
1.  Introduction
The study of the solar wind-magnetosphere-ionosphere (SWMI) coupled system has become a relevant 
subject of wide interest, not only because of its scientific repercussions, but also for its application in space 
weather forecasts (e.g., Bala & Reiff, 2018; Camporeale, 2019; Hapgood, 2018). As such, constructing mod-
els that are able to describe certain characterizations of the SWMI system in a robust manner can have 
important social and economical consequences for our countries, and the world in general, since space 
weather can affect a number of human activities such as mining, natural disaster management, remote 
communications, precise farming, aircraft traffic communication, power grid management, and so on (e.g., 
Council, 2008; Hapgood, 2018).

It is well known that the Sun activity can affect the Earth magnetosphere and ionosphere (Gosling, 1993). 
This can be quickly realized by observing the simultaneous evolution of a number of solar wind parameters 
and magnetospheric indices that are used to monitor the magnetospheric and ionospheric activity. For ex-
ample, the Disturbance Storm-Time (Dst) index is used to describe the horizontal magnetic field variations 
close to the magnetic equator. Hourly Dst indices since 1957 have been derived by Sugiura (1964), and more 
recently, they are available, in real-time, at the World Data Center in Kyoto in Japan. The Dst is likely the 
most studied index in relation to geomagnetic storms, for example, Burton et al. (1975) constructed a linear 
evolution model driven by the solar wind VBs and dynamic pressure P. Here V is the bulk ion velocity, Bs is 
the southward component of the interplanetary magnetic field. Further studies and discussions suggested 
that the Dst evolution may be nonlinear (Valdivia et al., 1996; Vassiliadis et al., 1999) and that more magne-
tospheric and solar wind variables should be considered to represent storm time space-weather phenomena 
(Borovsky, 2020; Borovsky & Shprits, 2017).

Similarly, the upper AU and lower AL auroral indices, representing the envelopes of the magnetic fields 
variations taken from around 12 high latitude geomagnetic observatories (Davis & Sugiura, 1966), provide 
complementary information about a different region of the SWMI system. There has been a number of 
studies that strongly suggest that the solar wind driven dynamics of AL and AU are nonlinear (Bargatze 
et al., 1985; Vassiliadis et al., 1995, 2000).

Furthermore, a system science approach very quickly reveals that there are complex interactions among the 
different regions of the magnetosphere and the solar wind (Borovsky & Valdivia, 2018). Hence, the inherent 
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complexity of the SWMI system (Consolini et al., 2018; Donner et al., 2019; Valdivia et al., 2005, 2013), 
demands the development of models and techniques to account for these interactions in a robust manner.

This is becoming particularly true as we are increasingly relying on artificial intelligence models to try to ac-
count for such complex behavior (Bortnik et al., 2018; Jawad et al., 2019). However, when developing robust 
models, it is not enough to just train a neural net with a large number of variables since, given the complex 
and nonlinear nature of the system, the model will probably not work as efficient on a set of events that is 
different from the training set. Some variables that do not actually contribute to the prediction can produce 
an inaccurate model that does not generalize well and that finally deteriorates the prediction. These com-
plications of overfitting becomes even more relevant as the magnetospheric system is a high dimensional 
system that seems to evolve in a low dimensional attractor (Valdivia et al., 1996) so that these models should 
represent, to some approximation, the robust dynamics of the system. Hence, a robust multivariate nonlin-
ear system science description, that for example includes the coupling of these three geomagnetic indices 
(GI) and with solar wind drivers (Borovsky & Denton, 2018; Valdivia et al., 1999) can further our under-
standing of these interactions and their time scales (Adhikari et al., 2019), and could pave the way to robust 
Space Weather applications. This is what we are going to start analyzing in this manuscript. So that, for sim-
plicity, we will study the three above described GI (Dstt, ALt, and AUt) and search for the robust solar wind 
variables (SWV), and their possible time delays, that drive the magnetosphere response as characterized by 
these three indices. In our study we will consider data with an hour time scale and let faster variation to 
future work. We have chosen these variables because they are widely used by the scientific community and 
therefore the results can be compared with other studies. Additionally, at an hour time resolutions we don't 
need to worry too much about solar wind propagation issues. In a future manuscript we plan to study spatial 
data from individual stations and with a higher time resolution, which could improve the spatial biases due 
to non-uniform spatial sampling.

As a model reconstruction, we will use Neural Networks (NN) because they have demonstrated to be a pow-
erful machine learning tool capable of performing complex tasks (Abiodun et al., 2018). NN have already 
been used to forecast the Dst index (Gruet et al., 2018; Lazzus et al., 2017) showing that it has a high self 
correlation with the immediate past measurements, therefore, the NN will include the Dst index at time t 
as part of the NN variables. The same will be done for the other magnetospheric indices that we are con-
sidering here.

A huge advantage of NN is their capability to build functions that can be highly nonlinear and that property 
is the one we want to exploit in the present study. The counterpart is that once they are trained, they are a 
black box which parameters remain meaningless to humans. We are therefore strongly limited to extract 
valuable physical information from what they could have “learned.” Furthermore, it is very common that 
their predictability could be quite high in the training set through overfitting, but not as good in out-of-
sample forecasting of other events. There are a number of interesting strategies that have been used to try to 
avoid these issues, for example the k-fold cross-validation​ (Zhelavskaya et al., 2017). Here we are taking an 
alternative, and complementary approach.

