Tabla de contenido

1. Introducción				
1	L.1.	Ant	ecedentes generales	1
	1.1.	1.	Impresión 3D	1
	1.1.2.		Scaffolds	4
1.1.3.		3.	Materiales Auxéticos	6
1	L.2.	Mo	tivación	7
2.	Obj	etivo	s	8
2	2.1.	Obj	etivo general:	8
2	2.2.	Obj	etivos específicos:	8
3.	Alca	ances		8
4.	Ant	eced	entes específicos	8
Z	1.1.	Este	ereolitografía	8
Z	1.2.	Met	tamateriales auxéticos	9
	4.2.	1.	Estructuras reentrantes:	10
	4.2.	2.	Estructuras Quirales:	12
	4.2.	3.	Estructuras semi-rígidas rotatorias:	12
Z	1.3.	Esti	mulación mecánica de células	13
Z	1.4.	Apli	caciones en medicina de los materiales auxéticos	16
	4.4.	1.	Biomateriales auxéticos	16
	4.4.	2.	Parche cardiaco:	17
	4.4.	3.	Stent arterial o para vasos sanguíneos:	19
	4.4.	4.	Vendaje inteligente	20
	4.4.	5.	Scaffolds auxéticos y estudios de proliferación y diferenciación celular	21
5.	Me	todol	ogía	30
5	5.1.	Dise	eño e impresión de scaffolds	30
	5.1.	1.	Fusion 360	30
	5.1.	2.	Software PreForm	32
	5.1.	3.	FormLab Form 2 y Resinas	
5	5.2.	Coe	ficiente de Poisson de las estructuras	37
5	5.3.	Pro	liferación celular	38
	5.3.	1.	Esterilización:	38
5.3.2.		2.	Adhesión:	

5.3.3.		8.	Cultivo:	40		
6.	Resu	ltado	os y discusiones	40		
6	.1.	Elec	ción de las estructuras e impresión	40		
	6.1.1		Impresiones preliminares a escala de centímetros	46		
	6.1.2		Impresiones a escala de milímetros	49		
6	.2.	Med	lición del Coeficiente de Poisson	51		
6	.3.	Proli	iferación Celular	58		
	6.3.1		Esterilización:	58		
	6.3.2	2.	Adhesión:	59		
7. Conclusiones				61		
Bib	Bibliografía					
Ane	Anexos					
Anexo A						
Anexo B						

Índice de Figuras

Figura 1.1: Representación esquemática de una configuración FDM típica ^[1] 1
Figura 1.2: Representación esquemática de una configuración 3DP típica ^[1] 2
Figura 1.3: Representación esquemática de una configuración SLA típica ^[1] 2
Figura 1.4: Representación esquemática de una configuración SLS típica ^[1] 3
Figura 1.5: Representación esquemática de una configuración de trazado 3D típica ^[1] 3
Figura 1.6: Comportamiento al aplicar una carga de tensión y compresión en: (a) material
no auxético (b) material auxético ^[5]
Figura 4.1: Esquema impresora SLA ^[10] 9
Figura 4.2: Ilustración del comportamiento auxético en una estructura de panal reentrante.
Donde θ es el ángulo reentrante, h/l es el coeficiente de largo de la costilla y w es el espesor
[5]
de las costillas ^[5] 10
de las costillas ^[5]

