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Abstract
Objective To evaluate the accuracy and validity of an automated diabetic retinopathy (DR) screening tool (DART, TeleDx,
Santiago, Chile) that uses artificial intelligence to analyze ocular fundus photographs for potential implementation in the
national Chilean DR screening programme.
Method This was an observational study of 1123 diabetic eye exams using a validation protocol designed by the com-
mission of the Chilean Ministry of Health personnel and retina specialists.
Results Receiver operating characteristic (ROC) analysis indicated a sensitivity of 94.6% (95% CI: 90.9–96.9%), specificity
of 74.3% (95% CI: 73.3–75%), and negative predictive value of 98.1% (95% CI: 96.8–98.9%) for the automated tool at the
optimal operating point for DR screening. The area under the ROC curve was 0.915.
Conclusions The results of this study suggest that DART is a valid tool that could be implemented in a heterogeneous health
network such as the Chilean system.

Introduction

Given the rapidly increasing prevalence of diabetes mellitus
(DM) in the Chilean and world populations [1], rates of
DM-related vision loss and blindness are rising con-
siderably [2]. There is a pressing need to enhance the
detection and prevention of diabetic retinopathy (DR), but
significant gaps in the availability of ophthalmological
resources for DM patients present a major obstacle.

The World Health Organization defines screening as “the
presumptive identification of unrecognized disease or defect
by the application of tests, examinations, or other proce-
dures which can be applied rapidly. Screening tests sort out
apparently well persons who probably have a disease from
those who probably do not. A screening test is not intended
to be diagnostic” [3, 4].

Importantly, it is widely accepted that screening tests are
not diagnostic tests but rather are procedures for identifying
high-risk patients who should be referred for specialist
evaluation. Therefore, there may be a role for nonmedical
professionals, automated systems, and telemedicine in DR
screening [5].

In the context of DR, the International Council of Oph-
thalmology (ICO) emphasizes that “there is currently a
significant shortfall of ophthalmologists in developing
countries,” stating that “it is necessary to aggressively train
eye care teams now to alleviate the current and anticipated
deficit of ophthalmologists worldwide” [6]. In Latin
America, guidelines based on recent experimental findings
and clinical experience have been published to help “ensure
that patients receive the best available care in a timely
manner” [7].

The ICO notes that “screening for DR is an important
aspect of DM management worldwide. Even if an adequate
number of ophthalmologists are available, using ophthal-
mologists or retinal subspecialists to screen every person
with DM is an inefficient use of resources” [8]. The urgency
of increasing DR screening coverage and the need to
overcome various technical obstacles associated with cur-
rent screening methods have led to the development and
validation of technologies that can automatically recognize
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signs of DR in fundus photographs [9–12]. These new
methods can separate populations that require a specialist
referral from those that do not while reducing the number of
DR screening cases that must be evaluated by an
ophthalmologist.

Moreover, the Joint Declaration from the International
Diabetes Federation, ICO, World Council of Optometry,
and International Agency for the Prevention of Blindness
recommends increasing “investment in the development of
more cost-effective, sturdy and automated technologies for
assessment, referral, and treatment” [13]. In summary, the
Chilean (and, most likely, every other Latin American)
public health system needs a technological solution that
would improve the efficiency of interpreting preventive
ocular exams and optimize the use of ophthalmological
resources.

In the Chilean healthcare network, multiple guaranteed
entry points exist for cardiovascular and DM risk popula-
tions to be identified, namely, through morbidity consulta-
tion at primary care and annual preventive exams for adults
and the elderly. Encouraged by performance goals and
allocated per-capita budgets, centralized control is carried
out to identify people with DM in the community, achieving
a degree of awareness of their condition of 85% among
patients [14], above the global average of 50% [1].

The same policies and incentives apply to DR screening
and treatment. To address referred patients, there is a
national network of 29 public health services [15] with their
respective ophthalmology departments in secondary and
tertiary centres (57 across the country [16]). The resolution
rate was not found to be properly documented, but DR
screening coverage on the primary care network was
reported at 32.4% in 2016 [17].

