

2
L2 .

(4.163)
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Note that the last inequality holds if 2B´1 ă `.
Now, for the second integral on the RHS of (4.162), integrating by parts we obtain the
following expression

ż

Bx
“

sech2
p`xqu1

‰

Bxv1

“

ż

“

psech2
p`xqq1u1 ` sech2

p`xq Bxu1

‰

Bxv1

“

ż

psech2
p`xqq1χ2

Au1Bxv1 `

ż

p1´ χ2
Aqpsech2

p`xqq1u1Bxv1

`

ż

sech2
p`xqχ2

ABxu1Bxv1 `

ż

p1´ χ2
Aq sech2

p`xq Bxu1Bxv1.

(4.164)

Using the following decomposition and by Hölder inequality, we get
ˇ

ˇ

ˇ

ˇ

ż

psech2
p`xqq1u1Bxv1

ˇ

ˇ

ˇ

ˇ

À

ˇ

ˇ

ˇ

ˇ

ż

psech2
p`xqq1χ3

Au1Bxv1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

psech2
p`xqq1p1´ χ3

Aqu1Bxv1

ˇ

ˇ

ˇ

ˇ

À

ˇ

ˇ

ˇ

ˇ

ż

psech2
p`xqq1χ3

Au1Bxv1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

psech2
p`xqq1ζ´2

A p1´ χ
3
Aqw1pζABxv1q

ˇ

ˇ

ˇ

ˇ

À `}χAu1}L2}ζBχ
2
ABxv1}L2 ` `max

|x|ąA
tsech2

p`xqζ´2
A u}w1}L2}ζABxv1}L2 .

Furthermore, by the definition of z1, we can check

χ2
AζBBxv1 “ χABxz1 ´ χA

ζ 1B
ζB
z1 ´ χ

1
Az1; (4.165)

and by Lemma 4.15 and Remark 4.7, we obtain
ˇ

ˇ

ˇ

ˇ

ż

psech2
p`xqq1u1Bxv1

ˇ

ˇ

ˇ

ˇ

À `}w1}L2p}Bxz1}L2 `B´1
}z1}L2q

` `γ´1 max
|x|ąA

tsech2
p`xqζ´2

A up}Bxw1}
2
L2 ` }w1}

2
L2q.

(4.166)

In similar way, we obtain
ˇ

ˇ

ˇ

ˇ

ż

sech2
p`xq Bxu1Bxv1

ˇ

ˇ

ˇ

ˇ

À

ˇ

ˇ

ˇ

ˇ

ż

sech2
p`xqχ3

ABxu1Bxv1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

sech2
p`xq p1´ χ3

AqBxu1Bxv1

ˇ

ˇ

ˇ

ˇ

À }χABxu1}L2}ζBχ
2
ABxv1}L2 ` max

|x|ąA
tsech2

p`xqζ´2
A u}ζABxu1}L2}ζABxv1}L2 .

By (4.165), Lemma 4.15 and Remark 4.7, we get
ˇ

ˇ

ˇ

ˇ

ż

sech2
p`xq Bxu1Bxv1

ˇ

ˇ

ˇ

ˇ

À }ζABxu1}L2p}Bxz1}L2 ` }z1}L2q ` γ´1 max
|x|ąA

tsech2
p`xqζ´2

A u}ζABxu1}
2
L2 .

We conclude using (4.81) with K “ A, we have
ˇ

ˇ

ˇ

ˇ

ż

sech2
p`xq Bxu1Bxv1

ˇ

ˇ

ˇ

ˇ

À p}w1}L2 ` }Bxw1}L2qp}Bxz1}L2 ` }z1}L2q

` γ´1 max
|x|ąA

tsech2
p`xqζ´2

A up}w1}
2
L2 ` }Bxw1}

2
L2q.

(4.167)
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Collecting (4.163), (4.166), (4.167) and by Cauchy-Schwarz inequality, we obtain
ż

sechpxqu2
1 À ε}w1}L2 `

1

ε
}z1}L2

` γ
`

}w1}
2
L2 ` }Bxw1}

2
L2

˘

` γ
`

}Bxz1}
2
L2 `B´2

}z1}
2
L2

˘

À maxtε, A´1, γu}w1}L2 ` γ}Bxw1}
2
L2

`maxtε´1, B´2
u}z1}

2
L2 ` γ}Bxz1}

2
L2 .

Finally, choosing ε “ B´1{2, we conclude
ż

sechpxqu2
1 À B´1{2

`

}w1}L2 ` }Bxw1}
2
L2

˘

`B1{2
}z1}

2
L2 ` γ}Bxz1}

2
L2 .

This ends the proof of Lemma 4.29. �

We will need a third coercivity estimate, related to the function z2 in (4.60).

Lemma 4.30. Recall L “ ´B2
x ` V0pxq, with V0 defined in (4.8). Assume that

ş

Qφ0 ‰ 0.
Then there exists m0 ą 0 fixed such that

xLpuq, uy ě m0}u}
2
H1 ´

1

m0

ˇ

ˇxu, B´1
x φ0y

ˇ

ˇ

2
,

for any u P H1pRq odd.

Proof. Since u is odd, one clearly has xLpuq, uy ě 0. Since kerL “ spantQ1u, we only need
to check that

xLpuq, uy ě m0}u}
2
L2 , (4.168)

for any u P H1pRq odd, and provided xu, B´1
x φ0y “ 0. First of all, it is not difficult to check

that for some m0 ą 0,

xLpuq, uy ě m0

`

}u}2L2 ´ }Q1}´2
L2 xu,Q

1
y

2
˘

.

Assume that }u}L2 “ 1. The term on the right hand side is zero only if u is parallel to Q1,
which is not possible since

ş

Qφ0 ‰ 0. Therefore, after rescaling, (4.168) is proved. �

Remark 4.12. Lemma 4.30 will be used in the following way: from (4.24) we have xu2, B
´1
x φ0y “

0, and from (4.56), we have
xv2, p1´ γB

2
xqB

´1
x φ0y “ 0.

Using (4.60) and (4.37), and the exponential decay of B´1
x φ0 we obtain

|xz2, B
´1
x φ0y| ď |xz2, p1´ γB

2
xqB

´1
x φ0y| ` γ|xz2, Bxφ0y|

À |xv2χAζB, p1´ γB
2
xqB

´1
x φ0y| ` γ}z2}L2

À |xv2, p1´ χAζBqp1´ γB
2
xqB

´1
x φ0y| ` γ}z2}L2

À |xu2ζA, ζ
´1
A p1´ γB

2
xq
´1
p1´ χAζBqp1´ γB

2
xqB

´1
x φ0y| ` γ}z2}L2

À e´
1
2
B
}w2}L2 ` γ}z2}L2 .

128



Finally, we prove that

Lemma 4.31.
ş

Qφ0 ‰ 0.

Proof. If
ş

Qφ0 “ 0, from (4.10) one has xB2
xLQ,Qy ď 0. However

0 ě xB2
xLQ,Qy “ ´pp´ 1qxQp, Q2y “ ´pp´ 1qxQp, Q´Qp

y “ ´pp´ 1q

ż

R
pQp`1

´Q2p
q.

Finally, from the equation Q2 “ Q´Qp and multiplying by Qp and integrating by parts, we
get

´p

ż

Qp´1Q12 “

ż

Qp`1
´

ż

Q2p.

Finally, using that Q12 “ Q2 ´ 2
p`1

Qp`1, we get
ş

Qp`1 “
3p`1
pp`1q2

ş

Q2p, and replacing,

0 ě xB2
xLQ,Qy “ ´pp´ 1q

ż

R
pQp`1

´Q2p
q “

ppp´ 1q2

pp` 1q2

ż

R
Q2p

ą 0,

a contradiction. �

Now we are ready to conclude the proof of Theorem 4.1.

4.6.2 Proof of Theorem 4.1

Recalling that the constants γ, Ci and δi ą 0 for i “ 1, . . . , 4 were defined in Propositions 4.3
4.8, 4.19, 4.25.

Proposition 4.32. There exist C5 and 0 ă δ5 ď mintδ1, δ2, δ3, δ4u such that for any 0 ă δ ď
δ5, the following holds. Fix A “ δ´1, B “ δ´1{19 and γ “ B´4. Assume that for all t ě 0,
(4.27) holds. Let

H “ J ` 16C2B
´1I `B´1M´ 16B´5C1C2N .

Then, for all t ě 0,

d

dt
Hptq ď ´ C2B

´1
`

}w1}
2
L2 ` }Bxw1}

2
L2 ` }w2}

2
L2

˘

` C5|a1|
3. (4.169)

Proof. First, from (4.38) and (4.161) we obtain for some C1 ą 0 fixed,

d

dt
Iptq ď ´ 1

2

„

}w2}
2
L2 ` 2}Bxw1}

2
L2 `

1

2
}w2

1}L2



` C1a
4
1 ` C1B

´1{2
`

}w1}
2
L2 ` }Bxw1}

2
L2

˘

` C1B
1{2
}z1}

2
L2 ` C1γ}Bxz1}

2
L2 .

Using (4.147) and γ “ B´4, we get

d

dt
Iptq ď ´ 1

4

ˆ

}w2}
2
L2 ` 2}Bxw1}

2
L2 `

1

2
}w1}

2
L2

˙

` C1|a1|
3
`B´4C1

d

dt
N ptq

`B1{2C1}z1}
2
L2 `B´4C1

“

}B
2
xz2}

2
L2 ` }Bxz2}

2
L2 ` }z2}

2
L2 ` }z1}

2
L2

‰

.
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Secondly, for d
dt
J , using (4.61), Lemma 4.30, and Remark 4.12,

d

dt
J ptq ď ´1

4
m0

ˆ

}z1}
2
L2 ` }Bxz2}

2
L2 ` }z2}

2
L2

˙

` C2B
´1

ˆ

}w1}
2
L2 ` }w2}

2
L2

˙

` C2|a1|
3.

We conclude that

d

dt
J ptq ` 16C2B

´1 d

dt
Iptq ď ´

1

8
m0

ˆ

}z1}
2
L2 ` }Bxz2}

2
L2 ` }z2}

2
L2

˙

´ 4C2B
´1

ˆ

}w2}
2
L2 ` 2}Bxw1}

2
L2 `

1

2
}w1}

2
L2

˙

` 16B´5C1C2}B
2
xz2}

2
L2 ` 2C2|a1|

3
` 16B´5C1C2

d

dt
N ptq.

Thirdly, using (4.103) for d
dt
M,

d

dt
Mptq À ´

1

2

`

}Bxz1}
2
L2 ` }B

2
xz2}

2
L2

˘

` C3}Bxz2}
2
L2 `

1

2
C3}z2}

2
L2 ` C3B

´1
}z1}

2
L2

` C3B
´1

`

}Bxw1}
2
L2 ` }w1}

2
L2 ` }w2}

2
L2

˘

` C3|a1|
3.

Therefore,

d

dt

`

J ptq ` 16C2B
´1Iptq `B´1Mptq ´ 16B´5C1C2N ptq

˘

ď ´
1

16
m0

ˆ

}z1}
2
L2 ` }Bxz2}

2
L2 ` }z2}

2
L2

˙

´
1

4
B´1

`

}Bxz1}
2
L2 ` }B

2
xz2}

2
L2

˘

´ C2B
´1

`

}w2}
2
L2 ` }Bxw1}

2
L2 ` }w1}

2
L2

˘

` 3C2|a1|
3.

Setting H “ J ` 16C2B
´1I `B´1M´ 16B´5C1C2N , and C5 “ 3C2, we obtain the desired

property. �

We define now
B “ b2

` ´ b
2
´,

where b`, b´ are given in (4.26).

Lemma 4.33. There exist C6 and δ6 ą 0, such that for any 0 ă δ ď δ6, the following holds.
Assume that for all t ě 0 (4.27) holds. Then, for all t ě 0,

|9b` ´ ν0b`| ` |9b´ ` ν0b´| ď C6

ˆ

b2
` ` b

2
´ `

›

›

›
sech1{2

px{2qw1

›

›

›

2

L2

˙

, (4.170)

and
ˇ

ˇ

ˇ

ˇ

d

dt
b2
` ´ 2ν0b

2
`

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

d

dt
b2
´ ` 2ν0b

2
´

ˇ

ˇ

ˇ

ˇ

ď C6

ˆ

b2
` ` b

2
´ `

›

›

›
sech1{2

px{2qw1

›

›

›

2

L2

˙3{2

. (4.171)

In particular,
d

dt
B ě ν0

2
pa2

1 ` a
2
2q ´ C6

›

›

›
sech1{2

px{2qw1

›

›

›

2

L2
. (4.172)
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Proof. From (4.51) and (4.26), it holds

|N0| À b2
` ` b

2
´ `

ż

sech
´x

2

¯

w2
1.

From (4.28) we conclude the estimates (4.170) and (4.171). Finally, (4.172) follows directly
from (4.171) and taking δ6 ą 0 small enough. �

Combining (4.169) and (4.172), it holds

d

dt

ˆ

B ´ 2B
C6

C2

H
˙

ě
ν0

4
pa2

1 ` a
2
2q ` C6

`

}w2}
2
L2 ` }Bxw1}

2
L2 ` }w1}

2
L2

˘

. (4.173)

By the choice of A “ δ´1, the bound |ϕA| À A, (4.36) and (4.27), we have for all t ě 0

|Iptq| À A}u1}L2}u2}L2 À δ.

Analogously, using Lemma 4.14, we have

|J ptq| À B}v1}L2}v2}L2 À Bγ´1
}u1}L2}u2}L2

À B5
}u1}L2}u2}L2 À B5δ2

À δ,

|Mptq| À B}Bxv1}L2}Bxv2}L2 À Bγ´3{2
}u1}L2}u2}L2

À B7
}u1}L2}u2}L2 À B7δ2

À δ,

and
|N ptq| À }Bxv1}L2}v2}L2 À γ´1

}u1}H1}u2}L2 À B4
}u1}H1}u2}L2 À B4δ2

À δ.

Then, we have
|H| ď δ.

Estimate |B| ď δ2 is also clear from (4.27). Therefore, integrating estimates (4.173) on r0, ts
and passing the limit as tÑ 8, we have

ż 8

0

“

a2
1 ` a

2
2 ` }w2}

2
L2 ` }Bxw1}

2
L2 ` }w1}

2
L2

‰

dt À δ.

By Lemma 4.17 one can see
ż 8

0

ˆ

a2
1 ` a

2
2 `

ż

pu2
1 ` pBxu1q

2
` u2

2q sechpxq

˙

dt ď δ. (4.174)

Using the above equation, we will conclude the proof of Theorem 4.1.

Let
Kptq “

ż

sechpxqu2
1 `

ż

sechpxqpp1´ γB2
xq
´1
Bxu2q

2
“: K1ptq `K2ptq.

For K1, using (4.30) and integrating by parts, we have

dK1

dt
“ 2

ż

sechpxqpu1 9u1q “ 2

ż

sechpxqpu1Bxu2q “ ´2

ż

psech1pxqu1 ` sechpxqBxu1qu2.
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Then,
ˇ

ˇ

ˇ

ˇ

d

dt
K1ptq

ˇ

ˇ

ˇ

ˇ

ď

ż

sechpxqpu2
1 ` pBxu1q

2
` u2

2q.

For K2, passing to the variables pv1, v2q (see (4.56))

K2 “

ż

sechpxqpBxv2q
2,

and using (4.57), we get

d

dt
K2 “ 2

ż

sechpxqBxv2B
2
xv1 ` 2

ż

sechpxqBxv2BxHpxq “: K21 `K22.

Integrating by parts in K21, we have

K21 “ ´2

ż

psech1pxqBxv2 ` sechpxqB2
xv2qBxv1,

besides using Cauchy-Schwarz inequality and Lemma 4.14, we obtain

|K21| À

ż

sechpxqppBxv2q
2
` pB

2
xv2q

2
` pBxv1q

2
q

À γ´2

ż

sechpxqpu2
2 ` pBxu1q

2
q.

For K22, we use Cauchy-Schwartz inequality, Corollary 4.12 and a similar computation of
(4.142), then

|K22| À

ż

sechpxqrpp1´ γB2
xq
´1
Bxu2q

2
` pp1´ γB2

xq
´1
BxN

K
q
2
s

À

ż

sechpxqrγ´1u2
2 ` pp1´ γB

2
xq
´1
BxN

K
q
2
s Àγ a

2
1 `

ż

sechpxqru2
2 ` u

2
1s.

Then, we conclude
ˇ

ˇ

ˇ

ˇ

d

dt
K2ptq

ˇ

ˇ

ˇ

ˇ

Àγ a
2
1 `

ż

sechpxqpu2
1 ` pBxu1q

2
` u2

2q.

By (4.174), there exists and increasing sequence tn Ñ 8 such that

lim
nÑ8

“

a2
1ptnq ` a

2
2ptnq `K1ptnq `K2ptnq

‰

“ 0.

For t ě 0, integrating on rt, tns, and passing to the limit as nÑ 8, we obtain

Kptq À
ż 8

t

„

a2
1 `

ż

sechpxqpu2
1 ` pBxu1q

2
` u2

2q



dt.

By (4.174), we deduce
lim
tÑ8
Kptq “ 0.
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Finally, by (4.28) and (4.51), we get
ˇ

ˇ

ˇ

ˇ

d

dt
pa2

1q

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

d

dt
pa2

2q

ˇ

ˇ

ˇ

ˇ

À a2
1 ` a

2
2 `

ż

sechpxqu2
1.

In a similar way as above, integrating on rt, tns and taking nÑ 8, we conclude

a2
1ptq ` a

2
2ptq À

ż 8

t

„

a2
1 ` a

2
2 `

ż

u2
1 sechpxq



dt,

which proves limtÑ8 |a1ptq|`|a2ptq| “ 0. By the decomposition of solution (4.23) this implies
(4.13). This ends the proof of Theorem 4.1.

