

UNIVERSIDAD DE CHILE

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA QUÍMICA, BIOTECNOLOGÍA Y MATERIALES

ESTUDIO DEL DESEMPEÑO DE DIFERENTES PEROVSKITAS COMO SOPORTE EN CATÁLISIS DE METANACIÓN

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERA CIVIL QUÍMICA TESIS PARA OPTAR AL GRADO DE MAGISTER EN CIENCIAS DE LA INGENIERÍA, MENCIÓN QUÍMICA

JOSEFINA ANDREA CAROCA MUÑÓZ

PROFESOR GUÍA: RODRIGO ESPINOZA GONZALEZ

PROFESOR CO-GUÍA: FRANCISCO GRACIA CAROCA

MIEMBROS DE LA COMISIÓN: MARCOS FLORES CARRASCO MÓNICA SOLER JAUMA

SANTIAGO DE CHILE

2021

Resume de tesis para optar al título de ingeniera civil química y magister en ciencias de la ingeniería, mención química. POR: Josefina Andrea Caroca Muñóz. Fecha: 5 de Abril de 2021 Profesor Guía: Rodrigo Espinoza González.

ESTUDIO DEL DESEMPEÑO DE DIFERENTES PEROVSKITAS EN CATÁLISIS DE METANACIÓN

Dada la crisis climática actual es de suma importancia disminuir la cantidad de emisiones de CO_2 a la atmósfera, principal gas de efecto invernadero. Una forma de hacerlo es incorporar este gas en un vector energético como es el H_2 verde, para formar CH_4 y así utilizar las instalaciones de almacenamiento y distribución existentes.

Con esta motivación, en el siguiente escrito se presenta el estudio de diferentes materiales y dopantes en su desempeño como soportes y catalizadores en la reacción de metanación de CO_2 . En este trabajo se realiza un estudio del desempeño de diferentes catalizadores (Ni, Fe, Ag), y diferentes soportes como titanato de calcio y titanato de calcio y cobre, para identificar el mejor catalizador y el rol que juega el soporte en el proceso de metanación, además, de estudiar el efecto de co-dopantes ($Ni \ y \ Fe$), con CTO como soporte, en este proceso.

En el laboratorio se prepararon un total de 14 muestras para el CTO y 2 muestras para el CCTO, a través de síntesis sol-gel, estas muestras son caracterizadas con DRX y algunas son seleccionadas para analizarlas a través de SEM y EDS, con lo que se obtienen mayoritariamente las fases de CTO y CCTO buscadas, a excepción de los materiales dopados con *Fe*, donde existe una mayor cantidad de sub-producto, posiblemente asociado a la hidrólisis del gelificante.

Un total de 13 muestras son testeadas en su desempeño como catalizador para la reacción de metanación, obteniendo que las muestras de CTO dopadas con Ni son las que presentan mejores resultados, esto atribuido a la interacción electrónica entre el Ni y el Ca, que permitiría la adsorción y disociación de CO_2 . Además, se descubre que el CCTO no presenta un buen desempeño como soporte, en comparación al CTO.

Finalmente, se concluye que la reacción del proceso de metanación no solo ocurre en la superficie del metal, si no que el soporte juega un rol fundamental en el mecanismo de reacción.

"Aún queda por avanzar hacia la igualdad en todos los ámbitos de la sociedad, el progreso es muy lento. iHay que apurar la causa! Pero que quede claro: hombres y mujeres tienen el mismo potencial de talento y la humanidad no puede despilfarrar el porte que pueden hacer las mujeres por el bien de todos"

María Teresa Ruiz

Agradecimientos

En primer lugar, me gustaría agradecer al proyecto Fondecyt N°1191779 y al Núcleo Milenio Multimat, por su financiamiento y apoyo. Agradecer también a mi profesor guía Rodrigo Espinoza, por su apoyo, junto con los profesores de mi comisión Francisco Gracia, Marcos Flores y Mónica Soler. Además de los funcionarios que me han acompañado en este camino, Gina, Jaqueline, Moises, Juan Carlos y Celinda.

A quienes me han ayudado en este proceso, Darío, Adriana, Xime y en especial a mis amigos del alma y con quien comparto el amor por la ciencia y la investigación Mackarena y Archi. Quiero agradecer a mis alumnas, alumnos y mis compañeros de cuerpos docentes, por despertar en mí el amor por la docencia, en especial a mis amigas Dominga, Amanda y Josefa.

Agradezco a mi familia, en primer lugar, a mi hermana Carolina, por ser mi soporte y mi compañera de vida; a mi mamá por ser la razón de que haya llegado a esta instancia; mi tía y madrina Yessica, por creer en mi e impulsarme a cumplir mis sueños; mi prima María de los Ángeles, por ser un ejemplo y apoyo. A mi primo Juan Carlos por su cariño incondicional y a mi tío Juan Carlos por su cariño y aliento. A mi hermana Mariana por su cariño y por compartir conmigo otra perspectiva de nuestra vida. Me gustaría agradecer a mis sobrinas, Colomba y Blanca por siempre entregarme felicidad y ser la principal motivación de abrir camino como mujer en la ciencia e ingeniería. Y a mi abuela Flor, que con su fuerza forjó los cimientos de nuestra familia. Quiero agradecer también a mi papá que, aunque no podrá compartir este momento conmigo, sé que donde quiera que esté, se encuentra muy orgulloso. Además de mi abuela Cristi y tíos Galito y Tito por su cariño.

Quiero agradecer a mis amigas y amigos que me entregó este paso por la universidad. Sin ustedes no hubiera sido posible, ya que permitieron que esta etapa, a veces tan difícil, tuviera momento de alegría, distención y mucha felicidad. En especial, Cami F., Jesús, Levi, Raúl, Erik, Alexis, Ale, Kevin, Nico, Oscar, Giova, Pancho, Vale, Nati, Fran, Karen, Jo, Javi, Cami C., Flo, Chichita, Basti, a mis amigas del aquelarre, mi querida sección 3 y tantas otras y otros.

No quiero dejar de agradecer a mi familia política, Araya-Zavala-Barrientos, que me abrieron las puertas como si fuera una más de este hermoso clan. Muchas gracias por todo su cariño.

También quiero agradecer a mis amigos de la vida, Agustín por ser mi partner máximo; a mi amiga Octavia que ha sido mi apoyo desde el colegio y por tanto tiempo, a mis amigos Tania y Eduardo, por su amor incondicional y a Camila por todo lo que eres. Todos ustedes son parte de mi familia.

Finalmente quiero agradecer a la compañera que elegí para mi vida, Valentina, gracias por tu apoyo, comprensión y por este amor hermoso que tenemos.

	Tabla de Contenido			
1	Inti	rodu	cción1	
2	2 Objetivos			
	2.1	Obj	etivo general	
	2.2	Obj	etivos específicos	
3	Ma	rco t	eórico3	
	3.1	Rea	acción de Sabatier	
	3.2	Me	canismo de reacción5	
	3.3	Cat	álisis7	
	3.3.	.1	Soporte de Catalizador 8	
	3.4	Per	ovskitas: titanato de calcio y titanato de calcio y cobre9	
	3.4.	.1	Síntesis Sol-Gel12	
	3.5	Me	tales en la reacción de Sabatier14	
4	Met	todo	logía16	
	4.1	Est	udio de síntesis Sol-Gel para la fabricación de CTO16	
	4.1.	1	Síntesis Sol-Gel de titanato de calcio16	
	4.1.	2	Técnicas de Caracterización18	
	4.2	Est	udio experimental del efecto de diferentes métodos de síntesis de CTO y diferentes	
	metal	es co	omo catalizadores, en metanación de <i>CO</i> 223	
	4.3	Est	udio experimental del efecto de diferentes cargas de hierro en muestras bimetálicas	
	de hie	erro y	v níquel, utilizando CTO como soporte, en la metanación de <i>CO</i> 2	
	4.4	Sín	tesis de titanato de calcio y cobre (CCTO), y análisis experimental del efecto de este	
	sopor	te, u	tilizando níquel como catalizador, en la metanación de <i>CO</i> 2	
	4.4	.1	Síntesis Sol-Gel de titanato de calcio y cobre 26	
	4.4.	.2	Técnicas de caracterización complementarias27	
5	Res	ulta	dos 29	
	5.1	Car	acterización de muestras síntesis 1 29	
	5.1.	1	Difracción de Rayos X Síntesis 1 29	

	5.1.2	Microscopía Electrónica de Barrido Síntesis 1
5	.2 Car	acterización de muestras síntesis 235
	5.2.1	Difracción de Rayos X Síntesis 235
	5.2.2	Microscopía Electrónica de Barrido Síntesis 2
5	.3 Car	acterización de muestra bimetálicas 40
	5.3.1	Difracción de Rayos X muestras bimetálicas 40
	5.3.2	Microscopía Electrónica de Barrido muestras bimetálicas
5	.4 Car	cacterización de muestras CCTO y CCTO-Ni1045
	5.4.1	Difracción de Rayos X CCTO y CCTO-Ni10 45
	5.4.2	Microscopía Electrónica de Barrido CCTO y CCTO-Ni10 46
5	.5 Est	udio de la Respuesta Catalítica 49
	5.5.1	Actividad catalítica muestras síntesis 1 54
	5.5.2	Actividad catalítica muestras síntesis 2 56
	5.5.3	Actividad catalítica muestras bimetálicas 58
	5.5.4	Actividad catalítica muestras CCTO y CCTO-Ni10 59
5	.6 Téc	enicas de caracterización complementarias60
	5.6.1	Análisis de Desorción de Temperatura Programada60
	5.6.2	Espectroscopía de fotoelectrones emitidos por rayos X 62
6	Discusio	ón de Resultados
7	Conclus	iones75
8	Glosario	o de siglas y abreviaciones76
9	Bibliogr	afía77
10	Anexo	0s81
10	0.1 Car	ntidades reactivos y solventes síntesis Sol-Gel81
	10.1.1	Síntesis 1 CTO
	10.1.2	Síntesis 2 CTO
	10.1.3	Síntesis Muestras Bimetálicas
	10.1.4	Síntesis CCTO y CCTO-Ni10

10.2 I	Datos Actividad catalítica	. 84
10.2.1	Datos Actividad Catalítica Síntesis 1	. 84
10.2.2	2 Datos Actividad Catalítica Síntesis 2	. 88
10.2.5	B Datos Actividad Catalítica Muestras Bimetálicas	. 92
10.2.4	Datos Actividad Catalítica CCTO y CCTO-Ni10	. 95

Índice de tablas

Tabla 3.1: Métodos de síntesis para la fabricación de CTO y CCTO [31]12
Tabla 4.1: Reactivos para síntesis de CTO, y dopantes
Tabla 4.2: Sub-productos síntesis CTO y CCTO [58] 20
Tabla 4.3: Flujos de reactivos pruebas de actividad catalítica en metanación de <i>CO</i> 225
Tabla 5.1: Resultados del análisis de Rietveld para las muestras CTO S1; CTO-Ni10 S1; CTO-Fe10
S1 y CTO-Ag10 S1
Tabla 5.2: Porcentajes atómicos y en peso obtenidos del análisis EDS, muestra CTO-Ni10 S1 34
Tabla 5.3: Resultados del análisis de Rietveld para las muestras CTO S1; CTO S2; CTO-Ni10 S1;
CTO-Ni10 S2; CTO-Fe10 S1; CTO-Fe10 S2; CTO-Ag10 S1 y CTO-Ag10 S2
Tabla 5.4: Porcentajes atómicos y en peso obtenidos del análisis EDS, muestra CTO S2
Tabla 5.5: Porcentajes atómicos y másicos obtenidos del análisis EDS, muestra CTO-Ni10 S240
Tabla 5.6: Resultados del análisis de Rietveld para las muestras CTO-Ni10 S2; CTO-Ni10+Fe1 S2;
CTO-Ni10+Fe2 S2 y CTO-Ni10+Fe3 S2
Tabla 5.7: Porcentajes atómicos y másicos obtenidos del análisis EDS, muestra CTO-Ni10+Fe1 S2.
Tabla 5.8: Resultados del análisis de Rietveld para las muestras CCTO y CCTO-Ni10 S245
Tabla 5.9: Porcentajes atómicos y másicos obtenidos del análisis EDS, muestra CCTO47
Tabla 5.10: Porcentajes atómicos y másicos obtenidos del análisis EDS, muestra CCTO-Ni10 49
Tabla 5.11: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados,
muestra CTO-Ni10 S2
Tabla 5.12: Resultados de conversión y selectividad para la muestra CTO-Ni10 S2 52
Tabla 5.13: Área bajo la curva de análisis TPD60
Tabla 5.14: Porcentajes atómicos XPS. 66
Tabla 10.1: Tabla de reactivos y solventes síntesis CTO- Ni5-600 S1; CTO-Ni5-650 S1 y CTO-Ni5-
700 S1
Tabla 10.2: Tabla de reactivos y solvente síntesis CTO S181
Tabla 10.3: Tabla de reactivos y solvente CTO-Ni10 S181
Tabla 10.4: Tabla de reactivos y solvente síntesis CTO-Fe10 S181
Tabla 10.5: Tabla de reactivos y solvente síntesis CTO-Ag10 S1
Tabla 10.6: Tabla de reactivos y solvente síntesis CTO S2
Tabla 10.7: Tabla de reactivos y solvente síntesis CTO-Ni10 S2
Tabla 10.8: Tabla de reactivos y solvente síntesis CTO-Fe10 S2
Tabla 10.9: Tabla de reactivos y solvente síntesis CTO-Ag10 S2

Tabla 10.10: Tabla reactivos y solvente síntesis CTO-10Ni+Fe1 S2
Tabla 10.11: Tabla reactivos y solvente síntesis CTO-10Ni+Fe2 S2
Tabla 10.12: Tabla reactivos y solvente síntesis CTO-10Ni+Fe1 S2
Tabla 10.13: Tabla de reactivos y solvente síntesis CCTO
Tabla 10.14: Tabla de reactivos y solvente síntesis CCTO-Ni10
Tabla 10.15: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados,
muestra CTO S1
Tabla 10.16: Resultados de conversión y selectividad para la muestra CTO S1
Tabla 10.17: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados,
muestra CTO-Ni10 S1
Tabla 10.18: Resultados de conversión y selectividad para la muestra CTO-Ni10 S1
Tabla 10.19: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados,
muestra CTO-Fe10 S1
Tabla 10.20: Resultados de conversión y selectividad para la muestra CTO-Fe10 S1
Tabla 10.21: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados,
muestra CTO-Ag10 S1
Tabla 10.22: Resultados de conversión y selectividad para la muestra CTO-Ag10 S1
Tabla 10.23: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados,
muestra CTO S2
Tabla 10.24: Resultados de conversión y selectividad para la muestra CTO S2
Tabla 10.25: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados,
muestra CTO-Ni10 S2
Tabla 10.26: Resultados de conversión y selectividad para la muestra CTO-Ni10 S2
Tabla 10.27: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados,
muestra CTO-Fe10 S2
Tabla 10.28: Resultados de conversión y selectividad para la muestra CTO-Fe10 S290
Tabla 10.29: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados,
muestra CTO-Ag10 S291
Tabla 10.30: Resultados de conversión y selectividad para la muestra CTO-Ag10 S291
Tabla 10.31: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados,
muestra CTO-Ni10+Fe1 S2
Tabla 10.32: Resultados de conversión y selectividad para la muestra CTO-Ni10+Fe1 S292
Tabla 10.33: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados,
muestra CTO-Ni10+Fe2 S2
Tabla 10.34: Resultados de conversión y selectividad para la muestra CTO-Ni10+Fe2 S2

Tabla 10.35: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados,
muestra CTO-Ni10+Fe3 S2
Tabla 10.36: Resultados de conversión y selectividad para la muestra CTO-Ni10+Fe3 S294
Tabla 10.37: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados,
muestra CCTO
Tabla 10.38: Resultados de conversión y selectividad para la muestra CCTO
Tabla 10.39: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados,
muestra CCTO-Ni10
Tabla 10.40: Resultados de conversión y selectividad para la muestra CCTO-Ni10

Índice de figuras

Figura 1.1 Emisiones totales anuales de <i>CO</i> 2 en diferentes sectores industriales (modificada) [2].1
Figura 3.1: Diagrama de configuración "Power to gas" con metanación de <i>CO</i> 2 (modificada) [13–
15]
Figura 3.2: Mecanismo de reacción de metanación de $CO2$, en un catalizador de $Ru/TiO2$ [18] 6
Figura 3.3: Mecanismo de reacción metanación de dióxido de carbono. (A) Adsorción de <i>CO</i> 2; (B)
Adsorción hidrógeno; (C) Disociación hidrógeno;(D) y (E) Hidrogenación de CO2; (F) Formación
y desorción de metano (modificada) [17]7
Figura 3.4: Respuesta catalítica para tres muestras de alúmina cargadas con un 15% de níquel. (A)
Conversión con respecto a la temperatura;(B) Selectividad de metano con respecto a la
temperatura (modificada) [24]
Figura 3.5: Abundancia en la corteza terrestres de cada elemento, según el número atómico
(modificada). [28]10
Figura 3.6: Estructura cristalina para óxidos metálicos del tipo ABO_3 a) Celda unitaria con A como
átomo central, b) Celda unitaria con B como átomo central, c) y d) vistas de la estructura
general[29]
Figura 3.7: Celda unitaria de la estructura cristalina de CCTO [31]
Figura 3.8: Síntesis Sol-Gel. [21]13
Figura 4.1: Patrón de difracción de CTO y de CTO dopado con plata. (modificada) [59]19
Figura 4.2: Esquema principio de funcionamiento SEM (modificada)[60]21
Figura 4.3: Microesferas de CTO fabricadas en diferentes condiciones [61]21
Figura 4.4: Nanofibras de CTO [62] 22
Figura 4.5: EDS de CTO (modificada) [59] 22
Figura 4.6: Principio EDS, saltos electrónicos
Figura 4.7: Montaje experimental para medidas de desempeño catalítico
Figura 4.8: Reactor tubular de cuarzo cubierto de una chaqueta calefactora, montaje experimental
para medidas de desempeño catalítico 24
Figura 4.9: Montaje Experimental para Análisis TPD
Figura 4.10: XPS para muestra de CTO [26] 29
Figura 5.1: Patrón de difracción de rayos X, muestras CTO-Ni5 S1-600, CTO-Ni5 S1-650 y CTO-
Ni5 S1-700
Figura 5.2: Patrón de difracción de rayos X para las muestras (a) CTO S1; (b) CTO-Ni10 S1; (c)
CTO-Fe10 S1 y (d) CTO-Ag10 S1
Figura 5.3: SEM de la muestra CTO-Ni10 S1
Figura 5.4: Espectro de EDS muestra CTO-Ni10 S1

Figura 5.5: Patrón de difracción de rayos X para las muestras (a) CTO S2; (b) CTO-Ni10 S2; (c)
CTO-Fe10 S2 y (d) CTO-Ag10 S2
Figura 5.6: SEM de la muestra CTO S237
Figura 5.7: Espectro EDS muestra CTO S2
Figura 5.8: SEM de la muestra CTO-Ni10 S2
Figura 5.9: Espectro EDS para la muestra CTO-Ni10 S2 40
Figura 5.10: Patrón de difracción de rayos X para las muestras (a) CTO-Ni10 S2; (b) CTO-
Ni10+Fe1 S2; (c) CTO-Ni10+Fe2 S2 y CTO-Ni10+Fe3 S241
Figura 5.11: SEM de la muestra CTO-Ni10+Fe1 S243
Figura 5.12: Espectro EDS de la muestra CTO-Ni10+Fe1 S2 44
Figura 5.13: Patrón de difracción de rayos X para las muestras (a) CCTO; (b) CCTO-Ni10 45
Figura 5.14: SEM de la muestra CCTO 46
Figura 5.15: EDS muestra CCTO47
Figura 5.16: SEM de la muestra CCTO-Ni10
Figura 5.17: EDS muestra CCTO-Ni10
Figura 5.18: Espectro de cromatografía para muestra CTO-Ni10 S2, 25°C 50
Figura 5.19: Espectro de cromatografía para muestra CTO-Ni10 S2, 425°C51
Figura 5.20: Espectro de cromatografía para muestra CTO-Fe10 S2, 250°C53
Figura 5.21: Espectro de cromatografía para muestra CTO-Fe10 S2, 250°C, acercamiento 54
Figura 5.22: Espectro de cromatografía para muestra CTO-Ni10 S2, 425°C, acercamiento 54
Figura 5.23: Conversión y selectividad a diferentes temperaturas, para muestras fabricadas con el
método de síntesis 1. (a) CTO S1; (b) CTO-Ni10 S1; (c) CTO-Fe10 S1; (d) CTO-Ag10 S1 56
Figura 5.24: Conversión y selectividad a diferentes temperaturas, para muestras fabricadas con el
método de síntesis 2. (a) CTO S2; (b) CTO-Ni10 S2; (c) CTO-Fe10 S2; (d) CTO-Ag10 S257
Figura 5.25: Conversión y selectividad a diferentes temperaturas, para muestras bimetálicas (a)
CTO-Ni10 S2; (b) CTO-Ni10+Fe1 S2; (c) CTO-Ni10+Fe2 S2; (d) CTO-Ni10+Fe3 S2 59
Figura 5.26: Conversión y selectividad a diferentes temperaturas, para las muestras (a) CCTO; (b)
CCTO-Ni10
Figura 5.27: <i>CO</i> 2-TPD para las muestras (a) CTO S2; (b) CTO-Ni10 S2; (c) CCTO; (d) CCTO-Ni10.
Figura 5.28: Espectro completo de XPS muestra CTO S2
Figura 5.29: Espectro completo de XPS muestra CTO-Ni10 S2
Figura 5.30: Espectro completo de XPS muestra CCTO
Figura 5.31: Espectro completo de XPS muestra CCTO-Ni10
Figura 5.32: Espectros de alta resolución (a) Ca; (b) Ti y (c) 0, muestra CTO S267

Figura 5.33: Espectros de alta resolución (a) Ca; (b) Ti; (c) O y (d) <i>Ni</i> , muestra CTO-Ni10 S2 68
Figura 5.34: Espectros de alta resolución (a) Ca; (b) Cu; (c) <i>Ti</i> y (d) <i>O</i> , muestra CCTO69
Figura 5.35: Espectros de alta resolución (a) Ca; (b) Cu; (c) <i>Ti</i> ; (d) <i>O</i> y (e) <i>Ni</i> , muestra CCTO-Ni10.
Figura 6.1: Conversión y selectividad para el <i>CH</i> 4, a diferentes temperaturas, para las muestras
con mejor desempeño. CTO-Ni10 S1 y CTO-Ni10 S272
Figura 6.2: <i>CO</i> 2-TPD, para diferentes catalizadores de níquel en diferentes soportes [47]74

1 Introducción

La crisis climática y ambiental actual ha aumentado la temperatura del planeta, producto de los gases de efecto invernadero (GEI) liberados a la atmósfera debido a la producción industrial y a la utilización de combustibles fósiles. Estos gases retienen calor en la atmósfera y promueven enfermedades respiratorias asociadas al smog y a la contaminación ambiental [1].

