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Abstract: Iron accumulation and neuroinflammation are pathological conditions found in several
neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). Iron
and inflammation are intertwined in a bidirectional relationship, where iron modifies the inflamma-
tory phenotype of microglia and infiltrating macrophages, and in turn, these cells secrete diffusible
mediators that reshape neuronal iron homeostasis and regulate iron entry into the brain. Secreted
inflammatory mediators include cytokines and reactive oxygen/nitrogen species (ROS/RNS), no-
tably hepcidin and nitric oxide (·NO). Hepcidin is a small cationic peptide with a central role in
regulating systemic iron homeostasis. Also present in the cerebrospinal fluid (CSF), hepcidin can
reduce iron export from neurons and decreases iron entry through the blood–brain barrier (BBB)
by binding to the iron exporter ferroportin 1 (Fpn1). Likewise, ·NO selectively converts cytosolic
aconitase (c-aconitase) into the iron regulatory protein 1 (IRP1), which regulates cellular iron home-
ostasis through its binding to iron response elements (IRE) located in the mRNAs of iron-related
proteins. Nitric oxide-activated IRP1 can impair cellular iron homeostasis during neuroinflammation,
triggering iron accumulation, especially in the mitochondria, leading to neuronal death. In this
review, we will summarize findings that connect neuroinflammation and iron accumulation, which
support their causal association in the neurodegenerative processes observed in AD and PD.

Keywords: neuroinflammation; iron; Alzheimer’s disease; Parkinson’s disease; hepcidin; nitric oxide;
iron regulatory protein 1; oxidative stress

1. Introduction

Brain iron overload in neurodegeneration-prone areas and in neuroinflammation has
been broadly recognized as a pathological hallmark of neurodegenerative diseases, such
Alzheimer’s disease (AD) and Parkinson’s disease (PD). Neuroinflammation refers to the
inflammatory responses mediated by the innate immune system that take place in the
central nervous system (CNS). Although it shares many features with peripheral inflamma-
tion, the coexistence of CNS specialized cell types, such as microglia, astrocytes, neurons,
endothelial cells, and pericytes, confers unique characteristics to brain inflammation. Fur-
thermore, the loss of integrity of the blood–brain barrier (BBB) found in neuroinflammatory
conditions allows the infiltration of peripheral inflammatory cells, such as macrophages [1].

The initiation of the progressive inflammatory process in AD and PD can be traced
to the neurodegeneration of noradrenergic (NA) neurons in the locus coeruleus (LC),
which is the earliest and more severely affected area in PD (Braak stage 2), followed
by dopaminergic neurons of substantia nigra (SN; Braak stage 3) and ultimately, by the
neurodegeneration of hippocampal and cortical neurons (Braak stage 5) [2]. Interestingly,
in the most recent Braak staging of AD, tau pathology is first observed in the LC, later
spreading to the entorhinal cortex and finally to other neocortical regions [3–5], suggesting
shared molecular mechanisms with PD [6].

Antioxidants 2021, 10, 61. https://doi.org/10.3390/antiox10010061 https://www.mdpi.com/journal/antioxidants

https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0002-8747-2048
https://orcid.org/0000-0002-1967-8570
https://doi.org/10.3390/antiox10010061
https://doi.org/10.3390/antiox10010061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/antiox10010061
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/2076-3921/10/1/61?type=check_update&version=3


Antioxidants 2021, 10, 61 2 of 27

The selective vulnerability of LC-NA neurons correlates with their higher production
of reactive oxygen species (ROS) under physiological conditions, which is significantly
potentiated by peripheral inflammation, resulting in mitochondrial damage. An elevated
expression of neuronal NADPH oxidase (NOX), which catalyzes the production of the
superoxide radical (O2

−), plays an important role in the selective susceptibility of LC-NA
neurons [7]. Interestingly, LC neurodegeneration can be triggered by an intraperitoneal
lipopolysaccharide (LPS) injection [8], suggesting that a gut–brain axis may play a signi-
ficative role in PD pathogenesis, probably associated with a “body-first” PD subtype [9].

In the brain, norepinephrine (NE) significantly contributes to the suppression of neu-
roinflammatory responses, by attenuating microglial surveillance and activation, reducing
the secretion of proinflammatory factors, and decreasing phagocytic NOX2-mediated
·O2
− production [10–14]. Accordingly, the use of N-(2-chloroethyl)-N-ethyl-2-bromo-

benzylamine (DSP-4), which is a selective NE toxin, potentiates neuroinflammation in-
duced by amyloid β (Aβ)1–42 aggregates [15] or bacterial endotoxin lipopolysaccharide
(LPS) [16,17] and promotes AD and PD pathogenesis in several animal models [16,18–26].