Remark 4.13. We have not being able to describe the asymptotic behavior of pBxu1q
2 and

u2
2, due to the fact that we are working in the energy space, and any variation of the virial that

involves these terms is not well-defined. In fact, the regularity considered for the variation
of K1 and K2 is sharp, in the sense that we do not have a gap where to include terms with
higher-order derivatives. For example, for

K3 “

ż

sechpxqu2
2,

its variation is
d

dt
K3 “ 2

ż

sechpxqu2pBxLu1 `N
K
q.

One can see that Lu1 P H
´1 and u2 P L

2. Then, the last estimate may not be well-defined.

4.7 Proof of Theorem 4.2
Now we construct initial data for which Theorem 4.1 remains valid. We follow the ideas in
[18], with some particular differences in some estimates.

4.7.1 Conservation of Energy

Using (4.4), (4.23), (4.8), and by the orthogonality condition (4.24), we have

2
“

Epu, vq ´ EpQ, 0q
‰

“

ż

“

v2
` u2

` pBxuq
2
´ 2F puq

‰

´ 2EpQ, 0q

“ a2
2

ż

ν2
0pB

´1
x φ0q

2
` a2

1

ż

ppBxφ0q
2
` V0pxqφ

2
0q `

ż

f 1pQqpa1φ0 ` u1q
2

`

ż

ppBxu1q
2
` V0pxqu

2
1 ` u

2
2q ´ 2

ż

`

F puq ´ F pQq ´ fpQqpa1φ0 ` u1q
˘

“ a2
2ν

2
0}B

´1
x φ0}

2
L2 ` a2

1xLpφ0q, φ0y ` xLpu1q, u1y ` }u2}
2
L2

´ 2

ż

´

F puq ´ F pQq ´ fpQqpa1φ0 ` u1q ´ f
1
pQq

pa1φ0 ` u1q
2

2

¯

.

Using (4.10), we get

xLpφ0q, φ0y “ xν
2
0B
´2
x φ0, φ0y “ ´ν

2
0xB

´1
x φ0, B

´1
x φ0y “ ´ν

2
0 ,
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and, by (4.26), we obtain the identity

2
“

Epu, vq ´ EpQ, 0q
‰

“´ 4ν2
0b`b´ ` xLpu1q, u1y ` }u2}

2
L2

´ 2

ż
ˆ

F puq ´ F pQq ´ fpQqpa1φ0 ` u1q ´ f
1
pQq

pa1φ0 ` u1q
2

2

˙

.

(4.175)
Let δ0 be defined by

δ2
0 “ b2

`p0q ` b
2
´p0q ` }u1p0q}

2
H1 ` }u2p0q}

2
L2 .

Considering (4.175) at t “ 0 follows |2
“

Epu, vq´EpQ, 0q
‰

| À δ2
0. Besides, by the conservation

of energy, estimate (4.175) at some t ą 0 gives

| ´ 4ν2
0b`b´ ` xLpu1q, u1y ` }u2}

2
L2 ´Op|b`|

3
` |b´|

3
` }u1}

3
H1q| À δ2

0.

Considering the orthogonality condition xu1, Q
1y “ xu1,Lpφ0qy “ 0, the parity of u1, and

using the Lemma 4.27, it follows that for some λ P p0, 1q,

xLpu1q, u1y ě λ}u1}
2
H1 .

Due to }u1}H1 ` }u2}L2 ` |b`| ` |b´| À δ0, the following estimate holds

}u1}
2
H1 ` }u2}

2
L2 À |b`|

2
` |b´|

2
` δ2

0. (4.176)

4.7.2 Construction of the graph

We will construct initial data that directs to global solutions close to the ground state Q. To
accomplish this objective, we use the energy estimate (4.176), Lemma 4.33 and a standard
contradiction argument.

Let ε “ pε1, ε2q P A0. Let Z` be as in (4.11). Then, the condition xε,Z`y “ 0 rewrites

xε1, B
´2
x φ0y ` xε2, ν

´1
0 B

´1
x φ0y “ 0.

Define b´p0q and pu1p0q, u2p0qq such that

b´p0q “ ´xε1, B
´2
x φ0y “ xε2, ν

´1
0 B

´1
x φ0y,

and
ε1 “ b´p0qφ0 ` u1p0q, ε2 “ ´b´p0qν0B

´1
x φ0 ` u2p0q.

Then, it holds
xu1p0q, B

´2
x φ0y “ xu2p0q, B

´1
x φ0y “ 0.

From (4.15) and (4.14), we observe that the initial condition in Theorem 4.2 holds the
following decomposition:

φ0 “ φp0q “ pQ, 0q ` pu1, u2qp0q ` b´p0qY ´ ` hpεqY `.

We will prove that there is a function hpεq such that the corresponding solution φ is global
and satisfies (4.16). We show that at least hpεq “ b`p0q satisfies this statement.
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Let δ0 ą 0 small enough and K ą 1 large enough to be chosen. Following the scheme of
[18], we introduce the following bootstrap estimates

}u1}H1 ď K2δ0 and }u2}L2 ď K2δ0, (4.177)
|b´| ď Kδ0, (4.178)
|b`| ď K5δ2

0. (4.179)

Given any pu1p0q, u2p0qq and b´p0q such that

}u1p0q}H1 ď δ0, }u2p0q}L2 ď δ0, |b´p0q| ď δ0 (4.180)

and b`p0q satisfying
|b`p0q| ď K5δ0.

Let
T “ suptt ě 0 such that (4.177), (4.178), (4.179) hold on r0, tsu.

Since K ą 1 follow that T is well-defined in r0,`8s. Our aim is to prove that there exists
at least a value of b`p0q P r´K5δ2, K5δ2

0s such that T “ 8. To prove this we argue by
contradiction: we assume that for all values of b`p0q P r´K5δ2, K5δ2

0s, one has T ă 8.

The first step is improve the estimates (4.177). By (4.177), we have

}u1}
2
H1 ` }u2}

2
L2 ď 2K4δ2

0 (4.181)

Otherwise, using the energy estimates (4.176) it holds

}u1}
2
H1 ` }u2}

2
L2 ď C8pK

2δ2
0 `K

10δ4
` δ2

0q,

for some constant C8 ą 0. Thus, using the smallness of δ0 and largeness of K, it holds

C8 ď
1

4
K4, C8K

10δ2
0 ď

1

4
K4, 1 ď

1

4
K4, (4.182)

and we obtain
}u1}

2
H1 ` }u2}

2
L2 ď

3

4
K4δ2

0,

that it is a clear improve of the inequality (4.181).

The second step is control b´. Using (4.171), (4.177), (4.178) and (4.179), we have
ˇ

ˇ

ˇ

ˇ

d

dt
pe2ν0tb2

´q

ˇ

ˇ

ˇ

ˇ

ď C9pK
15δ6

0 `K
6δ3

0qe
2ν0t,

for some constant C9 ą 0. Therefore, by integration on r0, ts and using (4.180), we obtain

b2
´ ď

C9

2ν0

pK15δ6
0 `K

6δ3
0q ` δ

2
0.

Under the constraints

C9

2ν0

K15δ4
0 ď

1

4
K4,

C9

2ν0

K6δ0 ď
1

4
K4, 1 ď

1

4
K4, (4.183)
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we get

b2
´ ď

3

4
K2δ2

0,

that is an improvement of (4.178).

By the improved estimates (4.177) and (4.178), and a continuity argument, we observe
that if T ă `8, then |b`pT q| “ K5δ2

0.

The third step is to analyze the growth of b`. If t P r0, T s is such that |b`ptq| “ K5δ2
0,

then follows from (4.170) that

d

dt
b2
` ě 2ν0b

2
` ´ 2C4|b`|pb

2
` ` b

2
´ ` }u1}

2
H1q

ě 2ν0b
2
` ´ 2C4|b`|pb

2
` `K

2δ2
0 `K

4δ2
0q

ě 2ν0K
10δ4

0 ´ C10pK
15δ6

0 `K
9δ4

0q,

for some constant C10 ą 0. Under the constraints

C10K
15δ2

0 ď
1

2
ν0K

10, C10K
9
ď

1

2
ν0K

10, (4.184)

the following inequality holds
d

dt
b2
` ě ν0K

10δ4
0 ą 0.

By standard arguments, such transversality condition implies that T is the first time for
which |b`ptq| “ K5δ2

0 and moreover that T is continuous in the variable b`p0q. The image of
the continuous map

b`p0q P r´K
5δ2

0, K
5δ2

0s ÞÝÑ b`pT q P t´K
5δ2

0, K
5δ2

0u

is exactly t´K5δ2
0, K

5δ2
0u which is a contradiction. We conclude that there exists at least

one value of b`p0q P p´K5δ2
0, K

5δ2
0q such that T “ 8, when constraints in (4.182), (4.183),

(4.184) are fulfilled. Finally, to satisfy the conditions (4.182), (4.183), (4.184) it is sufficient
first to fix K ą 0 large enough, depending only on C8, C9, C10, and then to choose δ0 ą 0
small enough.

4.7.3 Uniqueness and Lipschitz regularity

To finish the proof of Theorem 2, we will prove the following proposition that implies the
uniqueness of the choice of hpεq “ b`p0q, for a given ε P A0, as well the Lipschitz regularity
of the graphM (see (4.15))

Proposition 4.34. There exist C, δ ą 0 such if φ and rφ are two even-odd solution of (4.3)
satisfying

for all t ě 0, }φptq ´ pQ, 0q}H1ˆL2 ă δ, }rφptq ´ pQ, 0q}H1ˆL2 ă δ (4.185)

then, decomposing

φp0q “ pQ, 0q ` ε` b`p0qY `, rφp0q “ pQ, 0q ` ε̃` b̃`p0qY ` (4.186)

136



with xε,Z`y “ xε̃,Z`y “ 0, it holds

|b`p0q ´ b̃`p0q| ď Cδ1{2
}ε´ ε̃}H1ˆL2 . (4.187)

Proof. Let φ and φ̃ solutions of (4.3) likes in the Subsection 4.2.1, i.e., satisfies the decom-
position (4.23) and the smallest condition (4.27). Then,

}u1}H1 ` }ũ1}H1 ` }u2}L2 ` }ũ2}L2 ` |b˘| ` |b̃˘| ď C0δ. (4.188)

Let

qa1 “ a1 ´ ra1, qa2 “ a2 ´ ra2, qb` “ b` ´rb`, qb´ “ b´ ´rb´, qu1 “ u1 ´ ru1,

qu2 “ u2 ´ ru2, qN “ N ´ rN, qNK
“ NK

´ rNK, qN0 “ N0 ´ rN0.
(4.189)

Then, by (4.28) and (4.30), pǔ1, ǔ2q and pb̌`, b̌´q satisfy the following equations:

#

9
qu1 “ Bxqu2

9
qu2 “ BxLpqu1q ` qNK

and

$

’

’

’

&

’

’

’

%

9
qb` “ ν0

qb` `
qN0

2ν0

9
qb´ “ ´ν0

qb´ ´
qN0

2ν0

.

(4.190)

Furthermore, let
β` “ qb2

`, β´ “ qb2
´, βc “ xLqu1, qu1y ` xqu2, qu2y.

Computing the variation of βc, we obtain

9βc “ 2 x qNK, qu2y.

Now, recalling (4.29) and (4.51), we get

Ň “ pQ1 ´ ã1Bxφ0 ´ Bxũ1q

„

f 1pQq ` f2pQqpa1φ0 ` u1q ´ f
1
pQ` a1φ0 ` u1q

´

´

f 1pQq ` f2pQqpã1φ0 ` ũ1q ´ f
1
pQ` ã1φ0 ` ũ1q

¯



` pqa1Bxφ0 ` Bxqu1qpf
1
pQq ´ f 1pQ` a1φ0 ` u1qq

` pqa1φ0 ` qu1qf
2
pQqpã1Bxφ0 ` Bxũ1q.

By Taylor expansion, for any v, ṽ, it holds
ˇ

ˇf 1pQ` vq ´ f 1pQq ´ f2pQqv ´ pf 1pQ` ṽq ´ f 1pQq ´ f2pQqṽq
ˇ

ˇ

À |v ´ ṽ|p|v| ` |ṽ|qpQp´3
` |v|p´3

` |ṽ|p´3
q À |v ´ ṽ|p|v| ` |ṽ|q

Then,

|Ň | À |qa1φ0 ` qu1||Q
1
´ ã1Bxφ0 ´ Bxũ1|

`

|ã1φ0 ` ũ1| ` |a1φ0 ` u1|
˘

` f2pQq|qa1Bxφ0 ` Bxqu1||a1φ0 ` u1| ` f
2
pQq|qa1φ0 ` qu1||ã1Bxφ0 ` Bxũ1|.
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Then, using Sobolev embbeding, L2- norm of qN is bounded by

}Ň}L2 À }qa1φ0 ` qu1}L8}Q
1
´ ã1Bxφ0 ´ Bxũ1}L2

`

}ã1φ0 ` ũ1}L8 ` }a1φ0 ` u1}L8
˘

` }qa1Bxφ0 ` Bxqu1}L2}a1φ0 ` u1}L8 ` }qa1φ0 ` qu1}L8}ã1Bxφ0 ` Bxũ1}L2

À p|qa1| ` }qu1}H1q}Q1 ´ ã1Bxφ0 ´ Bxũ1}L2

`

|ã1| ` }ũ1}H1 ` |a1| ` }u1}H1

˘

` p|qa1| ` }qu1}H1qp|a1| ` }u1}H1q ` p|qa1| ` }qu1}H1qp|ã1| ` }ũ1}H1q

À p|qa1| ` }qu1}H1q
“

|a1| ` |ã1| ` }u1}H1 ` }ũ1}H1

‰

.

(4.191)

Then, by (4.190), (4.191), and using | qN0| À } qN}L2}B´1
x φ0}L2 , we get

| 9βc| ` | 9β` ´ 2ν0β`| ` | 9β´ ` 2ν0β´| ď Kδpβc ` β` ` β´q for some K ą 0. (4.192)

In order to obtain a contradiction, assume that the following holds

0 ă Kδpβcp0q ` β`p0q ` β´p0qq ă
ν0

10
β`p0q. (4.193)

Now, we consider the following bootstrap estimate

Kδpβc ` β` ` β´q ď ν0β`. (4.194)

and let
T “ sup tt ą 0 such that (4.194) holds u ą 0.

From (4.192) and (4.194), it holds

ν0β` ď 2ν0β` ´Kδpβc ` β` ` β´q ď 9β`, for t P r0, T s. (4.195)

Then, β` is positive and increasing function on r0, T s.
Now, by (4.192) and (4.194), we get

9βc ď ν0β` ď 9β`

integrating and using that β`p0q ą 0 , we obtain

βcptq ď βcp0q ` β`ptq ´ β`p0q ď βcp0q ` β`ptq.

Furtheremore, by (4.193) and for δ small enough, we get

Kδβcptq ď Kδpβcp0q ` β`ptqq ď
ν0

10
β`p0q `Kδβ`ptq ď

ν0

5
β`ptq.

For β´, using (4.192) and (4.194), we get

9β´ ď ´2ν0β´ ` ν0β`,

integrating and using (4.193), we have

β´ptq ď e´2ν0tβ´p0q ` ν0β`e´2ν0t

ż t

0

e2ν0sds ď β´p0q `
1

2
β`ptq.
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For δ small enough, we get

Kδβ´ptq ď Kδpβ´p0q ` β`ptqq ď
ν0

10
β`p0q `Kδβ`ptq ď

ν0

5
β`ptq.

For β`, it is clear that holds Kδ ď ν0
5
for δ small enough.

We have proved that, for all t P r0, T s,

Kδpβcptq ` β`ptq ` β´ptqq ď
3

5
ν0β`ptq.

By a continuity argument, we get that T “ 8. However, by the exponential growth (4.195)
and β`p0q ą 0, we obtain a contradiction with (4.188) on |b`|.

Since it holds
ε “ up0q ` b´p0qY ´, ε̃ “ ũp0q ` b̃´p0qY ´,

with xup0q,Y ´y “ xũp0q,Y ´y “ 0, and estimates (4.193) is contradicted, we have proved
(4.187). �
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Appendices

4.A Linear spectral theory for ´B2
xL

In this section we describe the spectral properties of the operator ´B2
xL, where L is introduced

in (4.8). Notice that this last operator has been widely studied (see [25, 26]). For the study
of the operator ´B2

xL we shall start with the following result.

Lemma 4.35. Let p ą 1. The operator L defined in (4.8) satisfies the following properties.

1. The continuum spectrum of L is r1,8q.

2. The kernel of L is only spanned by the function Q1.

3. The generalized kernel of L is given by span
"

Q1pxq, Q1pxq

ż x

ε

pQ1prqq´2dr

*

, for any

x ě ε ą 0 or x ď ε ă 0.

In what follows, and with a slight abuse of notation, we will write
ż x

0

pQ1prqq´2dr

instead of
şx

ε
pQ1prqq´2dr; but it is understood that the zero limit of integration corresponds

to any ε sufficiently close to zero.

An important remark is the following:

Remark 4.14. Note that
Lpfgq “ gLpfq ´ 2f 1g1 ´ fg2. (4.196)

This property will be useful in the following computations.

Now, we study the properties of the operator ´B2
xL.

Remark 4.15. A direct analysis shows that the null space of B2
xL0 “ B

4
x ´ B

2
x is spanned by

functions of the type
ex, e´x, 1, x, as xÑ 8.

Note that this set is linearly independent and among these four functions there is only one L2

integrable in the semi-infinite line r0,8q. Therefore, since B2
xL is a compact perturbation of

the scalar operator B2
xL0, the null space of B2

xL|H4pRq is spanned by at most one L2-function.

Lemma 4.36. Let p ą 1. The operators ´B2
xL satisfy the following properties.