Hence, in the present manuscript we propose a method that quantifies the robustness of a solar wind varia-
ble as the degradation of the predictability of the trained model when such a variable is perturbed trying to 
forecast a different testing set of events. The most sensitive or robust variables, are those which produce the 
largest error when perturbed over the testing set.

In the present study we address the model construction in two ways. First we consider a short term predic-
tion that uses the selected solar wind variables, and their delays, at a particular moment in order to predict 
the geomagnetic indices for the next hour, which we call one step forecasting. The second way is to use the 
one step prediction model to forecast the GI for a longer time interval, using the selected SWV, and their 
time delays, and reinserting the predicted geomagnetic indices in the model, which we will call iterated 
forecasting.

In order to simulate real-time forecasting, we use the iterated forecasting, since we note that some of these 
indices are not easily accessible in real time or are available only part of the time.
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If successful, our approach would provide a strong indication that the selected robust inputs drive the signal 
and brings information about the physics of the system. This information could be used as a complementary 
approach to test, validate, and optimize forecasting models of the magnetospheric response to solar wind 
input, and in general of any driven complex system under study. For example, predictions of the Dst index 
are provided by many services like the Space Weather Center Prediction, or www.spaceweatherlive.com. 
Their short term accuracy could be tested, improved, and optimized by following our strategy to find robust 
modes of interaction. Additionally, since our strategy of constructing these forecasting models is quite dif-
ferent from the standard ones, it is always useful to provide an alternative forecast, specially during periods 
where real-time Dst may not be available. The same can be said about AL and AU, which are usually not 
easily available in real time.

It is important to mention that there are other methods, some of them based on information theory, that 
have been used to try to ascertain the dependencies and the directed/undirected couplings among the mag-
netospheric and solar wind variables. For example, (Runge et al., 2018) found, using an information theo-
retical method for input-output systems, that the solar wind Bz was a relevant driver of AL and SYM (a high 
resolution version of Dst). Similarly, Wing et al. (2016) applied an information transfer technique to find the 
solar wind variables that affect the outer radiation belt. As suggested by Balasis et al. (2013) (and references 
therein), entropy-based measures seem to be able to identify and quantify the linear and nonlinear inter-de-
pendencies between different geophysical variables, variability at different scales, and other characteristics. 
Our method complements these strategies, as is able to discover and quantify the dependencies and the 
directed/undirected couplings among variables, but using the same methodology, neural nets in our case, 
that can then be applied to construct forecast based on the results. Of course, our strategy to find the robust 
variables can be used for any other linear and nonlinear models. Given the nonlinearity and complexity of 
these systems, sounds reasonable to use the same methodology that is used for forecasting, being linear or 
nonlinear, to ascertain the robust variables and couplings in a sort of self-consistent approach.

2.  Data Description
The values of the Dst index are provided hourly from year 1957 to the present at the World Data Center for 
Geomagnetism in Kyoto (http://wdc.kugi.kyoto-u.ac.jp/dstdir/index.html [Masahito et al., 2015]). No value 
is missing since 1957, thus no signal reconstruction is needed. We will then use the hourly resolution in 
all the study. Data of interplanetary medium and the AU and AL indices where retrieved from the OMNI 
database provided by the National Aeronautic and Spatial Agency (ftp://spdf.gsfc.nasa.gov/pub/data/omni/
high_res_omni/ [King & Papitashvili, 2005]). The oldest available data in OMNI is from 1963 but with an 
average data rate lower than 20% which is too sporadic for our purposes. From year 1995 the data rate im-
proved significantly thanks to the Wind and ACE satellites commissioning.

OMNI data are provided with a resolution of one minute but are not continuous. Since Dst is provided 
hourly, we choose to perform this study using a resolution of one hour, therefore OMNI data need to be 
transformed to 1 h sampling. Values are taken when the UTC minute is equal to zero and will be calculated 
as the average over all available data of the 60 following minutes. Even if only one value is available during 
this hour it will be taken as the value of the corresponding hour. In case no data is provided during this in-
terval, they will be generated with by a linear interpolation from the available values. Being aware of Lock-
wood et al. (2018), we proceeded this way in order to balance these two conflicting ideas, namely to have a 
reasonable amount of data to train, test, and validate our models; or use extremely drastic filters that lead to 
insufficient data. The fact that we were able to construct a successful robust model, as described below, in 
spite of these restrictions, suggests that our choices were acceptable.

The SWV that we use from the OMNI database are the three interplanetary magnetic field (IMF) compo-
nents given in the Geocentric Solar Equatorial (GSE) coordinate system (Bx, By, Bz), the particle flow speed 
(V), the proton number density (N), the plasma temperature (T), and the proton dynamical pressure (P). It 
is worth noticing that p is not a direct measurement but it is calculated from the proton speed and density 
by P = 2 × 10−6NV2 (nPa). We can also construct composed variables that will be considered in the analysis. 
One is VBs, where Bs is the negative component of Bz, so that it is zero if Bz > 0 and Bz if Bz < 0. Sometimes, 
people prefer to write these expressions in the Geocentric Solar Magnetospheric (GSM) coordinate system, 
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but for this analysis we stay within the GSE coordinate system as a preliminary analysis with solar wind 
variables in the GSM system produces the same 6 relevant solar wind variables.

