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En varias disciplinas, los procesos Gaussianos (GP) [1] son el referente para modelar series
de tiempo o funciones en general, especialmente en los casos en los que se requiere modelar la
incertidumbre. La extension de GP para manejar multiples salidas se conoce como procesos
Gaussianos de multiples salidas (MOGP) [2], que, al modelar los canales como Gaussianas
conjuntas, puede compartir informacién entre las salidas, mejorando potencialmente la esti-
macién. Tanto los GPs como los MOGP estan completamente determinados por una funcion
de covarianza.

El disefio de kernel para MOGP ha recibido mayor atenciéon recientemente, en particular,
el enfoque del Multi-Output Spectral Mizture (MOSM) [3] kernel ha sido elogiado como un
modelo general en el sentido de que se extiende a otros enfoques como el Linear Model of
Corregionalization [4], el Intrinsic Corregionalization Model [4] y el Cross-SpectralMizture [5].
El MOSM se basa en el teorema de Cramér [6] para parametrizar las densidades espectrales
de potencia (PSD) como una mezcla Gaussiana, por lo que tiene una restriccién estructural:
asumiendo la existencia de una PSD, el método solo es adecuado para procesos estacionarios.

El objetivo principal de esta tesis es ampliar el MOSM para hacerlo adecuado para procesos
no estacionarios. Para abordar esto, proponemos el multi-output harmonizable spectralmix-
ture (MOHSM) kernel, una familia expresiva y flexible de kernels de MOGP para modelar
procesos no estacionarios como una extension natural del MOSM que se basa en el concepto
de armonizabilidad, término introducido por Loéve [7] que generaliza las representaciones
espectrales a procesos no estacionarios. El MOHSM es capaz de modelar procesos tanto
estacionarios como no estacionarios mientras mantiene las propiedades deseadas del MOSM:
una interpretacion clara de los parametros, desde un punto de vista espectral, y flexibilidad
en cada canal. También proponemos una heuristica basada en datos para el punto inicial de
la optimizacion, con el fin de mejorar el entrenamiento del modelo. Ademas, presentamos
una variacion del modelo, la cual abre la puerta a considerar densidades espectrales mas
generales. El método propuesto se valida primero en datos sintéticos con el proposito de ilus-
trar las propiedades clave de nuestro enfoque, y luego se compara con los métodos MOGP
existentes en dos escenarios del mundo real, finanzas y electroencefalografia.
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In several disciplines, Gaussian Processes (GPs)[1] are the gold standard for modelling
time series or functions in general, especially in cases where modelling uncertainty is required.
The extension of GP to handle multiple outputs is known as multi-output Gaussian processes
(MOGP)[2], which, by modelling the outputs as jointly Gaussian, is able to share information
across outputs, potentially improving the estimation. Both, the single output and multiple
output GP are entirely determined by a covariance function.

Kernel design MOGP has received increased attention recently, in particular, the Multi-
Output Spectral Mixture kernel (MOSM) [3] approach has been praised as a general model
in the sense that it extends other approaches such as Linear Model of Coregionalization
[4], Intrinsic Coregionalization Model [4] and Cross-Spectral Mixture [5]. MOSM relies on
Cramér’s theorem [6] to parametrize the power spectral densities (PSD) as a Gaussian mix-
ture, thus, having a structural restriction: by assuming the existence of a PSD, the method
is only suited for stationary processes.

The main purpose of this thesis is to extend the MOSM model to make it suitable for non-
stationary processes. To address this, we propose the multi-output harmonizable spectral
mixture (MOHSM) kernel, an expressive and flexible family of MOGP kernels to model
non-stationary processes as a natural extension of the MOSM. which relies on the concept of
harmonizability, a term introduced by Loeéve [7] which generalizes the spectral representations
to non-stationary processes. The proposed MOHSM is able to model both stationary and
non-stationary processes while maintaining the desires properties of the MOSM: a clear
interpretation of the parameters, from a spectral viewpoint, and flexibility in each channel.
We also propose a data-driven heuristics for the initial point in the optimization, in order
to improve the model training. In addition, we also present a variation of the model, which
open the door to consider more more general spectral densities. The proposed method is
first validated on synthetic data with the purpose of illustrating the key properties of our
approach, and then compared to existing MOGP methods on two real-world settings from
finance and electroencephalography.
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“Blen sila lumenn’ omentielvo”

— J.R.R. Tolkien
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Introduction

One of the most frequent problem in the machine learning community is the regression
problem, which consist on estimate the relationship between inputs, called the independent
variables, and outputs, called the dependent variables. More specifically, regression helps us
to understand how the value of the dependent variables is changing corresponding to the
independent variables. The input can be a wide range of quantities with arbitrary dimension
but usually is the time and/or space. On the other hand, the output can be scalar or vector
continuous quantities, which are called univariate or multivariate regression respectively.

From a Bayesian point of view, the regression problem consists in placing a prior distri-
bution over the estimators, then, in conjunction with the likelihood function for the observe
data, and using the Bayes’ rule of probability, we obtain the posterior distribution which can
be use for prediction and forecasting. Within this context, Gaussian processes (GP) [1] pro-
vide a flexible and powerful non-parametric framework for Bayesian regression, due to their
properties such as a closure of the posterior distribution under a Gaussian data likelihood.
The main aspect on the design of the GP is the choice of the covariance function, also called
kernel, which encapsulate all the properties of the process such as: smoothness periodicity
and stationarity, among others.

Unfortunately, the GP framework is restricted to the univariate case, making unsuitable
for problems in which it is necessary to learn multiple tasks simultaneously. The extension
of GP to handle multiple outputs is known as multi-output Gaussian processes (MOGP)
[2], which, by modelling the outputs as jointly Gaussian, is able to share information across
outputs, potentially improving the estimation. As in the single-output case, designing kernels

that successfully model auto- and cross-covariances between channels is the core aspect of
MOGP.

There have been several approaches to design valid kernels to MOGP [8, 9, 4], and a num-
ber of them are based on linear combinations of latent-factor independent Gaussian processes.
These approaches, though they work in practice, avoid the direct parametrization of mul-
tioutput covariances thus failing to provide model interpretation, specially from a spectral
analysis perspective. Recently, Parra et al.[3] proposed the multi-output spectral mixture
(MOSM) which directly designs the kernel in the spectral domain, using the multivariate
version of Bochner’s theorem [10], namely Cramér’s Theorem [6].

The MOSM kernel provides a unified perspective of existing MOGP kernels in the lit-
erature, however, its principal limitation is that it is restricted to stationary data, i.e.,
k(x,2") = k(x — 2’), thus it encodes an identical similarity notion across the input space.
This assumption of stationarity is unsuitable for a vast of real world problems, like in vibra-



tory signals [11, 12], free-drifting oceanic instruments [13], various neuroscience applications
[14, 15], and econometric [16]. Therefore, a flexible non-stationary multioutput kernel be-
comes necessary and in particular a non-stationary version of the MOSM kernel.

The main purpose of this thesis is to propose an expressive and flexible family of MOGP
kernels to model non-stationary processes as a natural extension of the MOSM, which is
achieved through the concept of harmonizability, a term introduced by Loeve [7] which gen-
eralizes the spectral representations to non-stationary processes. The harmonizable processes
have been widely studied and developed in the statistical community, but there has been a
lack of attentiveness in the machine learning community.

The remainder of this thesis is organized as follows. We revisit all the required concept to
support our proposal in Chapter 1, starting from single output GP, going through MOGP,
previous approaches of MOGP, and finalizing with harmonizable processes. In Chapter 2,
we present our MOGP kernel, then we compare it to previous approaches, and we explain
practical considerations of the proposed model. Then, in Chapter 3 we test our kernel on
synthetic and real-world data. Finally, in Conclusion Chapter we discuss our results and
summarise our contribution and future work .

Contributions
Furthermore, the main contributions of this thesis are the following:

» To propose a kernel able to model both non-stationary processes as stationary processes
while keeping the desires properties of the MOSM, called Multi-Output Harmonizable
Spectral Mixture (MOHSM) kernel. Detailed in section 2.1, the proposed kernel base
on the concept of harmonizable processes to extend the MOSM kernel to non-stationary
processes.

» To suggest an parameter initialization scheme for the MOHSM kernel to overcome one
of the MOHSM problem, which is the sensitivity of the optimization. Detailed in section
2.4, the proposed initialization method use the spectral interpretation of the kernel to
initialize the parameters.

o To propose possible variations of the MOHSM kernel opening the door for a wider
class of processes to model. Detailed in section 2.5, we study possible variation of the
proposed framework by using symmetric rectangle function as the global component of
the spectral density, instead of squared exponential functions.

o To validate experimentally the proposed MOHSM kernel in real world applications:
EEG and financial time series. Detailed in section 3.2 and section 3.3, the proposed
kernel is compared against previous MOGP frameworks.



Chapter 1

Background

The objective of this chapter is to introduce all the necessary concepts for the work developed
in the thesis. First, we review Gaussian Processes (GP) methods for regression, describing
the univariate case as well as the kernel section problem that they pose and the proposed
solution using spectral representations. Then, we introduce the multivariate extension of the
Gaussian Processes framework called Multi-Output Gaussian Processes (MOGP), revisiting
the state-of-art models for MOGP. Finally, we study the harmonizable processes a general
class of processes that are the cornerstone of our work.

1.1. Gaussian Processes

A Gaussian Process [1] is a Bayesian non-parametric generative model for functions f :
X — R. The GP is the infinite-dimensional extension of the multivariate normal (MVN)
distribution, meaning that it can model second-order relationships among an infinite number
of variables. Formally,

Definition 1.1 A Gaussian process is a stochastic process {f(z) : x € X} such that for
every finite subset X = {z;}}X, of X, the random vector f(X) := [f(x1),..., f(zn)] is a
multivariate Gaussian random variable.