1. The continuum spectrum of ´B2
xL is r0,8q.
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2. The generalized kernel of ´B2
xL is spanned by

span
"„

´
2

p´ 1
`´

p` 1

p´ 1
Q1pxq

ż x

0

Q´1
prqdr



,

Q1pxq

ż x

0

`

sQpsq ´
şs

´8
Qpyqdy

˘

pQ1q2psq
ds, Q1pxq , Q1pxq

ż x

0

pQ1prqq´2dr

+

.

(4.197)

Proof. The proof of (1) follows directly from the form of the operator.

Proof of (2). Clearly

u1pxq :“ Q1pxq, u2pxq :“ Q1pxq

ż x

0

pQ1prqq´2dr,

are solutions to ´B2
xLpuq “ 0. Notice that if ´B2

xLpuq “ 0 is equivalent to Lpuq “ ax`b with
a, b P R. Then we should solve this equation. First, we consider the case a “ 0. Without
loss of generality, we consider b “ 1. One has Lp1q “ 1´ pQp´1. Computing,

L
ˆ

Q1
ż x

0

Qn

˙

“ LpQ1q
ż x

0

Qn
´Qn

p2Q2q ´ nQn´1
pQ1q2

“ ´2Qn
pQ´Qp

q ´ nQn´1

ˆ

Q2
´

2

p` 1
Qp`1

˙

“ Qn`1
p´2´ nq `

ˆ

2n` 2p` 2

p` 1

˙

Qp`n.

If n “ ´1, we have

L
ˆ

Q1
ż x

0

Q´1

˙

“ ´1`
2p

p` 1
Qp´1.

Set u3pxq “ ´
2

p´ 1

„

1`
p` 1

2
Q1pxq

ż x

0

Q´1
prqdr



. We observe that L pu3pxqq “ 1. There-

fore, up to the generalized kernel of L, u3 solves the equation Lpu3q “ 1.

Now, without loss of generality, we consider a “ 1 and b “ 0, then we must solve Lpu4q “ x.
Using the method of reduction of order with an unknown function ψ, consider u4 “ Q1ψ.
Using (4.196), we have

LpQ1ψq “ ´2Q2ψ1 ´Q1ψ2 “ x.

We obtain that the solution of this equation is

u4pxq “ Q1pxq

ż x

0

pQ1q´2
psq

ˆ
ż s

0

Q1pyqydy

˙

ds´

ˆ
ż 0

´8

Qpyqdy

˙

Q1pxq

ż x

0

pQ1q´2
psqds

“ Q1pxq

ż x

0

pQ1q´2
psq

ˆ
ż s

0

yQ1pyqdy ´

ż 0

´8

Qpyqdy

˙

ds

“ Q1pxq

ż x

0

pQ1q´2
psq

ˆ

sQpsq ´

ż s

´8

Qpyqdy

˙

ds.
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We finally conclude that the fundamental set of solutions for B2
xLpuq “ 0 is given by

tu1pxq, u2pxq, u3pxq, u4pxqu .

This ends the proof. �

Corollary 4.37. There is, up to constant, only one solution of ´B2
xLpuq “ 0 in L2pRq.

Now, we focus on describing the eigenfunctions and negative eigenvalues of operator ´B2
xL.

This analysis will be the main ingredient to describe the stability of the soliton. Our first
result establishes the parity of eigenfunctions associated to nonzero eigenvalues.

Lemma 4.38. If φ0 P H
4pRq is an eigenfunction associated to an eigenvalue λ0 ‰ 0 of the

operator ´B2
xL, then B´1

x φ0 P H
3 and and B´2

x φ0 P H
2, i.e., are well-defined. Furthermore, if

φ0 is an even function then B´1
x φ0 is an odd function and

ż 8

0

φ0pyqdy “ 0.

Proof. We have
´B

2
xLφ0 “ λ0φ0, with λ0 ‰ 0,

this is equivalent to
B

4
xφ0 ´ B

2
xφ0 ` B

2
xppQ

p´1φ0q “ λ0φ0. (4.198)

Applying Fourier transform, we have

ξ4
pφ0 ` ξ

2
pφ0 ´ ξ

2pp {Qp´1φ0q “ λ0
pφ0.

From this identity, and the fact that φ0 P H
4pRq, we observe that

lim
ξÑ0

pφ0pξq “ λ´1
0 lim

ξÑ0

´

ξ4
pφ0 ` ξ

2
pφ0 ´ ξ

2
{pQp´1φ0

¯

“ 0.

Also
lim
ξÑ0

ξ´1
pφ0pξq “ λ´1

0 lim
ξÑ0

´

ξ3
pφ0 ` ξ pφ0 ´ ξ {pQp´1φ0

¯

“ 0,

lim
ξÑ0

ξ´2
pφ0pξq “ λ´1

0 lim
ξÑ0

´

ξ2
pφ0 `

pφ0 ´
{pQp´1φ0

¯

“ ´pλ´1
0

{Qp´1φ0p0q.

Then, we obtain that
ż

φ0pxq “ 0,

ż ż x

´8

φ0psqds “ 0.

Also, we know that {Qp´1φ0 is well defined (the Fourier transform is an homeomorphism from
L2 into L2). Then B´1

x φ0 and B´2
x φ0 are well-defined, and exponentially decreasing, provided

φ0 and its derivatives are also exponentially decreasing.

142



Now, suppose that φ0 is an even function. Integrating between 0 and x in (4.198), we
obtain

pB
3
xφ0 ´ Bxφ0 ` BxppQ

p´1φ0qqpxq ´ rB
3
xφ0 ´ Bxφ0 ` BxppQ

p´1φ0qs|x“0 “ λ0

ż x

0

φ0.

Since Qp´1 is an even function and B3
xφ0, Bxφ0 and BxpQp´1φ0q are odd functions, satisfying

B3
xφ0p0q “ Bxφ0p0q “ BxpQ

p´1φ0qp0q “ 0, we conclude

BxLpφ0qpxq “ pB
3
xφ0 ´ Bxφ0 ` BxppQ

p´1φ0qqpxq “ λ0

ż x

0

φ0pyqdy.

Now, given that φ0 P H
4pRq, one has B3

xφ0pxq, Bxφ0pxq, BxpQ
p´1φ0qpxq Ñ 0 as x Ñ ˘8. We

conclude
ż x

0

φ0pyqdy “ ´

ż ´x

0

φ0pyqdy and
ż 8

0

φ0pyqdy “ 0.

This proves the oddness of B´1
x φ0 and concludes the proof. �

We observe that ´B2
xL is not a self-adjoint operator. In fact, if ϕ, ψ P H4pRq,

@

´B
2
xLϕ, ψ

D

“ xϕ,´B2
xLpψqy ` xϕ, f 1pQqB2

xψ ´ B
2
xpf

1
pQqψqy,

since the operators B2
x and L do not commute. For this reason, we need to consider this

operator in an appropriate sense. A way to face this problem is to consider the following
result.

Lemma 4.39. The operator ´B2
xL has only real eigenvalues.

Proof. Given ϕ0 P H
4pRq eigenfunction of the operator ´B2

xL with eigenvalue λ0 P C, we
consider ϕ0 “ Bxψ0 or ψ0 “ B

´1
x ϕ0. We know that this function is well defined by Lemma

4.38. Now, we have
´B

2
xLpBxψ0q “ ´B

2
xLpϕ0q “ λ0ϕ0 “ λ0Bxψ0.

Integrating, we obtain
´BxLpBxψ0q “ λ0ψ0.

We can easily check that the operator ´BxLBx is self-adjoint with eigenvalue λ0 and eigen-
function ψ0. We conclude that λ0 is real, hence the eigenvalues of ´B2

xL are real. �

Therefore, the operator ´B2
xL has a similar structure of a self-adjoint operator. This fact

allows to follow the strategy of Greenberg and Maddocks-Sachs [12, 20] for counting the
negatives eigenvalues of this operator.

The most important property about ´B2
xL is that it possesses only one negative eigenvalue.

Theorem 4.40. The operator ´B2
xL has a unique negative eigenvalue ´ν2

0 ă 0 of multiplicity
one. The associated eigenfunction φ0 satisfies the exponential decay in (4.10), along with its
derivatives.
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This is just a consequence of the fact that the only solution of ´B2
xLpuq “ 0 converging

to zero at ´8 is Q1pxq, see Claim 4.42. This function has a unique zero. The exponential
decay is just consequence of Remark 4.15.

Corollary 4.41. Given φ0 eigenfunction associated to the unique negative eigenvalue ´ν2
0 ,

then φ0 is an even function and B´1
x φ0 is an odd function.

Proof. Consider the function ψpxq “ φ0p´xq, we have

´B
2
xLpψq “ B4

xpψq ´ B
2
xψ ` B

2
xppQ

p´1ψq.

Notice that Qp´1, B2
xpQ

p´1q are even functions and BxpQp´1q is an odd function, also

B
2
xppQ

p´1ψqpxq “ B2
xppQ

p´1
pxqφ0p´xqq “ B

2
xppQ

p´1φ0qp´xq.

Then, we observe that

´B
2
xLpψq “ ´B2

xLpφ0qp´xq “ ´ν
2
0φ0p´xq “ ´ν

2
0ψpxq.

Finally, since λ0 is the unique negative eigenvalue of multiplicity one, we conclude that
φ0pxq “ ψpxq “ φ0p´xq, i.e., φ0 is an even function. Finally, by Lemma 4.38 we know B´1

x φ0

is an odd function. �

4.A.1 Asymptotic behavior of fundamental solutions of ´B2xLpuq “ 0

The following computations are direct, but we include them by the sake of completeness.
They are just simple applications of L’Hôpital’s rule.

Claim 4.42. The functions u1, u2, u3 and u4 found in Lemma 4.35 and 4.36 satisfy

lim
xÑ´8

u1pxq “ 0, lim
xÑ´8

u2pxq “ `8, lim
xÑ´8

u3pxq “ 1, lim
xÑ´8

u4pxq “ ´8.

Proof. One has

1.

lim
xÑ´8

u1pxq “ lim
xÑ´8

Q1pxq “ 0.

2. Second,

lim
xÑ´8

u2pxq “ lim
xÑ´8

Q1pxq

ż x

0

pQ1prqq´2dr “ lim
xÑ´8

şx

0
pQ1prqq´2dr

pQ1pxqq´1

“ lim
xÑ´8

pQ1pxqq´2

´pQ1pxqq´2Q2pxq
“ lim

xÑ´8

1

´Q2pxq
“ lim

xÑ´8

1

QpxqpQp´1pxq ´ 1q
“ `8.

144



3. Third,

lim
xÑ´8

u3pxq “ lim
xÑ´8

´
2

p´ 1

„

1`
p` 1

2
Q1

ż x

0

Q´1
prqdr



“ ´
2

p´ 1
´
p` 1

p´ 1
lim
xÑ´8

Q1pxq

ż x

0

Q´1
prqdr “ ´

2

p´ 1
´
p` 1

p´ 1
lim
xÑ´8

ż x

0

Q´1
prqdr

pQ1pxqq´1

“ ´
2

p´ 1
´
p` 1

p´ 1
lim
xÑ´8

Q´1pxq

´pQ1pxqq´2Q2pxq
“ ´

2

p´ 1
`
p` 1

p´ 1
lim
xÑ´8

Q´1pxqpQ2 ´ 2
p`1

Qp`1q

Q´Qp

“ ´
2

p´ 1
`
p` 1

p´ 1
lim
xÑ´8

p1´ 2
p`1

Qp´1q

1´Qp´1
“ 1.

4. Finally,

lim
xÑ´8

u4pxq “ lim
xÑ´8

Q1pxq

ż x

0

pQ1q´2

ˆ

sQpsq ´

ż s

´8

Q

˙

ds

“ lim
xÑ´8

ż x

0

pQ1q´2

ˆ

sQpsq ´

ż s

´8

Q

˙

ds

pQ1pxqq´1
“ lim

xÑ´8

pQ1pxqq´2

ˆ

xQpxq ´

ż x

´8

Q

˙

´pQ1pxqq´2Q2pxq

“ lim
xÑ´8

ˆ

xQpxq ´

ż x

´8

Q

˙

´Q2pxq
“ lim

xÑ´8

ˆ

xQpxq ´

ż x

´8

Q

˙

QpxqpQp´1pxq ´ 1q
“ lim

xÑ´8

pxQ1pxq `Qpxq ´Qpxqq

Q1pxqppQp´1pxq ´ 1q

“ lim
xÑ´8

x

pQp´1pxq ´ 1
“ ´8.

�

4.B Proof of Claims 4.21 and 4.22

4.B.1 Relation between Bxzi and Bxvi
We prove Claim 4.21. First, recall that zi “ χAζBvi and

Bxzi “ pχAζBq
1vi ` χAζBBxvi. (4.199)

Then
pBxziq

2
“ ppχAζBq

1viq
2
` 2pχAζBq

1χAζBviBxvi ` pχAζBBxviq
2. (4.200)

For a function P pxq P C1pRq, we consider
ż

P pxqχ2
Aζ

2
BpBxviq

2.

Using (4.200), we obtain
ż

P pxqχ2
Aζ

2
BpBxviq

2
“

ż

P pxqpBxziq
2
´

ż

P pxqrpχAζBq
1
s
2v2

i ´
1

2

ż

P pxqppχAζBq
2
q
1
Bxpv

2
i q

“

ż

P pxqpBxziq
2
´

ż

P pxqrpχAζBq
1
s
2v2

i `
1

2

ż

rP pxqppχAζBq
2
q
1
s
1v2

i .

(4.201)
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Now

P pxqrpχAζBq
1
s
2
“P pxqζ2

B

„

pχ1Aq
2
` pχ2

Aq
1 ζ
1
B

ζB



` P pxqpχAζBq
2

ˆ

ζ 1B
ζB

˙2

.

Then, we have
ż

P pxqrpχAζBq
1
s
2v2

i “

ż

P pxq

ˆ

ζ 1B
ζB

˙2

z2
i `

ż

P pxq

„

pχ1Aq
2
` pχ2

Aq
1 ζ
1
B

ζB



ζ2
Bv

2
i .

As for the third integral in the RHS of (4.201), we have

rP pxqpχ2
Aζ

2
Bq
1
s
1
“ P 1pxqpχ2

Aζ
2
Bq
1
` P pxqpχ2

Aζ
2
Bq
2

“ P 1pxqζ2
B

„

pχ2
Aq
1
` 2χ2

A

ˆ

ζ 1B
ζB

˙

` P pxqζ2
B

«

pχ2
Aq
2
` 4pχ2

Aq
1 ζ
1
B

ζB
` 2χ2

A

«

ˆ

ζ 1B
ζB

˙2

`
ζ2B
ζB

ffff

“ 2χ2
Aζ

2
B

«

P 1pxq
ζ 1B
ζB
` P pxq

«

ˆ

ζ 1B
ζB

˙2

`
ζ2B
ζB

ffff

` P pxqζ2
B

„

pχ2
Aq
2
` 4pχ2

Aq
1 ζ
1
B

ζB



` P 1pxqζ2
Bpχ

2
Aq
1.

Then, we obtain
ż

rP pxqppχAζBq
2
q
1
s
1v2

i “ 2

ż

«

P 1pxq
ζ 1B
ζB
` P pxq

«

ˆ

ζ 1B
ζB

˙2

`
ζ2B
ζB

ffff

z2
i

`

ż

P pxq

„

pχ2
Aq
2
` 4pχ2

Aq
1 ζ
1
B

ζB



ζ2
Bv

2
i `

ż

P 1pxqpχ2
Aq
1ζ2
Bv

2
i .

We conclude in (4.201):
ż

P pxqχ2
Aζ

2
BpBxviq

2
“

ż

P pxqpBxziq
2
´

ż

P pxqrpχAζBq
1
s
2v2

i `
1

2

ż

rP pxqppχAζBq
2
q
1
s
1v2

i

“

ż

P pxqpBxziq
2
´

ż

P pxq

ˆ

ζ 1B
ζB

˙2

z2
i ´

ż

P pxq

„

pχ1Aq
2
` pχ2

Aq
1 ζ
1
B

ζB



ζ2
Bv

2
i

`

ż

«

P 1pxq
ζ 1B
ζB
` P pxq

«

ˆ

ζ 1B
ζB

˙2

`
ζ2B
ζB

ffff

z2
i

`
1

2

ż

P pxq

„

pχ2
Aq
2
` 4pχ2

Aq
1 ζ
1
B

ζB



ζ2
Bv

2
i `

1

2

ż

P 1pxqpχ2
Aq
1ζ2
Bv

2
i

“

ż

P pxqpBxziq
2
`

ż
„

P 1pxq
ζ 1B
ζB
` P pxq

ζ2B
ζB



z2
i

`

ż

E1pP pxq, xqζ
2
Bv

2
i ,

(4.202)
where

E1pP pxq, xq “ P pxq

„

χ2AχA ` pχ
2
Aq
1 ζ
1
B

ζB



`
1

2
P 1pxqpχ2

Aq
1. (4.203)

Finally, (4.110) follows directly from the definition of E1pP pxq, xq and Remark 4.9 replacing
B by A. This ends the proof of Claim 4.21.
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4.B.2 Relation between B2xzi and B2xvi
Now we prove Claim 4.22. The following relation is obtained from zi in (4.60):

B
2
xzi “ pχAζBq

2vi ` 2pχAζBq
1
Bxvi ` χAζBB

2
xvi,

pB
2
xziq

2
“ rpχAζBq

2vis
2
` 4rpχAζBq

1
Bxvis

2
` rχAζBB

2
xvis

2

` 4pχAζBq
2vipχAζBq

1
Bxvi ` 4pχAζBq

1
BxviχAζBB

2
xvi ` 2pχAζBq

2viχAζBB
2
xvi

“ rpχAζBq
2vis

2
` 4rpχAζBq

1
Bxvis

2
` rχAζBB

2
xvis

2

` 2pχAζBq
2
pχAζBq

1
Bxpv

2
i q ` rχ

2
Aζ

2
Bs
1
BxrpBxviq

2
s ` 2pχAζBq

2χAζBviB
2
xvi.

