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A B S T R A C T

An integrated generation, transmission, and energy storage planning model accounting for short-term con-
straints and long-term uncertainty is proposed. The model allows to accurately quantify the value of flexibility
options in renewable power systems by representing short-term operation through the unit commitment
constraints. Long-term uncertainty is represented through a scenario tree. The resulting model is a large-
scale multi-stage stochastic mixed-integer programming problem. To overcome the computational burden, a
distributed computing framework based on the novel Column Generation and Sharing algorithm is proposed.
The performance improvement of the proposed approach is demonstrated through study cases applied to the
NREL 118-bus power system. The results confirm the added value of modeling short-term constraints and long-
term uncertainty simultaneously. The computational case studies show that the proposed solution approach
clearly outperforms the state of the art in terms of computational performance and accuracy. The proposed
planning framework is used to assess the value of energy storage systems in the transition to a low-carbon
power system.
1. Introduction

Low-carbon power systems of the future will be dominated by
renewable energy sources (RES). A large utilization of variable RES will
increase the flexibility requirements of power systems [1]. Flexibility
is defined as the ability of power systems to adapt to variability and
uncertainty in demand and generation [2,3]. Flexibility is a critical
aspect to be considered in the capacity planning process [4]. Neglecting
short-term details in long-term planning leads to an underestimation
of the flexibility requirements and can result in suboptimal or even
infeasible generation portfolios [5]. Neglecting short-term details also
underestimates the value of flexibility options, such as energy storage
systems (ESSs) [6]. Therefore, short-term flexibility issues should be
represented in long-term planning models to efficiently integrate high
levels of RES. Furthermore, the coordination between generation and
transmission planning is considered to have a substantial impact on the
optimal generation-flexibility mix [4,7]. Since investments are made for
the long term, with several parameters being uncertain at the moment
of decision, there is a strong need to represent long-term uncertainty to
anticipate future scenarios and avoid the risk of locking into inefficient
investment decisions [7].

Including short-term flexibility requirements in long-term planning
requires a finer representation of the hourly operation of the power
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system. This leads to an increase in the complexity of the model.
Therefore, different approaches have been proposed to consider short-
term constraints in long-term planning while maintaining the problem
computationally tractable [5,8–11]. In [8], the unit commitment (UC)
problem was included in generation expansion planning. To avoid
tractability issues, a reduced number of units and a planning horizon of
a single year represented by five typical weeks were considered. In [9],
the model complexity was reduced by considering a linear version
of the UC problem and a reduced set of operating periods. Ref. [5]
proposed clustering generators into equivalent plants to reduce the
number of binary variables, obtaining a 99 % reduction in the solution
time. In [10], complexity was overcome by using a convex relaxation
of the UC problem to represent the operation of the power system.
Results show that the formulation is tractable, and the solution is more
accurate compared with [5]. In [11], transmission constraints were
included in the clustered UC. Tractability was maintained by relaxing
the integrality of the commitment state. In [12], a generation and
transmission planning model including electric vehicles and ramping
constraints was proposed. The model was kept tractable by consider-
ing six representative days to model the yearly operation. Although
the methods presented in [5,8–12] reported clear improvements, only
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Nomenclature

Investment decisions

𝑰𝑛 Vector of additional units installed in node 𝑛.
𝐼E𝑛,𝑒 Additional units of ESS 𝑒 installed in node 𝑛.
𝐼G𝑛,𝑔 Additional units of generator 𝑔 installed in node

𝑛.
𝐼L𝑛,𝑙 Additional lines 𝑙 installed in node 𝑛.
𝒁𝑛 Vector of total installed units in node 𝑛.
𝑍E

𝑛,𝑒 Total installed units of ESS 𝑒 in node 𝑛.
𝑍G

𝑛,𝑔 Total installed units of generator 𝑔 in node 𝑛.
𝑍L

𝑛,𝑙 Total installed lines 𝑙 in node 𝑛.

Operational decisions

𝐷𝑛,𝑡,𝑔 # shutdowns for generator 𝑔 at hour 𝑡 in node
𝑛.

𝐸𝑛,𝑡,𝑒 Energy stored in ESS 𝑒 at hour 𝑡 in node 𝑛
[MWh].

𝐹𝑛,𝑡,𝑙 Flow on line 𝑙 at hour 𝑡 in node 𝑛 [MW].
𝐿S
𝑛,𝑡,𝑏 Load shedding at bus 𝑏 at hour 𝑡 in node 𝑛 [MW].

𝑃𝑛,𝑡,𝑔 Output power of generator 𝑔 at hour 𝑡 in node 𝑛
[MW].

𝑃 c
𝑛,𝑡,𝑒 Power consumed by ESS 𝑒 at hour 𝑡 in node 𝑛

[MW].
𝑃 d
𝑛,𝑡,𝑒 Power delivered by ESS 𝑒 at hour 𝑡 in node 𝑛

[MW].
𝑅prim
𝑛,𝑡,𝑒 Primary reserve of ESS 𝑒 at hour 𝑡 in node 𝑛

[MW].
𝑅prim
𝑛,𝑡,𝑔 Primary reserve of generator 𝑔 at hour 𝑡 in node

𝑛 [MW].
𝑅sec
𝑛,𝑡,𝑒 Downward secondary reserve of ESS 𝑒 at hour 𝑡

in node 𝑛 [MW].
𝑅sec
𝑛,𝑡,𝑔 Downward secondary reserve of generator 𝑔 at

hour 𝑡 in node 𝑛 [MW].
𝑅
sec
𝑛,𝑡,𝑒 Upward secondary reserve of ESS 𝑒 at hour 𝑡 in

node 𝑛 [MW].
𝑅
sec
𝑛,𝑡,𝑔 Upward secondary reserve of generator 𝑔 at

hour 𝑡 in node 𝑛 [MW].
𝑆𝑛,𝑡,𝑔 # of start-ups of generator 𝑔 at hour 𝑡 in node 𝑛.
𝑈𝑛,𝑡,𝑔 # of committed units of generator 𝑔 at hour 𝑡 in

node 𝑛.
𝑈Ec
𝑛,𝑡,𝑒 # of units of ESS 𝑒 charging at hour 𝑡 in node 𝑛.

𝑈Ed
𝑛,𝑡,𝑒 # of units of ESS 𝑒 discharging at hour 𝑡 in node

𝑛.
𝑿𝑛 Vector of operational variables in node 𝑛.

Parameters

𝛼avail𝑛,𝑡,𝑔 % of available generation of one unit of
generator 𝑔 at hour 𝑡 in node 𝑛.

deterministic static planning for a target year was performed, and
long-term uncertainty was not considered.

Extending the deterministic static planning model, [13–15] deal
with the multi-year power system planning problem. In [13], a deter-
ministic multi-year generation expansion planning model including UC
constraints was developed. Tractability was maintained by using twelve
representative days to model the yearly operation. A decomposition
approach was proposed in [14] to solve the deterministic multi-year
generation planning problem including UC constraints. Results showed
that the Dantzig–Wolfe decomposition allows to solve the problem
2

s

𝛼R % of variable generation output covered by
secondary reserve.

𝛽Rp Minimum duration of primary reserve [h].
𝛽Rs Minimum duration of secondary reserve [h].
𝛾𝑒 Emission factor of ESS 𝑒 [t CO2/MWh].
𝛾𝑔 Emission factor of generator 𝑔 [t CO2/MWh].
𝛤max
𝑛 Maximum CO2 emission in node 𝑛 [t CO2].

𝛥Rp Time interval by which primary reserve must be
fully active [h].

𝛥Rs Time interval by which secondary reserve must
be fully active [h].

𝜂c𝑒 Charging efficiency of ESS 𝑒.
𝜂d𝑒 Discharging efficiency of ESS 𝑒.
𝜂sd𝑒 Self discharge per hour of ESS 𝑒 [h−1].
𝜏off𝑔 Minimum off time of generator 𝑔 [h].
𝜏on𝑔 Minimum on time of generator 𝑔 [h].
𝜙𝑛 Probability of node 𝑛.
𝑨𝑛 Matrix coupling operational and investment

decisions in node 𝑛.
𝒄inv𝑛 Vector of investment cost in node 𝑛.
𝑐inv𝑛,𝑒 Investment cost of ESS 𝑒 in node 𝑛 [EUR/MW].
𝑐inv𝑛,𝑔 Investment cost of generator 𝑔 in node 𝑛

[EUR/MW].
𝑐inv𝑛,𝑙 Investment cost of line 𝑙 in node 𝑛 [EUR/MW].
𝒄op𝑛 Vector of operational cost in node 𝑛.
𝑐s𝑔 Start-up cost of generator 𝑔 [EUR].
𝑐UD𝑛 Unsupplied demand cost in node 𝑛 [EUR/MWh].
𝑐var𝑛,𝑒 Variable cost of ESS 𝑒 in node 𝑛 [EUR/MWh].
𝑐var𝑛,𝑔 Variable cost of generator 𝑔 in node 𝑛

[EUR/MWh].
𝑑𝑛,𝑡,𝑏 Load at bus 𝑏 at hour 𝑡 in node 𝑛 [MW].
𝐸max
𝑒 Maximum energy of a unit of ESS 𝑒 [MWh].

𝐸min
𝑒 Minimum energy of a unit of ESS 𝑒 [MWh].

𝐹max
𝑙 Maximum capacity of line 𝑙 [MW].

𝑃 c
𝑒
max Maximum charge power of a unit of ESS 𝑒

[MW].
𝑃 c
𝑒
min Minimum charge power of a unit of ESS 𝑒 [MW].

𝑃 d
𝑒
max Maximum discharge power of a unit of ESS 𝑒

[MW].
𝑃 d
𝑒
min Minimum discharge power of a unit of ESS 𝑒

[MW].
𝑃max
𝑔 Maximum capacity of a unit of generator 𝑔

[MW].
𝑃min
𝑔 Minimum capacity of a unit of generator 𝑔

[MW].
𝑟dn𝑒 Maximum downward ramp rate of a unit of ESS

𝑒 [MW/h].
𝑟dn𝑔 Maximum downward ramp rate of a unit of

generator 𝑔 [MW/h].

efficiently. In [15], a deterministic multi-year transmission and gener-
ation expansion planning under CO2 and local pollutant emission taxes

as proposed. A non-chronological representation of the operation
as used. In Refs. [13–15], aspects such as long-term uncertainty and
nergy storage systems were not included.