A GP model, before conditioning on observed data, is completely specified by its mean
function m(x) and covariance (also called kernel) function k(z,z’), defined as follow for a
stochastic process f(z)

and we will write the Gaussian process as
f(@) ~ GP(m(x), k(z,2)), (1.3)

where the mean function is usually assumed equal to zero, m(xz) = 0. The design of the GP
involves choosing the kernel function, which determines key properties in the draws from the
GP such as differentiability, periodicity, long-range correlation or stationarity. Furthermore,
we say that a kernel is stationary if it can be written as k(z,2') = k(x — 2’); a GP is said to
be stationary if its covariance is stationary.



Usually the kernel is selected to have a parametric form which depends on a set of param-
eters 0, that is k(-,-) = kg(+,-), which allow us to control the structure of the GP. However,
not all function are a valid kernel, nevertheless a necessary and sufficient condition for a sym-
metric function k(z,2’) to be a kernel is that it be positive-definite, i.e. V{x1,...,xxy} C X,

V{c1,...,ecn} CRand VN € N ¢

ZCiCij(ZEZ',lL‘j) Z 07 (14)

=1 j=1

which equivalent that for any N points the N x N matrix given by k(z,z) is positive-
semidefinite.

1.1.1. Gaussian Process Regression

The regression problem is perhaps the most frequent in the machine learning community,
which can be seen as the estimation of the relationship between an independent variable x € X
and a dependent variable y € ). The relationship between both variables is represented by
a function f : X — ), thus the goal is to define a family of functions and find the best
estimator in this family. This is usually done by minimizing or maximizing some performance
indicator, such as some measure of the error between the estimation and the observation.
From a Bayesian point of view, this problem can be solved by placing a prior distribution
over the estimators f, then, in conjunction with the likelihood function for the dataset, and
using the Bayes’ rule of probability, we obtain the posterior distribution which can be used
for prediction and forecasting.

Gaussian processes are the gold-standard Bayesian regression method, since all the appeal-
ing properties of the Gaussian distribution, like its marginalization closure and its explicit
and tractable calculations. In order to better understand these properties, we now formalize
how the Gaussian processes form a robust, non-parametric, non-linear regression framework.

From now on, without loss of generality, the input space X will be assumed to be R¢, and
the output space ) will be assumed to be R. Given the training data (X,y) = {(zn, ¥n) };
where z,, € R? and gy, € R. The points ¥, correspond to noisy observations of the latent
function f:

Yn = f(zn) +en, en~N(0,0%),0 €R. (1.5)

We place a Gaussian prior with zero mean and kernel k with parameters 6, and denote
f = f(X)={f(x,)}Y_, the set of training latent values,

P(E X, 0) = N (0, k(X, X)). (L6)

Since we assume that the observations are contaminated with a Gaussian noise, the like-
lihood of the dataset can be written as:

p(y|X,£,0) = N(f,0%Iy), (1.7)
where Iy denotes the N x N identity matrix. In order to train the model, we need to find

the set of kernel hyperparameters 6 that maximize the Gaussian marginal likelihood which

4



takes the following expression,

PYIX,0) = [ p(yIE X)p(E|X, 0)df = N (¥]0. K(X, X) +0°Ly). (18)

Usually, we minimize the negative log marginal likelihood (NLL), that can be written as:

1 1 N
NLL =logp(y|X,0) = in(k(X, X) 4% Iy)y+ 5 108 \k(X, X) + o?In|+ - log 2. (1.9)

This is known as maximum likelihood estimation (MLE) of the hyperparameters. Once,
the hyperparameters of the kernel have been chosen, the posterior by the Bayes’ rule:

p(E|X,y,0) = p(f’X]’?(@;ﬁ(zg’ £,9) (1.10)

Thus, the prediction f* at a new point z* have the following expression:

p(f*ly, X, z*,0) = N (., 5..), (1.11)

where
my = k(z*, X)(k(X, X) + c*Iy) "y, (1.12)
S = k(2% 2%) — k(2®, X)(k(X, X) + 02 Iy) " k(X, 27). (1.13)

Here, we notice two main challenges. First, the high computational cost of both training
and prediction due to the requirement of the inversion of the matrix k(X, X) + o2Iy which
has a cost O(N?), this is an omnipresent issue which practically limits Gaussian Processes
to datasets of size O(10%). Second, the posterior distribution is entirely determined by the
choice of the kernel function k. Design valid new covariance functions is one of the main
challenges in the Gaussian processes framework, which in the following section we will cover.

1.2. Spectral Representation of Stationary Kernels

Stationary kernels are one of the most common and well-studied subclasses of kernels. We
say that a kernel is stationary if it a function of 7 = x — 2/, i.e. it is invariant to translation
of inputs:

k(z+ z,2" + z) = k(x,2), (1.14)

and it can be written as:

k(z,2") = k(z —2') = k(7). (1.15)

From Equation (1.15) we notice that stationarity means that the correlation between
two input points does not depend on the location itself, but only on the difference (or lag)
between them, thus it encodes an identical similarity notion across the input space. Moreover,
stationary kernels are of special interest since they can be fully characterized by positive finite
measures using Bochner’s theorem [10]. This representation can be used to construct new
covariance functions in the spectral domain rather than the input domain.



Theorem 1.1 (Bochner’s theorem [10]) A complez-valued k on R? is the covariance func-
tion of a weakly-stationary mean-square-continuous stochastic process on R if and only if it
admits the following representation

k(z,2") = /d e (=) P(dw), (1.16)
R
where F is a positive finite measure and ¢ denotes the imaginary unit.

If the measure F' has a density S(w), this density is called the spectral density or power
spectrum of k, and k and S are Fourier duals:

S(w) = Flk(n)Hw) = [ e k(r)dr (1.17)

k(1) = FUS()}(r) = / ¢S (w)dw (1.18)

where F denotes the Fourier transform operator. Bochner’s theorem defines a one-to-
one mapping from stationary kernels to finite measures via Fourier transform, which allows
designing the kernels in the spectral domain rather than the input domain. This is especially
useful since strict positivity is much easier to achieve than positive definiteness.

The spectral kernels are a family of kernels that are defined in the spectral domain and are
able to approximate any integrable stationary covariance function given enough parameters.
In this sense, Wilson et al. [17] proposed the Spectral Mixture (SM) kernel, where the
spectral density is modeled as a weighted mixture of () Gaussian functions, with weight w,,
spectral means p, and diagonal covariance matrices > , that is:

Q
() = 3 g e (<5 = ) T w0 = ). (1.19)

q=1

In order to obtain a real-valued covariance function, the spectral density has to be sym-
metric with respect to w. This is achieve by considering the kernel as:

k(r)=F" {S(w) +S(_w)}, (1.20)

2

obtaining the following kernel:

Definition 1.2 A spectral-mizture (SM) kernel is a positive-definite stationary covariance
function given by

9 1
k(t) =Y wgexp (—27T2q7> Cos(,unT) (1.21)
q=1

where p, € R, 3, = diag(a%q), oy 0D and wy, 0, € Ry
Since the sum of Gaussians are universal approximator of densities, consider here in the
frequency domain, the SM kernel is able to recover commonly used stationary kernels, such

as squared exponential, Matérn, rational quadratic, and periodic kernels [1]



1.3. Multi-Output Gaussian Processes

Although Gaussian processes are very powerful and flexible models, they are restricted to
the univariate case only. This makes them unsuitable for problems in which it is necessary to
learn multiple tasks simultaneously. The extension of the GP framework to handle multiple
outputs is called Multi-Output Gaussian Processes (MOGP) [2], which consists in model
all the outputs jointly as a GP where the covariance and cross-covariance are ruled by a
multi-output kernel. Formally,

Definition 1.3 A Multi-Output Gaussian Process (MOGP) of m-channels is an m-tuple of
stochastic processes {f(x) = (fi(z), ..., fm(2)) : @ € X'}, such that for any family {X;}™,
of finite subsets of X, the random vector [fi(X1),..., fm(Xm)] is a multivariate Gaussian
random variable.

We call a channel or an ouput at each component of the vector f(x), Vo € X. Similar
to the single output GP, the MOGP is completely specified by its mean function m(x) and
covariance function K(x,2’), but in the multivariate case its mean is R™-valued functions
whose " element denotes the mean function of the i** channel, and its kernel is R™ x R™-
valued function whose (i, j) element denotes the covariance between the i and j* channels,
these two functions are defined as follows:

m(z) = E[f(z)], VreX (1.22)
K(z,2") = E[(f(z) — m(2))(f(2") — m(2'))], Vr,2'€X (1.23)

In the same fashion that in the univariate case, the mean function is usually assumed to
be zero, m(z) = 0 Vo € X. Moreover, if we have an MOGP with M channels, {f;},, the
(i, )" element of the covariance kernel K corresponds to the covariance between outputs f;
and f;, following the next notation:

covlfi(x), f(a")] = kij(z,2") = [K(z,2"));; Vi, j={1,..., M} (1.24)

Similar to the single-channel case, in order to be a valid covariance function, a function
kernel must be symmetric, i.e.

K(x,2') = K(z',2) Va2’ € X, (1.25)
and positive-definite, i.e. Vn € N, V{z;}7_, C X, V{{ci;}io1 T

> D ciCigij(Tp,mg) > 0. (1.26)

1,j=1p,g=1

From the positive-definite condition, we can notice that Eq. (1.26) imposes the diagonal
components of a multivariate kernel function K(x,z’) to be positive-definite as in Eq. (1.4),
i.e. the functions kj(xz,z') Vi € {1,...,m} are univariate covariance functions. On the
other hand, the off-diagonal components are not restricted to be positive-definite, i.e. the
functions k;;(z,2") Vi,j € {1,..., }, i # j are not restricted to be univariate kernel functions.
Futhermore, a multivariate kernel K is stationary if K(z,2") = K(x — 2'); a MOGP is said
to be stationary if its covariance is stationary.