Figura 4.6: Ilustración esquemática de la "naturaleza mecánica" de los mecanismos de mecanotransducción celular. Notar que las flechas dobles indican tensiones intracelulares sobre el citoesqueleto. En la imagen MF: Fuerzas mecánicas; FR: Receptores de fuerza como integrinas y proteínas G; M: Proteína extracelular; R: Receptor de factores Figura 4.7: Representación esquemática de los actores clave de la mecanosensibilidad que participan en la interacción célula-MEC en el sitio de adhesión focal (FA), donde ACTN: actinina; FAK: quinasa de adhesión focal; IT: integrinas; PAX: paxilina; TLN: talina; VASP: fosfoproteína estimulada por vasodilatadores; VCL: vinculina; ZYX: zyxina. Los cambios extracelulares en rigidez, tensión u otros estímulos mecánicos son percibidos por grupos de integrinas cuyos cambios morfológicos o de distribución reclutan FAK. La barra de talina, la vinculina, la paxilina y la proteína adaptadora p130^{Cas} se acoplan entre sí y transfieren las señales mecánicas de las integrinas al componente actina del citoesqueleto. Cerca del centro de la adhesión focal, el complejo VASP, la zyxina y actininas regulan directamente el ensamblaje y la dinámica de la actina^[11].....15 Figura 4.8: El núcleo de una célula madre embrionaria en el estado de transición (T-ESC) se expande cuando se tracciona^[19].....17 Figura 4.9: A)Esquema de las dimensiones de un corbatín; B) Ilustración esquemática del alineamiento de un parche cardiaco auxético (Auxetic Cardiac Patch: AuxCP) en el Figura 4.10: Dilatador que emplea una vaina terminal auxética^[22]......19 Figura 4.11: Izquierda: Fotografía que muestra una muestra completa del Stent coronario auxético; Derecha: vista en primer plano de una celda unitaria del Stent^[23].....20 Figura 4.13: Fabricación y caracterización de andamios de poliuretano auxético. Arriba: esquemas del proceso de conversión auxética por pandeo parcial de las costillas de la celda usando compresión isotrópica (triaxial); Abajo: Micrografías de microscopía electrónica de barrido (SEM) del andamio regular (izquierda) y el andamio auxético (derecha). Barra de Figura 4.14: Imágenes fotográficas de las muestras auxéticas y sus controles, donde PCL: Muestra de nanofibra fina electrohilada de Policaprolactona con espesor 40 µm; PCLA: Muestra auxética de nanofibra fina electrohilada de Policaprolactona con espesor 40 µm; PCLT: Muestra de nanofibra gruesa electrohilada de Policaprolactonacon espesor 180 µm y PCLTA: Muestra auxética de nanofibra gruesa electrohilada de Policaprolactona con Figura 4.15: Esquema del andamio 3D^[4]......23 Figura 4.16: Imagen SEM de andamios híbridos de una sola capa. En el lado izquierdo zona Figura 4.17: Gráfico del coeficiente de Poisson de las regiones PPR y NPR en un scaffold de una sola capa en función del desplazamiento^[16]......24 Figura 4.18: Imágenes de microscopía de fluorescencia de células madre mesenquimales humanas en la región (A, D) de proporción de Poisson positiva (PPR) y en la región de proporción de Poisson negativa (NPR) (B, C, E). (C) Células que crecen en huecos de

