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English

This thesis consists of two parts. In part I, we study the role of topology in the propagation
of quantum light within a photonic lattice with non-trivial topological order. We focus on the
behavior of squeezed states of light propagating in a one-dimensional waveguide array real-
izing the topological Su-Schrieffer-Heeger model, employing analytic and numerical methods.
Specifically, we study photon statistics, one-mode and two-mode squeezing and entanglement
generation when the topologically protected localized state is excited both with single-mode
and two-mode squeezed vacuum states of light, benchmarking our results with those of a topo-
logically trivial localized state. We find that propagation of squeezed of squeezed light in a
topologically protected state robustly preserves the phase of the squeezed quadrature as the
system evolves, and show how this topological protection can be harnessed for quantum infor-
mation protocols.

In part II, we study the electronic properties of a two-dimensional material under the effects
of electron-phonon interaction with chiral phonons, which break time-reversal symmetry. We
consider a honeycomb lattice and include coupling between electrons and lattice vibrations em-
ploying a non-perturbative Fock space solution. Electron-phonon interactions cause indirect
transitions with momentum transfer between the excitations, generating a valley-selective in-
direct band gap, which in turn is sensitive to the chirality of the phonon mode. For a zigzag
ribbon geometry, copropagating edge states which bridge the valley selective gap coexist with
a continuum of bulk states of the ungapped valleys. The copropagating edge states are found
to be robust against moderate amounts of disorder. Our results constitute a first step in the
understanding of electron-chiral-phonon interactions and their hybrid electron-phonon states of
matter.
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Esta tesis está compuesta por dos partes. En la parte I estudiamos el rol de la topología en
la propagación de luz cuántica por una red fotónica con orden topológico no trivial. Nos en-
focamos en el comportamiento de estados comprimidos de luz propagándose por un arreglo de
guía de ondas unidimensional que realiza el modelo topológico Su-Schrieffer-Heeger, utilizando
métodos analíticos y numéricos. En particular, estudiamos la estadística de fotones, la com-
presión unimodal y bimodal, y la generación de entrelazamiento cuando un estado localizado
topológicamente protegido es excitado con estados de luz de vacío comprimido, tanto unimodal
como bimodal. Como referencia, comparamos nuestros resultados con los correspondientes a
un estado localizado topológicamente trivial. Encontramos que la propagación de luz comprim-
ida por un estado topológicamente protegido preserva de forma robusta la fase de la cuadratura
comprimida en la medida que el sistema evoluciona. Mostramos cómo esta protección topológica
puede ser empleada para protocolos de información cuántica.

En la parte II, estudiamos las propiedades electrónicas de un material bidimensional bajo los
efectos de interacción electrón-fonón con fonones quirales, que quiebran simetría de reversión
temporal. Consideramos una red hexagonal tipo panal de abeja, e incluimos el acoplamiento en-
tre electrones y las vibraciones de la red mediante una solución no perturbativa representada en
el espacio de Fock. La interacción electrón-fonón causa transiciones indirectas con transferencia
de momentum entre las distintas excitaciones, generando una brecha energética selectiva por
valle, que resulta ser sensible ante la quiralidad del modo de fonones. Para una nanocinta zigzag,
encontramos estados de borde copropagantes que cruzan la brecha energética selectiva por valle,
y coexisten con un contínuo de estados extendidos provenientes de los valles sin brecha. Estos
estados de borde son robustos ante una magnitud moderada de desorden. Nuestros resultados
constituyen un primer paso en el entendimiento de las interacciones electrón-fonón-quiral y sus
estados de materia híbridos electrón-fonón.
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Introduction

This thesis covers a variety of topics from solid state physics to quantum optics; studying
electrons, photons and phonons; in one and two dimensions. It comprises two parts. The first
one focuses on elucidating the interplay between symmetry protected topological phases and
quantum properties of light. This is done by studying the propagation of squeezed light in a one-
dimensional topological photonic lattice. The second part studies the electronic properties of a
two-dimensional honeycomb lattice with time-reversal symmetry (TRS) broken due to coupling
with mechanical degrees of freedom, in particular chiral phonons. This thesis has produced
two articles, references [1] and [2], which are largely reproduced here with further introduction,
remarks and discussion to aid the reader, and account for parts I and II respectively.

Starting from topological materials, this work was fueled by curiosity, attempting to relate ar-
eas of physics that at first may seem disconnected, and opening new questions regarding the
behavior of topological systems. The study of topological phases of matter originates in solid
state physics with the discovery of the integer quantum Hall effect (IQHE) [3, 4], where a two-
dimensional electron gas in the presence of a strong perpendicular magnetic field exhibits a
perfectly quantized Hall conductivity carried entirely by chiral states located at the boundaries
of the system [5, 6]. Quantization at a microscopic scale has been a central element of physics
since the first developments of quantum theory. However, the IQHE presents quantization of a
macroscopic quantity in a many body system, which in turn is insensitive (up to a threshold)
to the geometry, purity and other macroscopic properties of the sample, constituting a new
quantum phase. It was later shown that this new phenomenology is explained by studying
the topological properties of the space spanned by the electron wave functions (or by studying
the equivalence classes of the hamiltonian), which might be protected by the symmetries of
the system [7–10]. The topological phase of the IQHE, and its boundary states, are the most
robust one can have as they do not require any preserved symmetry. Topological systems have
been extensively studied since, finding topological phases in all kinds of systems; protected
by broken [11–14] or preserved [15–18] TRS or by crystal symmetries [19–21]; in one [22, 23],
two [11, 15, 24, 25] and three [17, 26, 27] dimensions; among many others [28–30]. Furthermore,
topological physics was found to be fundamental to wave phenomena within periodic media,
allowing for an extension of these ideas to photonics [31–33], spintronics [34], mechanical sys-
tems [35], circuits [36], and others [37, 38].

Part I of this thesis is positioned in the context of topological phases in photonic systems.
Our approach is not limited to studying known topological systems from an optical framework,
but we take a leap forward by considering quantum properties of light and their response to
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the lattices topology, searching for topological protection of quantum features. Photonic sys-
tems are a promising platform for scalable room-temperature quantum information processing;
however, quantum information remains sensitive to noise sources, losses, and other fabrication
imperfections of devices [39–41]. Recently, quantum topological photonics —namely the study
of quantum light in topological photonic lattices— has emerged as an alternative for protecting
quantum information encoded within the electromagnetic field [42–44]. Quantum information
may be described in terms of discrete or continuous variables; each of these frameworks present-
ing their own implementations and advantages, both from a theoretical and an experimental
point of view [45–49]. Research on quantum topological photonics has been mainly directed to
the behavior of Fock-like states —which constitute a discrete variable description of the field—,
where promising experimental results show topological protection of quantum correlations and
entanglement [42–44, 50–52]. The behavior of continuous variable quantum states on the other
hand, remains an open question. Our approach on this topic stems from the latter perspective,
where squeezed states are of particular interest as they constitute a fundamental source for
continuous variable entanglement [46]. We investigate on the propagation of squeezed light in a
waveguide array realizing the topological Su-Schrieffer-Heeger (SSH) model [53–55], elucidating
the role of topology in the evolution and preservation of quantum features [1]. Furthermore,
we show how topological protection of squeezing can be harnessed for quantum information
protocols.

Inspired by the IQHE and other broken TRS topological phases [11, 56–58], in part II we
study the behavior of a two-dimensional lattice when breaking TRS due to electron-phonon
(e-ph) interactions with chiral phonons [2]. Interactions between electronic and mechanical de-
grees of freedom have been extensively studied in solid state physics, playing a crucial role in the
development of conducting polymers [22] and the theory of superconductivity [59–61], for exam-
ple. e-ph interactions have also been found to generate topological effects [53, 62–64]. Robust
edge states induced by a linear phonon mode have been found in graphene nanoribbons [62],
while a phonon driven Floquet topological insulator is obtained when considering TRS break-
ing phonons with zero momentum, generated by a linear superposition of degenerate, non-chiral
phonon modes [63]. Recently, the emergence of chiral phonons —that is, phonons with intrinsic
chirality— at high-symmetry momenta in two-dimensional systems was predicted [65], and later
observed in tungstene diselenide [66], bringing new ingredients to the table of e-ph physics [67–
71]. We investigate on the effects of e-ph interactions in a honeycomb lattice when considering
TRS breaking chiral phonons with non-zero momentum. We find that the e-ph interactions
induce a valley selective gap bridged by copropagating edge states, which coexist with a con-
tinuum of bulk states of the non-gapped valleys. We perform quantum transport simulations,
which exhibit non-reciprocal behavior and show the robustness of the edge states.
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Part I

Topological protection of squeezed light

3



What is the role of topology in the propagation of quantum light in photonic lattices? We
address this question by studying the propagation of squeezed states in a topological one-
dimensional waveguide array. We benchmark our results with those for a topologically trivial
localized state and study their robustness against disorder in order to isolate the role of topology.
Specifically, we study photon statistics, one-mode and two-mode squeezing, and entanglement
generation when the topological state is excited with squeezed light. These quantum properties
inherit the shape of the localized state, and thus follow its fate when disorder is introduced.
But more interestingly, and unlike in the topologically trivial case, we find that propagation of
squeezed light in a topologically protected state robustly preserves the phase of the squeezed
quadrature as the system evolves. We show how this latter topological advantage can be har-
nessed for quantum information protocols, in particular, quantum teleportation.

This topic stands at the interface between topological systems and quantum optics, while also
involving concepts of photonic lattices and quantum information. We intend to extend this
investigation to the widest possible spectrum of the physics community. For this reason, we
begin providing a broad overview on the two main areas involved, topological systems and quan-
tum optics. Chapter 1 introduces topological band theory and symmetry protected topological
phases. These concepts are developed while reviewing in detail the SSH model from a solid
state physics perspective, which will also be useful for part II. We then explicitly adapt the
framework of topological systems to photonics. In chapter 2 we develop the framework of quan-
tum optics, focusing on the continuous variable description of the quantized electromagnetic
field. We discuss in detail the emergence of quantum correlations and entanglement in squeezed
states. Chapter 3 contains the bulk of the carried research, contained in reference [1]. We em-
ploy the concepts developed previously to study the interplay between topology and quantum
correlations by means of the propagation of squeezed light in an SSH waveguide array.

4



Chapter 1

Topological band theory

During the XXth century quantum mechanics revolutionized our understanding of nature, de-
scribing elementary particles such as electrons by wave-like behavior. Under this new paradigm,
band theory successfully described and predicted the electric properties of solids, labelling them
as conductors or insulators according to the location of the Fermi level in their band structure.
However, since the discovery of the integer quantum Hall effect (IQHE) [4] in 1980, it was shown
that the energy spectrum does not suffice to fully describe the behavior of electrons, but the
topology of the space spanned by the electron wave functions must be considered as well [7],
thus setting the kickoff for topological band theory.

The purpose of this chapter is to introduce topological band theory and symmetry protected
topological phases, not only from a solid state physics framework, but porting the theory to
photonic systems as well. We begin by briefly discussing the IQHE in section 1.1. In section 1.2
we develop topological band theory from an electronic approach while reviewing in detail the Su-
Schrieffer-Heeger (SSH) system. We characterize its topological order in terms of a topological
invariant, analyzing its connection to the symmetries of the system, and show the emergence of
topologically protected boundary states which are robust against symmetry-preserving disorder.
In section 1.3 we port topological band theory to photonic lattices. We begin by building a
correspondence between photonic and solid state systems. We then explicitly adapt concepts of
topological band theory to photonic systems, and discuss the manifestations of topology in an
optic setup.

1.1 The integer quantum Hall effect
Our journey towards topological physics will have the same starting point as it did historically,
the IQHE [4]. Realized in 1980 by von Klitzing, Dorda and Pepper, in the IQHE a two-
dimensional electron gas is placed under a strong perpendicular magnetic field (∼ 10T ) at
low temperature (∼ 1K). This system presents a zero longitudinal resistance, but a non-zero
Hall resistance quantized by Rxy = h/(e2ν), with ν ∈ Z, h the Planck constant, and e the
fundamental charge [3]. There are several remarkable aspects of this phenomenon [5, 6]: (i) The
Hall resistance depends only on fundamental constants and ν, which has been measured to be an
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Figure 1.1: Hall voltage Vxy and longitudinal voltage Vxx as a function of the magnetic
field in the IQHE. A scheme of the experimental setup is shown in the inset, with I the
longitudinal current through the sample. Hall voltage takes quantized values Vxy = h

νe2I
,

exhibiting plateaus as a function of the magnetic field. Longitudinal voltage is in general
zero, with peaks when the Fermi energy crosses a Landau level, and the Hall voltage
changes value. Figure taken from [73].

integer with precision of one part in a billion [72]. This quantized behavior is clearly observed in
Fig. 1.1, where Hall voltage behaves as a series of plateaus when increasing the magnetic field,
or equivalently, lowering the filling factor. (ii) The Hall current is entirely carried by chiral edge
states, that is states with antiparallel velocity exponentially localized at opposite boundaries of
the sample. (iii) The Hall current is disipationless. (iv) Quantization of the Hall resistance is
a robust, universal phenomenon. It is independent of the composition, purity, geometry, and
other macroscopic properties of the sample. The IQHE presents a macroscopic manifestation
of quantum phenomena, robust to the details of the sample, thus it must be characterised
by some quantum phase. Furthermore, the system presents a non-conducting bulk, with chiral
electric current exclusively localized at the boundaries of the system, challenging the established
classification of metals and insulators. As proved by Thouless, Kohmoto, Nightingale and den
Nijs, the explanation of this phenomenon is a matter of topology [7].

Before diving into topology, lets look at the IQHE from a band theory point of view. Even
though the electron gas is not a crystal, the system does present discrete translational invariance
characterized by a magnetic unit cell [6]. As is known, the spectrum of a two-dimensional
electron gas in the presence of a magnetic field takes the form of discrete, non-dispersive Landau
levels, which we will consider as energy bands. Standard band theory dictates that if the Fermi
energy lies in between Landau levels, then the system behaves as an insulator, which is clearly
not the case due to the conducting edge states. However, the essence of the IQHE lies in the
presence of an external magnetic field which breaks TRS, not in the specific geometry or other
local properties at the edges of the sample [15]. Thus, the translationally invariant system must
determine the quantization of the Hall conductivity and emergence of chiral edge states. Indeed,
the procedure is as follows [5–7, 74]:

Let |un(k)〉 be the Bloch wave function of the n-th band of the system, at a given k-point defined

6



in the magnetic Brillouin zone (BZ). The Berry phase acquired by the state when transported
along a path C in k-space, φn(C), is is the integral of the Berry connection An(k) along said
path

φn(C) =

∫
C

dkAn(k) , (1.1)

with An(k) = i〈un(k)|∇k|un(k)〉, and ∇k the nabla operator in k-space. The Chern number of
the n-th band, cn, is defined as the Berry phase acquired by the wave function |un(k)〉 when
transported around the entire BZ, divided in 2π,

cn =
1

2π

∫
∂BZ

dkAn(k) . (1.2)

Notice that the Berry connection is not gauge independent, as a gauge transformation |un(k)〉 →
eiα(k) |un(k)〉 changes the Berry connection by An(k) → An(k) − ∇kα(k). Reminiscent of
the electromagnetic vector potential we define the gauge independent Berry flux, Fn(k) =
∇k × An(k). By means of Stokes’ theorem, the Chern number of the n-th band may now be
calculated as the total Berry flux through the BZ,

cn =
1

2π

∫
BZ

d2kFn(k) , (1.3)

which only takes integer values, in correspondence to the quantization of the Dirac monopole [8,
75]. Finally, computing the Hall conductivity using the Kubo formula, the integer ν is equal to
the sum of the Chern number of all occupied bands,

ν =
∑
n

cn . (1.4)

This quantity —known as the TKNN invariant or Chern number— maintains its value provided
there exists a finite energy gap separating all occupied and unoccupied states [8].

Now enters topology: As a branch of mathematics, topology describes the fundamental proper-
ties of spaces by sets of topological invariants, that is, quantities that are invariant to smooth
transformations —mathematically, homeomorphisms— applied to such spaces [76]. If two spaces
have the same topological invariants they can be smoothly transformed into one another, thus
defining topological equivalence. The equivalence ceases if there is no smooth transformation
connecting the spaces.

We have shown that in the IQHE the Hall resistance is entirely determined by the integer ν,
which can only change its value when the Fermi energy lies within a band. Thus, we consider the
TKNN invariant ν to be a topological invariant of the system, which characterizes the integer
quantum Hall phase in terms of the topology of the space spanned by the electron wave functions.
Now imagine that we adiabatically change the parameters of the system, continuously deforming
the band structure. If such a deformation does not remove the Fermi energy from the current
energy gap, or closes it, the system will remain in the same topological phase, defining a smooth
transformation from a topological band theory perspective1. Finally, lets recall that the Hall

1We have introduced topological band theory focusing only in gapped topological phases. Indeed, topological
phases can emerge in systems with a gapless bulk spectra, such as Weyl semimetals [27], nodal line semimet-
als [77], among others [31, 78]. In this scenario some concepts discussed during this chapter must be revised.
We recommend references [77–79] for further information on gapless topological phases.
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conductivity is carried entirely by edge states of the electron gas, whereas the TKNN invariant is
defined in terms of Bloch wave functions which can only be defined in a translationally invariant
system. This is our first encounter with the bulk-boundary correspondence [80]: A non-trivial
topological phase which can only be defined in an infinite system, determines the emergence of
edge states which manifest in a finite system.