Design valid and expressive multi-output kernels is quite challenging because we need to
jointly choose functions that model the covariance of each channel, called auto-covariance,
and functions that model the cross-covariance between channels [9]. Thus, it is necessary to
select m(m + 1)/2 covariance functions which are able to model, for example, delays, phase
shifts, S negative correlations or to enforce specific spectral content while at the same time
maintaining positive definiteness of K

1.3.1. Multi-Output Gaussian Process Regression

Thus far we have considered just the case where the datapoints consist of n dimensional
vector-valued inputs and scalar-valued outputs. While this configuration covers the vast
majority of regression cases one may well encounter in practice, it is possible to perform
regression where both input and output are vector-valued, where each dimension of the output
is called a channel. This is often called multiple-output regression, and in this Section, we
will cover how to apply the MOGP framework to these kinds of problems.

Let be the training data for channel 4, (X;,y;) = {2,y | where ) € R? and ¢/ € R.

We assume that the points y?) correspond to noisy observations of the latent function f;:

w = filad) + e, &) ~N(0,07),0, € R (1.27)
Denoting N = >, N; the total number of observations, y = [y1, ..., Y] the vector of ob-
servations, X = [Xj, ... m} and F = [f1(X1), ..., £,(X,»)] the set of training latent values,
where f;(X;) = {f;(z? ) . We place a Gau551an prior with zero mean and kernel K with

parameters ©
p(FIX,0) = N0, K(X, X)) (1.28)

Since we assume that the observations are contaminated with a Gaussian noise, the likelihood
of the dataset can be written as:

p(F|X,0) =N(F,X%) (1.29)

where ¥ = diag[Iy,0%, ..., Iy, 02], and Iy, denotes the N; x N; identity matrix. In the same
fashion that the univariate case, we train the model finding the set of kernel hyperparameters
O that maximize the Gaussian marginal likelihood which takes the following expression,

P(YIX.0) = [ p(y[F, X)p(F|X, ©)dF = N(y]0.K(X, X) + ). (1.30)

Similar to the univariate case we usually minimize the negative log marginal likelihood
(NLL), that can be written as:

A

1 1 N
NLL = log p(y|X,0) = in(IC(X, X)+X) y + 5108 IK(X, X)+ 3| + - log 2. (1.31)

Now, finding the posterior by the Bayes’ rule we express the prediction f* at a new point
x* as follow



where

m, = K(z*, X)(K(X,X) + %) 'y, (1.33)
S, = Kz, o) — K(z*, X)(K(X, X) + )7 'K(X, 2%). (1.34)

In the same way that the single output GP, the MOGP has two main challenges. First,
the high computation cost due to the inversion of the matrix (X, X) + X, which in this
case has a cost O(m®>N?). Second, the posterior distribution is entirely determined by the
choice of the kernel L. Thus, design expressive covariance functions while satisfying the
positive-definiteness condition is one of the main challenges in MOGP.

1.4. Existing work on Multi-Output Gaussian Processes

As we mention in Section 1.3, design multivariate covariance functions are quite challeng-
ing since we need to jointly choose functions that model auto-covariance, and functions that
model the cross-covariance while maintaining the positive-definite and symmetric condition.
Several approaches have been proposed to overcome this difficulty where most of them are
based on the idea of model the cross covariances as a linear combination of the covariance
of each channel. In the next subsections, we review one by one the previous proposals of
multivariate covariance functions, finalizing with one of the most prominent extensions of
the existing methods in expressiveness and interpretation, the multi-output spectral mixture
kernel.

1.4.1. Linear Model of Coregionalization

The central and most basic idea of MOGP, which comes from Geostatistics, is known as
the Linear Coregionalization Model. (LMC) [4]. The LMC models each output as a linear
combination of independent latent processes {uq}g?:l, where each latent process is a Gaussian
process with zero mean and kernel k,(z,2'), namely

Q
filz) = z_:laiquq(x) i=1,..,m. (1.35)

Since a linear combination of GPs is also a GP, each f; is a GP. The m channels are
naturally correlated and the covariance between them can be calculated explicitly, leading to
the following multivariate covariance function

Q
K(z,a') =" AjA] ky(z, ), (1.36)
q=1
where A, = [aiq, ..., amq]T € R™. Furthermore, considering that some latent processes may
have the same covariance function, while remaining independent, we grouped them together
leading to the following expression of the ouput functions f;:

Q Ryg
fix) =33 au (@) i=1,..m. (1.37)
qg=1r=1



by defining Ag’”) = [a&f}, s a,(j;)q]T € R™, we obtain the LMC multivariate covariance function:

Q [ Rq
Kz, 2') = (Z A((;’)A((;)T) ky(x,x') (1.38)

qg=1 \r=1
Q

=Y Bky(z,2') (1.39)
q=1

where B, = Zf:"l Ag’“)Ag’“)T € R™*™ is the matrix known as coregionalization matriz, and
has entries [B,);; = bz(?) =y ag)agz).

We can note that the LMC kernel is essentially a multivariate covariance function obtained
by multiplying a univariate covariance function with a positive-definite matrix. This model
is a simple, economical, and effective way to build valid multivariate covariance functions,
it even allows the construction of non-stationary multivariate covariance functions by con-
sidering non-stationary latent processes. The main drawback of this formulation is that it
is limited to model just symmetric and centered cross-covariances functions, leaving out an
entire spectrum of problems that cannot be modeled properly, since the cross-covariances are
simply linear combinations of univariate covariances functions.

1.4.2. Intrinsic Coregionalization Model

The intrinsic coregionalization model (ICM) [4] is a particular case of the LMC, where it
is assumed that the coregionalization matrix can be decoupled in an output component and
a latent processes component, that is, the elements of the coregionalization matrix B, can

be written as bg?) = vj;bq, thus the multivariate kernel proposed by the ICM takes the form

Q

kij(x,2") = vy Z bokq(x, ") (1.40)
q=1

= v;ik(z, ), (1.41)

where k = ZqQ:1 b,ky. Furthermore, the proposed multivariate covariances function is
K(z,2") = Bk(x, '), (1.42)

where B € R™ ™ is a positive definite matrix with entries [B];; = v;;. From Eq. 1.42,
we observe that the ICM is equivalent to a LMC with ) = 1, thus is a valid multivariate
kernel. Futhermore, we notice that each component k, contribute equally to covariance and
cross-covariance between outputs, hence is a more restrictive model than LMC.

1.4.3. Semi-Parametric Latent Factor Model

The semi-parametric latent factor model (SLEM) [18] is a particular case of LMC where
R,=1Vqe{l,...,Q}, that is,
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K(z,2') =Y AjAykq(z, o) (1.43)
qg=1
Q

= quQ(xv l’l), (144)
q=1

where B, € R™*™ is a rank 1 matrix with entries [B,];; = a;qaj,. The semi-parametric name
comes from the linear parametric combination of non parametric latent processes.

1.4.4. Convolution Model

The convolution model (CONV) [8] is a generative model for multivariate covariance func-
tion based on the idea of using convolution rather than instantaneous mixing, like the linear
combination. Formally, let {uq}ff:l a family of () independent latent processes, where each
latent process is a Gaussian process with zero mean and kernel k,(z, 2'), and let {{k:jq}gnzl}qQ:l
a family of stationary kernels, called smoothing kernels. The base idea of the convolution
model is to model each channel as the sum of those () latent processes convolved with its
corresponding smoothing kernel, that is,

Q
filz) = z_:l(kiq *ug)(x) 1=1,...,m (1.45)
Q

= Zl/Rd kig(x — 2)ug(2)dz i=1,..,m, (1.46)

where x denotes the convolution operator. We notice that each channel is a Gaussian process,
since the convolution of a Gaussian process with a smoothing kernel is also a Gaussian
processes. The multivariate covariance function of the above MOGP takes the following
form,

Q
kij(z,2') = /R ) /]R higlz — 2k’ — 2)ky(z, 2')dzdz. (1.47)
q=1

The integral in Eq. 1.47 does not always have an explicit and tractable form, so choosing
the smoothing kernels and covariance functions for the latent processes wisely becomes im-
perative. Since the Gaussian functions are closed under convolution, the previous problem
is avoided considering both the smoothing kernels and the latent covariances as Gaussian
functions, that is to choose the smoothing kernels and latent covariances functions as follow:

w; |Ez |1/2 1
kiq(T) = (qQﬂ_)Z/Q exp <27—T2iq7—> ; (148)
1
kq(T) = exp (27T2q7> , (1.49)
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we obtain the Gaussian convolution model, which takes the following form

9 wigwig|o M2 1
197779
kl](T) = Z W exp (2 TEZ]q ) s (150)

q=1

where ¥, = 3" + E;ql + %,'. We observe that the convolution model is a generalization
of the LMC, in which each channel has different kernel parameters, in contrast to the LMC
where the kernel parameters of k, are shared across all channels. Although CONV allows
a broader family of multivariate processes to be modeled, they are still limited to linear
combinations of univariates covariances functions.