Los GEI se componen de dióxido de carbono (CO_2), metano (CH_4), óxidos de nitrógeno y otros gases, provenientes de la producción industrial. Dentro de estos, el dióxido de carbono es el gas con mayor relevancia, alcanzando un 82% del total de los GEI [2].

Para hacerse cargo de esta problemática, diversos países del mundo acordaron fortalecer la respuesta mundial al cambio climático, en el Acuerdo de Paris del año 2015, acuerdo al que Chile se incorporó en febrero de 2017 a través del Decreto 30 del Ministerio de Relaciones Exteriores [3].

Este acuerdo puede ser abordado desde diferentes áreas, siendo una de estas la utilización de energías renovables, como energía solar, eólica, mareomotriz, geotérmica, entre otras. Esto teniendo en cuenta que esta área industrial representa la mayor fuente de CO_2 dentro de la industria, alcanzando un 80%, como se observa en la Fig. 1.1Figura 1.1 [2]. Actualmente, la energía solar y eólica han sido probadas y desarrolladas en diferentes países, considerando su transversalidad y los avances tecnológicos de los últimos tiempos [4,5].

Figura 1.1 Emisiones totales anuales de CO_2 en diferentes sectores industriales (modificada) [2].

Una de las problemáticas del uso de este de energías renobables es la estacionalidad asociada a las diferentes épocas del año, por lo que la energía generada en períodos de alta producción debe ser almacenada para abastecer los meses con baja tasa de producción. Se espera que esta necesidad de almacenamiento se triplique para el año 2030 [6].

El almacenamiento de las energías renovables ha sido ampliamente estudiado, existiendo diversas opciones como baterías, capacitores, bombas de almacenamiento hídrico, almacenamiento de

energía magnética, almacenamiento de energía térmica, electrólisis para almacenar hidrógeno, entre otras[7]. Esta última, presenta un gran interés debido al potencial del hidrógeno como combustible en el futuro, pero la transición a este combustible no será inmediata, considerando la distribución, almacenamiento, y el uso de este en diferentes equipos o dispositivos, que actualmente están condicionados para distribuir, almacenar o utilizar combustibles fósiles [8].

Dentro de este escenario la estrategia "Power-to-gas", utilizando la reacción de metanación, o "Reacción de Sabatier", donde el hidrógeno reacciona con dióxido de carbono para producir metano, cobra un gran interés. El uso de esta reacción puede ser una alternativa que aproveche las instalaciones ya existentes, junto con disminuir las emisiones de CO_2 , captándolas y reutilizándolas a la salida de los procesos industriales [8].

Cabe destacar que estas emisiones, provenientes de grandes industrias, salen con altas temperaturas, energía que podría ser aprovechada para alcanzar la temperatura de reacción.

La reacción de metanación ocurre a través de diferentes catalizadores metálicos dentro de los que destaca el níquel por su accesibilidad, buenos resultados y fácil disposición, en comparación a metales de mayor costo como el rodio y el rutenio [9,10].

A pesar de lo anterior, el níquel se desactiva debido a la sinterización de sus partículas y formación de depósitos de carbono. Para solucionar esta problemática se soporta el catalizador en un material poroso, como alúmina, óxido de titanio, y óxido de estaño[11]. Otras posibles soluciones, al desempeño del níquel como catalizador, es el uso de aleaciones, incluyendo otros metales, lo que puede mejorar la actividad y estabilidad [10].

Entonces se propone realizar un estudio del desempeño de diferentes catalizadores (*Ni*, *Fe*, *Ag*), y diferentes soportes como titanato de calcio y titanato de calcio y cobre, para identificar el mejor catalizador y el rol que juega el soporte en el proceso de metanación.

2 Objetivos

2.1 Objetivo general

El objetivo general de esta investigación es estudiar el efecto de diferentes dopajes en perovskitas sobre el desempeño catalítico en la reacción de Sabatier.

2.2 Objetivos específicos

OE1: Estudiar diferentes síntesis Sol-Gel, utilizando ácido cítrico como gelificante, para la fabricación de la perovskita titanato de calcio (CTO) y CTO dopado con diferentes metales.

OE2: Analizar experimentalmente el efecto de diferentes métodos de síntesis de CTO y diferentes metales como catalizadores, en la actividad y selectividad, para la metanación de CO_2 .

OE3: Estudiar el efecto conjunto de dos catalizadores, níquel y hierro en diferentes proporciones, soportados en CTO, en la actividad y selectividad, para la metanación de CO_2 .

OE4: Sintetizar titanato de calcio y cobre (CCTO), y analizar experimentalmente el efecto este soporte, utilizando níquel como catalizador, en la actividad y selectividad, para la metanación de CO_2 .

3 Marco teórico

3.1 Reacción de Sabatier

La reacción de Sabatier, publicada por Paul Sabatier en 1907, produce metano y agua a partir de hidrógeno y dióxido de carbono a altas temperaturas, entre 200°C y 500°C [8]. Esta reacción es bastante prometedora dentro de la estrategia "Power-to-gas", para integrar el dióxido de carbono descartado como desecho en un vector energético[12]. Esta estrategia se inserta en los sistemas eléctricos y de gas natural como se muestra en la Fig. 3.1, considerando que la electricidad para producir hidrógeno proviene de una fuente renovable y que el metano obtenido es procesado para obtener gas natural sintético (GNS).

Figura 3.1: Diagrama de configuración "Power to gas" con metanación de CO_2 (modificada) [13–15]. La reacción de Sabatier se presenta en la reacción (1):

$$CO_{2(g)} + 4H_{2(g)} \leftrightarrow CH_{4(g)} + 2H_2O_{(g)}; \ \Delta G_{298K} = -164\left[\frac{kJ}{mol}\right]$$
(1)

Esta es una reacción exotérmica que estequiométricamente libera 164 kJ por mol, es decir que cada metro cúbico de metano producido por hora corresponde a 1.8 kW de calor [15]. Esta reacción es una combinación lineal de la metanación de *CO* (*2*) y la reacción de desplazamiento gaseoso de agua (*3*), que se presentan en las ecuaciones (2) y (3):

$$CO_{(g)} + 3H_{2(g)} \leftrightarrow CH_{4(g)} + H_2O_{(g)}; \Delta G_{298K} = -206 \left[\frac{kJ}{mol}\right]$$
(2)

$$CO_{2(g)} + H_{2(g)} \leftrightarrow CO + H_2O_{(g)}; \Delta G_{298K} = 41 \left[\frac{kJ}{mol}\right]$$
 (3)

Para que la reacción de Sabatier sea una alternativa viable, en términos ambientales y económicos, es necesario optimizar este proceso buscando aumentar la conversión de CO_2 , porcentaje de CO_2 que reacciona en relación al que ingresa, y promoviendo la selectividad de esta conversión hacia el CH_4 , porcentaje de CO_2 que reacciona para formar CH_4 en relación al total que reaccionó, según las reacciones mostradas anteriormente. Estas características dependen de diversos factores, como las fases involucradas, el tipo de reactor utilizado y las condiciones de uso, el catalizador que participa y el soporte donde se encuentra este, entre otros. Considerando estos parámetros, para este trabajo se estudiará el efecto de diferentes catalizadores y el soporte de estos.

3.2 Mecanismo de reacción

Existen diferentes mecanismos de reacción propuestos en la literatura para la metanación de dióxido de carbono, los que dependen de las condiciones de operación como temperatura, presión y características del montaje [15].

En primer lugar, se encuentra un mecanismo reportado por Weatherbee y Bartholomew [16], donde se estudia una muestra de 3% de níquel sobre sílice entre 227° C y 327° C de temperatura, y presiones entre 140 y 155 [*kPa*]. Este mecanismo considera todos los pasos del proceso, incluyendo adsorción y disociación de reactivos, hidrogenación del carbono, formación de agua y desorción de las especies estables. Este proceso se presenta a continuación, donde *S* representa sitios activos en el catalizador:

$$H_{2(g)} + 2S \stackrel{k_1|k_{-1}}{\longleftrightarrow} 2H \cdot S \tag{4-1}$$

$$CO_{2(g)} + 2S \stackrel{k_2|k_{-2}}{\longleftrightarrow} CO \cdot S + O \cdot S \tag{4-2}$$

$$CO \cdot S \stackrel{k_3|k_{-3}}{\longleftrightarrow} CO_{(g)} + S$$
 (4-3)

$$CO \cdot S + S \stackrel{k_4|k_{-4}}{\longleftrightarrow} C \cdot S + O \cdot S \tag{4-4}$$

$$C \cdot S + H \cdot S \stackrel{k_5|k_{-5}}{\longleftrightarrow} CH \cdot S + S \tag{4-5}$$

$$CH \cdot S + H \cdot S \stackrel{k_6|k_{-6}}{\longleftrightarrow} CH_2 \cdot S + S$$
 (4-6)

$$CH_2 \cdot S + H \cdot S \stackrel{k_7|k_{-7}}{\longleftrightarrow} CH_3 \cdot S + S \tag{4-7}$$

$$CH_3 \cdot S + H \cdot S \stackrel{k_8|k_{-8}}{\longleftrightarrow} CH_4 \cdot S + S$$
 (4-8)

$$CH_4 \cdot S \stackrel{k_9|k_{-9}}{\longleftrightarrow} CH_{4(g)} + S$$
 (4-9)

$$0 \cdot S + H \cdot S \xleftarrow{k_{10}|k_{-10}} OH \cdot S + S \tag{4-10}$$

$$OH \cdot S + H \cdot S \stackrel{k_{11}|k_{-11}}{\longleftrightarrow} H_2 O \cdot S + S \tag{4-11}$$

$$H_2 O \cdot S \stackrel{k_{12}|k_{-12}}{\longleftrightarrow} H_2 O_{(g)} + S \tag{4-12}$$

Según el ajuste de datos realizado en este estudio la única reacción limitante posible es la disociación de monóxido de carbono adsorbido (ecuación (4-4)) a una temperatura entre 252°C y 302°C. A temperaturas mayores se predice que la reacción limitante será la hidrogenación del carbono (ecuaciones (4-5) a (4-8).

Por otro lado, se encuentra otro mecanismo de reacción, analizado por Tada y Kikuchi [17] y reportado por Marwood et al. [18], con menor cantidad de pasos involucrados y que asume que no existe la disociación completa del carbono. Este mecanismo diferencia sitios activos, en el metal (M), la superficie del soporte (S) y la interfaz metal-soporte (I), lo que permite estudiar el efecto del soporte en el proceso de metanación. Este mecanismo, propuesto para un catalizador de *Ru* soportado en *TiO*₂, es representado en el siguiente esquema (Fig. 3.2):

Figura 3.2: Mecanismo de reacción de metanación de CO₂, en un catalizador de Ru/TiO₂ [18].

En este mecanismo, representado con mayor detalle en la Fig. 3.3, el CO_2 es adsorbido en la superficie del soporte (Fig. 3.3 (A)), luego se adsorbe H_2 en la superficie del metal (Fig. 3.3 (B)), a continuación, el hidrógeno se disocia (Fig. 3.3 (C)) para luego reaccionar en la hidrogenación del carbono en la interfaz metal-soporte (Fig. 3.3 (D) y (E)), finalmente se forma metano y este se desorbe del sitio activo (Fig. 3.3 (F)). Como se observa en el área rodeada por una línea roja punteada existen especies de carbono que no reaccionan para formar metano, esta característica del proceso es llamada el envenenamiento del catalizador, uno de los problemas comunes en el desempeño catalítico [15].

Figura 3.3: Mecanismo de reacción metanación de dióxido de carbono. (A) Adsorción de CO_2 ; (B) Adsorción hidrógeno; (C) Disociación hidrógeno;(D) y (E) Hidrogenación de CO_2 ; (F) Formación y desorción de metano (modificada) [17].

3.3 Catálisis

La intervención de un catalizador es crucial en el desempeño de la reacción de Sabatier, a pesar de que termodinámicamente la reacción es favorable. Dentro de esta reacción ocurre la reducción del carbono completamente oxidado desde un estado de oxidación inicial +4 dentro de la molécula de CO_2 , hasta un estado de oxidación final -4 en la molécula de metano. Dado que este proceso involucra 8 electrones posee limitaciones cinéticas significativas, por lo que para lograr velocidades de reacción y selectividades aceptables es imperativo el uso de catalizadores [9,15,19].

Inicialmente, quienes descubrieron la reacción de Sabatier, Sabatier y Senderens, también descubrieron que el níquel era capaz de catalizar esta reacción para la formación de metano y agua, desde ese momento hasta la actualidad se han estudiado diversos metales. En estos estudios se observa actividad principalmente en los elementos de los grupos 8, 9 y 10 de la tabla periódica [15]. Según Fischer et al., quienes estudiaron la actividad de diferentes metales en la reacción de metanación, esta varía de la siguiente forma [20]:

• Actividad: porcentaje de CO_2 que reacciona del total de CO_2 que ingresa al sistema.

• Ru>Ir>Rh>Ni>Co>Os>Pt>Fe>Mo>Pd>Ag

En otros estudios, desarrollados por Mills y Steffgen, donde se estudia tanto la actividad como la selectividad, se llega al siguiente orden decreciente[21]:

- Actividad: porcentaje de CO₂ que reacciona del total de CO₂ que ingresa al sistema.
 Ru>Fe>Ni>Co>Mo
- Selectividad: porcentaje de CO_2 que forma CH_4 del total de CO_2 que reacciona.

• Ni>Co>Fe>Ru

Estos metales asocian su desempeño como catalizador, aparte de sus características intrínsecas, al área expuesta que poseen, esta área se relaciona directamente con la cantidad de sitios activos disponibles para que ocurra la reacción. Con el fin de obtener una mayor actividad, los catalizadores son soportados en estructuras porosas, las que permiten exponer y dispersar la mayor cantidad de material activo posible, promoviendo la adsorción y catálisis [22].

3.3.1 Soporte de Catalizador

La actividad de los catalizadores está fuertemente influenciada por el tamaño de partícula del metal, la cantidad de este, las interacciones entre el metal y el soporte y la composición de este soporte.

Los soportes más utilizados actualmente son óxidos metálicos con grandes áreas superficiales, por ejemplo rutilo (TiO_2), alúmina (Al_2O_3) o sílice (SiO_2), de estos el más utilizado es la alúmina [23].

Dentro de los estudios existentes sobre el desempeño de la alúmina como soporte en la reacción de Sabatier, se encuentra el de Aljishi et al. [24], donde se analizan tres muestras de alúmina ordenada mesoporosa (OMA por sus siglas en inglés) con 15% de níquel, fabricada con diferentes métodos. Se obtienen las siguientes curvas (Fig. 3.4), donde se observa la conversión, porcentaje de CO_2 que reaccionó (Fig. 3.4 (A)) y la selectividad, porcentaje de CH_4 generado en relación al CO_2 que reaccionó (Fig. 3.5 (B)). En estos resultados en particular, se observa que la muestra con mejor desempeño fue la identificada como OMA-15Ni-500, fabricada con HNO_3 cómo ácido, cargada con un 15% de *Ni* y calcinada a 500°C, alcanzando un 80% de conversión a 450°C; en comparación a la muestra fabricada con HCl como ácido OMA-15Ni-500, y la muestra impregnada con *Ni*, 15Ni/OMA-500. En el caso de la selectividad, el mejor desempeño también se da en la muestra OMA-15Ni-500, alcanzando casi un 100% a los 450°C. En esta investigación se atribuyen los resultados a que el método de síntesis de la muestra OMA-15Ni-500 genera una estructura con mayor área superficial y aglomeraciones de *Ni* más pequeñas. En esta investigación se busca mejorar esta respuesta.

Figura 3.4: Respuesta catalítica para tres muestras de alúmina cargadas con un 15% de níquel. (A) Conversión con respecto a la temperatura;(B) Selectividad de metano con respecto a la temperatura (modificada) [24].

Con estos soportes se busca dispersar el catalizador para maximizar el área superficial expuesta de este, por lo que se intenta encontrar una estructura donde el metal se separe en partículas lo más pequeñas posibles [25].

Considerando lo anterior, existen estructuras porosas como las perovskitas que se presentan como un soporte prometedor, debido a su alta área superficial y gran estabilidad en el rango de temperaturas donde ocurre la reacción de interés (200° C a 500° C). En particular, el titanato de calcio ($CaTiO_3$), primera perovskita descubierta, sería una opción viable dado que el calcio es un elemento representativo en la captación y almacenamiento de dióxido de carbono, por su gran capacidad de absorción y afinidad con este gas [26].

3.4 Perovskitas: titanato de calcio y titanato de calcio y cobre

En catálisis, se ha estudiado principalmente el desempeño de la perovskita de titanato de estroncio, pero el estroncio es un elemento poco abundante en la corteza terrestre, lo que aumenta el costo de los materiales que lo contienen [27]. En la Fig. 3.5 se observa la abundancia de los diferentes elementos en la corteza terrestre. Identificando que el *Ca* pertenece a los elementos más abundantes, formadores de rocas. Por otro lado, el *Cu* es un poco menos abundante que el *Sr*, pero su disponibilidad en Chile es mayor debido a la abundancia de yacimientos presentes en el país.

Figura 3.5: Abundancia en la corteza terrestres de cada elemento, según el número atómico (modificada). [28]

Para estos efectos, buscando elementos que sean más abundantes y asequibles, el titanato de calcio $CaTiO_3$, (CTO) y el titanato de calcio y cobre $CaCu_3Ti_4O_{12}$ (CCTO) son materiales interesantes y prometedores como soporte de catalizador debido a su alta área superficial y la presencia de calcio que promueve la adsorción de dióxido de carbono [26,27]. Estos materiales cerámicos son clasificados como perovskitas (CTO), o derivados de estas (CCTO).

Las perovskitas son compuestos que comparten la estructura del CTO (ABO_3 , donde A y B corresponden a metales), este material fue descubierto por L.A. Perovsky, quien nombra el mineral de formación natural, el que actualmente se asocia a todos los óxidos complejos con la estructura del CTO. Este tipo de estructuras tienen la siguiente celda cristalina expuesta en la Fig. 3.6, en particular para el CTO esta tiene una arista de 3,889 Å [29].

Figura 3.6: Estructura cristalina para óxidos metálicos del tipo ABO_3 a) Celda unitaria con A como átomo central, b) Celda unitaria con B como átomo central, c) y d) vistas de la estructura general[29].

En esta celda se observa una configuración octaédrica del oxígeno alrededor del *Ti*, mientras que los átomos de calcio se ubican en los vértices de la celda.

Para el caso del CCTO, su estructura cristalina se basa en la perovskita cúbica ABO_3 , con una distorsión de inclinación octaédrica causada por el desajuste de tamaño y la naturaleza de los cationes A, correspondientes a cobre y calcio, debido a la intrusión de *Cu* en la estructura [30]. Debido a esto, el CCTO posee una celda cristalina más compleja, que se observa en la Fig. 3.7.

Figura 3.7: Celda unitaria de la estructura cristalina de CCTO [31].

11

Estos materiales pueden ser fabricados por diversos métodos como síntesis hidrotermal, coprecipitación, solvo-termal, síntesis sólida o síntesis sol-gel. Estos se presentan en la Tabla 3.1.

Método de Síntesis	Tamaño de partícula	Ventajas	Desventajas	Ref
Síntesis de Estado Sólido	3 [µm]	 Se producen grandes cantidades. Procedimiento sencillo. 	 Tiempo de reacción largo. Requiere alta temperatura. Aparecen fases secundarias. 	[32]
Síntesis Húmeda	4-15 [µm]	 Bajo costo. Confiable. Excelente selectividad. 	 Peligroso y difícil de manejar. Emisiones tóxicas. Dimensiones difíciles de controlar. 	[33]
Síntesis por Combustión	189-300 [nm]	 Bajo costo y temperatura utilizada en el proceso. Mejor control de la estequiometria. 	 Contaminación por compuestos de carbono. Aglomeración de partículas. 	[34]
Síntesis asistida por Sonicación	75 [<i>nm</i>]	 Proceso no peligroso. Rápida tasa de reacción. Produce pequeñas partículas metálicas. 	- Puede producir oxidación.	[35]
Co- Precipitación	-	- Mezcla homogénea de reactantes disminuye la temperatura de reacción.	 No es aplicable para obtener una alta pureza. No funciona bien si los reactantes tienen solubilidades diferentes. 	[30]
Sol-Gel	50-260 [nm]	 Bajas temperaturas de procesamiento. Fácil y segura de realizar. Se puede utilizar para fabricar polvo, películas y fibras nanoestructuradas. 		[36]

Tabla 3.1: Métodos de síntesis para la fabricación de CTO y CCTO [31].

