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CO-OPTIMIZING NETWORK, PUMPED AND BATTERY STORAGE INVESTMENTS 
UNDER LONG TERM UNCERTAINTIES: A CASE STUDY ON AUSTRALIAN POWER 

SYSTEM 

The pace at which variable renewable energy generation (VREG) is adopted depends 
on several uncertain factors, hindering the prediction of their penetration in the upcoming 
years. Therefore, the consideration of uncertainty in system expansion models becomes a 
key issue to appropriately study the role of storage technologies in future prospective 
scenarios. 

This thesis implements a 2-stage stochastic mixed integer linear program to co-
optimise the investment in storage and transmission lines along with the operation of the 
electrical system. The model includes an hourly operation and a transportation model for 
lines. Moreover, the generators consider a detailed operation, including ramp-up/down, 
minimum up/down time, maximum/minimum operating point, and upward reserves. To 
address the computational burden, the problem is decomposed with a Dantzig-Wolfe 
decomposition, and it is implemented in a 5-node system of the National Electricity 
Market, considering five future scenarios.  

The results show that the optimal stochastic portfolio reaches a lower expected total 
cost than the deterministic portfolios. Moreover, the results show two relations between 
lines and storage investments. Firstly, the optimal portfolio includes lines and pumped 
storage to transfer the excess of VREG from regions with low demand. Secondly, battery 
investments defer line investments in regions with high demand. 
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CO-OPTIMIZING NETWORK, PUMPED AND BATTERY STORAGE INVESTMENTS 
UNDER LONG TERM UNCERTAINTIES: A CASE STUDY ON AUSTRALIAN POWER 

SYSTEM 

El ritmo al cual son adoptadas las tecnologías de generación variable (VREG) depende 
de diversos factores inciertos, los cuales dificultan la predicción de su penetración en los 
próximos años. Por lo tanto, la consideración de incertidumbre en los modelos de 
expansión es fundamental para estudiar apropiadamente el rol del almacenamiento en 
escenarios futuros. 

Esta tesis implementa un modelo entero mixto estocástico de dos etapas para co-
optimizar inversiones de almacenamiento y transmisión con la operación del sistema 
eléctrico. El modelo incluye una operación horaria y un modelo de transporte para líneas. 
Además, los generadores consideran en la operación: rampas máximas, tiempos de 
encendido/apagado, mínimos/máximos técnicos y reservas de subida. Para abordar la 
carga computacional, el problema es descompuesto con la descomposición de Dantzig-
Wolfe e implementado considerando cinco escenarios en un sistema de 5 barras del 
National Electricity Market.  

Los resultados muestran que el portafolio estocástico alcanza un costo total esperado 
más bajo que los portafolios deterministas. Además, se pueden apreciar relaciones entre 
inversiones de líneas y almacenamiento. Primeramente, el portafolio optimo incluye 
líneas y centrales de bombeo para transferir el exceso de VREG desde regiones con baja 
demanda. Además, las baterías desplazan la inversión en líneas en regiones con alta 
demanda. 
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Chapter 1  

Introduction  

1.1. Motivation 

In recent years, countries around the world have been committed to reduce carbon 
emissions. For instance, Australia has international commitments to reduce these 
emissions by 26–28% below 2005’s levels by 2030 [1]. Since the electricity sector is the 

largest producer of carbon emissions, with 35% of total emissions [2], there is increasing 
pressure in the industry, which has pushed system planners to make new approaches to 
plan the future systems. 

Decreasing emissions implies various changes in the future power systems, bringing 
new challenges to the different market agents. There is a consensus among the 
international community that there will be three key system changes and operational 
challenges for the upcoming years [3]–[7]: 1) Changing the supply mix, which means more 
variable renewable energy generation (VREG) and less dispatchable generation; 2) Impact 
of weather, considering rises in temperature and an increase in the frequency of extreme 
weather events; and 3) A change in the electricity demand, given by higher ramps for 
peaks, lower minimum demand, more active costumers along with more distributed 
energy resources (DER). For system planners, these challenges result in uncertainty about 
the future. For instance, the Australian Energy Market Operator (AEMO) projects a 
growth in installed capacity of VREG technologies, which might reach 47 GW installed by 
2040 [8]. Similarly, DER generators (rooftop PV and PV under 30 MW) could provide 
between 13% and 22% of the total underlying annual National Electricity Market (NEM) 
energy consumption by 2040 [8]. Moreover, the installed batteries at distribution level 

could reach 30 GW by 2040 [9]. Therefore, the VREG and DER technologies will play an 
important role in the energy system in the upcoming years having a strong influence in 
both distribution and transmission/generation level [5].  

The renewable energy zones are usually in different places of the electrical systems, 
and they are not necessarily close to the demand centres. Moreover, there are regions 
which have more renewable energy potential. In order to share this resource with other 
regions, the development of the VREG must be made along with investment in lines and 
storage systems, to avoid bottlenecks in transmission lines, to supply electricity in the 
peak demand hours and to sort different conditions of the variable resource.  
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Therefore, given these challenges and the nature of VREG technologies, new tools are 
needed to calculate the optimal portfolio of lines and storage in the electrical systems. 
These tools must be able to capture the relation among these investments and address the 
short-term variability along with long-term uncertainties.   

1.2. Proposed Hypothesis  

This research seeks to demonstrate that by considering long term uncertainty in a 
highly-detailed operational model in the co-optimization of lines and storage in the NEM, 
it is possible to appreciate two phenomena: Firstly, a complementary effect between the 
investment in lines and the storage in regions with high renewable potential; secondly, a 
deferral effect in zones where storage can deal with peak demand. 

1.3. Objectives  

1.3.1. General objective  

• To implement and develop a stochastic planning model with a detailed 
operational model to analyse the role of different types of storage in the 
transmission expansion planning problem in the NEM, considering different 
scenarios and case studies.  

1.3.2. Specific objectives 

• To address the uncertainty about the future using different scenarios with 
various penetration levels of renewable energy resources and a detailed 
operational model.  

• To identify the impact of considering different kinds of storage technologies in 
the medium- and long-term line investment decisions. 

• To comprehend the operational conditions which make planners invest in more 
lines or storage.  

• To understand the impact of planning the NEM system considering different 
maximum demands.  

1.4. Contribution 

The findings from this study make two main contributions to the existing literature. 
Firstly, despite the variety of studies and model approaches to solve the planning problem, 
the incorporation of a stochastic investment model that includes an hourly solution with 
a detailed operational model for generators has still not been addressed properly.  

The second contribution of this work is understanding the impact of different types of 
storage in the transmission expansion planning (TEP) problem, and under what 
conditions line and storage investments might be complemented or deferred by each 
other’s investment. By running different study cases this research shows a complementary 
effect between the investment in lines and storage plants in regions with high renewable 
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potential; and a deferral effect in zones where storage can deal with peak demand. In this 
vein, this research sheds new light on the effect of storage in the TEP problems considering 
a stochastic approach.  

1.5. Structure of the document  

The remaining of this thesis is structured as follows. Chapter 2 presents a literature 
review of the planning problems and their challenges. Chapter 3 provides the model 
formulation. Chapter 4 details the case study and input data. The results and discussion 
are presented in Chapter 5. Finally, Chapter 6 shows conclusions and future work.   
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Chapter 2  

Literature review  

Currently, electrical systems are facing a change from a conventional system to a new 
decarbonized and decentralized system. In this context, there are three challenges for the 
planning problem [3]–[6], [10], [11]: 1) Changing the supply mix, which means more 
VREG and less dispatchable generation; 2) A change in the electricity demand, given by 
higher ramps for peaks and more DER; and 3) Impact of weather, considering rises in 
temperature, which might imply higher and more frequently maximum demands (MDs). 
The following paragraphs will provide an overview of each of these challenges. 

The first challenge is the changing in the supply mix. In order to address this  
challenge, planners need to tackle two significant issues in the upcoming years: in the 
operational or short-term models, the hourly variability of VREG is crucial to understand 
the role of storage and lines; and in the planning or medium/long term models, it is 
important to include the uncertainties about new policies, investment costs and the high 
penetration of VREG to reach an optimal portfolio of generators, lines and storage [10]–

[13]. 

To understand the role of generators, lines and storage in the future electrical systems, 
the co-planning among these technologies has been carried out in recent years. The co-
planning of these technologies can be classified into four co-optimization categories: the 
generation and transmission expansion planning; the storage and generation expansion 
planning; storage and transmission expansion planning; and the storage, transmission 
and generation expansion planning. By co-optimizing more than one of these 
technologies, the computational burden increases. This is due to the fact that the number 
of investment decisions and the details of each model increase. Since this thesis focuses 
on the impact of storage in the TEP, the co-optimization between transmission and 
generators is out of its scope; however, there are several studies which have made an effort 
to understand the impact of the co-optimization of these technologies in the system [14]–

[16].  

The co-optimization of storage and lines has been carried out considering different 
assumptions. In [17],the impact of batteries in the TEP was studied using various demand 
blocks in a 27-bus model of the Chilean system. The results show that under their 
simplified model of the operation, the investment in batteries promotes the installation of 
more lines in some cases. However, these results were obtained using demand blocks and 
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it is unclear the role of storage in the provision of energy arbitrage in chronological order, 
which is a key issue in systems with high penetration of VREG [11] . In [18], the authors 
have introduced a daily profile considering two demand blocks, which represent low and 
peak demands. They have implemented the model with a Benders decomposition to study 
the TEP considering storage. The model is implemented in three systems: Garver’s 6-bus 
system, IEEE 25-bus and a 46-bus Brazilian system. The results show that in some cases, 
the installation of storage is an effective means of transmission upgrade deferral. Although 
this study has improved the chronological representation of the demand, two demand 
blocks are not enough to capture the variation of demand and renewable generation. In 
[19], the authors have introduced a chronological order by studying a daily demand with 
six constant-demand intervals. This demand was used for the 365 days of the year. They 
implemented a MILP formulation to analyse the impact of batteries in two test systems: 
modified Garver’s system and IEEE 24-bus system. They concluded that in some cases, 
the inclusion of batteries delays the construction of lines. However, the limitations of this 
study are the lack of inclusion of different types of storage plants, and the utilization of 
constant demand curves. The inclusion of several storage technologies has been study by 
Wang et al. [20]. They have included batteries and pumped storage plants using a nested 
column and constraint generation algorithm with a robust approach. The formulation is 
implemented considering renewable power uncertainty. The model is used to study the 
relationship between line length and storage investment in a system with high VREG 
penetration, concluding that batteries are better to alleviate congestion than long-distance 
transmission lines. Nevertheless, this study does not consider uncertainty about future 
demands, different future penetration of VREG and different levels of DER.  