1.4.5. Cross-Spectral Mixture kernel

The cross-spectral mixture (CSM) kernel [5] generalized the LMC framework allowing
the coregionalization matrix to be a complex matrix which leads to non-symmetric cross-
covariances. The main idea of this model is to consider the LMC with latent processes as
GPs with spectral mixture kernels, that is

Q [ Rq
Kr)=>" (Z Ag>Ag>H) kq(T) (1.51)

q=1 \r=1

where () is the Hermitian operator and k,(7) = F~1(S,(w))(1) = exp(—%TTEqr) cos(pqT)
is the spectral mixture kernel. The principal innovation of this model is that it can model
the phase cross- Channel this is done by considering the coefficient of the coregionalization
matrices to the form a = b( exp (i(pm), where bg), gog)

i € R and ¢ is the imaginary unit,
which leads to

Q (M) 1.(r) (o™ o™

=y szq by)e! P i )k (1) (1.52)
q—lr 1

=SSR ) e mSyw)de (1.53)
qg=1r=1 R?

i [T DS, (w)d (1.54)
g=1r=1

§q) = iy gzﬁlq where

ltq is the frequency of the SM kernel and gb( " e R, we obtain the CSM kernel which takes
the following form:

Solving the above integral, in conjunction with the reparameterization ¢

Z Z bZ;)qu exp (TTZqT) cos (,un (7’ + gzﬁz(g) — qﬁ%))) (1.55)

q=1r=1
The CSM kernel is, to the best of our knowledge, the first multivariate covariance function
that allows non-symmetric cross-covariances through cross-phases gbl(;). This hints at the
construction of more flexible and expressive multivariate covariances functions, where we
consider, for example, phase shifts and time delay. Since the cornerstone of this model is the
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spectral mixture kernel, the CSM kernel is only suited for stationary processes.

1.4.6. Multi-Output Spectral Mixture Kernel

The Multi-Output Spectral Mixture (MOSM) Kernel, proposed by Parra et al. [3], provide
a new approach to design multivariate covariance functions which allows full parametric
interpretation of the relationship across channels, in addition to model delays and phase
among channels. This approach rely on Cramér’s theorem, the multivariate version of the
Bochner’s theorem,

Theorem 1.2 (Cramér’s Theorem [6]) A family {ki;(7)}i—, of integrable functions are the
covariance functions of a weakly-stationary multivariate stochastic process if and only if they

admit the following representation
kij(T) = /d ei‘”TTSij(w)dw VZ,j € {1, ceey M} (156)
R

where each S;; is an integrable complez-valued function Si; : R — C known as the spectral
density associated to the covariance function k;;, and fulfil the positive definiteness condition

> %2 Sij(w) >0 Y{z1,...,zm} C C,w € R? (1.57)

i.j=1

Following the idea behind Spectral Mixture kernel, they proposed a family of Hermitian
positive-definite complex-valued functions {S;;}7%—; which fulfil the Theorem 1.2. Parra
et al. proposed to construct the family of {S;;}7"_, through the Cholesky decomposition,
recalling that any complex-valued positive definite matrix S(w) can be decomposed in the
form S(w) = R¥(w)R(w), meaning that the (4, 7)™ entry of the S(w) can be expressed as

Si; = R (w) R (w) (1.58)

where R(w) € C@*™ and (@ is the rank of the decomposition. They start considering Q = 1,
where the columns of R(w) are complex-valued functions R;(w)",, and S(w) is modeled as a
rank-one matrix according to S;;(w) = R;(w)R;(w), Vi,j = 1, ..., m. Therefore, they proposed
to model each R; as a squared exponential function, namely

Ri(w) = w; exp (—i(w — 1) TS w — ;L,)) exp (—i(@;w + gbz)) , 1=1,...,m  (1.59)

where w;, ¢; € R, p;,0; € R? and X; = diag([0?, ...,02,]) " € R™? This choice of the function

..y in

R;{"_, yields the spectral densities Sz‘j?;-:l given by

1 . .
Sij(w) = w;; exp (—Z(W - Mij)TZ,'_jl(w — pij) + 1(9%&) + gsz)) ., 1=1,...,m. (1.60)

where each cross-spectral density is a complex-valued Squared exponential function with
the following parameters

o Covariance: Y;; = 2%,(%; + ;)13
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e Mean: Wi = (21 -+ 2]’)_1(22‘/17' + Zgﬂz)

« Magnitude: w;; = w;w; exp (i(ui ) (4 25) " (s + uj))
4 Delay: 92']' = 92' - 9]'

e Phase: ¢ij = sz — ¢j

In the same fashion that in the SM kernel, in order to restrict to this generative model to
a real-valued GPs, the power spectral densities has to be symmetric with respect w. This is
achieve by considering the kernel as:

kij(r) = F! {Sij(w) +2Sij(—w> } (7) (161)

1
= Qjj exXp (—2(7 + 0% (T + ‘9z‘j)> cos (1 + 0i;)" g + ¢45), (1.62)

where a;; = w;;(27)2|2;;|Y/2. Finally, for the general case, where Q € N, S is written as the
sum of these matrices of rank 1 . Thus, the multi-Output Spectral Mixture (MOSM) Kernel
has the form:

Q
1
kij = 0%(?) exp (—2(7' + €§?))TZ§?) (1 + 95?)) cos ((1 + Gl(?))T/LEJq-) + ¢§?)) (1.63)
q=1

where ozz(?) = w§?)(2w)"|2§?) |'/2 and the super index (-)(? denotes the parameter of the ¢
component of the spectral mixture.

The MOSM kernel has shown desirable properties like provides clear interpretation from a
spectral viewpoint, where each of its parameters can be identified with frequency, magnitude,
phase, and delay for a pair of outputs. A key feature that is unique to the MOSM kernel is the
ability of joint model delays and phase differences, this is possible due to the complex-valued
model for the cross-spectral density.

All the useful properties of the MOSM kernel are restricted for stationary data, due the
fact that the cornerstone of this family of kernels is Cramér’s theorem. This assumption
of stationarity is unsuitable for a vast of real world problems, like in vibratory signals [11,
12], free-drifting oceanic instruments [13], various neuroscience applications [14, 15], and
econometric [16]. In the next section we will study harmonizable processes, a concept created
by Loéve that will help us extend the MOSM kernel to non-stationary data while keeping all
its desirable properties.

1.5. Harmonizable Processes

In order to consider a broad and general class of processes beyond stationary ones, we will
study the celebrated extension of the stationarity property called harmonizability, originally
introduced by Loeve [7] for the univariate case, and then by Kahihara [19] for the multidi-
mensional case. We now recall the definition and relevant properties of the harmonizable
processes.
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Definition 1.4 A stochastic process on R is weakly harmonizable if its covariance function
can be expressed as:

k(z,a') = //d ) e o) Py du'), (1.64)
R xR

where F is a positive definite bimeasure on (R%, B(R?))x (R4, B(R?)) of bounded semivariation
(or Fréchet variation), and the integral is in the Morse-Transue sense [20]. Thus, F is called
the spectral bimeasure and satisfies the following conditions:

o (Bimeasure) VA, B € B(R?), F(A,-) and F(-, B) are complex measure on (R¢, B(R%))
o (Positive definiteness) ¥n € N, V{a;}", C C,V{A;}7, C B(R?) it holds that

n n

> aaF(A;,A5) 20 (1.65)

j=14i=1

o (Fréchet variation boundedness)||F||(R?, R?) < oo, where the Fréchet variation is given
by
VA, B € BRY), | FII(4, B) = sup 3 3 [aiF (A;, B;)3,, (1.66)

i=1 j=1

Definition 1.5 A stochastic process on R? is strongly harmonizable if is weakly harmonizable
and its spectral bimeasure F is of finite total (Vitali) variation, that is |F|(RY, R?) < oo, where
the Vitali variation is given by

VA, B € B(RY), |F|(A,B) = supijfj |F(A;, By)| (1.67)

i=1j=1

where the supremum is taken over all finite measurable partitions { A;}i_, of A, and {B;}7L,
of B respectively.

In the strong harmonizability case, due to the finite total variation, the spectral bimeasure
F can be extended to a measure on (R? x RY, B(R?) @ B(R?)), and in this case the Morse-
Transue integral in Eq. (1.64) coincides with the Lebesgue integral on R? x R? [19].

Remark When F' is absolutely continuous w.r.t. the Lebesgue measure, we denote its

. . . 2 . .
Radon-Nikodym derivative as S = ai ai - and we can write the covariance as

k(z,2") = //d , '@l G, W) dwdw' (1.68)
Re xR

we call S as the generalized spectral density of the process in analogy to the spectral density
of stationary processes.

It is important to point out that S(w,w’) is also a covariance function [21], and measure the
interaction between the w,w’, where we can interpret the variables w and w’ as frequencies.
This correlation between frequencies is what gives harmonizable processes the property of
modeling non-stationary processes.

Notice that the strongly harmonizable concept is a consistent extension of stationary
processes in the sense that when the measure F' concentrates on its diagonal w = ', eq. (1.64)
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collapses to Bochner Thm eq. (1.16). Nonetheless, harmonizable processes as presented above
define a much larger class than that of stationary processes, actually, is well known that all
continuous bounded kernels of practical interest are indeed strongly harmonizable. In fact,
Yaglom [22] noticed that the only processes with continuous bounded kernels that are not
strongly harmonizable are, in his own words, ‘rather complicated and have some unusual,
even pathological properties’. Therefore, we will restrict ourself to the strongly harmonizable
case and from now on we will refer to strongly harmonizable processes simply as harmonizable
processes.