Este último método se destaca, además, por la simplicidad del procedimiento, bajos niveles de riesgo y promover una alta área superficial en el material fabricado [31,37].

3.4.1 Síntesis Sol-Gel

La síntesis sol-gel, método de fabricación de materia inorgánica organizada [38], consiste en la suspensión de iones metálicos dentro de un líquido, estos iones poseen una fase dispersa del orden

de 1 a 1000 [*nm*]. Esta escala permite que las fuerzas gravitacionales no interactúen dentro del gel, por lo que este sistema se mantiene denso gracias a interacciones electroestáticas de superficie y de van der Waals.

Figura 3.8: Síntesis Sol-Gel. [21]

Dentro del método de síntesis por sol-gel, existen diferentes enfoques, de acuerdo al método de preparación, estos se listan a continuación:

- a. Síntesis Transcriptiva: en esta metodología se utilizan plantillas orgánicas pre-organizadas y auto-ensambladas para la estructuración de materiales organizados.
- b. Síntesis Sinérgica: se agregan precursores inorgánicos y agentes de dirección orgánicos, como estructuras anfifílicas, que se ensamblan en arquitecturas específicas.
- c. Morfosíntesis: se restringen, espacialmente, las reacciones químicas para producir materiales con forma compleja.
- d. Síntesis Integrativa: se combinan los métodos anteriores y se utilizan simultáneamente para generar materiales jerárquicos.

De estos enfoques, la síntesis transcriptiva presenta gran versatilidad al momento de generar diferentes dimensiones de la estructura resultante, nano, meso o macroporos. La superficie de las planillas involucradas define la orientación y distribución de los puntos de nucleación, junto con las propiedades estructurales del material inorgánico sintetizado [38].

Esta síntesis se inicia seleccionando sales que contengan los iones metálicos requeridos como precursores, estas son disueltas en un solvente a fin. Con el objetivo de que las soluciones obtenidas puedan gelificar, es decir que sea los iones metálicos se suspendan por interacciones electroestáticas y fuerzas de van der Waals, se añade un compuesto orgánico como plantilla llamado gelificante, que promueve la separación y suspensión de los iones metálicos. Esta consistencia es buscada con el fin de que el material cerámico resultante contenga poros vacíos dentro de su estructura, aumentando su área superficial y así mejorando sus posibles aplicaciones [37].

Existen estudios sobre diferentes compuestos orgánicos utilizados en síntesis sol-gel de óxidos metálicos. Dentro de este grupo se encuentra el ácido cítrico ($C_6H_8O_7$), gelificante que genera

estructuras porosas a través de este método [39,40], con áreas superficiales mayores a 1000 $\left[\frac{m^2}{g}\right]$ [39].

3.5 Metales en la reacción de Sabatier

Al momento de estudiar la actividad catalítica en el proceso de metanación, los metales involucrados, como catalizador o siendo parte del soporte, interactúan de una forma diferente con los gases de reacción

El metal con mejor desempeño como catalizador en la reacción de Sabatier es el níquel. Este elemento supera al resto de los metales en términos de selectividad, y se posiciona en el medio en términos de actividad, como fue mostrado anteriormente en la sección 3.3. Pero estos no son los únicos factores importantes, ya que para aumentar la accesibilidad y replicabilidad de estos catalizadores el precio también es un factor a considerar. En relación a esto, se pudo encontrar que el níquel es sustancialmente más económico, el cobalto triplica su valor, mientras que el rutenio presenta un valor casi 50 veces mayor [41]. Es por esto que actualmente el níquel es el metal más utilizado comercialmente en aplicaciones de metanación [15].

A pesar de esto, siguen existiendo problemas tecnológicos al usar el níquel como catalizador, al igual que con otros metales. El primero de estos es la sinterización de partículas del metal, lo que consiste en el crecimiento de las partículas de este por efectos térmicos. El segundo problema es la formación de depósitos de carbono sobre el material, también conocido como envenenamiento del catalizador. Ambas problemáticas disminuyen el área superficial activa del material afectando de forma desfavorable a la actividad catalítica [42].

Además del níquel existen otros metales que interfieren en el proceso de metanación, por ejemplo para promover la disociación de dióxido de carbono se han estudiado muestras bimetálicas de níquel con otros metales como hierro o platino [26,43–45]. Junto con estos estudios, se han publicado investigaciones sobre la interacción del soporte en el proceso, en particular ciertos metales dentro del soporte que fomentan la adsorción y disociación de ciertas especies [2,46].

Para efectos de esta investigación se estudiará el efecto de diferentes metales, utilizados como dopantes (Ni, Fe, Ag) y presentes en la estructura del soporte (Ca, Cu, Ti). Las características de estos elementos se presentan a continuación:

<u>Níquel:</u> este catalizador es el más estudiado en el proceso de metanación, presentando altos valores de conversión y selectividad (90 % y 100% respectivamente) [46]. El mejor desempeño se

observa en muestras de *Ni* soportado en dióxido de cerio, según comparaciones realizadas por Le et al. [47], debido a la alta área superficial del soporte. Este metal posee una configuración terminal $4s^23d^8$ [48], gracias a la cantidad de electrones disponibles, el níquel se presenta como una buena opción para ayudar en la cinética de oxidación del carbono [15].

<u>Hierro:</u> este metal es definido como un agente modificador de estructuras, que permite mejorar la estabilidad térmica y la actividad catalítica de un material, además de promover la adsorción y disociación del dióxido de carbono[43,49]. El *Fe* presenta una alta reactividad como catalizador, pero baja selectividad hacia el metano [15]. En el caso de la interacción de este metal en muestras bimetálicas con níquel existen estudios [50] que comparar diferentes proporciones de Fe-Ni (3% Fe-30% Ni; 5% Fe-30% Ni; 7% Fe-30% Ni), obteniendo que, si la cantidad de hierro es muy alta (7%), este elemento interferirá disminuyendo la concentración superficial de Ni, y así la cantidad de sitios activos. Por otro lado, las otras proporciones presentan resultados similares a las muestras de 30% *Ni* en términos de conversión, pero una mejor selectividad.

Plata: este elemento presenta una baja actividad, según estudios realizados por Fisher et al. [20], pero en estudios más recientes se encuentra que podría ser una opción en la fotocatálisis de la reacción de Sabatier, donde, al ser soportado sobre un metal semiconductor, promueve el salto de un electrón a la banda de conducción, lo que mejora la actividad catalítica [51]. Esta respuesta está determinada por la dispersión de las partículas de Ag, buscando encontrar el menor tamaño posible, y la integración de fotones en el mecanismo.

Calcio: este metal, perteneciente al grupo II, muestra un gran desempeño en la captación y almacenamiento de dióxido de carbono [26,27]. Existen estudios, realizados por Everett et al. [52], donde se investiga el efecto del calcio en un catalizador de Ni soportado en zirconia (ZrO_2), en los que se obtiene que los iones de calcio (Ca^{+2}) en la superficie del catalizador forman pares con iones de níquel (Ni^{+2}), estos pares se componen de vacancias de oxígeno y sitios coordinados no saturados, lo que promueve la disociación del dióxido y monóxido de carbono en el proceso de metanación, etapa limitante en algunos mecanismos de reacción [16].

Cobre: este metal, en el proceso de metanación, presenta una actividad catalítica donde solo existe formación de monóxido de carbono, con una adsorción bastante rápida de dióxido de carbono e hidrógeno, entre 4 y 7 segundos según lo reportado por Lapidus et al. [53]. Esta adsorción podría desacelerar la tasa de reacción [19].

Titanio: existen estudios sobre este metal en diferentes soportes de catálisis, principalmente dióxido de titanio (TiO_2) y perovskitas que incluyan este elemento en su estructura [15,53]. No se encontraron estudios donde el Ti influya directamente en la catálisis o adsorción de especies, pero si se ve afectado su estado de oxidación debido a las vacancias de oxigeno que se generan a su alrededor cuando interactúa con otros metales en el material [26].

Luego, buscamos estudiar el efecto de diferentes dopantes dentro del CTO, donde se espera demostrar un efecto sinérgico entre el *Ca* y el *Ni*, siendo este último el dopante con mejor desempeño en términos de actividad y selectividad. Además, se espera estudiar el efecto de añadir un co-catalizador (*Fe*), con lo que se espera mejorar el desempeño del catalizador siendo el *Fe* el que fomentaría la disociación de CO_2 . Finalmente se busca analizar el desempeño de un nuevo soporte, CCTO, donde se espera identificar el efecto de intercambiar *Ca* por *Cu* en la estructura, y el efecto sinérgico de este nuevo metal con el *Ni*.

4 Metodología

4.1 Estudio de síntesis Sol-Gel para la fabricación de CTO

Con la siguiente metodología se busca estudiar diferentes síntesis sol-gel, variando condiciones de temperatura, diferentes dopantes, y comparando dos rutas para la síntesis de CTO utilizando ácido cítrico como gelificante, con el fin de encontrar un producto con una estructura cristalina específica [54]. Para comparar ambos productos, se utilizarán tres técnicas de caracterización, difracción de rayos X (DRX), microscopia electrónica de barrido (SEM) y espectroscopia de rayos X de energía dispersiva (EDS).

4.1.1 Síntesis Sol-Gel de titanato de calcio

4.1.1.1 Síntesis 1: proporción estequiométrica (1 CaNO₃:1 IPT:0.26 Ácido Cítrico)

En primer lugar, se realiza una síntesis reportada [42], que se caracteriza por tener una proporción estequiométrica (1:1:0.26) entre los reactivos involucrados, nitrato de calcio, isopropóxido de titanio y ácido cítrico, respectivamente. Esta síntesis requiere los siguientes pasos, el detalle de las cantidades utilizadas se encuentra en el Anexo 10.1:

a. Se inicia este proceso, disolviendo los reactivos: nitrato de calcio, isopropóxido de titanio(IPT) y el gelificante ácido cítrico en 2-propanol, cada uno por separado. Con una proporción de (1:1:0.26) respectivamente. Este proceso se realiza sobre una placa agitadora utilizando un agitador magnético a 650 rpm.

- b. Cuando todas las soluciones están completamente disueltas, se añade la mitad del volumen de ácido cítrico a la solución con nitrato de calcio y la otra mitad a la solución con IPT. Esto se mantiene bajo agitación por 10 min.
- c. Una vez transcurridos los 10 min de agitación, se disminuyen al mínimo las revoluciones de agitación de la solución con IPT (100 RPM) y se agrega la solución con nitrato de calcio de una vez, debido a que la solución final se gelifica en menos de 10 segundos.
- d. Secar el gel producido a 200°C durante 12 horas.
- e. Una vez seco el gel, triturar el sólido resultante en un mortero de ágata y calcinar a 600°C, durante 1 hora, con una rampa de 100°C/h.

Para el caso del dopante, se estudian tres dopantes diferentes: níquel, hierro y plata, la cantidad de dopante será calculada en base al dopante metálico. Como reactivo se utiliza nitrato de níquel, nitrato de hierro (III) y acetato de plata. En cada caso, el reactivo, se disuelve por separado en 2propanol, para luego continuar con el procedimiento general, donde al dopante se le añade una pequeña porción de la solución de ácido cítrico, y se une al IPT antes del calcio.

Además de esto, para el caso del níquel se comparan diferentes temperaturas de calcinación 600, 650 y 700°C.

El detalle de los reactivos a utilizar se presenta en la Tabla 4.1.

Reactivos	Fórmula	Masa molecular [g/mol]
Nitrato de Calcio	$Ca(C_2H_3O_2)_2\cdot 4H_2O$	236,15
Isopropóxido de Titanio	$Ti(OC_3H_7)_4$	284,22
Ácido Cítrico	$C_6H_8O_8\cdot H_2O$	192,12
Nitrato de Níquel	$N_2NiO_6\cdot 6H_2O$	290,81
Nitrato de Hierro (III)	$Fe(NO_3)_3 \cdot 9H_2O$	403,95
Acetato de Plata	CH ₃ COOAg	166,91

Tabla 4.1: Reactivos para síntesis de CTO, y dopantes.

Se realizaron un total de siete muestras, en primer lugar, se fabrican tres muestras de CTO dopadas con 5% de *Ni*, calcinadas a diferentes temperaturas, CTO-Ni5 S1-600, CTO-Ni5 S1-650 y CTO-Ni5 S1-700. Luego, se fabrican cuatro muestras con la síntesis 1, una de estas muestras es de CTO puro (CTO S1), mientras que los tres materiales restantes son muestras de CTO dopadas con 10% de níquel (CTO-10Ni S1), 10% de hierro (CTO-10Fe S1) y 10% de plata (CTO-10Ag S1).

4.1.1.2 Síntesis 2: proporción (1 CaNO₃:1 IPT:1 Ácido Cítrico)

En segundo lugar, con el objetivo de obtener un material con mejor cristalinidad y pureza, se realiza la síntesis Sol-Gel reportada [55] que se caracteriza por tener una estequiometría (1:1:1) entre los reactivos. A continuación, se muestran los pasos a seguir en la síntesis 2 de CTO, el detalle de cantidad de reactivos y solvente se encuentra en el Anexo 10.1:

- a. En primer lugar, los reactivos nitrato de calcio e isopropóxido de titanio se disuelven en proporciones estequiométricas (1:1), por separado en 2-propanol. Además, se disuelve el gelificante, ácido cítrico, en una proporción molar (1:1) con respecto al nitrato de calcio, en el mismo solvente, por separado. Este proceso se realiza sobre una placa agitadora utilizando un agitador magnético a 650 rpm.
- b. Con los reactivos disueltos, se añade el nitrato de calcio al isopropóxido de titanio, para luego agregar el ácido cítrico. Esta mezcla se agita durante 30 minutos.
- c. Finalmente se agregan 4 [mL] de agua desionizada gota a gota hasta gelificar. Se obtiene un gel de color blanco.
- d. El gel resultante se traspasa a un recipiente con mayor área superficial y es secado a 50°C por 96 horas.
- e. Finalmente, el polvo obtenido del secado es molido en un mortero de ágata y calcinado a 600°C por una hora, con una rampa de 100 $\left[\frac{^{\circ}C}{h}\right]$.

En este caso, al añadir un dopante, Ni, Fe o Ag, se utilizan los mismos reactivos que en la síntesis 1, que son disueltos por separado en 2-propanol, para luego continuar con el procedimiento general, donde el dopante se añade antes del gelificante.

Se realizaron un total de cuatro muestras, una de estas muestras es de CTO puro (CTO S2), mientras que los tres materiales restantes son muestras de CTO dopadas con 10% de níquel (CTO-10Ni S2), 10% de hierro (CTO-10Fe S2) y 10% de plata (CTO-10Ag S2).

4.1.2 Técnicas de Caracterización

Para comparar los materiales fabricados se utilizan diversas técnicas, considerando el acceso a estos equipos y su capacidad de entregar información relevante a la investigación realizada. A continuación, se presenta una breve reseña de cada técnica, junto con los resultados esperados para el material investigado.

4.1.2.1 Difracción de Rayos X

Esta técnica de caracterización, DRX, consiste en incidir la muestra, en polvo, con rayos X, estos rayos son difractados por las capas cristalinas del material, resultando rayos que dependen de los tipos de átomos presentes, y la posición de estos [56].

En el caso particular de los sólidos cristalinos gracias a su estructura periódica, donde se repite la celda unitaria del material, dispersan elásticamente los rayos X en ciertas direcciones y se amplifican por interferencia constructiva, obteniendo, al detectar estos rayos, un patrón de difracción característico de cada material [57].

En particular el CTO, posee un patrón característico único de difracción de rayos X, estos patrones se encuentran en la base de datos de "International Center For Diffraction Data" (ICDD), antiguamente llamado "Joint Committee on Chemical Analysis by Powder Diffraction Methods" (JCPDF), bajo el código 42-0423 [58].

Además de esto, al momento de obtener los resultados, podría existir más de un material en la muestra. Es por esto que se deben considerar los sub-productos que podrían generarse en la síntesis de los materiales puros. Junto con estos, en los materiales dopados, es posible identificar el dopante, como se observa en el siguiente ejemplo, de CTO dopado con plata, encontrado en la literatura [59], Fig. 4.1.

Figura 4.1: Patrón de difracción de CTO y de CTO dopado con plata. (modificada) [59].

Los sub-productos y dopantes que se pueden encontrar en los materiales fabricados se muestran en la Tabla 4.2.

Sub-producto	Fórmula química	Código ICDD/JCPDF
Carbonato de calcio	CaCO ₃	05-0586
Dióxido de titanio	TiO ₂	21-1276
Óxido de níquel	NiO	47-1049
Óxido de calcio	CaO	04-0777
Óxido de plata	AgO_2	41-1104
Plata metálica	Ag	89-3722
Óxido de hierro	Fe_2O_3	33-0664

Tabla 4.2: Sub-productos síntesis CTO y CCTO [58].

Los resultados de DRX se analizaron mediante refinamiento Rietveld usando el programa TOPAS 4.2 (Bruker AXS), con la finalidad de cuantificar las fases cristalinas presentes en las muestras y, determinar otros parámetros relevantes como el tamaño de cristalito y eventuales grados de amorfización. Este análisis entrega porcentajes de las fases presentes en el material, tamaño de cristalito y el parámetro "God of Fitness" (GOF) asociado a la calidad de este ajuste, donde se considera un ajuste razonable si este parámetro es menor a 2.

4.1.2.2 Microscopio electrónico de barrido

Esta técnica de caracterización (SEM, por su sigla en inglés "Scanning Electron Microscope"), forma una imagen utilizando un haz de electrones que barre e interactúa con la muestra. Estas interacciones son detectadas y amplificadas con el fin de formar la imagen final [60], el principio de funcionamiento de esta técnica se muestra en la Fig. 4.2.

Figura 4.2: Esquema principio de funcionamiento SEM (modificada)[60].

Esta técnica se utiliza en diferentes áreas de investigación, en particular, con respecto a los materiales estudiados, se han observado las morfologías presentes en la Fig. 4.3 y Fig. 4.4 con esta técnica.

Figura 4.3: Microesferas de CTO fabricadas en diferentes condiciones [61].

Figura 4.4: Nanofibras de CTO [62].

4.1.2.3 Espectroscopia de rayos X de energía dispersiva

Esta técnica utiliza una configuración similar a un SEM, es común encontrar ambas técnicas acopladas en un mismo equipo. A partir de esta técnica (EDS, por su sigla en inglés, "Energy-Dispersive X-Ray Spectroscopy") se obtiene un espectro que permite obtener información sobre los porcentajes de cada elemento en la muestra, esto al incidir la muestra con rayos X [63].

En relación al material estudiado se espera obtener un resultado como el siguiente, donde se observa la relación estequiométrica del material, en este caso 1:1 entre el Ca y el Ti, junto con porcentajes relacionados a la cantidad de cada elemento en la muestra. Además, en algunos casos, es posible observar elementos asociados al sustrato, esto se observa en la Fig. 4.5.

Figura 4.5: EDS de CTO (modificada) [59].

Los diferentes picos encontrados se asocian a los diferentes saltos electrónicos del electrón dentro del átomo, como se observan en la Fig. 4.6.

Figura 4.6: Principio EDS, saltos electrónicos.

4.2 Estudio experimental del efecto de diferentes métodos de síntesis de CTO y diferentes metales como catalizadores, en metanación de CO_2

Para estudiar la respuesta catalítica de los materiales fabricados, se utiliza un reactor de lecho fijo, este permite que una mezcla de gases de reacción pase a través del soporte, que puede o no contener dopante que actuará como catalizador. Este montaje proporciona una catálisis heterogénea donde las fases presentes son sólido y gas.

El montaje experimental consiste en un reactor de cuarzo de 6mm de diámetro, en el que se encuentra el material a testear. Este reactor se encuentra en una chaqueta térmica como se muestra en la Fig. 4.7 (sección superior izquierda). Los gases son ingresados utilizando diferentes flujómetros (Fig. 4.7 sección inferior izquierda), estos gases se unen y entran al reactor por la parte inferior y pasan a través del material a testear, del que se cargan 100 [mg], la sección del reactor que contiene el material se encuentra cubierta por la chaqueta calefactora y posee una termocupla (Fig. 4.8) conectada al controlador de temperatura (Fig. 4.7 esquina superior izquierda). Luego de atravesar el material los gases resultantes salen del reactor por la parte superior, en la tubería de salida se encuentra acoplado un cromatógrafo de gases que toma muestras para analizar las concentraciones de los diferentes gases presentes (Fig. 4.7 sección derecha).

Figura 4.7: Montaje experimental para medidas de desempeño catalítico.

Figura 4.8: Reactor tubular de cuarzo cubierto de una chaqueta calefactora, montaje experimental para medidas de desempeño catalítico.

Los gases utilizados se encuentran disueltos, estos corresponden a dióxido de carbono disuelto en helio $(10\% CO_2|90\% He)$ e hidrógeno disuelto en helio $(10\% H_2|90\% He)$.

Inicialmente se realiza un proceso de reducción con hidrógeno, con el que se busca reducir el metal catalizador para mejorar la respuesta catalítica y unificar el punto de partida de las muestras analizadas. Este proceso se realiza a 500°C durante una hora, con un flujo de la mezcla con hidrógeno de $60\left[\frac{mL}{min}\right]$.

Luego de esto se enfría el montaje hasta llegar a temperatura ambiente y se ingresan los gases de reacción que entran al reactor por la parte inferior, las cantidades requeridas de los gases de reacción se presentan en la Tabla 4.3. Estos flujos, junto con la cantidad masa del catalizador (100 [mg]) corresponden a un tiempo de contacto de 48 $\left[\frac{L}{g,h}\right]$ aproximadamente, entre el gas y el sólido.

