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BANDLIMITED FUNCTIONS IN MACHINE LEARNING

En el presente trabajo se realizó un resumen de la teoría de procesamiento de señales junto
con la de los procesos gaussianos y su relación con los espacios RKHS, con un enfoque
al caso donde los puntos son sampleados de manera irregular. Se presentan aplicaciones
de la teoría, las cuales hacen uso del kernel sinc, tanto para optimizacion de esquemas de
sampleo basados en optimización bayesiana, regresión no paramétrica de funciones y filtrado
de señales. Finalmente, se estudia un ejemplo aplicado a "compressed sensing", dando pie a
trabajos futuros.
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BANDLIMITED FUNCTIONS IN MACHINE LEARNING

There has been an increasing interest in the study of Gaussian Processes in the machine
learning literature, both for the increase in computational power in the recent years and
also the development of new algorithms that reduce the computational complexity to train a
Gaussian Process model. In particular, there has been an special interest in its connections
with the classical signal processing literature, and its applications in studying the spectrum
of time series, more specifically band-limited time series, as it is the main object of interest
in signal processing.

One of the advantages of using Gaussian process in signal processing is that its probabilistic
nature can naturally handle problems regarding irregular sampled points and, not only that,
it allow us to study the phenomenon of irregular sampling to our advantage, as, theoretically,
when sampling irregularly it is possible to obtain better results by reducing the alias error
that regular sampling is often associated with.

In the first chapter we will review the basic theory regarding Fourier analysis, classical
sampling theory and Gaussian processes, as well as the connections between the two, including
some results which will be useful in order to understand said connections. In the second
chapter, we will discuss the Nyquist-Shannon frequency and irregular sampling in order to
understand the possible problems as well as the advantages given by it, in particular, we will
study some known sampling schemes as well as some theoretic results.

Lastly, we will review some applications regarding Gaussian Processes and band-limited
kernels. First we will develop a filtering model by developing a generative model, which can
handle irregular sampled points. Next, it will be shown how different irregular sampling
techniques actually work on practice using Gaussian Process regression, and what can be
gained by them. Following this, we present an algorithm for finding an optimal sampling
scheme of a signal based on Bayesian optimization. At the end, an application using band-
limited functions for a compressed sensing problem is presented, which is what will be,
hopefully, the next step of this research.
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It was the detour that was our shortest path
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Introduction

One of the main problems in signal-processing is the signal reconstruction problem, which
consists in reconstructing an analog continuous signal from a discrete number of samples.
To correctly define such problem, an adequate space must be defined for the target analog
function f(t). Famously, the Nyquist-Shannon sampling theorem gives an explicit solution
to the reconstruction problem from a set of sampling points {(f(tn), tn)}n∈N as long as the
signal spectrum is bounded, the sampling times evenly-spaced and the sampling frequency
is at least two times as large as the highest frequency present in the spectrum of the signal.
Thus, the bounded spectrum condition, naturally defines the function space, the space of
band-limited functions or the Paley-Wiener space.

The previous theorem is, nonetheless, of limited use in practical applicaitons for two
reasons. The first one being that in practical applications only a limited (i.e finite) number
of samples are usually available, meanwhile the formula given by the theorem requires an
infinite number of samples (And it can be shown that truncation errors cannot be disregarded
easily). The second limitation is associated with the evenly-spaced sampling times condition,
which in practice may not be attainable or even desired. It becomes evident the necessity
to study the signal reconstruction problem when irregular sampling schemes are present. A
Bayesian framework is proposed for this same reason.

Bayesian frameworks are utilized to model the trade-off between the reward of an infor-
mative view and the cost of missing a target [8] by using a prior and a likelihood function. In
the signal-processing context, expecting the function to live in the Paley-Wiener space works,
naturally, as an informative view or prior of the model. An appropiate likelihood function
is defined in order to evaluate such trade-off. The framework is properly defined this way,
and once some samples are observed, the main goal becomes to evaluate the posterior dis-
tribution over the set of possible candidates which fit the sampled points the best (In some
correctly defined metric). Such approach turns out to outperform the limitations previously
mentioned and it possseses some other advantages, such as having not just a point-estimate
for the solution, but a distribution over possible answers, as well as giving reliable estimates
of its own uncertainty.

The bayesian framework utilized is based on Gaussian Process [16] which is a non-
parametric Bayesian framework utilized to estimate functions from a finite set of points.
The likelihood and prior functions are completely determined by a mean function (Usually
assumed to be zero) and a kernel function, which must be positive-definite. By defining a ker-
nel, the functions generated by a GP are restricted to a certain space. In fact it can be shown
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that if the kernel function is bandlimited, then the function space will be restricted to the
space of band-limited functions (With possibly some modifications to its norm). This result
can be used to prove a theorem which generalizes the classical Shannon-Nyquist theorem.

In the final applications of the chapter, the GP framwork is used to solve a particular is-
ntance of the signal reconstruction problem, the filtering problem, were samples are corrupted
by frequencies outside a desired range. A generative model, which views the corruption of
the signal as a mix between two Gaussian Processes generated by two different kernel func-
tion, is proposed in this setting. Even further, given a continuous band-limited signal f(t),
bayesian optimization is utilized in this same context to find the minimal set of points which
can encode the signal (Where the decoding process is done by performing GP regression on
the proposed sequence).

Before advancing further, it is worth mentioning previous methods which have been used
for signal reconstruction and periodic analysis in the non-uniform setting. Most notably,
the Lomb-Scargle periodogram [14] is a Fourier method for finding periodic components in
such setting. Many iterative approaches have been considered as well [12] , whose main idea
is to apply successive approximations, which are represented by some linear operator, until
convergence. Notably, the POCS (Projection onto convex sets) method considers the pro-
jection onto a convex set of some defined Hilbert space as such linear operator [27]. Least
squares method involving some special basis such as the PSWF’s have also been proposed in
[28]. Pseudo-inverse matrix reconstruction, which is efficient when the number of sampling
points and the size of the spectrum are small [22], considers the non-uniform sampling recon-
struction problem from an algebraic point of view, based on the solution of systems of linear
equations. Other Bayesian approaches have been proposed [7], as well as other works which
also involve Gaussian Processes, such as models for periodic light curves in the astronom-
ical setting [26], by proposing a kernel function [2] and our own previous work on filtering
techiques [24]. Finally, compressive sensing (CS) is the process of creating an undetermined
system of equations where there are far fewer equations than unkowns, but the solution is
known to be sparse in some other basis, so reconstruction is performed in a way to maintain
such sparseness.

The outline of this work is presented as the following: Chapter 1 reviews the background re-
garding the Fourier transform, band-limited functions, Gaussian processes and Kernel Hilbert
Spaces (Which is just the frequentist approach to GP Regression) and at the end results which
relates the three are shown. Chapter 2 reviews different sampling schemes, and their effect
on the interpolation formula, for example some of them have an aliasing suppressing effect.
Chapter 3 contains the main applications of the proposed work, such as the GPLP model,
which aims to solve the filtering problem in a generative model approach as previously men-
tioned, study the effect of different sampling schemes and a Bayesian optimization approach
for obtaining a sequence in which to encode a signal, also as mentioned. The final experiment
distances itself from the GP approach, and illustrates an instance of compressive sensing in
the multi-band signal restricted context, and it constitutes an example on how prior knowl-
edge can reduce significantly the number of samples needed for reconstruction, way beyond
the Nyquist limit, and it will be, hopefully, inspiration for future work. Finally, results are
discussed.
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Publications
Part of the work which composes this thesis has been previously presented in:

• C.Valenzuela, F.Tobar, “Low-pass Filtering as Bayesian Inference," Proceedings of the
IEEE International Conference on Multimedia, pp. 3367-3371, 2019.

Main contributions
The main contributions of this thesis are the following:

1. Study the connections between the classical signal processing theory and the Gaussian
process theory, and see how the latter can expand the former. Corollary 1.7.1 is clear
example of this.

2. Design and implement a novel generative model approach for the signal filtering prob-
lem, with features such as different window shapes, priori kernels and the possibility to
either have a low-pass filter as well as a high pass filter.

3. Study how different irregular sampling schemes influence in signal reconstruction, in
paticular it will be shown that the jittering sampling scheme can give satisfactory results
in sub-Nyquist instances.