Then,
pχAζBB

2
xviq

2
“ pB

2
xziq

2
´ ppχAζBq

2viq
2
´ 4ppχAζBq

1
Bxviq

2

´ 2pχAζBq
2
pχAζBq

1
Bxpv

2
i q ´ 2pχAζBq

2χAζBviB
2
xvi

´ rχ2
Aζ

2
Bs
1
BxrpBxviq

2
s.

(4.204)

Now,
ż

RpxqpχAζBB
2
xviq

2

“

ż

RpxqpB2
xziq

2
`

ż

Rpxq
`

´rpχAζBq
2
s
2v2

i ´ 4rpχAζBq
1
s
2
pBxviq

2
˘

`

ż

Rpxq
“

´ prpχAζBq
1
s
2
q
1
Bxpv

2
i q ´ rpχAζBq

2
s
1
BxrpBxviq

2
s ´ 2pχAζBq

2χAζBviB
2
xvi

‰

“

ż

RpxqpB2
xziq

2
`

ż

Rpxqp´rpχAζBq
2
s
2v2

i ´ 4rpχAζBq
1
s
2
pBxviq

2
q

`

ż

BxrRpxqprpχAζBq
1
s
2
q
1
sv2

i `

ż

BxrRpxqrpχAζBq
2
s
1
spBxviq

2
´

ż

2RpxqpχAζBq
2χAζBviB

2
xvi.

(4.205)
Since

´

ż

2RpxqpχAζBq
2χAζBviB

2
xvi “´

ż

B
2
xrRpxqpχAζBq

2χAζBsv
2
i ` 2

ż

RpxqpχAζBq
2χAζBpBxviq

2,

we get
ż

RpxqpχAζBB
2
xviq

2

“

ż

RpxqpB2
xziq

2
`

ż

Rpxqp´rpχAζBq
2
s
2v2

i ´ 4rpχAζBq
1
s
2
pBxviq

2
q

`

ż

BxrRpxqprpχAζBq
1
s
2
q
1
sv2

i `

ż

BxrRpxqrpχAζBq
2
s
1
spBxviq

2

´

ż

B
2
xrRpxqpχAζBq

2χAζBsv
2
i ` 2

ż

RpxqpχAζBq
2χAζBpBxviq

2

“

ż

RpxqpB2
xziq

2
`

ż

r´B
2
xrRpxqpχAζBq

2χAζBs ` BxrRpxqprpχAζBq
1
s
2
q
1
s ´RpxqrpχAζBq

2
s
2
sv2

i

`

ż

”

2RpxqpχAζBq
2χAζB ` BxrRpxqrpχAζBq

2
s
1
s ´ 4RpxqrpχAζBq

1
s
2
ı

pBxviq
2.

(4.206)

147



Now we perform the following splitting:
ż

RpxqpχAζBB
2
xviq

2
“

ż

RpxqpB2
xziq

2

`

ż
„

BxrRpxqprpχAζBq
1
s
2
q
1
s ´RpxqppχAζBq

2
q
2
´ B

2
xrRpxqpχAζBq

2χAζBs



v2
i

`

ż
„

BxrRpxqpχ
2
Aζ

2
Bq
1
s ` 2RpxqpχAζBq

2χAζB ´ 4RpxqppχAζBq
1
q
2



pBxviq
2

“: R1 `R2 `R3.
(4.207)

Firstly, we will focus on R2. The term that accompanies to v2
i , holds the following decompo-

sition
BxrRpxqprpχAζBq

1
s
2
q
1
s ´RpxqppχAζBq

2
q
2
´ B

2
xrRpxqpχAζBq

2χAζBs

“χ2
Aζ

2
BR̃pxq ` E2pRpxq, xqζ

2
B,

(4.208)

where

R̃pxq “ ´ 2Rpxq

«

ζ
p4q
B

ζB
`
ζ3B
ζB

ζ 1B
ζB

ff

´ 2R1pxq
ζ3B
ζB
´R2pxq

ζ2B
ζB
, (4.209)

and
E2pRpxq, xq “ ´Rpxq

ˆ

χ
p4q
A χA ` 4χ3AχA

ζ 1B
ζ2
B

` 6χ2AχA
ζ2B
ζB
` 2pχ2

Aq
1 ζ
3
B

ζB

˙

´R1pxq

ˆ

2χ3AχA ` 6χ2AχA
ζ 1B
ζB
` 6χ1AχA

ζ2B
ζB

˙

´R2pxq

ˆ

χ2AχA `
1

2
rχ2

As
1 ζ
1
B

ζB

˙

.

(4.210)

Rewriting R2, we obtain

R2 “

ż

R̃pxqz2
i `

ż

E2pRpxq, xqζ
2
Bv

2
i . (4.211)

Secondly, for R3, the term that accompanies to pBxviq
2 satisfies the following decomposition

BxrRpxqpχ
2
Aζ

2
Bq
1
s ` 2RpxqpχAζBq

2χAζB ´ 4RpxqppχAζBq
1
q
2

“PRpxqχ
2
Aζ

2
B ` E3pRpxq, xqζ

2
B,

(4.212)

where

PRpxq “ Rpxq

„

4
ζ2B
ζB
´ 2

ˆ

ζ 1B
ζB

˙2

` 2R1pxq
ζ 1B
ζB
, (4.213)

and
E3pRpxq, xq “Rpxq

„

4χ2AχA ´ 2pχ1Aq
2
` 2

ζ 1B
ζB
pχ2

Aq
1



`R1pxqpχ2
Aq
1. (4.214)

Now, by Claim 4.21, we have
ż

PRpxqχ
2
Aζ

2
BpBxviq

2
“

ż

PRpxqpBxziq
2
`

ż
„

P 1Rpxq
ζ 1B
ζB
` PRpxq

ζ2B
ζB



z2
i

`
1

2

ż

E1pPRpxq, xqζ
2
Bv

2
i ,

(4.215)
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where E1 is given by (4.203). Finally, we obtain that R3 has the following decomposition

R3 “

ż

PRpxqpBxziq
2
`

ż
„

P 1Rpxq
ζ 1B
ζB
` PRpxq

ζ2B
ζB



z2
i

`
1

2

ż

E1pPRpxq, xqζ
2
Bv

2
i `

ż

E3pRpxq, xqζ
2
BpBxviq

2.

(4.216)

Collecting R1, (4.211) and (4.216), we obtain
ż

Rpxqχ2
Aζ

2
BpB

2
xviq

2
“

ż

RpxqpB2
xziq

2
`

ż

R̃pxqz2
i `

ż

E2pRpxq, xqζ
2
Bv

2
i

`

ż

PRpxqpBxziq
2
`

ż
„

P 1Rpxq
ζ 1B
ζB
` PRpxq

ζ2B
ζB



z2
i

`
1

2

ż

E1pPRpxq, xqζ
2
Bv

2
i `

ż

E3pRpxq, xqζ
2
BpBxviq

2,

(4.217)

where E1, E2, E3 and PR are given in (4.203), (4.210), (4.214) and (4.213), respectively. Finally,
the proof of (4.117) is direct. This concludes the proof of the Claim 4.22.

4.C Proof of Lemma 4.27
Proof. We claim that for all v P H1pRq that satisfies xLφ0, vy “ 0, one has

xLv, vy ě 0.

Then the conclusion is evident since xQ1, vy “ 0. Suppose that for some nonzero u P H1pRq
with xLφ0, uy “ 0, we have xLu, uy ă 0. Then, since φ0 satisfies (4.10),

xLφ0, φ0y “ ν2
0xB

´2
x φ0, φ0y “ ν2

0xB
´2
x φ0, BxB

´1
x φ0y “ ´ν

2
0}B

´1
x φ0}

2
L2 ă 0.

Then we observe that the quadratic form pL¨, ¨q is negative definite in spanpφ0, uq. Since
xφ0, Qy ‰ 0 (see Lemma 4.31), there exists u0 P spanpφ0, uq such that u0 K Q and xLu0, u0y ă

0. This is a contradiction with the result

inf
xv,Qy“0

xLv, vy “ 0.

(See Proposition 2.9 in [34] for more details.) �
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Chapter 5

On the decay problem for the Skyrme
wave maps

Abstract. We consider the decay problem for the Skyrme and Adkins-Nappi equations. We prove that the
energy associated to any bounded energy solution of the Skyrme (or Adkins-Nappi) equation decays to zero
outside the light cone (in the radial coordinate). Furthermore, we prove that suitable polynomial weighted
energies of any small solution decays to zero when these energies are bounded. The proof consists of finding
three new virial type estimates, one for the exterior of the light cone, based on the energy of the solution, and
a more subtle virial identity for the weighted energies, based on a modification of momentum type quantities.
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5.1 Introduction
This work is concerned with two nonlinear quantum field models, also known in the liter-
ature as Skyrme and Adkins-Nappi equations. Physically these models intend to describe
interactions between nucleons and π mesons. Classical nonlinear field theories played an
important role in the description of particles as solitonic objects. A well known example of
these nonlinear theories is the SUp2q sigma model [9], obtained as a formal critical point
from the action

Spψq “

ż

R1,d

ηµνpψ˚gqµν “

ż

R1,d

ηµνBµψ
A
Bνψ

BgAB ˝ ψ. (5.1)

Here ψ is a map from a p1 ` dq-dimensional Minkowski space pR1,d, ηq to a Riemannian
manifold pM, gq with metric g. From a geometrical point of view, the associated Lagrangian
is the trace of the pull-back of the metric g under the map ψ. A current choice is M “ Sd

with g the associated metric and for d “ 3, one obtains the classical SUp2q sigma model.
The Euler-Lagrange equation corresponding to the action S is called the wave maps equation.
Unfortunately, the SUp2q sigma model does not admit solitons and it develops singularities
in finite time [4, 8, 15]. To avoid these inconveniences and to prevent the possible breakdown
of the system in finite time, Skyrme [16] modified the associated Lagrangian to (5.1) by
adding higher-order terms which break the scaling invariance of the initial model, which in
spherical coordinates pt, r, θ, ϕq on R1,3, and co-rotational maps ψpt, r, θ, ϕq “ pupt, rq, θ, ϕq,
the Skyrme model leads to the scalar quasilinear wave equation satisfied by the angular
variable u, as it will be shown in (5.2).

This equation has a unique static solution with boundary values up0q “ 0 and limrÑ8 uprq “
π, and which is currently known as Skyrmion [14]. This existence was proved in [10] and
[14] by using variational methods and ODE techniques respectively. As far as we know, the
Skyrmion is not known in a closed form.

5.1.1 Main results

In this paper, we are interested in the long time asymptotics of two relevant mathematical
physics models. First, the Skyrme model is written as

ˆ

1`
2α2 sin2puq

r2

˙

putt ´ urrq ´
2

r
ur `

sinp2uq

r2

„

1` α2

ˆ

u2
t ´ u

2
r `

sin2puq

r2

˙

“ 0, (5.2)

and the second model is a short of generalization of supercritical wave maps as it was pre-
sented by Adkins and Nappi [1]. This is a simplified version of the Skyrme model (5.2) and
it is currently known as Adkins-Nappi model

utt ´ urr ´
2

r
ur `

sinp2uq

r2
`
pu´ sinpuq cospuqq p1´ cosp2uqq

r4
“ 0. (5.3)

These two models have the following low order conserved quantities (subindices "S" and
"AN" for Skyrme and Adkins-Nappi models respectively)
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ESrusptq “

ż 8

0

r2

„ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2

sin2puq

r2
`
α2 sin4puq

r4



, (5.4)

EAN rusptq “

ż 8

0

r2

«

u2
t ` u

2
r ` 2

sin2puq

r2
`
pu´ sinpuq cospuqq2

r4

ff

. (5.5)

(Here
ş8

0
means

ş8

0
dr.) Respecting to the Cauchy problem, (5.2) is globally well-posed for

small data in 9H5{2pR3q, and the corresponding global result for the Adkins-Nappi equation
(5.3) holds in p 9B5{2 ˆ 9B3{2q X p 9H1 ˆ L2qpR3q (see [7]). For large-data global well-posedness
results, Li showed that it holds in H4pR3q for Skyrme (5.2) (see [12]).

We denote by EXn the space of all finite energy data of degree n, namely

EXn “
!

pu, utq
ˇ

ˇ

ˇ
EXrusptq ă 8, u0p0q “ 0, lim

rÑ8
u0prq “ nπ

)

, (5.6)

where here X “ S refers to the Skyrme model or when X “ AN to the Adkins-Nappi
model. In what follows, we consider pu, utq P EX0 and such that is a solution of (5.2) or (5.3),
respectively.

The main goal of this work is to prove that small global solutions with enough regularity
of Skyrme (5.2) and Adkins-Nappi (5.3) equations decay to zero in a certain region of the
light cone. Furthermore, we also study the decay of an associated weighted energy for both
equations, and which we need them for analyzing their corresponding long time behavior.

More precisely let b ą 0 and consider the following subset depending on time

Rptq “ tx P R3
| |x| ą p1` bqtu Ă R3. (5.7)

We will show that any global solution u to (5.2) (or (5.3)), which is sufficiently regular and
without a previous smallness condition, must be concentrated inside the light cone.

Theorem 5.1 (Decay in exterior light cones for the Skyrme and Adkins-Nappi models).
Let pu0, u1q P EX0 , defined in (5.6), such that u is a global solution, for (5.2) when X “ S,

or (5.3) when X “ AN , respectively. Then, for Rptq as in (5.7), there is strong decay to zero
of the energy EX , in particular:

lim
tÑ8

}putptq, urptqq}L2ˆL2pR3XRptqq “ 0. (5.8)

Additionally, one has the mild rate of decay for |σ| ą 1:
ż 8

2

ż 8

0

e´c0|r`σt|r2
pu2

t ` u
2
rqdrdt Àc0 1. (5.9)

Remark 5.1. The spaces EX0 are not empty. In fact, for the Skyrme and Adkins-Nappi
equations, the corresponding energy is well-defined in the homogeneous Sobolev space 9H7{4X
9H1pR3q and in 9H5{3 X 9H1pR3q respectively.
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For the next results, we have to introduce a weighted version of the spaces (5.6). Let EX,φn

the space of all finite φ-weighted energy data of degree n

EX,φn “ tpu, utq |EX,φrusptq ă 8, u0p0q “ 0, u0p8q “ nπ u , (5.10)

where EX,φ is written for the Skyrme model as

ES,φrusptq “

ż 8

0

φprq

„ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2

sin2puq

r2
`
α2 sin4puq

r4



, (5.11)

and for the Adkins-Nappi model as

EAN,φrusptq “

ż 8

0

φprq

«

u2
t ` u

2
r ` 2

sin2puq

r2
`
pu´ sinpuq cospuqq2

r4

ff

. (5.12)

In fact, one can see, that if EX,r2rusptq “ EXrusptq, then EX,r
2

n “ EXn , for X P tS,ANu.

Our second result shows that the energy EX associated to any global solution pu, utq P
EX,r

n

0 X EX,r
n´1

0 of (5.2) or (5.3), decays to zero when t goes to infinity. This means that for
any global solution u which is sufficiently regular and it satisfies a weighted integrability on
r, its energy EX,rn decays to zero when t goes to infinity for both X “ S or X “ AN cases.

Theorem 5.2 (Decay of weighted energies). Let δ ą 0 small enough. Let pu, utq P EX,r
n

0 X

EX,r
n´1

0 a global solution of (5.2) or (5.3) such that

sup
tPR

EXrusptq ă δ, for X “ AN,S. (5.13)

Then, the modified energy EX,ϕrusptq with ϕprq “ rn decays to zero, for n ą 7 (X “ S case)
or for n P

”

3`
?

41
2

, 10
ı

(X “ AN case), respectively. In particular,

lim
tÑ8

}r
n´2
2 put, urqptq}L2ˆL2pR3q “ lim

tÑ8
EX,rnptq “ 0. (5.14)

The next remark will be useful in the proof of Theorem 5.2.

Remark 5.2 ([5, 6, 11]). Note that finite energy smooth solutions of Skyrme (5.2) and
Adkins-Nappi (5.3) equations are uniformly bounded as follows

}u}L8t,x ď CpEXrusp0qq,where X P tS,ANu, (5.15)

and Cpsq Ñ 0 as sÑ 0.
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5.1.2 Idea of the proof

In order to prove Theorem 5.1, we follow some ideas appeared in [2, 3, 13], where decay for
Camassa-Holm, Born-Infeld and Improved-Boussinesq models were considered. The main
tool in these works was a suitable virial functional for which the dynamic of solutions is
converging to zero when it is integrated in time.

In this paper, the new virial functionals give us relevant information about the dynamics
of global solutions of Skyrme and Adkins-Nappi equations. Using a proper virial estimate,
we prove that the corresponding energies associated to Skyrme and Adkins-Nappi equations
decay to zero in the subset Rptq

Rptq “ tx P R3
|x ą p1` bqtu Ă R3,

which is the complement of the ball of radius p1` bqt, for b ą 0.

Furthermore, to prove Theorem 5.2, we will study the growth rate of polynomial weight
energies of the Skyrme and Adkins-Nappi equations. After that, assuming that their growth
is bounded, we will prove that this growth decays zero as t tends to infinity. To prove this
result, we introduce a functional associated with a sort of weighted momentum. It happens
that the virial identity associated to this functional shows no evidence of good sign conditions,
i.e. that the derivative of the functional be negative. Therefore, we have to introduce a new
functional as a linear combination of these two viral identities and for which there is a good
sign property. This ensures the integrability in time of polynomial weighted energies of degree
n. Moreover, it also guarantees the decay of polynomial weighted energy of degree n`1 over a
subsequence of times. Combining these two facts, we conclude that the polynomial weighted
energies, which are bounded, decay to zero as t tends to infinity (over R3).