In [21], two storage technologies have been included in the TEP problem: small 
pumped storage and batteries. The problem was implemented as a stochastic model 
considering long-term uncertainty for demand growth as well as available generation 
capacity. This study considerers a 24-hour profile in two systems: a 6-bus model and a 
reduced model of the Chinese electrical system. The results highlight that the inclusion of 
storage reduces transmission requirement and allows the efficient integration of wind 
power. Although this approach allow to understand the impact of two storage technologies 
in the TEP problem, the authors have not included commitment constraints, which might 
lead to underestimate the operational cost [22]. Moreover, the source of uncertainties 

does not consider different penetration of DER. Similarly, Falugi et al. [23] have proposed 
a novel Benders decomposition, considering 27 scenarios with different daily demand 
profiles and wind penetration in a multi-stage scenario tree. The model is implemented 
without considering commitment constraints in the IEEE 118-bus system, including three 
types of storage options: Pumped storage, compressed air energy storage and batteries. 
This paper highlights the importance of considering small and large-scale storage plants 
due to their different deployment time. Although this paper included different scenarios, 
the scenarios do not consider different penetration of DER.  

The studies presented thus far show relations between the investment in storage and 
lines considering different assumptions. However, none of these studies has consider the 
impact of DER in the future systems, which might change the optimal portfolio [5]. 
Moreover, most of these studies have ignored unit commitment constraints, and they do 
not consider the intraday energy arbitrage of storage plants. In fact, in [11] was reported 
that one of biggest challenges of the storage expansion planning (SEP) problems is the 
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inclusion of a high temporal resolution along with the unit commitment constraints of 
conventional generators.  

The inclusion of the unit commitment constraints in the co-optimization of storage 
and generators has been shown by Poncelet et al. [24], who studied the value of storage 

by providing flexibility, and Diaz et al. [25], who studied the impact of different levels of 
modelling complexity. Both papers studied the system with unit commitment variables 
without considering transmission lines and highlighting the fact that to neglect unit 
commitment constraints in the planning problem leads to suboptimal solutions. The 
inclusion of unit commitment constraints in a generation expansion planning (GEP) 
problem has also been studied in [22], [26]. These research articles agree with the fact 
that neglecting the unit commitment constraints increase the total cost of the electrical 
system.  

The second challenge of the future electrical systems is the impact of DER in the 
expansion planning problem. Pérez-Arriagada [5] comments about the impact of DER 
technologies in the upcoming years, highlighting that the inclusion of these technologies 
will modify the optimal investment in lines in the TEP problems. 

The impact of different distributed generators (DG) in lines in a distribution system 
has been studied in [27], [28]. The results of these papers highlight that the investment in 
DG may defer the reinforcement of lines in a distribution level, depending on the size, 
location and the type of DG. However, these research articles are limited to the 
distribution system, and the impact in the transmission system is not addressed. Luo et 
al. [29] have study the impact of DG in the TEP. They have implemented an AC-OPF 
model in the Queensland transmission system. They conclude that the solar PV would 
have a stronger effect on transmission investment deferral than wind generators. This is 
due that the deployment of wind generators could be made in one area of Queensland, but 
the solar resource is available in all the system. Although the TEP was study including DG, 
the impact of storage is not addressed. Similarly, Alvarado et al. [30] studied the impact 
of various DER resources in the TEP problem with a novel mathematical approach, 
concluding that considering DER services in the planning problem can defer network 
investment. Gomes and Saraiva [31] have studied the TEP problem considering different 
levels of solar DG penetration in the distribution networks. Their results indicated that 
solar DG is not able in an isolated way to reduce the investment in transmission. The 
authors suggest that the DG generators must be complemented with storage or demand 
response programs in order to reduce the investment in transmission networks. This 
study was limited to assess the impact of DG in the TEP; therefore, it is unknown the 
impact of different storage technologies. Finally, the impact of electric vehicles in the co-
optimization of lines and generators has been addressed in [32], where the authors 
concluded that the use of smart charging patterns can impact the planning by affecting 
the peak hours and leading in higher investment in PV technologies. Being limited to the 
co-optimization of lines and generation considering Electric vehicles (EV), this study does 
not study the impact of storage in the planning problem. Despite their contributions, one 
important drawback in all the studies reviews about the inclusion of DER in the planning 
problem is that the different levels of DER technologies have not been included in the co-
planning of storage and lines. Therefore, how different penetration of DER affects the co-
optimization of the operation of the system along with the investment in lines and storage 
remains unclear.  
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Finally, the last challenge of the electrical system of the future is the weather 
changes. These phenomena increase the MD due to extreme weather events [7], [33]–

[35]. The inclusion of different MDs has been carried out by AEMO in [33], [36]. They 
include different demands with various probability of exceedances (POE) in the TEP of 
the NEM system. The POE has been built for 90%,50% and 10% probability of exceedance, 
where 90% means MD is expected to be exceeded on average nine years in ten; 50% one 
year in two; and 10% one year in ten. In this vein, considering a POE 10% implies to 
consider the highest MD given by events such as cool/heatwaves but with a similar 
condition for the rest of the year.  AEMO includes in the TEP the POE 10% demand as load 
blocks to choose a portfolio to evaluate under more detailed demand models. 
Nevertheless, the applied model does not allow the planner to capture the impact of 
storage in the hours of MD. In the academic literature, seasonal peaks and coldwaves have 
been addressed in [34] to co-optimize generation and transmission in the European 
electrical system. Although their results highlight that the extreme weather conditions 
could require the installation of additional back-up capacity, the impact of different 
storage plants in the line investment have not addressed.  
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Chapter 3  

Model 

Nomenclature  

AEMO Australian Energy Market Operator 

BON Battery of Nation 

CCGT Combined-Cycle Gas Turbine 

DER Distributed Energy Resource 

DG Distributed Generators 

ENS Energy not Supplied 

ESS Energy Storage Systems 

EV Electric Vehicles 

GEP Generation Expansion Planning 

MD Maximum Demand 

MMA$ Millions of Australian dollars 

NEM National Electricity Market 

NSW New South Wales 

OCGT Open Cycle Gas Turbine 

POE Probability of Exceedance 

PS Pumped Hydro Storage 
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PVNSG Photovoltaic Non-scheduled Generation 

QLD Queensland 

SA South Australia 

SEP Storage Expansion Planning 

TAS Tasmania 

TEP Transmission Expansion Planning 

VIC Victoria 

VOLL Value of Lost Load 

VPP Virtual Power Plant 

VREG Variable Renewable Energy System 

Parameters 

𝐶𝑔,𝑚
𝑓𝑢𝑒𝑙

 Fuel cost of generator 𝑔 in scenario tree node 𝑚 [A$/MW] 

𝐶𝑔
𝑟𝑝

 Ramp-up cost of generator 𝑔 [A$/ΔMW] 

𝐶𝑔
𝑅 Upward reserve cost of generator 𝑔 [A$/MWh] 

𝐶𝑔
𝑠𝑑  Shut-down cost of generator 𝑔 [A$] 

𝐶𝑔
𝑢𝑝

 Start-up cost of generator 𝑔 [A$] 

𝐷𝜔,𝑛,𝑡 Electricity demand of node 𝑛 in week 𝜔 and time 𝑡 [MW] 

𝐷𝑡𝑔 Minimum down time of generator 𝑔 [h] 

𝐸̅𝑠
𝐶 Maximum energy of candidate storage plant 𝑠 [MWh] 

𝐸̅𝑠 Maximum energy of existing storage plant 𝑠 [MWh] 

𝐹̅𝑙 Maximum power flow capacity of line 𝑙 [MW] 

𝐹𝑟̅̅
𝑙̅ Percentage of line capacity to import/export reserves of line 𝑙 [-] 

ℱ𝑔 Full outage rate of generator 𝑔 [-] 

𝐿𝑙 Power flow capacity of candidate line 𝑙 [MW] 
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𝑀̅ Big number [-] 

𝑛𝐺𝑚,𝑔 Total available unit of generator 𝑔 in the scenario tree node 𝑚 [-] 

℘𝑔 Partial outage rate of generator 𝑔 [-] 

𝑃𝑔̅ Maximum power output of generator 𝑔 [MW] 

𝑃𝑔 Minimum power output of generator 𝑔 [MW] 

𝑃̅𝑠
𝐶 Maximum power output of candidate storage plant 𝑠 [MW] 

𝑃̅𝑠
𝐸 Maximum power output of existing storage plant 𝑠 [MW] 

𝑃𝑙𝜔,𝜐,𝑡 Renewable profile of renewable generator 𝜐 in time 𝑡 and week 𝜔 [-] 

𝑃𝑟𝑚,𝜐 Maximum power output of renewable generator 𝜐 in scenario tree node 𝑚 [MW] 

𝑟 Discount rate [-] 

𝑅𝑡,𝑛
0  Reserve requirement of node 𝑛 in time 𝑡 [MWh] 

𝑅𝑎𝑚𝑝𝑔 Ramp rate limit of generator 𝑔 [-] 

𝓊𝑔 Unavailability of generator 𝑔 [-] 

𝑈𝑡𝑔 Minimum up time of generator 𝑔 [h] 

𝑉𝑜𝑙𝑙 Value of lost (or curtailed) load [A$/MWh] 

𝑊𝜔 
Number of times that a representative week ω is repeated within one year [-] 

𝑦0 
Reference year to which all costs are discounted [-] 

𝑦𝑟𝑚 
Milestone year in the scenario tree node 𝑚 [-] 

𝛼𝑔 Derating factor of generator 𝑔 due to partial outage [-] 

𝜂𝑠
𝑐ℎ Charge efficiency of storage plant 𝑠 [-] 

𝜂𝑠
𝑑 Discharge efficiency of storage plant 𝑠 [-] 

𝜇̅𝑏
𝐵 Maximum investment of candidate battery 𝑏 [-] 
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𝜇̅𝑙
𝐿 Maximum investment of candidate line  𝑙 [-] 

ξ𝜔,𝑔 Seasonal factor of hydro generator 𝑔 in week 𝜔 [-] 

Π𝑏,𝑚
𝐵  Investment cost of candidate battery 𝑏 in the scenario tree node 𝑚 [A$] 

Π𝑙,𝑚
𝐿  Investment cost of candidate line 𝑙 in the scenario tree node 𝑚 [A$] 

Π𝑝,𝑚
𝑃𝑆  Investment cost of candidate pumped storage 𝑝 in the scenario tree node 𝑚 [A$] 

𝜌𝑔 Percentage of capacity of committed generator 𝑔 to provide reserves [-] 

𝜙𝑚 Probability of scenario tree node 𝑚 [-] 