Gas de reacción	Disolución	Cantidad
<i>CO</i> ₂	10%CO ₂ 90%He	$15\left[\frac{mL}{min}\right]$
H_2	10%H ₂ 90%He	$60\left[\frac{mL}{min}\right]$
Ar	100%Ar	$5\left[\frac{mL}{min}\right]$

Tabla 4.3: Flujos de reactivos pruebas de actividad catalítica en metanación de CO_2 .

Luego de que los gases reaccionan en la superficie del catalizador, salen por la parte superior del reactor, donde se toma una muestra (1 [mL]) que es medida en un cromatógrafo de gases (PerkinElmer Clarus 500) equipado con una columna empacada CTR-I y un detector de conductividad térmica (TCD) para cuantificar la concentración de gas de salida. Este montaje, entrega una curva con diferentes picos, estos corresponden a los diferentes gases detectados. El área bajo estos picos es proporcional a las concentraciones de cada gas, es por esto que es posible obtener la conversión y selectividad a partir de estos datos.

Con el objetivo de encontrar la temperatura óptima de reacción, en términos de conversión y selectividad, se analizan los gases de salida a diferentes temperaturas, para cada temperatura se realizan tres medidas con el objetivo de obtener un valor promedio y disminuir el error experimental. Inicialmente se miden los gases de salida a temperatura ambiente (25° C.) lo que entrega el punto de referencia para el ingreso del CO_2 , se asume que a esta temperatura no ocurre ninguna reacción química, por lo que la medida de salida es igual a la cantidad de CO_2 que ingresa. Luego, para estudiar el desempeño del catalizador, se analizan los gases de salida entre 200°C y 500°C, cada 25°C. Este proceso ocurre a presión atmosférica.

El procedimiento descrito anteriormente se realiza con cada material fabricado, para luego comparar los diferentes desempeños, buscando maximizar la conversión del CO_2 y selectividad hacia el CH_4 .

4.3 Estudio experimental del efecto de diferentes cargas de hierro en muestras bimetálicas de hierro y níquel, utilizando CTO como soporte, en la metanación de CO_2

Para analizar el efecto del hierro como co-catalizador, es necesario fabricar muestras de titanato de calcio, dopado con *Ni* con diferentes cargas de hierro, para esto se utiliza el método de síntesis Sol-Gel 2, presente en la sección 4.1.1.2. Donde se mantiene una carga de níquel constante de 10% y se varía la carga de hierro entre 1% y 3%. Estas muestras son caracterizadas por DRX y, SEM y EDS para muestras seleccionadas.

Se estudia la respuesta catalítica de los polvos obtenidos utilizando el método presente en la sección 4.2, para luego comparar la conversión y selectividad de estas muestras con las ya analizadas en las secciones anteriores.

4.4 Síntesis de titanato de calcio y cobre (CCTO), y análisis experimental del efecto

de este soporte, utilizando níquel como catalizador, en la metanación de CO_2 . Para analizar el efecto de diferentes soportes, es necesario fabricar muestras de titanato de calcio y cobre, y de titanato de calcio y cobre dopado con níquel. El procedimiento utilizado se presenta a continuación.

4.4.1 Síntesis Sol-Gel de titanato de calcio y cobre

Para fabricar esta perovskita se sigue el procedimiento de síntesis sol-gel correspondiente a la síntesis dos, presente en la sección 4.1.1.2, utilizando una proporción estequiométrica (1:3:4:6) entre el calcio, cobre, titanio y ácido cítrico. El detalle de la cantidad de reactivos y solvente se encuentra en el Anexo 10.1.

Se utilizan los mismos reactivos que en la síntesis 2 de CTO, añadiendo como fuente de cobre el nitrato de cobre. Con estos reactivos, se procede con los siguientes pasos:

- a. Los reactivos son disueltos por separado, en 2-propanol. Este proceso se realiza sobre una placa agitadora utilizando un agitador magnético a 650 rpm.
- b. Al unificar la mezcla, se vierte el cobre sobre el titanio, para luego agregar el calcio y finalmente el gelificante ácido cítrico. Esta mezcla se agita dura 30 minutos.
- c. Transcurrido este tiempo se agregan 4[mL] de agua desionizada, gota a gota hasta gelificar.
- d. El gel se seca a 50°C por 96 horas.

e. Finalmente, el polvo obtenido del secado es molido en un mortero de ágata y calcinado a 700°C por una hora, con una rampa de 100°C/h.

En este caso, para añadir el dopante se utiliza como reactivo nitrato de níquel, este es disuelto por separado en 2-propanol, para luego continuar con el procedimiento general, donde se añade antes del gelificante. Estas muestras son caracterizadas por DRX, SEM y EDS.

Estas muestras serán testeadas en su desempeño como catalizador utilizando el mismo procedimiento que para las muestras de titanato de calcio presentes en la sección 4.2. Para así comparar ambos soportes de acuerdo a la conversión y selectividad encontradas.

4.4.2 Técnicas de caracterización complementarias

Para entender de mejor forma el comportamiento e influencia del soporte en el proceso de metanación se realizan análisis posteriores para comparar las muestras de CTO y CCTO puras y dopadas con *Ni*.

4.4.2.1 Análisis de desorción de temperatura programada

Esta técnica (TPD por sus siglas en inglés), se caracteriza por analizar la cantidad de un gas en particular que se puede adsorber en un material. Este análisis se realiza en un montaje compuesto por un reactor de cuarzo tubular de 6 [mm] de diámetro en forma de U, donde se carga una muestra de 100 [mg], en esta zona del reactor se posiciona una termocupla conectada un controlador de temperatura como se observa en la Fig. 4.9. Este reactor está acoplado a un espectrómetro de masas (OmniStar GSD 320 – Pfeiffer Vacuum).

Figura 4.9: Montaje Experimental para Análisis TPD.

Inicialmente se realiza un pretratamiento para reducir el material utilizando un flujo de H_2 de 45 $\left[\frac{mL}{min}\right]$, a 500°C por una hora. Para llegar a esta temperatura se utiliza una curva de calentamiento de 10 $\left[\circ \frac{c}{min}\right]$.

A continuación, se limpia la superficie del material con un flujo de argón de $40 \left[\frac{mL}{min} \right]$ por 10 minutos. Luego se satura la superficie con dióxido de carbono, utilizando un flujo de 40 $\left[\frac{mL}{min} \right]$ de este gas durante una hora seguido de un flujo de argón de $40 \left[\frac{mL}{min} \right]$ por el mismo tiempo, esto permite quitar el exceso de CO_2 que permanece en el material, pero no está adsorbido.

Con la superficie saturada se comienza a aumentar la temperatura, hasta llegar a los 500°C, mientras se miden estos gases de salida con el equipo acoplado. El espectrómetro de masas entrega un gráfico con diferentes curvas, cada una de estas tiene un área bajo la curva que es proporcional a la cantidad de cada gas detectado.

4.4.2.2 Espectroscopia de fotoelectrones emitidos por rayos X

Esta espectroscopia (XPS por sus siglas en inglés) es una técnica de caracterización semicuantitativa que mide la composición elemental y es capaz de determinar los estados de oxidación de los elementos dentro de un material.

Este espectro se obtiene al irradiar un material con un haz de rayos X producidos en un ánodo de magnesio o aluminio, mientras se mide la energía cinética y el número de electrones que escapan. Este análisis es superficial, con una máxima profundidad de 10 [*nm*] en el material [64].

Los resultados esperados, encontrados en la literatura [26], de esta técnica de caracterización son como los presentes en la Fig. 4.10, donde se tiene un gráfico que muestra el número de electrones detectados versus la energía de ligadura. Cada elemento tiene un patrón característico de XPS, que corresponde a su configuración electrónica, la cantidad de electrones detectados está directamente relacionada con la cantidad de elementos en el área analizada.

Figura 4.10: XPS para muestra de CTO [26].

En estos espectros se observan picos correspondientes al calcio, en particular para los electrones $Ca2p_{\frac{1}{2}}$ y $Ca2p_{\frac{3}{2}}$ a 349.37 y 345.84 eV, respectivamente. Por otro lado, en relación al titanio también se observan dos picos, que muestran un estado de oxidación +4, según lo reportado por [65].

5 Resultados

5.1 Caracterización de muestras síntesis 1

5.1.1 Difracción de Rayos X Síntesis 1

Inicialmente se fabrican tres muestras con una cantidad de *Ni* referencial de 5% para comparar diferentes temperaturas de calcinación, se elige este metal debido a que según la literatura es el con mejor pronóstico para la aplicación buscada. Se realizaron ensayos en esta serie de las muestras variando la temperatura de calcinación entre 600°C y 700°C, buscando reducir la cantidad de fases indeseadas en las muestras. A partir de esto se obtienen las muestras CTO-Ni5 S1-600, CTO-Ni5 S1-650 y CTO-Ni5 S1-700 respectivamente, las que dieron por resultado los patrones de difracción en la Fig. 5.1.

Figura 5.1: Patrón de difracción de rayos X, muestras CTO-Ni5 S1-600, CTO-Ni5 S1-650 y CTO-Ni5 S1-700.

Se observa en la Fig. 5.1 que todas las muestras exhiben un patrón cristalino que se identifica con la ficha JCPDF 42-0223 del CTO. También se identificó en todas las muestras la presencia de *CaO* (ficha JCPDF 04-0777) y *TiO*₂ (ficha JCDF 21-1276). El aumento en la temperatura de calcinación no genera una diferencia importante en la pureza de las muestras, aunque las muestras CTO-Ni5 S1-650 y CTO-Ni5 S1-700 exhiben un mayor grado de cristalinidad, representado es picos más agudos, se obtiene de igual forma fases residuales de *TiO*₂ y *CaO*. En el caso del dopante este no se observa probablemente debido al bajo porcentaje presente.

Después de esto se fabrican las muestras CTO S1, CTO-Ni10 S1, CTO-Fe10 S1 y CTO-Ag10 S1, se elige un 10% con el objetivo de tener un mejor resultado en la aplicación que catálisis. Los patrones de DRX de las muestras de la S1, se presentan en la Fig. 5.2. Se observa que todas las muestras exhiben un patrón cristalino que se identifica con la ficha JCPDF 42-0223 del CTO. También se identificó en todas las muestras la presencia de $CaCO_3$ (ficha JCPDF 05-0586) y, en algunos casos, además se identificaron fases asociadas a los dopantes.

Figura 5.2: Patrón de difracción de rayos X para las muestras (a) CTO S1; (b) CTO-Ni10 S1; (c) CTO-Fe10 S1 y (d) CTO-Ag10 S1.

En el caso de la muestra CTO-Fe10 S1, no fue posible identificar picos asociados al *Fe* (Fig. 5.2 (c)), ya sea en fase metálica o en forma de óxidos como *FeO*, Fe_2O_3 o Fe_3O_4 , mientras que en la muestra CTO-Ni10 S1 se encontró el *Ni* como óxido (JCPDF 21-1276) (Fig. 5.2 (b)) y, en la muestra CTO-Ag10 S1 se identificó *Ag* (JCPDF 03-065-2871) (Fig. 5.2 (d)).

Los resultados de DRX se analizaron mediante refinamiento de Rietveld usando el programa TOPAS. A partir de estos resultados se observa (Tabla 5.1), en primer lugar, que la cantidad de $CaCO_3$, es de un 8,34% en la muestra CTO S1, este subproducto aumenta en la muestra dopada con *Ni*, y disminuye en la muestra dopada con *Ag*. Para el caso de la muestra CTO-Fe10 S1 se observa una gran cantidad de $CaCO_3$ alcanzando un 47,8%. En términos de la carga de dopante, se observa una cantidad menor a la esperada en el porcentaje de dopantes para el caso del *Ni* y la *Ag*, la muestra dopada con *Fe*, este metal no es identificado en el espectro en ninguna de sus fases. Esto deja entrever que la presencia de *Fe* altera la cantidad de $CaCO_3$ en la muestra, aumentándola considerablemente, junto con disminuir el tamaño de cristalito en comparación al resto de las

muestras. En relación a este último parámetro se observa un tamaño de cristalito menor en las muestras dopadas, para el caso del CTO. Mientras que en la muestra de CTO-Ni10 S1, se observa un tamaño de cristalito de 18,9 [nm] para el NiO. Este valor es un parámetro cristalino que da cuenta de las variaciones microestructurales de las muestras. Finalmente se tiene el parámetro de "God of Fitness" (GOF) que indica que el ajuste realizado es un ajuste adecuado para todas las muestras menos para la muestra dopada con Ag.

Tabla 5.1: Resultados del análisis de Rietveld para las muestras CTO S1; CTO-Ni10 S1; CTO-Fe10 S1 y CTO-Ag10 S1.

Muestra	Fases presentes	Tamaño de cristalito	GOF
CTO S1	CTO = 91,66%p. $CaCO_3 = 8,34\%p.$	$CTO = 41,4 \ [nm]$	1,91
CTO-Ni10 S1	CTO = 84,99%p. $CaCO_3 = 11,85\%p.$ NiO = 3,16%p.	CTO = 30,3 [nm] NiO = 18,9 [nm]	1,78
CTO-Fe10 S1	CTO = 32,74% p. $CaCO_3 = 47,81\% p.$ Amorfa = 19,45% p.	$CTO = 26,11 \ [nm]$	1,34
CTO-Ag10 S1	CTO = 88,08% p. $CaCO_3 = 6,37\% p.$ $Ag_{(s)} = 5,55\% p.$	CTO = 49,1 [nm]	3,54

5.1.2 Microscopía Electrónica de Barrido Síntesis 1

El análisis SEM de la muestra CTO-Ni10 S1 entrega las siguientes imágenes que se presentan en la Fig. 5.3:

Figura 5.3: SEM de la muestra CTO-Ni10 S1.

En estas imágenes se observa un material con una gran distribución de tamaño, como se observa en la Fig. 5.3(a). Los tamaños de partículas van desde 20 $[\mu m]$ a 400 $[\mu m]$. También se observa que las partículas de mayor tamaño son porosas (Fig. 5.3(c)) o agrietado (Fig. 5.3(d)).

La composición elemental de las muestras se determinó mediante EDS, técnica donde se estima un haz de electrones de varios micrones, que entrega porcentajes atómicos y en peso de cada elemento presente, el software de análisis entrega estos resultados de porcentajes en peso en base al área bajo la curva de los espectros encontrados, para luego calcular los porcentajes atómicos. Este análisis se realiza en varios puntos, en la Fig. 5.4 se encuentra un espectro característico de estos resultados.

Figura 5.4: Espectro de EDS muestra CTO-Ni10 S1.

Con la unión de los resultados de los diferentes puntos se obtiene, una relación entre el Ca y el Ti cercana a la estequiométrica (1:1), en términos de porcentaje atómico y una carga de dopante menor a la esperada en relación al porcentaje en peso. Los promedios de estos resultados se muestran en la Tabla 5.2.

Elemento	Porcentaje Atómico	Porcentaje en Peso
Са	13,5%	21,5%
Ti	15,4%	28,1%
0	68,7%	44,6%
Ni	2,4%	5,8%

Tabla 5.2: Porcentajes atómicos y en peso obtenidos del análisis EDS, muestra CTO-Ni10 S1.

En relación al análisis particular de la distribución de *Ni* en la muestra, se analizan diferentes puntos, estos resultados tienen una desviación estándar, con respecto a su porcentaje másico, igual a $\sigma = 2,72$. Con este valor se busca poder identificar si la distribución de *Ni* es homogénea o heterogénea, para compararla con el resto de las muestras analizadas. Para este caso la distribución de *Ni* es homogénea en relación a los puntos analizados.

5.2 Caracterización de muestras síntesis 2

5.2.1 Difracción de Rayos X Síntesis 2

La preparación del conjunto de muestras de la S2 fue con la finalidad de mejorar la pureza de los materiales preparados, la que se fabricó utilizando una proporción estequiométrica diferente en relación al gelificante y mediante un nuevo procedimiento. De esta forma se fabrican cuatro muestras una de CTO puro (CTO S2), una muestra de CTO dopada con un 10% de Ni (CTO-Ni10 S2), una muestra dopada con 10% de Fe (CTO-Fe10 S2) y, finalmente, una muestra dopada con 10% de Ag (CTO-Ag10 S2). Estos materiales fueron caracterizados por DRX, estos patrones se presentan en la Fig. 5.5.

Figura 5.5: Patrón de difracción de rayos X para las muestras (a) CTO S2; (b) CTO-Ni10 S2; (c) CTO-Fe10 S2 y (d) CTO-Ag10 S2.

Con respecto a los patrones obtenidos, es posible observar el patrón cristalino que se identifica con la ficha JCPDF 42-0423 asociada al CTO, además se siguen encontrando impurezas de $CaCO_3$ (JCPDF 05-0586) (Fig. 5.5), junto con fases asociadas a los dopantes, *NiO* (JCPDF 47-1049) en la

muestra CTO-Ni10 S2 (Fig. 5.5 (b)) y plata metálica (JCPDF 03-065-2871) en la muestra CTO-Ag10 S2 (Fig. 5.5 (d)). Para el caso de la muestra CTO-Fe10 S2 (Fig. 5.5 (c)), se observa un patrón poco definido, mostrando principalmente picos asociados al $CaCO_3$.

Para comparar, con más detalle, se realiza un análisis de Rietveld. Estos resultados se presentan en la Tabla 5.3.

Tabla 5.3: Resultados del análisis de Rietveld para las muestras CTO S1; CTO S2; CTO-Ni10 S1; CTO-Ni10 S2; CTO-Fe10 S1; CTO-Fe10 S2; CTO-Ag10 S1 y CTO-Ag10 S2.

Muestra	Fases presentes	Tamaño de cristalito	GOF
CTO S2	CTO = 95,42%p. $CaCO_3 = 4,58\%p.$	$CTO = 23,1 \ [nm]$	1,43
CTO-Ni10 S2	CTO = 80,99% p. $CaCO_3 = 9,87\% p.$ NiO = 9,14% p.	$CTO = 23,8 \ [nm]$ $NiO = 5,1 \ [nm]$	1,29
CTO-Fe10 S2	CTO = 23,76%p. $CaCO_3 = 57,11\%p.$ Amorfa = 19,13%p.	$CTO = 23,98 \ [nm]$	1,21
CTO-Ag10 S2	CTO = 91,34%p. $CaCO_3 = 7,54\%p.$ $Ag_{(s)} = 1,13\%p.$	<i>CTO</i> = 46,8 [<i>nm</i>]	1,75

A partir de estos resultados, se observa que el porcentaje de $CaCO_3$ aumenta en las muestras dopadas, en comparación con la muestra CTO S2, alcanzando un máximo en la muestra dopada con *Fe*, al igual que en el conjunto de muestras fabricadas con la síntesis 1. En relación a la cantidad de dopante, esta es más cercana a la esperada en el caso de la muestra CTO-Ni10 S2, junto con un tamaño de cristalito menor, en comparación a la muestra CTO-Ni10S1, asociado al dopante. Luego, considerando la muestra CTO-Ag10 S2, se observa una baja cantidad de dopante, en relación a la misma muestra del primer grupo. Además, al igual que en la serie 1 no es posible identificar el *Fe* en la muestra dopada con este metal, y en esta misma muestra se observa una gran cantidad de fase amorfa.

5.2.2 Microscopía Electrónica de Barrido Síntesis 2

Luego de estos análisis se realiza SEM y EDS a algunas muestras seleccionadas, estas muestras son la muestra CTO S2 y CTO-Ni10 S2.

Analizando la muestra CTO S2, se obtiene los resultados de SEM y EDS, presentes en la Fig. 5.6 y Fig. 5.7.

Figura 5.6: SEM de la muestra CTO S2.

A partir del SEM se observa una gran dispersión de tamaños de partícula y una morfología irregular (Fig. 5.6 (a)). Los tamaños de las partículas están desde los 10 $[\mu m]$ a los 200 $[\mu m]$. Además, se observan pequeñas partículas sobre la superficie de las partículas más grandes (Fig. 5.6 (b) y (c)). Para el caso de la Fig. 5.6 (d), se observa una morfología que podría asociarse a una fase amortizada.

La composición elemental de las muestras se determinó mediante EDS, este análisis se realiza en varios puntos, un espectro característico de estos resultados se presenta en la Fig. 5.7.

Figura 5.7: Espectro EDS muestra CTO S2

Promediando los resultados de varios puntos, se obtiene una relación entre el *Ca* y el *Ti* de 3:2 respectivamente, en términos de porcentaje atómico, este alto porcentaje de calcio se justifica en la presencia de fases ricas en calcio relacionado a los resultados de DRX (Tabla 5.4) donde existen fases como el *CaCO*₃ que podrían estar presentes en los puntos analizados. Los promedios de estos resultados se muestran en la Tabla 5.4.

Elemento	Porcentaje Atómico	Porcentaje en Peso
Са	24,2%	45%
Ti	16,2%	23%
0	59,6%	32%

Tabla 5.4: Porcentajes atómicos y en peso obtenidos del análisis EDS, muestra CTO S2.

En el caso particular de la Fig 5.6 (d) se encuentra un alto porcentaje atómico de Ca, a través del EDS, alcanzando un 49,33%, mientras que un bajo porcentaje de Ti, de 6,79%. Acoplando estos resultados, con los de DRX, esta partícula de diferente morfología podría ser $CaCO_3$.

Por otro lado, en la Fig. 5.8 y Fig. 5.9 se muestran las imágenes SEM y el análisis EDS para la muestra CTO-Ni10 S2.

Figura 5.8: SEM de la muestra CTO-Ni10 S2.

A partir de estas imágenes se observa una distribución de tamaños variable en particular esto se observa en la Fig. 5.8 (a), los tamaños de las partículas están desde $5[\mu m]$ a $200[\mu m]$, además de diferentes morfologías en términos de porosidad, encontrando partículas porosas, Fig. 5.8 (b) y partículas donde se observa un material más consolidado Fig. 5.8 (d).

La composición elemental de las muestras se determinó mediante EDS, este análisis se realiza en varios puntos, un espectro característico de estos resultados se presenta en la Fig. 5.9.