This study compares the performance of an artificial
intelligence (AI)-based DR screening system called DART
(TeleDx, Santiago, Chile) [18–20] with an assessment
performed remotely by a clinical ophthalmologist [21],
using retinal images acquired according to the EURODIAB
protocol [22]. The objective of the study was to determine
whether the system is sufficiently valid as a screening
method for its application in the Chilean public health
network.

Materials and methods

An observational study was conducted to evaluate the
accuracy and validity of DART for potential implementa-
tion in the Chilean public DR screening programme. The
study was designed to fulfill the requirements of a valida-
tion protocol designed by a commission of specialists
working with the Chilean Ministry of Health (Minsal, for its
acronym in Spanish).

This validation study was retrospective and observational
(noninvasive). It was carried out by reviewing the ocular
fundus photographs of patients included in the sample. No
patient was approached directly regarding the study, and
patient care was not affected in any way by it. Only
anonymous or pseudoanonymous data were used after
collection as part of routine clinical care. Codes were
assigned to the episodes for reference during data proces-
sing and analysis. Patient information was accessed
according to all relevant standards of privacy and con-
fidentiality at all stages of data collection and analysis. The
study was carried out using a double-blind methodology for
the ophthalmologists and the AI tool. Careful measures
were taken to protect the security of the data and to avoid
releasing personal health information to any person outside
the research team or to non-clinical personnel on the pro-
ject, complying with Minsal regulations regarding con-
fidentiality and protection of sensitive data (user
authentication, personnel contracts, protection of computer
servers, etc.).

Minsal approved this study and deemed that patient
informed consent was not necessary given the retrospective
nature of the study and given the de-identification of all
patient data, consistent with prior institutional review boards’
determinations for similar protocols [23]. Approval was also
obtained from the ethics committee of the East Metropolitan
Health Service, and agreements were established with all
institutions involved. The institutional ethics committee also
determined that no informed consent was needed due to the
anonymous nature of the study data and the fact that no
procedure related to the study would affect patient care,
consistent with relevant precedents from international litera-
ture [12, 23–25]. The study was conducted in agreement with
the principles of the Declaration of Helsinki [26].

A major requirement of the validation protocol was the
inclusion of a representative sample of cases (exams), both
quantitatively and qualitatively, to ensure accurate char-
acterization of the population living with DM in Chile. The
sample was selected from five community centres catering
to the primary care of the Chilean population in five dif-
ferent communes to provide inclusive coverage of the
nation’s geographic regions to reflect the unique population
features of each area and to ensure that the findings would
adequately represent the various diabetic ophthalmological
screening programmes throughout the country.

The inclusion criteria for sample selection were ocular
fundus photographs performed on a patient with DM during
the data collection period in one of the five participating
communes. To minimize bias, cases meeting inclusion cri-
teria were selected chronologically; the first two of every
five exams performed in each participating commune during
the data collection period were selected. The data were
collected from November 11, 2014 to December 18, 2016.
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This AI tool relies on precise detection of abnormalities
in ocular fundus images using two fully convolutional
neural networks [27]: one for detecting signs of diabetic
macular edema (DME) and the other for detecting signs of
DR (in particular, vascular lesions or abnormal vascular
signs). Both outputs are then weighted to obtain a prob-
ability of DR per eye, and the highest probability between
them stays as the final probability. These networks were
trained using ocular fundus photographs obtained according
to the EURODIAB protocol [22] and analyzed by one
ophthalmologist (from a panel of eight).

Each case was processed by the automated system,
which provided a dichotomous result: “positive” for any
grade of DR (pathology is present) or “negative” (pathology
is not present). This dichotomous result was based on a
value indicating the degree of membership of each case to
one of the two possible states, as calculated by the algo-
rithm. Exams with a score at or above a strict threshold of
0.0166 were classified as positive, and results below this
threshold were classified as negative. This threshold was
defined using receiver operating characteristic (ROC) curve
analysis set at an operating point that provided high sensi-
tivity to minimize the rate of false negatives (FN) during
screening.