Similarly, we define   2 4 2
0sin ( / 2)A VB l , where B as the magnitude of the IMF, l0 is seven times the Earth 

radii, and the clock angle θ is tan−1(|By/Bz|) for Bz > 0 and π − tan−1(|By/Bz|) for Bz < 0. When using variables 
in the GSM coordinate system, such formula would describe the Akasofu's index.

All the used interplanetary variable are summarized in Table 1 with their units and typical values in quiet 
and disturbed times. VBs, ɛA, and P will be treated as independent variables. One might expect the NN to 
be able to find the relevant dependencies between the variables measure from the satellites, but this cannot 
be guaranteed.

Since we are interested in studying perturbations of the magnetosphere, we will concentrate on geomagnet-
ic storms intervals where the Dst index reach a peak below −100 nT. We consider the storm is over the first 
time that Dst reach Dstend > −10 nT after the peak. The beginning of the storm is taken Tb hours before the 
peak, such that Tb is 20% of the time that separates the peak to the end of the storm. Between 1995 and 2018 
we identify 97 geomagnetic storms that reach a peak below −100 nT.

In order to improve the robustness of the data we require that all the variables used during the time of the 
storm fulfill with the following criteria: (a) a maximum of five continuous hours with no data, and (b) at 
least 90% of data available during the storm interval. After applying those filters, we have a set of 64 storms 
between 1995 and 2018 that will be used for our study. It is important to mention that the set has a rea-
sonable amount of data that contains quiet conditions so that they are represented in the model, but no an 
excessive amount that would “swamp” the optimization of the neural net coefficients.

In Figure 1 we show a cartoon of how we separated the training, testing, and validation sets. The training 
sets has more events (24) than the training (20) and validation sets (20). The same occurs about the number 
of data points, for example, the testing, training, and validation sets have 3,495, 3,576, and 2,518 entries, 
respectively. Our sets were selected in terms of number of storm events regardless their duration, and more 
events are used to train them than to test them. The information about each storm in the sets is provided 
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SW signal Symbol Quiet Storm Unit

3 Magnetic field components Bx,y,z |Bx,y,z| ≤ 10 |Bx,y,z| > 10 nT

components V 300–400 >500 μVs−1

VBs parameter VBs 0 <−4,000 μVs−1

Pressure P 0–5 >5 nPa

Temperature T 104–105 >2 × 105 K

Number density N 1–10 >15 # particles/cc

ɛA parameter ɛA <1011 >1011 Watt

Table 1 
Solar Wind Variables That Are Analyzed for Their Capability to Drive the Geomagnetic Indices Considered Here. We 
Give Their Mathematical Symbol, Their Typical Values During Quiet and Active Periods, and Their Units. To be Used for 
the Neural Net Analysis, All Variables Will be Mapped to the Range Between [0, 1], So Their Absolute Values and Units 
Will Not be Extremely Relevant in the Rest of the Development

Figure 1.  Separation of storms for training, testing, and validation sets, the first 24 storms (3,495 h between 1995 and 2001) will be used for training, the 
following 20 storms (3,576 h between 2001 and 2004) for the testing phase, and the last 20 storms (2518 h between 2004 and 2018) for the validation step.
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in the Appendix A1, A2, A3. We note that we have a small number of very strong storms (e.g., <−200 nT), 
which may cause a problem with testing, training, and validation. One possibility, that we plan to analyze in 
the future, is to renormalize the errors by considering the distribution of Dst values, which would give more 
relevance, in some sense, of the rarer Dst values.

Hourly sampled data are available in csv format at https://ccc.ciencias.uchile.cl/climaespacial/storms_non_
linear_data. Figures of each variable during each storm used in this study are also thoroughly provided.

3.  Analysis
The 64 selected storms are split in training, testing, and validation sets as described in Figure 1. In order to 
train and test our NN we use the Keras library under python. All data are scaled with the MinMaxScaler 
from the python sklearn library.

For the training phase we use the default Keras binary cross entropy loss function defined as:


       1

1 ln (1 )ln(1 ) ,
Nout

L L
j j j j

j
C y y y y

N
�

where Nout corresponds to the number of outputs of the NN, yj are the normalized data values, ˆ jy  are the 
normalized output predicted by the NN. This function is non-negative and converge to zero when ˆ jy  gets 
closer to yj. The minimization if performed with the Keras adam optimizer.

