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%e vibrational behavior of composite structures has been demonstrated as a useful feature for identifying debonding damage.%e
precision of the damage localization can be greatly improved by the addition of more measuring points. %erefore, full-field
vibration measurements, such as those obtained using high-speed digital image correlation (DIC) techniques, are particularly
useful. In this study, deep learning techniques, which have demonstrated excellent performance in image classification and
segmentation, are incorporated into a novel approach for assessing damage in composite structures. %is article presents a
damage-assessment algorithm for composite sandwich structures that uses full-field vibration mode shapes and deep learning.
First, the vibration mode shapes are identified using high-speed 3D DIC measurements. %en, Gaussian process regression is
implemented to estimate the mode shape curvatures, and a baseline-free gapped smoothing method is applied to compute the
damage images. %e damage indices, which are represented as grayscale images, are processed using a convolutional-neural-
network-based algorithm to automatically identify damaged regions.%e proposed methodology is validated using numerical and
experimental data from a composite sandwich panel with different damage configurations.

1. Introduction

%e vibration characteristics of composite structures are
sensitive to debonding. In particular, mode shape curvatures
are extensively used to identify debonding regions in
composite materials [1–4], and a greater damage localization
accuracy is achieved as the number of measured degrees of
freedom (DOFs) increases [1]. However, the number of
DOFs that can be acquired simultaneously is largely re-
stricted in conventional vibration measurement techniques.
To overcome this limitation, high-speed digital image cor-
relation (DIC) techniques have been implemented for full-
field vibration measurements and damage assessment [3–5].

In general, the damage can be identified by examining
the changes in the modes of the damaged structure with
respect to the undamaged modes. However, modes from
the damaged structures cannot always be matched to a

corresponding “baseline” mode in the undamaged struc-
ture. %is has driven the development of baseline-free
damage-assessment algorithms, which include gapped
smoothing (GS) [2, 6, 7] and wavelet-based [8] methods. In
wavelet-based methods, a continuous or discrete wavelet
transform is used to detect abrupt changes in the mode
shape displacements or curvatures, which are related to
damage. However, the accuracy of these methods is par-
ticularly sensitive to the family and order of the wavelets
selected [9]. %e GS method was initially proposed by
Ratcliffe and Bagaria [6], who assumed that the undamaged
mode shapes can be estimated using a smoothed version of
the damaged mode shapes. %en, the damage indices are
computed from the difference between the shapes of the
undamaged and damaged curvature modes. %is method
has proven to be useful in different damage detection and
localization applications, such as damage identification in
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beams [10], beam-like structures [11], and plate-like
structures [2, 4, 7, 12]. Yoon et al. [7] implemented the GS
method with mode shape curvatures to assess damage in
plate-like structures under the assumption that stiffness
reductions are related to damage. %eir method was suc-
cessful in identifying delamination in experimental com-
posite panels. Qiao et al. [2] investigated the application of
three damage-assessment methodologies in composite
laminates: the generalized fractal dimension, strain energy
method, and GS. %e experimental and numerical data of a
composite panel with delamination were used to validate
the proposed approach.%e experimental panel was excited
using lead-zirconate-titanate actuators, and the vibratory
response was captured using a scanning laser vibrometer
with polyvinylidene fluoride sensors. In this case, the best
results were obtained using the GS method. A principle
similar to that of the GS method was used by Rucevskis
et al. [12] to detect damage in plates. In their imple-
mentation, the damage indices were formulated as the
difference between the measured mode shape curvatures of
the damaged and undamaged panels. %e undamaged
mode-shaped curvatures were estimated using a smooth
polynomial version of the damaged modes. %e algorithm
was investigated using the simulated data of a panel under
different damage scenarios, considering the damage size,
measurement noise, and sensor distribution. %en, the
experimental data of an aluminum panel with a cut as the
damage were employed to validate the approach.