andamios y a lo largo de puntales de andamios en la región NPR. (D) Células que crece	en a
lo largo de los puntales del andamio (recuadro: SEM de los puntales del andamio) en la	L
región de PPR. (E) Células sembradas en la región NPR (recuadro: SEM de puntales de	2
andamio). Las barras de escala representan (A, B) 250 µm y (C, D, E) 125 µm. Verde:	
filamentos de actina; azul: núcleos; rosa: puntales de andamio ^[16]	25
Figura 4.19: Imágenes de microscopía electrónica de barrido de scaffolds bruto (a la	
izquierda) v scaffolds auxéticos (a la derecha) ^[26]	25
Figura 4.20: Diseño geométrico de las celdas unitarias. A la derecha la estructura de co	stilla
intacta, con comportamiento PPR, y a la derecha la estructura de costilla cortada con	
comportamiento NPR. Las paredes de las celdas unitarias (denominadas nervaduras) tie	enen
aproximadamente 40 micrómetros de ancho y 100 micrómetros de profundidad ^[29]	27
Figura 4.21: Imágenes ópticas ensavo de tracción de parches tubulares PPR izquierda v	
NPR derecha ^[29]	27
Figura 4.22: Imágenes microscópicas de filamentos de actina teñidos más núcleos en la	S
construcciones al día siete. A la izquierda la estructura NPR v a la derecha PPR ^[29]	28
Figura 4.23: Cultivo en andamios auxéticos de tamaño de poro pequeño. Vista general	de
los tres andamios donde se pueden observar grandes deformidades debido a las fuerzas	
mecánicas aplicadas por los fibroblastos ^[30] .	29
Figura 4.24: Cultivo en scaffold auxético de poro 40 [um]. A la izquierda vistas general	les
inclinadas del andamio. Las células pudieron penetrar dentro de los poros de la estructu	ira.
que constaba de dos capas y fue capaz de resistir las fuerzas. A la derecha imagen ampl	iada
de varias celdas unitarias en la superficie del scaffold. La geometría hexagonal reentran	ite
puede doblarse hacia adentro debido a las fuerzas mecánicas aplicadas por las células (e	en
amarillo) ^[30] .	30
Figura 5.1: Dibujo realizado en Fusion 360.	31
Figura 5.2: Extrusión de una figura	32
Figura 5.3: Guardar diseño en STL.	32
Figura 5.4: Configuración inicial del software PreForm	33
Figura 5.5: Selección de una base en PreForm	33
Figura 5.6: Estructura con soportes generados automáticamente por el software	34
Figura 5.7: Imagen de una impresión en Form 2 ^[10]	35
Figura 5.8: Escala de grises de la resina estándar ^[10]	35
Figura 5.9: Objeto fabricado con resina flexible ^[10]	35
Figura 5.10: Impresión realizada en resina dental ^[10] .	36
Figura 5.11: Objeto fabricado con resina elástica ^[10]	36
Figura 5.12: Puños de tracción estáticos de uso general con acción lateral del tornillo ^[9] .	
Figura 5.13: Estructura triangular. Izquierda: En reposo; Medio: Deformación de 12%;	
Derecha: Deformación de 24%	38
Figura 5.14: Izquierda: Ejemplo del llenado de una placa Neubauer; Derecha: Conteo e	n un
cuadrante de la placa Neubauer63 ^[17]	39
Figura 5.15: Placa 24 well ^[18]	40
Figura 5.16: Placa p100 ^[18]	40
Figura 6.1: Estructura de panal reentrante	41

Figura 6.2: Detalles de la geometría de la estructura con h≈0,9 [mm]; l≈1,2 [mm];
θ =28,1°; w=0,08 [mm]. Donde h/l es el coeficiente de largo de la costilla, θ es el ángulo
reentrante y w es el espesor de las costillas
Figura 6.3:Estructura semi-rígida cuadrada
Figura 6.4: Detalles de la geometría de la estructura con cuadrados de lado 0,8 [mm] y
ángulo de 30°
Figura 6.5: Estructura Kagome triangular
Figura 6.6: Detalles de la geometría de la estructura con triángulos de lado 1,6 [mm], ondas
de radio 0,36 [mm] y espesor de las costillas de 0,08 [mm]
Figura 6.7: Estructura no auxética hexagonal
Figura 6.8: Diseño de la estructura celda por celda
Figura 6.9: Extrusión de la estructura
Figura 6.10: Diseño de estructura mediante patrón rectangular. En azul se destaca la
estructura inicial de dos celdas utilizadas para generar las demás
Figura 6.11: Estructura con soportes en PreForm. En azul la estructura del scaffold y en
amarillo los soportes necesarios para imprimirla
Figura 6.12: Impresiones con resina estándar (a) estructura impresa directamente en la base
de impresión (b) prueba de impresión con bordes de la menor resolución posible
Figura 6.13: Estructuras impresas con orientación (a) horizontal apoyando sólo las esquinas
en la plataforma y con un soporte interno en el medio (b) vertical apoyada directamente en
la plataforma y sin soportes
Figura 6.14: Estructura impresa en resina flexible
Figura 6.15: Estructuras impresas en resina elástica (a) Kagome triangular (b) Semi-rígida
cuadrada (c) Panal reentrante
Figura 6.16: Estructuras impresas en resina dental sin curar (a) Semi-rígida cuadrada (b)
Kagome triangular
Figura 6.17: Estructuras impresas en resina dental curada (a) Semi-rígida cuadrada (b)
Kagome triangular
Figura 6.18: Impresiones a escala milimétrica en resina elástica
Figura 6.19: Impresiones a escala milimétrica en resina dental
Figura 6.20: Pruebas de cantidad de soportes.(a) mínima cantidad de soportes que la
impresora admite (b) colocando soportes en cada una de las uniones (c) cantidad intermedia
de soportes
Figura 6.21: Impresión en resina dental en la que se observa separación de capas
Figura 6.22: Estructura con soportes para ensayo de tracción
Figura 6.23: Estructura panal reentrante. Izquierda: En reposo; Medio: Deformación de
16%; Derecha: Deformación de 30%52
Figura 6.24: Gráfico de deformación v/s coeficiente de Poisson para la estructura panal
reentrante
Figura 6.25: Estructura panal reentrante. Izquierda: En reposo; Medio: Deformación de
18%; Derecha: Deformación de 36%53
Figura 6.26: Gráfico de deformación v/s coeficiente de Poisson para la estructura panal
reentrante