𝜓𝑠 Reserve provision time of storage plant 𝑠 [h] 

Variables  

𝐸𝑡,𝑠 Energy of storage plant 𝑠 in time 𝑡 [MWh] 

𝐹𝑡,𝑙 Power flow of line 𝑙 in time 𝑡 [MW] 

𝐹𝑟𝑡,𝑙
𝑓𝑤

 Forward reserve flow of line 𝑙 in time 𝑡 [MW] 

𝐹𝑟𝑡,𝑙
𝑟𝑣 Reverse reserve flow of line 𝑙 in time 𝑡 [MW] 

𝐼𝑚 Investment cost in scenario tree node 𝑚 [A$] 

𝑂𝑚 Operational cost in scenario tree node 𝑚 [A$] 

𝑃𝑡,𝑔 Power output of generator 𝑔 in time 𝑡 [MW] 

𝑃𝑡,𝑠
𝑑  Power discharged of storage plant 𝑠 in time 𝑡 [MW] 

𝑃𝑡,𝑠
𝑐ℎ Power charged of storage plant 𝑠 in time 𝑡 [MW] 

𝑃𝑓𝑡,𝑛 Curtailed load of node 𝑛 in time 𝑡 [MW] 

𝑃𝑟𝑡,𝜐   Power output of renewable generator 𝜐 in time 𝑡 [MW] 

𝑅𝑡,𝑔 Reserve of generator 𝑔 in time 𝑡 [MWh] 

𝑅𝑡,𝑠
𝐶  Reserve of candidate storage plant 𝑠 in time 𝑡 [MW] 

𝑅𝑡,𝑝
𝐸  Reserve of existing storage plant 𝑝 in time 𝑡 [MW] 

𝑟𝑝𝑡,𝑔 Change in electrical power output of generator 𝑔 in time 𝑡 [MW] 
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𝑠𝑑𝑡,𝑔 Number of shutting down units of generator 𝑔 in time 𝑡 [-] 

𝑢𝑝𝑡,𝑔 Number of starting up units of generator 𝑔 in time 𝑡 [-] 

𝑋𝑡,𝑠 State of charge of storage plant 𝑠 in time 𝑡 [-] 

𝜇𝑙,𝑚
𝐿  Candidate line 𝑙 in scenario tree node 𝑚 [-] 

𝜇𝑏,𝑚
𝐵  Candidate battery 𝑏 in scenario tree node 𝑚 [-] 

𝜇𝑝,𝑚
𝑃𝑆  Candidate pumped storage 𝑝 in scenario tree node 𝑚 [-] 

𝒳𝑡,𝑔 Number of online units of generator 𝑔 in time 𝑡 [-] 

Sets 

𝐵𝑛 
Set of existing batteries in node 𝑛 

𝐵̂𝑛 Set of candidate batteries in node 𝑛 

𝐺𝑛 Set of generators in node 𝑛 

𝐺𝑛
𝐻 Set of hydro generators in node 𝑛 

𝐿𝑛 Set of existing lines in node 𝑛 

𝐿̂𝑛 Set of candidate lines in node 𝑛 

𝑀 
Set of nodes in the scenario tree 

𝑀𝑆 Set of sibling nodes in the scenario tree 

𝑁 Set of nodes in the 5-node system 

𝑃𝑆𝑛 Set of existing PS plants in node 𝑛 

𝑃𝑆𝑛̂ Set of candidate PS plants in node 𝑛 

𝑆𝑛 Set of existing storage (𝑃𝑆𝑛 and 𝐵𝑛) in node 𝑛 

𝑆̂𝑛 Set of candidate storage (𝑃𝑆𝑛̂ and 𝐵̂𝑛) in node 𝑛 
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𝑇 Set of time steps within a representative week 

Υ𝑛 Set of renewable generators in node 𝑛 

Ω𝑚 Set of weeks within one year in the scenario tree node 𝑚 

3.1. Overview of the model  

In order to understand the impact of the variability of the VREG along with the 
constraints of the conventional generators in a planning model of transmission and 
storage, we have implemented a 2-stage model. This model co-optimizes the operation of 
the system and the investment in lines and storage for different scenarios of installed 
generation capacity. This allows us to capture the operational variability of the system and 
the uncertainty of the investment in the medium and long term.   

The model considers investments in lines and storage as batteries and pumped 
storage. Due to the delay given by construction times, lines and pumped storage consider 
a lead time. On the other hand, the candidate batteries are installed without lead time. 
The lines are modelled with a transportation model, which only consider the Kirchhoff’s 
first law. The pumped storage model allows these generators to provide energy arbitrage 
and upward reserves without change the state of charge. Conversely, the batteries can 
change the charging/discharging state to provide reserves.  

The operation is simulated hourly for different weeks selected with a k-means cluster. 
The generators model considers a detailed operation, which includes the next constraints: 
ramp-up and down, minimum up and down time, maximum/minimum operating point, 
and upward reserves. In this vein, the operational cost of the system is given by the fuel 
cost, ram-up cost, start-up/shut-down cost and the value of lost load (VOLL). The reserve 
requirement of the system nodes can be shared with the limit of a maximum percentage 
of the line capacity.  

3.2. Objective function 

The model co-optimized the expected operational and investment cost of the electrical 
system in a two-stage scenario tree node as is shown in the objective function in ( 3.1 ). 
The investment cost considers the costs of lines and storage as pumped hydro storage (PS) 
and batteries along every year and scenario of the scenario tree as is shown in ( 3.2 ). The 

equation ( 3.3 ) shows the operational costs, which depends on different typical weeks 
repeated 𝑊𝜔 within one year. The operational costs included are the following: fuel, 
ramping, starting up, shutting down, upward reserves and VOLL. The downward reserves 
are less expensive [24], [37]; therefore, have not been considered in the formulation of the 
problem. 
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𝑀𝑖𝑛 { ∑ 𝜙𝑚

(𝐼𝑚 + 𝑂𝑚)

(1 + 𝑟)𝑦𝑟𝑚−𝑦0

𝑚∈𝑀

} ( 3.1 ) 

𝐼𝑚 = ∑ ( ∑ Π𝑝,𝑚
𝑃𝑆 ∙ 𝜇𝑝,𝑚

𝑃𝑆

𝑝 ∈ 𝑃𝑆𝑛̂

+ ∑ Π𝑏,𝑚
𝐵 ∙ 𝜇𝑏,𝑚

𝐵

𝑏 ∈ 𝐵̂𝑛

+ ∑ Π𝑙,𝑚
𝐿 ∙ 𝜇𝑙,𝑚

𝐿

𝑙 ∈ 𝐿̂𝑛

)

𝑛∈𝑁

 

( 3.2 ) 

𝑂𝑚 = ∑ 𝑊𝜔 (∑ (∑ ( ∑ (𝐶𝑔,𝑚
𝑓𝑢𝑒𝑙

∙ 𝑃𝑡,𝑔 + 𝐶𝑔
𝑟𝑝 ∙ 𝑟𝑝𝑡,𝑔 + 𝐶𝑔

𝑢𝑝 ∙ 𝑢𝑝𝑡,𝑔       

𝑔∈𝐺𝑛𝑡 ∈ 𝑇𝑛∈𝑁𝜔 ∈ Ω𝑚

+ 𝐶𝑔
𝑠𝑑 ∙ 𝑠𝑑𝑡,𝑔 + 𝐶𝑔

𝑅 ∙ 𝑅𝑡,𝑔) + 𝑉𝑜𝑙𝑙 ∙ 𝑃𝑓𝑡,𝑛))) 

( 3.3 ) 

3.2.1. Investment constraints 

The construction times of the lines and PS make it impossible for these technologies 
to be installed immediately. In order to consider the construction time of lines and PS, the 
model considers a lag of one epoch (5-year period) to build lines and PS. For this reason, 
these technologies cannot be installed in the first epoch as it is shown in ( 3.4 ) and ( 3.5  

). Furthermore, due to the lag of one epoch, the investment in the sibling nodes must be 

the same for lines and PS, these constraints are shown in  ( 3.6 ) and ( 3.7 ), respectively. 

The model chooses the number of candidate batteries and lines to install, which are 
constrained in ( 3.8 ) and ( 3.9 ), respectively. Moreover, these variables are integer as is 

shown in ( 3.10 ). On the other hand, the PS decision is about installing the project or not; 

hence, it is a binary variable as is shown in ( 3.11 ). 

𝜇𝑙,1
𝐿 = 0  ∀ 𝑙 ∈ 𝐿̂𝑛, 𝑛 ∈ 𝑁 ( 3.4 ) 

𝜇𝑝,1
𝑃𝑆 = 0  ∀ 𝑝 ∈ 𝑃𝑆̂𝑛, 𝑛 ∈ 𝑁 ( 3.5 ) 

𝜇𝑙,𝑚
𝐿 = 𝜇𝑙,𝑚′

𝐿   ∀ 𝑙 ∈ 𝐿̂𝑛, 𝑛 ∈ 𝑁, ∀ 𝑚, 𝑚′ ∈ 𝑀𝑠  | 𝑚 ≠ 𝑚′ ( 3.6 ) 

𝜇𝑝,𝑚
𝑃𝑆 = 𝜇𝑝,𝑚′

𝑃𝑆  ∀ 𝑝 ∈ 𝑃𝑆̂𝑛, 𝑛 ∈ 𝑁, ∀ 𝑚, 𝑚′ ∈ 𝑀𝑠  | 𝑚 ≠ 𝑚′ ( 3.7 ) 

0 ≤ 𝜇𝑏,𝑚
𝐵 ≤ 𝜇̅𝑏

𝐵  ∀ 𝑏 ∈  𝐵̂𝑛, 𝑛 ∈ 𝑁, 𝑚 ∈ 𝑀 
( 3.8 ) 
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0 ≤ 𝜇𝑙,𝑚
𝐿 ≤ 𝜇̅𝑙

𝐿  ∀ 𝑙 ∈  𝐿̂𝑛, 𝑛 ∈ 𝑁, 𝑚 ∈ 𝑀 ( 3.9 ) 

𝜇𝑙,𝑚
𝐿 , 𝜇𝑏,𝑚

𝐵 ∈ 𝕫+ ∀ 𝑏 ∈ 𝐵̂𝑛, 𝑙 ∈ 𝐿̂𝑛, 𝑛 ∈ 𝑁, 𝑚 ∈ 𝑀  ( 3.10 ) 

𝜇𝑝,𝑚
𝑃𝑆 ∈ {0,1} ∀ 𝑝 ∈  𝑃𝑆̂𝑛, 𝑛 ∈ 𝑁, 𝑚 ∈ 𝑀  ( 3.11 ) 

3.2.2. Supply-demand balance constraint  

Equation ( 3.12 ) balances electricity supply and demand in all time t. This equation 
includes the power of each generator, charge and discharge of storage system, renewable 
production, the flow from lines and the curtailed load.  