The definitions presented above are only suitable for univariate processes, and since we
are interested in model multivariate processes, we need a multidimensional extension for the
definition of harmonizable processes. Kakihara extended the harmonizable property to the
multidimensional case, which will be the cornerstone of our proposal, as follow:

Theorem 1.3 (Kakihara’s theorem [19]) A family {ki(x,2')}%, of complex-valued func-

tions on RY are the covariance functions of a harmonizable multivariate stochastic process on
R? if and only if it admits the following representation:

kij(x,2") = //RW @ TN p(dw, do') Viyj e {1,...,m}, (1.69)

where the matriz spectral measure F' = [F;;(A, B)] is such that Vi, j, Fy; is positive semi-

definite, while Fi;j(A, B) = F;(B, A)

Remark In the same manner as in the univariate case, if F' is absolutely continuous w.r.t.

the Lebesgue measure, we denote its Radon-Nikodym derivative as S = %, the generalized
spectral density of the process, and we can write the covariance as
kij(z, o) = // 6i(“’Tx_“,TI,)SZ~j(w,w’)dwdw' Vi, je{l,..,m}, (1.70)
Rd xR4

where the matrix spectral densities S = [S;;(A, B)| is such that Vi, j,5;; is positive semi-
deﬁnite, while Slj (A, B) = SJZ(B, A)

Theorem 1.3 gives the guidelines to construct multivariate covariance functions for non-
stationary MOGP by designing their corresponding spectral densities instead, i.e., the design

is performed in the frequency rather than the space domain
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Chapter 2

Multi-Output Harmonizable Spectral
Mixture Kernel

The objective of this chapter is to present the main contribution of this thesis, the Multi-
Output Harmonizable Spectral Mixture (MOHSM) kernel, which generalized the MOSM
kernel, a multi-output kernel built in the frequency domain, to non-stationary processes.
First, we present the MOHSM kernel, deriving our multi-output covariance function using
the Harmonizable processes seen in the chapter before. Then, we study the relationship of
our model with other non-stationary kernels and the MOSM kernel. After that, we show
the expressiveness of the MOHSM, analyzing what kind of non-stationarity our covariance
function is able to model. Then, we present a parameter initialization scheme, to overcome
one of the MOHSM problems, which is the sensitivity of the optimization. Finally, we study
possible variations of the proposed framework.

2.1. Derivation of the Proposed Kernel

Following the idea behind the Multi-output Spectral Mixture (MOSM) kernel proposed
by Parra et al. [3], we aim to propose a family of Hermitian positive-definite complex-
valued functions {S;}%_, that satisfy the Theorem 1.3 to use them as building blocks for
a cross-spectral densities. In contrast with what was done by Parra et al., we rely on the
spectral representation provided by the harmonizable processes, this will allow us to model a
broader family of processes such as non-stationary processes as well as stationary processes.
The proposed family of functions is designed to extend the MOSM kernel to non-stationary
processes while keeping its desirable properties, like its physical parametric interpretation
and covariance functions with closed-form.

In order to model the relationship among channels, we support the proposed family of
Hermitian positive-definite complex-valued functions on its Cholesky decomposition, recalling
that every complex-valued positive-definite matrix S can be decomposed in

S(w,w) = R (w, ) R(w,w), (2.1)

where R € C@*™ () is the rank of the decomposition, and (-) denotes the Hermitian, trans-
pose and conjugate, operator. Thus, rather than design directly the family of cross-spectral
functions, we choose the family of the Cholesky decomposition. For ease of understanding
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we suppose that () = 1, where the case for arbitrary () is shown at the end of the section.
Now, the (i, ) entry of S(w,w’) can be expressed as

Sij(w,w") = Rij(w,w")R;j(w,w') Vi,j=1,...,m, (2.2)

where R € C?*! and (+) denotes the conjugate operator. Now, we consider the family { R;}™,
as follow:

Ri(w,w") = w; exp (1&2”@”2) exp (—i(w — ) TSN @ — uz)> exp(—i(@jw—i— gzﬁl)), (2.3)

(%) (*)

where & = w — ', = 2w, I, ¢; € R, 0;, 41, € R* and ¥; = diag([07,...,02]) € R™™.

Y wm
The intuition behind this choice is that the (x) component controls the correlation between
the frequencies: two frequencies that are further away from one another are less correlated.
On the other hand, the (o) component model the importance of each frequency. We mod-
eled both components as square exponential (SE) functions since they have closed form for
multiplications and Fourier transforms. Therefore, selecting this { R;}/"; in conjunction with
the following property of SE functions

Proposition 2.1 The product of SE function is closed up to a constant, that is
e(*%(xfui)TEi(w*m))e(*%(ﬂﬁ*uj)sz(x*uj)) _ aije(*%(ﬂ?*mj)TEij(I*uij)) (2.4)
where
iy = elmalmmm) T (Bt~ i) 2.5)

pij = (5 + 55) " Sy 4 Sjp)
Y = Si(X + 37

We have that {S;;}7";_, are given by:

1. 1, 1 o T—
Sij = w;j exp (—2l2||w||2> exp (—2(w — uij)TZijl(w — Mij)) eXp(—Z(Q;;w + ¢ij)>, (2.8)
ij
where we can observe that this is a complex decaying square exponential, due to the decaying
factor at the left, and the channel parameters obey the following relationships:
e covariance: X;; = 2%;(%; + X;) 1%,
o mean: ju; = (B + ;)N (g 4 Xj)
« magnitude: w;; = w;w; exp (i(ui — ) (4 ) T (s — Uj))
] delay: Hij = 91 — Qj
o phase: ¢;; = ¢; — ¢;
o length-scale: I?; = 2713(17 + 15)~"

18



Observe that each S;; is a locally-stationary kernel, a concept coined by Silverman [23],
which refers to kernels that can be expressed as a product of a stationary kernel and a
non-negative function. In facts,

1 .. 1 1,
Sii = Wij exp (—%glleQ) exp (—Z(W — i) S5 (@ — Mz'z‘)), (2.9)
(1) (2

where we first notice that the auto-spectral densities are real-valued functions, since ¢; =
0;; = 0. Second, we observe that the (1) term is a stationary kernel and the (2) term is
a non-negative function, therefore we can assure that each S;; is a kernel function, hence
a positive-definite function. On the other hand, since S can be decomposed in the form
S = RYR, it is clearly a positive-definite matrix thus fulfilling Theorem 1.3.

Now, we calculate the inverse generalized Fourier transform of the spectral densities .S;;
to obtain the multivariate covariance function:

l'/) - // ei(wa—w/Tx/)Sij(w7 w/)dﬁddw, (210>

R™ xR”
T
il (222 (o) (w—w) T (222 )
nxR™
/
= // ei(wTT-‘r(ZJTE)SU(w’ w/)dwdw/ <Deﬁn1ng oy x/ and o r+ 1z )
Rn7 xR" .
(2.12)

2
:// e"(wTHW)er( 141 >e(%@)w)TEJ(wﬂij>)e<—i<"?jw+¢if>>dwdw’
R xR"”
(2.13)

w 2 'Lw T
= wy // ( 2l2 loll++2 ) — 2 (@—pi5) " (E—Mij)—i(e;;w-f—@j)-i-UTT)dwdw/ (2'14>
nXRn

w 2 ZUJ xT
_ wl// ( 2l2 Il ) (W wi) " by (U—uij)—i(9?jw+¢ij)+wTr)dwd@ (215)
J R xR™

lo]|2+ie ™ z) _ T _
= w; / 6( 7z o] / =3 @) T8 @) SOGB4 (2.16)
R

— wij/ 6(_212 el x) / LTS T (2 i +030) TB— S S i i) g

(2.17)
_ aije—éII%H2e(%(Eélﬂiﬁi(”@ij)f&f(Efjlmﬁi(”"w)) Hy s s ) (2.18)
_ Oéije—ll;j||§H2e(—%(T—&-@ij)TEij(T-ﬁ-@u))e(i(7+9ij)T#zj+¢ij)’ (2.19)

where ay; = w;;(27)"|24]Y ?[7. In line (2.15) we applied the change of variables Theorem

w—l—w

with® =w—w' andw = and in line (2.18) we solved the integral following the Gaussian

integral, which state as follow
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Proposition 2.2 For any diagonal matriz A = diag(\y, ..., \,) and for any b € C", c € C:

n

/ exp(—xTAx — 2"z + c) de = exp

Nk

(b"A b +c). (2.20)

The kernel obtained above is a complex-valued covariance function which yields to a
complex-valued MOGP. In order to restrict our model to real-valued MOGP the covariance
functions must be real-valued functions. This can be done by two equivalent procedures :
taking the real part of the covariance function will leads to a real-valued kernel functions,
and symetrizing the spectral densities S5;;(w,w’) by reassigning:

;(Sij(%w') + Sij(—w, =), (2.21)

this guarantees symmetry and real values in the diagonal as the complex terms cancel each
other. Therefore, the kernel obtained by performing either of the two previous procedures is:

Sij (w, w') <

| 2
kij(z,2") = ay; eXP<—2(T +0i) TS (7 + 9@']‘)) cos (T + 0i;) " pij + ¢ij) exp <—2J||90||2>7

(2.22)

z+z’
9

where T = 7=x—2" and Q5 = wz‘j(27r)n|2ij|1/2l?j-

One drawback of this formulation is that, due the last exponential term in eq. (2.22),
the proposed kernel vanishes outside the origin with length-scale % - We address this lim-
itation by placing input shifts, which will allow us to control Where the kernel contribute.
We can add this input shifts on our formulation by multiplying our initial matrix S by
exp(—z’ (w—w )Txp), which will keep all of properties needed for the Theorem 1.3. This shift

can be seen from the point of view of Fourier transform, since the integral in eq. (1.70) is
equivalent to a Fourier transform of the concatenated vector ( Z) The translation in the

input leads to closed form Fourier transforms:
kij(x — xp, 2" — 1) = //ann ei(“Tx_w,Txl)Sij(w, W')e @ E duydu (2.23)
Putting together all the aforementioned, the kernel is defined as follows:
/ 1 T T i 2
kij(@, 2') = ay eXp<—2(T +0i5) L (T + 91:;’)) cos (7 +0i5) * pij + ¢i;) eXP<—2]H$ — T )

Lastly, for the general case we can expand the kernel to higher rank matrix by taking S
as a sum of these matrix of rank 1, which yields the expression for the proposed kernel:
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Definition 2.1 The Multi-Output Harmonizable Spectral Mizture (MOHSM) kernel has the
form:

1
E a(Q) exp( 2 T—I—H( )TEZ(?)(T—FQZ(?)))
(@\T (@), (@) I 220
cos (14 0;) 1 + ¢;7) exp | — ”2 Iz — 297,

(@) _ , (@) niy (@) 1/27(a) :
where o) = w;!’ (2m)" S |V and the super index (-)@ denotes the parameter of the

q" component of the spectral mixture.