Including long-term uncertainty in power system planning rep-
esents a challenge in terms of the tractability of the optimization
roblem [4]. Therefore, decomposition methods and relaxed opera-
ional models were used to solve the problem efficiently. A multi-

tage stochastic mixed-integer generation expansion planning model



Applied Energy 291 (2021) 116736A. Flores-Quiroz and K. Strunz
𝑟prim𝑔 Maximum primary reserve of a unit of generator
𝑔 [MW].

𝑟Rp𝑛,𝑡 Required upward primary reserve at hour 𝑡 in
node 𝑛 [MW].

𝑟Rs𝑛,𝑡 Required secondary reserve to cover load devi-
ations at hour 𝑡 in node 𝑛 [MW].

𝑟sec𝑔 Maximum secondary reserve of a unit of
generator 𝑔 [MW].

𝑟up𝑒 Maximum upward ramp rate of a unit of ESS 𝑒
[MW/h].

𝑟up𝑔 Maximum upward ramp rate of a unit of
generator 𝑔 [MW/h].

𝑼 0 {0, 1} vector indicating if asset is an existing or
a candidate asset.

𝒁0 Vector of installed units of existing assets.
𝑍E0

𝑒 Installed units of existing ESS 𝑒.
𝑍Emax

𝑛,𝑒 Maximum total installed units of ESS 𝑒 in node
𝑛.

𝑍G0
𝑔 Installed units of existing generator 𝑔.

𝑍Gmax
𝑛,𝑔 Maximum total installed units of generator 𝑔 in

node 𝑛.
𝑍L0

𝑙 Installed units of existing line 𝑙.
𝑍Lmax

𝑛,𝑙 Maximum total installed lines 𝑙 in node 𝑛.
𝒁max

𝑛 Vector of maximum total installed units in node
𝑛.

Sets

𝛺𝑛 Set of sibling nodes of node 𝑛.
𝐵 Set of all system buses.
 Set of all ESSs.
0 Set of all existing ESSs.
𝑏 Set of ESSs connected to bus 𝑏.
new Set of all candidate ESSs.
𝐺 Set of all generators.
𝐺0 Set of all existing generators.
𝐺𝑏 Set of generators connected to bus 𝑏.
𝐺new Set of all candidate generators.
𝐺TH Set of all thermal generators.
𝐺VR Set of all variable renewable generators.
𝐾𝑛 Set of indices of elements in 𝑛.
𝐿 Set of all transmission lines.
𝐿0 Set of all existing transmission lines.
𝐿new Set of all candidate transmission lines.
𝐿in
𝑏 Set of lines incoming to bus 𝑏.

𝐿out
𝑏 Set of lines outgoing from bus 𝑏.

 Set of nodes in scenario tree.
𝑛 Set of all predecessors of 𝑛 in scenario tree.
 Set of stages in scenario tree.
𝑇 Set of operational time periods.
𝑛 Set of feasible operational decisions in node 𝑛.
𝑛 Set of feasible total installed units in node 𝑛.

considering different environmental policies was proposed in [16].
A simplified representation of the operation without unit commit-
ment constraints was used. The model was solved heuristically using
a rolling-horizon approach. In [17], a multi-stage stochastic linear
generation and transmission planning model was developed. The model
represents the operation by an economic dispatch with ramp rate
constraints. Unit commitment constraints such as minimum power,
3

operating times, and reserves were neglected. The Progressive Hedging
(PH) algorithm was used to decompose the linear problem through
scenarios and reduce solution times. In [18], the multi-stage stochastic
transmission and ESS planning problem was dealt with. A method based
on Nested Benders Decomposition (NBD) was proposed. The operation
was represented by a DC power flow with no consideration of UC con-
straints. The NBD approach allowed to solve the problem, achieving a
solution with a 1.11% optimality gap. However, the methods presented
in [16–18] do not cover long-term uncertainty and UC constraints in
a unique planning framework. More recently, a stochastic generation
and storage planning model with a more detailed operational model
was proposed in [19]. To solve the problem using Stochastic Dual
Dynamic Integer Programming, uncertainty was assumed to be stage-
wise independent. Although the accuracy of the model was improved,
the stage-wise independence assumption is rather restrictive [20].

The contributions of this paper are threefold. Firstly, an integrated
multi-stage stochastic generation, transmission, and energy storage
planning model accounting for short-term flexibility requirements is
proposed. The model enables an accurate representation of both short-
term operation and long-term uncertainty in a unique planning frame-
work. Thus, the value of investing in flexibility options can be correctly
assessed. Due to the significant role that energy storage systems will
play in renewable power systems, a general ESS model is proposed
to represent the most important characteristics of the different tech-
nologies. The resulting planning model is a large-scale mixed-integer
programming (MIP). Therefore, the second contribution is the devel-
opment of a parallel processing solution framework for leveraging
high-performance distributed computing in long-term planning un-
der uncertainty. The proposed framework makes use of the novel
Column Generation and Sharing decomposition to separate the prob-
lem in several smaller subproblems that can be solved in parallel.
Thirdly, extensive computational experiments are conducted to study
the performance and added value of the proposed method in two
aspects. On the one hand, different planning models are compared to
analyze the improvement in solution quality when considering both
short-term constraints and long-term uncertainty. On the other hand,
different state-of-the-art decomposition methods are implemented and
compared with the proposed methodology. Results show that the pro-
posed methodology increases the solution speed by 86 % and allows to
solve instances that cannot be handled by existing methods.

The framework proposed in this paper differs in several aspects
from [19]. Firstly, the model proposed here considers investment also
in transmission. Secondly, the operational model for the generators
is more accurate, including also operating times constraints originally
neglected. Thirdly, the ESS model proposed here is more general in-
cluding also minimum and maximum charge and discharge power and
ramp rates. Moreover, ESS can participate also in reserve provision.
Fourthly, the highly restrictive stage-wise independence assumption is
not required by the novel solution method.

The remainder of this paper is organized as follows. The multi-stage
stochastic generation, transmission, and storage expansion planning
model is proposed in Section 2. The details of the parallel solution
framework are presented in Section 3. The performance and added
value of the solution method are shown through computational exper-
iments in Section 4. In Section 5, the proposed planning framework is
used to assess the value of ESSs in the transition to a low-carbon power
system for a realistic-size system. Section 6 summarizes the conclusions.

2. Multi-stage stochastic power system planning model

The power system planning problem is a multi-stage stochastic
problem as several parameters are uncertain at the moment of decision.
Investments can be made in different assets such as generation, trans-
mission, and ESSs. In Section 2.1, a base stochastic planning model is
presented, and the treatment of long-term uncertainty is explained. In
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Fig. 1. Scenario tree representation of uncertainties over || decision stages, node 𝑛
t stage 𝑠 representing possible state of uncertain parameters.

ection 2.2, the integrated multi-stage stochastic power system plan-
ing model with flexibility requirements is developed. The flexibility
equirements are modeled through a unit commitment. A general model
or ESSs is proposed, with the aim of representing the capabilities and
imitations of different ESS technologies. A CO2 emission constraint is
ncluded to enforce the transition to a low-carbon system. This will
llow to study the optimal mix of generation, ESSs, and transmission
or a cost-effective power system transformation.

.1. Base multi-stage stochastic power system planning model

The power system planning model is formulated as a multi-stage
tochastic problem to account for long-term uncertainty. The scenario-
ree-based formulation of [21] serves as a suitable general basis for
xtension and modification. In the power system planning problem,
ong-term uncertainty is associated with different parameters, such as
uel prices, investment costs, and future demand. Long-term uncer-
ainty is modeled by a scenario tree over || decision stages,1 as in
ig. 1. Node 𝑛 in stage 𝑠 of the tree constitutes a potential state of the
ncertain parameters at stage 𝑠. Set 𝑛 indicates the predecessor nodes
f 𝑛. Set 𝛺𝑛 denotes the sibling nodes of 𝑛. The root node represents the
nitial state of the system. In this node, only investment decisions are
ade. The following nodes consist of an operational phase, followed by

n investment phase where the investments for the successor nodes are
ecided. In this structure, new assets are available to operate one stage
fter their investment is decided. This multi-stage approach allows
o make investment decisions at several points in time and consider
he information about the uncertain parameters that is known at the
urrent stage. Short-term uncertainty is not explicitly represented in the
ulti-stage approach. Nevertheless, the effect of short-term uncertainty

n the investment decisions is captured in the model presented in
ection 2.2.

Following the scenario-tree-based formulation, the base multi-stage
tochastic power system planning model is described by objective
unction (1) and constraints (2)–(20). Objective function (1) minimizes
he expected sum of investment and operational costs. Investments can
e made in generating units, transmission lines, and energy storage
ystems. Constraints (2)–(4) are the non-anticipativity constraints [22].
hey relate the investments made in the different assets at the pre-
ecessor nodes of 𝑛 with the total installed units in node 𝑛. A delay
f one stage between the investment decision and the availability
f the asset is considered. Constraints (2)–(4) also limit the num-
er of total installed units in node 𝑛. The transmission system is
epresented by a transportation model [23]. Therefore, constraints
ertaining to the transmission network are (5)–(6), in addition to
he non-anticipativity constraint on transmission investments (4). Con-
traint (5) ensures the power balance at each bus of the system for

1 A stage could represent a year or periods comprising multiple years.
4

s

each hour of the operational stage. Constraint (6) limits maximum
flows through the transmission lines to the respective installed capacity.
The simplified model of the generators considers only the maximum
generation limit for thermal generators, given by (7). The power of RES
generators is limited by the installed units and the availability of the
primary source, as shown in (8). The simplified model for ESSs con-
siders the energy balance (9), minimum and maximum energy storage
levels (10), and maximum charge and discharge power constraints (11).
Constraint (10) allows to limit the energy level of the energy storage
to prevent accelerated degradation. For some battery energy storage
technologies, it is suggested to avoid operating at a very low or very
high state of charge to prevent premature aging [24,25].

min
∑

𝑛∈
𝜙𝑛

[

∑

𝑔∈𝐺new

𝑐inv𝑛,𝑔𝐼
G
𝑛,𝑔 +

∑

𝑒∈new

𝑐inv𝑛,𝑒 𝐼
E
𝑛,𝑒 +

∑

𝑙∈𝐿new

𝑐inv𝑛,𝑙 𝐼
L
𝑛,𝑙 (1)