Figura 5.9: Espectro EDS para la muestra CTO-Ni10 S2.

Los resultados de EDS de la muestra CTO-Ni10 S2 muestran una relación cercana a 4:3 para el Ca y el Ti, esto debido a la presencia de fases ricas en calcio identificadas con DRX. Además, se tiene un 7,57% en masa de níquel, considerando los promedios de los puntos medidos, se obtienen los datos en la Tabla 5.5.

Elemento	Porcentaje Atómico	Porcentaje Másico
Са	19,1%	27,7%
Ti	14,2%	24,6%
0	63,4%	40,1%
Ni	3,3%	7,6%

Tabla 5.5: Porcentajes atómicos y másicos obtenidos del análisis EDS, muestra CTO-Ni10 S2.

En relación al análisis particular de la distribución de *Ni* en la muestra, se analizan diferentes puntos, estos resultados tienen una desviación estándar, con respecto a su porcentaje másico, igual a $\sigma = 2,7$. Comparando este valor con el valor obtenido de la muestra CTO-Ni10 S1, se observa una distribución bastante similar entre ambas muestras.

5.3 Caracterización de muestra bimetálicas

5.3.1 Difracción de Rayos X muestras bimetálicas

Con el objetivo de analizar la influencia del *Fe* en un catalizador de níquel soportado en titanato de calcio, se fabrican tres muestras con el método de síntesis dos. Estas tres muestras corresponden a, una muestra de CTO con 10% de níquel y 1% de hierro (CTO-Ni10+Fe1 S2), una muestra de CTO con 10% de níquel y 2% de hierro (CTO-Ni10+Fe2 S2) y finalmente una muestra de CTO con 10% de níquel y 3% de hierro (CTO-Ni10+Fe1 S2). Estos porcentajes fueron elegidos

según los resultados encontrados en la literatura, donde se identificó que sobre un 7% de Fe el efecto de este metal era perjudicial y el mejor desempeño se observa en muestras de 3% de Fe. Para cumplir este objetivo, estos materiales serán comparados con la muestra CTO-Ni10 S2.

Estas muestras son caracterizadas utilizando DRX, los patrones encontrados se muestran en la Fig. 5.10, comparados con el patrón de difracción de la muestra CTO-Ni10 S2 Fig. 5.10 (a).

Figura 5.10: Patrón de difracción de rayos X para las muestras (a) CTO-Ni10 S2; (b) CTO-Ni10+Fe1 S2; (c) CTO-Ni10+Fe2 S2 y CTO-Ni10+Fe3 S2.

En estas muestras se observa un patrón cristalino común asociado al CTO, que se identifica con la ficha JCPDF 42-0423, además de la presencia de $CaCO_3$ (JCPDF 05-0586) y *NiO* (JCPDF 47-1049). No se detecta *Fe* con esta técnica en ninguna de las muestras.

Con estos patrones se realiza un análisis de Rietveld, donde se obtienen los siguientes resultados, presentados en la Tabla 5.6. Se observa que la cantidad de $CaCO_3$ aumenta en las muestras codopadas, pero no de forma proporcional, la muestra con mayor cantidad es la muestra CTO- Ni10+Fe2 S2, alcanzando un 20,8%. En relación al tamaño de cristalito, la presencia de Fe fomenta un cristalito más pequeño, esta inferencia tampoco es proporcional a la cantidad de codopante. Además, se encuentra una cantidad cercana a la esperada en relación al porcentaje de dopante.

Muestra	Fases presentes	Tamaño de cristalito	GOF
CTO-Ni10 S2	CTO = 80,99%p. $CaCO_3 = 9,87\%p.$ NiO = 9,14%p.	CTO = 23,8 [nm] NiO = 5,1 [nm]	1,29
CTO-Ni10+Fe1 S2	CTO: 56,36%p. $CaCO_3 = 24,05\%p.$ NiO = 10,5%p. Amorfo = 9,09%p.	CTO = 31,3 [nm] NiO = 2,4 [nm]	1,16
CTO-Ni10+Fe2 S2	CTO: 71,51%p. $CaCO_3 = 20,82\%p.$ NiO = 7,68%p.	CTO = 19,5 [nm] NiO = 3,9 [nm]	1,16
CTO-Ni10+Fe3 S2	CTO: 75,03%p. $CaCO_3 = 16,31\%p.$ NiO = 8,66%p.	CTO = 24,2 [nm] NiO = 3,6 [nm]	1,19

Tabla 5.6: Resultados del análisis de Rietveld para las muestras CTO-Ni10 S2; CTO-Ni10+Fe1 S2; CTO-Ni10+Fe2 S2 y CTO-Ni10+Fe3 S2.

5.3.2 Microscopía Electrónica de Barrido muestras bimetálicas

Se selecciona la muestra CTO-Ni10+Fe1 S2, para caracterizarla utilizando SEM y EDS. Estos resultados se observan en la Fig. 5.11 y Fig. 5.12.

Figura 5.11: SEM de la muestra CTO-Ni10+Fe1 S2.

En estas imágenes, Fig. 5.11, se observan diferentes tamaños de partícula, que van desde los $5[\mu m]$ a los 250 $[\mu m]$, con una amplia distribución. Además de partículas de material consolidado, poco porosas con respecto a la resolución del microscopio.

La composición elemental de las muestras se determinó mediante EDS, este análisis se realiza en varios puntos, un espectro característico de estos resultados se presenta en la Fig. 5.12.

Figura 5.12: Espectro EDS de la muestra CTO-Ni10+Fe1 S2.

Luego, se promedian los diferentes puntos de este análisis, presentes en la Tabla 5.7 donde se observa que se cumple la relación estequiométrica del Ca y el Ti, además de poseer un 11,22% de Ni en masa. Esta técnica es capaz de detectar el Fe, que no es detectado por DRX, encontrando un 0,92% bastante cercano a lo esperado (1%).

Elemento	Porcentaje Atómico	Porcentaje Másico
Са	12,78%	19,62%
Ti	11,8%	21,82%
0	70,41%	46,42%
Ni	4,57%	11,22%
Fe	0,44%	0,92%

Tabla 5.7: Porcentajes atómicos y másicos obtenidos del análisis EDS, muestra CTO-Ni10+Fe1 S2.

En relación al análisis particular de la distribución de Ni en la muestra, se analizan diferentes puntos, estos resultados tienen una desviación estándar, con respecto a su porcentaje másico, igual a $\sigma = 4,37$. Comparando este valor con el valor obtenido de la muestra CTO-Ni10 S1 y CTO-Ni10 S2, se observa una distribución más heterogénea, lo que podría significar aglomeraciones más grandes de *Ni*.

5.4 Caracterización de muestras CCTO y CCTO-Ni10

5.4.1 Difracción de Rayos X CCTO y CCTO-Ni10

Se fabrican dos muestras CCTO y CCTO-Ni10, que corresponden a titanato de calcio y cobre, y titanato de calcio y cobre dopado con un 10% de níquel, respectivamente. Estas muestras son caracterizadas utilizando difracción de rayos X, los patrones obtenidos se muestran en la Fig. 5.13.

Figura 5.13: Patrón de difracción de rayos X para las muestras (a) CCTO; (b) CCTO-Ni10.

En los patrones de difracción se encuentra el patrón cristalino buscado, identificado con la ficha JCPDF 01-075-2188 asociada al CCTO en ambas muestras, además se observan las fases de CTO (JCPDF 42-0423) y óxido de cobre (*CuO*) (JCPDF 45-0937). Junto a lo anterior, en la muestra dopada, Fig. 5.13 (b), se identifican picos asociados a la presencia de *NiO* (JCPDF 47-1049).

A partir de estos patrones de DRX se realiza un análisis de Rietveld, donde se obtienen los siguientes resultados, expuestos en la Tabla 5.8.

Muestra	Fases presentes	Tamaño de cristalito	GOF
ССТО	CCTO = 87,16%p. CTO = 6,42%p. CuO = 6,42%p.	CCTO = 47,7[nm]	1,32
CCTO-Ni10	CCTO = 75,14%p. CTO = 8,48%p. CuO = 12,78%p. NiO = 3,6%p.	CCTO = 62[nm] $NiO = 30[nm]$	1,81

Tabla 5.8: Resultados del análisis de Rietveld para las muestras CCTO y CCTO-Ni10 S2.

Este análisis confirma las fases que se encuentran presentes, en un porcentaje de 87,16% de CCTO, 6,42% de CTO y 6,42% *CuO* para el CCTO. Para el caso de la muestra CCTO-Ni10, se observa un porcentaje de 75,14% para la fase buscada de CCTO, un mayor porcentaje de 8,48% para la fase de

CTO y un 12,78% para el CuO, además se identifica que la cantidad de Ni en esta última muestra es de 3,6%, junto a un tamaño de cristalito mayor en comparación a las muestras de CTO dopadas con Ni.

5.4.2 Microscopía Electrónica de Barrido CCTO y CCTO-Ni10

Además, estas muestras son caracterizadas por SEM y EDS, con lo que se obtienen las Fig. 5.14 y Fig. 5.15

Figura 5.14: SEM de la muestra CCTO.

Estas imágenes muestran una distribución de tamaño amplia, estos tamaños van desde los $5[\mu m]$ a los $300[\mu m]$, donde existen partículas grandes sin porosidad visibles, como se observa en la Fig. 5.14 (b).

Por otro lado, en relación a los resultados de EDS, se analizan diversos puntos, obteniendo, en cada uno, un gráfico como se muestra en la Fig. 5.15.

Figura 5.15: EDS muestra CCTO.

El promedio de los diferentes puntos medidos se presenta en la Tabla 5.9, donde se observa que los metales Ca, Cu y Ti siguen la proporción estequiométrica esperada (1:4:3) respectivamente, esta proporción se justifica con la presencia de fases ricas en Cu, como el CuO, identificadas a través de DRX.

Elemento	Porcentaje Atómico	Porcentaje Másico
Са	4,5%	5,9%
Cu	18,8%	39,5%
Ti	13,3%	20,7%
0	63,4%	33,9%

Tabla 5.9: Porcentajes atómicos y másicos obtenidos del análisis EDS, muestra CCTO.

Existen puntos en la medición, donde se observó un mayor porcentaje de cobre, que el esperado según la estequiometria, lo que se atribuye, complementando con los resultados de DRX, a la presencia de CuO.

Por otro lado, en relación a la muestra CCTO-Ni10, se obtiene, a partir del análisis SEM y EDS, los siguientes resultados.

Figura 5.16: SEM de la muestra CCTO-Ni10.

A partir de estas imágenes se observa una gran distribución de tamaños, desde los $5[\mu m]$ a los $200[\mu m]$, además de que estas partículas poseen una morfología compacta como se observa en la Fig. 5.16 (c) y (d).

Luego, se realiza un EDS, midiendo la composición atómica y en masa en diferentes puntos. Uno de los espectros obtenidos se muestra en la Fig. 5.17.

Figura 5.17: EDS muestra CCTO-Ni10.

Considerando el promedio de los análisis de EDS, se obtiene una proporción cercana a la esperada para el CCTO, entre los porcentajes atómicos de los metales *Ca*, *Cu* y *Ti*. Además, se observa un 13% másico de *Ni*. La distribución de este *Ni* es irregular, alcanzando un máximo de 18,35% y un mínimo de 0,61%. Esto entrega una desviación estándar de σ = 5,71 en los datos medidos, mayor que las muestras dopadas analizadas anteriormente. Esto deja entrever que existirían aglomeraciones de *Ni*, y una distribución más heterogénea. Estos resultados se presentan en la Tabla 5.10.

Elemento	Porcentaje Atómico	Porcentaje Másico
Са	3,6%	4,5%
Cu	14%	27,4%
Ti	16,2%	24,1%
0	59,4%	31%
Ni	6,8%	13%

Tabla 5.10: Porcentajes atómicos y másicos obtenidos del análisis EDS, muestra CCTO-Ni10.

5.5 Estudio de la Respuesta Catalítica

La respuesta catalítica de las muestras fabricadas con la síntesis 1, las muestras fabricadas con la síntesis 2, las muestras bimetálicas y las muestras de CCTO y CCTO-Ni10, se evaluó en las reacciones de metanación descritas en la metodología. Los resultados son obtenidos a través de un cromatógrafo, equipo que entrega un espectro con diferentes picos asociados a los diferentes

gases identificados, el área bajo de la curva de estos picos es proporcional a la concentración de gas presente en la muestra tomada (1mL).

Por ejemplo, se analiza la muestra CTO-Ni10 S2, donde se obtienen diferentes espectros a espectros a 25°C, 200°C, 225°C, hasta llegar a los 500°C. Algunos de estos resultados se presentan en la Fig. 5.18, análisis a 25°C, y en la Fig. 5.19, análisis a 425°C.

Figura 5.18: Espectro de cromatografía para muestra CTO-Ni10 S2, 25°C.

Figura 5.19: Espectro de cromatografía para muestra CTO-Ni10 S2, 425°C.

A partir de estos espectros donde se identifican diferentes picos, asociados a cada gas se obtiene el área bajo la curva de cada uno, estas son proporcionales a la concentración de cada gas. Se realizan tres medidas a cada temperatura con lo que se obtiene un área promedio. Los resultados obtenidos para la muestra CTO-Ni10 S2 se presentan en la Tabla 5.11

Tabla 5.11: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados, m	iuestra
CTO-Ni10 S2.	

Temperaturas	CO_2	H_2	CH_4	СО
25	365290	15261	0	0
200	364562	28695	2285	35
225	350250	20079	12714	39
250	329128	26785	24802	1
275	306003	23211	65719	150
300	230468	18118	125779	740
325	198678	12920	262919	475
350	200222	10066	336209	2149
375	151997	10379	343816	23
400	188316	10891	319854	660
425	179262	12666	253884	1761
450	189538	15556	197017	14382
475	197942	18047	74264	71001
500	193454	13250	81152	81152

Estos valores se utilizan para calcular la conversión y selectividad en base a las siguientes ecuaciones:

$$Conversión_{CO_2} = \frac{X_{CO_{225^{\circ}C}} - X_{CO_{2T}}}{X_{CO_{225^{\circ}C}}} \cdot 100\%$$
(1)

$$Selectividad_{CH_4} = \frac{X_{CH_4T}}{X_{CH_4T} + X_{COT}} \cdot 100\%$$
⁽²⁾

$$Selectividad_{CO} = \frac{X_{CO_T}}{X_{CH_{4_T}} + X_{CO_T}} \cdot 100\%$$
(3)

donde $X_{CO_{2}25^{\circ}C}$ corresponde a el área bajo la curva promedio para la temperatura inicial, en este caso la medición inicial es a 25°C. Además X_{CO_2T} , X_{CH_4T} y X_{COT} , corresponden al área asociada a cada especie a una temperatura específica. A partir de estas fórmulas se obtienen los resultados presentes en la Tabla 5.12, para la muestra CTO-Ni10 S2.

Temperatura	Conversión	Selectividad CH_4	Selectividad CO
25	0.0 %	-	-
200	0.2 %	98.5 %	1.5 %
225	4.1 %	99.7 %	0.3 %
250	9.9 %	100.0 %	0.0 %
275	16.2 %	99.8 %	0.2 %
300	36.9 %	99.4 %	0.6 %
325	45.6 %	99.8 %	0.2 %
350	45.2 %	99.4 %	0.6 %
375	58.4 %	100.0 %	0.0 %
400	48.4 %	99.8 %	0.2 %
425	50.9 %	99.3 %	0.7 %
450	48.1 %	93.2 %	6.8 %
475	45.8 %	51.1 %	48.9 %
500	47.0 %	50.0 %	50.0 %

Tabla 5.12: Resultados de conversión y selectividad para la muestra CTO-Ni10 S2.

Estos resultados se grafican y se presentan de acuerdo la conversión (barras azules), y la selectividad representada por línea verde para el metano y naranja para el monóxido de carbono.

Existen algunas dificultades cuando los picos encontrados no son sustanciales. Este fenómeno ocurre a bajas conversiones, donde existen productos asociados a esta conversión, pero los picos observados en los espectros son poco claros. Un ejemplo de esto se da en la muestra CTO-Fe10 S2, en la Fig. 5.20 se observa el espectro entregado por el cromatógrafo a 250°C. En este espectro se obtiene una conversión de 6%.

Figura 5.20: Espectro de cromatografía para muestra CTO-Fe10 S2, 250°C.

A simple vista no se observan picos asociados al CH_4 o CO, pero al enfocarnos en la zona entre 200 y 400 segundos, se tiene el gráfico en la Fig. 5.21, donde se observan más o menos dos picos. Estas áreas deben ser etiquetadas de forma manual, por lo que las bajas conversiones llevan a una distorsión en los resultados encontrados que genera variaciones en la selectividad. A modo de comparación, en la Fig. 5.22 se observa un acercamiento a los picos de CH_4 y CO para la muestra CTO-Ni10 S2 a 425°C, en este caso el programa de análisis del cromatógrafo identifica y calcula de forma automática los picos asociados a cada gas.

Figura 5.21: Espectro de cromatografía para muestra CTO-Fe10 S2, 250°C, acercamiento.

Figura 5.22: Espectro de cromatografía para muestra CTO-Ni10 S2, 425°C, acercamiento.

5.5.1 Actividad catalítica muestras síntesis 1

A partir de datos entregados por el cromatógrafo, presentes en el Anexo 10.210.1, se obtienen los gráficos resultantes del análisis de las muestras sintetizadas con la síntesis 1, expuestos en la Fig. 5.23. Para el caso de la muestra CTO S1 (Fig. 5.23 (a)) se observa una baja conversión alcanzando

un máximo de 10% a 450°C, además se observa una selectividad variable, mayormente inclinada a la producción de *CO*, alcanzando un máximo cercano al 100% a los 500°C, con una conversión de 9,8%. En términos de selectividad hacia el CH_4 , se alcanza un máximo de 62% a 300°C, con una conversión de 6,43%.

Para el caso de la muestra dopada con *Ni*, es posible observar una conversión ascendente con la temperatura, alcanzando su máximo a 450°C, con un 53% (Fig. 5.23 (b)), y con un 85% de selectividad hacia el CH_4 , en términos de selectividad, esta es favorable al metano, alcanzando un 100% a bajas temperaturas (<300°C), y disminuye mientras aumenta la temperatura, alcanzando un mínimo de 28% a 500°C.

Por otro lado, para la muestra CTO-Fe10 S1 (Fig. 5.23 (c)) se observa una baja conversión, con un máximo a los 500°C de 18%, con una selectividad de 100% hacia el *CO*. Con respecto a la selectividad, esta es bastante variable alcanzando un máximo para el CH_4 de 90% a 350°C con una conversión de 0,67%.

Finalmente, para el caso de la muestra dopada con plata (Fig. 5.23 (d)) existe una conversión baja y variable, alcanzando un máximo de 12% a 375°C, con una selectividad de 90% hacia el *CO*. La selectividad hacia este gas aumenta con la temperatura alcanzando un 99% a 500°C, con un 10,6% de conversión. En relación a la selectividad hacia el CH_4 esta alcanza un máximo de 53% a 200°C con una conversión de 8,1%.

Comparando estos resultados, se observa que la muestra con mejor desempeño catalítico en términos de conversión y selectividad es la muestra CTO-Ni10 S1.

Figura 5.23: Conversión y selectividad a diferentes temperaturas, para muestras fabricadas con el método de síntesis 1. (a) CTO S1; (b) CTO-Ni10 S1; (c) CTO-Fe10 S1; (d) CTO-Ag10 S1

5.5.2 Actividad catalítica muestras síntesis 2

Se analizan las muestras fabricadas con la segunda síntesis, estos resultados se observan en la Fig. 5.24, el detalle de estos resultados se encuentra en el Anexo 10.2. Para la muestra CTO S2 (Fig. 5.24 (a)) se observa una baja conversión con un máximo de 17,5% a 475°C, a esta temperatura se obtiene una selectividad de 97% favorable al *CO*. En términos de selectividad, esta también es variable alcanzando un máximo para el CH_4 de 85% a 225°C, con una conversión de 8,4%, mientras que para el *CO* se encuentra una selectividad máxima a 500°C de 100%, con una conversión de 5,8%.

Para el caso de la muestra dopada con *Ni* (Fig. 5.24 (b)) se encuentra que la conversión aumenta con la temperatura llegando a un máximo de conversión de 58,4% a 375°C, con un 100% de selectividad hacia el CH_4 , para luego disminuir. En términos de selectividad, esta es favorable al metano, disminuyendo pasados los 425°C, llegando a un mínimo de 50% a 500°C, con una conversión de 47%.

Continuando con los resultados, para el caso de la muestra CTO-Fe10 S2 (Fig. 5.24 (c)) se observa una baja conversión, con un máximo de 19% a 500°C, con una selectividad favorable al *CO* de 100%. Esta selectividad es constante sobre 350°C, mientras que para el CH_4 se alcanza un máximo de 92,6% a 275°C con un 13% de conversión.

Finalmente, para la muestra CTO-Ag10 S2 (Fig. 5.24 (d)) se observa una baja conversión alcanzando un máximo de 29,8% a 250°C, con una selectividad de 77,9% favorable al *CO*. La selectividad a este gas aumenta con la temperatura alcanzando un 100% a 500°C con un 22,6% de conversión.

Para esta serie de muestras, la que presenta un mejor desempeño es la muestra CTO-Ni10 S2, con una temperatura óptima de 375°C.

Figura 5.24: Conversión y selectividad a diferentes temperaturas, para muestras fabricadas con el método de síntesis 2. (a) CTO S2; (b) CTO-Ni10 S2; (c) CTO-Fe10 S2; (d) CTO-Ag10 S2.

5.5.3 Actividad catalítica muestras bimetálicas

Se analizan las tres muestras bimetálicas, comparándolas con la muestra CTO-Ni10 S2 y se obtienen los resultados presentes en la Fig. 5.25. El detalle de estos se encuentra en el Anexo 10.2.