Organization of this chapter

This chapter is organized as follows: Section 5.2 is splitted in two subsections where a series
of virial identities are presented: in Subsection 5.2.1 and 5.2.2 we show the virial identities
used for to prove the decay of the energy in the Skyrme equation (5.2) and (5.3), respectively.
Section 5.3 deals with the proof of Theorem 5.1 for the Skyrme and Adkins-Nappi equations.
Finally, Section 5.4 deals with the proof of Theorem 5.2 for the Skyrme equation and Adkins-
Nappi.

Acknowledgments

We are indebted to C. Muñoz for stimulating discussions and valuable suggestions that helped
to improve a previous version of this work. I am deeply thanks F. Gancedo (U. Sevilla) for
his hospitality during some research stays where part of this work was done.

5.2 Virial Identities
In this section three virial identities for the Skyrme and Adkins-Nappi models (5.2)-(5.3)
are presented. One of the virial functionals is related with the exterior light cone behavior
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(Theorem 5.1), and the other ones are useful for understanding the decay of the weighted
energy of Skyrme and Adkins-Nappi models (Theorem 5.2). Moreover, we remark here that
the energies ESrus and EAN rus, defined in (5.4) and (5.5), are bounded in spaces ES0 and
EAN0 respectively. Furthermore, it is well-known that these energies are well defined in the
homogeneous Sobolev spaces 9H7{4X 9H1pR3q and 9H5{3X 9H1pR3q for the Skyrme and Adkins-
Nappi equations, respectively.

5.2.1 Virial identities for the Skyrme Model

Let ϕ “ ϕpt, rq be a smooth, bounded weight function, to be chosen later. For each t P R we
consider the following functional

ISptq “
ż 8

0

ϕr2

„ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2

sin2puq

r2
`
α2 sin4puq

r4



, (5.16)

which is a generalization of the energy introduced in (5.4), and well-defined for pu, utq P
p 9H7{4X 9H1qˆL2pR3q. Moreover, if ϕ only depends on r and it can be written as ϕprq “ φ{r2,
then we recover ES,φ, which is the weighted energy defined in (5.11). The following identities
will be useful for the proof of Theorems 5.1-5.2.

The following result shows the variation of the localized energy for the Skyrme equation:

Lemma 5.3 (Energy local variations: Skyrme Model). For any t P R, ϕpt, rq a smooth
function previously defined, and ISptq as in (5.16), we have that

d

dt
ISptq “

ż 8

0

ϕtr
2

„ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2

sin2puq

r2
`
α2 sin4puq

r4



´

ż 8

0

ϕrr
2

ˆ

1`
2α2 sin2puq

r2

˙

2utur.

(5.17)

Proof of Lemma 5.3. Derivating (5.16) with respect to time, and using a basic trigonometric
relation, we have

d

dt
ISptq “

ż 8

0

ϕtr
2

„ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2

sin2puq

r2
`
α2 sin4puq

r4



` 2

ż 8

0

ϕr2ut

„ˆ

α2 sinp2uq

r2

˙

pu2
t ` u

2
rq `

sinp2uq

r2
`
α2 sin2puq sinp2uq

r4



` 2

ż 8

0

ϕr2ut

ˆ

1`
2α2 sin2puq

r2

˙

utt ` 2

ż 8

0

ϕr2

ˆ

1`
2α2 sin2puq

r2

˙

ururt

:“ I1 ` I2 ` I3 ` I4.

Now, using the equation (5.2) in I3, we have

I3 “2

ż 8

0

ϕr2ut

"ˆ

1`
2α2 sin2puq

r2

˙

urr `
2

r
ur ´

sinp2uq

r2

„

1` α2

ˆ

u2
t ´ u

2
r `

sin2puq

r2

˙*

.
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And integrating by parts in the last integral I4, we obtain

1

2
I4 “ ´

ż 8

0

ϕrr
2

ˆ

1`
2α2 sin2puq

r2

˙

urut

´

ż 8

0

ϕr2ut

ˆˆ

2

r
ur `

2α2 sinp2uq

r2
u2
r

˙

´

ˆ

1`
2α2 sin2puq

r2

˙

urr

˙

.

Finally, we have

I2 ` I3 ` I4 “ ´ 2

ż 8

0

ϕrr
2

ˆ

1`
2α2 sin2puq

r2

˙

utur,

and we get that

d

dt
ISptq “

ż 8

0

ϕtr
2

„ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2

sin2puq

r2
`
α2 sin4puq

r4



´ 2

ż 8

0

ϕrr
2

ˆ

1`
2α2 sin2puq

r2

˙

utur.

This concludes the proof. �

Remark 5.3. With the change of variables ϕ “ φ{r2, we avoid the term r2 in the weighted
function (5.16), and which coming from the dimension of the problem. Then, ES,φ is recovered
from ISptq and applying the Lemma 5.3, we get

d

dt
ES,φ “

ż 8

0

φt

„ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2

sin2puq

r2
`
α2 sin4puq

r4



´ 2

ż 8

0

ˆ

φ1 ´ 2
φ

r

˙ˆ

1`
2α2 sin2puq

r2

˙

utur.

(5.18)

This relation will be useful in the proof of Theorem 5.2.

Now, we define two functionals that we will use to prove the decay of the weighted energy
EX,φ. Firstly, denote by f the following function

fpuq “ 1`
2α2 sin2puq

r2
. (5.19)

Now, considering ψ and φ smooth weight functions of r, which will be chosen later, we define
the functional KSptq associated with a sort of momentum, given by

KSptq “
ż 8

0

ψfpuqutur, (5.20)

and the functional PSptq, which corrects the bad sign of the variation in time on the functional
KSptq, and which is given by

PSptq “
ż 8

0

φfpuqutu. (5.21)
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Lemma 5.4. Let t P R, ψ be a smooth weight function and KSptq defined as in (5.20). If
u P ES,ψ0 and pprq “

´

ψ1

r2
´ 4 ψ

r3

¯

, then we have

d

dt
KSptq “ ´

1

2

ż 8

0

ψ1

r2
r2u2

t ´
1

2

ż 8

0

pprqr2u2
r ´

α2

2

ż 8

0

pprq sin2
puqpu2

t ` u
2
rq

`

ż 8

0

ˆ

ψ1

r2
´ 2

ψ

r3

˙

sin2
puq `

α2

2

ż 8

0

pprq
sin4puq

r2
.

(5.22)

Proof. First of all, we notice that the derivates of f (5.19) are

pfpuqqt “ 2α2 sinp2uqut
r2

, and pfpuqqr “ 2α2 sinp2uqur
r2

´ 4α2 sin2puq

r3
. (5.23)

Secondly, derivating the functional (5.20) with respect to time, we get

d

dt
KSptq “

ż 8

0

ψ pfpuqqt utur `

ż 8

0

ψfpuqputtur ` uturtq

“

ż 8

0

ψ pfpuqqt utur `

ż 8

0

ψfpuquttur `
1

2

ż 8

0

ψfpuqpu2
t qr.

Integrating by parts in the last term of RHS, we obtain

d

dt
KSptq “

ż 8

0

ψ pfpuqqt utur `

ż 8

0

ψfpuquttur ´
1

2

ż 8

0

ψ1fpuqu2
t

´
1

2

ż 8

0

ψpfpuqqru
2
t :“ K1 `K2 `K3 `K4.

(5.24)

For K2, using (5.2), we obtain

K2 “

ż 8

0

ψur

"

fpuqurr `
2

r
ur ´

sinp2uq

r2

„

1` α2

ˆ

u2
t ´ u

2
r `

sin2puq

r2

˙*

“´

ż 8

0

pψfpuqqr
u2
r

2
` 2

ż 8

0

ψ

r
u2
r ´

ż 8

0

ψ

r2
sinp2uqur

„

1` α2

ˆ

u2
t ´ u

2
r `

sin2puq

r2

˙

“´

ż 8

0

rψ1fpuq ` ψpfpuqqrs
u2
r

2
` 2

ż 8

0

ψ

r
u2
r ´

ż 8

0

ψ

r2
sinp2uqur

„

1` α2

ˆ

u2
t ´ u

2
r `

sin2puq

r2

˙

,

and replacing (5.23), we get

K2 “´

ż 8

0

ψ1fpuq
u2
r

2
´ α2

ż 8

0

ψ
sinp2uq

r2
u3
r ` 2α2

ż 8

0

ψ
sin2puq

r3
u2
r ` 2

ż 8

0

ψ

r
u2
r

´

ż 8

0

ψ

r2
sinp2uqur

„

1` α2

ˆ

u2
t ´ u

2
r `

sin2puq

r2

˙

“´

ż 8

0

ψ1fpuq
u2
r

2
` 2α2

ż 8

0

ψ
sin2puq

r3
u2
r ` 2

ż 8

0

ψ

r
u2
r

´

ż 8

0

ψ

r2
sinp2uqur

„

1` α2

ˆ

u2
t `

sin2puq

r2

˙

.

(5.25)
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Using (5.25) and (5.23) in (5.24), one can see

d

dt
KSptq “ ´

1

2

ż 8

0

ψ1
ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2α2

ż 8

0

ψ
sin2puq

r3
pu2

t ` u
2
rq

` 2

ż 8

0

ψ

r
u2
r ´

ż 8

0

ψ

r2
psin2

puqqr ´
α2

2

ż 8

0

ψ

r4
psin4

puqqr.

Finally, integrating by parts and regrouping terms, we get

d

dt
KSptq “ ´

1

2

ż 8

0

ψ1
ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2α2

ż 8

0

ψ

r

sin2puq

r2
pu2

t ` u
2
rq ` 2

ż 8

0

ψ

r
u2
r

`

ż 8

0

ψ1

r2
sin2

puq

ˆ

1`
α2

2

sin2puq

r2

˙

´ 2

ż 8

0

ψ

r3
sin2

puq

ˆ

1` α2 sin2puq

r2

˙

“´
1

2

ż 8

0

ψ1

r2
r2u2

t ´
1

2

ż 8

0

pprqr2u2
r ´

α2

2

ż 8

0

pprq sin2
puqpu2

t ` u
2
rq

`

ż 8

0

ˆ

ψ1

r2
´ 2

ψ

r3

˙

sin2
puq `

α2

2

ż 8

0

pprq
sin4puq

r2
,

and we conclude. �

Similarly, we have the following result for the correction term PSptq (5.21).

Lemma 5.5. Let t P R, φ be a smooth weight function and PSptq as in (5.21). Then, if
u P ES,φ0 , we have

d

dt
PSptq “ α2

ż 8

0

φ

r2

`

sinp2uqu` 2 sin2
puq

˘

pu2
t ´ u

2
rq `

ż 8

0

φpu2
t ´ u

2
rq

` α2

ż 8

0

ˆ

rφ2 ´ 4φ1 ` 6
φ

r

˙

sin2puq

r3
u2
´ α2

ż 8

0

φ

r

u sinp2uq sin2puq

r3

` α2

ż 8

0

ˆ

φ1 ´ 2
φ

r

˙

sinp2uq

r2
uru

2
´

ż 8

0

„ˆ

φ

r

˙

r

´
1

2
φ2


u2
´

ż 8

0

φ
sinp2uq

r2
u.

(5.26)

Proof. Derivating the functional (5.21) with respect to time, we have

d

dt
PSptq “

ż 8

0

φ pfpuqqt utu`

ż 8

0

φfpuqputtu` u
2
t q

“ 2α2

ż 8

0

φ
sinp2uq

r2
u2
tu `

ż 8

0

φfpuqu2
t `

ż 8

0

φufpuquttu

:“P1 ` P2 ` P3.

(5.27)

Using (5.2) in P3, we get

P3 “

ż 8

0

φu

"

fpuqurr `
2

r
ur ´

sinp2uq

r2

„

1` α2

ˆ

u2
t ´ u

2
r `

sin2puq

r2

˙*

.
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Integrating by parts the first term on the RHS, we get

ż 8

0

φfpuquurr “´

ż 8

0

φ1fpuquur ´

ż 8

0

φpfpuqqruur ´

ż 8

0

φfpuqu2
r

“
1

2

ż 8

0

pφ2fpuq ` φ1pfpuqqrqu
2
´

ż 8

0

φpfpuqqruur ´

ż 8

0

φfpuqu2
r.

Having in mind derivatives in (5.23), we get

ż 8

0

φfpuquurr “
1

2

ż 8

0

φ2fpuqu2
` α2

ż 8

0

φ1
ˆ

sinp2uqur
r2

´ 2
sin2puq

r3

˙

u2

´ 2α2

ż 8

0

φ

ˆ

sinp2uqur
r2

´ 2
sin2puq

r3

˙

uur ´

ż 8

0

φfpuqu2
r

“
1

2

ż 8

0

φ2fpuqu2
` α2

ż 8

0

φ1
sinp2uq

r2
uru

2
´ 2α2

ż 8

0

φ1
sin2puq

r3
u2

´ 2α2

ż 8

0

φ
sinp2uq

r2
uu2

r ` 4α2

ż 8

0

φ
sin2puq

r3
uur ´

ż 8

0

φfpuqu2
r.

(5.28)

Now, integrating by parts the second term in the above line in the RHS, we obtain

4α2

ż 8

0

φ
sin2puq

r3
uur “´ 2α2

ż 8

0

ˆ

φ
sin2puq

r3

˙

r

u2

“´ 2α2

ż 8

0

φ1
sin2puq

r3
u2
´ 2α2

ż 8

0

φ

ˆ

sinp2uqur
r3

´ 3
sin2puq

r4

˙

u2.

(5.29)
Then, substituting into (5.28), we get

P3 “
1

2

ż 8

0

φ2fpuqu2
` α2

ż 8

0

ˆ

´4φ1 ` 6
φ

r

˙

sin2puq

r3
u2
´ α2

ż 8

0

φ

r

u sinp2uq sin2puq

r3

` α2

ż 8

0

ˆ

φ1 ´ 2
φ

r

˙

sinp2uq

r2
uru

2
´

ż 8

0

φ

ˆ

α2 sinp2uq

r2
u` fpuq

˙

u2
r

´

ż 8

0

ˆ

φ

r

˙

r

u2
´

ż 8

0

φ
sinp2uq

r2
u´ α2

ż 8

0

φ
sinp2uq

r2
uu2

t .

Replacing (5.19) and regrouping again, we obtain

P3 “ α2

ż 8

0

ˆ

rφ2 ´ 4φ1 ` 6
φ

r

˙

sin2puq

r3
u2
´ α2

ż 8

0

φ

r

u sinp2uq sin2puq

r3

` α2

ż 8

0

ˆ

φ1 ´ 2
φ

r

˙

sinp2uq

r2
uru

2
´ α2

ż 8

0

φ

r2

`

sinp2uqu` 2 sin2
puq

˘

u2
r

´

ż 8

0

ˆ

φ

r

˙

r

u2
`

1

2

ż 8

0

φ2u2
´

ż 8

0

φ
sinp2uq

r2
u´

ż 8

0

φu2
r ´ α

2

ż 8

0

φ
sinp2uq

r2
uu2

t .

(5.30)
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Collecting P3 in (5.30), (5.27), and using (5.19), we get

d

dt
PSptq “ 2α2

ż 8

0

φ
sinp2uq

r2
u2
tu`

ż 8

0

φfpuqu2
t ` α

2

ż 8

0

ˆ

rφ2 ´ 4φ1 ` 6
φ

r

˙

sin2puq

r3
u2

´ α2

ż 8

0

φ

r

u sinp2uq sin2puq

r3

` α2

ż 8

0

ˆ

φ1 ´ 2
φ

r

˙

sinp2uq

r2
uru

2
´ α2

ż 8

0

φ

r2

`

sinp2uqu` 2 sin2
puq

˘

u2
r

´

ż 8

0

ˆ

φ

r

˙

r

u2
`

1

2

ż 8

0

φ2u2
´

ż 8

0

φ
sinp2uq

r2
u´

ż 8

0

φu2
r ´ α

2

ż 8

0

φ
sinp2uq

r2
uu2

t .

Finally, regrouping terms,

d

dt
PSptq “ α2

ż 8

0

φ

r2

`

sinp2uqu` 2 sin2
puq

˘

pu2
t ´ u

2
rq `

ż 8

0

φpu2
t ´ u

2
rq

` α2

ż 8

0

ˆ

rφ2 ´ 4φ1 ` 6
φ

r

˙

sin2puq

r3
u2
´ α2

ż 8

0

φ

r

u sinp2uq sin2puq

r3

` α2

ż 8

0

ˆ

φ1 ´ 2
φ

r

˙

sinp2uq

r2
uru

2
´

ż 8

0

„ˆ

φ

r

˙

r

´
1

2
φ2


u2
´

ż 8

0

φ
sinp2uq

r2
u.

We conclude the proof. �

5.2.2 Virial identities for the Adkins-Nappi Model

Let ρ “ ρpt, rq a smooth, weight function, to be chosen later. Similarly to the previous
section, for the Adkins-Nappi equation we introduce a suitable functional, as a weighted
generalization of the energy (5.5), and given by

IANptq “
ż 8

0

ρr2

«

u2
t ` u

2
r ` 2

sin2puq

r2
`
pu´ sinpuq cospuqq2

r4

ff

, for each t P R. (5.31)

Recalling Remark 5.1, if ρ is a bounded function, the functional IANptq is well-defined for
pu, utq P p 9H5{3 X 9H1 ˆ L2qpR3q. The following result describes the time variation of (5.31).