+
∑

𝑡∈𝑇

(

∑

𝑔∈𝐺
𝑐var𝑛,𝑔𝑃𝑛,𝑡,𝑔 +

∑

𝑒∈
𝑐var𝑛,𝑒 𝑃

d
𝑛,𝑡,𝑒

+
∑

𝑏∈𝐵
𝑐UD𝑛 𝐿S

𝑛,𝑡,𝑏

)]

.t.: 𝑍G
𝑛,𝑔 ≤

∑

ℎ∈𝑛

𝐼Gℎ,𝑔 ≤ 𝑍Gmax
𝑛,𝑔 ∀ 𝑛, ∀ 𝑔 ∈ 𝐺 (2)

E
𝑛,𝑒 ≤

∑

ℎ∈𝑛

𝐼Eℎ,𝑒 ≤ 𝑍Emax
𝑛,𝑒 ∀ 𝑛, ∀ 𝑒 ∈  (3)

L
𝑛,𝑙 ≤

∑

ℎ∈𝑛

𝐼Lℎ,𝑙 ≤ 𝑍Lmax
𝑛,𝑙 ∀ 𝑛, ∀ 𝑙 ∈ 𝐿 (4)

∑

𝑔∈𝐺𝑏

𝑃𝑛,𝑡,𝑔 +
∑

𝑒∈𝑏

(𝑃 d
𝑛,𝑡,𝑒 − 𝑃 c

𝑛,𝑡,𝑒) +
∑

𝑙∈𝐿in
𝑏

𝐹𝑛,𝑡,𝑙

−
∑

𝑙∈𝐿out
𝑏

𝐹𝑛,𝑡,𝑙 + 𝐿S
𝑛,𝑡,𝑏 = 𝑑𝑛,𝑡,𝑏 ∀ 𝑛, 𝑡, 𝑏 (5)

− 𝐹max
𝑙 𝑍L

𝑛,𝑙 ≤ 𝐹𝑛,𝑡,𝑙 ≤ 𝐹max
𝑙 𝑍L

𝑛,𝑙 ∀ 𝑛, 𝑡, 𝑙 (6)

𝑛,𝑡,𝑔 ≤ 𝑍𝐺
𝑛,𝑔𝑃

max
𝑔 ∀ 𝑛, 𝑡, ∀ 𝑔 ∈ 𝐺TH (7)

𝑛,𝑡,𝑔 ≤ 𝑍G
𝑛,𝑔𝑃

max
𝑔 𝛼avail𝑛,𝑡,𝑔 ∀ 𝑛, 𝑡, ∀ 𝑔 ∈ 𝐺VR (8)

𝑛,𝑡,𝑒 = (1 − 𝜂sd𝑒 )𝐸𝑛,𝑡−1,𝑒 + 𝜂c𝑒𝑃
c
𝑛,𝑡,𝑒 − 𝑃 d

𝑛,𝑡,𝑒∕𝜂
d
𝑒 ∀ 𝑛, 𝑡, 𝑒 (9)

min
𝑒 𝑍E

𝑛,𝑒 ≤ 𝐸𝑛,𝑡,𝑒 ≤ 𝐸max
𝑒 𝑍E

𝑛,𝑒 ∀ 𝑛, 𝑡, 𝑒 (10)
d
𝑛,𝑡,𝑒 ≤ 𝑃 d

𝑒
max𝑍E

𝑛,𝑒, 𝑃
c
𝑛,𝑡,𝑒 ≤ 𝑃 c

𝑒
max𝑍E

𝑛,𝑒 ∀ 𝑛, 𝑡, 𝑒 (11)
G
𝑛,𝑔 = 𝑍G0

𝑔 ∀ 𝑛, ∀ 𝑔 ∈ 𝐺0 (12)
E
𝑛,𝑒 = 𝑍E0

𝑒 ∀ 𝑛, ∀ 𝑒 ∈ 0 (13)
L
𝑛,𝑙 = 𝑍L0

𝑙 ∀ 𝑛, ∀ 𝑙 ∈ 𝐿0 (14)
G
1,𝑔 = 𝑍G0

𝑔 ∀ 𝑔 ∈ 𝐺0 (15)
E
1,𝑒 = 𝑍E0

𝑒 ∀ 𝑒 ∈ 0 (16)
L
1,𝑙 = 𝑍L0

𝑙 ∀ 𝑙 ∈ 𝐿0 (17)
G
𝑛,𝑔 = 0 ∀ 𝑛 > 1, ∀ 𝑔 ∈ 𝐺0 (18)
E
𝑛,𝑒 = 0 ∀ 𝑛 > 1, ∀ 𝑒 ∈ 0 (19)
L
𝑛,𝑙 = 0 ∀ 𝑛 > 1, ∀ 𝑙 ∈ 𝐿0 (20)

Constraints (12)–(20) are introduced to model existing assets. Con-
traints (12)–(14) set the number of installed units of existing assets
n every node 𝑛 to the number of existing units at the root node. To
aintain the consistency of the model, constraints (15)–(17) set the
umber of additional units installed at the root node to the number of
xisting units. After the root node, no additional units can be installed
or existing assets, as stated by (18)–(20).

.2. Integrated multi-stage stochastic power system planning with flexibility
equirements

The proposed integrated planning model improves the model pre-

ented in Section 2.1 by including a detailed representation of the
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hourly operation in the form of unit commitment constraints. This is the
first of the scientific contributions listed in Section 1. The hourly rep-
resentation of the operation allows capturing demand and renewable
generation variability. The unit commitment constraints capture the
ability of generation and energy storage technologies to respond to this
variability. Also, the operating reserve constraints of the unit commit-
ment model allow to represent short-term uncertainty. The flexibility
requirements of power systems with high penetration of renewable
energy can so be quantified accurately. Thus, the value of investing
in flexibility options can be assessed. The flexibility options considered
in the planning model are energy storage systems and open-cycle gas
turbines. The UC model developed here comprises system, generator,
and ESS constraints. The system constraints cover the power balance,
operating reserve requirements, and CO2 emission limits. The opera-
tional model of generators includes minimum and maximum output
power, minimum operation time intervals, ramping rates, and reserve
capability constraints. In the case of the ESS, the operation model not
only considers the energy balance constraint but also minimum and
maximum charge and discharge power, ramping rates, and operating
reserve constraints, improving the ESS representation used for planning
purposes so far [18,19].

In the proposed integrated model, long-term uncertainty is rep-
resented by the scenario-tree-based formulation of Section 2.1. The
impact of short-term uncertainty in investment decisions is implic-
itly modeled by operating reserve requirements. Operating reserves
are allocated to manage uncertainty in the short-term operation [26,
27]. These reserve requirements will encourage investing in flexibil-
ity options to cope with imbalances caused by short-term load and
RES uncertainty. Moreover, the detailed representation of the hourly
operation eliminates the need for an explicit model of short-term uncer-
tainties. In [28], a power system planning model considering short-term
uncertainty and a counterpart without short-term uncertainty were
compared. Results show that the difference in total costs and invest-
ment decisions obtained by both models is almost negligible if the
short-term operational constraints are included and a sufficient number
of representative days is used. This is because the flexibility options
installed to cope with hourly variability of demand and renewable
generation will provide most of the flexibility required to respond to
imbalances caused by short-term uncertainty.

Incorporating the UC in long-term planning leads to a
high-dimensional problem. To reduce the size of the problem, a clus-
tered UC model is used. A similar formulation was used in [5] for
deterministic static planning. As opposed to [5], the proposed model
includes long-term uncertainty, ESSs, and the transmission network.
In the clustered UC, generating units with similar characteristics are
combined into a single equivalent generator with multiple units. There-
fore, investment and commitment decisions become integer variables.
In what follows, the system, generator, and ESS constraints are intro-
duced.

2.2.1. System constraints
In addition to the power balance (5), constraints such as operating

reserve and emission limits are included. Constraints (21)–(23) repre-
sent the primary and secondary reserve requirements. These reserves
can be deployed in real time to manage imbalances due to short-term
uncertainty of generation and load [26,27]. Primary reserve is required
to limit frequency excursions after a disturbance or event [27,29]. In
this work, primary reserve is determined such that a sudden loss of
generated power can be covered, thus upward primary reserve is being
quantified. Primary reserve resources must be fully operational within
seconds. Secondary reserve aims to restore the system frequency and to
release the primary reserve. Secondary reserve must be fully available
within minutes [27]. Including operating reserve requirements allows
to model short-term uncertainty implicitly. Constraint (24) imposes a
maximum limit on the CO2 emissions from thermal generation and
5

ESSs. The CO2 emission coefficient 𝛾𝑒 is greater than zero for energy 𝑃
storage technologies that use fossil fuels, such as compressed air energy
storage.
∑

𝑔∈𝐺TH

𝑅prim
𝑛,𝑡,𝑔 +

∑

𝑒∈
𝑅prim
𝑛,𝑡,𝑒 ≥ 𝑟Rp𝑛,𝑡 ∀ 𝑛, 𝑡 (21)

∑

𝑔∈𝐺TH

𝑅
sec
𝑛,𝑡,𝑔 +

∑

𝑒∈
𝑅
sec
𝑛,𝑡,𝑒 −

∑

𝑔∈𝐺VR

𝛼R𝑃𝑛,𝑡,𝑔 ≥ 𝑟Rs𝑛,𝑡 ∀ 𝑛, 𝑡 (22)

∑

𝑔∈𝐺TH

𝑅sec
𝑛,𝑡,𝑔 +

∑

𝑒∈
𝑅sec
𝑛,𝑡,𝑒 −

∑

𝑔∈𝐺VR

𝛼R𝑃𝑛,𝑡,𝑔 ≥ 𝑟Rs𝑛,𝑡 ∀ 𝑛, 𝑡 (23)

∑

𝑡∈𝑇
(
∑

𝑔∈𝐺TH

𝛾𝑔𝑃𝑛,𝑡,𝑔 +
∑

𝑒∈
𝛾𝑒𝑃

d
𝑛,𝑡,𝑒) ≤ 𝛤max

𝑛 ∀ 𝑛 (24)

2.2.2. Generating unit constraints
The operation of the generators is modeled by (25)–(35). Maximum

and minimum generation limits are imposed by constraints (25) and
(26), respectively. Constraints (27)–(29) represent the maximum pri-
mary and secondary reserve that can be provided by generators. These
limits consider also that reserve capacity is limited by the ramping
rates. Start-up and shut-down variables are included to represent start-
up costs and to constrain minimum operation times. These variables are
related through the unit commitment state equation (30). The ramping
limits of generators are imposed by (31) and (32). It is assumed that,
when a unit is started, its output is limited by 𝑃min

𝑔 . When a unit is
hut down, it can immediately reduce its power from 𝑃min

𝑔 to zero.
Constraints (33) and (34) impose minimum operating times. Constraint
(35) restricts the number of units that can be committed to the number
of units that have been built.