All our NN have three hidden layers of 100 neurons activated with a sigmoid function. This allows us to 
describe a reasonably complex evolution function, given by

 1 ( , ),t t tNN G IG� (1)

which gives us the value of the GI at t + 1 from information at previous times. From now on, the bar on 
top of a variable means it is generated by the NN model. Here Gt corresponds to the magnetospheric vector

 ( , , ),t t t tDst AU ALG�

while It corresponds to a set of solar wind drivers, possibly at different time delays, namely

  1, 1, , ,( ,···, ,···, ,···, ),t t t m n t n t mi iI I I II�

where In,t is the nth solar wind driver at time t. The nine solar wind drivers are described in Table 1 and we 
will study their capability to robustly drive Gt. In our study we will take, at most, mi = m = 10 for all solar 
wind drivers, so that we will be able to check the influence of each solar wind driver on the magnetospheric 
variables up to 10 h in the past. Our models, that have the structure shown in Figure 2 as given by Equa-
tion 1, are one step ahead of time forecasters, in the sense that they use previous solar wind and magneto-
spheric data (up to time t) to produce a prediction of the magnetospheric variables one step forward in time 
(at t + 1). These NNs models are trained by iteratively changing their coefficients (that defines the model) 
that so that it lowers the Keras binary cross entropy loss function averaged over the whole training set. The 
loss function is evaluated over the predicted magnetospheric indexes. In order to reduce the over fitting, the 
process is stopped when we reach a minimum value of the Keras binary cross entropy loss function aver-
aged over the testing set. Hence, it reduces the over fitting because the coefficients are changed in relation 
to the training set, and the process is stopped when it reaches a minimum when evaluated in the testing set.

One of the difficulties of training NNs with real data is the existence of multiple solutions that can be found 
by the algorithm. The minimizing process can stabilize around a bad local minimum, missing a more opti-
mal solution. Therefore, we train 40 NNs with the same structure and variables, but with different seeds for 
their coefficients that may converge to different minima using the above procedure. We then keep the one 
with the lowest Keras binary cross entropy loss function averaged over the testing set.

In order to evaluate our models, we compare it to the toy model  1
p
t tGG  that we call persistence model. 

For the testing and validation phases we compute the unitless mean absolute error (MAE) of a particular 
geomagnetic index Xt, normalized by the error calculated in the persistence model, namely,
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 
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The advantage of this measure is that it provides a direct comparison with the persistence model, but it 
also gives equal relevance to all the GI when we add the MAE for the three of them. Hence, it gives equal 
relevance to each storm independently of their magnitude and fluctuations. In addition, the optimization 
strategy we use in Keras requires selecting a random subsample of the training set in every optimization 
step to avoid falling into a set of coefficients that represent a particular time dependence pattern or storm.

In order to evaluate the contribution of a particular solar wind driver, with a particular time delay τ, we 
will add to it a Gaussian noise centered in zero and with an increasing standard deviation σ, such that the 
particular solar wind driver is now given by 

     ,
, ,

i
i t i t tI I . All the other variables are not perturbed. 

Here, σ will vary from 0% to 100% of the difference between the maximum and the minimum values ob-
tained in the particular solar driver signal during the tested storm interval. If the NN is well trained, the 
noise introduced to this variable at the particular time delay is expected to degrade the prediction, so that, 
the higher the value of σ, the higher the value of ϵMAE should be. This will be called the noised input meth-
od. This analysis is done to demonstrate that ϵMAE grows with sigma, and that for the robust variables this 
growth is largest. To determine the robust variables, we will simply generate a surrogate of the solar wind 
variables by shuffling it. This should be equivalent to a σ = 1 noised input. This analysis is then repeated by 
perturbing another solar wind driver and/or time delay. We expect that the most robust solar wind drivers, 
at a particular time delay, are the ones that are most sensitive to the perturbation giving the largest error. 
Here we report the normalized MAE as ϵ(σ)/ϵ(0) − 1 for each of the geomagnetic indices.

Therefore, we start by training a NN that contains the last measurement at time t of the GI and only one 
solar wind driver Ii,t using the above training procedure. We then perturb the same solar wind driver over 
the testing set, and observe its sensitivity with σ. We repeat the procedure for the other solar wind drivers, 
as shown in Figures 3a–3c for the storm of March 2001 that reached a peak value of −149 nT for the Dst 
index. VBs has already proven to be a good driver for Dst (KAMIDE, 1992), a empirical expression linking 
the Akasofu's parameter with the AE index has been proposed by Akasofu (1981). In this step of the study, 
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Figure 2.  Input/Output variables used to train and test the NN in the case of a single solar wind driver (n = 1). The 
general case with multiple solar wind drivers follows the same pattern. Note that the magnetospheric variables in the 
evolution model are considered, for simplicity, only at the previous time t. This will be generalized in a future work.
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combination of solar wind variables is not considered in the entry of the NN, thus VBs, ɛA, and P are treated 
as independent variables.

For each trained NN that corresponds to a particular solar wind driver, the testing phase is repeated 50 times 
for each σ and we keep the average of the obtained error. Since the error is centered, all the curves begin at 
0 for σ = 0. The solar wind driver is associated with one error per geomagnetic index. With this procedure, 
we expect to gain information on the correlation of the disturbed solar wind driver and its capability to 
predict Gt.