Second-order displacement derivatives required to de-
termine mode shape curvatures are frequently computed
using the central difference method, which greatly amplifies
the experimental noise. Another approach to obtain de-
rivatives without noise amplification is by using Gaussian
process (GP) regression models [13], which are effective
nonparametric regression techniques [14]. Meruane et al. [4]
combined the GS method with curvature mode shapes es-
timated through GP regression. %ey demonstrated that GP
regression allows to obtain noise-free mode shape curvatures
from mode shape displacements with noise, thus improving
the damage identification results compared to those using
the conventional GS method.

Previous methods, such as wavelet-based or GSmethods,
have been implemented to calculate damage indices dis-
tributed over the surface of a structure. Given the damage
indices, the range of damage index values corresponding to
the damaged and undamaged states must be determined.
%is can be viewed as a semantic segmentation problem,
where each pixel must be classified as damaged or un-
damaged. %e most straightforward solution is to use a
statistical approach [3] under the assumption that the
damage indices in the undamaged regions follow a normal
statistical distribution. %erefore, the outliers were consid-
ered as damage indices corresponding to statistically sig-
nificant characteristics, such as damaged elements.
Alternatively, automatic thresholding techniques can be
implemented, which are frequently used for the automated
visual inspection of defects. %e valley-emphasis method has
been demonstrated to be particularly effective for damage

assessment [4]. Unlike the statistical approach, this method
automatically performs image segmentation without re-
quiring parameter tuning. Recently, the introduction of deep
learning techniques has generated tremendous progress in
semantic segmentation. In particular, convolutional neural
networks (CNNs) have obtained remarkable results for
image segmentation [15], mainly because of their structure.
%at is, a CNN extracts relevant features from the input
images in an incremental manner with no need for domain
expertise. %is allows the identification of hidden relation-
ships in the images not evident to the naked eye, in many
cases exceeding human precision. However, the application
of CNNs for the identification of delaminated regions in
composite panels has not yet been investigated.

%is article presents a novel damage-assessment algo-
rithm for composite sandwich structures based on full-field
vibrationmode shapes and deep learning. First, the vibration
mode shapes were identified from high-speed DIC dis-
placement measurements. %en, the curvature mode shapes
were computed using a GP regression, and a baseline-free
GS method was applied to compute the damage indices. %e
damage indices, which are represented as grayscale images,
were processed using a CNN-based algorithm to identify the
damaged regions automatically. %e proposed methodology
was validated using numerical and experimental data from a
composite sandwich panel under different damage scenar-
ios. Furthermore, to highlight the advantages of our ap-
proach over existing methods, the results obtained were
compared with those of a similar approach that uses an
automatic thresholding technique instead of a CNN for
image segmentation [4].

2. Estimation of Curvatures Using
GP Regression

%e use of the GS technique requires the estimation of the
curvatures of the damaged plates. %is task is generally re-
alized by applying a finite difference technique on the
identified experimental vibration mode, thus making it sus-
ceptible to noise in the vibration modes. In this study, the use
of a GP to estimate the plate’s curvature is motivated by two
main reasons: (1) GP can clean the noise from each vibration
mode and (2) offer a smooth estimation of the second de-
rivative (with the use of a squared exponential kernel).

Let us define the grid point coordinates using vector
X � [(x1, y1), (x2, y2), . . . , (xn, yn)]and the measured mode
shape displacements as ϕr � [ϕr(x1, y1), ϕr(x2, y2), . . . ,

ϕr(xn, yn)]. %e root mean square normalization is imple-
mented as follows:

φr xi, yj  � ϕr xi, yj 
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where Nx and Ny correspond to the number of grid points
in the x and y directions, respectively, and φr(xi, yj)is the
normalized rth mode shape at points (xi, yj). Because the
mode shape displacements include experimental noise, they
can be expressed as
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φr xi, yi(  � f xi, yi(  + ε, (2)

where ε represents additive Gaussian noise, with a mean of 0
and variance σ2n. %e mean mode shape displacements at
points (x∗, y∗)are predicted as

φs
r x∗, y∗(  � kT∗K

− 1ϕr, (3)

where k∗ contains the kernel values between point
(x∗, y∗)and grid points X:

k∗[i] � k x∗, y∗( , xi, yi( ( . (4)