𝑃𝑛,𝑡,𝑔 + 𝑅prim
𝑛,𝑡,𝑔 + 𝑅

sec
𝑛,𝑡,𝑔 ≤ 𝑈𝑛,𝑡,𝑔𝑃

max
𝑔 ∀ 𝑛, 𝑡, ∀ 𝑔 ∈ 𝐺TH (25)

𝑛,𝑡,𝑔𝑃
min
𝑔 + 𝑅sec

𝑛,𝑡,𝑔 ≤ 𝑃𝑛,𝑡,𝑔 ∀ 𝑛, 𝑡, ∀ 𝑔 ∈ 𝐺TH (26)

𝑅prim
𝑛,𝑡,𝑔 ≤ 𝑈𝑛,𝑡,𝑔𝑟

prim
𝑔 ∀ 𝑛, 𝑡, ∀ 𝑔 ∈ 𝐺TH (27)

𝑅
sec
𝑛,𝑡,𝑔 ≤ 𝑈𝑛,𝑡,𝑔𝑟

sec
𝑔 ∀ 𝑛, 𝑡, ∀ 𝑔 ∈ 𝐺TH (28)

𝑅sec
𝑛,𝑡,𝑔 ≤ 𝑈𝑛,𝑡,𝑔𝑟

sec
𝑔 ∀ 𝑛, 𝑡, ∀ 𝑔 ∈ 𝐺TH (29)

𝑈𝑛,𝑡,𝑔 = 𝑈𝑛,𝑡−1,𝑔 + 𝑆𝑛,𝑡,𝑔 −𝐷𝑛,𝑡,𝑔 ∀ 𝑛, 𝑡, ∀ 𝑔 ∈ 𝐺TH (30)

𝑃𝑛,𝑡,𝑔 − 𝑃𝑛,𝑡−1,𝑔 ≤ 𝑈𝑛,𝑡−1,𝑔𝑟
up
𝑔 + 𝑆𝑛,𝑡,𝑔𝑃

min
𝑔 ∀ 𝑛, 𝑡, ∀ 𝑔 ∈ 𝐺TH (31)

𝑃𝑛,𝑡−1,𝑔 − 𝑃𝑛,𝑡,𝑔 ≤ 𝑈𝑛,𝑡−1,𝑔𝑟
dn
𝑔 +𝐷𝑛,𝑡,𝑔𝑃

min
𝑔 ∀ 𝑛, 𝑡, ∀ 𝑔 ∈ 𝐺TH (32)

𝑈𝑛,𝑡,𝑔 ≥
𝑡

∑

𝑡′=𝑡−𝜏on𝑔

𝑆𝑛,𝑡′ ,𝑔 ∀ 𝑛, 𝑡, ∀ 𝑔 ∈ 𝐺TH (33)

G
𝑛,𝑔 − 𝑈𝑛,𝑡,𝑔 ≥

𝑡
∑

𝑡′=𝑡−𝜏off𝑔

𝐷𝑛,𝑡′ ,𝑔 ∀ 𝑛, 𝑡, ∀ 𝑔 ∈ 𝐺TH (34)

𝑛,𝑡,𝑔 ≤ 𝑍G
𝑛,𝑔 ∀ 𝑛, 𝑡, ∀ 𝑔 ∈ 𝐺TH (35)

.2.3. Energy storage system constraints
The operation of ESSs is modeled by (36)–(47), in addition to the

nergy balance (9) and storage capacity constraint (10). Maximum and
inimum discharge and charge power are represented by (36) and

37), respectively. Minimum power is required for some technologies
uch as pumped hydro storage or compressed air energy storage. Ramp-
ng limits are imposed by (38) and (39). Constraints (40) and (41)
nsure that there is sufficient energy in the storage system to provide
perating reserve during the required time. It is stated that the energy
t the end of the reserve provision time must be within the capacity
imits of the storage system [30]. Not including this can result in an
verestimation of the capabilities of ESS. It is assumed that the reserve
rovision time does not exceed the one-hour time step of the model.
he power that an ESS can provide for reserve depends on the charging
ower and discharging power of the ESS, as shown in (42) and (43).
he reserve provision of the ESS is limited by its maximum ramp rates,
s shown in (44)–(46). Constraint (47) limits the number of storage
nits that can operate to the number of units that have been built.
dmin𝑈Ed ≤ 𝑃 d ≤ 𝑃 dmax𝑈Ed ∀ 𝑛, 𝑡, 𝑒 (36)
𝑒 𝑛,𝑡,𝑒 𝑛,𝑡,𝑒 𝑒 𝑛,𝑡,𝑒
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𝑃 c
𝑒
min𝑈Ec

𝑛,𝑡,𝑒 ≤ 𝑃 c
𝑛,𝑡,𝑒 ≤ 𝑃 c

𝑒
max𝑈Ec

𝑛,𝑡,𝑒 ∀ 𝑛, 𝑡, 𝑒 (37)

𝑃 d
𝑛,𝑡,𝑒 − 𝑃 c

𝑛,𝑡,𝑒 − (𝑃 d
𝑛,𝑡−1,𝑒 − 𝑃 c

𝑛,𝑡−1,𝑒) ≤ 𝑟up𝑒 𝑍E
𝑛,𝑒 ∀ 𝑛, 𝑡, 𝑒 (38)

𝑃 d
𝑛,𝑡−1,𝑒 − 𝑃 c

𝑛,𝑡−1,𝑒 − (𝑃 d
𝑛,𝑡,𝑒 − 𝑃 c

𝑛,𝑡,𝑒) ≤ 𝑟dn𝑒 𝑍E
𝑛,𝑒 ∀ 𝑛, 𝑡, 𝑒 (39)

(1 − 𝜂sd𝑒 𝛽Rs)𝐸𝑛,𝑡−1,𝑒 + (𝜂c𝑒𝑃
c
𝑛,𝑡,𝑒 − 𝑃 d

𝑛,𝑡,𝑒∕𝜂
d
𝑒 )𝛽

Rs

− 1∕𝜂d𝑒 (𝛽
Rp𝑅prim

𝑛,𝑡,𝑒 + 𝛽Rs𝑅
sec
𝑛,𝑡,𝑒) ≥ 𝐸min

𝑒 𝑍E
𝑛,𝑒∀ 𝑛, 𝑡, 𝑒 (40)

(1 − 𝜂sd𝑒 𝛽Rs)𝐸𝑛,𝑡−1,𝑒 + (𝜂c𝑒𝑃
c
𝑛,𝑡,𝑒 − 𝑃 d

𝑛,𝑡,𝑒∕𝜂
d
𝑒 )𝛽

Rs

+ 𝜂c𝑒𝛽
Rs𝑅sec

𝑛,𝑡,𝑒 ≤ 𝐸max
𝑒 𝑍E

𝑛,𝑒 ∀ 𝑛, 𝑡, 𝑒 (41)

𝑅
sec
𝑛,𝑡,𝑒 + 𝑅prim

𝑛,𝑡,𝑒 ≤ 𝑃 d
𝑒
max𝑍E

𝑛,𝑒 − 𝑃 d
𝑛,𝑡,𝑒 + 𝑃 c

𝑛,𝑡,𝑒 ∀ 𝑛, 𝑡, 𝑒 (42)
sec
𝑛,𝑡,𝑒 ≤ 𝑃 c

𝑒
max𝑍E

𝑛,𝑒 − 𝑃 c
𝑛,𝑡,𝑒 + 𝑃 d

𝑛,𝑡,𝑒 ∀ 𝑛, 𝑡, 𝑒 (43)

𝑅prim
𝑛,𝑡,𝑒 ≤ 𝑟up𝑒 𝛥Rp𝑍E

𝑛,𝑒 ∀ 𝑛, 𝑡, 𝑒 (44)

𝑅
sec
𝑛,𝑡,𝑒 ≤ 𝑟up𝑒 𝛥Rs𝑍E

𝑛,𝑒 ∀ 𝑛, 𝑡, 𝑒 (45)
sec
𝑛,𝑡,𝑒 ≤ 𝑟dn𝑒 𝛥Rs𝑍E

𝑛,𝑒 ∀ 𝑛, 𝑡, 𝑒 (46)
Ec
𝑛,𝑡,𝑒 + 𝑈Ed

𝑛,𝑡,𝑒 ≤ 𝑍E
𝑛,𝑒 ∀ 𝑛, 𝑡, 𝑒 (47)

.2.4. Integrated multi-stage stochastic power system planning model
The multi-stage stochastic power system planning model with flex-

bility constraints is described by problem (48). The objective function
48a) now includes the start-up costs. Variables 𝐼G𝑛,𝑔 , 𝐼E𝑛,𝑒, 𝐼

L
𝑛,𝑙, 𝑍

G
𝑛,𝑔 , 𝑍E

𝑛,𝑒,
L
𝑛,𝑙, 𝑈𝑛,𝑡,𝑔 , 𝑈Ec

𝑛,𝑡,𝑒, 𝑈
Ed
𝑛,𝑡,𝑒, 𝑆𝑛,𝑡,𝑔 , and 𝐷𝑛,𝑡,𝑔 are integers, variable 𝐹𝑛,𝑡,𝑙 is a

ontinuous variable, the remaining ones are non-negative continuous
ariables.

min
∑

𝑛∈
𝜙𝑛

[

∑

𝑔∈𝐺new

𝑐inv𝑛,𝑔𝐼
G
𝑛,𝑔 +

∑

𝑒∈new

𝑐inv𝑛,𝑒 𝐼
E
𝑛,𝑒 +

∑

𝑙∈𝐿new

𝑐inv𝑛,𝑙 𝐼
L
𝑛,𝑙 (48a)

+
∑

𝑡∈𝑇

(

∑

𝑔∈𝐺

(

𝑐var𝑛,𝑔𝑃𝑛,𝑡,𝑔 + 𝑐s𝑔𝑆𝑛,𝑡,𝑔

)

+
∑

𝑒∈
𝑐var𝑛,𝑒 𝑃

d
𝑛,𝑡,𝑒

+
∑

𝑏∈𝐵
𝑐UD𝑛 𝐿S

𝑛,𝑡,𝑏

) ]

.t.: (2)–(6), (8)–(10), (12)–(20), (21)–(47). (48b)

. Parallel solution framework

The multi-stage stochastic planning problem presented in
ection 2.2 is a large-scale mixed-integer programming problem. Even
orresponding deterministic models are known to be challenging to
olve [14]. Furthermore, the multi-stage stochastic problem becomes
asily intractable. Even for small-size systems, the model could be
oo large to be solved by existing commercial solvers. Therefore, a
ell-suited solution method is required.