En estos resultados se observa que la muestra con mejor desempeño es la muestra sin *Fe* (Fig. 5.25 (a)), que alcanza un 58% de conversión. Con respecto a la selectividad deseada se observa un máximo cercano al 100% en todas las muestras. La muestra con 1% de *Fe* (Fig. 5.25 (b)), se alcanza un máximo de conversión de 55,5% a 500°C, pero con una selectividad favorable al *CO* de 59,6%. Este resultado sigue la tendencia de la selectividad, que disminuye con la temperatura. El punto con mejor desempeño es a una temperatura de 425°C con una conversión de 54% y una selectividad de 97,6%.

La muestra con 2% de *Fe* (Fig. 5.25 (c)) se observa una conversión que aumenta con la temperatura y luego se estabiliza alrededor del 44% sobre 350°C. En términos de selectividad, se observa que inicia en un 88,3%, favoreciendo la formación de CH_4 , aumentando hasta los 350°C, luego de esto disminuye hasta llegar a un 24%. La temperatura con mejor desempeño es a 400°C don una conversión de 43,6% y una selectividad de 96% hacia el metano.

Finalmente, para la muestra CTO-Ni10+Fe3 S2 (Fig. 5.25 (d)), se observa una conversión que aumenta con la temperatura, alcanzando un máximo de 52,6% a 450°C, con una selectividad de 84,5% favorable al CH_4 . En términos de selectividad esta aumenta en un inicio, y alcanza un máximo de 99,3% a 350°C con una conversión de 49%, para luego comenzar a disminuir alcanzando un mínimo a los 37% a 500°C con una conversión de 51,3%. El punto con mejor desempeño se da a 400°C, con una conversión de 52,2% y una selectividad favorable al metano de 98,2%.

Figura 5.25: Conversión y selectividad a diferentes temperaturas, para muestras bimetálicas (a) CTO-Ni10 S2; (b) CTO-Ni10+Fe1 S2; (c) CTO-Ni10+Fe2 S2; (d) CTO-Ni10+Fe3 S2

5.5.4 Actividad catalítica muestras CCTO y CCTO-Ni10

La actividad catalítica de las muestras con CCTO como soporte Fig. 5.26, el detalle de estos resultados se encuentra en el Anexo 10.2. En los gráficos obtenidos se observa que la muestra pura (Fig. 5.26 (a)) presenta una conversión que aumenta con la temperatura, alcanzando un máximo de 40,7% a 475°C, con una selectividad de 100% hacia el *CO*. En términos de selectividad, esta es favorable al *CO* a todas las temperaturas, excepto a 400°C donde se observa una selectividad de 75,3% hacia el *CO*, con una conversión de 22,5%.

Para el caso del CCTO-Ni10 (Fig. 5.26 (b)), se observa una conversión que aumenta con la temperatura, alcanzando un máximo de 38,9% a 500°C. En relación a la selectividad, esta es constante con un valor de 100% favorable al *CO*.

Figura 5.26: Conversión y selectividad a diferentes temperaturas, para las muestras (a) CCTO; (b) CCTO-Ni10.

Como se observa en la figura anterior, existe una conversión similar en ambas muestras, cercana al 40% aproximadamente. Ambas muestras presentan una selectividad hacia el *CO* cercana al 100%.

5.6 Técnicas de caracterización complementarias

5.6.1 Análisis de Desorción de Temperatura Programada

Para obtener más información sobre el comportamiento de estos materiales, se realiza un análisis TPD de CO_2 para las muestras CTO s2; CTO-Ni10 S2; CCTO y CCTO-Ni10, con estos resultados, presentes en la Fig. 5.27, se busca comparar la capacidad de adsorción de este gas en los diferentes materiales. La cantidad de gas desorbido es proporcional al área bajo la curva, estos valores se presentan en la Tabla 5.13 y fueron calculados utilizando el software OriginPro. Además, es posible comparar la fuerza de esta adsorción dependiendo de a que temperatura se desorbe el gas, mientras más alta sea esta temperatura de desorción se asume una mayor fuerza en la adsorción inicial.

Tabla 5.13: Área bajo la curva de análisis TPD.

Material Analizado	Área bajo la curva TPD
CTO S2	$4 \cdot 10^{-3} [u.a.]$
CTO-Ni10 S1	$9.06 \cdot 10^{-4} [u.a.]$
CCTO	$1.24 \cdot 10^{-3}[u.a.]$
CCTO-Ni10	$4.82 \cdot 10^{-4} [u.a.]$

La muestra CTO S2 (Fig. 5.27 (a)), muestra que se desorbe el CO_2 , mayoritariamente, a bajas temperaturas (200-300°C) además, de un pico de desorción menor a 330°C. El primer pico de

desorción, debido a su baja temperatura, está asociado a la adsorción física del CO_2 , mientras que el pico de mayor temperatura podría atribuirse a la adsorción en un sitio de ácidos de Lewis débil, considerando que el CO_2 es una base de Lewis débil [26,45]. Esta muestra es la que presenta una mayor cantidad de gas adsorbido.

Luego, para la muestra CTO-Ni10 S2 (Fig. 5.27 (b)) se observa que presenta varios picos de desorción en todo el intervalo de temperaturas, mostrando una adsorción más fuerte, junto con que el *Ni* bloquea la desorción física. Además, este gráfico presenta una mayor área bajo la curva en comparación al CCTO-Ni10, esta área es proporcional a la cantidad de CO_2 adsorbido. Esto se podría deber a la mayor cantidad de *Ca* en la estructura [45,52].

En el caso de la muestra de CCTO puro (Fig. 5.27 (c)), se observa una curva similar a la de la muestra CTO S2, pero con una menor área bajo la curva. El único pico de desorción identificado es a 50°C asociado a la adsorción física de CO_2 en la muestra [45].

Finalmente, para la muestra CCTO-Ni10 (Fig. 5.27 (d)), en primer lugar, se observa que, en comparación con la muestra de CCTO no existe una desorción inicial asociada a una adsorción física débil. Además, se observan dos picos de desorción, a 50°C y 125°C. El primer pico identificado está asociado a la adsorción física de CO_2 , un poco más fuerte que la observada en la muestra de CCTO, mientras que en el segundo se encuentra una adsorción un poco más fuerte, asociada a sitios ácidos de Lewis débiles, presentes en los metales dentro del material. En este gráfico se encuentra un área bajo la curva menor a la muestra CTO-Ni10 S2, y menor a las muestras no dopadas.

Figura 5.27: CO_2 -TPD, en escala logarítmica, para las muestras (a) CTO S2; (b) CTO-Ni10 S2; (c) CCTO; (d) CCTO-Ni10.

5.6.2 Espectroscopía de fotoelectrones emitidos por rayos X

Se realiza la caracterización de XPS para las muestras CTO S2, CTO-Ni10 S2, CCTO y CCTO-Ni10. Este análisis entrega, en primer lugar, los elementos identificados a través del espectro presente en la Fig. 5.28, correspondiente al espectro de la muestra CTO S2, en este gráfico se identifican picos asociados al Ca, Ti, O y C.

Figura 5.28: Espectro completo de XPS muestra CTO S2.

Para el caso de la muestra CTO-Ni10 S2, se obtiene el espectro en la Fig. 5.29 donde se identifican picos asociados al *Ca*, *Ti*, *O*, *Ni* y *C*.

Figura 5.29: Espectro completo de XPS muestra CTO-Ni10 S2.

Luego se analiza la muestra de CCTO, donde se identifican picos asociados al *Ca*, *Ti*, *O*, *Cu* y *C*, además de trazas de *Ni*, Fig. 5.30.

Figura 5.30: Espectro completo de XPS muestra CCTO.

Finalmente, se analiza la muestra de CCTO-Ni10, donde se identifican picos asociados al *Ca*, *Ti*, *O*, *Cu*, *Ni* y *C*, Fig. 5.31.

Figura 5.31: Espectro completo de XPS muestra CCTO-Ni10.

Además, esta técnica entrega porcentajes atómicos asociados a las diferentes especies encontradas, estos porcentajes se presentan en la Tabla 5.14. En relación a estos resultados, al compararlos con los obtenidos por EDS, es posible identificar que en las muestras de CTO se observan porcentajes más cercanos a la proporción estequiométrica esperada entre el *Ca* y el *Ti*. Para el caso de las muestras de CCTO se observa una mayor cantidad de *Cu*, por lo que es predecible que la superficie del material contenga fases ricas en cobre como *CuO*, según lo identificado por DRX. En relación a las cargas de Ni, se se encuentra una mayor cantidad con esta técnica de caracterización.

Tabla 5.14: Porcentajes atómicos XPS.

MUESTRA	Са	Ti	Cu	0	Ni	С
CTO S2	9,7%	9,29%	-	55,22%	-	25,79%
CTO-NI10 S2	7,07%	7,15%	-	47,87%	9,41%	28,49%
CCTO	3,02%	8,24%	13,96%	48,29%	0,02%	26,47%
CCTO-NI10	1,43%	6,46%	13,67%	41,32%	7,83%0	29,29%

Finalmente se adquieren espectros de alta resolución de los elementos de interés y se obtienen los estados de oxidación. Estos espectros se obtienen, en primer lugar, para la muestra CTO S2, donde se desarrollan para el *Ca* (Fig. 5.32 (a)) donde se observa un estado de oxidación asociado a Ca^{2+}

identificado en dos picos, siendo el principal a 346,6 [eV]. En el caso del Ti (Fig. 5.32 (b)) se encuentran dos estados de oxidación Ti^{3+} y Ti^{4+} , estos estados se asocian a los picos principales con energías 458,3 [eV] y 459,2 [eV], respectivamente. Finalmente se obtiene el espectro de alta resolución para el O (Fig. 5.32 (c)), donde se identifican tres estados para el oxígeno, O^{2-} con un pico a una energía de 529,6 [eV]; OH^- con un pico a una energía de 531,6 [eV]; y finalmente H_2O con un pico a una energía de 533,3 [eV].

Figura 5.32: Espectros de alta resolución (a) *Ca*; (b) *Ti* y (c) *O*, muestra CTO S2.

Luego se obtienen los espectros de alta resolución de la muestra CTO-Ni10 S2 Fig. 5.33, en primer lugar, se tiene el espectro del *Ca* (Fig. 5.33 (a)) donde se identifica el estado de oxidación *Ca*²⁺con un pico principal a 346,5 [*eV*], y se encuentran picos, con el principal a 347,9 [*eV*], asociado al *CaO*. En el caso del *Ti* (Fig. 5.33 (b)) se observan los mismos estados de oxidación de la muestra anterior. Esto mismo ocurre en el caso del *O* (Fig. 5.33 (c)). Finalmente se tiene el espectro de alta resolución para el *Ni* donde se identifican dos regiones que representan los niveles de spin $Ni2p_{\frac{3}{2}}$ (855,4 eV) y $Ni2p_{\frac{1}{2}}$ (873 eV), asignados a un estado de oxidación Ni^{2+} [26].

Figura 5.33: Espectros de alta resolución (a) *Ca*; (b) *Ti*; (c) *O* y (d) *Ni*, muestra CTO-Ni10 S2.

También, se analizó mediante XPS la muestra de CCTO, donde se identifican 4 especies (Fig. 5.34). Para el caso del *Ca* (Fig. 5.34 (a)), *Ti* (Fig. 5.34 (c)) y *O* (Fig. 5.34 (d)) se encuentran los mismos estados de oxidación que en la muestra de CTO-Ni10 S2. Además, se obtiene el espectro de alta resolución del cobre, metal perteneciente a la perovskita CCTO, donde se identifican picos asociados a los estados de oxidación Cu^{1+} y Cu^{2+} , con una energía principal de 932,4 [*eV*] y 934,4 [*eV*], respectivamente.

Figura 5.34: Espectros de alta resolución (a) *Ca*; (b) Cu; (c) *Ti* y (d) *O*, muestra CCTO.

Finalmente se analizan los elementos pertenecientes a la muestra CCTO-Ni10 (Fig. 5.35). En este caso los espectros de alta resolución de los elementos *Ca* (Fig. 5.35 (a)), *Ti* (Fig. 5.35 (b)) y *Cu* Fig. 5.35 (c)) son análogos a la muestra de CCTO, mostrando los mismos estados de oxidación. En el caso del *O* (Fig. 5.35 (d)) se identifican tres estados, el primero de O^{2-} asociado a la energía de ligadura de 529,5 [*eV*], luego un estado a 530,1 [*eV*] identificado como *OH*⁻ y finalmente un estado a 531,6 [*eV*] que se asocia a *NiO*. Finalmente se tiene el espectro de alta resolución para el *Ni* donde se identifican dos regiones que representan los niveles de spin $Ni2p_{\frac{3}{2}}$ (855,4 eV) y $Ni2p_{\frac{1}{2}}$ (873 eV), asignados a un estado de oxidación Ni^{2+} [26].

Figura 5.35: Espectros de alta resolución (a) Ca; (b) Cu; (c) Ti; (d) O y (e) Ni, muestra CCTO-Ni10.

6 Discusión de Resultados

Los resultados de caracterización indican que en la muestra CTO S1 se encuentra un 91,66%p. de CTO, junto con impurezas de calcita ($CaCO_3$) correspondientes a 8,34%p. del material. Comparando estos resultados con la muestra CTO S2, fabricada con el segundo método de síntesis, es posible observar que con la síntesis 2 se obtiene un material con mayor pureza, y además con un menor tamaño de cristalito, lo que podría representar una mayor área superficial.

En relación con las muestras dopadas, la muestra CTO-Ni10 S1, presenta también, CTO mayoritariamente, con impurezas de calcita que alcanzan un 11,85%, además de esto se observa un 3,16% de óxido de níquel. Comparando estos resultados con la muestra CTO-Ni10 S2, es posible identificar que esta muestra presenta una cantidad de níquel más cercana a la esperada, 9,14% en masa, y además posee un tamaño de cristalito menor que la muestra fabricada con la síntesis 1, con lo que se esperaría que tuviera una mayor área expuesta en términos del soporte y en términos del catalizador. Sin embargo, los resultados de SEM indican que en la muestra CTO-Ni10 S1 podría existir una mayor porosidad en las partículas observadas, por la morfología de las partículas.

En el análisis las muestras dopadas con Fe, se observar que existe un mayor porcentaje de $CaCO_3$ que, de CTO en ambas muestras, CTO-Fe10 S1 y CTO-Fe10 S2, además de un alto grado de amorfización donde podría hallarse, probablemente, el Fe no detectado. Este resultado podría

deberse a que, durante la síntesis sol-gel, este dopante promueve la hidrólisis del gelificante (ácido cítrico), fenómeno que ocurre con otros gelificantes en este tipo de síntesis [66]. Siguiendo esta suposición, la muestra CTO-Fe10 S2, presentaría un mayor porcentaje de $CaCO_3$ debido a que se utilizó una mayor cantidad de ácido cítrico en su síntesis. Esta suposición se confirmaría por los resultados de las muestras bimetálicas, CTO-N10+Fe1 S2, CTO-N10+Fe2 S2 y CTO-N10+Fe3 S2. Con estos resultados es posible deducir que el *Fe* produce mayor formación de $CaCO_3$, en comparación a la muestra CTO-Ni10 S2. Esta formación no necesariamente es proporcional a la cantidad de este co-dopante, a pesar de esto, las muestras bimetálicas presentan un tamaño de cristalito menor, posiblemente mejorando su actividad catalítica.

En las muestras dopadas con Ag, se observa que este dopante se encuentra en estado metálico, con un 5,55% de Ag para la muestra CTO-Ag10 S1 y 1,13% para la muestra CTO-Ag10 S2. Para la muestra fabricada con la síntesis 1 no se alcanza un GOF aceptable en el análisis Rietveld, lo que quedaron fases sin identificar, para obtener un mejor ajuste en el análisis.

Finalmente, considerando los resultados de caracterización de las muestras CCTO y CCTO-Ni10, se observa una muestra que presenta, mayoritariamente, la fase buscada. Analizando la carga de dopante se observa que en esta estructura el níquel genera, al parecer, conglomerados más grandes, esto en base al tamaño de cristalito $(30[\mu m])$ y lo observado en los resultados de EDS.

Por otro lado, en relación a los resultados de actividad catalítica, en términos del porcentaje de conversión estos resultados se ajustan en parte, a lo reportado por Fischer et al. [20], quien reporta, comparando estos metales que el Ni tiene mejor desempeño, luego el Fe y finalmente la Ag. En este caso, el Ni posee una mayor conversión que el Fe y la Ag, en ambos sets de muestras.

En relación a la selectividad observada, es posible encontrar que el Ni es el catalizador con mejor respuesta, alcanzando valores cercanos al 100% de selectividad hacia el CH_4 , lo que concuerda con lo reportado por Mills y Steffgen [21], quienes identifican que el mejor desempeño de selectividad lo tiene el Ni, por sobre el Fe. El resto de las muestras no presenta una selectividad constante, probablemente por la baja conversión alcanzada, relacionado a errores experimentales.

Comparando las muestras fabricadas con diferentes métodos de síntesis, nos centramos en los mejores resultados de las muestras CTO-Ni10 S1 y CTO-Ni10 S2 estos resultados se observan en la Fig. 6.1.

Figura 6.1: Conversión y selectividad para el $CH_4,$ a diferentes temperaturas, para las muestras con mejor desempeño. CTO-Ni10 S1 y CTO-Ni10 S2.

Comparando ambos resultados, la muestra CTO-Ni10 S2 presenta un mejor desempeño, superior en un 4%, este resultado se condice con el menor tamaño de cristalito para el CTO y el *NiO*, considerando que el tamaño de cristalito sería proporcional al área superficial, por lo que presentaría una mayor cantidad de sitios activos. A pesar de esto, en términos de morfología, la muestra CTO-Ni10 S1 presenta partículas más porosas, por lo que podemos inferir que no existe una relación directa entre la morfología y el desempeño del material en la reacción de Sabatier. Debido a que existen muchas variables para comparar ambas muestras se recomienda realizar un análisis BET, con el fin de esclarecer el efecto de estas variables, lo que no fue posible realizar en los tiempos de este estudio por disponibilidad del equipo. En términos de selectividad, ambas muestras disminuyen su selectividad sobre los 450°C, dejando entre ver que el mecanismo de reacción no sería completado, produciendo *CO* y no completando los pasos de hidrogenación.

A pesar de los resultados de las muestras dopadas con *Ni*, que concuerdan con lo reportado [20], en este reporte el hierro debería tener un desempeño considerablemente mejor que la plata, pero se observa un rendimiento bastante bajo para las muestras de CTO dopadas con Fe, fabricadas con ambos métodos, no superando el 20% de conversión. Estos resultados se deben, posiblemente, a la presencia de mayor cantidad de *CaCO*₃. Como sucede en las muestras dopadas con *Ni*, donde la

interacción *Ni-Ca* genera vacancias de oxígeno donde se disocia el dióxido de carbono, se esperaría que esto ocurriera con el Fe.

Se ha reportado el uso de Cal viva (*CaO*) como captador permanente de CO_2 , este material reacciona con el gas y forma $CaCO_3$, para desprender este gas de la estructura es necesario utilizar temperaturas muy altas (1000°C) [67]. Luego, es posible suponer que el *Ca* presente en el $CaCO_3$, no es capaz de captar dióxido de carbono, justificando la baja conversión alcanzada por las muestras dopadas con *Fe*. Estos resultados, junto con los de las muestras dopadas con *Ni*, dejan entrever que la interacción *Ni-Ca* juega un rol importante en el proceso de metanación, y así la importancia de diferentes sitios activos.

Analizando las muestras dopadas con Ag, es posible observar que este dopante no posee una alta actividad, resultado que concuerda con lo encontrado en la literatura [20]. Esto podría deberse a la configuración electrónica de este metal ($[Ar]4s^{1}3d^{10}$), que posee pocos electrones disponibles para interactuar, debido que sus orbitales d se encuentran completamente llenos.

En relación a las muestras bimetálicas, se observa que la carga de *Fe* no representa una mejora en el desempeño del catalizador, este metal fue añadido para mejorar la absorción y disociación del CO_2 , y aparentemente esto no ocurre, corroborando que estos procesos están asociados a la interacción entre el *Ca* y el *Ni*. Estos resultados apuntan hacia que, en estos materiales en particular, rige un mecanismo de reacción donde los sitios activos pueden estar en el metal o en el soporte, acorde al mecanismo propuesto por Maewood et al [18]. El hecho de que el desempeño se vea desfavorecido podría deberse a la presencia de $CaCO_3$, el calcio presente en este material, al parecer no participa en el mecanismo.

En el análisis de la actividad catalítica de las muestras CCTO y CCTO-Ni10 se observa que no poseen un desempeño favorable, alcanzando un 40% de conversión y una selectividad hacia el *CO*. Este resultado podría estar relacionado con que el cobre reemplaza al calcio en la estructura de la perovskita, en comparación al CTO. Además de esto, el CCTO-Ni10 presenta una distribución de níquel heterogénea, según los resultados de EDS, lo que podría significar una menor cantidad de sitios activos en el catalizador. Esto explicaría la baja conversión, mientras que la selectividad podría ser explicada a través de la falta de *Ca* en la estructura, metal que promueve la captación y disociación de CO_2 [26,27]. Comprobando una vez más la importancia de los diferentes sitios activos.

Este análisis se confirma al analizar los resultados de TPD, donde se observa que los materiales sin níquel adsorben una mayor cantidad de CO_2 , pero esta es liberada a bajas temperaturas, mientras que en las muestras dopadas la cantidad adsorbida es menor pero con una adsorción

más fuerte, entre estas dos muestras, CTO-Ni10 S2 y CCTO-Ni10, se observa que esta última posee una menor adsorción y el gas es liberado a menor temperatura.