Lemma 5.6 (Energy local variations: Adkins-Nappi Model). For any t P R, one has

d

dt
IANptq “

ż 8

0

ρtr
2

«

u2
t ` u

2
r ` 2

sin2puq

r2
`
pu´ sinpuq cospuqq2

r4

ff

´

ż 8

0

ρr2r
2utur. (5.32)

Proof. Derivating the functional (5.31) with respect to time and using basic trigonometric
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identities, we obtain

d

dt
IANptq “

ż 8

0

ρtr
2

«

u2
t ` u

2
r ` 2

sin2puq

r2
`
pu´ sinpuq cospuqq2

r4

ff

` 2

ż 8

0

ρr2ururt

`

ż 8

0

2ρutr
2

«

utt `
sinp2uq

r2
`
pu´ sinpuq cospuqq

`

1` sin2puq ´ cos2 u
˘

r4

ff

looooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooon

J1

.

(5.33)
Now, using the equation (5.3) and integrating by parts in J1, we have

J1 “

ż 8

0

2ρutr
2

„

urr `
2

r
ur



“

ż 8

0

4ρrutur ´

ż 8

0

2

ˆ

ρrr
2ut ` ρ2rut ` ρr

2utr

˙

ur.

Finally, substituting J1 in (5.33), we get

d

dt
IANptq “

ż 8

0

ρtr
2

«

u2
t ` u

2
r ` 2

sin2puq

r2
`
pu´ sinpuq cospuqq2

r4

ff

´ 2

ż 8

0

ρrr
2utur. (5.34)

This ends the proof of the lemma. �

Remark 5.4. Similarly to Remark 5.3, using the change of variables ρ “ φ{r2, the term r2

in IANptq is avoided, and therefore recovering the functional EAN,φrus (5.12). Furthermore,
by Lemma 5.6 we have the following identity for the time evolution of EAN,φ:

d

dt
EAN,φptq “

ż 8

0

φt

«

u2
t ` u

2
r ` 2

sin2puq

r2
`
pu´ sinpuq cospuqq2

r4

ff

´ 2

ż 8

0

ˆ

φr ´ 2
φ

r

˙

utur.

(5.35)

This relation will be useful in the proof of Theorem 5.2.

Now, let ψ and φ smooth weight functions of r, which will be chosen later. We define the
functionalMANptq associated with a sort of momentum, given by

MANptq “

ż 8

0

ψutur. (5.36)

and the functional RANptq, which is the term that corrects the bad sign of the variation on
the functionalMANptq, given by

RANptq “

ż 8

0

φutu. (5.37)

The following results show the time variation of these functionals, which will be used in the
proof of Theorem 5.2.
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Lemma 5.7. Let t P R, ψ be a smooth weight function and MANptq as in (5.36). Then, if
u P EAN,ψ0 , we have

d

dt
MANptq “ ´

1

2

ż 8

0

ψ1u2
t ´

ż 8

0

ˆ

ψ1

2
´

2ψ

r

˙

u2
r ´

1

2

ż 8

0

ˆ

2
ψ

r
´ ψ1

˙

sin2puq

r2

´
1

2

ż 8

0

ˆ

4
ψ

r
´ ψ1

˙

pu´ sinpuq cospuqq2

r4
.

(5.38)

Proof. Just derivating the functional (5.36) with respect to time, we obtain

d

dt
MANptq “

ż 8

0

ψputtur ` uturtq

“ ´
1

2

ż 8

0

ψ1u2
t `

ż 8

0

ψuttur :“M1 `M2.

For M2, using (5.3) and integrating by parts, we have

M2 “

ż 8

0

ψur

ˆ

urr `
2

r
ur

˙

´

ż 8

0

ψur

ˆ

sinp2uq

r2
`
pu´ sinpuq cospuqq p1´ cosp2uqq

r4

˙

“´

ż 8

0

ˆ

ψ1

2
´

2ψ

r

˙

u2
r ´

ż 8

0

ψur

ˆ

sinp2uq

r2
`
pu´ sinpuq cospuqq p1´ cosp2uqq

r4

˙

“ M21 `M22.

With respect to M22, note that rewriting it and integrating by parts, we obtain

M22 “´
1

2

ż 8

0

ψ

r2
psin2

puqqr ´
1

2

ż 8

0

ψ

r4

`

pu´ sinpuq cospuqq2
˘

r

“´
1

2

ż 8

0

ˆ

2
ψ

r
´ ψ1

˙

sin2puq

r2
´

1

2

ż 8

0

ˆ

4
ψ

r
´ ψ1

˙

pu´ sinpuq cospuqq2

r4
.

Finally, collecting M1, M21, and M22, we get

d

dt
MANptq “ ´

1

2

ż 8

0

ψ1u2
t ´

ż 8

0

ˆ

ψ1

2
´

2ψ

r

˙

u2
r ´

1

2

ż 8

0

ˆ

2
ψ

r
´ ψ1

˙

sin2puq

r2

´
1

2

ż 8

0

ˆ

4
ψ

r
´ ψ1

˙

pu´ sinpuq cospuqq2

r4
.

This ends the proof of this lemma. �

Lemma 5.8. Let t P R, φ be a smooth weight function and RANptq as in (5.37). Then, if
u P EAN,φ{r0 , we have

d

dt
RANptq “

ż 8

0

φu2
t ´

ż 8

0

„

φ1r ´ φ´
r2φrr

2



u2

r2
´

ż 8

0

φu2
r ´

ż 8

0

φ

r2
u sinp2uq

´

ż 8

0

φ

r4
u pu´ sinpuq cospuqq p1´ cosp2uqq.

(5.39)
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Proof. Just derivating the functional (5.37) with respect to time, we obtain
d

dt
RANptq “

ż 8

0

φu2
t `

ż 8

0

φuttu :“ R1 `R2. (5.40)

For R2, using (5.3) and integrating by parts, we get

R2 “´

ż 8

0

pφ1u` φurqur ´

ż 8

0

ˆ

φ

r

˙

r

u2

´

ż 8

0

φu

ˆ

sinp2uq

r2
`
pu´ sinpuq cospuqq p1´ cosp2uqq

r4

˙

“

ż 8

0

φrr
2
u2
´

ż 8

0

φu2
r ´

ż 8

0

ˆ

φ

r

˙

r

u2

´

ż 8

0

φu

ˆ

sinp2uq

r2
`
pu´ sinpuq cospuqq p1´ cosp2uqq

r4

˙

.

Regrouping the terms, we obtain

R2 “

ż 8

0

ˆ

φrrr
2

2
´ rφ1 ` φ

˙

u2

r2
´

ż 8

0

φu2
r

´

ż 8

0

ˆ

φ

r2
u sinp2uq `

φ

r4
pu´ sinpuq cospuqq p1´ cosp2uqqu

˙

.

(5.41)

Then, substituting (5.41) in (5.40), we obtain

d

dt
RANptq “

ż 8

0

φu2
t ´

ż 8

0

„

φ1r ´ φ´
r2φrr

2



u2

r2
´

ż 8

0

φu2
r

´

ż 8

0

φ

r2
u sinp2uq ´

ż 8

0

φ

r4
u pu´ sinpuq cospuqq p1´ cosp2uqq.

This concludes the proof of the lemma. �

5.3 Decay in exterior light cones for the Skyrme and
Adkins-Nappi models

This section deals with the proof of Theorems 5.1 for the Skyrme and Adkins-Nappi equations.
In what follows, fix σ P R such that |σ| ą 1. Recalling the identity (5.17) and using the

weight function ϕ “ ϕ

ˆ

r ` σt

L

˙

, we get

d

dt
ISptq “

σ

L

ż 8

0

ϕ1r2

„ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2

sin2puq

r2
`
α2 sin4puq

r4



´
1

L

ż 8

0

ϕ1r2

ˆ

1`
2α2 sin2puq

r2

˙

2utur.

(5.42)

Furthermore, from Lemma 5.6, we have:

d

dt
IANptq “

σ

L

ż 8

0

ϕ1r2

«

u2
t ` u

2
r ` 2

sin2puq

r2
`
pu´ sinpuq cospuqq2

r4

ff

´
1

L

ż 8

0

ϕ12r2utur.

(5.43)
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Now, we are ready to prove a first virial estimate.

Lemma 5.9. Let L ą 0, σ “ ´p1` bq ă ´1, and ρ “ ϕ “ tanh

ˆ

r ` σt

L

˙

. Then

1. for the Skyrme equation, we get

d

dt
ISptq ÀL,b ´

ż 8

0

ϕ1r2

„ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2

sin2puq

r2
`
α2 sin4puq

r4



.

(5.44)

2. for the Sgkins-Nappi equation, we get

d

dt
IANptq ÀL,b ´

ż 8

0

ρ1r2

«

u2
t ` u

2
r ` 2

sin2puq

r2
`
pu´ sinpuq cospuqq2

r4

ff

. (5.45)

Proof. Firstly we prove (5.44). Focusing on the last term in RHS of (5.42), note that, if
ϕ1 ą 0, then using a Cauchy-Schwarz inequality, we have

ˇ

ˇ

ˇ

ˇ

ż 8

0

ϕ1r2

ˆ

1`
2α2 sin2puq

r2

˙

2utur

ˇ

ˇ

ˇ

ˇ

ď

ż 8

0

ϕ1r2

ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq.

Therefore, if b ą 0, σ “ ´p1` bq ă ´1, and ϕ “ tanh, we have from (5.42)

d

dt
ISptq ď

σ

L

ż 8

0

ϕ1r2

„ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2

sin2puq

r2
`
α2 sin4puq

r4



`
1

L

ż 8

0

ϕ1r2

ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq.

Consequently, we obtain (5.44)

d

dt
ISptq ÀL,b ´

ż 8

0

|ϕ1|r2

„ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2

sin2puq

r2
`
α2 sin4puq

r4



. (5.46)

The proof of (5.45) proceeds in a similar way. Only note that the last term in (5.43) holds
the following inequality

ˇ

ˇ

ˇ

ˇ

ż 8

0

ρ1r22utur

ˇ

ˇ

ˇ

ˇ

ď

ż 8

0

ρ1r2
pu2

t ` u
2
rq, for ρ

1
ą 0,

the rest of the proof follows the same lines as in the Skyrme case and hence, for the sake of
simplicity, we do not show it here.

Finally, we can observe that integrating in time on (5.44) and (5.45), we have proved (5.9)
in Theorem 5.1. �
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5.3.1 Proof of Theorem 5.1: Skyrme and Adkins-Nappi equations

Firstly, we focus on the Skyrme case. It only remains to prove (5.8). We must to show
decay in the right hand side region, namely pp1 ` bqt,`8q, b ą 0. Now we choose ϕprq “
1
2
p1` tanhprqq, σ “ ´p1 ` bq, σ̃ “ ´p1 ` b{2q with b ą 0. Consider the modified energy

functional, for t P r2, t0s:

IS,t0ptq :“

1

2

ż 8

0

ϕ

ˆ

r ` σt0 ´ σ̃pt0 ´ tq

L

˙

r2

„ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2

sin2puq

r2
`
α2 sin4puq

r4



.

Note that σ ă σ̃ ă 0. From Lemma 5.3 and proceeding exactly as in (5.44), we have

d

dt
IS,t0ptq Àb,L

´

ż 8

0

sech2

ˆ

r ` σt0 ´ σ̃pt0 ´ tq

L

˙

r2

„ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2

sin2puq

r2
`
α2 sin4puq

r4



ď 0,

which means that the new functional IS,t0 is decreasing in r2, t0s. Therefore, we have

ż t0

2

d

dt
IS,t0ptqdt “ IS,t0pt0q ´ IS,t0p2q ď 0 ùñ IS,t0pt0q ď IS,t0p2q.

On the other hand, since limxÑ´8 ϕpxq “ 0, we have

lim sup
tÑ8

ż 8

0

ϕ

ˆ

r ´ βt´ γ

L

˙

r2

„ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2

sin2puq

r2
`
α2 sin4puq

r4



pν, rq “ 0,

for β, γ, ν ą 0 fixed. This yields

0 ď

ż 8

0

ϕ

ˆ

r ´ p1` bqt0
L

˙

r2

„ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2

sin2puq

r2
`
α2 sin4puq

r4



pt0, rq

ď

ż 8

0

ϕ

˜

r ´ b
2
t0 ´ p2` bq

L

¸

r2

„ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2

sin2puq

r2
`
α2 sin4puq

r4



p2, rq,

which implies,

lim sup
tÑ8

ż 8

0

ϕ

ˆ

r ´ p1` bqt

L

˙

r2

ˆˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq ` 2

sin2puq

r2
`
α2 sin4puq

r4

˙

pt, rqdr “ 0.
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This means that the energy over Rptq (see (5.7)) converges to zero, implying (5.8) and then
we conclude the Skyrme case.

For the Adkins-Nappi case, the proof is analogous but this time considering the modified
energy functional

IAN,t0ptq :“

ż 8

0

ρ

ˆ

r ` σt0 ´ σ̃pt0 ´ tq

L

˙

r2

«

u2
t ` u

2
r ` 2

sin2puq

r2
`
pu´ sinpuq cospuqq2

r4

ff

,

and repeating the same steps as in the Skyrme case. This concludes the proof of Theorem
5.1.

5.4 Decay of weighted energies
Firstly, we study the growth rate of the modified energies introduced in (5.11) and (5.12).

5.4.1 Growth rate for the modified energy in the Skyrme and Adkins-
Nappi equations

In this section we study the growth rate for the power type weighted energy of the Skyrme
and Adkins-Nappi equations

Proposition 5.10. Let u a global solution of (5.2) (or (5.3)) such that u P
n
Ş

i“2

EX,r
i

0 , for

X “ S or X “ AN . Then the corresponding weighted energy satisfies

EX,rnrusptq “ Optn´2
q, (5.47)

where EX,rnrusptq is given in (5.11) and (5.12), respectively .

Proof. Firstly, we consider X “ S. We note that for ϕ “ φ{r2, we get

ISptq “ ES,φrusptq. (5.48)

Then, using (5.35) with φ “ rn, one can see

d

dt
ISptq “ ´2KSptq,

where KSptq is given by (5.20) and ψ “ φ1 ´ 2φ
r
“ pn´ 2qrn´1. Now using (5.48), we get

ˇ

ˇ

ˇ

ˇ

d

dt
ES,rnrusptq

ˇ

ˇ

ˇ

ˇ

À ES,rn´1rusptq, (5.49)

and for n “ 3, we obtain
ˇ

ˇ

ˇ

ˇ

d

dt
ES,r3rusptq

ˇ

ˇ

ˇ

ˇ

ÀES,r2rusptq “ ESrusp0q,

|ES,r3rusptq| ÀESrusp0qt` |ES,r3rusp0q|.

(5.50)
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Similarly, for n “ 4 and using the last inequality, we get
ˇ

ˇ

ˇ

ˇ

d

dt
ES,r4rusptq

ˇ

ˇ

ˇ

ˇ

ÀES,r3rusptq À ESrusp0qt` |ES,r3rusp0q|. (5.51)

Now, integrating with respect of time, we have

|ES,r4rusptq| ÀESrusp0q
t2

2
` |ES,r3rusp0q|t` |ES,r4rusp0q|. (5.52)

Repeating this procedure, we conclude

|ES,rnrusptq| ÀESrusp0qt
n´2

`

n´3
ÿ

j“0

tj|ES,rn´j rusp0q|. (5.53)

This ends the proof for the case X “ S. Analogously, following the same ideas, it can be
proved for the case X “ AN case. This completes the proof. �

5.4.2 Decay to zero for modified Energies: Proof of the Theorem
5.2

In the spirit of [2, 3, 13], we consider a suitable linear combination of virials KSptq and PSptq
(see (5.20) and (5.21)), and MANptq RANptq (see (5.36) and (5.37)), for the Skyrme and
Adkins-Nappi models. Let

HSptq “ KSptq ` γSPSptq, (5.54)

and,
HANptq “MANptq ` γANRANptq, (5.55)

be new virials, where γS and γAN will be chosen later. These new virials introduce u2

terms, which allow us to simplify the problem considering Taylor expansions for the involved
trigonometric functions.

Decay to zero for modified Energy: Proof of the Theorem 5.2 for the Skyrme
model

Lemma 5.11. Let u be a global solution of (5.2) such that }u}L8 ď δ, u P ES,ψ0 , and ψ “ rφ
(where ψ and φ are the weight functions presented in (5.20) and (5.21)). Then, HSptq in
(5.54) satisfies the following identity

d

dt
HSptq “ ´

1

2

ż 8

0

ˆ

ψ1 ´ 2γS
ψ

r

˙

u2
t ´

1

2

ż 8

0

ˆ

ψ1 ` p2γS ´ 4q
ψ

r

˙

u2
r

´

ż 8

0

ˆ

p2´ γSq
ψ

r
` p2γS ´ 1qψ1 ´

γS
2
rψ2

˙

u2

r2

´ α2

ż 8

0

ˆ

ψ1 ´ p2` 4γSq
ψ

r

˙

u2

r2
pu2

t ` u
2
rq

´ α2

ż 8

0

ˆ

´
1

2
p1´ 6γSqψ

1
` p2´ 4γSq

ψ

r
´
γS
2
rψ2

˙

u4

r4
`Heptq,
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where

Heptq

“
1

9
α2

ż 8

0

ˆ

´γSrψ
2
` p´3` 6γSqψ

1
` p6γS ` 12q

ψ

r

˙ˆ

u6

r4
`
Opu8q

r4

˙

´
1

3

ż 8

0

ˆ

ψ1 ´ 2p1` 2γSq
ψ

r

˙

u4

r2
`

2

45

ż 8

0

ˆ

ψ1 ´ 2 p1` γSq
ψ

r

˙ˆ

u6

r2
`
Opu8q

r2

˙

´ α2

ż 8

0

„

1

3

ˆ

´ψ1 ` 2p1` 6γSq
ψ

r

˙

u2

`
2

45

ˆ

ψ1 ´ 2p1` 4γSq
ψ

r

˙

`

u4
`Opu6

q
˘



u2

r2
pu2

t ` u
2
rq.