We note that Bz and VBs are consistently the most sensitive variables for the prediction of these 3 GI, which 
we will denote them the robust solar wind variables. For example, when the perturbations is of the size of 
the signal for Dst, meaning with σ = 1 the error is multiplied by nine in the case of Bz and above six for VBs, 
while the other drivers show a much lower perturbation when the noise increases. For the AL index, the 
effect is lower but still present, and Bz and VBs remain by far the most sensitive solar wind drivers. Although 
in the case of AU the error does not reach more than 100% from the clean input for any of the solar wind 
drivers, still Bz and VBs show up as relevant. Of course, for AU other variables could also be relevant such as 
density. Hence, we obtain an error for each geomagnetic index given a value of σ that informs us about the 
global robustness of the solar wind driver in the NN, and therefore, about the global robustness of this solar 
wind driver to predict Gt. Let us note that the strategy we are using to determine the robust solar wind vari-
ables may at first sight seem counter intuitive, since we are not trying to minimize an error, but to maximize 
it. But after subsequent consideration, we hope it becomes more clear.
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Figure 3.  Evolution of the normalized MAE for each of the geomagnetic indices (a) Dst, (b) AL, and (c) AU with the 
amplitude of the noise σ during the storm of March 2001. The Bz and VBs signals are consistently the most sensitive 
solar wind variables to the variation of σ while the others are not giving any strong evidence of contribution to the 
prediction. MAE, mean absolute error.
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In order to provide a more general conclusion we repeat the experiment 50 times with σ = 1 for each storm. 
We show the average error over all the storms for each geomagnetic index and solar wind driver in Figure 4. 
For a given magnetospheric index and solar wind driver we have a bin that represents how perturbed is the 
error when the input is noised, therefore, telling us about its contribution to the forecast. We also give an 
error range in order to observe how much it varies among the 50 surrogate tests. If this bar is small in com-
parison to the average height, the contribution of the entry is considered significant. If the bar is compatible 
with 0, we can conclude that the apparent contribution of the driver could come from a statistical fluctu-
ation and is globally not contributing to the prediction. A global overview shows that the Dst index is the 
most sensitive to the solar wind drivers since the error is clearly higher than AU or AL. AU is not convincing 
in its sensitivity to the solar wind drivers, only Bz has a result not compatible with zero. From the point of 
view of the solar wind variables, we see again that Bz and VBs are picked up by strategy as the most relevant 
solar wind variables to forecast the geomagnetic indices. The Bx and ɛA variables do not bring significant 
information to the prediction while the error produced by By, V, N, T, and P is quite reduced compared with 
the first two variables Bz and VBs.

From now on, instead of adding an error to the signal we randomize the order of the solar wind driver time 
series for a particular storm (a surrogate). Using this randomization input method, we can look deeper 
inside the solar wind drivers. We are not only interested in identifying the solar wind variable that could 
contribute to predict the geomagnetic indices, but also at which time t − τ they should be taken to make a 
robust prediction. In order to find the most relevant solar wind components at a particular time delay Ii,t−τ 
that affect the GI, we test the selected NN for each SWV at a particular time delay and repeat the surrogate 
randomizing procedure outlined above only to the entry corresponding specifically to the time delay of the 
SWV we are testing, while the other entries are left unchanged from the original signal.

Again, we expect that the most relevant components are the ones that should degrade the prediction the 
most. This procedure will produce one global associated error ϵs for each solar wind driver, at each time 
delay, of each geomagnetic index and each storm. In order to evaluate each entry, the error is normalized 
by the error obtained when the entry is not perturbed and we subtract 1 to this ratio. Hence, it will give us 
clues about which solar wind drivers and delays should be used to construct a robust NN prediction model.

In Figures 5a–5c, we show the variation of the normalized and centered MAE produced by each component 
of each solar wind driver up to 10 h before the last available measurement for each geomagnetic index. We 
note that only a few solar wind variables, at particular time delays, are robust variables. Figure 5d displays 
the sum of the MAE for the three geomagnetic indices, providing a global descriptor of the robust solar 
wind drivers for this coupled system. The sum done is over the normalized MAE, therefore, in some sense 
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Figure 4.  Summary of the response of each trained NN to the perturbed solar wind driver over all the storms in the 
testing set. The standard deviation of the error is also shown. We use 50 surrogates for each storm and solar wind driver. 
The most sensitive parameters are clearly Bz and VBs.
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we give equal footing to the three variables. Of course in the future we could consider to use other norms 
and some re-scaled measures, which could improve the forecasts. We consider that a component contrib-
utes to the prediction (i.e., is robust) when it reaches 10% of the maximum value obtained in the matrix. For 
Dst, Bz is contributing up to 3 h before the last measurement while VBs only 2 h. Some delayed components 
of the speed signal also seem to bring a significant contribution to the prediction. For AU, it looks that many 
components are turned on given the very low maximum, however, we can highlight the most important 
components being the immediate measurements of Bz, V, and VBs. Finally, AL has five components turned 
on, where again the last value of Bz and VBs seem to be the best contributors. The global sum of the errors, 
shown in Figure 5d, highlight 6 SW values which will be considered for our final robust model, that has 
nine entries. They are the three previous values of Bz, the last value of V, and the two last values of VBs, in 
addition to the last values of Dst, AL, and AU.

Once we have determined which are the most relevant solar wind drivers, at particular time delays, that 
drive the coupled geomagnetic indices, we train a robust NN replacing It by a vector containing those 6 
components. Hence, we now retrain our NN with the global entry containing the same geomagnetic indices 
but with the six outstanding solar wind inputs of Figure 5d. In parallel we build a multilinear regression 
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Figure 5.  Summary of the response of the trained NNs to the randomization for each solar wind driver at each time delay τ considered in the entry The color 
bars correspond to the normalized and centered ϵMAE/ϵσ=0 − 1. We show (a) Dst, (b) AL, (c) AU, and (d) Sum of the previous three.
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model using the same entries for comparison. This is done with the LinearRegression under the sklearn 
python library. This model will then take 27 parameters, meaning 6 SWVs plus 3 GI for each of the three 
output variables.

