Tabla de Contenido

1.	Introducción 1						
	1.1.	Motiva	ación	1			
	1.2.	Hipóte	esis	2			
	1.3.	Objeti	VOS	2			
		1.3.1.	Objetivos Generales	2			
		1.3.2.	Objetivos Específicos	2			
	1.4.	Metod	ología de trabajo y Alcances	3			
2.	Sistemas Dinámicos No Lineales 4						
	2.1.	2.1. Disipador de Masa Sintonizado					
	2.2.	Teoría	de la Dinámica No Lineal	5			
		2.2.1.	Sistemas Dinámicos No Lineales	5			
		2.2.2.	Ecuación No Lineal de un sistema pendular, con excitación armónica				
			horizontal en la base	8			
		2.2.3.	Retrato de Fase (Phase Portrait)	10			
		2.2.4.	Diagrama de Bifurcación (Bifurcation Map)	13			
		2.2.5.	Diagrama de Poincaré (Poincaré Map)	16			
3.	Ecu	acione	s no lineales del péndulo ante excitaciones armónicas horizon-				
	tales y verticales 18						
	3.1.	Péndu	lo simple	18			
	3.2.	Péndu	lo montado sobre una estructura de 1 grado de libertad	20			
		3.2.1.	Derivación respecto de la variable x	21			
		3.2.2.	Derivación respecto de la variable θ	23			
4.	Res	Resultados de la Dinámica no Lineal del Péndulo Simple con excitación					
	vertical y horizontal en la base 26						
	4.1.	Curvas	s delimitadoras del caos: Péndulo Simple	29			
5.	Resultados de la dinámica no lineal del péndulo montado sobre un siste-						
	\mathbf{ma}	de 1 g	rado de libertad	31			
	5.1.	Curvas	s delimitadoras del caos: Péndulo sobre la estructura	33			
6.	Aná	Análisis del péndulo y de la estructura de 1 grado de libertad ante re-					
	gistros sísmicos reales 35						
	6.1.	Despla	zamientos máximos de ambos sistemas según el PGA de cada registro				
		sísmico	Э	35			

	6.2.	Influencia en la reducción de la respuesta de la estructura en la incorporación del péndulo según el PGA de cada registro sísmico						
7.	Con	clusiones 3						
Bi	ibliog	grafía						
$\mathbf{A}_{\mathbf{j}}$	pénd	ices A. Diagramas de bifurcación del péndulo simple						
	A.1.	Diagramas de Bifurcación con $\omega_h = \omega_v$						
		A.1.1. $w_h = 0.50 \cdot w_{n_m}, w_v = 0.50 \cdot w_{n_m} \dots \dots \dots \dots \dots \dots \dots \dots \dots$						
		A.1.2. $w_h = 0.95 \cdot w_{n_m}, w_v = 0.95 \cdot w_{n_m} \cdot \dots \cdot $						
		A.1.3. $w_h = 1.10 \cdot w_{n_m}, w_v = 1.10 \cdot w_{n_m} \cdot \dots \cdot $						
		A.1.4. $w_h = 2.00 \cdot w_{n_m}, w_v = 2.00 \cdot w_{n_m} \cdot \dots \cdot $						
	A.2.	Diagramas de Bifurcación según ω_h						
		A.2.1. $w_h = 0.50 \cdot w_{n_m}, w_v = 0.95 \cdot w_{n_m} \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$						
		A.2.2. $w_h = 0.50 \cdot w_{n_m}, w_v = 1.10 \cdot w_{n_m} \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$						
		A.2.3. $w_h = 0.50 \cdot w_{n_m}, w_v = 2.00 \cdot w_{n_m} \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$						
		A.2.4. $w_h = 0.95 \cdot w_{n_m}, w_v = 0.50 \cdot w_{n_m} \cdot \dots \cdot $						
		A.2.5. $w_h = 0.95 \cdot w_{n_m}, w_v = 1.10 \cdot w_{n_m} \cdot \ldots \cdot $						
		A.2.6. $w_h = 0.95 \cdot w_{n_m}, w_v = 2.00 \cdot w_{n_m} \cdot \ldots \cdot $						
		A.2.7. $w_h = 1.10 \cdot w_{n_m}, w_v = 0.50 \cdot w_{n_m} \cdot \dots \cdot $						
		A.2.8. $w_h = 1.10 \cdot w_{n_m}, w_v = 0.95 \cdot w_{n_m} \cdot \dots \cdot $						
		A.2.9. $w_h = 1.10 \cdot w_{n_m}, w_v = 2.00 \cdot w_{n_m} \cdot \ldots \cdot $						
		A.2.10. $w_h = 2.00 \cdot w_{n_m}, w_v = 0.50 \cdot w_{n_m} \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$						
		A.2.11. $w_h = 2.00 \cdot w_{n_m}, w_v = 0.95 \cdot w_{n_m} \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$						
		A.2.12. $w_h = 2.00 \cdot w_{n_m}, w_v = 1.10 \cdot w_{n_m} \cdot \dots \cdot $						
	A.3.	Diagramas de Bifurcación según ω_v						
		A.3.1. $w_h = 0.50 \cdot w_{n_m}, w_v = 0.95 \cdot w_{n_m} \dots \dots \dots \dots \dots \dots \dots \dots \dots$						
		A.3.2. $w_h = 0.50 \cdot w_{n_m}, w_v = 1.10 \cdot w_{n_m} \dots \dots \dots \dots \dots \dots \dots \dots \dots$						
		A.3.3. $w_h = 0.50 \cdot w_{n_m}, w_v = 2.00 \cdot w_{n_m} \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$						
		A.3.4. $w_h = 0.95 \cdot w_{n_m}, w_v = 0.50 \cdot w_{n_m} \cdot \ldots \cdot $						
		A.3.5. $w_h = 0.95 \cdot w_{n_m}, w_v = 1.10 \cdot w_{n_m} \dots \dots$						
		A.3.6. $w_h = 0.95 \cdot w_{n_m}, w_v = 2.00 \cdot w_{n_m} \dots \dots$						
		A.3.7. $w_h = 1.10 \cdot w_{n_m}, w_v = 0.50 \cdot w_{n_m} \dots \dots$						
		A.3.8. $w_h = 1.10 \cdot w_{n_m}, w_v = 0.95 \cdot w_{n_m} \cdot \dots \cdot $						
		A.3.9. $w_h = 1.10 \cdot w_{n_m}, w_v = 2.00 \cdot w_{n_m} \cdot \dots \cdot $						
		A.3.10. $w_h = 2.00 \cdot w_{n_m}, w_v = 0.50 \cdot w_{n_m}$						
		A.3.11. $w_h = 2.00 \cdot w_{n_m}, w_v = 0.95 \cdot w_{n_m}$						
		A.3.12. $w_h = 2.00 \cdot w_{n_m}, w_v = 1.10 \cdot w_{n_m} \cdot \dots \cdot $						
$\mathbf{A}_{\mathbf{I}}$	pénd	ices B. Diagramas de bifurcación del péndulo montado sobre una es-						
	truc	tura de 1 grado de libertad						
	B.1.	Diagramas de Bifurcación con $\omega_h = \omega_v$						
		B.1.1. $w_h = 0.50 \cdot w_{n_M}, w_v = 0.50 \cdot w_{n_M}$						
		B.1.2. $w_h = 0.95 \cdot w_{n_M}, w_v = 0.95 \cdot w_{n_M}$						
		B.1.3. $w_h = 1.10 \cdot w_{n_M}, w_v = 1.10 \cdot w_{n_M}$						
		B.1.4. $w_h = 2.00 \cdot w_{n_M}, w_v = 2.00 \cdot w_{n_M}$						
	B.2.	Diagramas de Bifurcación según ω_h						