Proof. Collecting (5.26) and (5.22) and regrouping terms, we get

d

dt
HSptq

“ ´
1

2

ż 8

0

pψ1 ´ 2γSφqu
2
t ´

1

2

ż 8

0

ˆ

ψ1 ` 2γSφ´ 4
ψ

r

˙

u2
r

`

ż 8

0

ˆ

ψ1

r2
´ 2

ψ

r3

˙

sin2
puq ´ γS

ż 8

0

φ

r2
u sinp2uq ´ γS

ż 8

0

ˆˆ

φ

r

˙

r

´
1

2
φ2
˙

u2

´ α2

ż 8

0

„

ψ1

r2
sin2

puq ´ 2
ψ

r3
sin2

puq ´ γS
φ

r2

`

sinp2uqu` 2 sin2
puq

˘



pu2
t ` u

2
rq

` γSα
2

ż 8

0

ˆ

φ2

r2
´ 4

φ1

r3
` 6

φ

r4

˙

sin2
puqu2

´ γSα
2

ż 8

0

φ

r4
u sinp2uq sin2

puq

`
α2

2

ż 8

0

ˆ

ψ1

r4
´ 4

ψ

r5

˙

sin4
puq ` γSα

2

ż 8

0

ˆ

φ1

r2
´ 2

φ

r3

˙

sinp2uquru
2.

Now, let δ ą 0 small enough such that }u}L8 ă δ (by Remark 5.2), we note

sin2
puq “u2

´
1

3
u4
`

2

45
u6
`Opu8

q,

u sinp2uq “2u2
´

4

3
u4
`

4

15
u6
`Opu8

q,

2 sin2
puq ` u sinp2uq “4u2

´ 2u4
`

16

45
u6
`Opu8

q,

u sin2
puq sinp2uq “2u4

´ 2u6
`Opu8

q,

sin4
puq “u4

´
2

3
u6
`Opu8

q.
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Then, we obtain

d

dt
HSptq

“ ´
1

2

ż 8

0

pψ1 ´ 2γSφqu
2
t ´

1

2

ż 8

0

ˆ

ψ1 ` 2γSφ´ 4
ψ

r

˙

u2
r ´ γS

ż 8

0

ˆˆ

φ

r

˙

r

´
1

2
φ2
˙

u2

`

ż 8

0

ˆ

ψ1

r2
´ 2

ψ

r3

˙„

u2
´

1

3
u4
`

2

45
u6
`Opu8

q



´ γS

ż 8

0

φ

r2

ˆ

2u2
´

4

3
u4
`

4

15
u6
`Opu8

q

˙

´ α2

ż 8

0

„ˆ

ψ1

r2
´ 2

ψ

r3

˙ˆ

u2
´

1

3
u4
`

2

45
u6
`Opu8

q

˙

´ γS
φ

r2

ˆ

4u2
´ 2u4

`
16

45
u6
`Opu8

q

˙

pu2
t ` u

2
rq

` γSα
2

ż 8

0

ˆ

φ2

r2
´ 4

φ1

r3
` 6

φ

r4

˙ˆ

u4
´

1

3
u6
`Opu8

q

˙

´ γSα
2

ż 8

0

φ

r4

`

2u4
´ 2u6

`Opu8
q
˘

`
α2

2

ż 8

0

ˆ

ψ1

r4
´ 4

ψ

r5

˙ˆ

u4
´

2

3
u6
`Opu8

q

˙

` γSα
2

ż 8

0

ˆ

φ1

r2
´ 2

φ

r3

˙

sinp2uquru
2.

We now consider the following decomposition

d

dt
HSptq “ H1 `H2 `H3 `H4 `H5, (5.56)

where
H1 “´

1

2

ż 8

0

pψ1 ´ 2γSφqu
2
t ´

1

2

ż 8

0

ˆ

ψ1 ` 2γSφ´ 4
ψ

r

˙

u2
r,

H2 “

ż 8

0

ˆ

ψ1

r2
´ 2

ψ

r3

˙„

u2
´

1

3
u4
`

2

45
u6
`Opu8

q



´ γS

ż 8

0

ˆˆ

φ

r

˙

r

´
1

2
φ2
˙

u2

´ γS

ż 8

0

φ

r2

ˆ

2u2
´

4

3
u4
`

4

15
u6
`Opu8

q

˙

,

H3 “´ α
2

ż 8

0

„ˆ

ψ1

r2
´ 2

ψ

r3

˙ˆ

u2
´

1

3
u4
`

2

45
u6
`Opu8

q

˙

´ γS
φ

r2

ˆ

4u2
´ 2u4

`
16

45
u6
`Opu8

q

˙

pu2
t ` u

2
rq,

H4 “ γSα
2

ż 8

0

ˆ

φ2

r2
´ 4

φ1

r3
` 6

φ

r4

˙ˆ

u4
´

1

3
u6
`Opu8

q

˙

´ γSα
2

ż 8

0

φ

r4

`

2u4
´ 2u6

`Opu8
q
˘

`
α2

2

ż 8

0

ˆ

ψ1

r4
´ 4

ψ

r5

˙ˆ

u4
´

2

3
u6
`Opu8

q

˙

,

and
H5 “ γSα

2

ż 8

0

ˆ

φ1

r2
´ 2

φ

r3

˙

sinp2uquru
2. (5.57)

Regrouping terms of the same order, we get

H2 “´

ż 8

0

ˆ

γS

ˆ

φ

r

˙

r

´
γS
2
φ2 ´

ψ1

r2
` 2

ψ

r3
` 2γS

φ

r2

˙

u2
´

ż 8

0

ˆ

ψ1

3r2
´

2

3

ψ

r3
´ γS

4

3

φ

r2

˙

u4

`

ż 8

0

ˆ

2

45

ψ1

r2
´

4

45

ψ

r3
´ γS

4

15

φ

r2

˙

`

u6
`Opu8

q
˘

.
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Similarly, for H3 we get

H3 “´ α
2

ż 8

0

ˆ

ψ1

r2
´ 2

ψ

r3
´ 4γS

φ

r2

˙

u2
pu2

t ` u
2
rq

´ α2

ż 8

0

„ˆ

2

3

ψ

r3
´

1

3

ψ1

r2
` 2γS

φ

r2

˙

u4

`
1

45

ˆ

2
ψ1

r2
´ 4

ψ

r3
´ 16γS

φ

r2

˙

`

u6
`Opu8

q
˘



pu2
t ` u

2
rq.

For H4, we have

H4 “ α2

ż 8

0

ˆ

1

2

ψ1

r4
´ 2

ψ

r5
´ 2γS

φ

r4
` γS

φ2

r2
´ 4γS

φ1

r3
` 6γS

φ

r4

˙

u4

` α2

ż 8

0

ˆ

´
1

3
γS
φ2

r2
`

4

3
γS
φ1

r3
´ 2γS

φ

r4
` 2γS

φ

r4
´

1

3

ψ1

r4
`

4

3

ψ

r5

˙

`

u6
`Opu8

q
˘

.

For H5, first we note

sinp2uquru
2
“

1

4

d

dr
p2u sinp2uq ´ 2u2 cosp2uq ` cosp2uq ´ 1q.

Now, replacing in H5 and integrating by parts, we get

H5 “´
γS
4
α2

ż 8

0

ˆ

φ1

r2
´ 2

φ

r3

˙

r

p2u sinp2uq ´ 2u2 cosp2uq ` cosp2uq ´ 1q,

using its Taylor expansion and regrouping the terms, we have

H5 “´
γS
4
α2

ż 8

0

ˆ

φ2

r2
´ 4

φ1

r3
` 6

φ

r4

˙ˆ

2u4
´

8

9
u6
`Opu8

q

˙

“ α2

ż 8

0

ˆ

´
γS
2

φ2

r2
` 2γS

φ1

r3
´ 3γS

φ

r4

˙

u4

` α2

ż 8

0

ˆ

2

9
γS
φ2

r2
´

8

9
γS
φ1

r3
`

4

3
γS
φ

r4

˙

`

u6
`Opu8

q
˘

.

Collecting the last equation and H4, we obtain

H4 `H5 “ α2

ż 8

0

ˆ

1

2

ψ1

r4
´ 2

ψ

r5
` γS

φ

r4
´ 2γS

φ1

r3
`
γS
2

φ2

r2

˙

u4

` α2

ż 8

0

ˆ

´
1

9
γS
φ2

r2
`

4

9
γS
φ1

r3
´

1

3

ψ1

r4
`

4

3

ψ

r5
`

4

3
γS
φ

r4

˙

`

u6
`Opu8

q
˘

.

(5.58)

Having in mind that ψ “ rφ, we have

φ1 “
ψ1

r
´
ψ

r2
and φ2 “

ψ2

r
´ 2

ψ1

r2
` 2

ψ

r3
.

Now, rewriting Hi, for i “ 1, . . . , 5, in terms of ψ and its derivatives, we get

H1 “´
1

2

ż 8

0

ˆ

ψ1 ´ 2γS
ψ

r

˙

u2
t ´

1

2

ż 8

0

ˆ

ψ1 ` p2γS ´ 4q
ψ

r

˙

u2
r, (5.59)
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H2 “´

ż 8

0

ˆ

p2´ γSq
ψ

r3
` p2γS ´ 1q

ψ1

r2
´
γS
2

ψ2

r

˙

u2
´

ż 8

0

ˆ

ψ1

3r2
´

2

3
p1` 2γSq

ψ

r3

˙

u4

`

ż 8

0

ˆ

2

45

ψ1

r2
´

4

45
p1` γSq

ψ

r3

˙

`

u6
`Opu8

q
˘

,

(5.60)

H3 “´ α
2

ż 8

0

ˆ

ψ1

r2
´ p2` 4γSq

ψ

r3

˙

u2
pu2

t ` u
2
rq

´ α2

ż 8

0

„ˆ

´
1

3

ψ1

r2
`

2

3
p1` 6γSq

ψ

r3

˙

u4

`

ˆ

2

45

ψ1

r2
´

4

45
p1` 4γSq

ψ

r3

˙

`

u6
`Opu8

q
˘



pu2
t ` u

2
rq,

(5.61)

and

H4 `H5 “ α2

ż 8

0

ˆ

1

2
p1´ 6γSq

ψ1

r4
´ p2´ 4γSq

ψ

r5
`
γS
2

ψ2

r3

˙

u4

` α2

ż 8

0

ˆ

´
1

9
γS
ψ2

r3
´

ˆ

1

3
´

6

9
γS

˙

ψ1

r4
`

ˆ

6

9
γS `

4

3

˙

ψ

r5

˙

`

u6
`Opu8

q
˘

.

(5.62)

Finally, collecting (5.59), (5.60), (5.61), (5.62), and regrouping the terms of the same
order, we obtain

d

dt
HSptq “ ´

1

2

ż 8

0

ˆ

ψ1 ´ 2γS
ψ

r

˙

u2
t ´

1

2

ż 8

0

ˆ

ψ1 ` p2γS ´ 4q
ψ

r

˙

u2
r

´

ż 8

0

ˆ

p2´ γSq
ψ

r
` p2γS ´ 1qψ1 ´

γS
2
rψ2

˙

u2

r2

´ α2

ż 8

0

ˆ

ψ1 ´ p2` 4γSq
ψ

r

˙

u2

r2
pu2

t ` u
2
rq

´ α2

ż 8

0

ˆ

´
1

2
p1´ 6γSqψ

1
` p2´ 4γSq

ψ

r
´
γS
2
rψ2

˙

u4

r4
`Heptq,

(5.63)

where

Heptq “

1

9
α2

ż 8

0

ˆ

´γSrψ
2
` p´3` 6γSqψ

1
` p6γS ` 12q

ψ

r

˙ˆ

u6

r4
`
Opu8q

r4

˙

´
1

3

ż 8

0

ˆ

ψ1 ´ 2p1` 2γSq
ψ

r

˙

u4

r2
`

2

45

ż 8

0

ˆ

ψ1 ´ 2 p1` γSq
ψ

r

˙ˆ

u6

r2
`
Opu8q

r2

˙

´ α2

ż 8

0

„

1

3

ˆ

´ψ1 ` 2p1` 6γSq
ψ

r

˙

u2

`
2

45

ˆ

ψ1 ´ 2p1` 4γSq
ψ

r

˙

`

u4
`Opu6

q
˘



u2

r2
pu2

t ` u
2
rq.

(5.64)
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This ends the proof. �

Under the hypothesis of Lemma 5.11 the functionals KSptq and PSptq (see (5.20)–(5.21))
are well-defined. In fact, using the Cauchy-Schwarz inequality, we have

KSptq ď
ż 8

0

ψ

ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq,

and

PSptq ď
ż 8

0

rφ

ˆ

1`
2α2 sin2puq

r2

˙

pu2
t `

u2

r2
q.

Then, assuming ψ “ rφ, and u P ES,ψ0 , we get

|KSptq| ` |PSptq| ď ES,ψrusptq,

hence concluding that the functionals KSptq and PSptq in (5.20)-(5.21) are well-defined.

Corollary 5.12. Let n, γS P R and ψ “ rnχ. Then, under the hypothesis of Lemma 5.11,
the following identity holds:

HSptq “ ´
1

2

ż 8

0

`

pn´ 2γSqr
n´1χ` rnχ1

˘

u2
t ´

1

2

ż 8

0

`

pn` 2γS ´ 4qrn´1χ` rnχ1
˘

u2
r

´ α2

ż 8

0

`

pn´ 2´ 4γSqr
n´1χ` rnχ1

˘ u2

r2
pu2

t ` u
2
rq

´

ż 8

0

ˆ

p2´ γS ` np2γS ´ 1q ´
γS
2
npn´ 1qqrn´1χ

` pγSp2´ nq ´ 1qrnχ1 ´
γS
2
rn`1χ2

˙

u2

r2

´ α2

ż 8

0

ˆ

1

2
p4´ n´ 8γS ´ γSp´7` nqnqrn´1χ

` pγSp3´ nq ´
1

2
qrnχ1 ´

γS
2
rn`1χ2

˙

u4

r4
`Heptq

(5.65)
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and for He holds

Heptq “ ´ α
2

ż 8

0

„

1

3

`

p´n` 2p1` 6γSqqr
n´1χ` rnχ1

˘

u2



u2

r2
pu2

t ` u
2
rq

´
1

3

ż 8

0

`

pn´ 2p1` 2γSqqr
n´1χ` rnχ1

˘ u4

r2

`
2

45

ż 8

0

`

pn´ 2 p1` γSqqr
n´1χ` rnχ1

˘

ˆ

u6

r2
`
Opu8q

r2

˙

´
2

45
α2

ż 8

0

`

pn´ 2p1` 4γSqqr
n´1χ

` rnχ1
˘ `

u4
`Opu6

q
˘ u2

r2
pu2

t ` u
2
rq

`
1

9
α2

ż 8

0

`

rγSnp5´ nq ´ 3n` 6γS ` 12srn´1χ1

` pγSp6´ nq ´ 3qrnχ1 ´ γSr
n`1χ2

˘

ˆ

u6

r4
`
Opu8q

r4

˙

(5.66)

Proof. The proof follows directly replacing ψ “ rnχ in Lemma 5.11. �

Now, if we set χ “ 1, we obtain the following result:

Corollary 5.13. Let δ ą 0 small enough, ψ “ rn and u be a global solution of (5.2) such
that u P ES,r

n

0 and }u}L8 ă δ. Then, for γS “ ´1 and n ě 2, the functional HSptq (5.54)
satisfies

d

dt
HSptq “ ´

1

2

ż 8

0

rn´1

„

pn` 2qu2
t ` pn´ 6qu2

r ` pn´ 6qpn´ 1q
u2

r2

`2α2
pn` 2q

u2

r2
pu2

t ` u
2
rq ` α

2
pn´ 6qpn´ 2q

u4

r4



`Heptq,

(5.67)

with |Heptq| ď δ2ES,rn´1ptq.

Assuming δ ą 0 small enough, n ě 6 and applying Corollary 5.13, we obtain the following
virial inequality

´
d

dt
HSptq ě

1

4

ż 8

0

rn´1

„

pn` 2qu2
t ` pn´ 6qu2

r ` pn´ 6qpn´ 1q
u2

r2

`2α2
pn` 2q

u2

r2
pu2

t ` u
2
rq ` α

2
pn´ 6qpn´ 2q

u4

r4



ě 0.

(5.68)

In particular, as an application of (5.68), we obtain the following result for r6`ε and r7`ε

weighted energies.

Corollary 5.14. Let ε ą 0 and u be a global solution of (5.2) in the class ES,r
6`ε

0 X ES,r
7`ε

0 .
Then,
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1. Integrability in time:

ż 8

2

ż 8

0

pr6`ε
` r7`ε

q

„

u2
t ` u

2
r `

u2

r2
` 2α2u

2

r2
pu2

t ` u
2
rq ` α

2u
4

r4



drdt Àn 1. (5.69)

2. Sequential decay to zero: there exists sn, tn Ò 8 such that

lim
nÑ8

ES,r6`εrusptnq “ 0 and lim
nÑ8

ES,r7`εruspsnq “ 0. (5.70)

Decay to zero for modified Energy : Proof of the Theorem 5.2 for the Adkins-
Nappi model

Similarly to the Skyrme equation, we will need the following technical lemmas.

Lemma 5.15. Let u be a global solution of (5.3) such that u P EAN,ψ0 , and ψ “ rφ (where ψ
and φ are the weight functions presented in (5.36) and (5.37)). Then, the functional HANptq,
defined in (5.55), satisfies the following identity

d

dt
HANptq

“ ´
1

2

ż 8

0

ˆ

ψ1 ´ 2γAN
ψ

r

˙

u2
t ´

1

2

ż 8

0

ˆ

ψ1 ´ 2pγAN ´ 2q
ψ

r

˙

u2
r

´
1

2

ż 8

0

„

2p1´ γANq
ψ

r
´ ψ1 ` γANrψ

2



u2

r2
´

1

3

ż 8

0

„

´p4γAN ` 1q
ψ

r
`

1

2
ψ1


u4

r2

´
1

45

ż 8

0

„

2p1` 6γANq
ψ

r
´ ψ1

ˆ

u6

r2
`
Opu8q

r2

˙

´
1

9

ż 8

0

„

4p2` 3γANq
ψ

r
´ 2ψ1

ˆ

u6

r4
`
Opu8q

r4

˙

.