The proposed parallel solution framework is depicted in Fig. 2. First,
roblem (48) is decomposed into a master problem and | | subprob-
ems using the Dantzig–Wolfe reformulation described in Appendix A.
ollowing the reformulation, a parallel solution using distributed com-
uting is enabled by the novel Column Generation & Sharing (CG&S)
ethod. There, the master problem and subproblems are constructed

n the master and worker processors, respectively. An optimal solution
o problem (48) is found iteratively by the workers coordinated by the
aster processor. The main innovative feature is the Column Sharing

CS) procedure, which leads to a significant speed-up by sharing infor-
ation among the subproblems. The proposed CG&S method extends

he standard Column Generation (CG) [31] algorithm. It allows to
xploit not only the diagonal block structure of problem (48), but also
he scenario tree structure. The diagonal block structure is exploited by
he decomposition, while the scenario tree structure is exploited by the
ovel Column Sharing procedure.

The proposed parallel solution framework is the second scientific
ontribution listed in Section 1. In Section 3.1, the CG&S method
s presented, and the distributed computing implementation is dis-
ussed. In Section 3.2, the novel Column Sharing procedure is proposed.
6

ection 3.3 discusses the convergence guarantee of the CG&S method. a
.1. Column generation and sharing method

Fig. 2 depicts the Column Generation and Sharing method within
he parallel solution framework. Before starting the CG&S method,
roblem (48) is reformulated using the Dantzig–Wolfe decomposition.
he details of the proposed reformulation are described in Appendix A.
y this mean, a master problem (MP) and | | subproblems 𝑆𝑃𝑛 are ob-
ained. Then, the master problem and the subproblems are constructed
n the master and worker processors, respectively. Over the course of
he CG&S method, problem (48) is solved in a distributed fashion by the
orkers through the coordination of the master processor. Information

lows between the processors as depicted by the dashed lines in Fig. 2.
he openMPI implementation of the Message Passing Interface is used
o communicate between the processors.

The CG&S method starts by solving the linear programming (LP)
elaxation of the master problem in the master processor. In this step,
ual prices (𝝅𝑛, 𝜇𝑛) are obtained for each node 𝑛 of the scenario tree.
he dual prices are sent to the worker processors, as shown in Fig. 2.
n the workers, the subproblems are solved to generate columns with
inimum reduced cost 𝑧sp𝑛 , defined in Appendix A. A column is defined

s a pair of feasible total installed units and its associated optimal
peration for node 𝑛, denoted by {𝒁̂𝑛, 𝑿̂𝑛}. The columns generated by
he subproblems and their reduced cost 𝑧sp𝑛 are sent back to the master
rocessor.

In a next step, the novel Column Sharing procedure is applied. Here,
olumns are shared among the workers to generate additional columns
𝒁̂

s
𝑛, 𝑿̂

s
𝑛} that improve the efficiency of the algorithm. The columns

enerated by the Column Sharing procedure are sent back to the master
rocessor, as shown in Fig. 2. Afterwards, the columns are added to the
P. In the case of the columns generated by the subproblems, only the

nes with negative reduced cost 𝑧sp𝑛 are added to the MP. In the case of
he columns generated by the CS procedure, all of them are added to
he MP. Then, the LP gap is computed as in [32], and the termination
riterion is checked. If columns with negative reduced cost exist, a new
teration is performed. If not, the termination criterion is met2 with
𝑎𝑝LP = 0 [32].

Since the LP relaxation of the master problem is being solved,
ractional values can be obtained. Therefore, integrality of the solution
s enforced after the termination criterion is met, by solving the Integer
P. Then, the MIP gap is computed, and the algorithm terminates.3

.2. Novel column sharing procedure

The aim of the Column Sharing procedure is to overcome known
onvergence issues of the CG approach [31]. In general, convergence
f the CG approach could be improved if more information were added
o the master problem [32]. In this sense, the idea is to exploit the
cenario tree structure to find feasible and relevant columns with less
omputational effort. The novel CS procedure generates new columns
y sharing information among the subproblems, as shown in Fig. 2. By
dding new columns, more information is added to the MP, and the
rice information for the subproblems is improved.

The Column Sharing procedure allows to eliminate convergence
ssues of the CG approach related to the ‘heading-in’’4 and ‘‘tailing-off’’5
ffects. A CS procedure was proposed in [33] for recombining scenario
rees. The CS procedure proposed here is improved in that it applies to
ecombining and non-recombining scenario trees.

2 The algorithm could be terminated when the 𝑔𝑎𝑝LP is below a threshold.
3 If 𝑔𝑎𝑝MIP is not in the required range, branch-and-price should be used.
4 The ‘heading-in’’ effect occurs in the first iterations when there is a small

umber of columns in the master problem. Thus, the obtained prices are of
oor quality. This results in irrelevant columns and a poor lower bound [31].

5 The ‘‘tailing-off’’ effect occurs when the algorithm is close to the optimum

nd little progress per iteration is obtained [31].
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Fig. 2. Diagram of parallel solution framework.
The novel CS procedure, described by Algorithm 1, works in the
following way. Once the subproblem for node 𝑛 has been solved, a
column {𝒁̂𝑛, 𝑿̂𝑛} is obtained, as described in Section 3.1. The vector
𝒁̂𝑛 contains the total installed units for node 𝑛, and it is also a feasible
solution for the installed units of the subproblems for its sibling nodes,
denoted by the set 𝛺𝑛. Then, the vector 𝒁̂𝑛 is shared with each sibling
node 𝑛̄ ∈ 𝛺𝑛. Reciprocally, node 𝑛 receives vector 𝒁̂ 𝑛̄ from each sibling
node 𝑛̄. For node 𝑛, an additional column can be obtained by solving
the operation with installed units fixed to 𝒁̂ 𝑛̄. In this way, |𝛺𝑛| new
columns are obtained per node 𝑛. These additional columns can be
generated with reduced effort since solving the operation with fixed
capacities is significantly faster than solving the subproblem 𝑆𝑃𝑛, as de-
fined in Appendix A. Moreover, these new columns are relevant to the
master problem because they intrinsically meet the non-anticipativity
constraints (2)–(4).

Algorithm 1 Column sharing procedure.
1: procedure ColumnSharing(𝑛)
2: for 𝑛̄ ∈ 𝛺𝑛 do
3: Send 𝒁̂𝑛 to node 𝑛̄, receive 𝒁̂ 𝑛̄ from node 𝑛̄
4: Compute operation 𝑿

s
𝑛 for installed units 𝒁̂

s
𝑛 = 𝒁̂ 𝑛̄

5: Send column {𝒁̂
s
𝑛,𝑿

s
𝑛} to Master Processor

3.3. Convergence of column generation and sharing method

The convergence proof of the proposed improved Column Gen-
eration and Sharing algorithm is sketched in the following. In the
case where the decision variables of the master problem are con-
tinuous, convergence of the algorithm can be proven following the
convergence proof for the standard CG. The number of columns that
can be generated is finite because set 𝑛, defined in Appendix A, is
a bounded integer polyhedron [31]. In each iteration, a column is
obtained by solving subproblem 𝑆𝑃𝑛, and |𝛺𝑛| columns are obtained
by the CS procedure, for each node 𝑛. At the end of the iteration, the
algorithm either terminates, or there is at least one column {𝒁̂𝑛, 𝑿̂𝑛}
with negative reduced cost 𝑧sp. This column must be different from the
7

𝑛

ones that had been added to the MP in previous iterations because no
column in the MP can have negative reduced cost [32]. Therefore, after
a finite number of iterations, no more columns with negative reduced
cost 𝑧sp𝑛 exist, and the algorithm terminates. Convergence in the case
where the decision variables of the MP are binary can be proven by
branch-and-price with proper branching rules [31].

4. Validation of performance

In this section, the performance and added value of the proposed
planning framework is validated in two aspects. Firstly, the improve-
ment in solution quality when considering both UC constraints and
long-term uncertainty is analyzed in Section 4.2. The integrated plan-
ning model of Section 2.2 is compared with different state-of-the-art
planning models. Secondly, the computational performance of the pro-
posed Column Generation and Sharing method is studied in Section 4.3.
The Column Generation and Sharing method is compared with different
state-of-the-art solution methods for solving the integrated planning
model of Section 2.2. The validation of performance and benchmarking
of the proposed method against existing state-of-the-art methods is the
third contribution listed in Section 1.

The computational experiments of Sections 4.2 and 4.3 are based on
the NREL 118-bus system [34] described in Section 4.1. The different
models and solution methods were implemented in Java and solved
using CPLEX 12.8 on the High Performance Computing cluster of TU
Berlin. The cluster is composed of 132 nodes, equipped with two
2.67 GHz quad-core Intel Xeon E5-2630 v4 processors and 256 GB
RAM.

4.1. Test system

The computational experiments are based on the NREL 118-bus
system [34] for the period 2016 to 2040. The NREL 118-bus system,
shown in Fig. 3, can be considered as a medium-size system [34]. It was
selected due to its higher data resolution and higher RES penetration
compared to the IEEE 118-bus system.

The NREL 118-bus system consists of 118 buses, 186 lines, and 327
generation units. Hydro and geothermal generators are not considered.
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Fig. 3. One-line diagram of NREL 118-bus system.
a

Steam turbines are supplied by coal. Existing generators are clustered
by technology and location, resulting in 46 generation plants. The
investment options are open-cycle gas turbines, combined cycle gas
turbines, solar generation, pumped hydro storage (PHS), compressed
air energy storage (CAES), batteries, and transmission lines. Among
these investment candidates, open-cycle gas turbines and ESSs are
considered as flexibility options. Future investment in wind is consid-
ered given. In total, 18 generation plants, 10 ESSs, and 10 lines are
candidates for investment. Load and solar profiles from [34] are used.
Generator parameters and investment costs are obtained from [35].
Technical parameters of energy storage technologies and investment
costs are obtained from [36,37]. Based on [35,36], investment costs
of renewable generation, batteries, and CAES show a decreasing trend.
Fuel prices are obtained from [38]. In each stage, a CO2 emission limit
is imposed with the aim of reducing emissions by 80 % in 2040 with
respect to the initial year. Further details of the input data are provided
in Appendix D.