Many more topological phases were later proposed and realized [8, 9]. It is not in the purpose
of this thesis to review the full variety of known topological phases, but for completeness sake
we briefly mention three important breakthroughs in the field. In 1988 Haldane [11] proposed
a honeycomb lattice model exhibiting an integer quantum Hall phase with no need for an
external macroscopic magnetic field, known as anomalous quantum Hall effect. Instead, TRS is
broken by an artificial magnetic field with the full symmetry of the lattice so zero magnetic flux
crosses a unit cell. Even though an experimental realization of this system remained ellusive
for decades [12], it introduced the concept of a lattice with topological order. In 2005 Kane &
Mele [24] proposed a spin-full honeycomb model consisting of two conjugate copies of Haldane’s
spin-less model, one for each spin state, globally preserving TRS and attributing the artificial
magnetic field to spin-orbit coupling. This system —known as quantum spin Hall insulator—
exhibits helical edge states, that is, two sets of chiral states with opposite chirality for each
spin [81]. Their work introduces the first time-reversal invariant, non one-dimensional lattice
exhibiting a non-trivial topological phase, and provides a theoretical basis on which a crystal
may exhibit a spin polarized quantum Hall response. The last breakthrough which we will
mention is the theoretical prediction and experimental realization of the quantum spin Hall
insulator in HgCdTe quantum wells, predicted by Bernevig, Hughes and Zhang in 2006 [25],
and observed by König, et al. in 2007 [82].

1.2 The SSH system
This section will review in detail concepts of topological band theory employing a system that is
of particular interest to this thesis, the Su-Schrieffer-Heeger model for polyacetylene, or simply
the SSH system [53, 54]. We will characterize the topological phase of the lattice in terms of the
Zak phase, and show how it is protected by chiral symmetry. We will also study the emergence
of topologically protected boundary states, and their robustness against disorder in the lattice.

The SSH model was originally proposed to describe the electric properties of polyacetylene, a
quasi-one-dimensional chain of CH (Carbon-Hydrogen) units, as depicted in Fig. 1.2-(a). The
chain presents a dimerization, with staggered C-C bond lengths due to the Peierls transition,
where a pair of neighboring CH units move towards each other rendering an overall energetically
favorable configuration considering electronic and mechanical degrees of freedom [83]. Upon
exchanging the long and short bonds the system would clearly remain in a minimal energy
configuration, thus the SSH model presents two degenerate ground states, which are at the heart
of its topological ordering, as we will show during this section. The spontaneous dimerization can
be incorporated into a tight binding model by introducing electron-phonon coupling terms [22,
54]; however, we will only consider a lattice with an externally given dimerization at this point.
We will come back to the problem of electron-phonon interactions in chapter 4.

Under a tight binding approximation for low energy excitations, where only the C-C π bonds
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Figure 1.2: (a) Chemical scheme of polyacetylene. (b) Scheme of the tight binding SSH
model. Sites are represented by grey circles and hoppings by red lines. The unit cell is
highlighted in purple, and the lattice periodicity constant a is shown over the lattice.

are represented, the model consists of a one-dimensional chain of identical modes with staggered
hopping amplitudes, forming a unit cell of two sites, even and odd, as shown in Fig. 1.2-(b).
The hamiltonian is given by

ĤSSH =
∑
n

[
εevenc

†
2nc2n + εoddc

†
2n+1c2n+1

]
+
[
uc†2nc2n+1 + vc†2n+1c2n+2 + h.c.

]
(1.5)

with c2n (c2n+1) the electronic annihilation operator of the even (odd) site at the n-th unit
cell, εeven (εodd) the onsite energy of the even (odd) sublattice, u and v the intra- and inter-cell
hoppings, and the sum is carried over all unit cells. For simplicity we will consider u and v of
the same sign. As the two CH units per unit cell are identical εeven = εodd = ε, and the first
term in Eq. (1.5) is constant for all sites, allowing us to omit the onsite terms as they only
represent a shift ε in the spectrum.

For a periodic system we introduce the Fourier transforms

c2n =

∫ π/a

−π/a
dk eikanceven(k) , (1.6a)

c2n+1 =

∫ π/a

−π/a
dk eikancodd(k) , (1.6b)

obtaining the hamiltonian

ĤSSH =

∫ π/a

−π/a
dk ψ†kHSSH(k)ψk , (1.7)

with ψk = (ceven(k), codd(k))t, and

HSSH(k) =

(
0 u+ ve−ika

u+ veika 0

)
. (1.8)
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Defining f(k) = u+ ve−ika = |f(k)|eiθ(k), the eigenvalues E±(k) and eigenstates |u±(k)〉 of the
system are given respectively by

E±(k) = ±|f(k)| = ±
√
u2 + v2 + 2uv cos(ka) , (1.9a)

|u±(k)〉 =
1√
2

(
±eiθ(k)

1

)
. (1.9b)

It is evident from Eq. (1.9a) that the spectrum is gapped except for the case |u| = |v|, where the
gap closes at the borders of the BZ. Furthermore, the spectrum is invariant when exchanging
the values of u and v, in accordance to the degeneracy of the ground state which stems from the
Peierls transition, as Fig. 1.3 shows. This is only logical when considering an infinite lattice, as
it cannot make a difference whether we take the unit cell to be composed of sites c2n and c2n+1,
or sites c2n−1 and c2n.

Interestingly, the eigenmodes are not invariant under the u ↔ v exchange. A smooth trans-
formation cannot be defined in order to exchange the hopping values as the gap must close at
some point where |u| = |v|, hinting for a topological transition. In the general case, all systems
with |u| > |v| can be continuously transformed into one another without closing the gap, and
so is the case for the |u| < |v| systems, but in order to transform from the former to the latter
(or vice versa), the gap must close at |u| = |v|.

At this point there might be some confusion. We have claimed that in an infinite system the
u ↔ v exchange merely accounts for our choice on how to build a unit cell. Nevertheless, we
are anticipating that these two systems are topologically inequivalent, so how can this occur?
Topological phases are determined by the eigenstates of a system, therefore even though the
bands of a lattice with hoppings u and v are identical to those of the exchanged one, they are
characterized by a different topological invariant.

Before we define a topological invariant and determine its possible values, lets study the eigen-
values and eigenmodes of a finite sample, aiming to observe any possible edge states. We choose
the unit cell to be composed by sites c2n and c2n+1, therefore the first and last hoppings of a
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Figure 1.3: Energy bands of the SSH system. The hopping values u and v are indicated on
top of each plot. The spectrum is invariant when interchanging u and v, and the gap only
closes for |u| = |v|.
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Figure 1.4: (a) Eigenvalues of a finite SSH lattice (25 unit cells) as a function of u, at fixed
v = 1. Two degenerate edge states with zero energy exist when |u| < |v|. The color scale
indicates the localization of each state measured by the inverse participation ratio (IPR).
For a state given by |χ〉 =

∑
n αn|cn〉, with αn scalar coefficients, the IPR is given by

IPR =
∑

n |αn|4. It is equal to 1 (0) for a fully localized (extended) state. (b) Weight
of the edge states on each lattice site, for u = 0.6 and v = 1. Each state is plotted in a
different color.

pristine finite lattice must be u. In Fig. 1.4-(a) we show the spectrum of a finite lattice as a
function of the hopping amplitudes. For |u| < |v| a pair of degenerate states with zero eigenvalue
appear, localized at the edges of the lattice as shown in Fig. 1.4-(b).

The topology of a one-dimensional lattice is characterized by the Zak phase, which corresponds
to the Berry phase acquired when transporting an eigenmode across the entire one-dimensional
BZ [84, 85]. The Zak phase of each band is given by

Zµ = i

∫ π/a

−π/a
dk 〈uµ(k)| ∂k |uµ(k)〉 , (1.10)

with µ = ±. Notice that this is a gauge dependent quantity, as for a gauge transformation
|u(k)〉 → eiα(k) |u(k)〉 its value is modified by

Z → Z −
∫ π/a

−π/a
dk ∂kα(k)

= Z − 2πm ,
(1.11)

with m ∈ Z, and the second line is obtained due to the periodicity of k-space. Therefore the
Zak phase can only be defined as a gauge invariant quantity modulo 2π.

Using the eigenmodes in Eq. (1.9b) we obtain an identical Zak phase for both bands

Z = −1

2

∫ π/a

−π/a
dk ∂kθ(k) , (1.12)

which corresponds to the winding number of the complex function f(k) over the entire Brilluoin
zone, times −π. As the phase θ(k) is a multivalued function we introduce a branch cut in

11



the negative real axis, thus when θ(k) crosses it in anticlockwise (clockwise) direction, the
winding number increases (decreases) in 1. Mathematically, θ(k) crosses the branch cut when
the conditions

Im(f) = −v sin(ka) = 0 ∧ Re(f) = u+ v cos(ka) < 0 (1.13)

are fulfilled simultaneously. The first condition is only satisfied for ka = 0 , and ka = π, thus
the second condition reads u ± v < 0. If |u| > |v|, then both u + v and u − v have the same
sign, thus the branch cut is crossed twice or not crossed at all, resulting in a trivial Zak phase.
On the other hand, if |u| < |v|, then both alternatives u ± v have opposite signs, meaning
that the branch cut is crossed only once, yielding a non-trivial Zak phase of π which reveals
the topological character of the edge states. Finally, in the singular case |u| = |v|, f(k) passes
through the origin of the complex plane, thus the topological invariant is ill-defined as it suffers
a transition.

1.2.1 The role of symmetries

Up to this point we have introduced symmetry protected topological phases, which are classified
according to topological invariants. However, the role of symmetries has not been fully exploited
yet. We will now clarify, by means of the SSH system, the connection between the topological
phases and the symmetries of the system.

Consider the SSH model with different onsite terms for each sublattice, which corresponds to
the Rice-Mele model [86]. We define ε = (εeven + εodd)/2 and ∆ = (εeven − εodd)/2. The term ε
represents a shift in the spectrum, and only ∆ is relevant to the band structure and eigenmodes.
The real space hamiltonian is given by

ĤRM =
∑
n

∆
[
c†2nc2n − c

†
2n+1c2n+1

]
+
[
uc†2nc2n+1 + vc†2n+1c2n+2 + h.c.

]
, (1.14)

while the hamiltonian in reciprocal space is

HRM =

(
∆ u+ ve−ika

u+ veika −∆

)
= ~h · ~σ ,

(1.15)

where we defined ~h = (u+ v cos(ka), v sin(ka),∆)t, and ~σ = (σx, σy, σz)
t the vector containing

the Pauli matrices, which act on the sublattice degree of freedom.

The eigenvalues are E± = ±|~h| = ±
√

∆2 + u2 + v2 + 2uv cos(ka), and the gap is only closed for
∆ = 0 and |u| = |v| simultaneously. The spectrum remains invariant under a u↔ v exchange,
but these systems now may be connected without closing the gap, impeding us from defining a
topological phase transition.

Clearly the inclusion of different onsite terms in the hamiltonian has broken the topological
order of the system. For ∆ = 0 the Zak phase is determined by the winding number of the
complex function f(k), or equivalently, the winding number of the vector ~h in the xy plane.
For ∆ 6= 0, ~h is lifted from the xy plane, and its winding number around the origin may not be
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defined. Therefore all possible systems with parameters ∆, u, and v can be smoothly connected,
and the Zak phase, though it may still be defined by Eq. (1.10), ceases to be a topological
invariant.

To understand the rupture of topological order we must study the symmetries of the system.
An electronic system has a symmetry represented by the operator Û , if the canonical fermionic
anti-commutation relations, and its hamiltonian are preserved under a transformation by Û [10].
These conditions read respectively

Û
[
cn, c

†
m

]
+
Û−1 =

[
cn, c

†
m

]
+

= δn,m , (1.16a)

ÛĤÛ−1 = Ĥ , (1.16b)

with [·, ·]+ the anticommutator.

The SSH system presents chiral symmetry, which is broken when including a staggered onsite
term as in the Rice-Mele model. Chiral symmetry is given by the composition of particle-hole
symmetry and TRS; its action on an annihilation operator is given by a linear combination of
creation operators (and vice-versa), and it acts by conjugating complex numbers [10]. We define
Ψ = (. . . , ψt

n, ψ
t
n+1, . . . )

t as the vector containing all annihilation operators of the lattice, with
ψn = (c2n, c2n+1)

t the vector containing the annihilation operators within the n-th unit cell. Let
Γ̂ be the chiral symmetry operator, and Γ its block matrix representation in the Ψ basis. The
action of the chiral operator is given by

Γ̂ΨnΓ̂−1 = Γ∗n,mΨ†m , (1.17a)

Γ̂Ψ†nΓ̂−1 = Γn,mΨm , (1.17b)

Γ̂iΓ̂−1 = −i , (1.17c)

where we have used Einsteins convention of summation of repeated indexes. We represent the
hamiltonian in block matrix form Ĥ = Ψ†nHn,mΨm, and using Eq. (1.16a), (1.16b) and (1.17)
we find

Ĥ = Γ̂ĤΓ̂−1

Ψ†nHn,mΨm =
(

Γ̂Ψ†nΓ̂−1
)(

Γ̂Hn,mΓ̂−1
)(

Γ̂ΨmΓ̂−1
)

= Γn,kΨkH
∗
n,mΓ∗m,lΨ

†
l

=
(
Γ†HΓ

)
l,k

ΨkΨ
†
l

=
(
Γ†HΓ

)
l,k

(
δk,l −Ψ†lΨk

)
= TrH −Ψ†l

(
Γ†HΓ

)
l,k

Ψk .

(1.18)

Therefore a hamiltonian has chiral symmetry if its matrix representation H satisfies

TrH = 0 ∧ H = −Γ†HΓ . (1.19)

Applying the second condition in Eq. (1.19) twice we conclude Γ2 = I up to a phase factor,
with I the identity matrix. As Γ is also unitary we obtain Γ = Γ†. We now require the chiral
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operator to be local, meaning that it acts on each unit cell separately [87]. Let γ̂n be the chiral
operator which acts only on the n-th unit cell, and γn its matrix representation in the ψn basis,
we write the chiral operator as a direct sum of the unit cell operators [87], namely

Γ̂ =
⊕
n

γ̂n , (1.20a)

Γ =
⊕
n

γn . (1.20b)

As the system is periodic, γ̂n = γ̂ ∀n; thus, Ψ†n(Γ†HΓ)n,mΨm = Ψ†nγ
†Hn,mγΨm. Using the

Fourier transforms in Eq. (1.6) we find the k-space form of Eq. (1.19):

TrH(k) = 0 ∧ H(k) = −γ†H(k)γ . (1.21)

The first condition is trivial for two band systems, as any diagonal terms can be expressed as an
irrelevant term shifting the spectrum and a term proportional to σz. From the second condition
we conclude that in the basis which diagonalizes γ, H(k) is off-diagonal [10]. We thus obtain
explicitly the matrix form of the chiral operator in the ψk basis, given by

γ =

(
1 0
0 −1

)
= σz . (1.22)

For a generic hamiltonian H(k) = ~h(k) · ~σ, the action of the chiral operator is

γ†Hγ = γ(~h · ~σ)γ

= hxσzσxσz + hyσzσyσz + hzσzσzσz

= −hxσx − hyσy + hzσz ,
(1.23)

revealing that the system has chiral symmetry only if hz = 0, as in the SSH model.

In summary, any one-dimensional lattice presenting chiral symmetry may be topologically clas-
sified by its Zak phase. If the symmetry is broken, the Zak phase may still be defined, but it is
no longer a topological invariant. We conclude that the topological order in the SSH model is
protected by chiral symmetry. However, we must note that the fact that a lattice presents chiral
symmetry does not mean that it is topologically non-trivial, but rather that it may present a
topologically non-trivial phase for a range of parameters [10].

1.2.2 Edge States and robustness against disorder

The bulk-boundary correspondence predicts the emergence of gapless states localized at the
borders of a topologically non-trivial system [8, 80]; thus the existence of edge states, and
their characteristics, must be protected by the symmetries of the system. Our first encounter
with topological phases was the IQHE, which is a robust phenomenon, meaning that it is
insensitive to details of the sample such as purity or geometry. We expect to extend the
robustness of topological phenomena to the SSH system as well. We first demonstrate that the
characteristics of the SSH edge states are determined by chiral symmetry in a pristine lattice,
following reference [87]. We then study the response of the states against disorder, concluding
that that they are robust against symmetry preserving disorder.
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We first rewrite the chiral operator as the difference of the projectors on each sublattice,

Γ =
⊕
n

σz

=
∑
n

|c2n〉 〈c2n| − |c2n+1〉 〈c2n+1|

= Peven − Podd ,

(1.24)

with Peven and Podd the projector operators on even and odd sublattices respectively. Due
to chiral symmetry, the spectrum of the SSH system is symmetric. Consider an arbitrary
eigenstate |χn〉 with eigenvalue En, then the state Γ |χn〉 is also an eigenstate with eigenvalue
−En, as follows:

HΓ |χn〉 = −ΓH |χn〉
= −EnΓ |χn〉 .

(1.25)

If En 6= 0, then |χn〉 and Γ |χn〉 are orthogonal as they have different eigenvalues. We conclude
that any eigenstate with non-zero eigenvalue must have an equal weight on both sublattices

0 = 〈χn|Γ |χn〉
= 〈χn| (Peven − Podd) |χn〉

⇒ 〈χn|Peven |χn〉 = 〈χn|Podd |χn〉 .
(1.26)

If on the contrary |χn〉 is a zero eigenvalue state such as the topological ones, it can be chosen
to have zero weight on one sublattice,

HPν |χn〉 = H(I ± Γ) |χn〉
= 0 ,

(1.27)

with Pν = Peven, Podd.

We now study a semi-infinite lattice with unit cells from n = 0 up to infinity. The eigenvalue
problem is expressed in matrix form as

H|χ〉 = E|χ〉
0 u 0 0
u 0 v 0
0 v 0 u
0 0 u 0

. . .




〈c0|χ〉
〈c1|χ〉
〈c2|χ〉
〈c3|χ〉

...

 = E


〈c0|χ〉
〈c1|χ〉
〈c2|χ〉
〈c3|χ〉

...

 .
(1.28)

Rewriting the matrix system we find the recursive equations

u 〈c2n|χ〉 − E 〈c2n+1|χ〉+ v 〈c2n+2|χ〉 = 0 , (1.29a)

v 〈c2n+1|χ〉 − E 〈c2n+2|χ〉+ u 〈c2n+3|χ〉 = 0 , (1.29b)

for n ≥ 0, subject to the boundary condition

− E 〈c0|χ〉+ u 〈c1|χ〉 = 0 . (1.30)
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For zero eigenvalue states, 〈c2n+1|χ〉 = 0∀n, thus the equations reduce to

u 〈c2n|χ〉+ v 〈c2n+2|χ〉 = 0 . (1.31)

Finally the state is given by

|χ〉 = N
∞∑
n=0

(
−u
v

)n
|c2n〉

=

√
1−

(u
v

)2 ∞∑
n=0

(
−u
v

)n
|c2n〉 ,

(1.32)

where the second line was obtained forcing normalization on |χ〉. In agreement with the previous
calculations, we have found a zero eigenvalue state exponentially localized at the edge of the
system with perfect sublattice polarization, which is due to chiral symmetry.