∑ 𝑃𝑡,𝑔

𝑔 ∈ 𝐺𝑛

+ ∑ (𝑃𝑡,𝑏
𝑑 − 𝑃𝑡,𝑏

𝑐ℎ)

𝑏 ∈ {𝐵𝑛,𝐵̂𝑛}

+ ∑ (𝑃𝑡,𝑝
𝑑 − 𝑃𝑡,𝑝

𝑐ℎ)

𝑝 ∈ {𝑃𝑆𝑛,𝑃𝑆̂𝑛}

+ ∑ 𝑃𝑟𝑡,𝜐

𝜐 ∈ Υ𝑛

+ ∑ 𝐹𝑡,𝑙

𝑙 ∈{𝐿𝑛,𝐿̂𝑛}

+ 𝑃𝑓𝑡,𝑛 = 𝐷𝜔,𝑛,𝑡  ∀ 𝜔 ∈  Ω𝑚, 𝑡 ∈  𝑇, 𝑛 ∈ 𝑁, 𝑚 ∈ 𝑀 

( 3.12 ) 

3.2.3. Constraints of generators  

The model of the conventional generators is given by a clustered unit commitment. This 
method consists in clustering units with similar technical constraints to use integer 
variables instead of binary variables and thus reduce the problem size [38], [39]. The 

maximum number of units in each generator is constrained in ( 3.13 ). The maximum and 

minimum power output of conventional generators are given by ( 3.14 ) and ( 3.15 ), 
respectively. The maximum percentage of reserve that the committed generation can 
supply is shown in ( 3.16 ). There is a monthly factor considered in ( 3.17 ), which limits 
the maximum hydro generation for each month. This factor is the capacity factor 
calculated for each region from the historical hydro generation obtained from [40]. In 

[41], the forced outage rate of the generators is considered in the operational model. Based 

on that, the equation ( 3.18 ) shows the unavailability of the generators, which includes 

the full and partial outage rate. The equation ( 3.19 ) shows the maximum generation limit 
considering the unavailability.  

𝑋𝑡,𝑔 ≤ 𝑛𝐺𝑔 ∀𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺𝑛, 𝑛 ∈ 𝑁 ( 3.13 ) 

𝑃𝑡,𝑔 + 𝑅𝑡,𝑔 ≤  𝑃𝑔̅ ∙ 𝒳𝑡,𝑔 ∀𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺𝑛, 𝑛 ∈ 𝑁 ( 3.14 ) 

 𝑃𝑔 ∙ 𝒳𝑡,𝑔 ≤ 𝑃𝑡,𝑔  ∀𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺𝑛, 𝑛 ∈ 𝑁 ( 3.15 ) 
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𝑅𝑡,𝑔 ≤ 𝜌𝑔 ∙  𝑃𝑔 ∙ 𝒳𝑡,𝑔 ∀𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺𝑛, 𝑛 ∈ 𝑁 ( 3.16 ) 

𝑃𝑡,𝑔 ≤  𝑃𝑔 ∙ 𝑛𝐺𝑔 ∙ 𝜉𝜔,𝑔     ∀ 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺𝑛
𝐻, 𝑛 ∈ 𝑁 ( 3.17 ) 

𝓊𝑔 = ℱ𝑔 + ℘𝑔(1 − 𝛼𝑔) ∀ 𝑔 ∈ 𝐺𝑛, 𝑛 ∈ 𝑁 ( 3.18 ) 

𝑃𝑡,𝑔 ≤ 𝑛𝐺𝑚,𝑔 ∙ 𝑃𝑔 (1 − 𝓊𝑔) ∀ 𝑡 ∈ 𝑇, 𝑔 ∈  𝐺𝑛, 𝑛 ∈ 𝑁 ( 3.19 ) 

The number of online units is given by the generator starting up minus generators shutting 
down as is shown in ( 3.20 ). Constraints ( 3.21 )-( 3.24 ) impose minimum up and down 
times, which guarantee that the generators switched on/off must remain in that state for 
a minimum time. 

 𝒳𝑡,𝑔 = 𝒳𝑡−1,𝑔 + 𝑢𝑝𝑡,𝑔 − 𝑑𝑤𝑡,𝑔            ∀ 𝑡 > 1 ∈ 𝑇, 𝑔 ∈  𝐺𝑛,  𝑛 ∈ 𝑁 ( 3.20 ) 

𝒳𝑡,𝑔 ≥ ∑ 𝑢𝑝𝑡′,𝑔

𝑡′∈  {1:𝑡}

            𝑖𝑓  𝑡 ≤ 𝑈𝑡𝑔    ∀ 𝑡 ∈ 𝑇, 𝑔 ∈  𝐺𝑛, 𝑛 ∈ 𝑁 ( 3.21 ) 

𝒳𝑡,𝑔 ≥ ∑ 𝑢𝑝𝑡′,𝑔

𝑡′∈  {𝑡−𝑈𝑡𝑔:𝑡}

      𝑡 > 𝑈𝑡𝑔      ∀ 𝑡 ∈ 𝑇, 𝑔 ∈  𝐺𝑛, 𝑛 ∈ 𝑁 ( 3.22 ) 

𝑛𝐺𝑚,𝑔 − 𝒳𝑔,𝑡 ≥ ∑ 𝑠𝑑𝑔,𝑡′

𝑡′∈  {1:𝑡}

           𝑖𝑓  𝑡 ≤ 𝐷𝑡𝑔    ∀ 𝑡 ∈ 𝑇, 𝑔 ∈  𝐺𝑛, 𝑛 ∈ 𝑁 ( 3.23 ) 

𝑛𝐺𝑚,𝑔 − 𝒳𝑔,𝑡 ≥ ∑ 𝑠𝑑𝑔,𝑡′

𝑡′∈  {𝑡−𝐷𝑡𝑔:𝑡}

      𝑡 > 𝐷𝑡𝑔   ∀ 𝑡 ∈ 𝑇, 𝑔 ∈  𝐺𝑛, 𝑛 ∈ 𝑁 

( 3.24 ) 

The conventional technologies have a maximum ramp rate limit. These constraints are 
shown in ( 3.25 ) and ( 3.26 ). Besides, the ramp must be calculated to add the value to 

the objective function, this is done in ( 3.27 ) and ( 3.28 ). 

𝑃𝑡,𝑔 − 𝑃𝑡−1,𝑔 ≤ 𝒳𝑡−1,𝑔 ∙ 𝑅𝑎𝑚𝑝𝑔 ∙ 𝑃𝑔 + 𝑢𝑝𝑡,𝑔 ∙ 𝑃𝑔  ∀ 𝑡 ∈ 𝑇, 𝑔 ∈  𝐺𝑛, 𝑛 ∈ 𝑁 ( 3.25 ) 
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𝑃𝑡−1,𝑔 − 𝑃𝑡,𝑔 ≤ 𝒳𝑡,𝑔 ∙ 𝑅𝑎𝑚𝑝𝑔 ∙ 𝑃𝑔 + 𝑠𝑑𝑡,𝑔 ∙ 𝑃𝑔   ∀ 𝑡 ∈ 𝑇, 𝑔 ∈  𝐺𝑛 , 𝑛 ∈ 𝑁 ( 3.26 ) 

𝑃𝑡,𝑔 − 𝑃𝑡−1,𝑔 − 𝑢𝑝𝑡,𝑔 ∙ 𝑃𝑔 ≤ 𝑅𝑝𝑡,𝑔   ∀ 𝑡 ∈ 𝑇, 𝑔 ∈  𝐺𝑛, 𝑛 ∈ 𝑁 ( 3.27 ) 

𝑃𝑡−1,𝑔 − 𝑃𝑡,𝑔 − 𝑠𝑑𝑡,𝑔 ∙ 𝑃𝑔 ≤  𝑅𝑝𝑡,𝑔   ∀ 𝑡 ∈ 𝑇, 𝑔 ∈  𝐺𝑛,  𝑛 ∈ 𝑁 ( 3.28 ) 

The renewable output is constrained in ( 3.29 ) by the install capacity and the 

profiles for wind and solar resource in the week 𝜔. 

𝑃𝑟𝑡,𝜐 ≤  𝑃𝑟𝑚,𝜐 ∙ 𝑃𝑙𝜔,𝜐,𝑡 ∀ 𝑡 ∈ 𝑇, 𝜐 ∈ Υ𝑛, 𝑛 ∈ 𝑁 ( 3.29 ) 

3.2.4. Existing storage 

The existing storage plants consider two technologies: PS and residential batteries 
grouped as virtual power plant (VPP). The storage models are based on [42]. Both 
technologies can provide energy arbitrage, and PS can also supply reserves. 

The energy balance of the storage plants is calculated in ( 3.30 ). Equation ( 3.31 ) 
shows the energy available in the PS plants to provide reserves in the next hour. The 
maximum energy that can be stored is constrained in ( 3.32 ). The power balance of VPP 

and PS are shown in ( 3.33 ) and ( 3.34 ), respectively. The charging ( 3.35 ) and 

discharging ( 3.36 ) of storage plants are defined considering binary variables ( 3.37 ) and 
the maxim power output.    