Function k is the GP autocorrelation function. In this
study, as in [4], a squared exponential kernel with additive
noise was used:

k xi, yi( , xj, yj   � e
− (1/2) xi− xj( 

2
/s2x + yi− yj( 

2
/s2y  

+ σ2nδij,

(5)

where s2xand s2yare the length scales that define the corre-
lation between grid points, which ultimately drives the
smoothness of the mode shape. Parameter σ2naccounts for
the covariate noise and corresponds to the Kronecker delta.
%e selection of the squared exponential kernel is motivated
by the need to have a GP that could be at least twice dif-
ferentiable (to allow curvature estimation in damaged
plates). K is the kernel matrix evaluated at the grid points
and is defined as

K[i, j] � k xi, yi( , xj, yj  . (6)

%e mode shape curvatures are computed as

z
2φs

r x∗, y∗( 

zx
2 � k∗xx 

TK− 1ϕr,
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zy
2 � k∗yy 

T
K− 1ϕr.

(7)

Vectors k∗xxand k∗yycontain the second-order deriva-
tives of the autocorrelation function evaluated at points
(x∗, y∗)and grid point X. Finally, the damage-assessment
algorithm utilizes the mode shape Laplacian, which is for-
mulated as

∇2φr xi, yj  �
z
2φs

r xi, yj 

zx
2 +

z
2φs

r xi, yj 

zy
2 . (8)

3. GS Method

In the GS method, the undamaged mode shape curvatures
are calculated using a smoothed version of the damaged
mode shape curvatures (Laplacian). %e undamaged mode
shape curvatures are approximated using first-order base
functions, as follows:

∇2φr xi, yj  � gTi,jθi,j, (9)

where gi,jis a vector of base functions and θi,jdenotes its
coefficients:

gTi,j � 1, xi, yj ,

θTi,j � a0, a1, a2 .
(10)

Let us consider the neighboring points of (xi, yj); then,
(9) can be expressed in the matrix form as follows:

λr xi, yj  � GT
r xi, yj θi,j, (11)

where

λTr xi, yj  � ∇2φr xi− 1, yj− 1 ,∇2φr xi, yj− 1 ,

∇2φr xi+1, yj− 1 , . . . ,∇2φr xi+1, yj+1 ,

GT
r xi, yj  � gi− 1,j− 1, gi,j− 1,gi+1,j− 1, . . . , gi+1,j+1 .

(12)

%e coefficients are estimated using least squares
resulting in

θ
r

i,j � GT
r xi, yj Gr xi, yj  

− 1
GT

r xi, yj λr xi, yj .

(13)

%ese coefficients are used to calculate the undamaged
mode shape curvature as

Cr xi, yj  � gTi,jθ
r

i,j. (14)

%e measure of damage at point (xi, yj)is estimated by
the difference in the curvatures of the undamaged and
damaged modes, represented by damage index dr:

dr xi, yj  � ∇2φr xi, yj  − Cr xi, yj 


. (15)

Ultimately, this expression is expanded to consider the
first m modes:

d xi, yj  � 
m

r�1
dr xi, yj . (16)

4. Deep Learning and Semantic Segmentation

Deep learning models have shown excellent performance in
various tasks involving image recognition and computer
vision, such as image classification [16, 17], natural language
processing [18], and image segmentation [15]. In particular,
CNNs have been extensively used for image classification,
where the network output to an image is a class label. %is is
achieved by arranging convolutional, pooling, and fully
connected layers, as illustrated in Figure 1.

%e convolution operation utilizes weight matrix K,
denominated as a filter or kernel, to obtain feature matrix S
from input matrix A as follows:

S � A∗K, where S(i, j) � 
n


m

A(i − m, i − n) · K(m, n).

(17)
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%en, the feature matrix is added to bias matrix B, and the
activation function is employed to build the feature map H:

H � f(A∗K + B). (18)

%e convolution layer applies various kernels and biases
to the input matrix, and by operating convolutional layers
sequentially, high-level features can be extracted. Pooling
layers can then be used to reduce the number of features. For
instance, a max-pooling layer provides only the maximum
value of the next feature map within a rectangular cell.
Finally, a feed-forward neural network located at the end of
the CNN delivers the predicted class labels.