The previous calculations assume a pristine lattice, but real systems always contain a certain
amount of disorder. We will separately consider disorder which preserves or breaks chiral sym-
metry, analyzing the response of the edge states.

For hopping disorder, which preserves chiral symmetry, the intra- and inter-cell hoppings cease
to be equal along the lattice. We label the intra-cell hopping on cell n by un, and the inter-cell
between cells n and n+ 1 by vn. The eigenproblem is now given by equations

un 〈c2n|χ〉 − E 〈c2n+1|χ〉+ vn 〈c2n+2|χ〉 = 0 , (1.33a)

vn 〈c2n+1|χ〉 − E 〈c2n+2|χ〉+ un+1 〈c2n+3|χ〉 = 0 , (1.33b)

for n ≥ 0, subject to the boundary condition

− E 〈c0|χ〉+ u 〈c1|χ〉 = 0 . (1.34)

This system also presents a zero eigenvalue solution given by

|χ〉 =

[
∞∑
n=0

n∏
m=0

(
um
vm

)2
]−1/2 ∞∑

n=0

n∏
m=0

(
−um
vm

)
|c2n〉 . (1.35)

This solution exists as long as the normalization factor remains finite, which is guaranteed if
|vn| > |un| ∀n, and even if |vn| ≤ |un| for a finite amount of unit cells. This shows that the
topological edge states of the SSH system are robust against chiral symmetry preserving hopping
disorder, maintaining their zero eigenvalue and sublattice polarization.

If on the other hand disorder is added in the onsite terms of the hamiltonian, chiral symmetry
is broken. An analytical solution for the edge state is not easily found. We therefore turn
to numerical methods, including as well a numerical calculation of hopping disordered lattices
for comparison. A lattice with hopping (onsite) disorder d is constructed by sampling each
hopping (onsite) term from a uniform distribution of width d centered at the pristine value of
the parameter. The results reported are averaged over 300 random realizations.
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Figure 1.5: Eigenvalue, sublattice polarization and localization of the edge state of a semi-
infinite SSH lattice in presence of random hopping and onsite disorder, for u = 0.4 and
v = 1. Solid lines with marker show average value, while dashed lines show standard
deviation. Sublattice polarization of state |χ〉 is calculated by 〈χ|Peven − Podd|χ〉, while
localization is calculated by the IPR (see Fig. 1.4). Zero eigenvalue and perfect sublattice
polarization are preserved in presence of hopping disorder, but broken for onsite disorder.
The localization is more fragile against onsite disorder as well.

Fig. 1.5 shows the eigenvalue, sublattice polarization, and localization of the edge state as
disorder is introduced. We observe that even for high levels of hopping disorder the edge state
maintains its zero eigenvalue and perfect sublattice polarization. In contrast, when adding
onsite disorder the eigenvalue shows a near zero statistical average, but with large fluctuations
between the different random realizations, for all levels of disorder. Sublattice polarization of
the state is broken as well, and its localization is more sensitive to onsite disorder.

We have proven that symmetry protection grants robustness not only to the topological phase,
but also to the emerging edge states and their characteristics. In particular, the topological
edge states of the SSH system are strongly robust against hopping disorder which preserves
chiral symmetry, maintaining their zero eigenvalue and perfect sublattice polarization. In con-
trast, introduction of symmetry breaking onsite disorder breaks the topological phase, and no
preserved properties of the edge states are observed.

1.3 Topological photonics
We have claimed that topological band theory is fundamental to wave phenomena within peri-
odic media; however, development of the theory during the previous section was entirely carried
within an electronic framework. Furthermore, in some occasions we explicitly relied on the
fermionic statistics of electrons, so how can topological band theory be ported to optical sys-
tems? The purpose of this chapter is to show how topological phenomena emerge in photonic
lattices. We begin by building a correspondence between solid state and photonic systems.
This is done at first by formulating electromagnetism as a hermitian eigenvalue problem, but
the correspondence can be pushed further deriving a Schrödinger-like behavior for the electric
field within a waveguide array. Having set this basis, we explicitly adapt concepts of topo-
logical band theory to photonic lattices and discuss the manifestation of symmetry protected
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topological phases in optic setups.

1.3.1 The electromagnetic eigenvalue problem and the paraxial wave
equation

We begin by writing down Maxwell’s equations in the absence of sources:

∇ ·D(r, t) = 0 , (1.36a)

∇ ·B(r, t) = 0 , (1.36b)

∇× E(r, t) = −∂tB(r, t) , (1.36c)

∇×H(r, t) = ∂tD(r, t) , (1.36d)

with E and B the electric and magnetic fields; and D and H the displacement and magnetic
H fields2. For a static linear media the fields relate as D(r, t) = ε(r)E(r, t), and B(r, t) =
µ(r)H(r, t), with ε and µ the dielectric and magnetic tensors3. Writing the fields as a harmonic
mode of frequency ω, E(r, t) = E(r)e−iωt and H(r, t) = H(r)e−iωt we rewrite the equations as

∇ · (εE) = 0 , (1.37a)

∇ · (µH) = 0 , (1.37b)

∇× E = iωµH , (1.37c)

∇×H = −iωεE . (1.37d)

Decoupling Eq. (1.37c) and (1.37d) yields the generalized eigenvalue problem for the fields

∇×
(
µ−1(r)∇× E(r)

)
= ω2ε(r)E(r) , (1.38a)

∇×
(
ε−1(r)∇×H(r)

)
= ω2µ(r)H(r) . (1.38b)

For a lossless non-magnetic media, we obtain a standard hermitian eigenvalue problem for the
harmonic modes of the magnetic field4

∇×
(
ε−1∇×H

)
= ω2H . (1.39)

At this point we find a correspondence between the behavior of light in photonic platforms, and
that of electrons, which obey their own eigenvalue problem dictated by the time independent
Schrödinger equation. We define Θ as the operator on the left hand side of Eq. (1.39), which
plays the role of the hamiltonian, while the photonic eigenstates are labelled by the square
of the frequency. The solutions to the electromagnetic eigenvalue problem are usually more

2We will refer to both B and H as the magnetic field. It can be inferred from context which one is being
alluded.

3In the general case the dielectric and magnetic tensors are frequency dependent. We can omit this dependence
by considering the mean value of the tensors within a limited frequency range.

4For a magnetic media we obtain a generalized eigenvalue problem for the magnetic field, given by the
hermitian positive semi-definite operators Θ and µ. In this scenario the generalized eigenvectors of the problem
show similar properties to those of a standard eigenvalue problem by introducing the scalar product 〈H1,H2〉 =∫

d3rH†1µH2 [31, 88]. If the media is not lossless then ε and/or µ cease to be positive semi-definite.
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complicated than their quantum mechanical analog for two main reasons: (i) The magnetic
field is a vector —in contrast to the scalar wave function— which has to obey the divergence
condition in Eq. (1.37b) as well. (ii) The electromagnetic hamiltonian operator Θ couples
the different spatial coordinates, thus the solution is (almost) never separable, even for simple
dielectric tensors. These additional complications however, do not limit the fundamental physics
behind the analogy. For a periodic dielectric tensor the field may be written in terms of Bloch
wave functions, obtaining a band structure for electromagnetic waves in photonic lattices, which
dictates the frequencies that are allowed to propagate in the lattice and the direction in which
they do. Remarkably, we have found that purely classical electromagnetic waves can emulate
quantum phenomena [31, 88]!

Similarities between electromagnetic waves in dielectric media and quantum mechanics are not
limited to the fact that both systems are characterized by a hermitian eigenvalue problem, but
we may also find a correspondence in terms of the evolution of wave packets. We consider a
setup where the dielectric function is modulated only within a plane and it is constant in the
perpendicular direction, forming a lattice of coupled waveguides that extend along the latter
direction. Under this approach the electric field evolves according to the paraxial wave equation,
which is equivalent to the time dependent Schrödinger equation where the propagation axis acts
as an effective time coordinate.

We begin from Eq. (1.38a) for a lossless non-magnetic media

∇ · (∇ · E)−∇2E = ω2εE . (1.40)

Using Eq. (1.37a) we have we have ∇ · (∇ · E) = −∇ · (E · ∇ε
ε

) ≈ 0 considering the variation
of the dielectric function small in comparison to that of the field. We take the refractive index
n(r) as weakly modulated around some value n0, that is n(r) = n0 + ∆n(r) with ∆n� n0, in
agreement with experimental conditions where ∆n/n0 . 10−4 [55, 89]. The refractive index is
periodic in the xy plane, and continuous in the z axis. Substituting the dielectric function for
the refractive index n = c

√
µε, thus ε = (n/c)2 ≈ (n2

0 + 2n0∆n)/c2, the equation now reads[(ω
c
n
)2

+∇2

]
E(r) = 0 . (1.41)

By means of the paraxial approximation, the field propagates in a direction very near the z axis;
thus, the z projection of the wave vector is much larger than the in-plane ones. The electric
field takes the form E(r) = Ẽ(r)eiβ0z, with β0 = ωn0/c, for which Eq. (1.41) reads[

∇2
⊥ + ∂2z + 2iβ0∂z + β2

0 +
(ω
c
n
)2]

Ẽ(r) = 0 , (1.42)

with ∇⊥ the nabla operator acting only in the xy plane. As Ẽ only contains a z dependence
which accounts for the small deviation of the propagation direction from the z axis, we neglect
the term ∂2z Ẽ. We finally obtain the paraxial wave equation for the electric field

i∂zẼ(r) =

[
−∇

2
⊥

2β0
− β0

∆n(r)

n0

]
Ẽ(r) . (1.43)

Remarkably, it has the same form of the time dependent Schrödinger equation with the follow-
ing remarks: Just as in the electromagnetic eigenvalue problem, the quantum wave function is
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represented by a fully classical field. The paraxial equation dictates the evolution of a harmonic
field of frequency ω along the propagation axis z. Thus, the steady states of this equation are
labelled by a z axis propagation constant, instead of energy or frequency. The role of the hamil-
tonian is played by the operator in the right hand side of Eq. (1.43), with the modulation of the
refractive index ∆n acting as the potential. Electromagnetic waves propagate with more am-
plitude in regions with a higher refractive index, which act as waveguides that couple due to an
evanescent overlap. In principle we considered ∆n constant along the propagation axis, however
it can be a smooth function of z as well, emulating time dependent hamiltonians [89]. Finally,
if the dielectric function is periodically modulated within the xy plane, the field is written as
Bloch wave functions with reciprocal space defined only in the plane, and the waveguide array
is characterized by a band structure where the eigenvalues correspond to the z axis propagation
constant.

1.3.2 Topological photonics

Having shown that photonic lattices are characterized by a band structure, in analogy with
crystals, the implementation of topological band theory as discussed previously is rather straight
forward. However, we must make minor adjustments accounting for fundamental differences
between electrons and electromagnetic waves, which will be described during this section. We
will also briefly review some implementations of topological lattices in optic platforms, and in
particular discuss the realization of the SSH model in a waveguide array.

In electronic systems a topological invariant is typically defined by the sum over all occupied
bands of a quantity that is calculated within each individual band, and it remains invariant as
long as the Fermi energy lies within a finite gap. For optic systems this approach is no longer
valid as we are no longer studying fermions. In optic systems any mode can be macroscopically
excited without the need to populate the modes with lower frequency, therefore it is of no
purpose to define invariants based on a sum over occupied bands. We may only define topological
invariants for each band individually, and for them to remain invariant we require both gaps
that limit the bandwidth to remain open [90].

We must also consider that, while electrons populate the band structure within equilibrium
conditions and may remain in the material for an infinite time period, electromagnetic waves
can only exist within a media for a finite time range [31, 91]. This accounts for several differences
regarding the experimental observation of topology. In condensed matter systems the footprints
of topology are typically observed via quantum transport setups under the effects of external
electric and/or magnetic fields [8, 9]. In contrast, for optic systems the states must be excited
by means of external driving. The behavior of the field can be observed continuously during
a finite time range by means of dissipative processes such as radiation, and in order to study
its conservative dynamics light can only be collected at the output of the lattice employing
photodetectors or antennas, for example [31].

The particular experimental implementations of photonic lattices does not demand for a redef-
inition of topological band theory as introduced in the previous chapter. From a theoretical
perspective the excitation spectrum of the field is obtained in a completely analogous way as in
electronic systems, therefore topological phases and invariants are defined equivalently. Never-
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theless, the effects of losses and driven/dissipative dynamics in optical systems does limit the
capacity to replicate solid state systems as they account for non-hermitian terms in the hamilto-
nian [92, 93]. These effects may be included by perturbative terms over a hermitian hamiltonian
in order to replicate quantum systems, which are fundamentally hermitian [88, 94]5.

It is rather short sighted on our behalf to claim that as the electromagnetic field obeys an eigen-
value problem, electronic quantum phenomena can be replicated in optics only by modulating
the dielectric function of the media. Topological phenomena in electronic systems occur not
only because of the geometry of the lattice, but also by means of interactions with external
fields [7, 56, 57], or spin interactions [24–26], among others [8, 9, 19]. In order to obtain a wide
variety of photonic topological systems all these phenomena must be replicated as well. For
instance, photonic IQHE states have been reported by using gyromagnetic photonic crystals
allowing electromagnetic waves to interact with an external magnetic field [96–99]. As well,
photonic analogs of the quantum spin Hall insulator have been obtained in an array of opti-
cal ring resonators, with clockwise and anti-clockwise polarization of each resonator acting as
a pseudospin degree of freedom [91, 100]. These are only a few examples among many oth-
ers [31, 33] on how various topological phases can be replicated in optic systems. However,
as this thesis focuses on the SSH system, whose topological order is due to the dimerization
of the one-dimensional lattice, we may rely only on the spatial modulation of the refractive
index [55, 101].

Topological order in the SSH system is due to the dimerization of the one-dimensional lattice.
Thus, it is realized as a waveguide array solely by means of a one-dimensional refractive index
modulation [55, 102], in contrast to the examples discussed previously. A refractive index as
portrayed in Fig. 1.6 forms identical waveguides in place of the sites —given by identical peaks in
∆n— with staggered couplings. If confinement within each waveguide is sufficiently strong, the
tight binding approximation —also referred to as coupled mode theory in photonic contexts—
may be applied, expressing the field of the system as a linear combination of the bound modes
at each waveguide [103–106]. Under this approach the hamiltonian matrix elements are

Hn,m =

∫
dxẼ∗n(x) ·

[
− ∂2x

2β0
− β0

∆n(x)

n0

]
Ẽm(x) , (1.44)

with Ẽn(x) the bound mode of the field at waveguide n. For a stationary state of the form
Ẽ(x, z) = Ẽ(x)e−iβz, with Ẽ(x) =

∑
cnẼn(x), we obtain the hamiltonian eigenvalue problem

βcn =
∑
m

Hn,mcm . (1.45)

We conclude that the SSH model for polyacetylene can be realized in a photonic waveguide array
by correctly engineering the refractive index of the optic media, obtaining the same hamiltonian
representation as its condensed matter version. Therefore, the photonic SSH system has a non
trivial topological phase for |u| < |v|, which is characterized by the Zak phase and protected by

5As a silver lining, even though driven/dissipative dynamics are a limitation when studying hermitian systems
in optic platforms, they present a remarkable experimental advantage for the study of non-hermitian topological
phases, in particular parity-time symmetric systems [29, 95].
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......
Figure 1.6: Refractive index modulation for an SSH waveguide array. Peaks in the refractive

index form waveguides in place of the sites. The hopping amplitude may be controlled by
proximity of the waveguides, or by changing the refractive index in between the waveg-
uides.

the symmetry
Hk = −σzHkσz , (1.46)

with Hk the hamiltonian matrix in reciprocal space. Lets recall however that this expression
was obtained in section 1.2.1 starting form the chiral operator Γ̂, whose action on the fermionic
annihilation operators is given by Eq. (1.17). This approach is no longer valid, as the electric
field is classical. Furthermore, if we quantize the field and describe the system by a second
quantization formalism, the annihilation and creation operators would be bosonic, and Eq. (1.46)
would not be obtained. Thus, referring to the photonic SSH system, we understand chiral
symmetry not as the composition of particle-hole symmetry and TRS, but as the existence of
a unitary local operator Γ̂ such that Ĥ = −Γ̂†ĤΓ̂ [87]. This guarantees that all the diagonal
terms in the hamiltonian are proportional to the identity, allowing for the Zak phase to be a
well defined topological invariant.
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Chapter 2

Quantum optics

Communication setups rely on the transmission of information by means of a physical system.
From verbal communication where interlocutors exchange information through the propaga-
tion of acoustic waves, to telecommunication where information is encoded in electromagnetic
waves. Encoding information within quantum systems gives birth to the area of quantum in-
formation, where enhanced communication protocols may be formulated taking advantage of
quantum phenomena with no classical analog, such as entanglement. Photonic platforms stand
as a promising route to achieving efficient quantum information processing, due to their non-
interacting, decoherence-free nature, and the wide-variety of optical techniques to efficiently
manipulate photonic states [48, 49, 107]. Quantum information may be encoded in a physical
system in two forms, by discrete or continuous variables. Photonic discrete variable schemes
employ photon polarization, or photon number within an optical mode as the relevant degree
of freedom, while continuous variable schemes describe quantum information in terms of the
quadratures of an optical mode. Our focus is on the latter, in particular squeezed states of light,
which serve as the primary entanglement resource for continuous variable quantum information
processing [45, 46, 108, 109].