Exams were retrieved using the national tele-
ophthalmology web platform administered by Minsal. This
platform operates under the technical-administrative
authority that governs primary care ophthalmology. The
process starts when a patient is attended by an ophthal-
mology technician in a primary care centre, where the
professional assesses whether it is necessary or not to dilate
the patient’s pupil.

Then, the images are taken using non-mydriatic cameras
whose main requirement is to be a desktop camera (not
portable), to have at least a 10-megapixel sensor and to
capture 45-degree field retinal images. Two retinographies
are taken for each eye (temporal and nasal captures), fol-
lowing the EURODIAB protocol [22].

Each retinal image is assessed by an ophthalmologist
using a web platform based on the International Clinical
Diabetic Retinopathy severity scale [21]. For each eye, the
physician rates the severity of DR as follows: no apparent
DR (R0), mild non-proliferative DR (R1), moderate non-
proliferative DR (R2), severe non-proliferative DR (R3),
proliferative DR (R4), or ungradable if the quality of the
photograph is inadequate to confirm the suspected grade of
DR. Furthermore, the ophthalmologist could indicate sus-
picion of DME in addition to any DR ranging from R0 to
R4. Then, the overall exam grade is defined as the most
severe grade between both eyes.

For this analysis, the ophthalmologist gradings were then
grouped into two aggregate classifications to produce a

dichotomous screening result. A case was classified as
“ophthalmologist-negative” for the absence of DR (DR-) if
the grading was R0 and there were no other findings, or
“ophthalmologist-positive” (DR+) if any other grading was
given. In other words, any exam with a grading of R1, R2,
R3, R4, or ungradable and/or suspicion of DME was clas-
sified as DR+; and a case was classified as DR- only if rated
as R0 and not categorized as suspicious for DME.

The results were organized into a 2 × 2 confusion matrix,
with the ophthalmologist grading for each case on one axis
(DR+, DR-) and the results of the automated AI-based
system on the other (positive, negative). The confusion
matrix was used to classify the results as true negative (TN),
false positive (FP), true negative, or FN. These data were
then used for ROC analysis to assess the discriminatory
capacity of the system.

The minimum required sample size was calculated using
two formulas from the literature for screening tests with
dichotomous results (in this case, positive or negative for
the presence of DR), one based on sensitivity and the other
on specificity. Similar formulas have been used in previous
studies on automated technologies for DR screening [12].
The literature suggests setting the sensitivity at 80% for this
type of test [28–30], but there is no expert consensus on
recommended levels of specificity to date [12, 31]. Fur-
thermore, it has been shown that similar systems with
specificities between 20 and 53% are cost-effective alter-
natives to a purely manual grading of DR [32, 33]. This
value was finally set at 50% by the commission of specia-
lists of Minsal. These formulas also take into account the
prevalence of the pathology. According to the Pan-
American Association of Ophthalmologists, DR pre-
valence may be as high as 40% within the population living
with DM in some countries of the region [5]. However, the
most recent Chilean epidemiological study estimates a
prevalence of 30% [5]. The formulas are shown below:

nse ¼
Z2

α
2
� se � 1� seð Þ
d2 � prev

ð1Þ

nsp ¼
Z2

α
2
� sp � 1� spð Þ

d2 � ð1� prevÞ ð2Þ

where: nse: number of patients required for a given sensitivity.
nsp: number of patients required for a given specificity. se:
sensitivity, in this case fixed at 80%. sp: specificity, in this
case fixed at 50%. Zα

2
: 1.96 for 95% confidence level. d:

maximum margin of error, in this case 5% for a precision of
95%. prev: population level prevalence, in this case fixed at
30% of the population with DM.