Considering the significant quantity of parameters in a
CNN, precautions must be taken to prevent overfitting or
overadjustment of the CNN to the training data. Over-
fitting results in an inadequate generalization; therefore,
the network is unable to predict unseen cases. Regulari-
zation techniques, such as dropout [19] and batch nor-
malization [20], can be implemented to prevent overfitting.
In addition, the early stopping strategy, which stops
training when the validation error begins to increase, helps
prevent overfitting.

Although the most common application of a CNN is
image classification, it has also been implemented for image
segmentation. In image segmentation, the classification is
performed pixel by pixel. Long et al. [21] were the first to
introduce a fully CNN for image segmentation, in which the
fully connected layers were replaced by convolutional layers.
%ey used interpolation layers to guarantee that the output
size equals the input size, which is essential for image
segmentation. Ronneberger et al. [22] modified this archi-
tecture to allow training with fewer images, and the pro-
posed architecture was named U-Net because of its shape, as
illustrated in Figure 2.

%eU-Net architecture is characterized by a contraction-
expansion configuration. %e contraction part is built by
arranging convolutional layers using 3× 3 kernels, rectified
linear activation functions, and pooling layers. For a certain
number of convolutional layers, max-pooling with stride 2
was implemented. %e combination of a convolutional layer
followed by max-pooling is a contraction step. In Figure 2,

each contraction step is composed of two convolutional
layers and one max-pooling layer; at each step, the number
of channels (kernels) is doubled.

In the expansive part, the pooling layers are replaced by
upsampling layers, which have the opposite purpose of
pooling layers, thereby increasing the size of the input
matrix. To increase the localization accuracy, features from
the contracting part are joined to the features in the
upsampled output. %is is represented by the segmented
lines in Figure 2. Finally, a 1× 1 convolution layer is
employed to transform the feature vectors to the required
number of classes.

5. Damage-Assessment Methodology

%e proposed damage-assessment methodology comprises
the following steps:

(1) %e experimental mode shapes are identified using a
high-speed DIC system, as described in Section 5.3.

(2) %e mode shape curvatures are estimated using a
Gaussian regression process. %e values of the length
scale parameters (s2xand s2y) and the noise variance
(σ2n)are the same as those used in [4] because the
application case is the same: sx � sy � 5dxand σ2n = 1.
As the GP is used merely to clean the noise from
vibration modes and facilitate the curvature esti-
mation, a robust selection of GP hyperparameters
(s2x, s2y, σ2n) is considered unnecessary as long as the
GP mean corresponds to the observations, i.e., no
bias is introduced (which is demonstrated in [4] by
studying the residual error). However, a new
hyperparameter selection is recommended for new
applications.

(3) Damage indices are obtained according to the pro-
cedure presented in Section 3.

(4) %e damaged regions are identified using a CNN
with a customized version of the U-Net architecture,
which is presented in Section 6.1. %e CNN was
trained using a database created using a numerical
model of the composite sandwich panel.

Feature maps

Feature maps

Output layer 

Input layer
Convolutional layer Pooling layer Fully connected layer

Figure 1: CNN architecture for image classification.
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%is methodology was applied to identify debonding
damage in an aluminum composite sandwich panel
using numerical and experimental data. An automatic
thresholding technique was used to contrast the image
segmentation results obtained with the proposed
approach.

%e intersection over union (IoU) metric, which is
widely used in image segmentation and object detection
problems [23], was employed to evaluate the segmentation.
In the damage identification problem, we have the true
damaged region of the panel and the predicted damaged
region, as illustrated in Figure 3. %e true positives (TP) are
defined as the intersection between both regions; false
negatives (FN) correspond to the actual damage that was
not detected, whereas the false positives (FP) were incor-
rectly detected damage. Considering this, the IoU metric is
calculated as

IoU �
area of overlap
area of union

�
TP

TP + FP + FN
. (19)

5.1. Application Case. An aluminum honeycomb sandwich
panel with dimensions 0.35m× 0.25m× 0.021m was used
in our case study. %e skins are made of aluminum sheets
with 0.8mm thickness and the properties listed in Table 1,
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2 × 2 max pool

2 × 2 up-conv

Convolutional layer with 3 × 3 filters + Relu

Convolutional layer with 1 × 1 filters + sigmoid

Transfer and concatenate

Figure 2: Scheme of the U-Net architecture.