𝐸𝑡,𝑠 = 𝑃𝑡,𝑠
𝑐ℎ ∙ 𝜂𝑠

𝑐ℎ −
𝑃𝑡,𝑠

𝑑

𝜂𝑠
𝑑 + 𝐸𝑡−1,𝑠 ∀ 𝑡 > 1 ∈ 𝑇, 𝑠 ∈ 𝑆𝑛, 𝑛 ∈ 𝑁 ( 3.30 ) 

𝑅𝑡,𝑝
𝐸 ∙ 𝜓𝑝 ≤ 𝐸𝑡−1,𝑝  ∀ 𝑡 > 1 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃𝑆𝑛, 𝑛 ∈ 𝑁 ( 3.31 ) 

𝐸𝑡,𝑠 ≤ 𝐸̅𝑠        ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆𝑛, 𝑛 ∈ 𝑁 ( 3.32 ) 

𝑃𝑡,𝑏
𝑑 − 𝑃𝑡,𝑏

𝑐ℎ ≤ 𝑃̅𝑏
𝐸       ∀ 𝑡 ∈ 𝑇, 𝑏 ∈ 𝐵𝑛, 𝑛 ∈ 𝑁 ( 3.33 ) 

𝑃𝑡,𝑝
𝑑 − 𝑃𝑡,𝑝

𝑐ℎ + 𝑅𝑡,𝑝
𝐸 ≤ 𝑃̅𝑝

𝐸 ∙ 𝑋𝑡,𝑝   ∀ 𝑡 ∈ 𝑇, 𝑝 ∈  𝑃𝑆𝑛, 𝑛 ∈ 𝑁 ( 3.34 ) 

𝑃𝑡,𝑠
𝑐ℎ ≤ (1 − 𝑋𝑡,𝑠)𝑃̅𝑠

𝐸      ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆𝑛, 𝑛 ∈ 𝑁 ( 3.35 ) 
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𝑃𝑡,𝑠
𝑑 ≤ 𝑋𝑡,𝑠 ∙ 𝑃̅𝑠

𝐸     ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆𝑛, 𝑛 ∈ 𝑁 ( 3.36 ) 

𝑋𝑡,𝑠 ∈ {0,1}  ∀ 𝑠 ∈  𝑆𝑛, 𝑛 ∈ 𝑁, 𝑚 ∈ 𝑀  ( 3.37 ) 

3.2.5. Candidate storage  

The energy balance of the candidate storage plants is calculated in ( 3.38 ). The 

equation ( 3.39 ) show the energy available to provide reserves in the next hour. The 

maximum amount of energy is constrained in ( 3.40 ), which depends on the investment 

in storage. The power balance of batteries and PS are shown in ( 3.41 ) and ( 3.42 ), 
respectively. The charging and discharging power of batteries are constrained by its state 
of charge and a big number 𝑀̅ in ( 3.43 ) and ( 3.44 ). Similarly, the maximum charge and 

discharge of PS are shown in ( 3.45 ) and ( 3.46 ). The equations ( 3.47 ) and ( 3.48 ) 
constraint the charge/discharge of the candidate PS and batteries considering the 
investment variables.  

𝐸𝑡,𝑠 = 𝑃𝑡,𝑠
𝑐ℎ ∙ 𝜂𝑠

𝑐ℎ −
𝑃𝑡,𝑠

𝑑

𝜂𝑠
𝑑 + 𝐸𝑡−1,𝑠      ∀𝑡 > 1 ∈ 𝑇, 𝑠 ∈ 𝑆̂𝑛, 𝑛 ∈ 𝑁 ( 3.38 ) 

𝑅𝑡,𝑠
𝐶 ∙ 𝜓𝑠 ≤ 𝐸𝑡−1,𝑠    ∀ 𝑡 > 1 ∈ 𝑇, 𝑠 ∈ 𝑆̂𝑛, 𝑛 ∈ 𝑁 ( 3.39 ) 

𝐸𝑡,𝑠 ≤ 𝐸̅𝑠
𝐶 ∙ 𝜇𝑠,𝑚

𝐵/𝑃𝑆
        ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆̂𝑛, 𝑛 ∈ 𝑁 ( 3.40 ) 

𝑃𝑡,𝑏
𝑑 − 𝑃𝑡,𝑏

𝑐ℎ + 𝑅𝑡,𝑏
𝐶 ≤ 𝑃̅𝑏

𝐶 ∙ 𝜇𝑏,𝑚
𝐵   ∀ 𝑡 ∈ 𝑇, 𝑏 ∈ 𝐵̂𝑛, 𝑛 ∈ 𝑁 ( 3.41 ) 

𝑃𝑡,𝑝
𝑑 − 𝑃𝑡,𝑝

𝑐ℎ + 𝑅𝑡,𝑝
𝐶 ≤ 𝑃̅𝑝

𝐶 ∙ 𝑋𝑡,𝑝        ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃𝑆̂𝑛, 𝑛 ∈ 𝑁 ( 3.42 ) 

𝑃𝑡,𝑏
𝑐ℎ ≤ (1 − 𝑋𝑡,𝑏)𝑀̅   ∀ 𝑡 ∈ 𝑇, 𝑏 ∈ 𝐵̂𝑛, 𝑛 ∈ 𝑁 ( 3.43 ) 

𝑃𝑡,𝑏
𝑑 ≤ 𝑋𝑡,𝑏 ∙ 𝑀̅   ∀ 𝑡 ∈ 𝑇, 𝑏 ∈ 𝐵̂𝑛, 𝑛 ∈ 𝑁 ( 3.44 ) 

𝑃𝑡,𝑝
𝑐ℎ ≤ (1 − 𝑋𝑡,𝑝)𝑃̅𝑝

𝐶        ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃𝑆̂𝑛, 𝑛 ∈ 𝑁 ( 3.45 ) 

𝑃𝑡,𝑝
𝑑 ≤ 𝑋𝑡,𝑝 ∙ 𝑃̅𝑝

𝐶     ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃𝑆̂𝑛, 𝑛 ∈ 𝑁 ( 3.46 ) 
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𝑃𝑡,𝑠
𝑐ℎ ≤ 𝑃̅𝑠

𝐶 ∙ 𝜇𝑠,𝑚
𝐵/𝑃𝑆

  ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆̂𝑛, 𝑛 ∈ 𝑁 ( 3.47 ) 

𝑃𝑡,𝑠
𝑑 ≤ 𝑃̅𝑠

𝐶 ∙ 𝜇𝑠,𝑚
𝐵/𝑃𝑆

  ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆̂𝑛, 𝑛 ∈ 𝑁 ( 3.48 ) 

𝑋𝑡,𝑠 ∈ {0,1}  ∀ 𝑠 ∈ 𝑆̂𝑛, 𝑛 ∈ 𝑁, 𝑚 ∈ 𝑀  ( 3.49 ) 

3.2.6. Reserves 

The reserve requirement is the minimum level of firm capacity for each region. These 
reserves are sufficient to meet reliability requirements, covering approximately the largest 
single generating unit. The reserve balance is shown in ( 3.50 ). The technologies allowed 
to provide reserves in the balance are the following: conventional generator, existing PS, 
candidate storages as batteries and PS, and reserves coming from other nodes of the 
system.  

𝑅𝑡,𝑛
0 = ∑ 𝑅𝑡,𝑔

𝑔∈𝐺𝑛

+ ∑ 𝑅𝑡,𝑝
𝐸

𝑝∈𝑃𝑆𝑛

+ ∑ 𝑅𝑡,𝑏
𝐶

𝑏 ∈𝐵̂𝑛

+ ∑ 𝑅𝑡,𝑝
𝐶

𝑝 ∈ 𝑃𝑆̂𝑛

+ ∑ (𝐹𝑟𝑡,𝑙
𝑓𝑤

− 𝐹𝑟𝑡,𝑙
𝑟𝑣)

𝑙 ∈ 𝐿𝑛

 ∀ 𝑡

∈ 𝑇, 𝑛 ∈ 𝑁 

( 3.50 ) 

3.2.7. Line flow  

We implemented a transportation model for lines. The maximum and minimum line 
flows are shown in ( 3.51 ) and ( 3.52 ), respectively. Both equations consider that the 
reserves can be imported/exported among the different states. The maximum 
imported/exported reserves in the line 𝑙 are limited by a factor 𝐹𝑟𝑙

̅̅ ̅̅  as is shown in ( 3.53 ) 

and ( 3.54 ). This factor defines the percentage of the line capacity used to share reserves 
in the line 𝑙.  

𝐹𝑡,𝑙 + 𝐹𝑟𝑡,𝑙
𝑓𝑤

≤ 𝐹̅𝑙 + 𝜇𝑙,𝑚
𝐿 ∙ 𝐿𝑙  ∀ 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿𝑛, 𝑛 ∈ 𝑁 ( 3.51 ) 

−(𝐹̅𝑙 + 𝜇𝑙,𝑚
𝐿 ∙ 𝐿𝑙  ) ≤ 𝐹𝑡,𝑙 − 𝐹𝑟𝑡,𝑙

𝑟𝑒𝑣  ∀ 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿𝑛, 𝑛 ∈ 𝑁 ( 3.52 ) 

0 ≤ 𝐹𝑟𝑡,𝑙
𝑓𝑤

≤ 𝐹𝑟̅̅
𝑙̅(𝐹̅𝑙 + 𝜇𝑙,𝑚

𝐿 ∙  𝐿𝑙)     ∀ 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿𝑛, 𝑛 ∈ 𝑁 ( 3.53 ) 

0 ≤ 𝐹𝑟𝑡,𝑙
𝑟𝑒𝑣 ≤ 𝐹𝑟̅̅

𝑙̅(𝐹̅𝑙 + 𝜇𝑙,𝑚
𝐿 ∙ 𝐿𝑙)     ∀ 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿𝑛, 𝑛 ∈ 𝑁 ( 3.54 ) 
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Chapter 4  

Case study 

4.1. Input data 

The NEM is comprised of five regions: Victoria (VIC), Tasmania (TAS), South 
Australia (SA), New South Wales (NSW) and Queensland (QLD). These regions are 
represented in the 5-nodes model shown in FIGURE 4.1. The figure shows the candidate 
investments for lines and storages, as PS and batteries.  

The storage properties of the candidate plants are shown in TABLE 4.1. The PS projects 
includes are: Snowy 2.0 in NSW and Battery of the Nation (BON) in TAS. The cost of these 
projects are 5733 MMA$ [43] and 2805 MMAU$ [44], respectively. TABLE 4.2 shows the 

current capacity of the lines, the candidate lines, the cost of these projects [45] and the 
maximum number of candidates lines allowed.  

The implemented model considers 4 types of conventional generation technologies: 
open cycle gas turbine (OCGT), combined cycle gas turbine (CCGT), coal and hydro. These 
technologies are approximately 250 dispatchable generators in the NEM [46]. To reduce 
the computational burden the unit commitment of these generators has been included 
through a clustered unit commitment. The implemented clustered unit commitment 
amount 40 generators in the reduced system. These generators were chosen with a k-
means cluster, selecting between 2 and 5 generators per technology in each bus. 

TABLE 4.3 shows technical details (maximum ramp rate, minimum power output, 
unavailability, among others) for conventional technologies. The cost details of thermal 
generators are given in TABLE 4.4, in which we show the ramping, starting-up and reserve 

cost, which are based on [47],[48] and [49], respectively. The fuel cost is based on [45] 
and depends on the technology, region and year. 

The VOLL is 15.000 [A$/MWh] [50]. The discount rate applied is 6.3% given by the 

average value of AEMO’s discount rates [45]. The reserve requirements for each region 

are shown in TABLE 4.5 [45]. The model considerers that the reserves can be 
imported/exported between two nodes, using a top up of 50% of line capacity for all the 
lines. The conventional generation can provide up to 10% of committed generation as 
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reserve. The model also considers that VPPs do not supply reserves. VPP and candidate 
batteries have 81% round-trip efficiency and PSs have 75.7% round-trip efficiency. 

 

Figure 4.1 5-node model NEM. 