In this chapter we introduce a framework for quantum optics, with an emphasis on single-mode
and two-mode squeezed states. This will provide to the reader the necessary background on
squeezing in order to later study its propagation in photonic topological lattices. We begin
developing the quantization of the electromagnetic field in section 2.1, and defining a phase
space representation for quantum states. In section 2.2 we focus on Gaussian states, discussing
their representation, the characterization of entanglement, and introduce a numerical method
to simulate their time evolution. We finally discuss in detail the behavior of squeezed states in
section 2.3.

2.1 Quantization of the electromagnetic field
Within the classical regime, a harmonic mode of the electromagnetic field with wave vector k
and frequency ω = c|k|, propagating in vacuum is given by the electric and magnetic fields

E(r, t) = êE0e
i(k·r−ωt) + c.c. (2.1a)
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B(r, t) = −i
k× ê

c|k|
E0e

i(k·r−ωt) + c.c. , (2.1b)

with ê the polarization unit vector. The hamiltonian of the system is

H =
1

2

∫
d3r ε0E

2 +
1

µ0

B2

= 2ε0V |E0|2 ,
(2.2)

with V =
∫

d3r. Defining the variables q and p by E0 = (2
√
ε0V )−1(ωq + ip) the hamiltonian

takes the form of a harmonic oscillator

H =
1

2
p2 +

ω2

2
q2 , (2.3)

where superpositions of the electric and magnetic fields play the role of position and momentum.
The standard procedure for quantizing the harmonic oscillator may now be applied, promoting q
and p to operators, q → q̂ and p→ p̂, subject to the canonical commutation relation [q̂, p̂] = i~.
The annihilation and creation operators are defined respectively as

a = (2~ω)−1/2(ωq̂ + ip̂) , (2.4a)

a† = (2~ω)−1/2(ωq̂ − ip̂) , (2.4b)

which obey the commutation relation [a, a†] = 1. We obtain the final form of the hamiltonian

Ĥ = ~ω
(
a†a+

1

2

)
, (2.5)

where the Ĥ fashions a well earned hat showing its promotion to an operator. We find discrete
energy levels En = ~ω(n+ 1/2), where the second term corresponds to the vacuum fluctuations
energy, and n ∈ N0 indicates the number of photons in the field, each one with energy ~ω. Any
state of the field may be represented in the Fock basis {|n〉}∞n=0, corresponding to states with
a well defined photon number, eigenstates of the number operator n̂ = a†a. The action of the
operators a and a† on the Fock states is given by

a|n〉 =
√
n|n− 1〉 , (2.6a)

a†|n〉 =
√
n+ 1|n+ 1〉 , (2.6b)

representing respectively the annihilation and creation of a photon. Note that the commutation
relation defined for a and a† determines the bosonic character of photons.

In terms of quantum information, Fock states constitute a discrete variable description of the
field, serving for numerous protocols. Unfortunately, generation of Fock states is exceptionally
challenging, constituting a major limitation for the implementation of photonic discrete variable
quantum information [48, 49]. Protocols for deterministic generation of Fock states, even up to
n ∼ 100, have been recently proposed [110, 111]. However, from an experimental perspective,
a deterministic source of high-fidelity indistinguishable photons with correct coupling to optic
platforms does not exist [49], and generation of high fidelity Fock states is currently achieved
only for a low photon number [112, 113].
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A continuous variable description of the field is achieved defining the hermitian quadrature
operators

X1 =
a+ a†

2
, (2.7a)

X2 =
a− a†

2i
, (2.7b)

which correspond to adimensional position and momentum variables. The quadratures obey
the commutation relation [X1, X2] = i/2, and therefore a Heisenberg-like uncertainty principle

〈∆X1〉〈∆X2〉 ≥ 1/4 . (2.8)

We introduce the continuous set of eigenvalues and eigenstates of the quadrature operators X1

and X2, labelled by q and p respectively, which satisfy

X1|q〉 = q|q〉 , (2.9a)

X2|p〉 = p|p〉 . (2.9b)

Each set of eigenstates, {|q〉} or {|p〉}, constitutes a complete basis of the Hilbert space, and
are related by the Fourier transform

|q〉 = π−1/2
∫

dp e−2iqp|p〉 , (2.10a)

|p〉 = π−1/2
∫

dq e2iqp|q〉 , (2.10b)

with q and p ranging from −∞ to ∞.

The fields —now as quantum operators— are written in terms of the quadratures as

E(r, t) = ê

√
2~ω
ε0V

[X1 cos(k · r− ωt)−X2 sin(k · r− ωt)] , (2.11a)

B(r, t) =
k× ê

c|k|

√
2~ω
ε0V

[X1 sin(k · r− ωt) +X2 cos(k · r− ωt)] , (2.11b)

where we see that just as in the classical regime, the quadratures represent amplitudes of the
fields oscillating with a π/2 phase difference. Any physical relevance of the phase of the fields
must be in terms of an appropriate phase reference. In the general case, a φ rotated quadrature is
defined asX(φ) = X1 cos(φ) +X2 sin(φ), from which it is evident thatX1 = X(0), X2 = X(π/2)
and the commutation relation [X(φ), X(φ+ π/2)] = i/2 holds for any rotation angle. These
observables are measured by phase sensitive measurement techniques, which generally rely on
interference between the mode of interest of the field and a strong local oscillator at the same
frequency, which sets the phase reference [114, 115]. Note that the orthogonal quadratures X1

and X2 correspond to conjugate variables and thus cannot be measured simultaneously.

At this point we have discussed the quantum description of a single mode of the electromagnetic
field as a discrete and continuous variable. Any more complex state can be expanded as a
superposition of the involved harmonic modes {an}, which obey the commutation relations
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[an, a
†
n′ ] = δn,n′ and [an, an′ ] = 0. The quantization formalism developed so far is well suited

for the description of a photonic lattice under the tight binding (coupled mode) approximation.
For a waveguide array, a bosonic operator an is introduced for the bound mode at the n-th
waveguide, obtaining a hamiltonian describing the linear propagation of the field

Ĥ =
∑
n

~ωna†nan +
∑
n6=m

Hn,ma
†
nam , (2.12)

where the first term represents uncoupled waveguides, and the second represents hopping pro-
cesses, where a photon is annihilated at mode m and created at mode n with amplitude Hn,m.

2.1.1 Phase space representation: The Wigner function

The classical notion of phase space dictates that the state of a classical system with N de-
grees of freedom is completely determined by a point in a 2N -dimensional phase space, which
corresponds to the space spanned by the generalized positions {qn}N−1n=0 and their conjugate mo-
menta {pn}N−1n=0 . The statistical average of any observable O(~q, ~p), with ~q = (q0, . . . , qN−1) and
~p = (p0, . . . , pN−1), is

O =

∫
dNq dNpO(~q, ~p)f(~q, ~p) , (2.13)

with f(~q, ~p) the statistic probability density function for the system being in a given point of
phase space, which corresponds to a 2N -dimensional Dirac delta function for a system of which
we have absolute knowledge.

We wish to adapt this concept to the quantum regime, where instead of statistical averages O
we focus on probabilistic averages 〈O〉 due to the intrinsic quantum uncertainty of the system.
Following the correspondence between the electromagnetic field and a harmonic oscillator, the
quantum optics phase space is spanned by the set of conjugate quadratures of each mode of
the field {X(n)

1 , X
(n)
2 }N−1n=0 , with X

(n)
ν the quadrature operator ν (ν = 1, 2) of the n-th mode.

We now seek for a phase space quantum distribution function of the state to take the place of
f(~q, ~p) in the quantum mechanical version of Eq. (2.13).

We introduce the Wigner function W of a quantum state as the Fourier transform of the off-
diagonal elements of its density matrix ρ [114, 116]1:

W (~q, ~p) =

(
2

π

)N ∫
dNu e4i~p~u〈~q + ~u|ρ|~q − ~u〉 , (2.14)

with ~q and ~p the set of labels for the eigenmodes of the quadratures of the N modes of the field.
The Wigner function is completely determined by the state of the field, and vice versa. Any
observable O may be written in terms of the bosonic operators {an}N−1n=0 and {a†n}N−1n=0 , where
the operator is said to be symmetrically ordered if the products of annihilation and creation
operators are symmetrized. For a symmetrically ordered observable OS, its expectation value

1In this work we will only study pure states of the field |ψ〉, for which ρ = |ψ〉〈ψ|. However, we introduce
this formalism in terms of an arbitrary density matrix which applies to mixed states, accounting for a statistical
average as well.
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is given by2

〈OS〉 =

∫
dNq dNpOS(~q, ~p)W (~q, ~p) , (2.15)

where OS(~q, ~p) corresponds to the expansion of OS in terms of the bosonic operators, replacing
an → qn + ipn.

The Wigner function plays the role of the probability distribution function in the quantum
mechanical version of Eq. (2.13). However, it is deemed a quasi-distribution function as it may
take negative values —for Fock states for example [114]—. Negativity of the Wigner function
serves as a sufficient —yet not necessary— landmark for the quantum character of a given state.
It satisfies the normalization condition∫

dNq dNpW (~q, ~p) = 1 , (2.16)

and its marginal distribution over each variable yields the probability distribution function of
the state in the corresponding basis∫

dNpW (~q, ~p) = 〈~q |ρ|~q 〉 , (2.17a)∫
dNqW (~q, ~p) = 〈~p |ρ|~p 〉 . (2.17b)

2.2 Gaussian states
Gaussian states, defined as quantum states with a Gaussian representation, are of great relevance
within a photonic continuous variable framework. For example, the vacuum state, which is
the ground state of the free field, and squeezed states, which serve as the primary source
for continuous variable entanglement, are both Gaussian. Furthermore, linear and quadratic
hamiltonians correspond to Gaussian transformations, which map Gaussian states to Gaussian
states [45, 46]. In this section we define Gaussian states and briefly introduce a few paradigmatic
examples of them. We also develop a numerical method to simulate time evolution and describe
an entanglement criterion, which will be required for the characterization of squeezed states and
for the study of squeezed states in a topological photonic lattice.

Gaussian states, by definition, are represented by a Gaussian Wigner function, and are therefore
fully characterized by their first and second statistic moments [45]. For an N mode system, we
define the 2N dimensional vector χ̂ containing the set of all conjugate quadratures,

χ̂ =
(
X

(0)
1 , X

(0)
2 , . . . , X

(N−1)
1 , X

(N−1)
2

)
. (2.18)

The first moment is defined by the mean value of the quadratures 〈χ̂〉, and the second moment
is the correlation matrix

Vn,m =
1

2

〈
[∆χ̂n,∆χ̂m]+

〉
, (2.19)

2For observables with normal or anti-normal ordering, meaning all annihilation operators placed to the right
or to the left of the creation operators respectively, other quantum distribution functions are defined, namely
the P - and Q-distributions [114].
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with ∆χ̂n = χ̂n − 〈χ̂n〉. At this point a generalized version of the uncertainty principle may be
stated as

V − Λ ≥ 0 , (2.20)

with Λn,m = 〈[χ̂n, χ̂m]〉/2, meaning that the matrix on the left hand side of Eq. (2.20) must
only have non-negative eigenvalues [117]. The Wigner function of a Gaussian state is written as

W (χ) =
|V |−1/2

(2π)N
exp

(
−1

2
(χ− µ)V −1(χ− µ)T

)
, (2.21)

with χ the 2N -dimensional vector containing the eigenvalues of χ̂, and |V | the determinant of
V .

2.2.1 Some examples of Gaussian states

We briefly introduce three elementary types of Gaussian states —namely, the vacuum state,
coherent states, and thermal states— which will serve for the discussions in the following sec-
tions [45, 115]. Squeezed states, which are also Gaussian, are not considered in this section, but
will be addressed in detail in section 2.3. On the other hand, the already mentioned Fock states
are in general not Gaussian.

The vacuum state |0〉 corresponds to the ground state of the free electromagnetic field. It may
be thought of as a Fock state with zero photon number, a coherent state with zero coherent
amplitude, or a thermal state at zero temperature. The quadratures have zero expectation value,
with variance 〈(∆X)2〉vacuum = 1/4 for any rotation angle. The correlation matrix V = I/4 is
proportional to the identity matrix I, thus the quadratures are completely uncorrelated. The
Wigner function is symmetric with respect to the phase space origin, as shown in Fig. 2.1-(a).

A coherent state |α〉 is defined as an eigenstate of the annihilation operator with eigenvalue
α ∈ C. The uncertainty in the quadratures, as well as the correlation matrix is identical as those
of vacuum, however the expectation value of the quadratures are 〈X1〉 = Reα and 〈X2〉 = Imα.
Coherent states correspond to phase space displaced vacuum states, as shown by their Wigner
function in Fig. 2.1-(b), defined by the displacement operator D(α) = exp(αa†−α∗a) acting on
vacuum |α〉 = D(α)|0〉. The expectation value of the field is

E(r, t) = ê

√
2~ω
ε0V

Re
[
αei(k·r−ωt)

]
, (2.22a)

B(r, t) =
k× ê

c|k|

√
2~ω
ε0V

Re
[
αei(k·r−ωt−π/2)

]
. (2.22b)

In the high amplitude limit |α|2 � 1 the vacuum-like fluctuations are negligible, thus coherent
states correspond to a description of classical light within the quantum optics formalism.

28



q q q

p
0.0 0.6 0.0 0.6 0.0 0.1

(a) (b) (c)

Figure 2.1: Wigner function for: (a) Vacuum state. (b) Coherent state with α = 2eiπ/4,
which takes the form of the vacuum state displaced in phase space. (c) Thermal state
with n̄ = 2, which is not a minimal uncertainty state.

Thermal states can describe the radiation emitted by a cavity in thermal equilibrium at
temperature T . Unlike the previously introduced states, they are mixed states, given by the
density matrix

ρth =
∑
m

n̄m

(n̄+ 1)m+1
|m〉〈m| , (2.23)

with n̄ = [exp (~ω/kBT )− 1]−1 the mean photon number. Just as vacuum and coherent states,
the correlation matrix is proportional to the identity V = (2n̄ + 1)I/4, but thermal states are
not minimal uncertainty states. The Wigner function is shown in Fig. 2.1-(c).

2.2.2 A numerical method for the evolution of Gaussian states

In this section we develop a simple method for the numerical simulation of the evolution of Gaus-
sian states. We consider a set of N bosonic operators {an}N−1n=0 , in a setup of coupled waveguide
arrays, under the influence of a generic, propagation axis independent, bilinear hamiltonian
Ĥ =

∑
n,mHn,ma

†
nam. Our method relies on the fact that the states are Gaussian, and are

therefore completely determined by the mean values of the quadratures 〈χ̂〉, and the correla-
tion matrix V . These quantities can be obtained from the vector µ, and the two matrices N
and M , defined by their elements µn = 〈an〉, Nn,m = 〈a†nam〉, and Mn,m = 〈anam〉. Thus, a
many photon problem in a Hilbert space N times that of a single harmonic mode, which is in
turn infinite-dimensional, is reduced to the calculation of one N -dimensional vector, and two
N ×N -dimensional matrices, with no loss of information.

The bosonic operators obey the Heisenberg-like equation

− i
dan
dz

=
[
Ĥ, an

]
, (2.24)

where the propagation axis z acts as an effective time coordinate. The solution to the equation is
given by an(z, z0) = Û †(z, z0)an(z0)Û(z, z0), with Û(z, z0) = exp(−iĤ(z− z0)). In the following
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we take z0 = 0 for simplicity. Employing the Baker-Hausdorff lemma3, we obtain

an(z) =
∑
k

(iz)k

k!
[Ĥ, . . . , [Ĥ, an(0)]]︸ ︷︷ ︸

k times

. (2.25)

We find that [Ĥ, . . . , [Ĥ, an]] =
∑

m(Hk)n,mam for k nested commutators, and thus the z evo-
lution of the operators is

an(z) =
∑
m

(
e−iHz

)
n,m

am(0) . (2.26)

Note that the H has lost its hat, as it is now only the matrix representation of Ĥ on the {an}
basis. As well, we obtain the matrix representation of the z evolution operator U = e−iHz.
Eq. (2.26) reduces the z evolution to a matrix multiplication, however, it requires taking the
exponential of a matrix at each time step. Let Q be the matrix containing the eigenvectors
of H in its columns, and H̃ the diagonal form of H, namely H̃ = Q†HQ. We now write
U = Q†e−iH̃zQ, thus a single diagonalization of the hamiltonian is required, and each time step
now reduces to the exponential of scalars, and matrix multiplications. The evolution of µ, N ,
and M is given by

µn(z) =
∑
m

Un,m(z)µn(0) , (2.27a)

Nn,m(z) =
∑
k,l

U∗n,k(z)Um,l(z)Nk,l(0) , (2.27b)

Mn,m(z) =
∑
k,l

Un,k(z)Um,l(z)Mk,l(0) . (2.27c)

The presented evolution method is exact, and only numerical errors may limit its precision.
Furthermore, the evolution from z0 to an arbitrary final point zf may be computed in a single
calculation, with no need of defining an iteration time step. A time step can be introduced if
knowledge of the field is required at intermediate points between z0 and zf , but the precision
of the evolution is not affected by the chosen step. Note that the evolution obtained for the
bosonic operators {an}, and the defined variables µ, N , and M applies to non-Gaussian states
as well, however these are not fully determined by the defined variables, and thus the numerical
method does not account for the full time evolution of a general state of the field.

2.2.3 Entanglement criterion for continuous variable systems

Having introduced Gaussian states, we now describe an entanglement criterion for a bipartite
continuous variable system [46, 118], which will later serve to characterize entanglement in
squeezed states. Our starting point is Peres’ partial transpose criterion [119]: A density matrix
ρ of the bipartite system composed by subsystems A and B is separable if and only if it can be
written as the sum of direct products

ρ =
∑
n

pn ρ
(A)
n ⊗ ρ(B)n , (2.28)

3The Baker-Hausdorff lemma: eABe−A = B + [A,B] + 1
2 [A, [A,B]] + · · ·+ 1

n! [A, . . . , [A,B]]︸ ︷︷ ︸
n times

+ . . .
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with ρ
(A)
n and ρ

(B)
n density matrices in each subsystem, and pn > 0∀n satisfying

∑
pn = 1.