Predicted

True

Figure 3: Representation of true and predicted damaged regions.

Table 1: Skin characteristics.
%ickness 0.8mm
Elastic modulus 6.9×1010 Pa
Poisson’s ratio 0.33
Density 2700 kg/m3

Table 2: Core characteristics.
Cell size 19.1mm
Foil thickness 5×10− 5m
%ickness 10mm
Density 20.8 kg/m3

Compressive strength 0.448MPa
Longitudinal shear strength (σxy) 0.345MPa
Longitudinal shear modulus (Gxy) 89.63MPa
Transversal shear strength (σyz) 0.241MPa
Transversal shear modulus (Gyz) 41.37MPa
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whereas the honeycomb core is made of aluminum with the
characteristics presented in Table 2.

Figure 4 shows the experimental panel. For DIC mea-
surements, the face of the panel was painted with a speckled
pattern. %e aluminum panel was built by bonding the skin
to the honeycomb core with an epoxy resin. To introduce
debonding damage to one of the skins, a region was in-
tentionally left without an adhesive.

%e panels were manufactured with four damage con-
figurations, as listed in Table 3, describing the summary of
the damage scenarios with the corresponding attributes,
which include circular and square debonding damage shapes
and a range of damage sizes. In the third and fourth cases,
the panel has two debonded regions, whereas the first and
second cases have one debonded region. %e normalized
damage size, which ranged from 0.07 to 0.17, is defined as the
size of the damaged region (diameter or side length) divided
by the diagonal length of the panel.

5.2. Numerical Model. %e numerical model considers the
composite panel as three layers of shell elements connected
by linear springs. %e exterior shells represent the skin, and
the interior shell represents the honeycomb core. %e
springs act as the epoxy adhesive layer; therefore, the
damaged region is represented as a zone with reduced spring
stiffness. %e model was built using the Structural Dynamics
Toolbox (SDT) [24] using MATLAB®, and the layers were
modeled with isotropic four-node shell elements (see
Figure 5).

Experimental noise is always present in mode shapes
identified from experimental data, which is why we
decided to introduce noise artificially into the numerical
mode shapes to make them similar to the experimental
ones. In particular, the noise is introduced by adding a
random sample to the mode amplitude at each grid point,
where the samples are obtained from a Gaussian dis-
tribution with zero mean and standard deviation equal to
10% of the maximum mode amplitude. A database of
3500 panels with a range of damage scenarios was

generated to train and evaluate the damage-assessment
algorithms. %e panels in the database had circular
debonded regions with normalized damage sizes ranging
between 0 and 0.25, and both the damage location and
size were defined randomly.

5.3. Experimental Setup and Measurements. Figure 6 pres-
ents the experimental setup, where the panel is sus-
pended by elastic cords while it is excited by an
electrodynamic shaker. %e panel displacements were
captured by two high-speed cameras connected to the
DIC software. %e DIC system is a Q450 high-speed DIC
system manufactured by Dantec Dynamics. %e acqui-
sition frequency was 7530 fps and the picture resolution
was 1 MP.

%e experimental mode shapes are identified according
to the following procedure:

(1) First, the natural frequencies of the panel are
identified by an impact test

(2) %e shaker is configured to vibrate with a sinusoidal
signal at the natural frequency

(3) %e panel vibration is recorded with the cameras,
and the displacements are calculated using the DIC
software

(4) %e displacements are exported to MATLAB, and
the operational mode shapes are identified

(5) Steps 2 to 4 are repeated for each natural frequency

Mode shapes with frequencies up to 2000Hz were
identified, and the number of experimental modes in this
frequency range varied between 6 and 11 for each panel.