The scenario tree is an input to the methodology. To illustrate
the performance of the proposed method, uncertainty is considered
in gas price and demand growth. The scenarios are generated follow-
ing [39,40]. Demand and gas price are modeled as two correlated
geometric Brownian motion processes. The scenario tree is generated
using the moment matching method with three branches per node, as
described in Appendix B. No further scenario reduction is applied. Up
to five stages comprising five years each are considered. The first stage
represents the root node and corresponds to the period 2016 to 2020.
Each stage is represented by typical days or weeks.

4.2. Impact of unit commitment constraints and uncertainty

For the purpose of analyzing the impact of UC constraints and long-
term uncertainty, three different planning models were considered:
8

• SP-noUC: Stochastic planning without UC constraints [18]. c
• DP-UC: Deterministic planning with UC constraints [14]. Expected
values are used for fuel prices and demand growth.

• SP-UC: Proposed stochastic planning model with UC constraints.
Since the aim is to study the accuracy of the modeling rather than

the computational performance, the NREL-118 system was reduced to
a three-region representation.6 The planning horizon comprises five
stages. Each stage was represented by four typical weeks to account for
the seasonality of load and RES. For each planning model, the optimal
investment plan was obtained, and the investment cost was computed.
Afterwards, the expected operation cost of each investment plan was
computed by simulating the operation with UC constraints for each
node of the scenario tree.

The results are given in Table 1 and Fig. 4. Table 1 shows the
expected investment, operation and total costs, unserved load, and RES
curtailment. Fig. 4 shows the expected installed capacities for each
planning model. Stage 1 is omitted as it represents the initial state of
the system.

The stochastic planning model without UC constraints overesti-
mated the capability of the system to integrate RES and underestimated
the value of flexibility options. The investment in solar energy was
increased, and the investment in flexibility options, specifically in
batteries, was reduced, as shown in Fig. 4. The lack of flexibility led
to unserved energy, higher RES curtailment, and 47 % higher total
system cost compared to the proposed stochastic planning model with
UC constraints, as shown in Table 1.

The solution obtained by the deterministic planning model with
UC constraints is not well adapted to the different possible scenarios.
From stage 3 on, the deterministic model invested less capacity than

6 The three regions are defined as in [34], and shown in Fig. 3. Gener-
tors and demand are aggregated by region, and intra-regional transmission
onstraints are neglected.
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Table 1
Expected costs and operational results in validation case of Section 4.2.

Model Investment cost
[billion Euro]

Operation cost
[billion Euro]

Total cost
[billion Euro]

Unserved load
[TWh]

RES Curtailment
[TWh]

Stochastic planning without UC constraints (SP-noUC) 21 61.8 82.8 5.4 236.8
Deterministic planning with UC constraints (DP-UC) 18.3 43.4 61.8 1.4 143.2
Stochastic planning with UC constraints (SP-UC) 18.8 37.4 56.2 0.01 166.9
Fig. 4. Expected installed capacities in validation case of Section 4.2.
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he stochastic planning model with UC constraints, as shown in Fig. 4.
hus, it could not cope with scenarios of high demand. This resulted in
nserved load. The system cost was 9 % higher than for the stochastic
lanning model with UC constraints, as also shown in Table 1.

In summary, the results show that neglecting UC constraints or long-
erm uncertainty leads to suboptimal planning decisions. The proposed
ntegrated model presented in Section 2.2 significantly improves the
olution quality compared with the state-of-the-art models by includ-
ng UC constraints and long-term uncertainty in a unique planning
ramework.

.3. Computational performance

In this section, the computational performance of the novel CG&S al-
orithm for solving the multi-stage stochastic planning model with UC
onstraints proposed in Section 2.2 is studied. To do so, the proposed
olumn Generation and Sharing method is compared with different
tate-of-the-art solution methods such as the PH algorithm, Nested
enders decomposition, and the Column Generation algorithm. Two
ariants of the CG algorithm are considered. These variants implement
tate-of-the-art stabilization techniques with the aim of improving the
G algorithm. A discussion on stabilization techniques for the CG algo-
ithm is provided in Appendix C. In summary, the following solution
ethods were implemented using distributed computing and used to

olve problem (48) of Section 2.2:

• Undecomposed model (UD): Problem (48) is solved with CPLEX
12.8 using 20 CPUs.

• CG with interior point stabilization (CG-ip): Problem (48) is de-
composed by nodes of the scenario tree and solved with the
CG approach. To improve the convergence, the interior point
stabilization [14,41] is used.

• CG with dual smoothing (CG-ds): Problem (48) is decomposed by
nodes of the scenario tree and solved with the CG approach. To
improve the convergence, the auto-adaptive Wentges dual price
smoothing [42] is used.

• Column Generation and Sharing (CG&S): Problem (48) is decom-
posed by nodes of the scenario tree and solved using the proposed
Column Generation and Sharing algorithm. The interior point
9

method is used to solve the master problem of the CG&S method. p
• Progressive Hedging7 (PH): Problem (48) is decomposed by sce-
narios and solved with PH [17]. The variable fixing heuristic is
used to avoid cyclic behavior [48].

• Nested Benders (NBD): Problem (48) is decomposed by nodes
and solved using the NBD [18]. To improve the convergence, the
strengthened Benders’ cuts [19] are used.

our instances were constructed by increasing the number of stages ||
nd nodes | | in the scenario tree. No reduction was applied to the
REL 118-Bus system. Each stage was represented by one typical day

o avoid memory issues for the UD model. A MIP gap of 0.5 % was
equired.

Table 2 shows the numbers of variables and constraints of the
ubproblems of each method. The total size of the problem is shown
or the UD model. The size of the UD model grows exponentially
ith the number of stages ||. The size of the PH subproblems grows

inearly with the number of stages. This growth can become an issue
or larger problems. The size of the subproblems of NBD, CG-ip, CG-ds,
nd CG&S remains constant since these methods decompose by nodes
f the scenario tree. The number of constraints in the NBD subproblems
ill increase in each iteration as new cuts are added [18].

Table 3 summarizes the computational performance of the solution
ethods. The solution time and number of iterations are shown. For

he methods where no solution within the 0.5 % gap was found within
4 h, the resulting optimality gap is given. The results clearly show the
enefit of using the novel Column Generation and Sharing approach. As
he number of stages increases, and consequently the size of the prob-
em increases, the proposed method becomes significantly faster than
he state-of-the-art decomposition methods. Only in the first instance,
he UD model was faster than the CG&S method. This is because of the
ery small problem size of the first instance. It corresponds to a two-
tage problem with the operational stage represented by only one day.

7 The Progressive Hedging algorithm is considered to be a special case
f the more general Alternating Direction Method of Multipliers method
ADMM) [43,44]. The ADMM and the Progressive Hedging algorithm do
ot guarantee convergence to an optimal solution for mixed-integer inte-
er programming [45,46]. To obtain feasible solutions for mixed-integer

rogramming, additional heuristics are required [46,47].
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Table 2
Problem size for different solution methods.

Instance ||, | | # of Variables [Thousand] # of Constraints [Thousand]

UD CG-ip CG-ds CG&S PH NBD UD CG-ip CG-ds CG&S PH NBD

2, 4 54.2 18 18 18 18.6 18.3 82.5 27.6 27.6 27.6 28.1 28.2
3, 13 216.2 18 18 18 36.8 18.3 329.2 27.6 27.6 27.6 55.8 28.2
4, 40 702.0 18 18 18 54.3 18.3 1069.3 27.6 27.6 27.6 83.4 28.2
5, 121 2159.6 18 18 18 72.3 18.3 3289.7 27.6 27.6 27.6 111.1 28.2
Fig. 5. Convergence of CG with interior point stabilization (CG-ip), CG with dual
smoothing (CG-ds) and proposed Column Generation and Sharing (CG&S) method in
computational experiments of Section 4.3.

However, the solution time of the UD model increases exponentially
with the number of stages. The UD model could not be solved for the
largest instance, as expected due to the large size of the problem. This
is reflected in the high optimality gap observed in Table 3.

The NBD required a large number of iterations to achieve con-
vergence and showed a pronounced ‘‘tailing-off’’ effect. Only the first
instance could be solved within the required gap. Moreover, due to
the sequential structure of the NBD, the parallel processing cannot
be fully exploited. Therefore, each iteration required more time than
for the CG&S approach. The PH algorithm did not allow to solve
the problem efficiently. For the first instance, PH required a similar
computational effort as the NBD. However, for multi-stage settings,
each iteration required a significant effort. Each subproblem is a mixed-
integer quadratic problem, which becomes difficult to solve as the
number of stages increases.

The proposed Column Generation and Sharing method performs
significantly better than the Column Generation with interior point
stabilization and Column Generation with dual price smoothing. Com-
pared with the best variant of the CG algorithm, namely CG with dual
smoothing, the novel CG&S reduced the solution time from 5.5 h to
46 min in the largest instance. The number of iterations reduced from
222 to 21. A reduction of 86 % in solution time was obtained. Overall,
the CG&S method outperforms the CG with interior point stabilization,
CG with dual smoothing, NBD, and PH for every instance.

Fig. 5 shows the convergence of the CG with interior point sta-
bilization, CG with dual smoothing, and the Column Generation and
Sharing method for the case of five stages. Due to the large number
of nodes in the scenario tree and investment options, the CG with
interior point stabilization and CG with dual smoothing required a
large number of iterations to converge. In the first iterations, there
were no sufficient columns in the master problem to obtain useful dual
prices. Consequently, the lower bound was not a good approximation,
and the ‘‘heading-in’’ effect was observed. Towards the last iterations,
the ‘‘tailing-off’’ effect with its slow convergence was observed for the
CG with interior point stabilization and CG with dual smoothing. In
contrast, with the CS procedure included, the ‘‘heading-in’’ effect was
eliminated. The lower bound was significantly improved in the first
four iterations. This occurs because the CS procedure is efficient in
generating new feasible columns per node of the scenario tree in each
10
iteration, as explained in Section 3.2. These extra columns add more
information to the master problem, improving the quality of the dual
prices. Also, adding these columns allows to rapidly reduce the upper
bound and to decrease the ‘‘tailing-off’’ effect.