As a matter of testing, we also want to use iterated predictions for the NN and linear model, meaning that 
they have to use the geomagnetic values they predicted tG  in the previous time step to produce the next 
predicted value, namely,

  
1 ( , ),t t tNNG G I� (3)

where      1 2 0 0 1( , , , , , )t t t t t t
t z z z s sB B B V VB VBI  corresponding to the subset of 6 robust variables that are used 

as drivers of the neural net. Such approach may be useful for real time forecasts when only solar wind 
variables are available. One would naturally expect that the iterated predictions are less accurate than the 
one step predictions, that uses previously measured Gt values to drive the neural net. However, it becomes 
relevant to compare these results with an equivalent model that does not consider the robustness of the 
variables. Therefore, as a way to compare, we construct NN and linear models using the 11 last meas-
urements of the best driver Bz (left column of Figure 5d), in other words, Equations 1 and 3 run using 

    1 10( , , , )t t t
t t z z zI I B B B . Note that the first time delay of each 3 GI is always present in the entry, Gt for 

one step forecasts and tG  for iterated prediction. In Figure 6a we plot the results over the validation set for 
the globally robust NN, while in Figure 6b we show the results of the NN and linear models that use only 
the Bz driver at all-time delays and the 3 GI (11 + 3 inputs to the neural net). Each bin represents the nor-
malized-by-persistence MAE (see Equation 2) for each geomagnetic index with a deviation bar for the 20 
storms of the validation set.

In the case of one step forecasting of the robust model, although existent, the improvement does not look 
significantly different for both linear and NN models, but when we do iterated predictions the results be-
comes much more interesting. The prediction of Dst by the globally robust NN model are 38% (14.3% for AL, 
and 17.0% for AU) better than the linear model.

When comparing both robust and Bz-based nonlinear NN models, we find that for Dst and AU the iterated 
globally robust forecast show a global improvement of 12.7% and 8.7%, respectively, as compared with the 
Bz-based model. In the case of AL we obtain no improvement. Note that we have used six solar wind entries 
for the robust model, compared with the 11 solar wind entries of the Bz-based model. If we reduce the Bz-
based model to only just the first six time delays, the difference is clearer with respect to the robust model.

Figure 7 shows the one step and iterated globally robust model forecasting during the storm of May 2013 
that reached a Dst minimum of −113 nT. In the left panel we show the predictions for the globally robust 
NN and linear models and in the right panel we have results corresponding to the Bz-based models. The 
given numbers in the legend correspond to the bare MAE without normalization, and the errors of the 
different models (and one step vs. iterated) normalized to the persistence. The one step predictions show 
improvements from the Bz based model, for example Dst one step forecasting is improved by 23.8% when 
comparing the NN models. When looking at the iterated prediction, the globally robust model improves 
the Dst iterated prediction by 10.5% in this particular case. On the other hand, we highlight the significant 
improvement of 40.1% in error between the linear and NN robust models in this storm.

4.  Conclusions
The proposed approach is founded in three points that began to be analyzed in this paper, but of course 
there remain a number of issues and possibilities that will be studied in future work.

First, we designed a successful strategy, as demonstrated for example in improved forecasts, to find the ro-
bust variables that reduce overfitting and determine the evolution of a system. This method is based on the 
same modeling representation used to produce the forecasts in order to keep self consistency in the model 
representation of the system. This is useful for the magnetosphere, as we realize that it is a high dimen-
sional driven dissipative complex system, and any lower dimensional model representation should avoid 
non-relevant variables. The approach can be used to improve linear and nonlinear models, as shown in the 
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manuscript, and complements other strategies that look for the coupling among variables, such as the ones 
based on entropy measures.

Second, the study focused on finding the robust solar wind variables that contribute to the evolution and 
prediction of GI based on a neural net model to represent nonlinear inter-dependencies of the variables. 
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Figure 6.  Mean absolute error (MAE) normalized by the persistence error in each storm, and average over all storms, 
for the (a) globally robust model, and (b) the model using the 11 last hours of Bz. We compare the NN versus a linear 
model using the same entries for one step and iterated predictions. The results are normalized with the error of 
the persistence. Hence, the iterated forecasts using the nonlinear global robust model is an improvement from the 
equivalent model that uses only Bz variables up to 10 time delays, despite the fact that the later have a larger number of 
SW inputs (11 vs. 6). Remember that all models (linear and NN) include as additional input variables the 3 GI variables 
at the previous time (e.g., Dstt, ALt, and AUt), as described by Equation 1.
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The robust model was able to reduce the forecasting errors compared with linear and nonlinear models that 
consider some non-robust variables.

And, third, the approach can be used as a method of system science discovery to help to determine the 
relevant drivers and couplings of variables representing different systems and subsystems. For example, it 
becomes of interest to quantitatively determine, in a robust fashion, the contribution of a particular variable 
to the evolution of the system or subsystem considered. In this case we note that only a few solar wind var-
iables, with particular time dependencies, affect the evolution of the GI in a robust manner. This suggests 
a future course of study to try to understand the physical foundations of such solar wind—magnetospheric 
couplings.