4. Use the Gaussian Process framework to obtain a set of sampling points which optimally
reduces the MSE of the original signal and its GP-interpolation along a desired interval
(Although an hyperparameter which controls the trade-off between exploration and
explotaition must be defined in advance). The distribution of such a set is also studied.
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Chapter 1

Preliminaries

1.1 The main problem: Signal Reconstruction

One of the main problems that will be tackled in this work is the signal reconstruction
problem.

In order to give a bit of context of our work, as there are many algorithms available to do
similar work [25][15], the main difference is that the following work uses a Bayesian approach,
specifically in the context of Gaussian Processes, to define both the problem and a generative
model for it. Subsequent results are more in line with how sampling affects our results. [23]

Consider the signal reconstruction problem, pictured in 1.1, which is based on some signal
or function over time f(t) and some samples are retrieved from it at times t0, ..., tM , such
that the values f(t0), ..., f(tM) are observed.

t0 t1 t2 t3 t4 t5 t6 t7

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f(t
)

Signal
Samples

Figure 1.1: Signal f(t) observed at times t0, ..., t7.

The questions to be answered in this setting are:

• How many samples are required to have an accurate approximation to the whole func-
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tion f(t) and, if possible, what sampling scheme will select these points optimally?

• How can an algorithm which solves the problem be implemented?

These questions require, of course, to impose some restrictions on the signal f(t), otherwise
the problem would be ill-posed. SO it will be assumed that f(t) lives in some kind of
space, which implicitly imposes an smoothness condition, or some kind of simple implicit
structure. In engineering applications the most common way to impose structure is via
making assumptions of the spectrum of the signal f(t), in other words by making assumptions
of its Fourier transform.

1.2 The Fourier Transform

In order to understand the following sections, we will step back a little and review the subject
of Fourier analysis of continuous signals, with signals refering to any continuous function of
time f(t).

Consider a signal f(t), which is just a function of time in a determined space (i.e L1 to
assure convergence) then its Fourier transform is given by:

F(f)(ξ) = f̂(ξ) =

+∞∫
−∞

f(t)e−2πiξtdt.

The Fourier transform is said to be defined in the frequency domain. Intuitively, this says
that if, for example, the Fourier transform is concentrated in values near 0, then the signal
presents slow changes through time, if, on the contrary, the Fourier transform is concentrated
in values far from 0, then the signal presents quick oscilations through time.

Of upmost importance in this sense is the Fourier inversion theorem, which states that for
many types of functions it is possible to recover a function from its Fourier transform. In the
present work, square integrable (ie. L2(R)) functions will be considered, were the theorem
holds true via a density argument. This inverse relationship is given by:

f(t) =

∞∫
−∞

f̂(ξ)e2πiξtdξ.

Note that this theorem can be restated as:

Theorem 1.2.1 (Fourier Inversion Theorem) Let f(t) ∈ L2 be a function defined on the
real line, then we have
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f(t) = F−1(f̂)(t) =

∞∫
−∞

∞∫
−∞

e2πi(t−x)ξf(t)dtdξ,

and, furthermore, if f is real valued, which will be our case on the rest of this work,
by equaling the real part from both sides of the equation above, we obtain the following
equation:

f(t) =

∞∫
−∞

∞∫
−∞

cos(2π(t− x)ξ)f(t)dtdξ. �

The functions f and f̂ are said to be a Fourier pair.

The most notable and the most important properties of the Fourier transform (Which we
will be using later) are summarized on Table 1.1.

Property name Time-domain Frequency Domain
Time-shift f(t− t0) f̂(ξ)e−2πit0ξ

Scaling f(at) 1
a
f̂
(
ξ
a

)
Convolution Property (f ? g)(t) (f̂ · ĝ)(ξ)

Sinc Transform sinc(at) 1
a
rect

(
ξ
a

)
Delta Train Transform

∞∑
n=−∞

δ(t− nT ) 1
T

∑∞
k=−∞ δ

(
ξ − k

T

)
Table 1.1: Fourier transform most notable properties and known transforms

Finally we announce the famous Plancherel theorem (A simplified version, as we will not
be working with complex numbers)

Theorem 1.2.2 (Plancherel Theorem) If f(t), g(t) are functions on the real line and f̂(ξ), ĝ(ξ)
are their corresponding frequency spectrums, then we have

∞∫
−∞

f(t)g(t)dt =

∞∫
−∞

f̂(ξ)ĝ(ξ)dξ. �

1.3 Bandlimited Functions

We define the space of band-limited functions, also known as Paley-Wiener spaces, as the
subspace of all L1(R) functions f whose Fourier transform is supported in a certain compact
subset of Ω ⊂ R. More formally:
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Figure 1.2: Examples of diferent bandlimited functions on time and frequency domain.

PWΩ(R) = {f ∈ L1(R) : f̂(ξ) = 0 a.e. for ξ ∈ Ωc}.

Examples of band-limited functions are given in Fig. 1.2. These examples not only work as
an illustration of band-limited functions, but they also show how one can add more structure
in order to obtain even sparser representations of signals in the frequency domain.

Having band-limited functions defined this way, one must be asking, why are band-limited
functions important or even interesting?. The answer is the Shannon-Nyquist sampling the-
orem, which states sufficient conditions in which the signal reconstruction problem can be
solved, as long as the signal is band-limited.

1.4 Sinc Kernel and the Sampling Theorem
The (normalized) sinc function is defined simply by:

sinc(x) =
sin(πx)

πx
. (1.1)

The normalized sinc function is the Fourier transform of the rectangular function with no
scaling.

It is used in the concept of reconstructing a continuous bandlimited signal from uniformly
spaced samples of that signal by using the next famous theorem, the Nyquist-Shannon sam-
pling theorem.

Theorem 1.4.1 (Nyquist-Shannon sampling theorem) If a function x(t) contains no frequen-
cies higher than W (Bandlimited in the interval [−W,W ]), then it is completely determined
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by giving its ordinates at points evenly spaced at 1/2W apart by the formula

x(t) =
∑
n∈Z

x
( n

2W

)
sinc(2Wt− n).

Moreover, the convergence of the righ-hand side series is uniform.

Proof. Let

x(t) =

+∞∫
−∞

X(f)e2πiftdf =

W∫
−W

X(f)e2πftdf, (1.2)

where X(f) is the Fourier transform of x(t). Next X(f) is expanded as a Fourier series on
the interval (−W,W ) as:

X(f) =
∑
n∈Z

cne
−2πif n

2W , (1.3)

and the coefficents cn are obtained by Fourier analysis:

cn =
1

2W

W∫
−W

X(f)e2πif n
2W df =

1

2W
x
( n

2W

)
. (1.4)

The last equality is consequence of Eqn. (1.2). Finally, substituing Eqn. (1.3) into Eqn. (1.2),
and calculating the integral we obtain the result.

The regular sampling theorem combines two aspects:

(a) Any band-limited function can be completely reconstructed from its sampled values
over a sufficiently fine lattice by means of a simple series expansion with the sampled values
as coefficients.

(b) Any band-limited function can be expanded into a series with translates of the sinc
function as building blocks.

Unfortunately, this theory is asymptotic, which means that it requires infinite samples
over the entire real line to build an exact interpolation even at a single point. When a finite
number of samples are considered to construct the interpolation, it turns out that in order
to reach a level of error no greater than ε, then O(1

ε
) samples are required.

To illustrate this, consider the following example. Let M be an arbitrary big integer and
let K be the set of even integers on the interval [0, 2M ].

Define the following function

y(t) =
∑
k∈K

sin(π · (t− k))

π · (t− k)
.
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The Fourier transform of this function is supported on the box [−1
2
, 1

2
] so the Nyquist rate

is 1 and the Shannon interpolation formula reconstructs y(t) as the following sum of sinc
functions:

y(t) =
∞∑

k=−∞

y(k)
sin(π(̇t− k))

π(̇t− k)
.

Naming ỹ as the truncated sinc-interpolation formula for k < 2M and k /∈ K (in other
words, uneven k) , then we have that ỹ ≡ 0 on [0, 1]. So, we calculate the error

||y − ỹ||2[0,1] = ||y||2[0,1]

=

∫ 1

0

(∑
k∈K

sin(π · (t− k))

π · (t− k)

)2

≤ 1

O(M2)

∫ 1

0

(∑
k∈K

sin(πt)

)2

dt

= O(1).