As the two formulas produced different minimum sample
sizes, the greater value was selected. Thus, given the
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formula outputs shown below, the minimum sample size
was calculated at 820 subjects.

nse ¼
Z2

α
2
� se � 1� seð Þ
d2 � prev ¼ 1:962 � 0:8 � ð1� 0:8Þ

0:052 � 0:3 ¼ 819:5 ffi 820 ð3Þ

nsp ¼
Z2

α
2
� sp � 1� spð Þ

d2 � ð1� prevÞ ¼ 1:962 � 0:5 � ð1� 0:5Þ
0:052 � ð1� 0:3Þ ¼ 548:8 ffi 549 ð4Þ

Results

A total of 1123 eye exams from different patients
(exceeding the minimum sample size required) followed the
flow described in Fig. 1 and were collected across the dif-
ferent communes. Cameras were among the most
frequently found in the national screening programme,
namely, the AFC-330 (Nidek, Gamagori, Japan) in Peña-
lolén (441 cases), Recoleta (432 cases), and Ñuñoa (106
cases); the CR-2 (Canon, Tokyo, Japan) in Concepción (90
cases); and the TRC-50ex (Topcon, Tokyo, Japan) in Pro-
videncia (54 cases).

Of the total cases, 452 (40.2%) were male, and 671
(59.8%) were female. The average patient age at the time of
the exam was 63 years (standard deviation 12.7). The pre-
valence of exams with R1, R2, R3, R4, or ungradable and/
or suspicion DME was 21.3%. The distribution of severity
grades in the sample is detailed in Table 1.

The results are presented in a 2 × 2 confusion matrix
(Table 2) comparing the screening results provided by the
AI system with the remotely delivered clinical opinion of

the ophthalmologist, followed by summary indicators of the
diagnostic capacity of the system as assessed using ROC
analysis.

Based on the results presented in Table 2, indicators
defined as critical for the study analysis were calculated,
along with their respective confidence intervals (CIs), as
shown in Table 3.

The area under the ROC curve (AUC) shown in Fig. 2 is
0.915. Data regarding operating points along the curve
could be used to adjust the model for different needs in
terms of cost efficiency to address public healthcare chal-
lenges associated with DR in other contexts.

Recruitment of patients with
diabetes mellitus enrolled in the

national diabetic retinopathy
program

Peñalolén Primary
Care Center 

(n=441)

Concepción
Primary Care
Center (n=90)

Providencia
Primary Care
Center (n=54)

Recoleta Primary
Care Center

(n=432)

Ñuñoa Primary
Care Center 

(n=106)

Ophthalmologists' assesment
through telemedicine 

(n=1123)

Assesment through a web-platform
acording to ICDR severity scale

[21]

Teleophthalmology program:
images captured acording to

EURODIAB protocol [22].

Exams processed by the artificial
intelligence system (DART)

(n=1123)

True Positives
(n=226)

False Positives
(n=227)

True Negatives
(n=657)

False Negatives
(n=13)

Fig. 1 Participants workflow
in the study. The bottom section
shows the results and allows all
the relevant indicators to be
computed.

Table 1 Distribution of DR severity and DME in the sample.

Grade DME absent DME present

R0 884 10

R1 21 11

R2 81 58

R3 24 6

R4 5 3

Ungradable 20 –

Table 2 Screening results based on clinical opinion of ophthalmologist
(teleophthalmology) v. AI system.

Test result Ophthalmologist classification

DR+ DR−

Positive 226 227

Negative 13 657

Total 239 884

J. T. Arenas-Cavalli et al.



Varying the threshold by as much as ±10% only altered
the sensitivity of the test by 0.025 and the specificity by
0.057. Even when the threshold was increased by 100%,
test performance remained within the parameters required
by the commission (0.841 sensitivity, 0.859 specificity).