	B.2.1. $w_h = 0.50 \cdot w_{n_M}, w_v = 0.95 \cdot w_{n_M}$	 75
	B.2.2. $w_h = 0.50 \cdot w_{n_M}, w_v = 1.10 \cdot w_{n_M}$	 76
	B.2.3. $w_h = 0.50 \cdot w_{n_M}, w_v = 2.00 \cdot w_{n_M}$	 77
	B.2.4. $w_h = 0.95 \cdot w_{n_M}, w_v = 0.50 \cdot w_{n_M}$	 78
	B.2.5. $w_h = 0.95 \cdot w_{n_M}, w_v = 1.10 \cdot w_{n_M}$	 79
	B.2.6. $w_h = 0.95 \cdot w_{n_M}, w_v = 2.00 \cdot w_{n_M}$	 80
	B.2.7. $w_h = 1.10 \cdot w_{n_M}, w_v = 0.50 \cdot w_{n_M}$	 81
	B.2.8. $w_h = 1.10 \cdot w_{n_M}, w_v = 0.95 \cdot w_{n_M}$	 82
	B.2.9. $w_h = 1.10 \cdot w_{n_M}, w_v = 2.00 \cdot w_{n_M}$	 83
	B.2.10. $w_h = 2.00 \cdot w_{n_M}, w_v = 0.50 \cdot w_{n_M}$	 84
	B.2.11. $w_h = 2.00 \cdot w_{n_M}, w_v = 0.95 \cdot w_{n_M}$	 85
	B.2.12. $w_h = 2.00 \cdot w_{n_M}, w_v = 1.10 \cdot w_{n_M}$	 86
В.З.	Diagramas de Bifurcación según ω_v	 87
	B.3.1. $w_h = 0.50 \cdot w_{n_M}, w_v = 0.95 \cdot w_{n_M}$	 87
	B.3.2. $w_h = 0.50 \cdot w_{n_M}, w_v = 1.10 \cdot w_{n_M}$	 88
	B.3.3. $w_h = 0.50 \cdot w_{n_M}, w_v = 2.00 \cdot w_{n_M}$	 89
	B.3.4. $w_h = 0.95 \cdot w_{nM}, w_v = 0.50 \cdot w_{nM}$	 90
	B.3.5. $w_h = 0.95 \cdot w_{n_M}, w_v = 1.10 \cdot w_{n_M}$	 91
	B.3.6. $w_h = 0.95 \cdot w_{n_M}, w_v = 2.00 \cdot w_{n_M}$	 92
	B.3.7. $w_h = 1.10 \cdot w_{n_M}, w_v = 0.50 \cdot w_{n_M}$	 93
	B.3.8. $w_h = 1.10 \cdot w_{n_M}, w_v = 0.95 \cdot w_{n_M}$	 94
	B.3.9. $w_h = 1.10 \cdot w_{n, i}, w_v = 2.00 \cdot w_{n, i}$	 95
	B.3.10. $w_h = 2.00 \cdot w_{n,} w_v = 0.50 \cdot w_{n,}$	 96
	B.3.11. $w_b = 2.00 \cdot w_{n,r}, w_v = 0.95 \cdot w_{n,r}$	 97
	B.3.12. $w_h = 2.00 \cdot w_{n_M}, w_v = 1.10 \cdot w_{n_M}$	 98
	10 /V/ / 0 /V/	