Therefore a necessary criterion for separability is that the partial transposition of one subsys-
tem, e.g. ρ(A) → (ρ(A))t, yields a physical density matrix ρ̃ =

∑
pn (ρ

(A)
n )t ⊗ ρ(B)n , as (ρ(A))t is

a physical density matrix in subsystem A. Transposition of a hermitian density matrix corre-
sponds to complex conjugation, which in turn corresponds to time-reversal. Thus upon trans-
position, the momentum coordinates {pn} change sign, while the position coordinates {qn}
remain invariant. A bipartite quantum state with Wigner function W (χ(A), χ(B)) is separable if
W̃ = W (ΓAχ

(A), χ(B)) is a physical Wigner function as well, with ΓA = diag(1,−1, . . . , 1,−1).
Partial transposition of subsystem A is represented in the correlation matrix as V → Ṽ = ΓV Γ,
with Γ = ΓA ⊕ IB, and IB the identity matrix of subsystem B. For W̃ to be a physical Wigner
function, Ṽ must satisfy the generalized uncertainty principle stated in Eq. (2.20). Finally, for a
quantum state with correlation matrix V , the Peres-Horodecki criterion for continuous variable
systems states that a sufficient criterion for entanglement is

Ṽ − Λ � 0 , (2.29)

with Ṽ the partially transposed correlation matrix [118]. The minimum eigenvalue of the matrix
on the left side of Eq. (2.29) thus serves as an entanglement measure.

2.3 Squeezed states
Squeezed states are a particular type of Gaussian states which are of fundamental interest to
this work. They are defined as states which present a lower than vacuum uncertainty in one
quadrature of the field, at the expense of an increment in the conjugate quadrature. From
a quantum information perspective, squeezed states allow for deterministic and unconditional
generation of continuous variable entanglement [46]. Thus, they are central to quantum infor-
mation protocols such as quantum teleportation [46, 120] and quantum computation [39, 121].
Interestingly as well, reduced noise levels have made squeezed light fundamental to important
breakthroughs in metrology [122, 123]. The characteristic photon correlations of squeezing may
occur within a single mode of the field or between distinct modes, thus defining single- and
two-mode squeezed states, on which we will focus in the following sections.

2.3.1 Single-mode squeezing

A single-mode squeezed state must satisfy 〈(∆X(φ))2〉 ≤ 〈(∆X)2〉vacuum for some rotation angle
φ. We define the unitary squeezing operator as

S(ξ) = exp

[
1

2

(
ξ∗a2 − ξ(a†)2

)]
, (2.30)

with ξ = |ξ|eiθ the squeezing parameter, which transforms the bosonic operators and the quadra-
tures as

S†aS = a cosh |ξ| − eiθa† sinh |ξ| , (2.31a)

S†X(φ)S = X(φ) cosh |ξ| −X(θ − φ) sinh |ξ| . (2.31b)

Thus, the quadratures X(θ/2) and X(θ/2 + π/2) are contracted and expanded respectively
by a factor e∓|ξ| due to the action of S. The squeezed vacuum state is obtained applying the
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squeezing operator on vacuum, |ξ〉 = S(ξ)|0〉, which represents a field with zero mean value
〈X(φ)〉 = 0, and a phase-dependent variance

〈
(∆X(φ))2

〉
=

cosh 2|ξ| − sinh 2|ξ| cos(θ − 2φ)

4
. (2.32)

Minimal variance is obtained in the maximally squeezed quadrature X(θ/2), for which
〈(∆X(θ/2))2〉 = e−2|ξ|/4. In the conjugate quadrature 〈(∆X(θ/2 + π/2))2〉 = e+2|ξ|/4, thus |ξ〉
is a minimal uncertainty state in terms of the Heisenberg-like relation in Eq. (2.8). Squeezing
with non-zero mean value is obtained operating squeezed vacuum with the displacement opera-
tor, which does not modify the uncertainty of the quadratures. We focus on vacuum squeezing
during our work.

The off diagonal elements of the correlation matrix, are determined by

1

2

〈
[∆X(φ)∆X(φ+ π/2)]+

〉
= −sinh 2|ξ| sin(θ − 2φ)

4
, (2.33)

while the diagonal ones are represented in Eq. (2.32). The correlation matrix is

V =
cosh 2|ξ|

4

(
1 0
0 1

)
− sinh 2|ξ|

4

(
cos θ sin θ
sin θ − cos θ

)
. (2.34)

For θ = 0, we obtain a diagonal correlation matrix V0 = diag
(
e−2|ξ|/4, e+2|ξ|/4

)
, therefore the

Wigner function is a vertically aligned ellipse, as shown in Fig. 2.2-(a). For an arbitrary θ, Eq.
(2.32) and (2.33) show that the diagonal form of V may be recovered upon a rotation of the
phase space in θ/2. Thus the Wigner function for an arbitrary θ corresponds to the θ = 0 ellipse
rotated counterclockwise in θ/2, as shown in Fig. 2.2-(b).

q q

p

0.0

0.6
(a) (b)

Figure 2.2: Wigner function for single-mode squeezed states, with |ξ| = 0.7 and (a) θ = 0,
and (b) θ = π/3. Squeezed states are represented by a Gaussian distribution with reduced
variance along the squeezed quadrature, which is rotated in θ/2 with respect to X1.
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The degree of squeezing of a given state is measured comparing the noise in its maximally
squeezed quadrature to that of vacuum by means of a standard decibel formula

S [dB] = min
φ

10 log10

(
〈(∆X(φ))2〉
〈(∆X)2〉vacuum

)
. (2.35)

Squeezing at a given quadrature is measured in the same way, but evaluating for the corre-
sponding rotation angle φ.

Despite the zero coherent amplitude, squeezed vacuum presents a non-zero mean photon number
〈n̂〉 = sinh2 |ξ|. Expansion of |ξ〉 in the Fock basis reads [115]

|ξ〉 =
∞∑
k=0

(−1)k
√

(2k)!

2kk!

tanhk |ξ|√
cosh |ξ|

eiθk|2k〉 , (2.36)

where we observe not only that squeezed vacuum is composed by non-zero Fock states, but also
that only pair photon numbers take part. This is present in the squeezing operator defined in
Eq. (2.30), which represents pairwise creation and annihilation of photons in the optic mode.

The reduced variance of squeezed states makes them a natural candidate for applications in
metrology [124, 125]. Injection of squeezed vaccum states in non-utilized ports of interferome-
ters, replacing plain vacuum fluctuations for squeezed vacuum, has proven to enhance sensitiv-
ity [122, 126–129]. Probably the most remarkable of such applications is the use of squeezed
states of light in the Laser Interferometer Gravitational-Wave Observatory (LIGO) [123, 130].
Other related applications of single-mode squeezed states include quantum sensing [131] and
quantum imaging [132].

2.3.2 Two-mode squeezing

The squeezing operator in Eq. (2.30) may be extended to generate two-mode squeezing by the
pairwise creation and annihilation of photons in two distinct modes of the field a and b, via the
two-mode squeezing operator

Sa,b = exp
[
ξ∗ab− ξa†b†

]
. (2.37)

The two-mode squeezed vacuum state |ξ〉a,b = Sa,b(ξ)|0〉 is expanded in the Fock basis as [115]

|ξ〉a,b =
∞∑
k=0

(−1)k
tanhk |ξ|
cosh |ξ|

eiθk|k〉a ⊗ |k〉b , (2.38)

where we confirm that only states with identical photon number in both modes are represented.
We have claimed that squeezed states are a source of continuous variable entanglement, which
now appears evident as |ξ〉a,b cannot be written as a simple direct product state.

The action of the two-mode squeezing operator on the bosonic operators is

S†a,baSa,b = a cosh |ξ| − eiθb† sinh |ξ| (2.39a)

S†a,bbSa,b = b cosh |ξ| − eiθa† sinh |ξ| . (2.39b)
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These relations are used to obtain the mean value of the quadratures, which is zero just as for
vacuum single-mode squeezing, and the correlation matrix, whose elements are represented in
the following equations:

〈
(∆X(a)(φ))2

〉
=
〈
(∆X(b)(φ))2

〉
=

cosh 2|ξ|
4

, (2.40a)

〈
∆X(a)(φ)∆X(b)(φ)

〉
= −sinh 2|ξ|

4
cos(θ − 2φ) , (2.40b)

1

2

〈[
∆X(a)(φ),∆X(a)(φ+ π/2)

]
+

〉
=

1

2

〈[
∆X(b)(φ),∆X(b)(φ+ π/2)

]
+

〉
= 0 , (2.40c)

〈
∆X(a)(φ)∆X(b)(φ+ π/2)

〉
=
〈
∆X(a)(φ+ π/2)∆X(b)(φ)

〉
= −sinh 2|ξ|

4
sin(θ − 2φ) . (2.40d)

For θ = 0 the correlation matrix is

V0 =
1

4


cosh 2|ξ| 0 − sinh 2|ξ| 0

0 cosh 2|ξ| 0 sinh 2|ξ|
− sinh 2|ξ| 0 cosh 2|ξ| 0

0 sinh 2|ξ| 0 cosh 2|ξ|

 , (2.41)

while for an arbitrary phase θ, the diagonal form of the matrix is obtained rotating the phase
space in θ/2. Thus the general expression for the correlation matrix is V = R(θ/2)V0R†(θ/2)
with R(θ/2) = diag(R(θ/2), R(θ/2)), and R(θ/2) the 2× 2 rotation matrix.

Squeezed states were defined by their lower than vacuum uncertainty, however it is not evident
that two-mode squeezing satisfies this property. The uncertainty in the single-mode quadratures,
given by Eq. (2.40a), yields

〈
(∆X(µ)(φ))2

〉
≥ 〈(∆X)2〉vacuum ∀φ, with µ = a, b. Furthermore,

the correlation matrix in each individual mode is Vµ = cosh 2|ξ|I/4, which corresponds to that of
a thermal state with n̄ = sinh2 |ξ|, known not to be a minimal uncertainty state. We define the
two-mode φ rotated quadrature X(a,b)(φ) as a superposition of the quadratures of the individual
modes

X(a,b)(φ) =
X(a)(φ) +X(b)(φ)√

2
, (2.42)

obtaining the phase-dependent uncertainty

〈
(∆X(a,b)(φ))2

〉
=

cosh 2|ξ| − sinh 2|ξ| cos(θ − 2φ)

4
. (2.43)

Just as for single-mode squeezing, the maximally squeezed quadrature is φ = θ/2, for which〈
(∆X(a,b)(θ/2))2

〉
= e−2|ξ|/4. Quantum phenomena emerging from two-mode squeezing occurs

due to correlations between the modes, and cannot be observed when only viewing an individual
mode.

We now address quantitatively the emergence of entanglement in two-mode squeezing. The
Wigner function for θ = 0 reads

Wa,b(χ) =
4

π2
exp

[
−e2|ξ|

(
(qa + qb)

2 + (pa − pb)2)
)
− e−2|ξ|

(
(qa − qb)2 + (pa + pb)

2
)]

. (2.44)
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Figure 2.3: Marginal Wigner distributions for two-mode squeezed vacuum, with ξ = 0.7. (a)
The marginal distributions for qµ and pν (with µ, ν = a, b) take the form of thermal states,
showing no correlations between these variables. (b) and (c) Correlations are observed
in superpositions of the single-mode quadratures, as panel (b) shows squeezing in the
two-mode quadrature Xa,b(φ = 0), and panel (c) shows anti-squeezing in the orthogonal
two-mode quadrature.

The marginal distributions are shown in Fig. 2.3, from which it is evident that correlations
are only observed in the superposition of the single-mode quadratures. Taking the infinite
squeezing limit |ξ| → ∞, which is unphysical as the generation of such state would require
infinite energy [46], but represents a perfectly correlated state, the Wigner function approaches
Wa,b ∝ δ(qa + qb)δ(pa − pb). In this limit two-mode squeezed vacuum corresponds to an optic
EPR state [133]. Measurement of quadrature X(a)

0 (X(a)
1 ) at mode a sets the state of the field at

mode b as the eigenstate | − qb〉 of X(b)
0 (eigenstate |pb〉 of X(b)

1 ), revealing the entangled nature
of the state. For an arbitrary θ the Wigner function takes the same form as Eq. (2.44) with the
rotation qµ → qµ cos θ/2 + pµ sin θ/2, and pµ → pµ cos θ/2− qµ sin θ/2, with µ = a, b. The same
analysis can be done in terms of the quadratures X(θ/2) and X(θ/2 + π/2), thus the phase of
the squeezing sets the entangled variables of the system.

In terms of the Peres-Horodecki entanglement criterion, presented in section 2.2.3, the minimum
eigenvalue for Ṽ −Λ is λmin = (e−2|ξ|− 1)/4, independent of θ. The magnitude of entanglement
is independent of the phase of the squeezing parameter, and monotonically increases with the
magnitude of squeezing, converging to λmin → −1/4 in the infinite squeezing limit.
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Chapter 3

Quadrature protection of squeezed states
in a one-dimensional photonic topological
insulator

This chapter presents the main research carried on the topic of topological protection of quantum
light. We study the propagation of squeezed states in a topological one-dimensional waveguide
array, when exciting the topologically protected state with squeezed light. We focus on the be-
havior of quantum properties such as squeezing and entanglement, concluding on the topological
protection of squeezing, where the phase of the squeezed quadrature is robustly preserved as the
system evolves. We finally show how this topological protection can be beneficial to quantum
information protocols.

What follows is an adapted version of reference [1], written by the author of this thesis, Gabriel
O’Ryan Pérez, Carla Hermann-Avigliano, and Luis E. F. Foa Torres.

3.1 Introduction
As a recent, yet promising research area, quantum topological photonics —namely the study
and manipulation of quantum light in topological photonic systems— has allowed for topolog-
ically robust lasers [134, 135] and amplifiers [136, 137], and is positioned as an alternative for
providing robust transport of quantum information [42]. Successful coupling between photons
and topological degrees of freedom has been reported, not only in the single-particle level, but
also for multi-photon states [50, 51, 138–145]. Remarkable results show topological protection
of bi-photon dynamics, granting robustness to quantum correlations against structural disor-
der [51, 141], and quantum interference of topological states [140]. Topological protection of
entanglement has been reported as well [43, 44, 52, 146], demonstrating the potential of quantum
topological photonics for quantum information processing [42].

Research in this area has been focused on Fock-like states, while the interplay between topology
and squeezed light, which serves as a fundamental building block for continuous variable quan-
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tum information [46, 147, 148], remains less explored [149]. Lower than vacuum noise levels
have made squeezed light fundamental to breakthroughs in metrology [122, 123], while from a
quantum information perspective, two-mode squeezing stand as a deterministic and uncondi-
tional source of entanglement [46]. Several continuous variable quantum information protocols,
such as quantum teleportation [120, 150] and quantum computation [39, 121], rely on efficient
transmission and manipulation of squeezed states. However, the correlated nature of these
states makes them sensitive to fabrication imperfections in optic systems, mainly through phase
mismatching and phase diffusion processes, as well as optical losses [151–154]. It is therefore of
high interest to elucidate the effect of a lattices topology on squeezed light, in the search for
topological protection of squeezing.

Here we present a thorough report on the propagation of squeezed light in a topological pho-
tonic lattice, and the effects of topology on quantum features of light1. We study the behavior
of photon statistics, squeezing and entanglement in a one-dimensional SSH waveguide array
when exciting its topologically protected edge state with quadrature squeezed light, employing
analytic and numerical techniques. Our focus is to determine the role that the lattices topology
plays in this phenomena, establishing an interplay between lattice symmetries and quantum
correlations. To this goal we benchmark our results with those of an impurity induced, topo-
logically trivial localized state, and study their response to disorder. A first conclusion that we
extract is that quantum properties inherit the localization of the edge state and therefore follow
its fate when disorder is introduced. But since mere localization may be generated and pre-
served under topologically trivial circumstances, one may wonder if any other more remarkable
consequence of topology or topological advantage exists. Interestingly, we find that the phase of
the squeezed quadrature is preserved in the topological state, providing an advantage for prop-
agation of squeezed light in photonic lattices that may not be replicated by other topologically
trivial localized states.

The structure of this chapter is as follows: In section 3.2 we briefly recall the SSH system and
its topological properties, introducing the trivial lattice used for comparison as well. We then
study the system when the edge state is excited with single-mode squeezed light under two
different scenarios. In section 3.3.1 we apply the squeezing operator on the localized eigenmode,
studying the distribution of squeezing across the lattice. In section 3.3.2, pursuing a more
feasible method of squeezing the edge state, we inject single-mode squeezed light to the edge
waveguide and study its propagation. During section 3.4 we study the propagation of two-
mode squeezing along the lattices. Finally, in section 3.5 we present an application of our
results in a quantum teleportation protocol, where the entanglement resource is topologically
protected, which serves as a proof of concept for the relevance of topological protection of
quantum information upon practical implementations. The chapter concludes with final remarks
and perspectives in section 3.6.

3.2 The lattices
Throughout this work we consider an SSH waveguide array, which is described by a dimerized
one-dimensional chain of identical modes with propagation constant β, and alternating hopping

1After submission of [1], a related study was reported [155].
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amplitudes u and v, given by the hamiltonian

Ĥtop =
∑
n

βa†2na2n + βa†2n+1a2n+1 +
(
ua†2na2n+1 + va†2n+1a2n+2 + h.c.

)
, (3.1)

where an is the bosonic annihilation operator at mode n. The system is formed by two sublat-
tices, even and odd modes, with a unit cell containing sites a2n and a2n+1. We take u and v of
the same sign. This choice is physically motivated as the hoppings are typically determined by
the overlap of the evanescent tails of the modes located at each waveguide [103]. As reviewed
in section 1.2, the system presents a bulk bandgap of |u − v|; however, exponentially localized
states with a propagation constant equal to that of the bare waveguides and perfect sublattice
polarization appear at the edge of a finite lattice terminated in a weak coupling. These states
are topologically protected by chiral symmetry, which is broken by onsite terms differing on each
sublattice or couplings between sites of the same sublattice for example. Therefore, introducing
disorder to the nearest neighbour hoppings preserves the propagation constant of the edge state
and its sublattice polarization. On the other hand, for symmetry breaking onsite disorder the
topological phase of the lattice is destroyed and these properties fluctuate. We note as well that
perfect sublattice polarization can only arise for a semi-infinite lattice as in the finite case there
is always a small coupling between states at opposite edges.