This example shows that you can always construct adversarial examples to the Shannon
interpolation formula. This problem was addressed by the seminal work of Slepian [20], who
presented an interesting set of basis functions for interpolating bandlimited functions, when
only a finite number of samples are available, they are the so called Prolate Sphreoidal Wave
Functions.

1.5 Prolate Spheroidal Wave Functions
Prolate Sphreoidal Wave Functions (PSWF) constitute an orthogonal base of L2(−T, T )
[1][9][11]. Thus they can serve as an interpolator on any compact interval of R as an alterna-
tive choice which can enjoy spectral accuracy. They also constitute an orthonormal basis of
the space of bandlimited functions on the real line, just as the traslates of the sinc function.

The idea behind them is to find the most energy concentrated signals in both fixed time and
frequency domains at the same time [20]. That problem can be mathematically formulated
as the solutions of the integral equation

τ∫
−τ

ϕn(s)
sin(σ(t− s))
π(t− s)

ds = αnϕn(t), (1.5)

where [−σ, σ] and [−τ, τ ] are the fixed time and frequency domains, respectively.

Some interesting properties of the PSWF include:

• Equation Eqn. 1.5 has solutions for certain real values αn of α and can be ordered as

1 > α0 > α1 > ... > αn

It must be noted that, as an intuition remark, these values often drop drastically from
being close to 1 to being close to 0 [20]
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• The functions {ϕn}∞n=0 form a dual orthogonal set both in the interval (−∞,∞) and
(−τ, τ). This is known as double orthogonality.∫ τ

−τ
ϕm(t)ϕn(t)dt = αnδmn∫ ∞

−∞
ϕm(t)ϕn(t)dt = δmn,

where δmn = 1 if m = n and 0 otherwise.
• It is complete, in other words, any σ-bandlimited function f(t) can be expressed as

f(t) =
∞∑
n=0

cnϕn(t).

The last property combined with the sinc interpolation formula means that we can write
any function bandlimited in [−W,W ] as

f(t) =
∑
k∈Z

f(2Wt)
∞∑
m=0

ϕm(2Wt)ϕm(n)

=
∞∑
m=0

[∑
k∈Z

f(2Wt)ϕm(n)

]
ϕm(2Wt)

=
∞∑
m=0

γmϕm(2Wt), (1.6)

where the above formula is just consequence of decomposing the sinc(·) function in the
PSWF basis.

Eqn. 1.6 allows the truncation of the sinc series approximation, not by reducing the number
of terms (time), which is known for not being an accurate option (at least in theory), but by
limiting both frequencies and time (respectively number of basis functions to consider and
a finite number of time samples). This technique has been done in signal processing before
(it was the reason Slepian developed this set of functions) and in the Gaussian Process
literature it is known as the Nystrom approximation of the kernel function, or reduced rank
approximation [16]

Another way of realizing that the Slepian functions may be a better alternative to compute
the regression is by looking at the eigenalues of both gram matrices. While the sinc-kernel
gram matrix usually has some eigenvalues close to zero (consequence of the sinc function not
being in L1), the slepian pseudo matrix does not show this behaviour.

1.5.1 Priors and restrictions over Band-Limited functions

Saying that a function is band-limited can be understood, in Bayesian terms, as giving a
certain prior over the Fourier structure of the signal. And there are many examples across
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literature were such constraints are imposed over signals in order to obtain modified, or
better, sampling theorems [6] [15].

For example, signals with a bandlimit F (and no further constraint) can be understood
as having a uniform probability across frequencies on the interval [−F, F ]. Signals are said
to be multiband when its prior is the union of uniform measures of k intervals. Analogously,
sparse signals are the union of k Dirac measures. Gaussian or Cauchy distributions, although
not bandlimited in the strict sense, in practice they can be well approximated as being band
limited [16]

We will develop this idea of having a prior over band-limited functions more in depth in
the next section, which is about Gaussian Processes.

1.6 Gaussian Processes and Kernel Hilbert Spaces

Gaussian processes (GP) and Kernel Ridge Regression methods form two sides of the same
coin, were the two are nonparametric based on positive definite kernel methos for the purpose
of modeling nonlinear functional realtionships, were the main difference is that GPs are a
Bayesian approach and kernel ridge regression is a more frequentist approach. In the following
section, both techinques will be briefly reviewed and it will be shown how they are related
with the classical signal processing theory, in particular their relationship to the Shannon
sampling theory.

1.6.1 Definitions

Definition 1 (Positive Definite Kernel) Let X be a nonempty set. A symmetric function
k : X × X 7→ R is called a positive definite kernel if, for any n ∈ N, (c1, ..., cn) ⊂ Rn and
(x1, ..., xn) ⊂ X,

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0.

In other words, k is positive semi-definite if the matrix Σ with elements Σij = k(xi, xj) is
poositive semi-definite, for any size n and vector (x1, ..., xn). Σ is usually called the kernel
matrix or the Gram matrix.

Given this definition, it is possible to prove that the function k(x, y) = sinc(x − y) is a
positive definite kernel, although not quite easy. For this reason we announce the following
theorem

Theorem 1.6.1 (Bochner’s Theorem) Given a positive finite Borel measure µ on the real
line R, the Fourier transform K of µ is the continuous function

K(t) =

∫
R
e−2πitξdµ(ξ).
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Then, the function k(x, y) := K(x − y) is positive semi-definite. The converse, that any
positive semi definite function is the Fourier transform of a finite positive Borel measure, is
also true.

From the previous theorem it its obvious that the function k(x, y) = sinc(x − y) is a
positive semi-definite kernel.

Definition 2 (Gaussian Process) Let X be a nonempty set, k : X × X 7→ R be a
positive definite kernel and m : X 7→ R be any real-valued function. Then a random function
f : X 7→ R is said to be a Gaussian Process (GP) with mean function m and covariance
kernel k, denoted by GP(m, k) if, for any finite set x = (x1, ..., xn) ⊂ X of any size n ∈ N,
the random vector

f = (f(x1), ..., f(xn))T ∈ Rn

follows a multivariate normal distribution N (mx, kx) where the covariance matrix and the
mean vector are defined as [kx]ij = k(xi, xj) and [mx]i = m(xi).

Next, we briefly review the basics of Gaussian process regression, also known as kriging.
For more information, the reader can refer to [16].

The regression problem in this context, given a set of points {(xi, yi)}ni=1,is to find the
best fitting function f such that:

yi = f(xi) + ξi,

for i.i.d. noise variables ξ1, ..., ξn ∼ N (0, σ2I)

Being a Bayesian approach to regression, we first define a prior distribution over functions
GP(m, k), for some function m and covariance kernel K, and a likelihood function defined
by a probabilistic model p(yi|f(xi)), which is implictitly defined by the noise variables as:

`(f) =
n∏
i=1

N (yi|f(xi), σ
2).

Note that the only difference of this problem with the signal reconstruction problem is
the assumption of noisy observations. The solution of the regression problem is given in the
next theorem

Theorem 1.6.2 (GP Regression) Given the set of points M = {(xi, yi)}ni=1 we have that
the conditional distribution of f given X is also a Gaussian process:

f |M = GP(m, k),

where the posteriori mean function and the posteriori covariance function are given by
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m(x) = m(x) + kxM(Σ + σI)−1(y −mM), x ∈ X;

k(x, x′) = k(x, x′)− kMx(Σ + σI)−1kMx′ , x, x′ ∈ X;

where X is the domain, mM is a vector defined by [mM ]i = m(xi), and kMx is a vector of
functions defined by [kMx]i = k(· − xi).

It is interesting to note how the posterior covariance formula does not depend on the
observations y.

Now we will also introduce briefly an almost equivalent, but frequentist, approach to the
same problem.

Definition 3 (Reproducing Kernel Hilbert Space (RKHS)) Let X be a nonempty
set and k be a positive definite kernel on X. A Hilbert space Hk of functions on X equipped
with an inner-product 〈·, ·〉Hk is called a reproducing kernel Hilbert space (RKHS) with
reproducing kernel k, if the following are satisfied:

1. For all x ∈ X, we have that k(·, x) ∈ Hk.

2. For all x ∈ X and for all f ∈ Hk:

f(x) = 〈f, k(·, x)〉Hk , x, y ∈ X.

The last property is known as the reproducing property.