From the kernel and spectral expressions we can interpret the kernel parameters as follows:
o The spectral mean p; represents the main frequency

o The spectral covariance ¥; represents the uncertainty of the distribution in the spectrum
« The cross spectral delay 0;; serves as the time delay between channels

o The cross spectral phase ¢;; provides the difference in phase between channels

o The spectral length-scale [; which control the correlation between the frequencies.

Finally, a useful particular case of MOHSM is restricting that certain components have
the same center at all times, this is because in certain places of the input space more expres-
siveness of the model is needed than in others. This can be done by defining the MOHSM
as follows:

Proposition 2.3 The particular case where some components of the MOHSM share the same
center can be written as follow:

P Qp

— 33 Al exp< ;TJr@(q )T (r 4 0l >>

p=1q=1

(@\T (9 (9) i 22
T 2 == 2
cos (1 +0) ) + 015)) exp | —l|z =z, ).

where Y01 Q, = Q, Q) = w(Q)(27T) |2 Q)|1/2l2] , the super index (-)@ denotes the parameter
of the ¢ component of the spectral mizture and the super index (-)P) denotes the parameter

of the p™ center of the spectral mizture.

This expression of the MOHSM will be extremely useful in the following sections where
we will study the properties of the kernel and propose an initialization scheme for the hyper-
parameters.
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2.2. Relationship with Other Models

Even though the idea of considering a non-stationary kernel derived from the harmoniz-
able processes is not new, all previous attempts are restricted to the single output case. For
example, Samo et al. [24] proposed a family of spectral kernels that they prove can approx-
imate any continuous bounded nonstationary kernel which they called Generalized Spectral
Kernels (GSK). In the same line, Shen et al. [25] proposed the harmonizable mixture ker-
nel (HMK) which also is a family derived from mixture models on the generalized spectral
representation. Remes et al.[26] presented a non-stationary kernel based on the idea of har-
monizable processes and parameterized the frequencies, length scales, and mixture weights
as Gaussian processes. While all these previous works of non-stationary kernel derived from
the harmonizable processes can be extended easily extended to multivariate cases using the
LCM or ICM framework, the obtained cross-covariance functions lack expressiveness and
interpretability. Our work can be seen as a multivariate extension of the family proposed by
Shen et al. [25] with expressive cross-covariance functions.

In general, classical MOGP approaches (such as the Linear Model of Corregionalization
and the Intrinsic Corregionalization Model) can represent non-stationary processes, since
they model the cross-correlation functions as a linear combination of the auto-correlation
functions, thus choosing non-stationary auto-correlations leads to a non-stationary multi-
variate process. The problem with these formulations is they force the auto-covariance to
have similar behavior across channels. Furthermore, modeling the cross-correlation in this
fashion, the interpretability of the dependence learned is almost null. The MOSM solves all
the previous problems, adding interpretability of the dependencies and not imposing similar
behaviors through different channels, but restricting itself to stationary cases. Our work
extend the MOSM kernel since the MOHSM can model the correlation between the channels
like the MOSM do, but allowing changes in the regimes within time, leading to a more general
model.

A natural question that arises in our context is whether the MOHSM can recover its
stationary counterpart MOSM. We notice that considering z, = 0 and taking [;; — 0 in
MOHSM we recover the MOSM kernel, successfully extending the stationary model. Indeed,
in the frequencies domain we notice that when w # W'

1 l”—)O
exp <—2l2||w - w'||2> “— 0. (2.26)
ij

On the other hand in the case w = W’ we observe that:
]. 2 lij—>0
exp —WHUJ -7 — 1, (2.27)
ij

Combining equations (2.26) and (2.27) we obtain:

Sij(w.w') ) d(w —w') exp <—;(w — pij) 'S5 @ - uij)> exp(—i(ﬁ;;@ + ¢ij)) = S(w,w"),
(2.28)
where §(-) is the Kronecker delta. This can be seen as no correlation between frequencies,
which is the supposition of stationary. Moreover, the above equation is equivalent to the cross-
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spectral densities of the MOSM, and calculating the inverse generalized Fourier transform of
these cross-spectral densities we obtain:

~

k(z,2') = //”an ei(me_“/T)gij(w,w')dcudw/
_ / / 1 ©TT 5 — o )3 @) TG @) 1O+ g
R xR"”

_ / i (@) o (=3 @=pi)) TS5 whig) (=i OFw+635) g,

= aije(*%(TWz‘j)TEij (T+9ij))e(i(7+9ij)TMj+¢ij)'

Taking the real part of the above expression we recover the MOSM kernel. Thus, the
MOHSM kernel successfully extend the MOSM kernel, and consequently extend the CSM
kernel.

2.3. Expressiveness of the Model

It is important to remark what kind of non-stationarity the proposed MOHSM model can
capture. This is relevant because it gives us a clue as to what kinds of problems we can face
with our model and which ones it will work best on.

First, we observe that each mixture of the proposed kernel is a locally stationary kernel,
which means that have a component that describes the global structure multiply by a com-
ponent that describes the local structure of the data. More in details, a locally stationary
kernel has the following form:

x4+

k(z,z") =k < ) ko(z — ') (2.29)
where £y is a non-negative function, which describe the global structure, and ks is a stationary
kernel, which describe the local structure. The variable 2£Z represent the centroid of the
example x and 2’. Genton [27] showed that a locally stationary kernel k is completely
determined by its values on the diagonal x = 2’ and antidiagional x = —z’. Fig 2.1 shows an
example of a locally-stationary kernel.

0.75

ka(5%) ka(x = X') k(x, x') = kl(X;X’)kz(x—xf)[.oo

7.5

5.0 -0.50

r0.25

r—0.25

2.5

0.0

-2.51

—5.01 - —-0.50

-7.5

-0.75
-10.0 . . . . , . : . ;
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 B _4

Figure 2.1: Example of a locally stationary kernel, where the global com-
ponent ky is an SE function and the local component ko is a SM kernel.
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In our model the global structure was selected as an exponential window operating over
of the regime described by the local structure component, which is our case is a SM kernel.
Hence, each component is an SM kernel windowed by an exponential function and thus, the
kernel can be seen as a union of different regimen that can be disjoint or overlapped. In the
places where the regimes overlap, the model is more expressive since it can be seen as an SM
with more components which have the property that they can approximate any stationary
kernel with the desired precision. Fig 2.2 shows an example of an auto-covariance of our
model with 2 different regimes, which are disjoint at the edges but overlap in the center.

1.00

0.75

Regime 1 Regime 2 Auto-Covariance m

5 NG A\

0.0

r0.50

r0.25

r0.00

-2.54 r—0.25

-5.01
r—0.50

—-7.51

-10.0 T T T -
-10 =5 0 5 10 -10 -5

Figure 2.2: Example of an auto-covariance of the MOHSM. Left and cen-
ter show the different regime of the model separately, and right shows the
union of both regimes.

Therefore, our framework allows us to model and discover different regimes on the data,
adding more expressiveness where needed. These properties of the MOHSM make it suitable
for a wide range of problems, both in tasks where the data is known to have changes and
in those where there is no knowledge of the data patterns. In addition to this, the proposed
kernel is able to jointly model delays and phase differences between channels, which gives the
model more expressiveness, which will be experimentally validated in the following sections.

2.4. Practical Considerations

2.4.1. Training and Prediction

Training the proposed model follows the same line as we saw in Section 1.3.1, by closed-
form maximum likelihood. For the general case of the MOHSM, the NLL is minimized
with respect to the parameters of the MOHSM plus the noise of the observations © =
{w?, pl? 2l @ gzﬁgq),offzn)oise,lZ(Q),xI(,q)}i]\i’Sq:l. On the other hand, in the particular case
where some components of the MOHSM share the same center, we add the restriction that all
the centers xl(ﬂ) and lenghtscales {lg?) iy are equals for ¢ = 1,..., (). Once the optimization
is concluded, computing the predictive posterior in the proposed model follow the standard
MOGP procedure.
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2.4.2. Parameter Initialization

The MOHSM kernel, like the MOSM and any other spectral mixture kernel, has a problem
regarding the extreme sensibility in the optimization with respect to the initial points: a bad
choice of initial condition will lead to poor optimization. This problem arises due to the
large number of parameters of the spectral mixture kernels, which increase with the number
of components. Therefore, exists a correlation between the expressiveness of the model,
related to the number of components, and the complexity by increasing the dimension of the
optimization problem. In this context, to avoid falling to local minima, a fundamental aspect
of the optimization process is the initialization of the hyperparameters.

For spectral kernels, the problem of initializing the hyperparameters can be addressed
relying on the spectral interpretation of the kernel parameters. In recent work, Cuevas
[28] has proposed an initialization scheme for the SM kernel and the MOSM kernel, which
leads to consistent and better results. Both rely on the idea of estimate the power spectral
density (PSD) of the available data to then use it to obtain initial values of the parameters,
considering the spectral interpretation of it. Since the MOHSM is a spectral kernel, we can
rely on the idea proposed by Cuevas to initialize the hyperparameters. In this section, we
propose a hyperparameters initialization scheme for the MOHSM kernel based on the ideas
proposed by Cuevas.

As we discussed in Section 2.2, the MOHSM can be seen as a union of different regimens
that can be disjoint or overlapped, where each regimen can be seen like a MOSM. Based
on this, the problem of initializing the hyperparameters can be split into two parts: first,
we have to placed the regimens, choosing the centers z;, and the lengthscales [;;, to then
initialize the hyperparameters of each regimen. For the initialization scheme, we will start
from the model representation given by eq. (2.25), which will be useful for the second step
of the method.

Following the above idea, we start placing the P different regimens by choosing the centers
and the lengthscales. This proposed two methods to select the centers and the lengthscales:
the first consists on place them equidistant and cover the input space with windows of the
same lengthscale. This method, despite to be fast and easy to implement, it may not be
the best for all the dataset, for example in datasets that are not uniformly distributed.
The second method consists on initialize the centers z, using some clustering methods, like
K-means, and the choose the lengthscale to cover the input space.