For a semi-infinite SSH lattice, as depicted in Fig. 3.1-(a), with u < v, the topological state has
annihilation operator

Atop =
√

1− α2
∑
n≥0

(−α)na2n , (3.2)

where α = u/v and the absence of odd modes in Atop reflects sublattice polarization. The
amplitude of the topological state at each waveguide is shown in Fig. 3.1-(b).

To benchmark our results we need a reference system. Since we are interested in isolating the
effect of topology, a natural candidate is a system hosting a topologically trivial edge state.
This motivates us to also consider a non-dimerized one-dimensional chain of identical modes
with an onsite impurity ε0, which induces an exponentially localized mode with no topological
protection. The hamiltonian of the semi-infinite trivial lattice, with the impurity located at its
edge is

Ĥtrivial = ε0a
†
0a0 +

∑
n≥0

βa†nan +
(
wa†nan + h.c.

)
, (3.3)

with w the hopping amplitude between neighboring waveguides. The localized state of this
system is given by its annihilation operator

Atrivial =

√
1−

(
w

ε0

)2∑
n≥0

(
w

ε0

)n
an

=
√

1− α2
∑
n≥0

(−α)nan ,
(3.4)

where we have chosen ε0 = −w/α so both localized states present the same spatial distribution,
with exception of sublattice polarization. We also set w = vα/(1 − α) so both states present
the same spectral separation to the bulk bands. The semi-infinite topologically trivial lattice
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Figure 3.1: Topological and topologically trivial systems (without disorder) considered
throughout our work. The latter is used to benchmark our results for the topological
system. (a) Scheme of the lattices. Sites are represented by grey circles and hoppings by
connecting lines. The site outlined in red in the trivial lattice indicates the onsite impurity
which induces the topologically trivial localized state. (b) Probability distribution of the
localized eigenstate hosted by each lattice. The states show the same overall exponen-
tial decay when adjusting for the different lattice constants, and differ by the sublattice
polarization of the topological state.

is depicted in Fig. 3.1-(a), and the amplitude of its edge state in each waveguide is shown in
Fig. 3.1-(b). In contrast to the topological state, the trivial one does not present any symmetry
protected properties, so its propagation constant and spatial distribution will vary upon any
type of disorder present in the lattice.

3.3 Single-mode squeezing in a topological state
We now study the behavior of single-mode squeezed light coupled to the topological state under
two perspectives: In section 3.3.1 we consider the state of the system |ψ〉 as single-mode squeezed
vacuum of the eigenmode, that is |ψ〉 = SAtop(ξ)|0〉, with Sa(ξ) the single-mode squeezing
operator of mode a. Experimentally it would be very challenging to squeeze a collective mode
of the lattice; nevertheless, this scenario provides insight on how quantum properties present
themselves when exciting solely the topological state. In section 3.3.2 we turn to a more feasible
scenario, where we excite only the edge waveguide with single-mode squeezed light and study
its propagation. In both cases we study the distribution of one- and two-mode squeezing across
the lattice, and their response to disorder, comparing with the topologically trivial state.

When introducing disorder, we construct a lattice with hopping (onsite) disorder d by sampling
each hopping (onsite) term from a uniform distribution centered at the pristine value of the
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parameter. The results presented for disordered systems correspond to the average over 50
mean values, each of them obtained after averaging the results for six different (a sextet) random
realizations of the disordered systems.

3.3.1 Squeezing the eigenstate

We consider semi-infinite lattices, and express their edge states as a linear combination of the
operators at each waveguide, A =

∑
cnan. For the pristine systems the coefficients cn are given

by Eq. (3.2) or (3.4) depending on the situation, while for disordered systems they are obtained
numerically. For the state |ψ〉 = SA(ξ)|0〉 we find the following values for squeezing

Sn = 10 log10

(
1− 2|cn|2e−|ξ| sinh |ξ|

)
, (3.5a)

Sn,m = 10 log10

(
1− |cn + cm|2e−|ξ| sinh |ξ|

)
, (3.5b)

with Sn (Sn,m) the one-mode (two-mode) squeezing measurement in decibels at waveguide an
(between waveguides an and am).

Our results in Eq. (3.5a) and (3.5b), shown in Fig. 3.2 as disorder is introduced, indicate
that squeezing decays when distancing from the edge following the exponential decay of the
eigenstates. For the pristine lattices, because the topological state at even waveguides shows the
same spatial distribution than the impurity induced state, the measured quantities are identical
in both systems, but the values obtained at site a2n of the topological lattice are obtained at site
an of the trivial one. Furthermore, Eq. (3.5b) reveals that two-mode squeezing is sensitive to
the phase relation between the individual modes, generating higher squeezing between in-phase
modes, being S0,4 (S0,2) the highest and S0,2 (S0,1) the lowest for the topological (trivial) state,
as shown in Fig. 3.2, bottom row. For the topological lattice, the absence of one-mode squeezing
at odd waveguides reflects sublattice polarization of the state, which is broken when introducing
onsite disorder, as occurs in Fig. 3.2, top right panel. We observe as well that for high disorder
values the states partially delocalize, which is reflected in a decreasing magnitude of one-mode
squeezing, while they also show larger statistical fluctuations, represented by wider confidence
intervals. Until now, the propagation constant does not seem to take part in the behavior of
the systems. In order to observe its effect we must study the propagation of the states.

3.3.2 Propagation of single-mode squeezing

Since squeezing a collective mode of the system might be experimentally very challenging, we
now consider a more feasible state of the field generated by exciting only the edge waveguide with
single-mode squeezed vacuum —that is |ψ(z = 0)〉 = Sa0|0〉— and study its evolution along the
propagation axis z. We work in a rotated frame, where the maximally squeezed quadrature of
the edge waveguide of the pristine lattices corresponds toX(φ = 0) along the entire propagation.
We report mean photon number at each quadrature, squeezing at the orthogonal quadratures
X1 = X(0) and X2 = X(π/2), and maximal squeezing at any rotated quadrature. To maintain
this system as simple as possible, we consider finite lattices of 15 waveguides each.

The propagation of the excitation across the pristine lattices is shown in Fig. 3.3, top row,
depicting the mean photon number in each waveguide as both systems evolve. Part of the
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Figure 3.2: Distribution of squeezing across the lattice when squeezing the localized eigen-
states (α = 0.3, ξ = 0.9). Solid lines with markers show the statistical average value over
disordered systems, and dashed lines represent the confidence interval associated with
the standard deviation. Top (bottom) row shows one-mode (two-mode) squeezing. The
waveguides at which the observations are made are shown in the legend, with Top (Tri)
indicating topological (trivial) state. Zero squeezing at S1 (Top) reflects sublattice polar-
ization of the topological state, which is broken when introducing onsite disorder as shown
in the top right panel. The bottom panels show that two-mode squeezing is sensitive to
the phase relation between the modes, obtaining higher squeezing between waveguides a0
and a4 (a2) for the topological (trivial) state.

excitation remains permanently localized near the edge due to coupling with the localized states,
generating a distribution of squeezing qualitatively equal to the one presented in section 3.3.1
(see also appendix A): Photon number and one-mode squeezing decay while distancing from the
edge, respecting sublattice polarization in the topological lattice. Maximum two-mode squeezing
is obtained between waveguides a0 and a4 (a2) in the topological (trivial) state. These results
show that when injecting one-mode squeezing to the edge waveguide, not only does the excitation
remain localized, but the quantum properties of the field inherit the shape of the edge state.
This is particularly clear when analyzing two-mode squeezing, which proves to be sensitive to
the phase relation between the individual modes. We also observe that part of the excitation
does not couple to the edge state but transports across the lattice, which is explained by the
non-perfect overlap between the edge state and the zero-th waveguide.

When introducing disorder we do not observe a significant change in the mean photon number
of the localized portion of the excitation which is coupled to the edge state, for neither type
of disorder. On the other hand, as shown in Fig. 3.3, transport of the decoupled excitation is
degraded due to Anderson localization of the extended states. In the topological lattice this
causes a persistent non-zero photon number at odd waveguides, even for symmetry preserving
hopping disorder.

The most remarkable consequences of topological protection, or lack of it, are observed when
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Figure 3.3: Photon number 〈n̂〉 in units relative to the initial state (α = 0.3, ξ = 0.9). Top,
middle and bottom row correspond to pristine, hopping disordered (d = 0.6v) and onsite
disordered (d = 0.6v) lattices respectively, while left and right columns correspond to the
topological and trivial systems respectively. Part of the excitation couples to the edge
state and remains localized, reflected by a persistent high photon number in waveguide
zero. The other part of the excitation transports across the pristine lattices towards the
opposite border. Disorder induced Anderson localization obstructs transport across the
bulk of the lattices.

analyzing one-mode squeezing at the edge waveguide, as shown in Fig. 3.4-(a). We observe that
maximal squeezing in the pristine lattices, which is always obtained in quadrature X1, has an
approximately equal value in the topological and trivial state. The role of topology is revealed
when introducing hopping disorder. Maximal squeezing appears to be insensitive to disorder;
however, a drastically different behavior is observed for squeezing at quadratures X1 and X2.
Because hopping disorder preserves chiral symmetry, the propagation constant of the topological
state remains equal to that of the bare waveguides, therefore its maximally squeezed quadrature
continues to be X1 along the entire propagation (Fig. 3.4-(b)–(d)). In contrast, random disorder
generates fluctuations in the propagation constant of the trivial state, rotating the maximally
squeezed quadrature. Even though the behavior of maximal squeezing remains similar to that
of the pristine lattice, the rotation angle of the squeezed quadrature differs between different
random realizations, thus when averaging over them at a fixed quadrature, coherence of the
quantum state is lost and no squeezing is obtained (Fig. 3.4-(e)–(g)).

This discussion is consistent with the results for the onsite disordered lattices. Just as occurred
for hopping disorder, the behavior of maximal squeezing is similar to the pristine case. Never-
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theless, introduction of onsite disorder breaks chiral symmetry in the SSH lattice, therefore its
edge state looses topological protection, and its propagation constant ceases to be topologically
locked. The fluctuations in the propagation constant between different random realizations
causes different rotation angles of their maximally squeezed quadratures, obtaining no squeez-
ing when averaging over them at a fixed quadrature. These results show that when propagating
squeezed light through a localized state in a photonic lattice, topological protection of the state
allows for phase coherence in the squeezed quadrature.
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Figure 3.4: Single-mode squeezing at waveguide zero (α = 0.3, ξ = 0.9). (a) Solid blue
(red) curves with circular (square) marker show squeezing at the maximally squeezed
quadrature for the topological (trivial) state. Dashed (dash-dotted) curves show squeezing
at quadrature X1 (X2). The maximally squeezed quadrature of the pristine systems is
always X1, as the dashed curves overlaps with the solid ones. The maximally squeezed
quadrature of the topological state remains X1 if chiral symmetry is preserved (hopping
disorder), but rotates if it is broken (onsite disorder), whereas that of the trivial state
rotates upon any form of disorder. Fluctuations in the rotation angle of the squeezed
quadrature results in no average squeezing at X1 and X2. Panels (b)–(g) show the Wigner
function at waveguide zero. (b) Input single-mode squeezed state, squeezed in X1. (c)
One realization of the hopping disordered topological system at z = 10v−1, which remains
squeezed inX1. (d) Average Wigner function of the hopping disordered topological system
at z = 10v−1, showing non-zero squeezing as all realizations remain squeezed in X1 due
to topological protection. (e) and (f) Two realizations of the hopping disordered trivial
system at z = 10v−1, which are squeezed at different rotated quadratures. (g) Average
Wigner function of the hopping disordered trivial state at z = 10v−1, showing zero average
squeezing as the squeezed quadrature differs between different realizations.
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3.4 Two-mode squeezing of topological states
Having elucidated the role of topology in the propagation of single-mode squeezed light, we now
study two-mode squeezing coupled to respective localized states. In contrast to single-mode
squeezing, now the main quantum correlations occur between different modes, giving rise to
entanglement. As seen in the previous section, the main consequence of the lattices topology
is protection of the squeezed quadrature. We know as well that the phase of the squeezing
parameter does not affect the magnitude of entanglement in the system, but does determine the
entangled variables. With this in mind, we now study the propagation of two-mode squeezed
light in the topological SSH lattice.

We consider two independent SSH lattices of 15 waveguides each —which we label as lattices
A and B— each one hosting a topologically protected edge state, and study the propagation
of two-mode squeezing along the system. For comparison, we also consider topologically triv-
ial lattices hosting impurity induced edge states. The initial state of the field is given by
the two-mode squeezed vacuum state between the edge waveguide of both lattices, that is
|ψ(z = 0)〉 = Sa0,b0|0〉. We explore the response of the systems to hopping and onsite disorder,
while reporting two-mode squeezing and entanglement between both edge waveguides.

Fig. 3.5, left panel, shows the evolution of two-mode squeezing along the lattices, whose re-
sults agree with those of section 3.3: Maximal squeezing measured in both systems has an
approximately equal value along the propagation direction, which is neither sensitive to topol-
ogy nor disorder. For the topological system, the maximally squeezed quadrature is X1 as long
as chiral symmetry is preserved, because the propagation constant of the edge state is topo-
logically locked. In contrast, if the symmetry is broken by onsite disorder, squeezing measured
at quadratures X1 and X2 averages to zero over the random realizations of the system due to
fluctuations in the rotation angle of the maximally squeezed quadrature. On the other hand, as
the impurity induced edge state does not present any preserved properties, the squeezing values
at fixed quadratures are highly fragile against both types of disorder.

The behavior of entanglement in the systems, portrayed in Fig. 3.5, right panel, is qualitatively
similar to that of maximal two-mode squeezing: it takes an approximately constant value along
the propagation axis, and does not appear to be sensitive to disorder. From this perspective,
the results indicate that the total amount of quantum correlations present in the system are
independent of the topology of the involved edge states. However, they must be interpreted
alongside the information provided by squeezing at the non-rotated quadratures, and the char-
acterization of the entangled variables in a two-mode squeezed state. Despite the fact that the
amount of entanglement is independent of the topology of the edge state, its topological protec-
tion allows to control the maximally entangled variables, protecting them from any symmetry
preserving form of disorder.

3.5 Quantum teleportation employing a topological lattice
In this section we demonstrate the previously highlighted consequences of topological protection
of squeezing. For this we implement quantum teleportation of a single-photon, where the two-
mode squeezed states studied in section 3.4 serve as the shared entanglement resource. As we
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Figure 3.5: Two-mode squeezing and entanglement between both edge waveguides (α = 0.3,
ξ = 0.9). Hopping and onsite disorder values used are d = 0.6v. Left column: solid
blue (red) curves with circular square show squeezing at the maximally squeezed quadra-
ture for the topological (trivial) state. Dashed (dash-dotted) curves show squeezing at
quadrature X1 (X2). Right column: solid blue (dashed red) curves show entanglement
for the topological (trivial) state, in units relative to the initial state. Similar to maximal
squeezing, entanglement is not sensitive topology nor disorder, but squeezing at the non-
rotated quadratures reveals topological protection of the maximally entangled variables
when chiral symmetry is preserved.

will show later in this section, carrying out the teleportation protocol in a topological lattice
turns out to be advantageous compared with a topologically trivial lattice bearing a localized
state. This topological advantage is quantified by a robust fidelity in the presence of disorder.
In the following we describe the teleportation protocol and expose our main results.

The teleportation protocol has been developed in reference [150]. To make the discussion self-
contained, in this paragraph we outline the main steps. We wish to transfer an arbitrary
quantum state |ψin〉 from Alice’s location to Bob’s, for which we rely on a shared entanglement
resource between both parties, given by the state |ψa,b〉. We must consider three modes of the
field: a and b corresponding to the entangled modes sent to Alice and Bob respectively, and
mode c containing the input state. Defining χµ = (qµ, pµ) the phase space basis of the respective
modes, with µ = a, b, c, the Wigner function of the system in this initial setup is

W0(χa, χb, χc) = Wa,b(χa, χb)Win(χc) , (3.6)

where Wa,b and Win represent the Wigner function of |ψa,b〉 and |ψin〉 respectively. Alice couples
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her entangled mode with the input state at a 50:50 beam splitter, obtaining the Wigner function

W1(χa, χb, χc) = W0

(
χa − χc√

2
, χb,

χc + χa√
2

)
. (3.7)

Alice then measures the quadratures corresponding to qa and pc, which become classically
determined random variables, following the probability distribution

P(qa, pc) =

∫
dpa dqb dpb dqcW1(χa, χb, χc) . (3.8)

Given a pair of measured values qa and pc, the state at Bob’s mode collapses to

W2(χb | qa, pc) = N
∫

dpa dqcW1(χa, χb, χc)

= 2N
∫

dx dyWin(x, y)Wa,b

(√
2qa − x, y −

√
2pc, qb, pb

)
,

(3.9)

where normalization must be added explicitly as a result of the non-unitary measurement opera-
tion, and we defined

√
2x = qa + qc and

√
2y = pa + pc for the last equality. If the entanglement

resource is non-rotated two-mode squeezed vacuum, then Bob’s output state approaches the
exact input state in the infinite squeezing limit, aside from a phase space displacement, that is
W2(χb | qa, pc)→ Win(qb +

√
2qa, pb +

√
2pc). To correct this, Bob displaces his mode, obtaining

the final output state, given by the Wigner function

Wout(q, p | qa, pc) = W2(q −
√

2qa, p−
√

2pc| qa, pc) . (3.10)

For the implementation of this protocol, we consider that the entangled two-mode squeezed
state is sent to each party through a topological or trivial photonic lattice, as presented in
section 3.4. Thus, at the output of lattice A, Alice extracts her share of the entangled state
from the edge waveguide of the lattice tracing out all other modes, and so does Bob with lattice
B. Finally, we take the input state as a single-photon, |ψin〉 = c†|0〉. Note however, that the
teleportation protocol is valid for any input, which might even be unknown to our protagonists.