The original evaluation (criterion A) categorized an exam
as positive if the ophthalmologist grading was R1 or greater
and/or suspicion DME or ungradable. Using criterion A,
239 cases were categorized as positive, from a total of 1123.
An additional sensitivity analysis using two other criteria (B
and C) was then performed.

● Criterion B: Each exam was categorized as positive if
the classification was R2 or greater, DME, or ungrad-
able. This criterion was based on typical practice for
recommending a specialist referral according to other
authors [21]. From the sample (1123), 218 cases were
categorized as positive.

● Criterion C: Identical to criterion A, but ungradable
cases were excluded. From the sample (1123), 20
ungradable cases were excluded for the analysis, and
219 cases were categorized as positive.

Using the same threshold as in the original scenario,
criterion B produced a sensitivity of 0.945, a specificity of
0.727, and an AUC of 0.918. Criterion C produced a sen-
sitivity of 0.963, a specificity of 0.743, and an AUC
of 0.924.

Analyzing the FN rate by severity level (excluding
ungradable exams), the results were as follows: 3.65% FN
rate for R1 or greater (and/or suspicion DME), 3.54% for
R2 or greater (and/or suspicion DME), 4.27% for R3 or
greater (and/or suspicion DME), and 5.38% for R4 or
greater (and/or suspicion DME).

Discussion and conclusion

As established in the literature, the minimum sensitivity for
screening tests with a dichotomous outcome should be set at
0.8 [28, 29]. A specificity of 0.5 was defined by the com-
mission of specialists and has been shown to be cost-
effective [32, 33]. The operating point chosen on the
ROC curve produced a sensitivity of 0.946 (95% CI,
0.909–0.969) and specificity of 0.743 (95% CI,

Table 3 Summary indicators.
Indicator Value 95% confidence interval

Name Formula Lower bound Upper bound

Prevalence prev ¼ TPþFN
TNþFNþTPþFP 0.213 0.190 0.238

Sensitivity se ¼ TP
TPþFN 0.946 0.909 0.969

Specificity sp ¼ TN=TNþ FP 0.743 0.733 0.750

False positive rate FPR ¼ 1� sp 0.256 0.250 0.267

False negative rate FNR ¼ se 0.054 0.031 0.091

Positive predictive value PPV ¼ TP
TPþFP 0.499 0.480 0.511

Negative predictive value NPV ¼ TN
TNþFN 0.981 0.968 0.989

Positive likelihood ratio PLR ¼ se
1�sp 3.682 3.408 3.87

Negative likelihood ratio NLR ¼ 1�se
sp 0.073 0.041 0.124

Diagnostic odds ratio DOR ¼ TP�TN
FP�FN 50.318 27.456 94.065

Relative risk RR ¼ PPV
1�NPV 25.712 14.768 46.479

Percentage of concordance POC ¼ TPþTN
TNþFNþTPþFP 0.786 0.771 0.796

Test negativity rate TNR ¼ TNþFN
TNþFNþTPþFP 0.597 0.567 0.625

Test positivity rate TPR ¼ TPþFP
TNþFNþTPþFP 0.403 0.374 0.432

Fig. 2 ROC curve showing the sensitivity against the FP rate
(1-specificity) of the AI system. The dot represents the selected
operating point.
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0.733–0.750), with an AUC of 0.915. These results
exceeded the performance requirements solicited by Minsal.

The reported sensitivity and specificity of the assessed
tool could free up reading capacities in an estimated 59.7%
(see Table 3). These released resources can be expected to
be relocated to increasing today’s low DR screening cov-
erage (and pursue its periodicity, which will also make up
for possible FN), reading additional scans, and treating DR
cases that require ophthalmologist care. This point is highly
relevant in Chile, given that the public health system
guarantees coverage for DM and DR diagnosis and
treatment.

The results using different criteria for considering a case
as positive show similar sensitivity and specificity levels
across the three analyzed scenarios. This illustrates how an
AI-based system can outperform the baseline scenario in a
sample that faithfully represents the local population. If
different screening criteria or guidelines are needed in the
future, the threshold of the AI system could be modified to
satisfy the sensitivity and specificity defined by a certain
strategy.