After defining the different regime windows, it is time to initialize the hyperparameters
of the spectral components of each regime. Extending the idea of Cuevas, in each regime we
estimate the PSD for each channel. If the input has multiple dimension, we estimate the PSD
for each input dimension and each channel. Note that for each output dimension and input
dimension, a different estimation of the Nyquist is required. Since the regime are defined
trough an exponential windows, it is not clear where to estimate the PSD. To address this
problem we suggest to place a rectangular windows center on x, and widths equal to 2l§p ),

Therefore, this window let us to define (X, (p ), y§p )), the data of the channel ¢ and the regimen

7

p, and use it to estimate the PSD of the regimen.
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Let ), be the number of components with center p in the MOHSM kernel. Once the
PSD of the regime p is estimated for channel ¢, we select the greater @), peaks of the PSD
for each input dimension. The magnitudes a;, taken proportional to the magnitude of the
peaks, normalized so the sum of squared weights equals the channel sample variance of the
observations of said channel,

Qp . (p)
> (@) o Var ({y0P)E] ) (230
qg=1

. (P)
where {y,&’)(”)},ﬁl correspond to the observation at channel 7 on the regimen p. The spectral

means ,ul(q) are initialized as the position of the peaks; the spectral variance qu) are set pro-
portional to the width of each peak. In order to prevent overfit, the variances are multiplied
by 2 so that the uncertainty on a given frequency starts lower.

In our experience, the initial conditions of the delays and phases are best set to zero, thus
making a initial assumption that there is no input-delay or phase-delay between channels,
leaving to the optimization process to discover the non-zero delay and phase if the data
suggest so.

The base of the proposed initialization methods is the estimation of the PSD of the process.
There are several techniques in the literature to estimate the PSD, such as the periodogram
[29], Welch periodogram [30], Lomb Scargle (LS) [31] or the Bayesian non-parametric spectral
estimation (BNSE) [32], among others. We recommend to obtained the PSD employing the
BNSE or LS method, due that in most GP regression problems the observations are not
uniformly sampled. For both methods, a grid of frequencies is required. We suggest to
use a uniform grid of frequencies up to the estimated Nyquist frequency, with the Nyquist
frequency estimated as half of the inverse of the smallest interval between input points.

A summary of the proposed method is shown below, where the algorithm 1 summarizes
the procedure of the second part of the initialization method, and algorithm 2 outlines the
approach.

Algorithm 1: Regime/Channel Spectral initialization

Input: (Xi(p ), y\P )) the observations of the regimen p in channel 4, integer @, the
number of components with center z,

psd «+ EstimatePSD(Xi(p), y(p));

peaks < HighestPeaks(psd,Q,);
for ¢ < 1 to ), do

uﬁ‘” < position of gth peak;

qu) + proportional to the width of gth peak;
az(q) < proportional to the magnitudes of gth peak, following eq. (2.30) ;
end

(@) Z(q), aEQ) forg=1,...,Q,,

7 7

Output: Regime/channel parameters p
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Algorithm 2: MOHSM Spectral initialization

Input: (X, y) the observations, integer P the number of different centers, integer @),
the number of components with center p, forp=1,..., P
for p <+ 1 to P do
x, < PlaceCenter(P, X);
for i < 1 tom do
lz( < ChooseLenghtscale(z,, X;);
(X 7yz(p)) — Reglme(Xia Yi, xpa l(p))
( al?

uP sl g ) <= RegimeChannellnitialization (X Pyl Qp)

end

end

Output: MOHSM parameters 1\?, E( 9, Eq) forg=1,...,Qp i=1,...,M and
p=1,...,P

2.5. Varying the Global Component of the Spectral
Densities

An interesting variation of the MOHSM model is, instead of modeling the global compo-
nent of the spectral density with an exponential, consider a symmetric rectangle function.
Considering symmetric rectangle function as spectral densities is not arbitrary, Tobar [33],
motivated by the potential applications relating to signal processing, used it to craft the
sinc kernel. In this Section, we investigate the possibility of using our MOHSM framework
but with a different global component. To do so, we first review the definition of the sinc
kernel generalized to input spaces of dimension d, which is done by taking the product of d
one-dimensional blocks:

Definition 2.2 The symmetric rectangle function with center p, width o and power a has
the form:

simrect,, 5. (w) = %(rectu,g(w) +rect_, »(w)) (2.31)

where 0 > 0, a, u > 0 and rect, , denote the rectangular function with center p and width o,
given by

d 1 1
Hf zfall ]wk—uk] < =0
k=1 %k 2

rect, ,(w) = (2.32)

0 otherwise

Using the Bochner’s theorem with the symmetric rectangle function as spectral density
yield to the well-known Sinc kernel, which has the following form:

27



Definition 2.3 The sinc kernel has the form:

k(r) = OéCOS(TT,LL) 1] sinc(moy), (2.33)

k=1

sin(7wx

where o > 0, a, i > 0 and sinc(r) = 7 ) is known as the the normalized sinc function.

In order to integrate the sinc kernel in our framework, we combine the approach of Simp-
son et al. [34], where they extend the idea of the sinc kernel to MOGP, and our MOHSM.
Therefore, we consider the following S;;, where the local component is modelled by a expo-
nential and the global component is modelled by a symmetric rectangle function:

1
53(0) = 00 (=g 91 ) srects (). (231)
]

where [;; are defined alike the MOHSM model. Hence, in virtue of Kakihara’s theorem, the
covariance functions are given by

2 d
kij(x,2') = exp(—l;j||x||2> cos (1" 1) H sinc(mox), (2.35)

k=1
This multivariate kernel is a non-stationary extension of the approach of Simpson et al.
[34] which they proved that can approximate any stationary multi-output kernel to arbitrary
precision. To generalize the model to allow phase and delay modeling, we extend these
real-valued spectral densities by adding an imaginary component to them, as we did in the

MOHSM kernel, to yield:

1
Sij(w,w’) = exp <—212||d1||2> simrectq,; 1.0 (@) exp(—i(ggw + gbij)>, (2.36)
i

where 0,5, ¢;; are defined alike the MOHSM model. We calculate the inverse generalized
Fourier transform of the spectral densities S;; to obtain the following multivariate covariance
function

2 d
kij(x,2") = aujexp (—Z;H:BHQ) cos ((1 + Qij)Tu + ¢ij) H sinc((1, + (0i5)k)0k)s (2.37)

k=1

Similarly to the MOHSM kernel, we increase the rank of the S by considering a mixture of
spectral densities defined in eq. (2.36), which yields the expression for the proposed variation:

Definition 2.4 The variation of the MOHSM considering the sinc kernel for the local com-
ponent has the following form:

Q (@) d
kij(z,2') =) a%]) exp (—UQHQEHQ cos ((1 + 9,(?))TM(Q) + gbg)) [T sine((7 + (91(;1))@0,(;1)),
q=1

. (2.38)

m

where the Q) amplitude matrices {agg)}i’jzl are assumed to be positive definite.
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Like the MOHSM kernel, this multivariate covariance function allows for different delays
and phases across channels. However, it does not allows to model different center p and
width o across channels, as the MOHSM does. This opens the door to question whether it
is possible to consider a more general family with this type spectral densities fulfilling the
Theorem 1.3.
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Chapter 3

Experiments

We tested the proposed MOHSM kernel in different settings, first we learnt a synthetic multi-
output GP with three component, a reference GP, its derivative and a delayed version of the
GP. Then, we applied our proposal kernel to two real-world datasets: a dataset compris-
ing series of gold and oil prices, the NASDAQ and the USD index (henceforth referred to
as GONU); and a dataset of a electroencephalography (EEG), which are known to have
dependencies between frequencies.

Since the MOSM kernel have shown better results than the others stationary MOGP
kernels, like the CONV and the CSM, we only compared our MOHSM with the MOSM. In
addition, we compared the MOHSM with 2 other non-stationary MOGP kernels: an indepen-
dent non-stationary kernel per channel, and non-stationary linear model of coregionalization.
The selected non-stationary kernel for both non-stationary MOGP kernel is defined as follow:

1

Q ’

T+

k(z,z") = wyexp (—212 —
q=1 q

5 G

2) exp (—;TTZqT) COS(,UZT). (3.1)

The above defined kernel is from the family of harmonizable mixture kernels proposed by
Shen et al. [25], which can be seen as a SM kernel where each component is windowed and
centered in ¢, thus we will called Windowed Spectral Mixture (WSM) kernel.

All models were implemented using the toolkit MOGPTK for GPU-accelerated ML-
training of GPs [35], and were executed on a laptop with 8 GB of RAM and a 940MX
GPU running Manjaro 5.12.

3.1. Learning Derivatives and Delayed Signals

First, we demonstrate the expressiveness of the MOHSM by using it to recover the auto and
cross covariance of a MOGP. We considered an MOGP with the following three components:
a sample f from a GP with a non stationary kernel and zero mean, its derivative and a
delayed version of the GP. This experiment is very illustrative since the covariance and cross
covariance of the mentioned process are known explicitly, thus we can test the expressiveness
of the model, namely
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Proposition 3.1 Let f be a Gaussian process with covariance function k, then the deriva-
2 /

tive stochastic process f' is also a Gaussian process and its covariance function is 9 ;x(;j).

Furthermore, (f(z), f'(x)) form a two-channel Multi-Output Gaussian process [1] with the

following multivariate covariance function

k(z, o) 2
IC([L’, I/> = <8k(x,:v’) 32168(?2,1/) (32)
ox oxox’

The experiment consisted in the reconstruction of the GP, and the interpolation of the
derivative and delayed signals over different intervals. We considered N = 500 samples in
the interval [—20,20] for each channel. For the experiment, the derivative was computed
numerically and we removed observations between [—10,5] for the derivative and between
[—5, 5] for the delayed signal. We randomly splited the dataset70% for training and 30% for
testing. The selected non-stationary kernel was the WSM with 2 mixtures, one centered in
—20, and the other centered in 20.