We perform the teleportation for pristine and hopping disordered lattices (d = 0.3v). The
fidelity of a single teleportation event is calculated by F = π

∫
dq dpWinWout. Since the output

state depends on the measured values qa and pc, and on the random disorder present in the
lattice, we report the average fidelity over all measurements and all random realizations, that is

F =
1

N

N−1∑
n=0

∫
dqa dpcPF , (3.11)

with N = 300 the total number of random realizations. We may construct an averaged output
Wigner function Wout defined by

Wout =
1

N

N−1∑
n=0

∫
dqa dpcP(qa, pc)Wout(q, p | qa, pc) , (3.12)
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so the average fidelity is F = π
∫

dq dpWinWout. Even though the output state never takes the
exact form of Wout, it allows to visualize the proximity of the output state to the input one in
the general case.

When teleporting the single photon state employing the pristine lattices, we find practically
identical results between the topological and trivial systems, as shown in Fig. 3.6-(b) and (d),
characterized by an average fidelity of 0.483 and 0.486 respectively. Comparing with the input
Wigner function (Fig. 3.6-(a)), we observe that the fidelity losses are mainly explained by a
reduction of the peak values, and a consequent widening of the function. Negativity of the
output function serves as a landmark of the preservation of the input state’s quantum nature,
which can only be achieved by means of quantum teleportation schemes. Quantitatively, the
reduction of the negative peak at the origin with respect to the input state is of 13.0% and
14.3% in the topological and trivial systems respectively.

The averaged output state of the topological system remains practically unchanged when intro-
ducing hopping disorder, as shown in Fig. 3.6-(c), maintaining the fidelity of the pristine lattice.
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Figure 3.6: (a) Input Wigner function to be teleported. (b) and (d) ((c) and (d)) Averaged
output Wigner functionWout for the pristine and hopping disordered d = 0.3v topological
(trivial) systems, in units relative to the peak value of Win. The fidelity of the output
states is indicated on each panel, and the colorbar on the right applies to panels (b)–
(e). Teleportation in the topological system proves to be robust against hopping disorder,
preserving the fidelity of the output state, and preserving the quantum nature of the
single-photon input state represented by negative values in the Wigner function.
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The output Wigner function continues to take negative values, with a peak reduction of 14.1%,
proving that teleportation in the topological system robustly preserves the quantum coherence
of the input state. In contrast, teleportation in the topologically trivial system rapidly deteri-
orates as disorder is added. Even for low levels of disorder, the average fidelity falls to 0.242
—roughly half of that of the pristine system— and even though the output function presents
a local minimum at the origin, it does not take negative values. The drastic difference in the
teleportation results between the topological and trivial systems is a consequence of topological
protection of the squeezed quadrature. Transmission of the entangled two-mode state to the
parties through a topological state ensures that Alice measures the maximally entangled vari-
ables, regardless of the magnitude of hopping disorder present in the lattice, resulting in robust
preservation of quantum coherence of the teleported state.

3.6 Final remarks of chapter 3
We have studied the propagation of squeezing and entanglement in a topological Su-Schrieffer-
Heeger waveguide array, focusing on the effects of the lattices topology in this phenomena.
We found that topological ordering of the lattice robustly preserves the phase of the squeezed
quadrature when propagating squeezed light through a topologically protected localized state,
for both single- and two-mode squeezed light. We also showed that the distribution of squeezing
across the lattice inherits the spatial distribution of the localized state to which it is coupled,
inheriting its topological protection as well. We discussed the interplay between entanglement,
squeezing and the phase of the squeezing, concluding that the topological phase of the lattice
fixes the entangled variables. We finally provided a practical implementation of this system in a
quantum teleportation protocol, where transmission of the entanglement resource to the parties
through a topological lattice grants robustness and preservation of the quantum coherence of
the teleported state.

We expect our findings on topological protection of squeezing to be of interest to any devel-
opment in continuous variable quantum information, mainly as an alternative to protecting
quantum coherence in photonic platforms. However, exploitation of topological phenomena in
quantum optic systems —in particular continuous variable ones— is only recent, and its full
possibilities are yet to be discovered. Our research is based on the Su-Schrieffer-Heeger lattice,
whose topological phase is broken by onsite disorder which is always present to some extent
in realistic devices; and being a one-dimensional lattice, this system is particularly sensitive
to Anderson localization. Thus, a natural interest arises in studying the behavior of quantum
light in two-dimensional lattices, with propagating edge states which enjoy better topological
protection.
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Part II

Interaction between electrons and chiral
phonons in two-dimensional materials
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Unlike the chirality of electrons, a surge for understanding and exploiting the intrinsic chirality
of phonons has only surfaced in recent years. Here we report on the effects of the interaction
between electrons and chiral phonons in two-dimensional materials using a non-perturbative
solution. Chiral phonons introduce inelastic Umklapp processes2 resulting in copropagating
edge states which coexist with a continuum of extended states. Our transport simulations
reveal a strong directional asymmetry, and test the robustness of the edge states. We hope that
this might foster the search for new effects derived from the interaction with chiral phonons and
their hybrid electron-phonon states of matter.

Chapter 4 is an adapted version of reference [2], written by the author of this thesis, Hernán L.
Calvo, and Luis E. F. Foa Torres.

2Umklapp processes refer to scattering processes where the initial and final momentum are related by a
non-zero reciprocal lattice vector [106]
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Chapter 4

Copropagating edge states produced by
the interaction between electrons and
chiral phonons in two-dimensional
materials

4.1 Introduction
Since the very beginning of the quantum theory of solids [156, 157], the interaction between
electrons and lattice vibrations has provided a long list of exciting discoveries and its effects
have proven to be ubiquitous in condensed matter physics. Hallmarks of this interaction pervade
in three dimensional materials [158], as well as in low dimensional systems [159–163]. Promi-
nent examples include the role played by e-ph interaction in the development of the theory
of superconductivity [59, 61, 164] and conducting polymers [22], where charge doping is used
to circumvent the Peierls transition [83, 165]. More recently, different studies have pointed
the possibility of electron-phonon-induced bandgaps [166, 167], robust edge states [62], and
phonon-induced topological phases [63, 64].

In 2015 a new twist in this field was triggered by the prediction of phonons with intrinsic
chirality in monolayer materials [65]. Further theoretical studies [67–70] and the experimental
observation of circular phonons in monolayer tungsten diselenide [66] brought a focus to this
overlooked property. Thanks to the breaking of inversion symmetry, the degeneracy between
clockwise and counterclockwise modes can be lifted at high symmetry points of the Brillouin zone
(BZ), leading to the intrinsic chirality of the modes. Today, chiral phonons are at a focal point
in the context of the pseudogap of the cuprates [168, 169], where phonons have been proposed to
become chiral in the pseudogap phase of these materials [168]. Recent experiments have shown
the possibility of achieving electrostatic control over the angular momentum of phonons [170].
A proposal for chiral phonons with non-vanishing group velocity [71] also adds interest to this
blooming area. But, notably, the effects of e-ph interaction with chiral phonons remains mostly
unexplored. Therefore, it is of interest to address this issue. One may wonder whether the
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chirality of phonons could give rise to any unusual effects on the electronic structure through
their mutual interaction, or whether new hybrid e-ph states could be controlled by tuning either
the electronic or phononic degrees of freedom.

Here we explore the effects of e-ph interaction with chiral phonons in two-dimensional materials
with broken inversion symmetry, looking for novel hybrid e-ph states of matter. Aided by a
non-perturbative and non-adiabatic Fock space solution, we isolate the effect of a single of such
modes. A first finding is that the chirality of the phonons gets imprinted in the e-ph interaction
term, which breaks TRS while introducing inelastic Umklapp processes. We show that this
interaction opens a gap in one of the two inequivalent valleys which is bridged by two hybrid
e-ph edge states. Interestingly, these edge states turn out to propagate in the same direction
and coexist with a continuum of states in the ungapped valley. Further quantum transport
simulations demonstrate that the copropagating edge states are robust, as they can withstand
even moderate amounts of short-range disorder.

4.2 Hamiltonian model
We consider a honeycomb lattice including the interaction between electrons and a single phonon
mode. The hamiltonian is written as:

Ĥ = Ĥe + Ĥph + Ĥe-ph , (4.1)

where Ĥe and Ĥph are the independent electronic and phonon contributions, while Ĥe-ph is
the interaction term. The electronic contribution is modeled as a simple nearest neighbors
hamiltonian for a honeycomb lattice with a single orbital per atom and a staggered onsite term
accounting for the inversion symmetry breaking:

Ĥe =
∑
n

∆nc
†
ncn + γ0

∑
〈n,m〉

c†ncm , (4.2)

where cn stands for the electronic annihilation operator at site n. The second sum on the
right hand side runs over nearest neighbors, γ0 is the nearest neighbors hopping parameter.
The onsite energy ∆n models a staggering potential and is equal to ∆ if the site belongs to
sublattice A and -∆ if it belongs to sublattice B. For the phonons we consider a single mode,
which we choose as a chiral mode with momentum G and frequency ω, described by:

Ĥph = ~ωa†a , (4.3)

with a the bosonic phonon annihilation operator.

The e-ph interaction term is of the SSH form [53]. It follows from quantizing the linear correction
to the hopping amplitudes due to the atomic displacements from equilibrium. We consider that
the phonon mode generates lattice vibrations where the motion of site n respect to its equilibrium
position is

δrn(t) = Re
[
Ae−i(ωt−G·Rn)uν

]
, (4.4)

with Rn the lattice vector of the corresponding unit cell, A the amplitude of the motion, ν
indicating the sublattice of site n (ν = A, B), and uν the eigenvector of the phonon mode on
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sublattice ν, which dictates the motion of the sites within a unit cell. Phonon chirality is given
by a circular motion of the sites, represented in the phonon eigenvector u, which constitutes an
intra-cell contribution to the chirality, as well as by an inter-cell term given by the phase eiG·Rn

acquired by the motion in the different unit cells [65]. We incorporate the lattice vibrations to
the tight binding hamiltonian as a renormalization of the electronic hopping amplitude between
sites n and m [62],

γn,m = γ0 exp

[
−b
(
|rn − rm|

a0
− 1

)]
, (4.5)

with a0 the equilibrium nearest neighbor distance, b the decay rate, and rn = r0n + δrn, with r0n
the equilibrium position of site n. We assume small vibration amplitudes, |A| � a0, where the
zero-th order term resulting from Eq. (4.5) accounts for the bare hoppings represented in Ĥe.
The first order terms couple electronic degrees of freedom with lattice vibrations, obtaining the
e-ph hopping amplitudes

γn,m = −γ1r̂n,m ·
[(

eiG·Rnuν − eiG·Rmuµ
)

e−iωt + c.c.
]
, (4.6)

where γ1 � γ0 sets the strength of e-ph interactions, r̂n,m = (r0n − r0m) /a0, and ν (µ) indicates
the sublattice of site n (m). We impose phonon quantization replacing the harmonic time
dependence by bosonic phonon operators, e−iωt → a† and eiωt → a. The interaction hamiltonian
thus reads

Ĥe-ph = −γ1a†
[ ∑
〈n,m〉

c†ncmeiG·Rn r̂n,m ·
(
uν − e−iG·Rn,muµ

) ]
+ h.c. , (4.7)

with Rn,m = Rn − Rm. The e-ph hoppings contain a spatial dependence due to momentum
interchange between both particles. Defining the Fourier transform

cn =

∫
BZ

d2k eik·Rncν,k , (4.8)

the interaction hamiltonian reads

Ĥe-ph = −γ1a†
[ ∫

BZ
d2k

∑
ν 6=µ

c†ν,kcµ,k+G

∑
m

e−i(k+G)·Rn,m r̂n,m ·
(
uν − e−iG·Rn,muµ

) ]
+ h.c. , (4.9)

where the first sum runs over the sublattices, and the second sum runs over all sites m of
sublattice µ, which are nearest neighbors of a given site n of sublattice ν. The term explicitly
written in Eq. (4.9) accounts for momentum conserving phonon emission processes, where an
electron with momentum k + G is annihilated, while an electron with momentum k and a
phonon with momentum G are created. The hermitian conjugate term corresponds to phonon
absorption.

For what follows we consider the phonon momentum G corresponding to valley K+, where
atoms of sublattice A and B exhibit clockwise and counter-clockwise motion respectively, as
depicted in Fig. 4.1. The motion of the sites acquires a phase e±i2π/3 between neighboring unit
cells, thus, the non-zero phonon momentum effectively modifies the periodicity of the lattice.
We may however retain the original unit cell, as was done in Eq. (4.8), where the phonon
momentum generates non-vertical transitions in the original BZ. A zone-folding scheme may be
developed in this case so the system presents vertical transitions in a reduced BZ (rBZ), folding
areas B and C of the BZ into area A, as depicted in Fig. 4.2, taking advantage of the threefold
periodicity of the inter-cell phonon term (see appendix C).
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Figure 4.1: Scheme depicting the chiral phonon mode considered during this work. The
left panel shows the phonon band structure of a honeycomb lattice, in arbitrary units,
with chiral phonons at high symmetry points. Breaking inversion symmetry lifts the
degeneracy between the two middle bands at the valleys, and generates circular motion
of the sublattices with different amplitudes, allowing for phonon modes with net chirality.
We focus on the mode represented in the right panel, where sublattice A (B), depicted
by blue (red) circles, exhibits counter-clockwise (clockwise) circular motion, as indicated
by the corresponding arrows. Due to the non-zero phonon momentum, the movement
acquires a phase e±i2π/3 between neighboring unit cells, represented by the arrows.

4.3 Band structure: Gaps and edge states
Instead of treating the e-ph interaction perturbatively as it is most usual, here we will use the
non-perturbative and non-adiabatic approach introduced in references [171, 172]. The main
idea is the exact mapping of the many body problem onto a one-particle problem in a higher-
dimensional space, where each phonon mode introduces an additional dimension to the original
electronic problem. This can be visualized after writing the problem in a Fock space basis: The
full hamiltonian can be viewed as a semi-infinite series of replicas of the original purely electronic
problem centered at energies nph~ω, with nph ∈ N0, coupled by the interaction hamiltonian.
The phonon induced non-vertical transitions couple valley K− in nph = 0 with valley K+ in
nph = 1, generating an indirect valley selective gap at the replica crossing, as shown in Fig. 4.2-
(b). The other valleys, namely K+ in nph = 0 and K− in nph = 1, are not connected by the
phonon mode and are therefore not gapped. As a consequence, the system does not present a
global gap at the replica crossing, but rather a valley selective pseudogap. For ~ω � γ0 the
valleys may be described by massive Dirac hamiltonians (see appendix C). Within this regime we
estimate the magnitude of the pseudogap, which is 3

√
2γ1|L†uA +R†uB|, with L = (1, −i)t/

√
2

(R = (1, i)t/
√

2) representing the counter-clockwise (clockwise) circular motion of the atoms.
Interestingly, the magnitude of the gap is sensitive to the chirality of each sublattice.

For a ribbon geometry, we expect to observe the effects of e-ph interaction in any geometry
that allows to distinguish processes occurring at the distinct valleys. We focus on the energy
dispersion projected to replicas nph = 0 and nph = 1. For a zigzag ribbon we observe two edge
states in the replica crossing energy region, which correspond to a hybridization of the flat bands
of each replica, as shown in Fig. 4.3. Projection of the states to the different momentum and
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Figure 4.2: (a) Considering the phonon Fock space, the system can be viewed as a semi-
infinite series of pure electronic hamiltonian replicas centered at energies nph~ω, with
nph ∈ N0 the corresponding phonon population. e-ph interaction generates non-vertical
transitions in the BZ, between momentum k in replica nph = 0 to momentum k −G in
replica nph = 1, with G = K+ the phonon momentum. A pseudogap opens in the non-
vertical intersection between the Dirac cones at valleys K− and K+ in replicas nph = 0
and nph = 1 respectively. (b) Band structure of the bulk system where the valley selective
gap is seen at the replica crossing. The color scale indicates the weight of the bands on
nph = 0 (black) and nph = 1 (red). (c) A zone-folding scheme may be developed, where
areas B and C of the BZ of the hexagonal lattice are folded into area A (as indicated in
panels (a) and (b)), forming the rBZ where the system presents vertical transitions. The
band structure in the rBZ is represented in panel (c), where the k-path plotted corresponds
to that of the cyan shaded area in panel (b).

phonon subspaces, as shown in Fig. 4.3-(c) and (d) proves that they correspond to localized edge
states which bridge the valley selective bulk band gap, and one may wonder whether they could
have a topological origin (see appendix D). Remarkably, we find that the edge states propagate
in the same direction at the opposite borders of the ribbon, as we further clarify in the next
section. The remaining states that coexist at the same energy ~ω/2 do not hybridize with their
replicas, and correspond to the continuum of bulk states from the ungapped valleys.

For the case of ribbons with Klein edges we find edge states of the same nature, which bridge the
valley selective gap and coexist with a continuum of extended states, however their propagation
direction is reversed with respect to the zigzag case (see appendix E). We interpret this behavior
as stemming from the physics of the flat bands in honeycomb lattices with different terminations:
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Figure 4.3: (a) Density of States (DoS) near the edges of a semi-infinite zigzag ribbon, in
arbitrary units. A valley selective gap opens in the replica crossing, bridged by two edge
states with parallel velocities. These states coexist with a continuum of extended states of
the ungapped valleys. (b) Band structure of a zigzag ribbon (of width 150a0). The color
scale indicates the weight of the bands on nph = 0 (black) and nph = 1 (red), while the
transparency of the curves is related to the localization of the states (ranging from light
curves for extended states, to opaque curves for states with an inverse participation ratio
larger than 0.1). The edge states described in (a), at energy EF = ~ω/2, are indicated
with a blue circle. The horizontal axis in (a) and (b) corresponds to the rBZ projected to
the periodicity direction. (c) and (d) Projection of the edge states in (b) to zone C of the
BZ in nph = 0, and zone B in nph = 1, showing that they are localized at opposite borders
of the ribbon. Other parameters used are γ1 = 0.025γ0, ~ω = 0.3γ0, and ∆ = 0.01γ0.

ribbons with Klein edges develop flat bands in a k-space region complementary to those with
zigzag edges [173]. A different scenario is presented for an armchair geometry, where processes
occurring at both valleys are not distinguishable, thus the consequences of the valley selective
bulk gap are not observed (see appendix E).