We now expand on some additional details that may contribute to the discussion:

We have considered a coupled model of the GI as suggested by previous work (Akasofu,  2020; Runge 
et al., 2018), and the proposal of Borovsky and Valdivia (2018) that the magnetosphere is a complex system, 
with a number of coupled subsystems. Hence, it makes sense to look for models that involve more than one 
region (different indexes). For simplicity, the interaction is taken through their values at the previous time, 
leaving the consideration of robust couplings by additional time delays of the GI for a future manuscript. 
Therefore, our strategy could be used to extract information about the storm-substorm interaction, with or 
without the consideration of the solar wind variables, a work that is already in progress.

Our strategy has picked the most robust solar wind parameters, as additional terms do not provide a signifi-
cant improvement in the error over this robust, and reduced, model. In addition, this robust model performs 
better than a model with more variables but that is constructed only with Bz at different delay times. It is 
interesting to note that in the robust model we see V(t), Bz(t), and VBs(t), but no other combinations (e.g., ɛA 
does not appear). It is true, that this could happen because they share some information, although they are 
not exactly the same. In the future, we could think of strategies to orthogonalize the input variables, but in 
the NN nonlinear sense, so that we “minimize” the inclusion of partially repeated information in the input 
variables.
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Figure 7.  Forecasts of the geomagnetic indices during the storm of May 2005 for the (left) Globally robust models and (right) the Bz based models. The solid 
black line shows the data with a legend of MAE. Solid red (blue) corresponds to the one step prediction of NN (linear models). MAE, mean absolute error.
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In essence, we have studied the correlation between geomagnetic indices (Dst, AU, and AL) and interplane-
tary solar wind variables at the L1 point of the Sun-Earth system through 64 geomagnetic storms, for which 
we have simultaneous data, that occurred since 1995. The method we used is based on training Neural 
Networks and look at their capability to predict the evolution of the magnetosphere in storm periods. We 
stressed the entries of the trained Neural Networks in order to evaluate their robustness of the solar wind 
variables, at particular time delays, in the prediction of the geomagnetic indices. The magnetic z-compo-
nent of the interplanetary magnetic field and the duskward oriented component of the electric field VBz 
appeared to be the most robust drivers for the prediction since the addition of a noise to them shown a sig-
nificant degradation in their capacity to drive the geomagnetic indices. By a similar method we determined 
which of the nine solar wind variables, and particular time delays, we must consider in this analysis to give 
the best predictions of the geomagnetic indices. The entries with a time delay above three hours from the 
last measurement is found to be significantly less relevant to forecast the GI, as compared with variables 
at smaller time delays. This result may become important when considering the memory of the magneto-
sphere in processing the solar wind energy, matter, and so on.

The pressure, the ɛA parameter, the temperature, the x and y components of the magnetic field, and the par-
ticle density of the interplanetary medium do not seem to bring significant contribution to the prediction at 
this level of approximation.

Finally, we built a linear and nonlinear models based on the robust solar wind variables in their capability 
to forecast. We show that over a sample of 20 storms, the forecasting of Dst is improved by 12.7% from a 
Neural Network based only on the interplanetary z-component of the magnetic field that consider 11 time 
delays. Neural network is 38% better to predict Dst than linear models which emphasizes the highly nonlin-
ear behavior of the magnetosphere. Hence, the robust model, with only its 6 solar wind drivers, provides an 
improvement in the forecast of this simplified SWMI system representation. Of course, we could consider 
including robust magnetospheric indices at various time delays, as variables for the NN, a work that we plan 
to conduct in a future publication.

Future forecasting models of GI should strongly consider the highlighted variables and time delays as input 
of their models. This is in particular true for Dst forecasting which is widely used to describe the state of the 
magnetosphere. Of course, additional information is provided about AL and AU, which are in general hard 
to obtain in real time. A similar method can be used to highlight the driving variables of other geomagnetic 
indices, like Kp or Ap, used in web services in order to improve the reliability of the forecasts. Those results 
can be used to construct step-by-step a multivariate, robust system science, description of the magneto-
sphere evolution.

Moreover, variables that show significant contribution at several time delays can be interpreted as orders 
in differential equation that can drive the GI. Therefore, it could improve existing minimal system-science 
mathematical descriptions of the magnetosphere behavior at the 1 h time-scale. The dependency of input/
output variables with different time delays, suggest that it should be possible to re-interpret these equations 
in terms of differential equation of different order. Therefore, it may provide a hint on how to improve 
existing minimal system-science mathematical descriptions of the magnetosphere behavior. For instance 
a number of researchers have proposed improvements to Burton et al. (1975), physically based model for 
the Dst evolution using solar wind measurements (Fenrich & Luhmann, 1998; Valdivia et al., 1996). The 
present robust model suggests other variables to include in these analysis, that could provide additional 
information about the ring decay dependency on the solar wind and magnetospheric variables, memory, 
relevant drivers, and even suggest higher order differential equations forms for it. Their accuracy still need 
to be improved and including derivative orders in terms of the relevant parameters we found could be a clue 
for a better mathematical and physical description.