The space of bandlimited functions mentioned in the earlier chapter is in fact an RKHS,
with the sinc(x) function as its reproducing kernel. For the sake of illustrating this fact,
lets assume that Ω = [−a, a], then, defining Kx = a

π
sinc(a(· − x)) and choosing a function

f ∈ PWΩ. The first property is obvious from the shift property of the Fourier transform.
For the second property, we have that:

〈f,Kx〉L2 =

∫ ∞
−∞

f(t)Kx(t)dt

=

∫ ∞
−∞

f̂(ξ)K̂x(ξ)dξ

=

∫ a

−a
f̂(ξ)e2πξxdξ (Plancherel + Shift property )

= F−1(f̂)(x)

= f(x),

which is exactly the reproducing property of the kernel.

As it is important to find connections between the frequentist RKHS approach, the
bayesian Gaussian Process approach and the classical theory of signal processing, the fol-
lowing result is presented beforehand as it will be usful later. The proof can be found in [13]
and it is an spectral characterization of the RKHS space.
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The inner product and the construction of this space as a Hilbert space is given by the
following characterization: Given the kernel function k its RKHS Hk can be written as

Hk =

{
f ∈ L2(R) ∩ C(R) s.t. f =

∞∑
i=1

cik(·, xi) and ||f ||2Hk :=
∞∑

i,j=1

cicjk(xi, xj) <∞

}
.

Essentialy, it means that functions in an RKHS can be aproximated by shifts of the kernel
function, and such expansion must be regular enough for the norm to converge.

But a more useful characterization for our purposes is given by the following theorem:

Theorem 1.6.3 (Spectral Characterization of RKHS) Let k be a positive definite
kernel, defined on R × R, and let K be such that k(x, y) = K(x − y). Then the RKHS Hk

associated with k is given by:

Hk =

{
f ∈ L2(R) ∩ C(R) : ||f ||2Hk =

∫
|F [f ](ξ)|2

F [K](ξ)
dξ <∞

}
,

where, implicitly, the division inside the integral restricts the domain of the Fourier transform
of f to the domain of the Fourier transform of K

This last statement is interesting, because it means that an adequate RKHS encapsu-
lates the a priori space mentioned in the previous section. In particular, any bandlimited
kernel gives rise to the same RKHS, the bandlimited space of functions, but it changes its
inner product in a way that reflects our prior beliefs of were the spectrum of our signal is
concentrated.

The problem to be solved in a RKHS, similarly to the GP Regression, is called kernel
ridge regression which is solving

f = argmin
f∈Hk

1

n

n∑
i=1

(f(xi)− yi)2 + λ||f ||2Hk ,

where λ > 0 is a parameter. The solution is obtained by applying the representer theorem
[17] which implies that the solution can be written as

f =
n∑
i=1

αik(·, xi),

and then solving by differentiation for α obtaining that

α = (Σ + nλI)−1y.

Note that selecting λ = σ2

n
the solution is equivalent to the one obtained in the GP regression.

There is a result which relates together the posterior variance from the ridge regression
point of view with the GP point of view. This result also implies the Shannon-Whithaker
interpolation formula and will helpful to tie everything together.
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1.6.2 Posterior Variance as certain worst-case error

Consider the function v(x) := k(x, x), known as the marginal posterior variance, where k
is the posterior covariance kernel, and the square root of it is interpreted, informally, as an
margin error bar. By definition, the posterior variance is defined by the equation

v(x) = Ef∼GP(m̄,k̄)[(f(x)− m̄(x))2].

So, in a way, you can say that v(x) can be interpreted as the average case error at a location
x. It is interesting that this same quantity can be viewed as worst case error from the
kernel/frequentist point of view.

For simplicty, a zero-mean GP prior f ∼ GP(0, k) is considered and define ωσ(x) to be a
vector-valued function defined by

ωσ := (kXX + σ2In)−1kXx, x ∈ X .

With this notation, the posterior mean function can be written as:

m(x) =
n∑
i=1

ωσi yi = Y tωσ.

Similarly, define the kernel kσ by

kσ(x, y) := k(x, y) + σ2δ(x, y).

With both definitions in mind, the worst case error interpretation of the posterior variance
can be stated in the following proposition.

Proposition 1.6.1 Let k be the posterior covariance function with noise variance σ2. Then,
for any x ∈ X with x 6= xi we have:

√
v(x) + σ2 = sup

g∈Hkσ :||g||Hkσ≤1

(
g(x)−

n∑
i=1

ωσi g(xi)

)
.

The proof can be found in [13].

Corollary 1.6.1 Assume that σ2 = 0, that X = R, that f is a banlimited function, that
the xi are uniformly sampled at the Nyquist frequency with i ∈ {1, .., n}. Then, for any x,
we have √

v(x)→ 0 as n→∞.

This result is interesting because asymptotic consistency results like this one usually use
that the sampling points xi become dense as n goes to infinity as part of the hypothesis . So
this means that the sampling theorem is somewhat special, even in the context of GP/RKHS.
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Proof. Given x in R, using the above proposition, it can be stated

v(x) = sup
g∈Hk:||g||Hk≤1

(
g(x)−

n∑
i=1

ωig(xi)

)
.

Note that ωi(x) = sinc(x− xi) because note that in the Nyquist sampling case Σ = kXX = I
so the formula is really

v(x) = sup
g∈Hk:||g||Hk≤1

(
g(x)−

n∑
i=1

sinc(x− xi)g(xi)

)
.

Decomposing g with the Shannon interpolation formula and replacing it in the equation

v(x) = sup
g∈Hk:||g||Hk≤1

∞∑
i=n+1

sinc(x− xi)g(xi).

Now, bounding the inside term

∞∑
i=n+1

sinc(x− xi)g(xi) ≤

∣∣∣∣∣
∞∑

i=n+1

sinc(x− xi)g(xi)

∣∣∣∣∣
≤

∞∑
i=n+1

|sinc(x− xi)g(xi)|

≤

(
∞∑

i=n+1

g(xi)
2

) 1
2
(

∞∑
i=n+1

sinc2(x− xi)

) 1
2

≤ ||g||H2
k

(
∞∑

i=n+1

sinc2(x− xi)

) 1
2

.

So, finally

v(x) ≤

(
∞∑

i=n+1

sinc2(x− xi)

) 1
2

,

and taking limits in both sides finishes the proof.

A different proof of the same principle can be found in [23].
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Chapter 2

Sampling schemes and how to work with
real-world signals

2.1 Nyquist-Limit
The reults associated with the Shannon-Nyquist theorem requires precise definition of the
signal on the interval (−∞,∞). However, working with real world signals obviously require
some kind of measurements in a very specific (bounded) period of time. The way in which
such measurement times are selected, directly or indirectly, is called a sampling scheme.

Sampling schemes can be described by window function that spans the duration of the
observation. The resulting data can be described as a point-wise product of the original,
defined at all times, signal with said sampling scheme. For example, a Dirac-comb restricted
to some interval can be seen as the sampling scheme that is sampling the signal at regular
intervals of time.

So in reality the Fourier transform of the underlying signal is not attainable, instead we
have acces to the transform of the point-wise product of the signal and the sampling scheme.
Say if the sampling scheme is Π(t) and the signal is f(t) then we observe

g(t) = f(t)Π(t).

By aplying the Fourier transform and the convolution theorem we obtain

ĝ(ξ) = f̂(ξ) ? Π̂(ξ).

The convolution with Π̂ is what will, in most cases, distort the signal observed spectrum. In
fact the Nyquist-limits provides exactly a bound of the rate of sampling frequency in which
the spectrum will not be distorted, given that the sampling is uniform and given that the
signal in band-limited. We can see why in the next figure.

2.2 Non-uniform sampling
In practice, it is not unusual to come across examples where sampling times are distorted
or that uniform sampling is simply unpractical. In Astronomy, for instance, sampling times
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can be influenced by the weather, or in mining industries sudden bottlenecks or erratic work
practices can also affect the periods in which samples from the mineral are taken.

This time irregular or non-uniform sampling can be seen not as a Dirac comb but a sum
of distinct Dirac deltas at some time points tn

Π(t) =
N∑
n=1

δ(t− tn).

As such, we have the following observed Fourier transform

ĝ(ξ) = f̂(ξ) ? Π̂(ξ).

However, this time, as Π(t) does not have the symmetry provided by the Dirac comb has,
its transform is not as straightforward.