Figure 4: Experimental panel with speckle pattern.

Table 3: Experimental damage cases.

Case
Normalized damage size

Shape
Damage 1 Damage 2

1 0.09 — Circular
2 0.12 — Circular
3 0.14 0.07 Square
4 0.11 0.17 Circular

Figure 5: Numerical model representing the sandwich panel.
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Figure 7 illustrates the first three experimental modes ob-
tained for the first panel (Case 1).

6. Results

%e numerical database was divided into training, valida-
tion, and testing sets. A total of 2800 panels were used for
training, 175 for validation, and 525 for testing. %e vali-
dation set was used during training and to tune the model,
whereas the testing set was used to test the final model.

6.1. Optimization of Model Parameters. %e first test was
performed using the standard U-Net architecture, as
described in Section 4. %e algorithm was initially trained
using the Adam optimizer, and the learning rate was set to
0.00001. %e loss function was defined as (1 − IoU). An
early stopping strategy was adopted with a validation
patience of 50 epochs. %erefore, if the validation loss did
not improve after 50 epochs, the training was stopped. To
define the best regularization strategy, three cases were
evaluated: no regularization, batch normalization, and

(a) (b)

Figure 6: Experimental setup: (a) panel with the speckle pattern and (b) shaker attachment.

(a) (b) (c)

Figure 7: Example of the first three experimental mode shapes. (a) 488Hz. (b) 612Hz. (c) 968Hz.

None Batch normalization Dropout
Regularization technique

0.5

0.6

0.7

0.8

0.9

1

1.1

M
ea

n 
Io

U

(a)

0.000001 0.00001 0.0001 0.001
Learning rate

0.7

0.75

0.8

0.85

0.9

0.95

1

M
ea

n 
Io

U

(b)

Figure 8: Validation performance with different (a) regularization strategies and (b) learning rates.
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dropout (20%). Because variability exists in each training
process, each case was trained five times. Figure 8(a)shows
the mean validation IoU obtained in each case, and the
error bars represent the standard deviation. %e best
performance was obtained by batch normalization.
%erefore, this regularization strategy was adopted. Next,
a sensitivity analysis was performed with respect to the
learning rate. %e results shown in Figure 8(b)indicate
that the best learning rate is 0.0001.

Finally, two additional sensitivity analyses were
conducted. %e first analysis explored the optimal
number of convolutional layers at each step of the
U-Net algorithm. In the second analysis, the optimal
number of channels was investigated. %e results are
illustrated in Figure 9, and the final configuration of the
deep learning segmentation model is summarized in
Table 4.

6.2. Numerical Damage Assessment. Figure 10 shows the
damage-assessment performance of the testing data as a
function of the normalized damage size. %e results were
compared with the results obtained using an automatic
thresholding method, as described in [4]. %e results clearly
indicate that by using a CNN for segmentation, the damage
is identified with a significantly higher exactitude, which
allows for the detection of smaller-sized damages.

Some examples of damage identified by both ap-
proaches are shown in Figure 11. %e damage indices
tended to increase at the edges of the panels. %is effect is
most clearly observed in cases with small damage sizes.
Indeed, in cases with small or no damage, larger damage
indices are at the edges. %is causes the automatic
thresholding method to identify damage incorrectly at the
edges, but the CNN-based approach is capable of learning
that these indices on the edges do not correspond to
damage. Furthermore, the CNN is capable of detecting
damages as small as a 0.05 normalized size. Damage of this
size is not discerned by the human eye in the damage index
image or by the thresholding methods.

%e automatic thresholdingmethodmerely finds regions
where the damage indices exceed a certain threshold and
identifies those regions as damaged. In contrast, the CNN-
based approach can learn different damage index patterns
and identify whether an increase in damage indices corre-
sponds to actual damage. %is enables the identification of
small damages that are not identifiable with other methods
and prevents the detection of false damage.