In summary, the results show that the proposed Column Generation
& Sharing method reduces the solution times considerably compared
to state-of-the-art methods. Moreover, it allows to overcome known
convergence issues of the standard CG approach.

4.4. Concluding remarks

The results presented in Sections 4.2 and 4.3 demonstrate that the
proposed planning framework clearly outperforms the state of the art in
terms of solution quality and computational speed. Section 4.2 showed
the significant relevance of the improved modeling provided by the
proposed integrated planning model. Including UC constraints allows to
accurately assess the value of investing in flexibility options. Including
long-term uncertainty allows the system planner to anticipate future
scenarios. Section 4.3 shows that the proposed solution method reduces
solution time by 86 % compared with state-of-the-art-methods. Overall,
the proposed planning framework allows to efficiently and effectively
model short-term flexibility and long-term uncertainty in a unique
planning model.

5. Case study: Value of energy storage systems in low-carbon
transition

In this section, the proposed planning framework is applied to a
realistic-size case study. The objective of the case study is to quantify
the value of ESSs in the transition to a low-carbon power system. The
case study considers five stages and 121 nodes in the scenario tree.
No reduction was applied to the NREL 118-Bus system described in
Section 4.1. The operation is represented by four different weeks of the
year as opposed to just one day in Section 4.3. This allows to represent a
good number of operating conditions, as well as the seasonality of load
and renewable power sources [8]. The approach allows to consider ESSs
with hourly to daily energy storage capacity. Two case studies were
performed to analyze the value of ESS, a base case with investment in
ESSs and a second case without ESSs.

Concerning the computational performance, the case with ESSs
was solved in eight days with the proposed framework, a 1.5 % gap
was obtained, and 54 iterations were needed. By this same time, the
NBD method had performed 21 iterations obtaining a gap higher than
100 %, and the PH method could not complete the first iteration. These
results confirm the capability of the proposed planning framework
in overcoming the computational burden when solving realistic-size
problems.

Fig. 6 shows the expected installed generation capacity for both
studied cases. Stage 1 is omitted as it represents the initial state of the
system. In both cases, investment in new generation is driven by the
CO2 emission limit imposed by (24). Therefore, an increasing capacity
of renewable power is installed at each stage to achieve the low-carbon
transformation. The decreasing investment costs of solar generation
and energy storage systems, and the increasing cost of fossil fuels also
contribute to the higher integration of renewable sources. The case with
ESSs allows for a higher installed capacity of renewables up to stage
4, compared with the case without ESSs. In stage 5, the opposite is
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Table 3
Computational performance.

Instance ||, | | Solution time [min] # of Iterations Gap [%]

UD CG-ip CG-ds CG&S PH NBD CG-ip CG-ds CG&S PH NBD UD PH NBD

2, 4 0.16 15.5 3.8 1.7 8.0 8.3 152 80 10 9 112 <0.5 <0.5 <0.5
3, 13 14.0 26.9 23.0 5.2 543.2 1440 175 168 23 35 1699 <0.5 2.4 1.5
4, 40 881.4 202.6 93.6 16.8 1440 1440 168 203 27 33 480 <0.5 2.1 1.8
5, 121 1440 389.4 330.4 46.5 1440 1440 204 222 21 10 336 98.6 2.7 1.6
u
e
w

T
t
s
h
g
t

Fig. 6. Expected installed generation capacities in case study of Section 5.

bserved. In the case with ESSs, the amount of solar power installed is
educed by 13 GW compared to the case without ESSs. This is due to
he flexibility provided by ESSs, where available RES can be integrated
ore efficiently into the system. In the case with no ESSs, a higher

apacity of gas-fired units has to be installed in each stage as back-up
eneration to mitigate the variability of the renewable sources and to
rovide ancillary services.

Fig. 7 shows the expected installed power capacity of energy storage
ystems. In stage 2, corresponding to the period 2021 to 2025, a
elatively small power capacity of pumped hydro storage and CAES is
nstalled in the system. This capacity amounts to less than 3 % of the
otal installed generation capacity. In this stage, pumped hydro storage
nd CAES are preferred over batteries due to their lower investment
osts and longer lifetime. These technologies, especially pumped hydro
torage, are in a more mature state [49]. In stage 3, the installed power
apacity of PHS and CAES is increased to support the rising share of
enewable generation. In stage 4, corresponding to the period 2031
o 2035, the stringent CO2 emission limit leads to a share of 54.4%
f renewable power generation. A significant amount of flexibility is
equired to efficiently integrate this high penetration of renewable
ources. Therefore, batteries become a cost-efficient alternative to pro-
ide flexibility to the power system. The installed power capacity of
SSs in the final stage represents 7 % of the total installed capacity in
he system.

Fig. 8 shows the expected yearly electricity generation for both
ases. ESSs allowed for a more efficient penetration of renewable
nergy, with a significant reduction of renewable energy curtailment.
nergy storage systems also allowed for a lower utilization of gas. Fig. 9
hows the expected yearly CO2 emissions by fuel type. In both cases,
he increasing penetration of renewable generation allows reducing
he CO2 emissions to comply with the emission limit imposed by
24). Coal-fired generation is replaced by renewable generation. Thus,
O2 emissions from coal-fired generation decrease rapidly. The CO2
missions from gas-fired generation decrease more slowly. The case
ith ESSs allowed for a higher utilization of coal-fired units and a lower
11

e

Fig. 7. Expected installed power capacity of energy storage systems in case study of
Section 5.

Fig. 8. Expected yearly electricity generation in case study of Section 5.

tilization of the more expensive gas-fired generation. Therefore, CO2
missions originating from coal-fired generation are higher in the case
ith ESSs compared to the case without ESSs.

Table 4 shows the system costs for the case with and without ESSs.
he case without ESSs results in higher investment costs because of
he higher investment in gas-fired units and solar power. Fuel and
tart-up costs are also higher in the case without ESSs because of the
igher renewable curtailment and the higher utilization of gas-fired
eneration. Load shedding occurs in the case without ESSs, increasing
he system cost significantly. Overall, in the case without ESSs the
xpected system cost was 18 % higher than in the case with ESSs.
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Table 4
Expected system costs in case study of Section 5.

Case Investment cost [billion Euro] Fuel and start-up cost [billion Euro] Load shedding cost [billion Euro] Total system cost [billion Euro]

With ESSs 13.11 36.46 0.01 49.58
Without ESSs 14.75 38.74 5.13 58.62
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Fig. 9. Expected yearly CO2 emissions by fuel type in case study of Section 5.

. Conclusions

A comprehensive long-term power system planning framework that
ntegrates short-term flexibility and long-term uncertainty was pro-
osed. The planning model considers investments in generation, trans-
ission, and energy storage. A general model for energy storage

ystems was developed to represent the characteristics of the dif-
erent technologies. The model allows an accurate representation of
he short-term flexibility requirements through the unit commitment
onstraints. Such a comprehensive model benefits from an efficient
olution method. Therefore, a distributed computing framework based
n the novel Column Generation and Sharing algorithm was proposed.
he added value offered by the proposed method was analyzed on case
tudies based on the NREL 118-bus system. Results show that ignoring
nit commitment constraints leads to suboptimal solutions with insuf-
icient investment in flexibility options and significantly higher cost.
eglecting long-term uncertainty results in a system that is not capable

o cope with the different long-term scenarios. The computational study
learly showed the improvement in solution speed obtained by the
roposed framework compared to state-of-the-art methods. It reduces
he solution time by 86 % and allows to solve realistic-size planning
nstances that cannot be solved by existing methods. Results also
onfirm the value of energy storage systems in the long-term transition
o a low-carbon power system. As such, the combination of accuracy
nd superior computational speed makes the proposed framework a
ompelling candidate for planning the transition to zero-carbon power
ystems.
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Appendix A. Dantzig–Wolfe decomposition

To facilitate a decomposition, the matrix form (A.1) of the multi-
stage stochastic problem (48) is introduced first. Constraint (A.1b)
summarizes the non-anticipativity constraints (2)–(4). These are the
complicating constraints that couple the investment decisions made at
the predecessor nodes of 𝑛 with the total installed units in node 𝑛.
q. (A.1c) represents the constraints that relate operational decisions
n node 𝑛 with the total installed units in node 𝑛, namely (6), (8), (10),
34)–(35), and (38)–(47). Constraint (A.1d) summarizes the maximum
nvestment limit, right-hand side of (2)–(4). Constraint (A.1e) summa-
izes the operational constraints that do not explicitly depend on the
otal installed units, namely (5), (9), (21)–(33), (36), and (37). Con-
traint (A.1f) states the integrality of investment decisions. Constraints
A.1g)–(A.1i) summarize the constraints on the investment decisions of
xisting assets, namely constraints (12)–(20). Problem (A.1) has a block
iagonal structure, where a set of independent subproblems is linked by
small number of complicating constraints [31].

min
∑

𝑛∈
𝜙𝑛

(

𝒄inv⊤𝑛 𝑰𝑛 + 𝒄op⊤𝑛 𝑿𝑛

)

(A.1a)

s.t.: 𝒁𝑛 ≤
∑

ℎ∈𝑛

𝑰ℎ ∀ 𝑛 (A.1b)

𝑨𝑛𝑿𝑛 ≤ 𝒁𝑛 ∀ 𝑛 (A.1c)

𝒁𝑛 ≤ 𝒁max
𝑛 ∀ 𝑛 (A.1d)

𝑿𝑛 ∈ 𝑛 ∀ 𝑛 (A.1e)

𝒁𝑛, 𝑰𝑛 ∈ Z|𝐺|+||+|𝐿|
+ ∀ 𝑛 (A.1f)

diag(𝑼 0)𝒁𝑛 = 𝒁0 ∀ 𝑛 (A.1g)

diag(𝑼 0)𝑰1 = 𝒁0 (A.1h)

diag(𝑼 0)𝑰𝑛 = 𝟎 ∀ 𝑛 > 1 (A.1i)

To apply the Dantzig–Wolfe decomposition, the problem is reformu-
ated using the discretization approach [22,31]. To do so, the feasible
egion of total installed units in node 𝑛, which includes generators,
SSs, and lines, is defined as:

𝑛 = {𝒁𝑛 ∈ Z|𝐺|+||+|𝐿|
+ ∣ ∃𝑿𝑛 ∈ 𝑛, 𝑨𝑛𝑿𝑛 ≤ 𝒁𝑛 ≤ 𝒁max

𝑛 ,

diag(𝑼 0)𝒁𝑛 = 𝒁0 }

here 𝑛 is a bounded integer polyhedron. Therefore, any point in 𝑛
an be expressed as a combination of a finite number of integer points,
𝒁̂

𝑗
𝑛}𝑗∈𝐾𝑛

, in 𝑛 [31] such that

𝑛 =
∑

𝑗∈𝐾𝑛

𝜆𝑗𝑛𝒁̂
𝑗
𝑛,

∑

𝑗∈𝐾𝑛

𝜆𝑗𝑛 = 1, 𝜆𝑗𝑛 ∈ {0, 1}. (A.2)

or each feasible vector of total installed units in node 𝑛, 𝒁̂
𝑗
𝑛, there

xists at least one associated optimal operational plan, 𝑿̂
𝑗
𝑛, therefore

𝑛 can be represented as:

𝑛 =
∑

𝜆𝑗𝑛𝑿̂
𝑗
𝑛. (A.3)
𝑗∈𝐾𝑛
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The master problem of the Dantzig–Wolfe decomposition (A.4) is ob-
tained by substituting 𝒁𝑛 and 𝑿𝑛 in (A.1) by (A.2) and (A.3), re-
spectively. Constraint (A.4b) is equivalent to the non-anticipativity
constraints (A.1b). Constraints (A.4c) and (A.4d) ensure that only one
vector of total installed units, and consequently only one operational
plan, is selected for each node in the scenario tree. The associated dual
prices of constraints (A.4b) and (A.4c) are 𝝅𝑛 and 𝜇𝑛, respectively.

min
∑

𝑛∈
𝜙𝑛(𝒄inv⊤𝑛 𝑰𝑛 +

∑

𝑗∈𝐾𝑛

𝜆𝑗𝑛𝒄
op
𝑛

⊤𝑿̂
𝑗
𝑛) (A.4a)

s.t.:
∑

𝑗∈𝐾𝑛

𝜆𝑗𝑛𝒁̂
𝑗
𝑛 ≤

∑

ℎ∈𝑛

𝑰ℎ ∀ 𝑛 (𝝅𝑛) (A.4b)

∑

𝑗∈𝐾𝑛

𝜆𝑗𝑛 = 1 ∀ 𝑛 (𝜇𝑛) (A.4c)

𝜆𝑗𝑛 ∈ {0, 1} ∀ 𝑛, 𝑗 (A.4d)

𝑰𝑛 ∈ Z|𝐺|+||+|𝐿|
+ ∀ 𝑛 (A.4e)

diag(𝑼 0)𝑰1 = 𝒁0 (A.4f)

diag(𝑼 0)𝑰𝑛 = 𝟎 ∀ 𝑛 > 1 (A.4g)

Problem (A.4) may be solved by the CG approach [31]. The CG ap-
proach allows to obtain columns {𝒁̂

𝑗
𝑛, 𝑿̂

𝑗
𝑛} by solving subproblem 𝑆𝑃𝑛,

defined by (A.5), for each node. The objective value of the subproblem,
denoted by 𝑧sp𝑛 , is defined as the reduced cost of column {𝒁𝑛,𝑿𝑛}.

(𝑆𝑃𝑛) 𝑧sp𝑛 = min 𝜙𝑛𝒄
op
𝑛

⊤𝑿𝑛 − 𝝅⊤
𝑛𝒁𝑛 − 𝜇𝑛 (A.5a)

s.t.: 𝑿𝑛 ∈ 𝑛 (A.5b)

𝑨𝑛𝑿𝑛 ≤ 𝒁𝑛 (A.5c)

diag(𝑼 0)𝒁𝑛 = 𝒁0 (A.5d)

𝒁𝑛 ≤ 𝒁max
𝑛 , 𝒁𝑛 ∈ Z|𝐺|+||+|𝐿|

+ (A.5e)

Appendix B. Scenario generation method

To generate the scenario tree, the methodology proposed in [39,40]
is used. Demand and gas price are modeled as two correlated geometric
Brownian motion processes. Then, the scenario tree is obtained using
the moment matching method [50] with three branches per node. The
aim is to find vector 𝒚⊤𝑛 = (𝑦1𝑛, 𝑦2𝑛,… , 𝑦𝐽 𝑛) and a scalar 𝜙̄𝑛 for each
node 𝑛 of the scenario tree. Vector 𝒚𝒏 describes the value of the uncer-
tain parameters at node 𝑛. The conditional probability associated with
node 𝑛 is defined by 𝜙̄𝑛. The objective of the moment matching method
is to obtain 𝒚𝒏 and 𝜙̄𝑛 such that the statistical properties of the original
stochastic process match the statistical properties of the approximated
distribution [50]. For multi-stage scenario trees, the moment matching
method generates the scenario tree recursively, starting from the root
node until the leaf nodes are reached [39,40,50]. In each node 𝑛, the
following optimization problem is solved:

min
𝒚𝑛̃ ,𝜙̄𝑛̃

∑

𝑖∈
𝜑𝑖(𝑓𝑖({𝒚𝑛̃}𝑛̃∈𝑛

, {𝜙̄𝑛̃}𝑛̃∈𝑛
) −𝑄VAL

𝑖 (𝒚𝑛))2 (B.1a)

s.t.:
∑

𝑛̃∈𝑛

𝜙̄𝑛̃ = 1 (B.1b)

𝜙̄𝑛̃ ≥ 0 ∀𝑛̃ ∈ 𝑛 (B.1c)

In (B.1),  is the set of statistical properties. The value of the
𝑖th statistical property computed for the underlying distribution of
the stochastic process is described by 𝑄VAL

𝑖 (𝒚𝑛). The value of the 𝑖th
statistical property computed for {𝒚𝑛̃}𝑛̃∈𝑛

and {𝜙̄𝑛̃}𝑛̃∈𝑛
is denoted by

𝑓𝑖({𝒚𝑛̃}𝑛̃∈𝑛
, {𝜙̄𝑛̃}𝑛̃∈𝑛

). The weights 𝜑𝑖 specify the relative importance
of the 𝑖th statistical property. Set 𝐷𝑛 describe the set of children nodes
of node 𝑛. Following [39,40], the selected statistical properties are the
mean, the variance, the skewness of each random variable, and the
13

correlation of the random variables.
Appendix C. Stabilization methods for column generation
approach

As described in Section 3.2, the standard Column Generation al-
gorithm presents convergence issues [31], such as the ‘‘heading-in’’
and ‘‘tailing-off’’ effects. Stabilization techniques are usually used to
overcome these issues [14,22,41,42,51]. These techniques aim to ac-
celerate the convergence of the Column Generation by controlling the
behavior of the dual prices obtained by the master problem. In [41],
the interior point stabilization is proposed. It aims to improve the
convergence by using dual prices that are interior point solutions to
the master problem. This technique can be implemented by solving
the master problem with the interior point method instead of using
Simplex-based methods [14,22]. Dual smoothing techniques [42,51]
improve the convergence of the CG method by correcting the dual
prices to obtain values closer to the stability center. In [51], dual
smoothing is achieved by using the static Wentges smoothing. In [42],
the auto-adaptive dual smoothing is proposed to improve the Wentges
smoothing by eliminating the need for application-specific parameter
tuning.

In contrast to stabilization methods, the proposed Column Genera-
tion and Sharing method overcomes convergence issues from a different
perspective. As described in Section 3.2, it aims to provide more
information to the master problem in each iteration. This is achieved
by the proposed Column Sharing procedure, which efficiently generates
relevant columns for the master problem by exploiting the scenario
tree structure. Furthermore, the discussed state-of-the-art stabilization
techniques can also be used within the proposed Column Generation
and Sharing method.

Appendix D. Input data for validation and case study

In the following, the input data for the validation of performance of
Section 4 and the case study of Section 5 is given. Table D.5 presents the
expected demand and fuel prices in each stage of the planning horizon.
The demand at the initial stage is obtained from [34]. The expected
demand growth rate is based on [40]. Expected fuel prices are given
as in [38]. The expected demand and fuel prices are used as input
for the scenario tree generation. Table D.6 presents the CO2 emission
limit. Energy storage system parameters are given in Table D.7, based
on [36,37]. Generator parameters are given in Table D.8, based on [35].
Fig. D.10 shows the investment costs for the different technologies,
based on [35,36]. Upward primary reserve requirement was equal to
4 % of the load. Secondary reserve requirement was defined as 3 % of
the load plus 5 % of the variable generation output.

Table D.5
Expected demand and fuel prices.

Stage Demand [TWh] Coal price [Euro/MWhth] Natural gas price [Euro/MWhth]

1 102.4 7.7 26.3
2 106.5 7.9 30.4
3 110.7 9.3 32.2
4 115.0 11.2 33.9
5 119.4 12.9 35.9

Table D.6
CO2 emission limit.

Stage Year CO2 emission limit [Mt CO2]

1 2016 54.5
2 2025 34.4
3 2030 27.1
4 2035 19.6
5 2040 10.9
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Fig. D.10. Investment costs of different technologies.
Table D.7
Technical parameters of energy storage systems.

Technology Energy-to-power
ratio [h]

Charge
efficiency [%]

Discharge
efficiency [%]

Heat rate
[

MWhth∕MWh
]

Emission factor
[t CO2/MWh]

Ramp rate as share
of max. output
power [%/min]

Lifetime
[years]

PHS 10 0.85 0.85 0 0 50 80
CAES 10 1 1.2a 1.23 0.23 20 30
Battery 2 0.95 0.95 0 0 100 8

aCAES is modeled with an efficiency greater than one because of the use of natural gas in discharging mode [37,52].
Table D.8
Technical parameters of generators.

Technology Efficiency [%] Emission factor
[t CO2/MWh]

Min. output as
share of max.
output power [%]

Ramp rate as share
of max. output
power [%/min]

Minimum
time on [h]

Minimum
time off [h]

Lifetime
[years]

Biomass 0.45 0 0 20 1 1 25
Combined cycle gas turbine 0.57 0.349 40 8 4 4 40
Open cycle gas turbine 0.45 0.488 20 15 1 1 50
Coal 0.43 0.728 40 4 24 24 45
Solar PV – – – – – – 25
Wind – – – – – – 25
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