Location Storage Properties  
All nodes 

TAS 
NSW 

Battery 
PS  
PS 

200 MW - 2 hours 
1700 MW - 21.6 hours 
2000 MW - 168 hours 

Table 4.1 Storage investment options. 

Investment 
options 

Existing lines 
[MW] 

Candidate lines 
[MW] 

Maximum number of 
candidate lines 

Cost  
[A$/MW] 

SA-NSW 0 800 1 2487500 
SA-VIC 850 200 20 1986000 

VIC-TAS 480 750 2 2487125 
VIC-NSW 700 200 18 2066343 
NSW-QLD 950 200 30 1808614 

Table 4.2 Current line capacities, candidate lines and maximum number of candidates. 

  



22 
 

 
Technology 

Maximum 
ramp rate  

[% of 
maximum 
capacity] 

Minimum 
power output 

[% of 
maximum 
capacity] 

Unavailability  
[%] 

Heat 
rates 

[GJ/MWh] 

Start- 
up time 

[h] 

Shut-
down time 

  [h] 

CCGT 90 30 1.91 11.28 5   1 
OCGT 50 10 2.72 24.63 6   1 

Coal 25 40 19.77 11.49 10   4 

Hydro 100 0 2.34 - 0   0 

Table 4.3 Characteristics of thermal and hydro generation. 

Technology Ramping cost 
[A$/ΔMW] 

Start-up cost 
[A$/MW] 

Reserve cost 
[% of fuel cost] 

CCGT 0.25 15 1.49 
OCGT 1.21 100 1.74 

Coal 3.59 170 93.50 

Table 4.4 Thermal generator cost. 

Region 
Regional Reserve Requirements  

[MW] 

NSW 673 
QLD 666 
SA 273 

TAS 194 
VIC 498 

Table 4.5 Regional reserve requirement. 

4.2. Input data per scenario 

To capture the uncertainty of structural drivers about the future, the development of 
the NEM system is addressed by a set of five scenarios: Central, Slow, High DER, Fast and 
Step [51]. These scenarios include different deployment of conventional generation, 
VREG, demand growth levels and penetration of DER resources such as the following: EV; 
DG, as rooftop Photovoltaic and Photovoltaic Non-scheduled generation (PVNSG); and 
energy storage systems (ESS), as VPP and behind-the-meter batteries. Besides, these 
scenarios have diverse assumptions about fuel cost and investment cost for batteries. The 
scenarios can be classified according to their different levels of decarbonisation and 
decentralisation, as is shown in FIGURE 4.2. The assumptions behind these scenarios have 
been based on different engineering, economic and socio-political assessments of 
infrastructure and resource costs following the goals for “4 -degrees” and “2-degrees” 
scenarios built by CSIRO [52], which according to their names describe the global climate 
policy targets. For the 2-degrees scenario, it is expected that the coal generation in 2050 
will be close to zero, and it is also expected a low generation of gas. On the other hand, the 
4 degrees scenario considers a significant amount of energy produced by coal and gas 
generators.  

 FIGURE 4.3 shows the implemented 2-stage scenario tree with 4 epochs. The tree is 
built with a common root node and branching in the first epoch in five equiprobable 
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scenarios. Thus, each scenario has 3 epochs (plus the root node), where each epoch 
represents 5 years from 2020 to 2035.  

In the following paragraphs a brief description of the scenarios based on [51] will be 
given: 

 

Figure 4.2 Degree of decarbonisation and decentralisation of the NEM scenarios [51]. 

1. Central: Central scenario is developed considering a moderate economic and 
population growth. The government policies keep without big changes; hence, the 
transition from fossil fuels to renewable generation is led by market forces, which 
implies following the 4-degree CSIRO scenario. This scenario also considers a 
moderate adoption of DER resources in the next decade, following the current 
development. The DER technologies included are as follows: rooftop PV, EV and 
ESS as behind-the-meter batteries and VPP. 

2. Slow change: This scenario considers a slow economic and population growth. The 
government policies do not support DER; therefore, the adoption of these 
technologies is slower relative to the central scenario. The VREG has limited 
political, commercial and social support, resulting in slow changes in technology 
investment costs, and the changes are weaker than the 4-degree CSIRO scenario.  

3. High DER: This scenario is a variant of the central scenario where the growth in 
EV, DG are moderate-high and in ESS is extremely high. These changes will be 
developed with changes in policies. The growth of VREG is a mix between 2- and 
4-degree CSIRO scenarios.  

4. Fast change: The economic and population growth is the same as in the central 
scenario. Moreover, the adoption of DG, ESS and EV are moderate-high. The 
adoption of VREG is high in line with the 2-degrees CSIRO scenario.  

5. Step Change: This scenario includes a response to climate change. The economic 
and population growth is the highest. New policies are considered to drive a fast 
growth in all the technologies, reaching a high penetration of DG, ESS and EV. 
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Moreover, the VREG increment is the strongest being even higher than the 
projection made for the 2-degrees CSIRO scenario. 

 

Figure 4.3 2-stage scenario tree problem. 

FIGURE 4.5 shows the installed capacity of the different scenarios and technologies in 
the NEM for the upcoming years. In the figure, it can be seen that the installed capacity of 
coal decreases yearly. On the other hand, the install capacity of VREG and DER 
technologies increase [53].  

According to market expectations, the investment cost of batteries evolves, becoming 
cheaper to install in future years. FIGURE 4.4 shows the overnight investment cost of a 2 

hours battery storage for the different scenarios [45].In the figure Slow, Central and High 
DER scenarios have the same cost trajectory.  

FIGURE 4.6 shows the annual energy consumptions of every scenario. These scenarios 
have different consumption because they include diverse penetration of EV demand, 
technologies development and behind-the-meter battery charge/discharge [36]. Two 
profiles with the same annual energy consumption and different maximum energy 
consumption are considered for each scenario. These profiles are called according to their 
POE as POE 10% and POE 50%. The MD of the POE 10% profile is expected to be exceeded 
on average one year in ten, and the MD of the POE 50% is expected to be exceeded one 
year in two [36]. FIGURE 4.7 shows the MD of the POE 10% and POE 50% profiles for the 
Central scenario in the NEM system (a) and NSW (b), which is the node with the highest 
demand.  

To reduce the computational burden weekly profiles with an hourly resolution have 
been selected. The weeks with the MD were added to the model and the remaining weeks 
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were chosen with a k-means method focused on the NEM demand. To check the quality 
of the results the root mean square error was calculated comparing the resultant demand 
curve with the original [54]. By selection 12 weeks, the maximum errors for the NEM and 
a single node are 5.9% and 9.2%, respectively. 

 

Figure 4.4 Battery investment cost per kW by scenario. 

 

Figure 4.5 Installed capacity of NEM technologies for different scenarios. 
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Figure 4.6 Annual consumption of the different scenarios 

 

(a) 

 

(b) 

Figure 4.7 MD in Central scenario for POE 10% and POE 50 %. (a) NEM system; (b) 
NSW. 
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Chapter 5  

Results and discussion 

The results are divided into four sections, where each section shows a different case 
described in TABLE 5.1. The base case is solved with a stochastic approach considering the 
MD of the POE 10%. The case 1 is solved with a deterministic approach with the same POE 
than the base case. The cases 2 and 3 are solved with a stochastic approach. Moreover, the 
case 2 does not consider batteries in the investment options, and the case 3 considers the 
MD of the POE 50%. All cases consider 12 weeks of operation selected with a k-means 
cluster.  

The case study was coded in Julia 0.6, solved with Gurobi 8.1, and ran on a cluster, 
coordinating 19 8-core i7 Intel machines with 16 GB of RAM each. The optimization was 
implemented with a Dantzig-Wolfe decomposition with a column generation algorithm 
developed in [22], [55]. This decomposition splits the investment and the operation of the 
system in two problems: The master problem and a set of slave problems. The slave 
problems solve in parallel the hourly operation of the different weeks for each iteration of 
the master problem. On the other hand, the master problem minimizes the operational 
cost of the different slaves and the investment cost. By doing this, the computational 
burden decreases [22], [55], [56]. The problem requested an optimal MIP gap of 0.5%. 
The time needed to obtain results under the gap was between 9 hours in the no batteries 
case and 19 hours in the base case. The resolution time is out the scope of this thesis; 
therefore, these results will not be discussed. 

Case POE Others 

Base case: POE 10 10 - 

Case 1: Deterministic 10 - 

Case 2: No Batteries 10 
The optimization does not consider batteries in the storage 

options. 

Case 3: POE 50 50 - 

Table 5.1 Case descriptions. 
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5.1. Base case: POE 10 

Tables 5.2-5.4 show the optimal portfolio of lines, batteries and PS. The line results 
show that the investment in the NSW-VIC and QLD-NSW lines are deployed in the second 
epoch with 800 MW and 600 MW, respectively. The requirement of these lines increases 
over the years depending on the scenario. Moreover, the TAS-VIC line is deployed in the 
Central, Fast and High DER scenarios with 750 MW in the last epoch, as well as the Step 
scenario with 750 MW and 1500 MW for the third and fourth epoch, respectively. The SA-
NSW line is also required in the last epoch of the Step scenario.  

The battery deployment starts in the first epoch to decrease the energy not supplied 
(ENS) in the MD. These batteries are installed in SA and NSW, installing 200 MW in each 
region. In the second epoch, the battery investments in NSW are 600 MW, 1000MW, 1200 
MW, 400 MW and 2000 MW for the Slow, Central, Fast, High DER and Step scenarios, 
respectively. These investments are made to complement the investment in the NSW-VIC 
and QLD-NSW lines. Regarding the total number of installed batteries, the Step scenario 
installs a total amount of 24600 MW. It is followed by Central and Fast scenarios, which 
invest in 12800 MW and 11200 MW, respectively. The scenarios with the lowest number 
of batteries are Slow and High DER with 9000 MW and 2600 MW. The Slow scenario 
needs a low number of batteries because this scenario has the lowest annual energy 
consumption and the minimum MD. On the other hand, the High DER scenario has the 
highest penetration of behind-the-meter batteries and a high penetration of EV, which 
makes its demand challenging in the peak hours. Nevertheless, the investment in batteries 
is low because the penetration of VPPs in this scenario is the highest, which decrease the 
requirement of batteries and PS.  