En esta misma línea, de acuerdo a lo reportado por An Le et al., el TiO_2 dopado con Ni, tiene una baja adsorción de CO_2 , esto se observa en uno de sus gráficos (Fig. 6.2), donde este soporte adsorbe una menor cantidad y esta es desorbida a bajas temperaturas (menor a 200°C), asociado a una adsorción de menor fuerza.

Figura 6.2: *CO*₂-TPD, para diferentes catalizadores de níquel en diferentes soportes [47].

Entonces, los resultados obtenidos, junto con lo encontrado en la literatura, confirmarían la suposición de que la interacción *Ni-Ca* genera vacancias de oxígeno, donde se adsorbe y disocia el CO_2 , que promueven la actividad catalítica en el proceso de metanación. Estas interacciones son estudiadas a través de la técnica XPS, en los resultados encontrados se observa que el *Ni* en la muestra de CTO-Ni10 S2 genera la aparición de un nuevo estado para el calcio, correspondiente a *CaO*, esta interacción, según lo reportado, forma pares de vacancias de oxígeno y sitios coordinados no saturados, que se identifican como sitios básicos y ácidos fuertes. Esta información se correlaciona con lo encontrado en el TPD, donde se ve que la muestra dopada posee una adsorción más fuerte.

Junto a lo anterior, también se confirma la preponderancia del mecanismo de reacción que incluye sitios activos en el catalizador y en el dopante.

7 Conclusiones

En relación a la investigación realizada fue posible concluir que, estudiando diferentes síntesis solgel, el método de síntesis 2 produce estructuras con una menor cantidad de sub-productos en los casos del CTO puro y las muestras dopadas con Ni y Ag. También se identificó que el aumento en la temperatura de calcinación del CTO no disminuye la cantidad de sub-productos en la síntesis 1. Además, en relación a ambas síntesis, se encuentra que el Fe podría promover el proceso de hidrólisis del gelificante, fomentando la formación de $CaCO_3$ por sobre la formación de CTO.

Por otro lado, fue posible concluir que de los materiales testeados el con mejor desempeño en la metanación de CO_2 , es el titanato de calcio dopado con un 10% de *Ni*. Los materiales fabricados con ambos métodos de síntesis muestran un desempeño similar, con diferencias que no pueden ser explicadas a partir de las caracterizaciones existentes, por lo que se recomienda realizar un análisis BET.

El buen desempeño de las muestras con Ni se atribuye a la interacción electrónica entre el Ni y el Ca, esta interacción ayuda al proceso de adsorción y disociación de CO_2 , promoviendo la conversión y selectividad deseadas, presumiblemente por la formación de vacancias de oxígeno.

Por otro lado, se observa que el CCTO presenta una menor conversión y una selectividad desfavorable, asociado a la presencia de cobre, por sobre calcio, junto con una morfología poco porosa en términos del soporte y la distribución heterogénea del catalizador. Es por esto, que este soporte no es una opción superior para el proceso de metanación.

Finalmente, se concluye que en el proceso de metanación de CO_2 prima un mecanismo de reacción que diferencia sitios activos, confirmando la importancia del soporte en este proceso, y en particular de los metales que lo componen. Además de que las muestras de CTO-Ni10 presentan un desempeño prometedor para su aplicación como catalizadores de metanación dentro de la estrategia "Power to gas".

8 Glosario de siglas y abreviaciones

- GEI : gases de efecto invernadero.
- CTO : titanato de calcio.
- CCTO : titanato de calcio y cobre.
- GNS : gas natural sintético.
- OMA : alúmina ordenada mesoporosa.
- ICDD : International Center for Difraction Data
- JCPDR : Jointe Committee on Chemical Analysis by Powder Diffraction Methods
- SEM : "Scanning Electron Microscope"; microscopio electrónico de barrido.
- EDS : "Energy-dispersive X-ray spectroscopy": espectrocopia de rayos X de energía dispersiva.
- XPS : "X-ray photoelectron spectroscopy"; espectroscopía de fotoelectrones emitidos por rayos X.
- TPD : "Thermal desorption spectroscopy"; análisis de desorción de temperatura programada.
- GOF : "Good of fitness"

9 Bibliografía

- [1] C. Nunez, Carbon dioxide levels are at a record high. Here's what you need to know., Natl. Geogr. Mag. (2019) 1. https://www.nationalgeographic.com/environment/global-warming/greenhouse-gases/.
- [2] M.A.A. Aziz, A.A. Jalil, S. Triwahyono, A. Ahmad, CO2 methanation over heterogeneous catalysts: Recent progress and future prospects, Green Chem. 17 (2015) 2647–2663. doi:10.1039/c5gc00119f.
- [3] R.D.E. La, C.D.E. Las, P.D.E. La, C. Marco, M.D.E.R. Exteriores, Decreto 30, D. Of. Chile. (2021) 1–17.
- [4] E. Kabir, P. Kumar, S. Kumar, A.A. Adelodun, K.H. Kim, Solar energy: Potential and future prospects, Renew. Sustain. Energy Rev. 82 (2018) 894–900. doi:10.1016/j.rser.2017.09.094.
- [5] I. Arrambide, I. Zubia, A. Madariaga, Critical review of offshore wind turbine energy production and site potential assessment, Electr. Power Syst. Res. 167 (2019) 39–47. doi:10.1016/j.epsr.2018.10.016.
- [6] A.Z. AL Shaqsi, K. Sopian, A. Al-Hinai, Review of energy storage services, applications, limitations, and benefits, Energy Reports. 6 (2020) 288–306. doi:10.1016/j.egyr.2020.07.028.
- [7] A. Zerrahn, W.P. Schill, C. Kemfert, On the economics of electrical storage for variable renewable energy sources, Eur. Econ. Rev. 108 (2018) 259–279. doi:10.1016/j.euroecorev.2018.07.004.
- [8] C. Vogt, M. Monai, G.J. Kramer, B.M. Weckhuysen, The renaissance of the Sabatier reaction and its applications on Earth and in space, Nat. Catal. 2 (2019) 188–197. doi:10.1038/s41929-019-0244-4.
- [9] K.P. Brooks, J. Hu, H. Zhu, R.J. Kee, Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors, Chem. Eng. Sci. 62 (2007) 1161–1170. doi:10.1016/j.ces.2006.11.020.
- [10] M. Koike, D. Li, Y. Nakagawa, K. Tomishige, A highly active and coke-resistant steam reforming catalyst comprising uniform nickel-iron alloy nanoparticles, ChemSusChem. 5 (2012) 2312–2314. doi:10.1002/cssc.201200507.
- [11] J. Si, G. Liu, J. Liu, L. Zhao, S. Li, Y. Guan, Y. Liu, Ni nanoparticles highly dispersed on ZrO2 and modified with La2O3 for CO methanation, RSC Adv. 6 (2016) 12699–12707. doi:10.1039/c5ra26888e.
- [12] J.C. Navarro, M.A. Centeno, O.H. Laguna, J.A. Odriozola, Policies and motivations for the CO2 valorization through the sabatier reaction using structured catalysts. A review of the most recent advances, Catalysts. 8 (2018) 1–25. doi:10.3390/catal8120578.
- [13] K. Hashimoto, M. Yamasaki, K. Fujimura, T. Matsui, K. Izumiya, M. Komori, A.A. El-Moneim, E. Akiyama, H. Habazaki, N. Kumagai, A. Kawashima, K. Asami, Global CO2 recycling - Novel materials and prospect for prevention of global warming and abundant energy supply, Mater. Sci. Eng. A. 267 (1999) 200–206. doi:10.1016/S0921-5093(99)00092-1.
- [14] M. Götz, J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, S. Bajohr, R. Reimert, T. Kolb, Renewable Power-to-Gas: A technological and economic review, Renew. Energy. 85 (2016) 1371–1390. doi:10.1016/j.renene.2015.07.066.
- S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran,
 S. Bajohr, Review on methanation From fundamentals to current projects, Fuel. 166 (2016) 276–296. doi:10.1016/j.fuel.2015.10.111.
- [16] G.D. Weatherbee, C.H. Bartholomew, Hydrogenation of CO₂ on group VIII metals. II. Kinetics and mechanism of CO₂ hydrogenation on nickel, J. Catal. 77 (1982) 460-472.

doi:10.1016/0021-9517(82)90186-5.

- [17] S. Tada, R. Kikuchi, Mechanistic study and catalyst development for selective carbon monoxide methanation, Catal. Sci. Technol. 5 (2015) 3061–3070. doi:10.1039/c5cy00150a.
- [18] A. Maewood, Michel, Doepper, Ralf, Renken, In-situ surface and gas phase analysis for kinetic studies under transient conditions The catalytic hydrogenation of CO 2, Appl. Catal. A. 151 (1997) 223–246. doi:10.1007/978-94-007-0053-66.
- [19] W. Wang, J. Gong, Methanation of carbon dioxide: An overview, Front. Chem. Eng. China. 5 (2011) 2–10. doi:10.1007/s11705-010-0528-3.
- [20] D.P. Fischer F, Tropsch H, Reduction of carbon monoxide to methane in the presence of various metals., Brennst-Chem. (1925) 1925.
- [21] G.A. Mills, F.W. Steffgen, Catalysis Reviews: Science and Engineering Catalytic Methanation, Catal. Rev. 8 (1974) 159–210.
- [22] X. Su, J. Xu, B. Liang, H. Duan, B. Hou, Y. Huang, Catalytic carbon dioxide hydrogenation to methane: A review of recent studies, J. Energy Chem. 25 (2016) 553–565. doi:10.1016/j.jechem.2016.03.009.
- [23] J. Gao, Q. Liu, F. Gu, B. Liu, Z. Zhong, F. Su, Recent advances in methanation catalysts for the production of synthetic natural gas, RSC Adv. 5 (2015) 22759–22776. doi:10.1039/c4ra16114a.
- [24] K. Aljishi, Ali, Veilleux, Gabriel, Hernandez Lalinde, Jose, The effect of synthesis parameters on ordered mesoporous nickel alumina catalyst for CO2 methanation, Appl. Catal. A. 549 (2018) 263–273.
- [25] R.B. Cusamano, J.A., Dalla Betta, R.A., Levy, Scientific resources relevant to the catalytic problems in the conversion of coal, (1965) 583.
- [26] J.H. Lee, J.Y. Do, N.K. Park, M.W. Seo, H.J. Ryu, J.P. Hong, Y.S. Kim, S.K. Kim, M. Kang, Cost-effective and dynamic carbon dioxide conversion into methane using a CaTiO3@Ni-Pt catalyst in a photo-thermal hybrid system, J. Photochem. Photobiol. A Chem. 364 (2018) 219–232. doi:10.1016/j.jphotochem.2018.05.045.
- [27] B.S. Kwak, M. Kang, Photocatalytic reduction of CO 2 with H 2 O using perovskite Ca x Ti y O 3, Appl. Surf. Sci. 337 (2015) 138–144. doi:10.1016/j.apsusc.2015.02.078.
- [28] N. Studies, REVIEWS OF MOD ERN, (1956).
- [29] K. Persson, Materials Data on CaTiO₃ (SG:221) by Materials Project, (2014) 1272675. doi:10.17188/1272675.
- [30] S. Patra, D. Of, M.O.F. Technology, C. Engineering, BY AUTO-COMBUSTION TECHNIQUE CaCu 3 Ti 4 O 12 AND LANTHANUM DOPED CaCu 3 Ti 4 O 12, National institute of technology, 2009.
- [31] M. Ahmadipour, M. Fadzil, A. Zainal, A. Ahmad, A Short Review on Copper Calcium Titanate (CCTO) Electroceramic: Synthesis, Dielectric Properties, Film Deposition, and Sensing Application, Nano-Micro Lett. (2016). doi:10.1007/s40820-016-0089-1.
- [32] G. Xanthopoulou, Catalytic Properties of the SHS products Review, 63 (2010) 287–296. doi:10.4028/www.scientific.net/AST.63.287.
- [33] W.X. Yuan, Z.J. Li, P HYSICAL J OURNAL Microstructures and dielectric properties of CaCu 3 Ti 4 O 12 ceramics via combustion method, (2012) 10–13. doi:10.1051/epjap/2011110226.
- [34] L. Sh, W. Hui, L. Chunjiang, Y. Yang, L. Jianying, Dielectric Properites of Al-doped CaCu 3 Ti 4 O 12 Ceramics by Coprecipitation Method, (n.d.) 23–26.
- [35] B.A. Bender, M. Pan, The effect of processing on the giant dielectric properties of CaCu 3 Ti 4 O 12, 117 (2005) 339–347. doi:10.1016/j.mseb.2004.11.019.
- [36] C.T. O, Effects of synthesis technique on dielectric properties of, (2011) 1–5. doi:10.1016/S1003-6326(11)61614-2.
- [37] G. Brinker, Jeffrey, Sherer, Sol-Gel Science: The physics and chemistry of sol-gel processing. Brinker 1990, United Kin, Academic PRess Limited, London, 1990.
- [38] S. Mann, S.L. Burkett, S.A. Davis, C.E. Fowler, N.H. Mendelson, S.D. Sims, D. Walsh, N.T.

Whilton, Sol - Gel Synthesis of Organized Matter, 4756 (1997) 2300–2310. doi:10.1021/cm970274u.

- [39] R. Takahashi, S. Sato, T. Sodesawa, M. Kawakita, K. Ogura, High Surface-Area Silica with Controlled Pore Size Prepared from Nanocomposite of Silica and Citric Acid, (2000) 12184– 12191.
- [40] R. Takahashi, K. Nakanishi, N. Soga, Small-angle X-Ray Scattering Study of Nanopore Evolution of Macroporous Silica Gel by Solvent Exchange, (1995) 249–263.
- [41] InvesmentMine, Precio rutenio y otros metales, (n.d.). http://www.infomine.com/investment/ruthenium/ (accessed March 6, 2021).
- [42] H. Ampuero, Síntesis de CaTiO3 como soporte de un catalizador de Ni para la metanación de CO2, Universidad de Chile, 2018.
- [43] R. Meshkini-Far, A. Dyachenko, S. Gaidai, O. Bieda, M. Filonenko, O. Ischenko, Catalytic properties of Ni-Fe systems in the reaction of CO2 methanation at atmospheric pressure, Acta Phys. Pol. A. 133 (2018) 1088–1090. doi:10.12693/APhysPolA.133.1088.
- [44] C. Mebrahtu, F. Krebs, S. Perathoner, S. Abate, G. Centi, R. Palkovits, Hydrotalcite based Ni-Fe/(Mg, Al)O:X catalysts for CO₂ methanation-tailoring Fe content for improved CO dissociation, basicity, and particle size, Catal. Sci. Technol. 8 (2018) 1016–1027. doi:10.1039/c7cy02099f.
- [45] J.Y. Do, N.K. Park, M.W. Seo, D. Lee, H.J. Ryu, M. Kang, Effective thermocatalytic carbon dioxide methanation on Ca-inserted NiTiO₃ perovskite, Fuel. 271 (2020) 117624. doi:10.1016/j.fuel.2020.117624.
- [46] S. Tada, T. Shimizu, H. Kameyama, T. Haneda, R. Kikuchi, Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures, Int. J. Hydrogen Energy. 37 (2012) 5527–5531. doi:10.1016/j.ijhydene.2011.12.122.
- [47] T.A. Le, M.S. Kim, S.H. Lee, T.W. Kim, E.D. Park, CO and CO2 methanation over supported Ni catalysts, Catal. Today. 293–294 (2017) 89–96. doi:10.1016/j.cattod.2016.12.036.
- [48] R. Chang, Quimica, Décima, 2010. doi:10.1017/CBO9781107415324.004.
- [49] S. Hwang, U.G. Hong, J. Lee, J.G. Seo, J.H. Baik, D.J. Koh, H. Lim, I.K. Song, Methanation of carbon dioxide over mesoporous Ni-Fe-Al2O3 catalysts prepared by a coprecipitation method: Effect of precipitation agent, J. Ind. Eng. Chem. 19 (2013) 2016–2021. doi:10.1016/j.jiec.2013.03.015.
- [50] J. Ren, X. Qin, J.Z. Yang, Z.F. Qin, H.L. Guo, J.Y. Lin, Z. Li, Methanation of carbon dioxide over Ni-M/ZrO2 (M = Fe, Co, Cu) catalysts: Effect of addition of a second metal, Fuel Process. Technol. 137 (2015) 204–211. doi:10.1016/j.fuproc.2015.04.022.
- [51] M. Xia, J. Ding, X. Du, R. Shang, Q. Zhong, Ambient hydrogenation of CO2 to methane with highly efficient and stable single-atom silver-manganese catalysts, J. Alloys Compd. 777 (2019) 406–414. doi:10.1016/j.jallcom.2018.10.352.
- [52] O.E. Everett, P.C. Zonetti, O.C. Alves, R.R. De Avillez, L.G. Appel, The role of oxygen vacancies in the CO 2 methanation employing Ni / ZrO 2 doped with Ca, Int. J. Hydrogen Energy. (2019). doi:10.1016/j.ijhydene.2019.12.140.
- [53] A.L. Lapidus, N.A. Gaidai, N. V. Nekrasov, L.A. Tishkova, Y.A. Agafonov, T.N. Myshenkova, The mechanism of carbon dioxide hydrogenation on copper and nickel catalysts, Pet. Chem. 47 (2007) 91–98. doi:10.1134/S0965544107020028.
- [54] S. Mook, S. Hyuk, K. Hyun, E. Soo, Luminescent properties of CaTiO 3: Pr thin-film phosphor deposited on ZnO / ITO / glass substrate, 114 (2005) 227–233. doi:10.1016/j.jlumin.2005.01.007.
- [55] A.A. Felix, E. Longo, J.A. Varela, M.O. Orlandi, Gas sensing and conductivity relationship on nanoporous thin films: A CaCu₃Ti₄O₁₂case study, Thin Solid Films. 604 (2016) 69–73. doi:10.1016/j.tsf.2016.02.051.
- [56] H.R. Allcock, Introduction to Materials Chemistry, Wiley, 2011.
- [57] B.E. Warren, X Ray Difraction- Warren.pdf, (1969).
- [58] The International Centre for Diffraction Data, The International Centre for Diffraction

Data, (2020). www.icdd.com.

- Y.S. Xian, T., Yang, H., Huo, Fabrication of Ag-Decorated CaTiO3 Nanoparticles and Their [59] Enhanced Photocatalytic Activity for Degradation. Dve J. Nanosci. NanotechnologyNanoscience Nanotechnol. (2016)16 570-575. doi:10.1166/jnn.2016.10668.
- [60] G.H. Michler, Scanning ElectronMicroscopy (SEM), in: Electron Microsc. Polym., Springer, n.d.: pp. 87–120.
- [61] D. Zhang, C. Zhang, P. Zhou, Preparation of porous nano-calcium titanate microspheres and its adsorption behavior for heavy metal ion in water, J. Hazard. Mater. 186 (2011) 971–977. doi:10.1016/j.jhazmat.2010.11.096.
- [62] S.K. Durrani, Y. Khan, N. Ahmed, M. Ahmad, M.A. Hussain, Iranian Chemical Society Hydrothermal Growth of Calcium Titanate Nanowires from Titania, 8 (2011) 562–569.
- [63] A.J.D. Alfonso, B. Freitag, D. Klenov, L.J. Allen, Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy, Phys. Rev. 81 (2010) 2–5. doi:10.1103/PhysRevB.81.100101.
- [64] L. Serkovic, ESTUDIO DE PELICULAS ULTRADELGADAS DE MOLÉCULAS ORGÁNICAS E INORGÁNICAS: ADSORCIÓN, ESTABILIDAD TÉRMICA, PODER DE FRENADO E INTERCAMBIO DE CARGA, Universidad Nacional de Cuyo, 2010.
- [65] H. Tan, F. Zou, B. Ma, M. Liu, X. Li, S. Jian, Effect of sodium tripolyphosphate on adsorbing behavior of polycarboxylate superplasticizer, Constr. Build. Mater. 126 (2016) 617–623. doi:10.1016/j.conbuildmat.2016.09.077.
- [66] O. Ruzimuradov, G. Hasegawa, K. Kanamori, K. Nakanishi, Preparation of hierarchically porous nanocrystalline CaTiO₃, SrTiO₃ and BaTiO₃ perovskite monoliths, J. Am. Ceram. Soc. 94 (2011) 3335–3339. doi:10.1111/j.1551-2916.2011.04613.x.
- [67] N.H. Berahim, A.A. Seman, M.G.M. Noh, Feasibility study of carbon dioxide methanation: Assessment of various supported nickel catalyst, Soc. Pet. Eng. - Abu Dhabi Int. Pet. Exhib. Conf. 2018, ADIPEC 2018. (2019). doi:10.2118/193294-ms.

10 Anexos

10.1 Cantidades reactivos y solventes síntesis Sol-Gel

10.1.1 Síntesis 1 CTO

Tabla 10.1: Tabla de reactivos y solventes síntesis CTO- Ni5-600 S1; CTO-Ni5-650 S1 y CTO-Ni5-700 S1.

	Nitrato de Calcio	Isopropóxido de Titanio	Ácido Cítrico	Nitrato de Níquel
Estequiometría	1	1	0,26	-
Masa [g]	4,68	5,76	0,99	0,37
Volumen [ml]	-	6,00	-	-
Solvente Requerido[ml]	36	7,5	15	2

Tabla 10.2: Tabla de reactivos y solvente síntesis CTO S1

	Nitrato de Calcio	Isopropóxido de Titanio	Ácido Cítrico
Estequiometría	1	1	0,26
Masa [g]	7,18	8,64	1,52
Volumen [ml]	-	9,00	-
Solvente Requerido[ml]	50	20	20

Tabla 10.3: Tabla de reactivos y solvente CTO-Ni10 S1

	Nitrato de Calcio	Isopropóxido de Titanio	Ácido Cítrico	Nitrato de Níquel
Estequiometría	1	1	0,26	-
Masa [g]	4,68	5,76	0,99	0,74
Volumen [ml]	-	6,00	-	-
Solvente Requerido[ml]	36	7,5	15	4

Tabla 10.4: Tabla de reactivos y solvente síntesis CTO-Fe10 S1.