So recovering a signal given a set of unevenly-spaced time points is a much more diffcult
problem, because the uneveness of the sampled points lead to uneveness of the peaks of the
transform of the sampling scheme, and as such will bias our results to some, in principle,
arbitrary frequencies.

However, there is also much more to gain from a unevenly spaced sampling scheme. For
instance, theoretically, in the irregularly sampled case, there is no relevant Nyquist frequency
limit. In fact the only result of a non-regular sampling scheme pseudo-Nyquist limit is given
in [5].

Theorem Let p be the largest value such that each sampling time ti can be written as
ti = t0 + nip, for integers ni. Then the Nyquist Frequency is 1/2p

In other words, in the unevenly sampled case, you can reduce to the Nyquist frequency
sampling scheme as long as we can find a regular sampling scheme which will contain our
sampled points, which can become pretty large for arbirtary sequences ti, in particular if
the spacing of a pair of points is irrational, then there is no such Nyquist limit (although in
reality there may be one due to the precision of said time measurements)

2.3 Sampling schemes

Previously, it has been shown that the Nyquist-Shannon theorem requires uniform sampling.
As it will be necessary to analyze the consequences of other sampling schemes in the frame-
work of Gaussian Process Regression, lets review some of the most common random sampling
schemes and some of their known properties in signal processing.

2.3.1 Uniform sampling

Uniform sampling for a [−W,W ] band-limited signal f is defined as the set of observtions
points defined by:
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tn =
n

fs
, n ∈ Z, (2.1)

where fs is the sampling frequency. Remember that if fs = 2W , then, from Nyquist-
Shannon theorem we are able to reconstruct the complete function is determined by its values
at the points tn.

The main reason for the uniform sampling requirement is the intrinsic periodicity behind
the dirac-delta train derived from this sampling scheme , which makes possible the use of
Fourier series. BUt when the bandwidth of the signal is not correctly specified or the signal
is corrupted by high-frequency noise, then reulst may be affected by the alias-error.

Alias Error

In signal processing and related disciplines, aliasing is an effect that causes different signals
to become indistinguishable (or aliases of one another) when sampled. This problem is not
exclusive for band-limited signals. An example is given in Fig. 2.1

Figure 2.1: An example of alias-error, if the sampling frequency is low, high-frequencies may
be mistaken by low frequency content, making our approximation

To show how aliases are cosntructed in this setting, consider the following: Let x(t) be
a (wide-sense) stationary Gaussian process. It will be assumed that x(t) is real, zero-mean
and with a covariance function K(τ). From the Bochner theorem, we know that there exists
a power spectral density S(ξ) such that

K(τ) =

∞∫
−∞

ei2πξtS(ξ)dξ,

S(ξ) =

∞∫
−∞

e−i2πξτK(τ)dτ.
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Given the sequence of sampling points given in Eqn. 2.1, define the sequence x(tn) which is
a stationary random sequence, with correlation function k:

kfs(n) = K(tn).

But notice that, using the power spectrum of the kernel

kfs(n) = K(tn)

=
∞∑

j=−∞

2π(j+1)fs∫
2πjfs

eiξtnS(ξ)dξ

= fs

π∫
−π

eiξtn

[
∞∑

j=−∞

S(fs(ξ + 2πj))

]
dξ.

The inside sum in the final equation correspond to the winding of the power spectral density.
The name comes from how, viewing such sum as an operator W such that

W(S) =
∞∑

j=−∞

S(fs(ξ + 2πj)),

then the operator folds the whole spectrum inside the domain [−π, π], were superimposed
frequencies (or densities) are added together.

This shows, as the covariance function determines the stationary zero-mean sequence
x(tn), that any other power density Ŝ(ξ), different from S(ξ), such that

W(Ŝ) =W(S)

is an alias for the signal x(t).

2.3.2 Randomized sampling

Randomized sampling is the process of selecting sampling points via an stochastic process of
some sort. When considering random sampling schemes, then there is no Nyquist limit (there
is a computational variant, but it is not useful for theoretical or experimental practices). So,
in a way, randomized smapling can have its upsides and its downsides. Some of the better
known sampling schemes known in the literature are the following:

2.3.3 Jittered sampling

Jittered sampling corresponds to a perturbated form of uniform sampling, that is, the sam-
pling points tn correspond to

tn =
n

fs
+ εn,

where εn ∼ N (0, σ) i.i.d. or Uniform[−δ, δ]. In the former case, for example, the covariance
function of the sequence x(tn) ends up being

kfs(n) =

∞∫
−∞

K(τ)p(nfs − τ)dτ,
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where p is the density of N (0, σ).

A proof of the former can be found in [18] It is worth noting that this sampling scheme,
even though it is random, it can still suffer from alias error. Nonetheless in the following
chapter we will show that jittered sampling gives surprisingly low errors when compared to
other sampling schemes, in the sub-Nyquist setting.

Kadec’s 1/4 theorem

Related to this type of sampling there is a theorem, known as the Kadec 1/4 theorem [2]
which states that

Theorem 2.3.1 (Kadec 1/4 theorem) Consider the following set of sampling points
tn = n

fs
+ εn, with ε ∼ Uniform[−fs/4, fs/4] i.i,d. Then any bandlimited function can be

decomposed uniquely in the basis sinc(t− tn). The 1/4 bound is tight.

In a way, a small amount of jittering, as long as it under certain bounds, does not affect
the independency of the basis, in practice , when a finite number of samples are considered,
it even aliviates conditioning problems of the Gram matrix.

2.3.4 Additive Sampling

Jittered sampling does not prevent aliasing because the sampling times tn are still attracted
to the equi-spaced values [18]. In order to break symmetry, additive random sampling is
considered, whose observation times are defined by:

tn = tn−1 + γn,

where the family {γn_n ∈ Z} is a family of independent i.i.d random variables.

In this case, the sequence x(tn) has as covariance function

kfs(n) =

∞∫
−∞

S(ξ)φ(ξ)ndξ, (2.2)

where φ is the characteristic function associated with the random variables γn.

An important case is when the time samples tn follow a Poisson process (i.e when γn ∼
exp(λ) for some λ ∈ R) because that particular case of additive sampling is called Poisson
sampling and has been proven to be alias free [18], meaning that no two different sequences
gives the same estimates for S(ξ). The proof exploits the cahracteristic function in Eqn. 2.2
and uses complex analysis to find a contradiction.

Even though this sounds nice, in practice alias elimination comes at a cost, that is having
large jumps between sampling points, which contribute to the error, not by aliasing, but by
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making estimations harder to fit, as there is more uncertainty. An experiment was carried
out and results are shown in Chapter 3.
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Chapter 3

Applications

3.1 Low-pass filtering as Bayesian inference
Filtering is one of the main concerns of signal processing and time-series analysis. Applica-
tions of this technique include denoising, fault detection, edge-detection in images, infering
a long term component of a time-series and many more.

In this section we will use the sinc-kernel to propose a latent-component generative model
for Bayesian filtering. Its main attractive feature will be that it performs well even if the
data points are sampled irregularly.

In the following section we will also extend this scheme in a way that will also handle the
case when there is uncertainty of the exact separation between the spectral components in a
very natural way.

The proposed generative model for a continuous-time(latent) signal (f(t))t∈R is simply:

f(t) = `(t) + h(t),

where `(t) is a low-frequency signal (bandlimited) and h(t) one of high-frequency content.

We will assume that both signals can be modeled as Gaussian Processes with stationary
covariance kernels denoted respectively by L andH, and, accordingly, power spectral densities
L̂ and Ĥ. To discriminate between higher and lower frequencies, we impose the following
restrictions over L̂ and Ŝ
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1. The support of L̂, denoted by supp(L̂), is compact and centred around the origin,
meaning that `(t) is a process of low-frequency content.

2. The supports of L̂ and Ĥ are non overlapping, that is, supp(L̂) ∩ supp(Ĥ) = ∅. This
implies that each frequency present in the signal f came, exclusively, from either ` or
h.

3. The sum of the of the component PSD’s correspond to some other known PSD of some
known kernel. For the sake of the example, we chose the square-exponential kernel,
that is Ĥ + L̂ = SSE where SSE is the PSD of a square exponential kernel with some
hyperparameters σ2and l, but any other stationary kernel can be used, as we will discuss
later.

c c

Low frequency priori PSD

c c

High Frequency priori PSD

c c

Signal PSD priori kernel

Figure 3.1: Model assumptions given in the model can be seen in this figure. The respective
PSD’s are such that the sum of them can be approximated by an already known kernel and
their supports are non-overlaping, the Gaussian one in this case.