In order to measure the performance of the models, we will use the distance of the cor-
relation matrix, which is a metric defined by Herdin et al. [36] that measures the similarity
between two covariance matrices, and is defined as follows:

Definition 3.1 The correlation matriz distance (CMD)[36] is the distance between two cor-
relation matrices K1 and Ky as defined by

TI'(Kl . KQ)

CMD(K;, Ky) =1— ——L 22
[rrey/pnivieyl

(3.3)

where the norm is the Frobenius norm and Tr denotes the trace.

Fig 3.1 and 3.2 shows that the MOHSM model was able to accurately recovering the auto
and cross covariance of the reference GP and the delayed version, but did not achieve the
same results with the derivative. This can happen because the derivative of the selected non-
stationary kernel is too complex to be modeled with the selected number of mixtures. Despite
the above, the model achieves satisfactory results learning the cross-covariance between the
GP and the delayed version, and autocovariances without prior information about the delays.

Lerned Kernel Ground Truth Kernel
N\
\ \ N \ A\
N\

Figure 3.1: Left: learned covariance function by MOHSM kernel.
Right: ground truth covariance function of the synthetic dataset.
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Figure 3.2: Synthetic data set with the trained MOHSM kernel. Training
points are shown in black, dashed lines are the ground truth and the colour
coded lines are the posterior means. The coloured bands show the 95%
confidence intervals. The red shaded areas mark the data imputation ranges.

Table 3.1 shows the results of comparing different models against the MOHSM. We per-
formed 5 trials per trained model and reported the mean and he correlation matrix distance
(CMD).

Method CMD
MOSM 0.85 4+ 0.01
WSM 0.86 4+ 0.00

WSM-LMC 0.80 £ 0.00
MOHSM 0.48 £ 0.12

Table 3.1: Performance indices for the synthetic dataset using the correla-
tion matrix distance (CMD) over 5 realizations

3.2. GONU Data

In previous work, de Wolf et al. [37] proved the capability of the MOSM to impute
and predict financial observation by learning the relationships among financial time series.
Although the MOSM has shown great performance in these type of problems, the underlying
assumption of stationarity is too strong for financial observation. For example, Joyeux [16]
have found that, with new housing starts, the high and low frequency components were
inter-correlated, and thus the series was nonstationary.

In order to validate our hypothesis that stationarity is a strong requirement, we applied
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the MOHSM to one of the de Wolf et al. [37] experiments, a dataset comprising series of gold!
and oil prices?, the NASDAQ? and the USD index*, between January 2017 and December
2018 with a weekly granularity. The signals were detrented and log-transformed, moreover, to
simulate missing data we removed regions in each channel. For gold we removed observations
between 2017-03-15 and 2017-05-01; for NASDAQ we removed observations between 2018-04-
01 and 2018-07-01; and for oil we removed observations between 2018-10-05 and 2018-12-13.
Finally, for each channel, we removed 30% of all observations randomly. Altogether, the
experiment included 275 training points and 118 test points.

Finally, we considered the mean absolute percentage error (MAPE), and root-mean-square
error (RMSE) as our error metrics, which are defined as follows:

N
MAPE — 10 Z |y" Gl (3.4)
1 N
RMSE = ||+ >~ (3 — n)? (3.5)
n=1

where N is the number of training points, {y,}2_, the observations and {§,}"_, the predictive
mean of the model at observation locations.

Fig 3.3 shows that the MOHSM model is close to a perfect fit in the dataset, where
practically all the data are within the predicted confidence interval. Moreover, in the regions
where the data were removed, the model was able to predict almost faultless. Table 3.2
shows the results of comparing different models against the MOHSM. We performed 5 trials
per trained model and reported the mean and the standard deviation of the mean absolute
percentage error (MAPE), and root mean square error (RMSE).
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Figure 3.3: GONU data set with the trained MOHSM kernel. Training
points are shown in black, dashed lines are the ground truth and the colour
coded lines are the posterior means. The coloured bands show the 95%
confidence intervals. The red shaded areas mark the data imputation ranges.
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Figure 3.5: GONU data set with the trained WSM kernel. Training points
are shown in black, dashed lines are the ground truth and the colour coded
lines are the posterior means. The coloured bands show the 95% confidence
intervals. The red shaded areas mark the data imputation ranges.
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Figure 3.6: GONU data set with the trained WSM-LMC kernel. Training
points are shown in black, dashed lines are the ground truth and the colour
The coloured bands show the 95%
confidence intervals. The red shaded areas mark the data imputation ranges.

coded lines are the posterior means.
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Method MAPE RMSE

MOSM 3.05 £+ 0.27 49.55 £ 5.79
WSM 3.20 £ 0.37 43.54 £ 2.67
WSM-LMC 2.49 £ 0.40 64.20 = 12.11
MOHSM 1.67 £ 0.16 40.44 £ 4.74

Table 3.2: Performance indices for the GONU dataset using the mean ab-
solute percentage error (MAPE) and root mean square error (RMSE) over
5 realizations

3.3. EEG Data

In the field of neuroscience, one of the main challenges is to correctly model encephalog-
raphy (EEG) data so as to correctly study brain states, in particular, the frequency-based
perspective is the standard in multivariate EEG analysis [38]. Since the MOHSM is able to
learn the interaction between frequencies, the proposed model is well suited to these challenge.

We tested MOHSM on an EEG dataset with 8 channels, fig 3.7 shows the position of the
electrodes used. We selected a 60-second window resampled at 2 [Hz]. Similar to the GONU
experiment, the signals was detrented and log-transformed. We randomly splited the data
set 70% for training and 30% for testing. Overall, we trained on 735 points a MOHSM kernel
with 4 mixture, and tested on 315 points. In this case, the error metric that we used was the
normalized mean absolute error, which are defined as follows:

nMAE = — Zly" Il (3.6)

where N is the number of training points, {y,}"_, the observations, {§,}_; the predictive
mean of the model at observation locations, and 7 the mean of the observations.
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Figure 3.7: Electrode locations for a standard EEG, the red ones are the
channels selected for the experiment
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Figure 3.8: EEG data set with the trained MOHSM kernel. Training
points are shown in black, dashed lines are the ground truth and the colour
coded lines are the posterior means. The coloured bands show the 95%
confidence intervals. The red shaded areas mark the data imputation ranges.

Table 3.3 shows the results for the different models considered the EEG experiment, where
we performed 5 trials per trained model and reported the mean and the standard deviation of
the mean absolute percentage error (MAE), for each channel. Notice that MOHSM performed
either better than MOSM or within its error bars for most electrodes.

Model Fpl Fp2 Fz Cz T3 T4 01 02
MOSM 0.16 = 0.01 0.12 + 0.01 0.16 = 0.01 0.12 + 0.00 0.13 & 0.02 0.16 = 0.02 0.17 &+ 0.00 0.12 + 0.02
WSM 0.16 = 0.01 0.17 £ 0.01 0.17 = 0.00 0.12 + 0.01 0.38 + 0.01 0.24 + 0.01 0.27 £ 0.00 0.29 + 0.01

WSM-LMC 0.16 & 0.01 0.11 £ 0.01 0.14 £ 0.01 0.13 £ 0.01 0.16 + 0.02 0.15 £ 0.01 0.33 £ 0.06 0.17 £ 0.03
MOHSM 0.14 + 0.01 0.13 £ 0.02 0.13 + 0.01 0.12 £ 0.00 0.14 £ 0.01 0.13 £ 0.00 0.18 £ 0.02 0.09 &+ 0.01

Table 3.3: Performance for the EEG dataset of each channel using the
normalized mean absolute error (nMAE) over 5 realisations
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Conclusion

In this thesis, we have presented the multi-output harmonizable spectral mixture (MOHSM)
kernel which is a generalization to non-stationary processes of the well-known multi-output
spectral mixture (MOSM) kernel. The proposed family of kernels relies upon the concept of
harmonizable processes, a rather general class of processes in the sense that it contains sta-
tionary processes and a large portion of the non-stationary processes. The resulting kernel,
termed MOHSM, provides flexibility to model both stationary and non-stationary processes
while maintaining the desires properties of the MOSM: a clear interpretation of the parame-
ters from a spectral viewpoint, and flexibility in each channel. We also presented a parameter
initialization scheme, to overcome one of the MOHSM problems, which is the sensitivity of
the optimization. Furthermore, we studied possible variation of the proposed framework by
using symmetric rectangle function as the global component of the spectral density, instead
of squared exponential functions.

We compared the MOHSM kernel against the MOSM and existing MOGP models on two
real-world dataset, getting good results in terms of the different error metrics. Therefore,
we have showed that our method can effectively model non-stationary data and is a sound
extension of the MOSM kernel.

MOHSM is motivated by the intuition that we can model a non-stationary process by
considering different regimes within the process itself. This assumption is useful as it allows
us to model a wide variety of processes, but it also leads to certain limitations. The first lim-
itation is the number of regimes to consider, which in our model must be previously defined.
This requires prior knowledge of the data to be worked on and may lead to overestimating or
underestimating the number of components required. The second limitation is that, since the
regimes in our model are defined by an exponential, the model is not capable of long-term
forecasting.

Future work include considering more complex spectral densities instead of Gaussian func-
tions, this allows to prescind of the infinite differentiability of sampled functions given by
spectral mixture kernels. On the other hand, due to the high computational cost of the
model, a sparse implementation becomes necessary.

Finally, we hope our proposal contribute towards the goal of developing more expressive
kernels to address for challenging problems involving multivariate data, and also to catalyze
interest in the harmonizable processes which we believe can contribute a great deal to the
machine learning community.
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