Figura 6.27: Estado inicial de la primera y segunda estructura ensayada54
Figura 6.28: Estructura Kagome triangular. Izquierda: En reposo; Medio: Deformación de
16%; Derecha: Deformación de 32%
Figura 6.29: Gráfico de deformación v/s coeficiente de Poisson para la primera estructura
Kagome triangular
Figura 6.30: Estructura Kagome triangular. Izquierda: En reposo; Medio: Deformación de
15%; Derecha: Deformación de 31%55
Figura 6.31: Gráfico de deformación v/s coeficiente de Poisson para la segunda estructura
Kagome triangular
Figura 6.32: Estructura Kagome triangular. Izquierda: En reposo; Medio: Deformación de
12%; Derecha: Deformación de 24%
Figura 6.33: Gráfico de deformación v/s coeficiente de Poisson para la segunda estructura
Kagome triangular
Figura 6.34: Gráfico resumen de deformación v/s coeficiente de Poisson para las
estructuras estudiadas
Figura 6.35: Estado inicial de las estructuras ensayadas
Figura 6.36: Estructura Kagome sumergida en etanol por 1 [min](a la izquierda) v/s
[overnight] (a la derecha)
Figura 6.37: Diseño de las piezas lisas utilizadas en estudio de adherencia celular. El
cuadrado es de lados de 12 [mm] y el espesor es de 0,5 [mm]
Figura 6.38: Diseño de las estructuras Kagome triangular utilizadas en estudio de
adherencia celular. Su tamaño es de aproximadamente 14x16 [mm] y su espesor es de 0,5
[mm]60
Figura 6.39: Células con tinción Hoechst en control sin estructura (a la izquierda) v/s
pocillo con estructura (a la derecha)60
Figura 6.40: A la izquierda células en pocillo de control (sin estructura) v/s a la derecha
pocillo con estructura en el cual se observan células muertas a su alrededor
Figura A.1: Diagrama de estructura de panal reentrante

Índice de Tablas

Tabla 1.1: Resumen de las técnicas establecidas de prototipado rápido ^[1]	4
Tabla 5.1: Resumen de propiedades mecánicas de las resinas. Elaboración propia con	
información disponible en las guías técnicas ^[10]	36
Tabla 6.1: Resumen de resultados del Coeficiente de Poisson en los ensayos de tracción	57
Tabla B.1: Funciones de la Matriz Extracelular en tejidos nativos y de scaffolds en tejidos	S
de ingeniería ^[3]	65