Regarding the investment in PS, the first PS deployed is Snowy in NSW. This PS is 
required in the third epoch for Fast and Step scenarios and in the last epoch for Central 
and High DER scenarios. BON in TAS is deployed at the same time as the line between 
TAS and VIC for the Central, Fast and Step scenarios. These investments are made at the 
same time to evacuate the excess of renewable resources from TAS to the NEM system.  
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Location Scenario 
2020 

[MW] 

2025 

[MW] 

2030 

[MW] 

2035 

[MW] 

TAS–VIC 

Slow 0 0 0 0 

Central 0 0 0 750 

Fast 0 0 0 750 

High DER 0 0 0 750 

Step 0 0 750 1500 

NSW–VIC 

Slow 0 800 800 800 

Central 0 800 800 800 

Fast 0 800 800 800 

High DER 0 800 1200 1200 

Step 0 800 800 800 

QLD-NSW 

Slow 0 600 600 1400 

Central 0 600 1400 2800 

Fast 0 600 800 1800 

High DER 0 600 800 1800 

Step 0 600 600 2000 

SA-VIC 

Slow 0 0 0 0 

Central 0 0 0 0 

Fast 0 0 0 0 

High DER 0 0 0 0 

Step 0 0 0 0 

SA-NSW 

Slow 0 0 0 0 

Central 0 0 0 0 

Fast 0 0 0 0 

High DER 0 0 0 0 

Step 0 0 0 800 

Table 5.2 Line investment results – 
base case. The results are shown as 
accumulated installed investment. 

Location Scenario 
2020 

[MW] 

2025 

[MW] 

2030 

[MW] 

2035 

[MW] 
 Slow 0 0 0 0 
 Central 0 0 0 0 

TAS Fast 0 0 0 0 
 High DER 0 0 0 0 
 Step 0 0 0 0 

 Slow 200 200 400 1600 
 Central 200 200 1000 1200 

SA Fast 200 200 1000 2200 
 High DER 200 200 400 600 
 Step 200 200 1400 1800 

 Slow 0 200 200 200 
 Central 0 0 1200 1200 

VIC Fast 0 0 0 0 
 High DER 0 0 0 0 
 Step 0 0 1800 2000 

 Slow 200 600 2000 7000 
 Central 200 1000 3200 3200 

NSW Fast 200 1200 2200 3000 
 High DER 200 400 1200 1200 
 Step 200 2000 2000 5200 

 Slow 0 0 200 200 
 Central 0 0 2000 7200 

QLD Fast 0 0 0 6000 
 High DER 0 0 0 800 

 Step 0 0 2600 15600 

Table 5.3 Battery investment results – 
base case. The results are shown as 
accumulated installed investment. 

Location Scenario 2020 2025 2030 2035 
 Slow 0 0 0 0 
 Central 0 0 0 1 

NSW Fast 0 0 1 1 
 High DER 0 0 0 1 
 Step 0 0 1 1 
 Slow 0 0 0 0 
 Central 0 0 0 1 

TAS Fast 0 0 0 1 
 High DER 0 0 0 0 

 Step 0 0 0 1 

Table 5.4 Pumped storage results – base case. The results are shown as 
accumulated installed investment, where 1 means the PS project is installed.  

5.2. Case 1: Deterministic 

TABLE 5.5 and 5.6 show the difference between the investment in lines and batteries 
with respect to the investment in the base case. What stands out in these tables are the 
different line investments, where each scenario has its own optimal solution, which is 
different of the other line investment. From the tables, it can be seen that the investments 
of the second epoch in NSW-VIC is 600 MW lower for the Slow scenario and it is 200 MW 
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higher for the High DER and Step scenarios. Moreover, the investments in QLD-NSW are 
200 MW higher in the second epoch for Slow, Central and Fast scenarios. It is in the 
different line investments when it can be seen the value of the stochastic planning, which 
helps to reach a new optimal in the different solutions by investing in batteries. 

Although the investments in batteries in the first epoch are the same as in the base 
case, the investments in the second epoch are different for all scenarios. On the one hand 
the battery investment is higher in the Slow scenario due to the lower investment in lines 
in this scenario. On the other hand, the battery investments for Central, Fast and Step 
scenarios are lower than in the base case. The lower battery investments for the 
deterministic case are due to the higher investment in lines in NSW, which increase the 
power generated by the conventional generation in the hours of high demand. In fact, the 
higher investment of QLD-NSW increases the power output of the conventional 
generators in QLD, which is send to NSW in the high demand hours. Similarly, the higher 
investment in NSW-VIC increases the power output of conventional generators in VIC. In 
contrast, the additional batteries in the stochastic results allow the model to provide 
energy arbitrage in the high demand hours. Therefore, the stochastic approach invests in 
more batteries in the scenarios with challenging demand to defers line investment. This 
decreases the energy produced by conventional generators.  

Finally, the investments in PS are the same as in the base case because these 
investments are made in the last epochs, and the stochasticity introduced in the second 
epoch does not impact such epochs. 

Location Scenario 2020 

[MW] 

2025 

[MW] 

2030 

[MW] 

2035 

[MW] 

 Slow 0 -600 -400 -400 

NSW - VIC High DER 0 200 -200 0 

 Step 0 200 200 200 

 Slow 0 200 200 200 

 Central 0 200 200 0 

QLD - NSW Fast 0 200 0 0 

 High DER 0 0 200 200 

SA - NSW Step 0 0 0 -800 

 Table 5.5 Line results – deterministic. The 
results are shown as the difference between 

the base case and deterministic case.  

Location Scenario 2020 

[MW] 

2025 

[MW] 

2030 

[MW] 

2035 

[MW] 

TAS Slow 0 0 0 200 

 High DER 0 0 0 200 

 Fast 0 0 0 -400 

SA High DER 0 0 0 -200 

 Step 0 0 0 1000 

VIC Slow 0 -200 200 400 

 Step 0 0 -200 -400 

 Slow 0 400 200 -400 

 Central 0 -200 -200 -200 

NSW Fast 0 -200 0 200 

 High DER 0 200 -200 -200 

 Step 0 -400 -400 -800 

 Slow 0 0 200 200 

 Central 0 0 0 -200 

QLD Fast 0 0 0 -1600 

 High DER 0 0 200 -200 

 Step 0 0 400 0 

Table 5.6 Battery results – deterministic. The 
results are shown as the difference between 

the base case and deterministic case. 

TABLE 5.7 summarises the total costs per scenario and the expected total costs of the 
deterministic and stochastic solutions. The total cost of the stochastic solution is higher 
than the best solution in the deterministic scenario. In fact, the stochastic solutions are 
between 0.02 % and 0.38% above the best solution of the deterministic scenarios. On the 
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other hand, the worst deterministic solutions are between 7.75% and 64.32% more 
expensive than the stochastic solution. Regarding, the expected total cost of the stochastic 
solution, it is between 3.5% and 36.09% cheaper than the deterministic solutions. 
Therefore, the stochastic solution leads to a cheaper total system cost. 

Figure 5.1 shows the expected investment cost, and figure 5.2 shows the expected 
operational cost. Both figures show the stochastic and deterministic costs. In the figures, 
the deterministic solution for the Slow, Fast and Step scenarios invest less than the 
stochastic solution, having a higher operational cost. On the other hand, High DER and 
Central scenarios invest earlier and more in the deterministic solution to save in the 
operational cost. 

Total cost per 
scenario 
[MMA$] 

Deterministic 
solution for 

Slow 
scenario 

Deterministic 
solution for 

Central 
scenario 

Deterministic 
solution for 

Fast scenario 

Deterministic 
solution for 

High DER 
scenario 

Deterministic 
solution for 

Step 
scenario 

Base case 
(Stochastic 
solution) 

Slow  
7019 7251 7282 7163 7637 7045 

Central 
13529 9198 9367 11433 9513 9205 

Fast 10075 8306 8201 9213 8460 8210 

High DER 7577 7511 7519 7263 7914 7264 

Step 25889 10182 10520 18097 9225 9237 

Expected total 
cost [MMA$] 

12818 8489 8578 10634 8550 8192 

Table 5.7 Total cost per scenario and expected total costs of the deterministic and 
stochastic solutions. 

 

Figure 5.1 Expected investment cost for deterministic and stochastic solutions. 
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Figure 5.2 Expected operational cost of deterministic and stochastic solutions. 

5.3. Case 2: No batteries  

Table 5.8 and 5.9 show the difference with respect to the investment in the base case 
for lines and PS, respectively. By not considering batteries, the investments in the second 
epoch of NSW-VIC and QLD-NSW lines are 200 MW higher. These additional 
investments show a deferral effect in the line investments by investing in batteries with a 
stochastic formulation. In the following epochs, the line investments are higher than the 
base case for all the candidate lines. For instance, it is required the investment of SA-NSW 
line in the Central and Fast scenarios in the last two epochs. Similarly, SA-VIC line is 
installed in the last two epochs of the Slow, High DER and Step scenarios. Moreover, the 
investment in TAS-VIC increases 750 MW in the third epoch of the Step scenario and in 
the fourth epoch of the Central and Fast scenario. Regarding the investment in PS, Snowy 
and BON are deployed one epoch earlier in the Central and Step scenarios, respectively. 
Moreover, Snowy is also installed in the last epoch of the Slow scenario. 

Comparing the results with and without batteries, it can be identified one additional 
effect in the third epoch of the Central scenario. This effect is characterized by deferring 
the investment in some lines and complementing the investment in others. In this case, 
there is an additional investment of 200 MW for NSW-VIC, and it is also installed SA-
NSW with 800 MW and Snowy in NSW. Conversely, and at the same time, the investment 
in QLD-NSW is 200 MW lower.  

TABLE 5.10 shows the expected investment and operational cost of the base case and 
the no batteries case. It is possible to see that the investment of the no batteries case is 171 
MMA$ cheaper than the base case. Although there is more investment in lines and an 
earlier deployment of PS, the lack of batteries makes the expected investment cost 
cheaper. Moreover, the operation of the no batteries case is 2114 MMA$ more expensive 
than the base case. Therefore, the savings from the investments are not enough to justify 
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a planning without considering batteries. The operation of the no batteries case is more 
expensive for two reasons: Firstly, batteries cannot help to decrease the ENS in the MD in 
2020 and 2025. Secondly, the storage is not enough to provide energy arbitrage when the 
penetration of VREG technologies increases. Hence, by not considering batteries, the 
expected total cost of the system is more expensive because it needs to operate more 
conventional generators in the peak hours. Moreover, the curtailment increases due to the 
lack of storage. 

Location Scenario 2020 

[MW] 

2025 

[MW] 

2030 

[MW] 

2035 

[MW] 

 Central 0 0 0 750 

TAS - VIC Fast 0 0 0 750 

 Step 0 0 750 0 

 Slow 0 200 200 200 

 Central 0 200 200 800 

NSW - VIC Fast 0 200 200 1200 

 High DER 0 200 0 0 

 Step 0 200 200 800 

 Slow 0 200 400 200 

 Central 0 200 -200 600 

QLD - NSW Fast 0 200 200 0 

 High DER 0 200 400 -200 

 Step 0 200 200 1600 

 Slow 0 0 200 200 

SA - VIC High DER 0 0 200 200 

 Step 0 0 0 200 

SA - NSW Central 0 0 800 800 

 Fast 0 0 0 800 

Table 5.8 Line results – No batteries. The 
results are shown as the difference between 

the base case and the No batteries case. 