Here we derive a formula for the entries of the cross-covariance matrix of the (multi-
Gaussian) process ψ(t) = (`(t), h(t)). This matrix is defined by the following formula:

Θ(τ) = 〈ψ(t), ψ(t)T 〉 =

(
〈`(t), `(t+ τ)〉 〈`(t), h(t+ τ)〉
〈h(t), h(t+ τ)〉 〈h(t), `(t+ τ)〉

)
.

The diagonal terms are, respectively, 〈`(t), `(t+ τ)〉 = L(τ) and 〈h(t), h(t+ τ)〉 = H(τ) =
K(τ)− L(τ) where the last equality is consequence of our third assumption.

In contrast, the remaining terms vanish. Indeed we have that

〈`(t), h(t+ τ)〉 = ˆ̀(ξ)ĥ(ξ)eiτξ

= 0,

where the first equality is Parseval’s theorem and the second one is consequence of our
second assumption and the fact that a signal generted by a band-limited kernel, will be
band-limited to the same interval as its kernel.
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As a consequence we deduce that both components on our model are independent from
each other. This will be important in a minute.

3.1.1 Likelihood and model fitting

Assuming independent sequence of Gaussian observation noise the observations (y(t))t∈R are
then defined as

y(t) = f(t) + η(t), η(t) ∼ N (0, σ2
η).

Combining the observation model , with the GP-prior assumed for the spectral components,
the marginal likelihood of the proposed model is Gaussian and therefore its hyperparameters
can be obtained through minimization of the negative log-likelihood (NLL). Notice that
despite the elaborate frequency-wise construction of the latent process f through the non-
overlapping spectra of the components `(t) and h(t),he covariance kernel of f is square-
exponential, thus allowing for straightforward model learning. Specifically, the NLL of the
model is given by

NLL(y|t) = log(2π|Σy|) +
1

2
yTΣ−1

y y,

where y = [y1, ..., yN ] is the vector of observed values acquired at time instants t = [t1, t2, ..., tN ]
and Σy is the covariance matrix of y defined by

Σy = KSE(t, t) + σ2
ηI.

Therefore, the hyperparameters are those of theKSE kernel and the noise variance σ2
η. Finally,

observe that the strict non-overlapping property of the components ` and h is not problematic
for training, in fact, the cutoff frequency does not even appear for model training.

3.1.2 Filtering as Posterior Inference

Denoting c as the required cut-off frequency of the low-pass filtering problem, using the
proposed model, we can assume that this cutoff frequency is equal to the limit between the
low- and high- frequency components. In this context, low-pass filtering problem is equivalent
to performing inference over the low-frequency component ` conditional to observations of
the time seires. Dure to the assumptions made on the signal we refer to this approach as GP
low-pass filter (GPLP).

Denoting the observations by y ∈ Rn, GPLP addresses low-pass filtering by computing
the posterior distribution p(`|y). Due to the self-conjugacy of the Gaussian distribution and
its closure under additivity, this posterior is also a GP, with mean and covariance given by

m`|y(τ) = L(τ − t)Σ−1
y y,

K`|y(τ) = L(τ)− L(t− t)Σ−1
y L(t− t)T ,

where, remember, we have assumed zero mean for h and `, we denote by L(τ − t) the vector
of translated basis functions [L(t− t1), L(t− t2), ..., L(t− tn)]. This expression is due to the
independence property mentioned before, indeed

E[`(t)(`(t′) + h(t′) + η(t′))] = E[`(t)`(t′)]

= L(t− t′).
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Therefore, the only critical quantity required to compute the former equations is the kernel
L. Following the model proposed, we have that the PSD of ` can be obtained by multiplying
the PSD of f with a centered rectangular box function of width 2c, that is

L̂(ξ)) = SSErect
(
ξ

2c

)
,

with the rect(ξ) function being equal to 1
2
for |ξ| < 1

2
and 0 elsewhere. As a consequence, the

kernel L can be calculated using the convolution theorem:

L(t) = F−1(L̂(ξ))

= F−1

(
SSErect

(
ξ

2c

))
= F−1(SSE) ? F−1

(
rect

(
ξ

2c

))
= KSE(t) ? sinc(2ct) · 2c

= 2c ·
∫
σ2 exp

(
− 1

2l2
(t− τ)2

)
sin(2πcτ)

2πcτ
dτ

= σ2e−
1

2l2
t2<
(
erf
(√

2clπ − i t√
2l

))
,

where erf(t) denotes the error function given by

erf(t) =
1√
π

t∫
−t

e−x
2

dx

Using Taylor exapnsions, the error function can be calculated up to an arbitrary degree of
accuracy.

3.1.3 Extensions

Window shapes

So far, we have shown that the GPLP allows to construct a probabilistic version of the
high-frequency component and low-frequency component of the original signal f(t).

However, we know that convergence of the sinc function series is not very efficient, as you
need many samples in order to obtain error (Ω(1/ε) samples to achieve an ε error, [3] ) which
is not desirable.

Two main ways to obtain better convergence rates is by using continuous window functions,
which in the signal processing literature are known to give faster convergence in exchange of
the need to oversample past the Nyquist rate [15].

Model-wise, the price for doing so is to allow a level of uncertainty in the cutoff level,
meaning that now there will be a non-empty intersection between both signal components.

26



c c

Low frequency priori PSD

c c

High Frequency priori PSD

c c

Signal PSD priori kernel

Figure 3.2: An example of a different window shape for our generative model. In this case a
Hahn window is used, but triangular or eliptic can be used too.

Base Kernel

It was mentioned that the main prior is the RBF Kernel, in other words this are our priori
beliefs of how the total signal (The sum of both components) is shaped. The bell shape kinds
of works like an low-pass filter in and of itself (It has been compared to a sinc kernel in [16]).

So if we want a more general model we can choose the RBF parameters in such a way so
as to have a wide PSD (And, in consequence, a narrow shaped bell in time domain), this is
known as a diffuse prior.

However adjusting the hyperparametrs that way can be tricky, as you could end up with
a bunch of non-correlated points, which means no inference will be made afterwards.

Another way of widening up our a priori beliefs of frequency bands is by using a kernel
with heavier tails, such as the so popular Mattern kernel, which also has a widely known PSD.
The Mattern Kernel has an hyperparametrs which controls how heavy the tails are. Actually
the Mattern kernel is composed of a sum of polynomials, as the degree of the polynomial
increases, so does the smoothness of the kernel, and also the PSD concentrates the most in
its center. At its limit (When you consider the sum of all the polynomials) you obtain the
RBF Kernel. Heavier tails are usually better in handling outliers and high-frequency noise.

3.1.4 Implementation

So the possibility of tweaking the window shape and the base kernel of our method has been
included. Unfortunately, making such changes analytically require the calculation of certain
integrales, which are not analytically possible to calculate. So numerical techniques must be
applied when using the algorithm in this way.

If the base kernel is the RBF, then a qudrature rule, Gauss-Hermite [19], can be applied
to make exact calculations of it. Even in the case of the Mattern kernel, Laguerre polyno-
mials can be used as a quadrature rule. As Gauss-Hermite quadrature makes the following
approximation ∫ ∞

−∞
e−x

2

f(x)dx ≈
n∑
i=1

wif(x),

where n is the number of sample points used, and the xi are the roots of the Hermite
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polynomial Hn(x) given by:

wi =
2n−1n!

√
π

n2[Hn−1(xi)]2
.

If we are not working with the RBF, or any other kernel which has a quadrature rule asso-
ciated, then we can use an approximiation which is actually an application of the Discrete
Fourier Transform.

Consider S(ξ) the PSD of our base kernel, and considerW (ξ) our window funciton (Hahn,
semicircle, etc.). What we have to calculate is the low frequency kernel function in time which
by definition is

L(t) = F−1(S(ξ) ·W (ξ).

Then, if S if regular enough, then we could approximate the product inside the inverse Fourier
transform as:

S(ξ)W (ξ) ≈
n∑
i=1

S(xi)W (xi)rect[∆(ξ − xi)],

where the {xi}ni=1 is the uniform partition of the target interval, with spacing ∆ and rect()̇
is the indicator function of the interval [−1

2
, 1

2
].