6.3. Experimental Damage Assessment. To validate the ap-
proach with the experimental data, four experimental
damage scenarios were considered, as listed in Table 1. %e
damage identified using the proposed CNN-based meth-
odology is shown in Figure 12, whereas the results of the
automatic thresholding method are presented in Figure 13.
Table 5 summarizes the IoU obtained using the proposed
approach compared to the IoU obtained using the automatic
thresholding method. On average, the CNN approach
performs better, although it is not a significant improve-
ment. %e main advantage of the CNN-based approach is
that it does not detect false damages and can detect small
damages. For example, the CNN-based approach correctly
identified the smaller-sized damage in Case 3, but the

1 2 3
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Figure 9: Validation performance with respect to the (a) number of convolutional layers and (b) number of channels.

Table 4: Segmentation model configuration.
Optimizer Adam
Learning rate 0.0001
Regularization strategy Batch normalization
Model architecture U-Net
Number of channels 64–128–256–512–1024
Number of convolutional layers per step 2
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automatic thresholding method did not.%us, the automatic
thresholding method performed satisfactorily in Case 3
because this model can catch the bigger damages very well,
but it misses the small ones completely. Conversely, the

CNN-based method is much better at identifying small
damages. Furthermore, the experimental investigation in-
dicates that the proposed approach is capable of correctly
generalizing the numerical data because it accurately detects

IoU = 0.74 IoU = 0.016

IoU = 0.92 IoU = 0.28

IoU = 0.95 IoU = 0.58

Damage indices
Damage detected 

CNN Automatic thresholding

(a)

(b)

(c)

Figure 11: Damage detected using CNN and automatic thresholdingmethod. Normalized damage sizes: (a) 0.05, (b) 0.1, and (c) 0.2.%e red
circles indicate the true damage.
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Figure 10: Performance of the damage-assessment methodologies.
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Figure 12: Experimental damage identified with the proposed CNN-based approach. Normalized damage sizes: (a) 0.09 (Case 1), (b) 0.12
(Case 2), (c) 0.14 and 0.07 (Case 3), and (d) 0.11 and 0.17 (Case 4). %e red circles/squares denote the true damage region.
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Figure 13: Continued.

10 Shock and Vibration



experimental damage with precision despite having been
trained using only data from the numerical model.

7. Conclusions

A damage-assessment methodology using full-field vibra-
tion modes and deep learning was developed and imple-
mented to assess the debonding damage in composite
sandwich structures. %e main novelty of this approach is
that the damage indices, represented as grayscale images, are
processed using a CNN to automatically identify the
damaged regions. %e results showed that, compared with
automatic thresholding methods, the CNN can better
identify damaged regions with respect to IoU. In particular,
the CNN enables the identification of smaller damages,
significantly improving the results of existing approaches;
this is essential from a practical perspective.

%e proposed approach can learn different damage index
patterns and correctly identify whether an increase in
damage indices corresponds to actual damage. %is ad-
vancement enables the identification of damage that is too
small to be identified by other methods and prevents the
detection of false damage. %e results indicate that the
proposed approach can correctly assess damages with
normalized sizes greater than 0.05.

Although the experimental results are encouraging, the
number of cases studied is not statistically significant, and
therefore further experimental analysis is required. In

addition, the proposed approach was validated using a
simple sandwich plate structure. %is structure does not
necessarily represent a real structure with geometrical
changes and different types of joints and edge conditions.
%erefore, applications with more complex and realistic
structures will be investigated in the future. In particular, the
effects of different boundary conditions and geometrical
changes on the damage identified must be analyzed. Because
the approach searches for discontinuities in the structure, it
is important to discriminate between changes caused by
damage and variations due to geometry or boundary
conditions.
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Conflicts of Interest

%e authors declare that there are no conflicts of interest.

Acknowledgments

%e authors acknowledge the financial support provided by
the Chilean National Fund for Scientific and Technological
Development (FONDECYT) under grant nos. 1170535 and
1190720 and the Millennium Science Initiative of the
Ministry of Economy, Development, and Tourism, grant
“Millennium Nucleus on Smart Soft Mechanical
Metamaterials.”

References
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