Location Scenario 2020 2025 2030 2035 

 Slow 0 0 0 1 

NSW Central 0 0 1 0 

TAS Step 0 0 1 0 

Table 5.9 Pumped storage – No 
batteries. The results are shown as 

the difference between the base case 
and No batteries case. 

  
Base case - 

POE 10 
No batteries 

case 

Expected 
investment cost 

[MMA$] 
1061 889 

Expected 
operational cost 

[MMA$] 
7132 9246 

Table 5.10 Expected investment and operational cost of the base case and no batteries 
case. 
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5.4. Case 3: POE 50 

The POE 50 represents a lower MD than the base case for the NEM and the different 
regions. Tables 5.11, 5.12 and 5.13  show the investment for lines, batteries and PS in the 
scenario POE 50 with respect to the investment in base case.  

In 2020, the MDs in the base case are 910 MW and 550 MW higher in NSW and NEM, 
respectively. Similarly, in 2025, the MDs of the base case are on average 1160 MW and 
450 MW higher for NSW and the NEM, respectively. By considering the lower MD, the 
investment is modified in several respects. In the first epoch, the battery investment in 
NSW is not necessary. Moreover, in the second epoch, the line investment decreases by 
400 MW for NSW-VIC and QLD- NSW, and the investment in batteries also decreases up 
to 1000 MW in the Step scenario. Regarding the investment in PS, it can be seen that the 
installed PS changes just for the High DER scenario where the model decides to invest in 
BON instead of Snowy. This change is due to the deployment of different lines and 
batteries in other states. FIGURE 5.3 illustrates the MD and the ENS in NSW of the POE 
10 and POE 50 cases in 2020. In the figure, the MD of the base case (POE 10 case) has a 
higher ENS than the POE 50 case. The ENS in the POE 10 case justifies an earlier and 
higher investment in batteries in NSW and a higher deployment of lines.  

FIGURE 5.4 shows the expected investment cost. The figure shows that the expected 

investment cost of POE 50 case is 167 MMA$ cheaper than the base case. FIGURE 5.5 
displays the expected operational cost for the base case, the POE 50 case and two 
additional cases: the operation of the POE 10 demand with the POE 50 investment (POE 
10 Inv POE 50) and the operation of POE 50 demand with the investment of the POE 10 
case (POE 50 Inv POE 10). From the figure, the operation of the POE 50 case is 62 MMA$ 
cheaper than the base case due to the less challenging MD. When the POE 50 demand 
operates with POE 10 investment the operational cost of the POE 50 demand is 153 MMA$ 
cheaper. This operation is cheaper due to the additional investment in lines to share 
resources among the different nodes and in storage to provide energy arbitrage. In 
contrast, when the POE 10 demand is simulated with POE 50 investment it is possible to 
see how its operational cost increases 421 MMA$. This operation is more expensive due 
to lower investment, which cannot face the MD, producing more ENS.  

Therefore, by planning for a lower MD, the planner can save 167 MMA$ by investing 
in fewer lines and batteries. These saves in the investment might imply additional 
operational costs, which might double the saving in additional investment if the MD is 
higher than the expected. 
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Location Scenario 2020 

[MW] 

2025 

[MW] 

2030 

[MW] 

2035 

[MW] 

TAS – VIC High DER 0 0 0 750 

 Slow 0 -400 -400 -400 

 Central 0 -400 -200 -200 

NSW - VIC Fast 0 -400 -200 -200 

 High DER 0 -400 -600 200 

 Step 0 -400 0 0 

 Slow 0 -400 0 0 

 Central 0 -400 -200 -200 

QLD - NSW Fast 0 -400 -400 -200 

 High DER 0 -400 -400 -200 

 Step 0 -400 -400 0 

SA – VIC Step 0 0 0 200 

Table 5.11 Line results – POE 50. The 
results are shown as the difference 

between the base case and POE 50 case. 

Location Scenario 2020 

[MW] 

2025 

[MW] 

2030 

[MW] 

2035 

[MW] 

TAS Central 0 0 200 200 

 Step 0 0 0 200 

 Central 0 0 -200 600 

SA Fast 0 0 1000 -200 

 High DER 0 0 0 -200 

 Step 0 0 0 -200 

 Slow 0 0 0 200 

 Central 0 0 200 200 

VIC Fast 0 0 0 200 

 High DER 0 0 200 200 

 Step 0 0 0 -200 

 Slow -200 0 -200 -200 

 Central -200 -400 -800 600 

NSW Fast -200 -400 -1400 -400 

 High DER -200 -200 -600 0 

 Step -200 -1000 -1000 400 

 Slow 0 0 0 200 

 Central 0 0 0 -400 

QLD Fast 0 0 1000 -1400 

 High DER 0 0 200 600 

 Step 0 0 1000 0 

Table 5.12 Battery results – POE 50. The 
results are shown as the difference 

between the base case and POE 50 case. 

Location Scenario 2020 2025 2030 2035 

NSW High DER 0 0 0 -1 

TAS High DER 0 0 0 1 

Table 5.13 Pumped storage results – POE 50. The results are shown as the difference 
between the base case and POE 50 case. 
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Figure 5.3 Demand and ENS in NSW for POE 10 and POE 50 in the year 2020. 

 

Figure 5.4 Expected investment cost by year of POE 10 and POE 50. 
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Figure 5.5 Expected operational cost by year of POE 10 and POE 50.  
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Chapter 6  

Conclusions and Further Work 

6.1. Conclusions 

This thesis has implemented a co-optimization of storage and lines with an hourly 
time-scale resolution of the operation, which includes a transportation model for lines; a 
storage model with binaries charge/discharge variables for batteries; and detailed 
constraints of generators such as ramp-up/down, minimum up/down time, 
maximum/minimum operating point, and upward reserves. The model addresses five 
future scenarios with a stochastic approach represented by a two-stage scenario tree 
formulation. This formulation allows the planner to make decisions today, and as 
uncertainty unfolds in the upcoming years, to choose the optimal amount of storage to 
complement the line investment. The following paragraphs will discuss three key lessons 
that can be drawn from the results. The first one from the results of the stochastic 
formulation, the second about the inclusion of different MDs, and finally, the relation 
between the different investments in the optimal portfolio.  

The inclusion of a high time resolution along with the inclusion of different scenarios 
helps to estimate the system’s cost with a high accuracy. The stochastic formulation 
implemented allows the model to capture the short-term constraints and long-term 
uncertainty. The optimal solution of the stochastic formulation reduces the expected total 
cost by slightly increasing the total cost of the optimal deterministic solutions. By 
considering a stochastic approach, the planner may reduce the expected total costs 
between 3.5% and 36%. This shows that, in a real system, the long-term uncertainty can 
be capture with a stochastic approach to lead the system to a cheaper solution. 

The different MDs and renewable profiles allow the model to capture the value of 
storage in the system. The results with different POE suggest that to deal with a very high 
MD, it is better to invest in local batteries in the short term. Likewise, the optimal portfolio 
considers more lines and batteries in the medium term. These investments can be seen in 
the comparison of the base case with the POE 50 case. The first epoch of the base case 
requires more batteries than the POE 50 case. Similarly, in the second epoch, the battery 
investment in the base case is greater than or equal to the investment in the POE 50 case, 
requiring an extra investment of 1000 MW in the Step scenario. Besides, by increasing the 
MD, the amounts of installed lines in the second epoch are 400 MW higher for some lines. 
Therefore, an optimal portfolio to face a higher MD conditions must include more 
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batteries and lines for every scenario in the short and medium term. The inclusion of these 
investments is a key issue because the additional cost of operating the system without 
enough batteries and lines might double the cost of making these investments.  

The case studies shed new light on the importance of including different types of 
storage in the problem formulation, which are particularly important when the 
technologies have a different deployment time. This model considers that batteries could 
be implemented in the same epoch, as soon as the planner decides to invest in them, while 
PSs are deployed on the next epoch. In that sense, fast availability of batteries resulted in 
the preferred line deferral solution, whilst PS complemented line investments in the long 
term. In this vein, there are three ways in which the optimal storage investment impacts 
the line portfolio. The first one is by complementing the line investment, which can be 
seen in the investment of BON and the line VIC-TAS in scenarios with high penetration of 
VREG. These investments are made to evacuate the excess of renewable energy resources 
in TAS, charging the PS in times with high VREG and sending it out when the availability 
of renewable resources decreases. The second effect is deferring the line investment. 
Batteries are the preferred technology in the optimal solution to defer investment in lines. 
In fact, when comparing the second epoch for the base case and the no batteries case, the 
line investments in the base case are 200 MW lower for the NSW-VIC and QLD-NSW 
lines. Moreover, the stochastic solution of scenarios with more challenging demands 
shows that the optimal number of lines is lower than in the deterministic portfolio and is 
replaced for additional batteries. The last effect is a mix of both: This can be seen in the 
Central scenario in the year 2030 when comparing the base case with the no batteries case. 
In this example, by investing in batteries decreases the investment in the SA-NSW and 
NSW-VIC lines, and at the same time, the investment in QLD-NSW line increase.  

6.2. Further work 

In this thesis, representative weeks were chosen with the k-means method to 
represent the system’s demand. The weekly representation can capture the value of some 
storage plants such as small PS and batteries. On the other hand, large PS can provide 
interweek or interseason energy arbitrage. In this vein, increasing the length of 
representative periods can help to capture the value of bigger storage plants and their 
impact in the planning solutions. Therefore, further studies are suggested with a focus on 
the number and length of representative periods to capture the different phenomena while 
keeping a reasonable computational burden. 

It has been shown that the deployment of storage technologies is necessary under the 
context of future decarbonisation. Despite the effort made in this thesis to address 
different types of energy storage, some technologies are still developing. For instance, in 
the upcoming years, hydrogen production is expected to increase, which may facilitate the 
production of hydrogen in a large scale to store energy. For this reason, the inclusion of 
this technology in the model could provide interesting insights.  

Finally, the role of other key services can be included in the problem formulation. 
Demand response can be easily added to the operational model and could even be 
considered as an investment option. Another example is the integration of different kinds 
of reserves or complex reserve requirements depending on the generation of VREG. 



40 
 

Moreover, the development of new technologies and services in a distribution level could 
highly impact the investment in large scale systems. Hence, the integration of different 
key services should be explored more thoroughly in the planning problem. 
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