Using this approximation to calculate L(t) we obtain the formula

L(t) ≈ F−1

(
n∑
i=1

S(xi)W (xi)rect[∆(ξ − xi)]

)

=
n∑
i=1

S(xi)W (xi)e
2πitxi ·∆ · sinc(∆ · t),

which is exactly what we used in the simulations. We even compared this approximation
with the analytic one and, as long as the partition is thin enough, no further differences were
found.

3.2 Simulation
The proposed model for Bayesian low-pass filtering using GPs, termed GPLP, is next vali-
dated using synthectic and real-world data. Our experimental validation aims to show that
GPLP accomplished both: To successfully recover low or high frequency data from missing
and noisy observations, to provide accurate point-estimates with respect to the benchmarks,
places meaningful error bars.

3.2.1 A synthetic time series with line spectra

We considered the line-spectra time series given by
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f(t) =
∑
ω∈Flow

cω cos(2πωt) +
∑

ω∈Fhigh

cω cos(2πωt), (3.1)

where the sets Flow and Fhigh are such that ∀ωi ∈ Flow,∀ωjFhigh : ωi < ωj, note that
also each component is multiplied by an individual term cω. Simply put, Flow is a set of low
frequencies and Fhigh a set of high frequencies - all these frequencies are in Hertz(Hz). Signals
constructed in this wat have sparse PSDs meaning that only a finite number of frequencies
convey all the signal energy or information. We chose Flow = {0.1, 0.2, 0.3, 0.45} and Fhigh =
{0.55, 0.7, 0.8, 0.6, 0.65} with coefficients {1, 2, 2, 1.5} and {1.0, 1, 2, 1, 3} respectively. Then
a path of f(t) was simulated as defined in Eqn. (3.1) for 200 evenly spaced time indexes in
t ∈ [−10, 10]. The observation time-series y consisted only in a 25% of the signal (again,
evenly spaced) all of which were corrupted by Gaussian noise of std. dev. ση = 1.0. Fig. 3.3
shows the latent signal and the observation considered for this experiment.

Figure 3.3: Signal used for the example of the GPLP model in the non-uniform sampled
casevg.

The proposed GPLP was implemented in order to recover both the high-frequency and
the low-frequency content of the original (latent) signal f only using the observations y, the
only difference being that the high-frequency content utilizes a shift-window parameter in its
GPLP definition. First, the generative model is trained as explained in 3.1.1 to find estimates
for the hyper parameters l, σ2 and σ2

η. Then, the cutoff frequency was chosen to be b = 0.5
HZ. Then either the low-frequency or the high frequency covariance function is computed in
order to use it to compute the moments of the posterior distribution p(f |y). Fig. 3.5 shows
the learnt kernels and their corresponding PSDs. Notice how, just as illustrated in Fig. 3.1,
the spectral densities of the latent low-frequency component is band-limited, suported only
on [−0.5, 0.5] and tightly bounded by the (unfiltered) time-series.

Next, figure 3.6 shows the GPLP estimates for both the high frequency filter and the low
frequency filter, compared against the ground truth and a low-pass filter of order 10, with
the same cutoff frequency; this filter is a standard in linear filtering. GPLP obtained a mean-
squared error (MSE) of 0.43 while the Butterworth low-pass filter gave a mean-squared error
of 0.6, in addition to this difference in performance, notice that GPLP provided accurate
95% error bars.
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Figure 3.4: Results of the GPLP estimate versus the butterworth filter in the uniformly
spaced setting.

Next we replicated the exact same setting, but considered randomly-chosen observations
(Again, just 25% of the total number points). Fig 3.6 shows the posterior mean over the
low-frequency component together with the 95% confidence interval and the ground truth,
as well as the result in the frequency domain.

The MSE of the GPLP estimate was 0.49 thus improving over Butterworth using evenly
spaced data. To further validate the ability of the proposed GPLP to filter out low-frequency
spectral content, Fig 3.6 shows the Fast Fourier Transform (FFT) of the low-pass versions of
GPLP and the original signal. Notice that the GPLP successfully recovered the first three
spectral components and rejected the higher ones.

3.3 An experiment on sampling schemes

In this section, we evaluate the impact of the different sampling schemes mentioned in the
former chapter (These are: random, jitter, additive, uniform) and test if its theoretical
properties are reflected someway in practice and what kind of relationship can we conclude
with respect to the classical signal processing theory.

Different sampling schemes such as additive, jitter, full-random, etc. were reviewed at
the beginning and some properties and applications are known for them. In the case of the
GPLP, the performance of each one of them was tested by solving the same problem as
before, filtering a signal composed of line-spectra, and comparing their performance in terms
of MSE and the number of points sampled.

For this, number of sampling points ranging from 10 to 80 were considered. For each
one of these, 100 simulations of the line-spectra problem were performed. The MSE and the
maximum separation (i.e The largest gap between sampled points) were recorded on each
iteration. In Fig. 3.15 an histogram of the largest gap for each method is represented. It is
interesting how additive sampling obtains the highest point, while uniform sampling has the
lowest as expected. From the graph on the right one can conclude that larger gaps on time
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Figure 3.5: Above: Base kernel function, with the maximum likelihood parameters, with the
low-frequency corresponding kernel. Below: The PSD of the base kernel, the PSD of the low
freq kernel and the implicit high frequency kernel. Notice how the ringing artifact that is
produced

samples are related to higher variability on the MSE statistic.

However, notice that from Fig. 3.8 it can be concluded that uniform sampling is not always
the optimal sampling scheme, in fact we can see that jitter sampling is almost always better
when the number of points considered is between approximately one half of the Nyquist limit
and the Nyquist limit itself.

A closer inspection of the results is given in 3.9, which gives more details of the results
from the simulation. The jitter gives a smoothing effect to the discontinuity of the MSE given
by the uniform sampling. This is most likely due to a reduction on the alias error which is
present on the uniform sampling scheme up until the cutoff point, while introducing little
variance into the sampling point effect, while the other methods (full random sampling and
additive sampling) may reduce the alias (In fact, we know how additive sampling reduces it
completely in theory) they probably do not give a convenient tradeoff. This relationships
hints that alias error vs. random sampling error,as it is seen in signal processing, can be
seen, from a machine learning perspective, as the classic bias-variance trade-off.
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Figure 3.6: Results given when a full random sampling scheme is considered. MSE is 0.47.

3.4 Application: Finding an optimal sampling scheme us-
ing Bayesian Optimization

One of the advantages of Gaussian Process regression over classical signal processing techiques
is having an estimation of the uncertainty ( which is given by the posterior variance) and that
we we are free to use any sampling scheme we want. In applications, such as compression, this
may come handy. Remember that Nyquist bound on the number of sampling points is only
valid in the uniformly spaced sampling scheme: We may save some sampling points (memory)
by giving a little randomness to our sampling, as we saw in the previous experiment, where
jittered sampling gave decent results halfway the Nyquist sampling rate. So we will search
for an optimal sampling scheme using a procedure based on Bayesian optimization.

3.4.1 Setting

Consider an objective bandlimited signal φ of known bandwidth and the goal is to compress
it into a number of discrete points [x1, .., xM ] in a way such that if the points [x1, ..., xM ]
and its corresponding values [φ(x1), ..., φ(xM)] are sent to an external agent, then it would
be possible to reconstruct the whole signal (by making the corresponding regression). The
number of points to be sampled may be fixed, or the points may be sampled until a certain
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Figure 3.7: Left: Maximum separation between batch of sampling points histogram for each
sampling procedure. Right: Relationship between separation and MSE for different number
of sampling points.

error bound is achieved. Also, the reconstruction algorithm has to be robust against noise
outside the bandwidth.

A nice way to make this possible is an iterative algorithm which will balance exploration
and explotaition of the objective function.

This is made possible by defining an acquisition function. The one which we will use
(and a popular choice by the way) is the function:

α(x) = M(x) + κσ(x),

where M(x) is the mean squared error between the original signal and the posterior mean,
σ(x) the posteriori variance defined in the signal’s domain and κ just a trade-off parameter
between the two. If a point x∗ maximizes the acquisition function that means that either the
value M(x) is high, so the signal may present some complexity in that zone (For instance
high frequencies) or the value σ(x) is too high, indicating an underexplored zone.

This setting, which balances exploration and explotaition via the acquisition function and
approximating using Gaussian processes, is the main idea behind Bayesian optimization.