(5.71)

Proof. First, we note thatMANptq and RANptq are well defined in EAN,ψ0 . Collecting (5.38)
and (5.39), we get that HANptq is given by

d

dt
HANptq “ ´

1

2

ż 8

0

pψ1 ´ 2γANφqu
2
t ´

ż 8

0

ˆ

ψ1

2
´

2ψ

r

˙

u2
r ´ γAN

ż 8

0

φu2
r

´
1

2

ż 8

0

ˆ

2
ψ

r
´ ψ1

˙

sin2puq

r2
´

1

2

ż 8

0

ˆ

4
ψ

r
´ ψ1

˙

pu´ sinpuq cospuqq2

r4

´ γAN

ż 8

0

„

φ1r ´ φ´
r2φrr

2



u2

r2
´ γAN

ż 8

0

ˆ

φ

r2

˙

u sinp2uq

´ γAN

ż 8

0

ˆ

φ

r4

˙

u pu´ sinpuq cospuqq p1´ cosp2uqq.
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Now, let δ ą 0 small enough and using the Taylor approximation for }u}L8 ă δ, we have

u sinp2uq “ 2u2
´

4

3
u4
`

4

15
u6
`Opu8

q,

sin2
puq “ u2

´
1

3
u4
`

2

45
u6
`Opu8

q,

pu´ sinu cosuq2 “
4

9
u6
´

8

45
u8
`Opu10

q,

upu´ sinpuq cospuqqp1´ cosp2uqq “
4

3
u6
´

32

47
u8
`Opu10

q.

Replacing in d
dt
HANptq and regrouping the terms of same order, we get

d

dt
HANptq

“ ´
1

2

ż 8

0

pψ1 ´ 2γANφqu
2
t ´

ż 8

0

ˆ

ψ1

2
´

2ψ

r
` γANφ

˙

u2
r

´

ż 8

0

„

ψ

r
´

1

2
ψ1 ` γANφ

1r ` γANφ´ γAN
r2φrr

2



u2

r2

´

ż 8

0

„

´
1

3

ψ

r
`

1

6
ψ1 ´

4

3
γANφ



u4

r2
´

ż 8

0

„

2

45

ψ

r
´

1

45
ψ1 `

4

15
γANφ

ˆ

u6

r2
`
Opu8q

r2

˙

´

ż 8

0

„

8

9

ψ

r
´

2

9
ψ1 `

4

3
γANφ

ˆ

u6

r4
`
Opu8q

r4

˙

.

Since ψ “ rφ, we get

φ1 “
ψ1

r
´
ψ

r2
, φ2 “

ψ2

r
´ 2

ψ1

r2
` 2

ψ

r3
.

Then, rewriting HANptq in terms of ψ, we get

d

dt
HANptq

“ ´
1

2

ż 8

0

ˆ

ψ1 ´ 2γAN
ψ

r

˙

u2
t ´

1

2

ż 8

0

ˆ

ψ1 ´ 2pγAN ´ 2q
ψ

r

˙

u2
r

´
1

2

ż 8

0

„

2p1´ γANq
ψ

r
´ ψ1 ` γANrψ

2



u2

r2

´
1

3

ż 8

0

„

´p4γAN ` 1q
ψ

r
`

1

2
ψ1


u4

r2
´

1

45

ż 8

0

„

2p1` 6γANq
ψ

r
´ ψ1

ˆ

u6

r2
`
Opu8q

r2

˙

´
1

9

ż 8

0

„

4p2` 3γANq
ψ

r
´ 2ψ1

ˆ

u6

r4
`
Opu8q

r4

˙

.

This ends the proof. �

Similarly to Skyrme equation, using ψ “ rφ and the Cauchy-Schwarz inequality, we get

|MANptq| ` |RANptq| ď EAN,ψrusptq.

Then, the functionalsMANptq and RANptq are well-defined if u P EAN,ψ0 .
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Corollary 5.16. Under the hypothesis of Lemma 5.15 and assuming n, γAN P R and ψ “
rnχ, the following holds:

d

dt
HANptq “

´
1

2

ż 8

0

“

pn´ 2γANq r
n´1χ` rnχ1

‰

u2
t ´

1

2

ż 8

0

“

pn` 4´ 2γANq r
n´1χ` rnχ1

‰

u2
r

´
1

2

ż 8

0

“

pn´ 2qp1´ γANn´ γANqr
n´1χ` pγAN ´ 1qrnχ1 ` γANr

n`1χ2
‰ u2

r2

´
1

3

ż 8

0

„ˆ

´p4γAN ` 1q `
1

2
n

˙

rn´1χ` rnχ1


u4

r2

´
1

45

ż 8

0

“

p2p1` 6γANq ´ nq r
n´1χ´ rnχ1

‰

ˆ

u6

r2
`
Opu8q

r2

˙

´
1

9

ż 8

0

“

p4p2` 3γANq ´ 2nq rn´1χ´ 2rnχ1
‰

ˆ

u6

r4
`
Opu8q

r4

˙

.

Proof. The proof follows directly using (5.71) and replacing ψ “ rnχ. �

Now, considering that χ “ 1, we obtain the following result:

Corollary 5.17. Let ψ “ rn , and u be a global solution of (5.3) such that u P EAN,r
n

0 .
Then, for γAN “ pn ´ 2q{8 and n ě 2, the functional HAN , defined in (5.55), satisfies the
following identity

d

dt
HANptq ď ´

1

2

ż 8

0

rn´1

ˆ

3n` 2

4
u2
t `

3p6` nq

4
u2
r `

pn´ 2qpn2 ´ n´ 10q

8

u2

r2

`
n´ 2

45

ˆ

u6

r2
`
Opu8q

r2

˙

`
p10´ nq

9

ˆ

u6

r4
`
Opu8q

r4

˙˙

.

(5.72)

For n P
”

1`
?

41
2

, 10
ı

, by Corollary 5.17, we obtain the following inequality

´
d

dt
HANptq ě

1

4

ż 8

0

rn´1

ˆ

3n` 2

4
u2
t `

3p6` nq

4
u2
r `

pn´ 2qpn2 ´ n´ 10q

8

u2

r2

`
n´ 2

45

u6

r2
`
p10´ nq

9

u6

r4

˙

ě 0,

(5.73)

which is essential to obtain the integrability property. In particular, we obtain the following
result for the r4`ε and r5`ε weighted energies.

Corollary 5.18. Let u be a global solution of (5.3) in the class EAN,r
4`ε

0 X EAN,r
5`ε

0 for
ε P r0, 4r. Then,

1. Integrability in time:
ż 8

2

ż 8

0

pr4`ε
` r5`ε

q

ˆ

pu2
t ` u

2
rq `

u2

r2
`
u6

r4

˙

drdt Àu0 1. (5.74)
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2. Sequential decay to zero: there exists sn, tn Ò 8 such that

lim
nÑ8

EAN,r5`εrusptnq “ 0 and lim
nÑ8

EAN,r4`εruspsnq “ 0. (5.75)

The proof of above corollary follows directly from (5.73). With these results, we are ready
to conclude the proof of Theorem 5.2 for the Adkins-Nappi equation.

Now, we are ready to prove Theorem 5.2 for the Skyrme equation.

5.4.3 End of proof of Theorem 5.2

Consider ES,ϕ as in (5.11) with ϕ “ r7`ε. From (5.18), we have

d

dt
ES,ϕrusptq “ ´2

ż 8

0

´

ϕ1 ´ 2
ϕ

r

¯

ˆ

1`
2α2 sin2puq

r2

˙

utur.

Therefore,
ˇ

ˇ

ˇ

ˇ

d

dt
ES,ϕrusptq

ˇ

ˇ

ˇ

ˇ

À

ż 8

0

ˇ

ˇ

ˇ
ϕ1 ´ 2

ϕ

r

ˇ

ˇ

ˇ

ˆ

1`
2α2 sin2puq

r2

˙

pu2
t ` u

2
rq. (5.76)

Integrating in rt, tns, we have

|ES,ϕrusptq ´ ES,ϕrusptnq| À

ż tn

t

ż 8

0

ˇ

ˇ

ˇ
ϕ1 ´ 2

ϕ

r

ˇ

ˇ

ˇ

ˆ

1`
2α2 sin2puq

r2

˙

pu2
r ` u

2
t qdrdt.

Sending n to infinity, we have from (5.70) that ES,ϕrusptnq Ñ 0 and

|ES,ϕrusptq| À

ż 8

t

ż 8

0

ˇ

ˇ

ˇ
ϕ1 ´ 2

ϕ

r

ˇ

ˇ

ˇ

ˆ

1`
2α2 sin2puq

r2

˙

pu2
r ` u

2
t qdrdt.

Finally, if t Ñ 8, we conclude. Since ES,ϕrusptq Á
›

›pr
5`ε
2 ut, r

5`ε
2 urqptq

›

›

2

L2ˆL2pR3q
, this proves

Theorem 5.2 for the Skyrme equation. The proof in the Adkins-Nappi case is analogous

considering EAN,ϕ in (5.12) with ϕ “ r5`ε.

This concludes the proof of Theorem 5.2.
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Chapter 6

Conclusions and Perspectives

6.1 Conclusions

This work concerned the study of well-posedness, and long time asymptotics of small or
solitonic solutions for five models appearing in Nature: Improved, abcd and Good Boussinesq
models, Skyrme and Adkins-Nappi equations.

The results obtained in the Part II of this work essentially consist of a deep analysis of
the following topics:

• Decay of solutions of the Improved-Boussinesq,

B
2
t φ´ B

2
xB

2
t φ´ B

2
xφ´ B

2
xp|φ|

p´1φq “ 0, for p ą 1, pt, xq P Rˆ R, (6.1)

for which we improved decay results by Cho-Ozawa.
• Asymptotic stability of standing waves of the Good-Boussinesq model,

B
2
t φ` B

4
xφ´ B

2
xφ´ B

2
xpφ

2
q “ 0, pt, xq P Rˆ R, (6.2)

where we constructed a manifold of data around the standing wave pQ, 0q, and charac-
terize the asymptotic behavior in this set. This work is the first of his type in Boussinesq
models, and opens a new area of research for next years.
• Ill-posedness for the pabcdq-Boussinesq system:

pabcdq

$

&

%

p1´ b∆qBtη `∇ ¨ pa∆~u` ~u` ~uηq “ 0,

p1´ d ∆qBt~u`∇
ˆ

c∆η ` η `
1

2
|~u|2

˙

“ 0.
pt,xq P Rˆ Rd, d “ 1, 2. (6.3)

Here we improved existing results on well and ill-posedness for 1D and 2D (abcd)
Boussinesq.

In Part III of this thesis we studied the following high energy models:
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• Decay of solutions of the Skyrme equation,
ˆ

1`
2α2 sin2 u

r2

˙

putt ´ urrq ´
2

r
ur `

sin 2u

r2

„

1` α2

ˆ

u2
t ´ u

2
r `

sin2 u

r2

˙

“ 0, (6.4)

• Decay of solutions of the Adkins–Nappi equation,

utt ´ urr ´
2

r
ur `

sin 2u

r2
`
pu´ sinu cosuq p1´ cos 2uq

r4
“ 0. (6.5)

For each of these models, we provided the first decay results known to date.

We provided new ideas (the virial technique for instance) and decay results for Boussinesq,
Skyrme and Adkins-Nappi models. However, several questions were left open here, and we
believe that these are nice continuations for the future.

6.2 Future Work
We want to focus on the understanding of the long time behavior problem in non-decaying
solutions, e.g., solitary waves, standing waves, and kinks. The first step is to focus on
the kink’s stability and asymptotic stability for the Wave-Cahn-Hilliard equation. The
second step is to study the stability of standing wave solutions of the pabcdq-Boussinesq
system. Finally, I want to concentrate my efforts on the stability of solitary waves solution
in the Improved-Boussinesq model.

6.2.1 Stability and Asymptotic Stability of Kinks in Wave-Cahn-
Hilliard equation

The well-known Cahn–Hilliard equation given by

Btu` B
4
xu` B

2
xu´ B

2
xpu

3
q “ 0.

This model has a huge literature, and has many interesting properties. See [15, 16, 5] for
further details. We propose to study the model

B
2
t u` B

4
xu` B

2
xu´ B

2
xpu

3
q “ 0, (6.6)

that we call the Wave-Cahn-Hilliard equation. This variation makes the dissipative nature
of the Cahn-Hilliard equation change to a wave-like behavior, with a huge flavor to good-
Boussinesq. This model is also a generalization of the φ4 model. A kink is a solution to (6.6)
of the form

upt, xq “ Hcpx´ ct´ x0q, , c, x0 P R,

with Hc solving H2
c ` pc

2 ` 1qHc ´ H3
c “ 0. It is well-known that (up to shifts) standing

kink (c “ 0) has the form Hpxq “ tanh
´

x?
2

¯

. Cahn-Hilliard and wave-Cahn-Hilliard models
share the same kink solution. However, since our modified equation has not been studied
yet, there are many research possibilities for their study, ranging from well-posedness to the
classical stability properties. We expect that the study of the elementary properties of the
Wave-Cahn-Hilliard equation will open a new field of research.
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6.2.2 Asymptotic stability of even data perturbations of solitary
waves in the pabcdq-Boussinesq system

For a, c ă 0 and b “ d ą 0, the system carries a Hamiltonian structure, and are the conserved
quantities, given by

Er~u, ηsptq “
1

2

ż

p´a|∇~u|2 ´ c|∇η|2 ` |~u|2p1` ηq ` η2
qpt, xqdx, Iptq “

ż

ηu` b∇η ¨∇u.

These are the energy and impulse functional, respectively. Recently Bao, Chen and Liu [1]
considered ground states for 1D abcd of the form:

pη, uqpxq “ pNω, Uωqpx´ ωtq P H
1
pRq ˆH1

pRq ω P R,

in the natural energy space. For a, c ă 0, b “ d they proved the existence of these ground
states, such that the traveling speed ω satisfies

|ω| ă

$

&

%

min

"

1,

?
ac

|b|

*

, when b ‰ 0

1 , when b “ 0.

In general, pNω, Uωq are not explicit but sometimes they are. In [3, 4, 7] it was given an
explicit description of the solitary waves. For instance, for ω “ 0 and a “ c ă 0,

pN0, U0qpxq :“
´

´Q
´

x{
a

|a|
¯

,
?

2Q
´

x{
a

|a|
¯¯

where Qpxq “ 3
2

sech2
px

2
q is the positive solution of Q2 ´ Q ` Q2 “ 0. Furthermore, they

proved that the solitary waves are spectral stable for all subsonic speeds, i.e. |ω| ă 1. In
the spirit of my previous work [12], under orthogonality and parity conditions, I want to
prove that if the standing wave is orbitally stable then it is asymptotic stable. Once this is
done, the natural extension of the problem is to consider the moving solitary wave and its
dynamics.

6.2.3 Stability of the solitary wave in the Improved-Boussinesq equa-
tion

One important question that remains open is the stability/instability of Improved-Boussinesq
solitons. But, as we shall explain below, this question is far from being trivial.

In an influential work, Grillakis, Shatah, Strauss [6] (GSS) obtained sharp conditions for
the orbital stability/instability of ground state solutions for a class of abstract Hamiltonian
systems. This result was extended to another class of Hamiltonians of KdV type by Bona,
Souganidis and Strauss [2]. Hamiltonian systems as the ones considered in [6] allow us
to introduce the Lyapunov functional F :“ H ´ cI, where H is the Hamiltonian and I
is a functional generated by the translation invariance of the equation (usually, mass or
momentum). Here, c is the corresponding speed of the solitary wave. The stability of the
solitary wave is then reduced to the understanding of the second variation of F , in the sense
that B2F ą 0 leads to stability. Also, if the former positive condition is not satisfied, but
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the corresponding nonpositive manifold is spanned by two elements (directions) which are
associated to the two degrees of freedom of the solitary waves (scaling and shifts), it is still
possible prove stability using B2F , but it is also necessary to restrict the class of perturbations
to those which are orthogonal to the nonpositive directions.

Smereka in [19] studied the soliton of IB (6.1) and observed that this soliton fits into the
class of abstract Hamiltonian system studied by GSS. However, it is not possible to apply the
GSS method since an important hypothesis is not satisfied. In fact, he observed that B2F is
nonpositive on an infinite number of directions, where two of them can be associated to the
point spectrum, and the remaining with the continuous spectrum. Therefore, GSS is useless
in this case. However, the same author showed numerical evidence that if dIpQcq{dc ă 0, then
the solitary waves are stable, and if dIpQcq{dc ą 0 the solitary waves seem to be unstable.

In a very important paper, Pego and Weinstein [17] proved (among other things) that Qc

is linearly exponentially unstable in H1 when

1 ă c2
ă

ˆ

3pp´ 1q

4` 2pp´ 1q

˙2

, with p ą 5.

Their method combines the use of the Evans function as well as ODE techniques. They also
showed [18] that the linear equation around Qc for c „ 1 satisfies a convective stability
property, based on the similarity of IB with KdV for small speeds. This result has been
successfully adapted to a more general setting by Mizumachi in a series of works [13, 14].
Whether the asymptotic stability results by Martel and Merle [10, 11] and the recent work
of Kowalczyk, Martel and Muñoz [9] can be applied to this case, is a challenging problem
that I would like to consider. An interesting result in this direction can be found in the
work [8] and my recent work [12].
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