In terms of computational time, the code takes 3 days to train all the neural nets required for the paper 
in a single multicore computer, however it can be parallelized extensively which would reduce this time 
considerably.

Therefore, these type of techniques can be used to find the relevant drivers in other non-linear systems, 
where including too many variables in the NNs may be dangerous if we intend to produce robust forecasts. 
We plan to introduce other magnetospheric indices in a larger version of the SWMI system representation.
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Hours before peak Date peak Hours after peak Climax (nT)

1 35 September 27, 1995 21:00:00 80 −108

2 8 October 19, 1995 00:00:00 19 −127

3 110 October 11, 1997 04:00:00 128 −130

4 16 November 7, 1997 05:00:00 54 −110

5 46 November 23, 1997 07:00:00 112 −108

6 27 February 18, 1998 01:00:00 81 −100

7 49 March 10, 1998 21:00:00 211 −116

8 11 June 26, 1998 05:00:00 34 −101

9 25 August 12, 1998 12:00:00 77 −138

10 61 August 27, 1998 10:00:00 171 −155

11 33 September 25, 1998 10:00:00 115 −207

12 52 October 19, 1998 16:00:00 182 −112

13 44 November 8, 1998 07:00:00 107 −149

14 34 January 14, 1999 00:00:00 98 −112

15 24 February 18, 1999 10:00:00 85 −123

16 17 September 23, 1999 00:00:00 69 −173

17 51 October 22, 1999 07:00:00 216 −237

18 37 April 7, 2000 01:00:00 137 −292

19 33 May 24, 2000 09:00:00 123 −147

20 27 September 18, 2000 00:00:00 117 −201

21 113 October 5, 2000 14:00:00 95 −181

22 42 October 14, 200015:00:00 67 −106

23 27 October 29, 2000 04:00:00 108 −126

24 48 November 6, 2000 22:00:00 36 −159

Table A1 
List of Storms in the Training Set

Hours before pic Date pic Hours after pic Climax (nT)

1 39 March 20, 2001 14:00:00 47 −149

2 24 March 31, 2001 09:00:00 96 −387

3 38 April 12, 2001 00:00:00 145 −271

4 28 April 22, 2001 16:00:00 63 −102

5 12 August 17, 2001 22:00:00 36 −105

6 28 March 24, 2002 10:00:00 39 −100

Table A2 
List of Storms in the Testing Set

Appendix A:  Detail on Storms
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Data Availability Statement
We kindly thank the World Data Center for Geomagnetism, to provide openly data of the Dst geomagnetic 
index used in this study (http://wdc.kugi.kyoto-u.ac.jp/dstdir/index.html). We also acknowledge N. Papi-
tashvili and J. King at the National Space Science Data Center of the Goddard Space Flight Center for the 
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Table A2 
Continued

Hours before pic Date pic Hours after pic Climax (nT)

7 96 April 20, 2002 09:00:00 68 −149

8 15 May 11, 2002 20:00:00 42 −110

9 22 August 2, 2002 06:00:00 77 −102

10 78 August 21, 2002 07:00:00 58 −106

11 152 September 8, 2002 01:00:00 197 −181

12 136 October 11, 2002 17:00:00 488 −176

13 35 November 21, 2002 11:00:00 130 −128

14 126 May 30, 2003 00:00:00 169  −144

15 96 June 18, 2003 10:00:00 194   −141

16 42 July 12, 2003 06:00:00 54 −105

17 73 August 18, 2003 16:00:00 241 −148

18 51 November 20, 2003 21:00:00 156 −422

19 32 January 22, 2004 14:00:00 121 −130

20 14 April 4, 2004 01:00:00 18 −117

Table A3 
List of Storms in the Validation Set

Hours before pic Date pic Hours after pic Climax (nT)

1 124 July 27, 2004 14:00:00 185 −170

2 35 August 30, 2004 23:00:00 77 −129

3 26 May 15, 2005 09:00:00 114 −247

4 32 May 30, 2005 14:00:00 71 −113

5 16 June 13, 2005 01:00:00 41 −106

6 30 August 24, 2005 12:00:00 136 −184

7 35 August 6, 2011 04:00:00 136 −115

8 37 March 9, 2012 09:00:00 72 −145

9 28 April 24, 2012 05:00:00 83 −120

10 39 July 15, 2012 17:00:00 108 −139

11 32 October 1, 2012 05:00:00 78 −122

12 58 October 9, 2012 09:00:00 63 −109

13 28 November 14, 2012 08:00:00 65 −108

14 25 June 1, 2013 09:00:00 85 −124

15 50 June 29, 2013 07:00:00 88 −102

16 64 October 7, 2015 23:00:00 202 −124

17 33 December 20, 2015 23:00:00 61 −155

18 21 January 1, 2016 01:00:00 35 −110

19 28 October 14, 2016 00:00:00 38 −104

20 15 May 28, 2017 08:00:00 24 −125

http://wdc.kugi.kyoto-u.ac.jp/dstdir/index.html
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use of 1 min OMNI data and the NASA CDAWeb team for making these data available (ftp://spdf.gsfc.nasa.
gov/pub/data/omni/high_res_omni/).
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