The international literature describes similar screening
procedures for more than mild non-proliferative DR detec-
tion. Among the most recent published findings using
publicly available databases, one system was found to show
a sensitivity of 96.8% and specificity of 59.4% [9], and
another one showed a sensitivity of 93.8% and specificity of
72.2% [34]. A study carried out at the Moorfields Reading
Centre using data from the population enrolled in the
Nakuru Study in Kenya reported a sensitivity of 91.0% and
specificity of 69.9% [11]. Another group proposed two
automated methods: a disease-staging system for DR and a
system that suggests treatments and prognosis. These
authors reported an accuracy of 81% for the first system and
a 12% FN and 65% FP rate for the second [35]. A recent
publication described an automated system that detects R3
and R4 cases with a sensitivity of 66.4% and specificity of
72.8% [29]. Another method achieved over 96% sensitivity
and 93% specificity using public datasets, deeming further
research necessary in terms of applicability in a clinical
setting [10]. Finally, other authors reported a sensitivity of
87.2% and specificity of 90.7% [36].

It should be noted that the quality of ocular fundus
photography is typically lower in an older population, such
as the one sampled in this study, as patient age and image
clarity are inversely correlated in teleophthalmology [37].
Therefore, a relatively high percentage of patients may be
referred to a specialist due to unreadable exams.

The effect of the camera model could not be measured
and separated from the technician effect at each point of
care because of the centres’ sample size. It is proposed for a
future study to design the setup so that the effect of a certain

camera model and specifications can be measured and
separated from the centre and the possible bias of the pro-
fessional who operates the camera. Another limitation was
the data collection related to the procedure performed by the
technician, particularly about the mydriasis in each patient,
an issue that can affect the image quality and, consequently,
the cost-effectiveness of the screening.

Despite the study being designed according to the Minsal
screening programme and its standard of care, it is proposed
for a future study to assess each case by more than one
physician to mitigate the bias related to the eye specialist, as
other studies have reported [10, 38].

This system’s implementation is feasible for healthcare
workers to carry on given that the interface for the tool is
based on the standard teleophthalmology processes already
in use according to the Minsal protocol. Moreover, this
technology is suitable for application throughout the coun-
try as it was developed in collaboration with Minsal, plus
regional guidelines, and exceeds the required indicators.
Implementation of this AI-based tool is also viable in other
countries facing similar challenges in terms of DR screening
coverage.

Further analysis should be carried out to determine spe-
cific figures in terms of savings and impact, especially
considering a real clinical setting and variability in imple-
mentation conditions. Future research should study and
build a monitoring method for the technology’s perfor-
mance. Nonetheless, current test negativity rate-estimated
freed-up resources would widely compensate for FP
rechecking.

Finally, it should be noted that while previous studies
established the efficacy and efficiency of tools similar to the
one being validated through this study [32, 33], the feasi-
bility of deploying this type of system in the clinical setting
had yet to be demonstrated [10, 39]. Due to a combination
of clinical and research efforts, this study has shown how an
automated tool might be integrated with an existing
healthcare system, representing a milestone of collaboration
and technological development that can be expected to
meaningfully improve Chilean public health. This clinical
validation illustrates the potential benefits of AI in addres-
sing global health challenges, providing an example that
might be replicated in other developing countries.

Summary

What was known before

● Interventions on patients with diabetes: there is a need
for more cost-effective interventions to screen diabetic
patients for DR—Technology and methods for
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validation: artificial intelligence-based systems can
achieve great precision in DR detection (in controlled
settings).

What this study adds

● Technology and methods for validation: the study
reports evidence of an artificial intelligence-based
screening tool validated in a clinical setting—Interven-
tions on patients with diabetes: the study reports
evidence of validation in a clinical setting agreed with
a national health system for its deployment.
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