The pseudo-code would be

An instance of the algorithm can be seen in Fig. 10 where some iterations showing where
the acquisition function is maxmimized and the effect the point has on the Gaussian process
approximation. Interestingly, note how it seems to naturally go for the uniform sampling
scheme at first, then the algorithm proceeds to exploit the extremes of the domain.

After running 100 simulations, the distribution of the sampled points outputted by the
algorithm can be estimted by plotting the empirical distribution. It seems that the target
distribution is uniform, except ont eh borders, where the distribution presents spikes. This
is coherent with what was stated before: the algorithms tries to explore at first, and then
exploits the borders. Note that a very similar optimal distribution was reported in [3]
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Figure 3.8: Each point corresponds to an average of 100 simulations with the given number
of sampling points. Error bars are given based on standard deviation (1 unit). Surprisingly,
jitter sampling (and to an extent full random sampling) perform well at a sub-nyquist level

3.5 Compressed sensing: Multi-band signal reconstruc-
tion using the sinc function

In this final section we will show an application of Compressed sensing setting, but using sinc
functions. The main idea is to be even more restrictive in the Fourier structure of the signal
in such a way that we will be able to reconstruct with very little data points. The purpose
of this application is to expand on this topic in posterior work.

In particular, we consider the one dimensional compressed sensing setting, and, as men-
tioned on Chapter 2, random sampling is crucial and reconstruction is attainable with average
sampling rates much lower than the Nyquist sampling rate.

The application consists in reconstructing a sum of sinc functions (this is, a multi-band
signal). This is the restriction mentioned before, our prior knowledge of the signal is that it
is sparse in some basis, in this case the sinc function basis.

The compressed sensing methodology requires to pose the problem as solving a system of
equations:

Ax = b,

where A is an m × n matrix and m << n so the system has infinite solutions. To obtain
a unique solution, you add a regularization constraint to the problem, typically that the
number of non-zero entries of x is limited or penalized (this is the so-called `0 norm defined
by ||x||`0 = |{i : xi 6= 0}|). In practice, however, one usually ocuppy the `1 norm, because
using the `0 norm makes the problem computationally expensive most of the time.
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Figure 3.9: Each point correspond to a simulation of the line-spectra problem, and it is
represented by its number of points and MSE score. It can be seen how jitter sampling
outperforms uniform sampling at a sub-Nyquist level.

In our context, Ax is our objective, the signal we wish to reconstruct from our samples,
and it will be represented by a vector x in a certain basis (a finite basis, for background
in infinite-dimensional compressed sensing go to [1]). The b vector it simply is a vector of
(randomly selected) samples.

In our example, the signal is a sum of two sinc functions (of width 584 and 600 respectively)
multiplied by high frequency cosines (2585 Hz. and 3493 Hz). In Fig. 3.12 the full signal is
composed of 5000 points along a time doimain of 1/8. From the 5000, only 5% is randomly
selected. Random selection is important to mantain certain properties of the (random) matrix
A which are beyond this work, but can be reviewed in [9].

Keep in mind, if these points were evenly spaced, the Nyquist frequency would be around
1kHz. making it impossible to reconstruct the signal (it would violate Shannon’s theorem).
Consider, for example, the signal in Fig.3.12:

In the plots above, we see that the signal has a clear pattern, yet is non-trivial. The plots
in the top row are of the signal in the temporal domain at different scales. The plots in the
bottom row are of the signal in the spectral domain (i.e., the signal’s frequency content).
Considering the frequency domain in particular, we note that the spectrum is mostly zero
except for the two squares representing the two sinc functions frequencies.

Take a moment to imagine how you would reconstruct the (temporal) signal with just
the red dots. You’d have a data set that, to the naked eye, would look like nonsense. One
might ask if it is somehow possible to extract those two dominant from the incomplete data
so that we might reconstruct the signal? The answer is yes! We just have to correctly pose
the problem. We want to solve, as mentioned before, Ax = b, we need to specify a correct A
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5th iteration Result

7th iteration Result

35th iteration Result

82th iteration Result

Figure 3.10: Different iterations of the optimal sampling scheme procedure. On the left, the
aquisition function along with previously selected points and the newly accepted point. On
the right, the actual signal vs. the fitted Gaussian process. Note how exploration is priorized
on the earlier iterations, and then explotation (mostly on the borders).
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Algorithm 1: Bayesian Optimization algorithm for finding optimal random sampling
points
Input : A bandlimited function φ of known bandwith W , tolerance ε or maximum

number of samples M and starting point x0

Output: A sequence of sampling points x0, ...xn and values y1, ..., yn
1 X ← x0

2 Y ← φ(x0)
3 tol←∞
4 while n < M or tol > ε do
5 Update the posterior probability distribution of φ (which is given by the GPLP

procedure) over the current set of points Xand values Y ;
6 xnew ← the minimizer of the acquisition function. ;
7 Y ← φ(xnew);
8 X ← xnew tol← the maximum value of the posterior variance.
9 end

10 return X, Y ;

Figure 3.11: Empirical distribution of points after running 100 simulations of the Bayesian
optimization sampling scheme algorithm

matrix such that the x vector of coefficients is as sparse as possible. One choice is to make
A = BC were C is the inverse Fourier (or cosine, it is equivalent) transform of an upper
triangular matrix of ones, and B is just a sampling matrix (with sampling times according
to b). That way x just need 4 non-zero entries, for each of the two components we need one
entry for making a window wide enoguh to capture the component, and another window to
trim off the surplus.

In Fig. 3.13 a graph of the columns of the A matrix (which are all sinc functions as they
are Fourier squares after all), and below we can see how this matrix is affected when we
multiply by the sampling operator. As we can see the columns are still distinguishable, but
are noisier though.

After solving the `1 minimization problem, we obtain a vector x, with only 4 dominating
non-zero entries. With those non-zero entries we can detect the location of the edges (in the
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Figure 3.12: In blue, our target signal to reconstruct. In red the randomly sampled points
(5% of the total). In the grap below we have a view of the signal in Fourier space.

Figure 3.13: Caption

frequency domain sense of course)of the sinc components. The result is in Fig. 3.14:

Once we obtain the sinc component parameters, we perform a final adjustment of a scale
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Figure 3.14:

factor to finally reconstruct the original signal. The mean squared error is absurdly low
(0.006) and the reconstruction is very precise even though we are working at different scales
as we move in the time domain (remember the sinc function decays as 1/x).

Figure 3.15: Final reconstruction of the signal given the sampled points at three diferent
zones of the original domain and different scales to have a more clear visualization.

Compressed sensing is a very wide topic, and its not the main focus of this work, the
purpose of this section is to encourage search in this regard. Gaussian Processes may be
related in a way to such a procedure[10], but unfortunately the `1 norm minimization problem
is key in all of this, and it is known that the sinc kernel is not well-suited to handle `1 problems
in the Gaussian Process context [21].
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Conclusion

This thesis has brought techniques from the Gaussian Process literature, the RKHS theory,
non-parametric Bayesian methods as well as classical signal processing and Fourier analysis
techinques in order to study the problem of signal analyisis when sampled at irregular time
instants.

The questions posed at the beginning of the work , reproduced here for convenience, were:

• How many samples are required to have an accurate approximation to the whole func-
tion f(t) and, if possible, what kind of scheme do we have to perform to select these
points optimally?

• Can we design an algorithm which will, hopefully, solve the problem and implement it?

For the first question, the answer is that it depends on the bandwidth of the signal AND
the sampling scheme being used. As we saw, it is not easy to answer that question in a way
that is satisfying in practice, as you can always exploit prior knowledge of the signal in order
to have reconstruction formulas with a few datapoints (as we saw on our compressed sensing
example). From our results, however, we offer a solution via finding an optimal scheme using
Bayesian optimization, and even study some classical sampling schemes and compare them.

For the second questiond the GPLP model was developed, which can be seen as solving the
signal reconstruction problem when you have high frequency components as noise. The model
is flexible and gives fairly accurate results even in the presence of totally random sampling
schemes. One downside, however, is that obtaining results is computationally expensive,
considering one dimensional data standards. So further research in more efficient variants is
encouraged, in this sense implementations such as the oens made by [4] are promising.

Future research in this aspect which may be interesting is to find meaningful connections
between the RKHS/Gaussian Process theory and the Compressed Sensing approach, which
could give insights in developing even more efficeint tools.
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