	Nitrato de Calcio	Isopropóxido de Titanio	Ácido Cítrico	Nitrato de Hierro
Estequiometría	1	1	0,26	-
Masa [g]	4,68	5,76	0,99	2,16
Volumen [ml]	-	6,00	-	-
Solvente Requerido[ml]	36	7,5	15	5

	Nitrato de Calcio	Isopropóxido de Titanio	Ácido Cítrico	Acetato de Plata
Estequiometría	1	1	0,26	-
Masa [g]	5,21	6,27	1,10	2,16
Volumen [ml]	-	6,53	-	-
Solvente Requerido[ml]	36	8	15	7

Tabla 10.5: Tabla de reactivos y solvente síntesis CTO-Ag10 S1.

10.1.2 Síntesis 2 CTO

Tabla 10.6: Tabla de reactivos y solvente síntesis CTO S2.

	Nitrato de Calcio	Isopropóxido de Titanio	Ácido Cítrico
Estequiometría	1	1	1
Masa [g]	9,46	11,4	7,7
Volumen [ml]	-	11,87	-
Solvente Requerido[ml]	50	15	35

Tabla 10.7: Tabla de reactivos y solvente síntesis CTO-Ni10 S2.

	Nitrato de Calcio	lsopropóxido de Titanio	Ácido Cítrico	Nitrato de Níquel
Estequiometría	1	1	1	-
Masa [g]	8,86	10,68	7,21	2,81
Volumen [ml]	-	11,12	-	-
Solvente Requerido[ml]	48	12	35	5

Tabla 10.8: Tabla de reactivos y solvente síntesis CTO-Fe10 S2.

	Nitrato de Calcio	lsopropóxido de Titanio	Ácido Cítrico	Nitrato de Hierro
Estequiometría	1	1	1	-
Masa [g]	6,58	10,68	5,36	2,13
Volumen [ml]	-	11,12	-	-
Solvente Requerido[ml]	34	23	12	11

Tabla 10.9: Tabla de reactivos y solvente síntesis CTO-Ag10 S2.

	Nitrato de Calcio	Isopropóxido de Titanio	Ácido Cítrico	Acetato de Plata
Estequiometría	1	1	1	-
Masa [g]	6,95	8,36	5,65	0.69
Volumen [ml]	-	8,71	-	-
Solvente Requerido[ml]	36	8	15	8

10.1.3 Síntesis Muestras Bimetálicas

	Nitrato de Calcio	Isopropóxido de Titanio	Ácido Cítrico	Nitrato de Níquel	Nitrato de Hierro
Estequiometría	1	1	1	-	-
Masa [g]	8,86	10,68	7,21	2,81	0.41
Volumen [ml]	-	11,12	-	-	-
Solvente Requerido[ml]	45	11	31	10	5

Tabla 10.10: Tabla reactivos y solvente síntesis CTO-10Ni+Fe1 S2.

Tabla 10.11: Tabla reactivos y solvente síntesis CTO-10Ni+Fe2 S2.

	Nitrato de Calcio	lsopropóxido de Titanio	Ácido Cítrico	Nitrato de Níquel	Nitrato de Hierro
Estequiometría	1	1	1	-	-
Masa [g]	8,86	10,68	7,21	2,81	0.83
Volumen [ml]	-	11,12	-	-	-
Solvente Requerido[ml]	45	11	31	10	5

Tabla 10.12: Tabla reactivos y solvente síntesis CTO-10Ni+Fe1 S2.

	Nitrato de Calcio	lsopropóxido de Titanio	Ácido Cítrico	Nitrato de Níquel	Nitrato de Hierro
Estequiometría	1	1	1	-	-
Masa [g]	8,86	10,68	7,21	2,81	1,23
Volumen [ml]	-	11,12	-	-	-
Solvente Requerido[ml]	45	11	31	10	5

10.1.4 Síntesis CCTO y CCTO-Ni10

Tabla 10.13: Tabla de reactivos y solvente síntesis CCTO.

	Nitrato de Calcio	Nitrato de Cobre	lsopropóxido de Titanio	Ácido Cítrico
Estequiometría	1	3	4	6
Masa [g]	1,83	7,48	6,61	8,93
Volumen [ml]	-	-	6,88	-
Solvente Requerido[ml]	20	30	10	40

	Nitrato de Calcio	Nitrato de Cobre	lsopropóxido de Titanio	Ácido Cítrico	Nitrato de Níquel
Estequiometría	1	3	4	6	-
Masa [g]	1,73	5,61	8,79	8,92	2,48
Volumen [ml]	-	-	9,61	-	-
Solvente Requerido[ml]	20	25	10	30	10

Tabla 10.14: Tabla de reactivos y solvente síntesis CCTO-Ni10.

10.2 Datos Actividad catalítica

A continuación, se presentan las diferentes áreas bajo la curva asociadas a los gases detectados por el cromatógrafo a diferentes temperaturas, junto con la conversión y selectividades calculadas a partir de ellas.

10.2.1 Datos Actividad Catalítica Síntesis 1

10.2.1.1 CTO S1

Tabla 10.15: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados, muestra CTO S1.

Valores Promedio	CO_2	H_2	CH_4	СО
25	418860	30536	0	0
200	411390	29437	88	75
225	368313	29900	71	152
250	389414	29684	70	182
275	384072	30098	110	157
300	391926	29576	67	41
325	403663	29718	18	98
350	371853	29549	116	174
375	377664	29295	48	97
400	400177	29244	38	57
425	389101	29534	33	317
450	390268	29049	43	747
475	375933	29667	36	1742
500	377763	29460	6	1587

Tabla 10.16: Resultados de conversión y selectividad para la muestra CTO S1.

Temperatura	Conversión	Selectividad CH_4	Selectividad CO
25	0.00	-	-
200	1.78	54.03	45.97
225	12.07	31.79	68.21
250	7.03	27.71	72.29

275	8.31	41.13	58.87
300	6.43	61.92	38.08
325	3.63	15.65	84.35
350	11.22	40.02	59.98
375	9.84	33.28	66.72
400	4.46	40.18	59.82
425	7.10	9.35	90.65
450	6.83	5.40	94.60
475	10.25	2.05	97.95
500	9.81	0.36	99.64

10.2.1.2 CTO-Ni10 S1

Tabla 10.17: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados, muestra CTO-Ni10 S1.

Valores Promedio	CO_2	H_2	CH_4	СО
25	381363	28360	0	0
200	392508	28465	0	0
225	359545	28165	2372	14
250	392300	27302	5067	14
275	367075	25635	14460	242
300	304123	23428	38972	325
325	262652	19816	81398	3044
350	221683	15183	120670	3074
375	196190	13597	140321	3820
400	199931	12614	144319	7126
425	195143	13471	134867	12009
450	179574	15151	115030	20019
475	205092	17577	101139	97213
500	188004	18901	32894	83593

Tabla 10.18: Resultados de conversión y selectividad para la muestra CTO-Ni10 S1.

Conversión	Selectividad CH_4	Selectividad CO
0.0	-	-
0.0	-	-
5.7	99.4	0.6
0.0	99.7	0.3
3.7	98.4	1.6
20.3	99.2	0.8
31.1	96.4	3.6
41.9	97.5	2.5
48.6	97.4	2.6
	Conversión 0.0 0.0 5.7 0.0 3.7 20.3 31.1 41.9 48.6	Conversión Selectividad CH ₄ 0.0 - 0.0 - 5.7 99.4 0.0 99.7 3.7 98.4 20.3 99.2 31.1 96.4 41.9 97.5 48.6 97.4

4	00	47.6	95.3	4.7
4.	25	48.8	91.8	8.2
4.	50	52.9	85.2	14.8
4	75	46.2	51.0	49.0
5	00	50.7	28.2	71.8

10.2.1.3 CTO-Fe10 S1

Tabla 10.19: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados, muestra CTO-Fe10 S1.

Valores Promedio	CO_2	H_2	CH_4	СО
25	367315	30062	0	0
200	370033	29791	130	108
225	362593	30062	94	24
250	356778	29814	67	216
275	356600	29933	1	13
300	364319	29701	71	60
325	383792	30210	1	44
350	364864	29888	40	4
375	364763	29119	2238	2459
400	364835	29525	4758	6865
425	340725	29831	0	13631
450	371530	29224	0	27122
475	337253	28859	0	38114
500	298627	28092	0	63507

Tabla 10.20: Resultados de conversión y selectividad para la muestra CTO-Fe10 S1.

Temperatura	Conversión	Selectividad CH_4	Selectividad CO
25	0.0	0.0	0.0
200	0.0	54.7	45.3
225	1.3	79.6	20.4
250	2.9	23.5	76.5
275	2.9	7.5	92.5
300	0.8	54.2	45.8
325	0.0	1.4	98.6
350	0.7	90.4	9.6
375	0.7	47.6	52.4
400	0.7	40.9	59.1
425	7.2	0.0	100.0
450	0.0	0.0	100.0
475	8.2	0.0	100.0
500	18.7	0.0	100.0

10.2.1.4 CTO-Ag10 S1

Valores Promedio	CO_2	H_2	CH_4	СО
25	413760	29444	0	0
200	380085	29694	139	123
225	388663	29748	46	37
250	394837	29849	137	244
275	365043	29772	65	125
300	414650	29219	214	124
325	398907	29850	137	208
350	395289	29730	10	86
375	364502	29890	67	625
400	387226	30113	39	1537
425	411163	29328	68	3020
450	371381	29157	20	1558
475	371036	29481	21	3102
500	369868	29713	46	6451

Tabla 10.21: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados, muestra CTO-Ag10 S1.

Tabla 10.22: Resultados de conversión y selectividad para la muestra CTO-Ag10 S1.

Temperatura	Conversión	Selectividad CH_4	Selectividad CO
25	0.0	-	-
200	8.1	53.0	47.0
225	6.1	55.9	44.1
250	4.6	36.0	64.0
275	11.8	34.3	65.7
300	0	63.3	36.7
325	3.6	39.6	60.4
350	4.5	10.7	89.3
375	11.9	9.7	90.3
400	6.4	2.5	97.5
425	0.6	2.2	97.8
450	10.2	1.3	98.7
475	10.3	0.7	99.3
500	10.6	0.7	99.3

10.2.2 Datos Actividad Catalítica Síntesis 2

10.2.2.1 CTO S2

Valores Promedio	CO_2	H_2	CH_4	СО
25	376384	0	0	0
200	353686	0	89	43
225	344858	0	67	12
250	328857	0	167	45
275	329782	0	5	17
300	339663	0	15	29
325	346545	0	53	11
350	322477	0	24	35
375	354036	0	12	36
400	344811	0	36	60
425	341034	0	177	375
450	348148	0	69	375
475	310590	0	39	1334
500	354729	0	1	9195

Tabla 10.23: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados, muestra CTO S2.

Tabla 10.24: Resultados de conversión y selectividad para la muestra CTO S2.

Temperatura	Conversión	Selectividad CH_4	Selectividad CO
25	0.00	-	-
200	6.0	67.5	32.5
225	8.4	85.0	15.0
250	12.6	78.7	21.3
275	12.4	24.7	75.3
300	9.8	34.1	65.9
325	7.9	82.3	17.7
350	14.3	40.4	59.6
375	5.9	25.7	74.3
400	8.4	37.8	62.2
425	9.4	32.1	67.9
450	7.5	15.6	84.4
475	17.5	2.8	97.2
500	5.8	0.0	100.0

10.2.2.2 CTO-Ni10 S2

Valores Promedio	CO_2	H_2	CH_4	СО
25	365290	15261	0	0
200	364562	28695	2285	35
225	350250	20079	12714	39
250	329128	26785	24802	1
275	306003	23211	65719	150
300	230468	18118	125779	740
325	198678	12920	262919	475
350	200222	10066	336209	2149
375	151997	10379	343816	23
400	188316	10891	319854	660
425	179262	12666	253884	1761
450	189538	15556	197017	14382
475	197942	18047	74264	71001
500	193454	13250	81152	81152

Tabla 10.25: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados, muestra CTO-Ni10 S2.

Tabla 10.26: Resultados de conversión y selectividad para la muestra CTO-Ni10 S2.

Temperatura	Conversión	Selectividad CH_4	Selectividad CO
25	0.0	-	-
200	0.2	98.5	1.5
225	4.1	99.7	0.3
250	9.9	100.0	0.0
275	16.2	99.8	0.2
300	36.9	99.4	0.6
325	45.6	99.8	0.2
350	45.2	99.4	0.6
375	58.4	100.0	0.0
400	48.4	99.8	0.2
425	50.9	99.3	0.7
450	48.1	93.2	6.8
475	45.8	51.1	48.9
500	47.0	50.0	50.0

10.2.2.3 CTO-Fe10 S2

Valores Promedio	CO_2	H_2	CH_4	СО
25	426699	29198	0	0
200	366375	30665	135	147
225	399146	29231	37	58
250	421438	29063	2	13
275	371225	29438	62	5
300	391522	29850	44	250
325	389180	29359	67	130
350	381552	29388	40	740
375	364414	29830	0	2671
400	353131	30205	0	3060
425	347438	29697	6	4018
450	367886	28717	0	130176
475	362712	29213	0	16995
500	345654	29319	0	30670

Tabla 10.27: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados, muestra CTO-Fe10 S2.

Tabla 10.28: Resultados de conversión y selectividad para la muestra CTO-Fe10 S2.

Temperatura	Conversión	Selectividad CH_4	Selectividad CO
25	0.0	0.0	0.0
200	14.1	47.9	52.1
225	6.5	38.9	61.1
250	1.2	11.2	88.8
275	13.0	92.6	7.4
300	8.2	15.0	85.0
325	8.8	33.9	66.1
350	10.6	5.1	94.9
375	14.6	0.0	100.0
400	17.2	0.0	100.0
425	18.6	0.1	99.9
450	13.8	0.0	100.0
475	15.0	0.0	100.0
500	19.0	0.0	100.0

10.2.2.4 CTO-Ag10 S2

Tabla 10.29: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados, muestra
CTO-Ag10 S2.

Valores Promedio	CO_2	H_2	CH_4	СО
25	377914	29991	0	0
200	399264	32853	22	62
225	368499	30647	20	57
250	265286	30125	68	240
275	367003	30110	43	49
300	400264	29374	32	604
325	377175	29533	48	1236
350	358686	30178	102	6239
375	371993	29024	47	14147
400	345806	29001	13	17568
425	337640	28965	53	24786
450	333999	28920	37	53814
475	311013	27973	48	80111
500	292628	26894	28	111699

Tabla 10.30: Resultados de conversión y selectividad para la muestra CTO-Ag10 S2.

Temperatura	Conversión	Selectividad CH_4	Selectividad CO
25	0.0	-	-
200	0.0	26.6	73.4
225	2.5	26.1	73.9
250	29.8	22.1	77.9
275	2.9	46.8	53.2
300	0.0	5.1	94.9
325	0.2	3.7	96.3
350	5.1	1.6	98.4
375	1.6	0.3	99.7
400	8.5	0.1	99.9
425	10.7	0.2	99.8
450	11.6	0.1	99.9
475	17.7	0.1	99.9
500	22.6	0.0	100.0

10.2.3 Datos Actividad Catalítica Muestras Bimetálicas

10.2.3.1 CTO-Ni10+Fe1 S2

Tabla 10.31: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados, muestra CTO-Ni10+Fe1 S2.

Valores Promedio	CO_2	H_2	CH_4	СО
25	362508	28283	0	0
200	361237	27680	687	88
225	362075	26973	2606	128
250	330474	26182	13720	483
275	311152	24038	37176	190
300	297084	19619	70414	1256
325	223963	15559	111609	1210
350	180833	13527	140836	1196
375	189101	12624	156842	973
400	189721	12666	147661	2198
425	166251	13666	130223	3261
450	178599	14839	107692	25512
475	191473	16388	90743	62880
500	161241	19132	42193	62152

Tabla 10.32: Resultados de conversión y selectividad para la muestra CTO-Ni10+Fe1 S2.

Temperatura	Conversión	Selectividad CH_4	Selectividad CO
25	0.00	-	-
200	0.4	88.6	11.4
225	0.1	95.3	4.7
250	8.8	96.6	3.4
275	14.2	99.5	0.5
300	18.0	98.2	1.8
325	38.2	98.9	1.1
350	50.1	99.2	0.8
375	47.8	99.4	0.6
400	47.7	98.5	1.5
425	54.1	97.6	2.4
450	50.7	80.8	19.2
475	47.2	59.1	40.9
500	55.5	40.4	59.6

10.2.3.2 CTO-Ni10+Fe2 S2

Tabla 10.33: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados, muestra CTO-Ni10+Fe2 S2.

Valores Promedio	CO_2	H_2	CH_4	СО
25	359944	29259	0	0
200	355663	27885	856	114
225	342857	27375	4284	343
250	337960	26022	13114	947
275	329564	23977	30048	1335
300	309120	20593	58292	1892
325	255104	17425	91225	1264
350	207995	14851	116393	1646
375	214232	13826	115106	4611
400	202965	14208	112344	4560
425	197900	14952	95304	11943
450	199457	15767	74355	26592
475	195758	16975	60549	61783
500	213346	18103	28289	89534

Tabla 10.34: Resultados de conversión y selectividad para la muestra CTO-Ni10+Fe2 S2.

Temperatura	Conversión	Selectividad CH_4	Selectividad CO
25	0.0	-	-
200	1.2	88.3	11.7
225	4.7	92.6	7.4
250	6.1	93.3	6.7
275	8.4	95.7	4.3
300	14.1	96.9	3.1
325	29.1	98.6	1.4
350	42.2	98.6	1.4
375	40.5	96.1	3.9
400	43.6	96.1	3.9
425	45.0	88.9	11.1
450	44.6	73.7	26.3
475	45.6	49.5	50.5
500	40.7	24.0	76.0

10.2.3.3 CTO-Ni10+Fe3 S2

Tabla 10.35: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados, muestra CTO-Ni10+Fe3 S2.

Valores Promedio	CO_2	H_2	CH_4	СО
25	378039	30123	0	0
200	376648	29889	1192	738
225	368019	29697	3161	1123
250	353880	28353	11582	1995
275	324220	26107	33885	2992
300	274956	21636	75442	1779
325	222691	17220	116600	1289
350	192408	13200	154433	976
375	198374	12394	178298	1271
400	180693	12820	163993	3026
425	193382	13114	125146	9440
450	179260	15190	97392	17840
475	188311	16520	65101	37374
500	183992	18274	38911	65964

Tabla 10.36: Resultados de conversión y selectividad para la muestra CTO-Ni10+Fe3 S2.

Temperatura	Conversión	Selectividad CH_4	Selectividad CO
25	0.0	0.0	0.0
200	0.4	61.7	38.3
225	2.7	73.8	26.2
250	6.4	85.3	14.7
275	14.2	91.9	8.1
300	27.3	97.7	2.3
325	41.1	98.9	1.1
350	49.1	99.4	0.6
375	47.5	99.3	0.7
400	52.2	98.2	1.8
425	48.8	93.0	7.0
450	52.6	84.5	15.5
475	50.2	63.5	36.5
500	51.3	37.1	62.9

10.2.4 Datos Actividad Catalítica CCTO y CCTO-Ni10

10.2.4.1 CCTO

Valores Promedio	<i>CO</i> ₂	H_2	CH_4	СО
25	405969	29228	0	0
200	383857	29336	0	0
225	370301	30164	0	17
250	372341	29779	4	1083
275	392572	27395	6	5785
300	368014	29465	0	12993
325	327585	29895	7	15552
350	366208	28839	0	29358
375	331019	28499	0	49475
400	314618	28650	19206	58465
425	296104	28238	7	74979
450	291293	27292	0	97515
475	240866	27872	0	109711
500	255154	26541	0	138598

Tabla 10.37: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados, muestra CCTO.

Tabla 10.38: Resultados de conversión y selectividad para la muestra CCTO.

Temperatura	Conversión	Selectividad CH_4	Selectividad CO
25	0.00	-	-
200	5.4	-	-
225	8.8	0.0	100.0
250	8.3	0.4	99.6
275	3.3	0.1	99.9
300	9.3	0.0	100.0
325	19.3	0.0	100.0
350	9.8	0.0	100.0
375	18.5	0.0	100.0
400	22.5	24.7	75.3
425	27.1	0.0	100.0
450	28.2	0.0	100.0
475	40.7	0.0	100.0
500	37.1	0.0	100.0
10.2.4.2 CCTO-Ni10

Tabla 10.39: Valores promedio de áreas bajo los diferentes picos asociados a los gases detectados, muestra
CCTO-Ni10.

Valores Promedio	<i>CO</i> ₂	H_2	CH_4	СО
25	386329	29492	0	0
200	403349	29196	0	0
225	365094	29463	0	0
250	379558	29893	0	0
275	387841	29578	0	0
300	362726	29636	0	8227
325	346374	29718	0	12947
350	353095	28955	0	28535
375	329403	28357	2	41746
400	335453	27878	11	61189
425	296848	27926	54	81886
450	277143	27236	5	109327
475	255144	26024	2	131417
500	236130	25758	5	155355

Tabla 10.40: Resultados de conversión y selectividad para la muestra CCTO-Ni10.

Temperatura	Conversión	Selectividad CH ₄	Selectividad CO
25	0.0	-	-
200	0.0	-	-
225	5.5	-	-
250	1.8	-	-
275	0.0	-	-
300	6.1	0.0	100.0
325	10.3	0.0	100.0
350	8.6	0.0	100.0
375	14.7	0.0	100.0
400	13.2	0.0	100.0
425	23.2	0.1	99.9
450	28.3	0.0	100.0
475	34.0	0.0	100.0
500	38.9	0.0	100.0