4.4 Quantum transport fingerprints of copropagating
electron-phonon states

One may wonder about possible hallmarks of the electron-chiral-phonon interaction that might
be imprinted on the transport properties. To address this question we consider a zigzag ribbon
with e-ph interaction in the entire system, and compute the total transmittance (including
elastic and inelastic processes, that is considering all output phonon populations) between two
local probes weakly coupled to a single site located in different transverse layers of the ribbon
(labeled as L and R), as depicted in the insets of Fig. 4.4. We choose the input site at each
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edge of one layer (marked with a red dot in Fig. 4.4) and compute the transmittance to a site
on the opposite layer with transverse position x.

Fig. 4.4-(a)–(d) shows the transmittance for a pristine ribbon, while panels (e)–(h) show the
results for ribbons with random vacancies with a density of 0.1%, averaged over 100 random
realizations. A first feature revealed by our simulations is a strong directional asymmetry,
transport is strongly suppressed in one direction (from L to R as shown in panels (a) and (b))
irrespective of the source being at one edge or the opposite, while in the reverse direction it is
strongly focused near the same edge as the source (as shown in panels (c) and (d)). The small
non-vanishing transmittance in panels (a) and (b) can be attributed to a contribution stemming
from bulk states. This behavior is consistent with the nature of the copropagating edge states
signaled earlier close to ~ω/2.

Panels (e)–(h) show that the behavior obtained for the pristine system is able to withstand a
moderate amount of disorder. Disorder in the lattice generates some edge to edge scattering
in the R to L direction, represented by an increased bulk contribution and a small peak at the
opposite edge of the input site. However, the spatial distribution remains strongly peaked at
the input edge. Importantly as well, the directional asymmetry in the transmittance persists
entirely, even against this worst-case scenario of short range disorder.
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Figure 4.4: Transmittance, in arbitrary units, between non-invasive probes located on differ-
ent transverse layers of a zigzag ribbon (of width 150a0) separated by a distance 300

√
3a0.

The input site is taken at the edge of the corresponding layer, while the output site runs
over the entire output layer, with transverse position x. For easier visualization, the sit-
uation for each panel is represented as an inset, where the input sites are marked in red
and signaled by downwards red arrows, and the transverse layers are marked with dashed
black lines labelled L and R. The transmittance includes both the elastic and inelastic
contributions and the energy of the incoming electrons is set to ~ω/2. Panels on the top
row ((a)–(d)) correspond to the pristine system while those on the lower row ((e)–(h))
include disorder (random vacancies at 0.1%), where each of set of plots is normalized
separately to its maximum value. Computing the transmittance from one layer to the
other, and vice versa, allows to unveil the copropagating nature of the edge states and
their robustness: transport is suppressed in the L to R direction (panels (a), (b), (e) and
(f)) regardless of the edge of the input, while transport in the R to L direction (panels
(c), (d), (g) and (h)) remains peaked at the input edge even in presence of disorder.
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4.5 Final remarks of chapter 4
Our results show a first glimpse of the effects of electron-chiral-phonon-interaction in two-
dimensional materials. The interaction with chiral phonons provides for a novel effective time-
reversal symmetry breaking term. Unlike other known symmetry breaking terms, such as a
magnetic field [174], a Haldane term [11], or laser-assisted processes [175], the phenomenology
turns out to be different, resulting in copropagating hybrid electron-phonon edge states coex-
isting with a gapless bulk. This new phenomenology stems from the rich interplay between
Umklapp processes and inelastic effects allowed by the interaction with chiral phonons.

A potential caveat of our study so far is the fact that a single phonon mode is considered.
However, the mode is taken into account non-perturbatively and, in the spirit of the Peierls
transition, given a mechanism that selects this peculiar high-symmetry phonon mode, the effect
of the remaining modes should remain perturbative, thereby lessening their importance [60, 176].
Furthermore, experiments may specifically target chiral phonons by enhancing the electron-
phonon interaction through optical pumping of the selected mode [177, 178]. The predicted
hallmarks in the transport properties could be accessed through scanning gate microscopy [179].
We hope that our results could foster new experiments in this promising terra incognita.
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Conclusions

In this thesis we studied the interplay between topological phases, robust edge states, and
bosonic excitations in two different investigations. The work developed here addresses the
universality of topological physics, which is fundamental to wave phenomena within periodic
media, the behavior of quantum features of light when coupled to a topological edge state, and
the emergence of robust edge states in a phonon-driven system.

In part I we studied the propagation of squeezed states of light in a one-dimensional topological
waveguide array. Chapters 1 and 2 provided to the reader a solid background on the two main
areas involved, topological systems and quantum optics. In chapter 1 we reviewed topological
band theory, at first from a solid state physics framework, and later adapted to photonic systems.
Chapter 2 presents a framework for quantum optics, focusing on squeezed states of light. In
chapter 3 we presented the developed research, published in reference [1]. We focused on the
behavior of photon statistics, one-mode and two-mode squeezing, and entanglement generation
when exciting the topological edge state of a Su-Schrieffer-Heeger waveguide array, concluding
that the topological phase of the lattice robustly preserves the phase of the squeezed quadrature.
We performed a quantum teleportation protocol where the entangled resource is topologically
protected, which serves as a proof of concept for the relevance of topological protection of
quantum light.

In part II we studied the emergence of copropagating edge states in a two-dimensional mate-
rial due to electron-phonon interaction with chiral phonons. The research developed in this
topic, published in reference [2], was entirely presented in chapter 4. Chiral phonons break
time-reversal symmetry and introduce inelastic processes, which give rise to a phenomenology
essentially different from other known broken symmetry phases, such as the quantum Hall effect.
Electron-phonon interactions generate a valley selective gap, bridged by robust copropagating
edge states with coexist with a continuum of the ungapped valleys. These results provide a first
step in the study of the rich phenomenology derived from electron-chiral-phonon interactions.

A guiding motif of this thesis was to relate areas of physics that at first may seem unrelated.
We hope that the work developed here opens more questions than it answers. Can the topology
of a photonic lattice protect quantum light against other loss and decoherence processes, such
as backscattering and optical losses? How does quantum light couple to more robust two-
dimensional topological phases, and can a potential topological protection be harnessed for
quantum information applications? What is the topological origin of the copropagating edge
states encountered in part II? How does phonon chirality relate to other quantum phases?
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Appendixes

A Extended results of section 3.3.2
In this section we present a more complete report of the results discussed in section 3.3.2, that
could help the reader follow the corresponding discussions. For all figures we have used α = 0.3
and ξ = 0.9.

In Fig. A.1 we show one-mode squeezing along the propagation axis at waveguides a1, a2 and
a4 of the topological lattice, and waveguides a1 and a2 of the trivial one. These results allow to
envision the spatial distribution of one-mode squeezing across the lattices.

In Fig. A.2 we show two-mode squeezing along the propagation axis, measured between the
edge waveguide and the first two waveguides that take part in the localized eigenmode, namely,
waveguides a2 and a4 of the topological lattice, and waveguides a1 and a2 of the trivial one.
This shows the effect of the phase relation between the modes on two-mode squeezing.
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Figure A.1: One-mode squeezing along the propagation axis (α = 0.3, ξ = 0.9). Hopping
and onsite disorder values used are d = 0.6v. The site at which the measurement is taken
is indicated in the legend, which is valid for the entire column.
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Figure A.2: Two-mode squeezing along the propagation axis (α = 0.3, ξ = 0.9). Hopping
and onsite disorder values used are d = 0.6v. The site at which the measurement is taken
is indicated in the legend, which is valid for the entire column.
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B On the statistical fluctuations for Fig. 3.4 and 3.5
In this section we refer to the statistical fluctuations for the data presented in Fig. 3.4 and 3.5. In
Fig. B.1 we show maximal one-mode squeezing corresponding to the data presented in Fig. 3.4,
and maximal two-mode squeezing and entanglement corresponding to the data in Fig. 3.5,
along with the confidence intervals for the corresponding quantities. We observe that after the
transient response of the system when the initial state is injected at the edge waveguide, the
curves of the topological and trivial state take approximately equal values, falling within the
confidence interval of each other. We also observe that hopping disorder induced fluctuations
are considerably larger than those generated by onsite disorder in both systems. Furthermore,
fluctuations in the hopping disordered topological state are larger than those of the trivial one.
However, the magnitude of the fluctuations is consistently lower than the magnitude of the
physical quantities themselves in all cases. We have checked as well that increasing the number
of realizations yields narrower confidence intervals, and that higher disorder values yield larger
confidence intervals, in tune with the behavior observed in Fig. 3.2.
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Figure B.1: Maximal one-mode squeezing corresponding to the data in Fig. 3.4, and maximal
two-mode squeezing and entanglement corresponding to the data un Fig. 3.5. Statistical
average values are represented by solid lines, while dashed lines represent the confidence
interval associated with the standard deviation, with blue (red) lines referring to the
topological (trivial) system.
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C The hamiltonian model of section 4.2: Detailed
calculation, zone-folding scheme and low energy
approximation

In this appendix we describe in further detail the hamiltonian of the system. Starting from
Eq. (4.9), we define

te-ph(k) = −γ1
∑
m

e−ik·Rn,m r̂n,m ·
(
uA − e−iG·Rn,muB

)
, (4.10)

where the sum runs over all sites m of sublattice B which are nearest neighbor of a given site n
of sublattice A. We note as well that the inverse term where site m is of sublattice A and site
n is of sublattice B is equal to te-ph(−k −G). Defining ψk = (cA,k, cB,k)t, we obtain a matrix
representation of the interaction hamiltonian Ĥe-ph = a†

∫
BZ d2kψ†khe-ph(k)ψk−G + h.c., with

he-ph(k) =

(
0 te-ph(−k−G)

te-ph(k) 0

)
. (4.11)

The hamiltonian considers non-vertical electronic transitions in the full BZ, however, we may
develop a zone folding scheme where the system presents only vertical transitions in a reduced
BZ (rBZ) as follows: We partition the BZ into zones A, B and C as depicted in Fig. 4.2,
corresponding to the Voronoi decomposition with respect to points Γ, G = K+ and −G = K−,
where all Voronoi cells present the same geometry. We fold zones B and C into zone A, which
correspond to the rBZ, expressing the BZ zone integration as∫

BZ
d2k f(k) =

(∫
A
d2k +

∫
B
d2k +

∫
C
d2k

)
f(k)

=

∫
rBZ

d2k f(k) + f(k + G) + f(k−G) .
(4.12)

We now define Ψk = (ψt
k, ψ

t
k+G, ψ

t
k−G)t, obtaining a matrix hamiltonian with vertical transitions

in the rBZ, Ĥe-ph = a†
∫
rBZ d2kΨ†kHe-ph(k)Ψk + h.c., with

He-ph =

 0 he-ph(k) 0
0 0 he-ph(k + G)

he-ph(k−G) 0 0

 . (4.13)

In this basis the electronic hamiltonian is Ĥe =
∫
rBZ d2kΨ†kHe(k)Ψk, with

He(k) =

he(k) 0 0
0 he(k + G) 0
0 0 he(k−G)

 , (4.14)

he(k) =

(
∆ t∗e(k)
te(k) −∆

)
, (4.15)
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and te(k) = γ0
∑

m e−ik·Rn,m , where the sum runs over all sites m of sublattice B which are
nearest neighbor of a given site n of sublattice A. The phonon hamiltonian is proportional to
the identity in the electronic subspace.

We represent the phonon subspace in its Fock basis, obtaining a matrix representation for the
full hamiltonian

H =


He H†e-ph 0

He-ph He + ~ω
√

2H†e-ph
0

√
2He-ph He + 2~ω

. . .

 . (4.16)

The diagonal terms in Eq. (4.16) constitute a semi-infinite series of pure electronic hamiltonian
replicas, centered at energies nph~ω. The off-diagonal elements couple the different replicas.

The replica crossing at energy ~ω/2 may be described by truncating the full hamiltonian to
both valleys in replicas nph = 0 and nph = 1, where only valleys K− and K+ in replicas 0 and
1 respectively are coupled by the e-ph interaction. The coupling is described by the effective
hamiltonian

Heff =

(
he(k−G) h†e-ph(k + G)
he-ph(k + G) he(k + G) + ~ω

)
. (4.17)

For ~ω � γ0 we approximate the hamiltonian about the K± points, obtaining

he(k±G) ≈
(

∆ ∓~vFke±iθ

∓~vFke∓iθ −∆

)
, (4.18a)

he-ph(k + G) ≈
(

0 t1 − ik · t2
t1 + ik · t2 0

)
(4.18b)

with ~vF = 3a0γ0/2, k = k(cos θx̂ + sin θŷ), t1 = te-ph(G), and t2 = −γ1
∑

m e−iG·Rn,m [r̂n,m ·
(uA− e−iG·Rn,muB)]Rn,m, where the sum runs over all sites m of sublattice B which are nearest
neighbor of a given site n of sublattice A.

We rotate the basis of the hamiltonian matrix representation to the one that diagonalizes the
blocks he(k±G). The rotated hamiltonian is H̃eff = Q†HeffQ, with Q = diag(Q−, Q+), and Q±
the transformation that diagonalizes he(k ±G). We truncate the space to the upper band of
nph = 0 and the lower band of nph = 1, obtaining an effective two band model for the avoided
crossing

h̃eff =

( √
∆2 + (~vFk)2 −eiθ(t∗1 − ik · t∗2)

−e−iθ(t1 + ik · t2) ~ω −
√

∆2 + (~vFk)2

)
. (4.19)

Within a first approximation we may disregard the term k · t2, concluding that the coupling
is uniquely determined by t1 = −3i[L†uA + R†uB]/

√
2. The magnitude of the gap is 2|t1|,

which occurs for (~vFk)2 = (~ω/2)2−∆2, and depends on the particular circular motion of each
sublattice. For uA = L and uB = R we obtain t2 = t1ŷ, which generates a dependence of the
avoided crossing on the direction of the momentum. The magnitude of the gap continues to be
2|t1|, which now occurs at θ = 0.
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D Discussion on the possible topological origin of the edge
states of section 4.3: The Berry phase at the pseudogap

In this appendix we discuss a possible topological origin of the edge states. For this we compute
the Berry phase of the pseudogap at the replica crossing. We must first have in mind that the
phonon induced edge states encountered in this system are highly anomalous: They correspond
to non-equilibrium, hybrid e-ph states. They propagate in the same direction at opposite borders
of a ribbon, as long as the ribbon has the same geometry at both edges, while their propagation
direction can be reversed when changing the ribbon geometry. They coexist with a continuum
of extended states, in a system which does not present a global gap. Because of these reasons,
the topological origin of the phonon induced edge states, if there is any, cannot belong to a
known family of topological phases.

We pretend to give a kick-off to this discussion by computing the Berry phase of the valleys.
These calculations are only meaningful for a system where processes occurring at each valley
are distinguishable, allowing to truncate the system to the gapped valleys forming an effective
gapped system. Let |χ̃±〉 be the eigenvectors of h̃eff corresponding to the upper and lower band
of the effective two band model. The Berry phase of each band is φ± = i

∮
dk 〈χ±| ∇k |χ±〉,

where the integration path is taken around the valleys, with ∇k the nabla operator in k-
space, and |χ±〉 a representation of the corresponding eigenstates in a k-independent basis.
Note that the Berry phase is not a gauge invariant quantity, and thus can only be defined
modulo 2π. We have |χ±〉 = QP |χ̃±〉, with P such that h̃eff = P †H̃effP . We thus separate the
Berry phase into two contributions, φ± = φQ± + φ̃±, with φQ± = i

∮
dk 〈χ̃±|P †Q†∇k(QP ) |χ̃±〉

the contribution corresponding to the basis transformation, and φ̃± = i
∮

dk 〈χ̃±| ∇̃k |χ̃±〉 the
contribution corresponding to bands |χ̃±〉 within the rotated basis, with ∇̃k acting only on the
elements of |χ̃±〉, not on the basis.

In the case γ1 = 0, with no e-ph interaction, the eigenvectors are |χ̃+〉 = (0, 1)t and |χ̃−〉 =
(1, 0)t, for which it is evident that φ̃± = 0. For the basis transformation contribution we have
φQ± = ∓π[1∓∆/

√
∆2 + (vFk)2)], for which we have taken a circular integration path at radius

k. In the limit k →∞ we obtain φ± = ∓π.

For γ1 6= 0 the eigenstates are |χ̃±〉 = (±eiδ
√

1± ε,
√

1∓ ε)/
√

2, with δ = arg [−eiθt1(1+ikya0)],
and

ε =

1 +

∣∣∣∣∣ t1 + ik · t2√
∆2 + (~vFk)2 − ~ω/2

∣∣∣∣∣
2
−1/2 . (4.20)

The Berry phase is φ± = −π[1 − ∆/
√

∆2 + (~vFk)2], where we conclude that the sign of the
upper band has been reversed in comparison to the case with no e-ph interaction.
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E Extended results of section 4.3: Klein and armchair
ribbons

In this appendix we include the band structure for a Klein and an armchair ribbon, shown in
Fig. E.1-(b) and (c) respectively. The Klein ribbon presents two copropagating edge states that
coexist with a continuum of extended states. However, the Klein states propagate in a direction
contrary to those of the zigzag ribbon. In contrast, the armchair ribbon presents no edge states
at the replica crossing.

(b) (c)
en
er
gy

zigzag

Klein

armchair

(a)

Figure E.1: (a) Scheme depicting the geometry of zigzag, Klein, and armchair edges, with
red arrows marking the periodic direction. (b) Band structure of a Klein ribbon (of width
149a0), showing two edge states with propagation direction contrary to those of a zigzag
ribbon. (c) Band structure of an armchair ribbon (of width 100

√
3a0). No edge states

exist at the replica crossing. Color scale indicates the weight of the bands on nph = 0
(black) and nph = 1 (red), and transparency is relative to the localization.
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