Microglia/macrophage activation can be followed during the progression of neu-
rodegeneration by non-invasive techniques, such as positron emission tomography (PET),
using radiotracers specifically designed for targeting the mitochondrial translocator protein
18-kDa (TSPO), which is a protein highly expressed in activated microglia/macrophages.
Microglial/macrophage activation has been observed using PET in monkeys injected
with the mitochondrial complex I inhibitor 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP), which is a toxin that selectively kills dopaminergic neurons [27,28], and in rats
expressing human A53T mutated α-synuclein in SN [29,30] or injected with the highly
oxidable dopamine analog 6-hydroxydopamine (6-OHDA) [31,32]. Altered glial immune
responses have also been observed in animal models of familial PD [33,34] and in transgenic
mice expressing AD-associated mutant proteins [35,36]. An increase in TSPO binding has
been consistently observed in studies with AD [37] and PD [38] patients. However, there
are several concerns about potential artifacts in microglial TSPO PET imaging, including
binding to multiple cell types, such as astrocytes and endothelial cells [39,40]; differential
tracer affinity in TSPO Ala147Thr polymorphism carriers [41]; and other confounding fac-
tors [42,43]. Therefore, the conclusions of these studies should be interpreted with caution.
Interestingly, a recent study on AD transgenic rats shows TSPO upregulation in astrocytes
before microglia [44], urging the development of more specific tracers for studying the
respective contributions of astrogliosis and microgliosis to the neurodegenerative process.
Overall, the reported evidence points to a central role of neuroinflammation in the initiation
and progression of neurodegenerative processes.

The activation of microglial cells triggers the release of diffusible mediators, including
cytokines, ROS, and reactive nitrogen species (RNS). Remarkably, ROS/RNS generation
is supported by two enzymatic systems: The NOX2 enzyme complex that synthesizes
·O2
−, which, through its dismutation, generates hydrogen peroxide (H2O2), and the

inducible form of nitric oxide synthase (iNOS), which generates ·NO. These enzymatic
systems play a crucial role in AD- and PD-associated neurodegeneration, as revealed by
the neuroprotection achieved by the pharmacological or genetic inhibition of NOX2 or
iNOS reported in animal models of AD [45,46] and PD [47–50].

Clinical evidence from patients displaying chronic use of non-steroidal anti-inflammatory
drugs (NSAID) shows a reduced risk for AD [51,52] and PD [53]. Based on these epidemi-
ological observations and the beneficial effects of NSAID in AD animal models, several
clinical trials have been conducted to assess their efficacy in AD and dementia. Unfortu-
nately, these studies have shown no significant effects on the cognitive performance in AD
patients, prompting improvement of the therapeutic window and the use of more selective
inhibitors in future clinical trials (reviewed in [54]).

Recently, neuroinflammation has been associated with the alteration of iron homeosta-
sis, and at the same time, iron dyshomeostasis has been shown to play a pivotal role in the
neuroinflammatory phenotype. As a result, neuroinflammation and iron are entangled in
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a circuit that amplifies ROS production, leading to neuronal death. An analysis of post-
mortem tissue from PD patients shows significant elevations in the concentration of iron in
the SN, where degenerating neuromelanin-bearing dopaminergic neurons reside [55,56].
Similarly, iron is concentrated in and around AD senile plaques [57,58], in Huntington’s
disease basal ganglia [59], and in the spinal cord of sporadic amyotrophic lateral sclerosis
patients [60]. Due to its paramagnetic property, iron’s content can be estimated in specific
brain areas using magnetic resonance imaging (MRI), by measuring the R2* relaxation
rate, phase changes in susceptibility-weighted imaging (SWI), or susceptivity values upon
quantitative susceptibility mapping (QSM) [61] [62,63]. Neuromelanin-sensitive MRI has
also been proposed as a diagnostic tool for PD [64]. Significant increases in iron levels are
measured in vivo by iron-sensitive MRI, even in the early stages of AD and PD patients,
showing a good correlation with the severity of their symptoms [63,65,66]. Patients with
familial PD-associated mutations also display increased brain iron deposition by MRI,
even in asymptomatic stages [67], suggesting that iron accumulation plays a role in the
progression of the idiopathic and genetic forms of PD.

Iron overload is also associated with several animal models of AD and PD. Transgenic
mice for Amyloid precursor protein/presenilin-1 (APP/PS1) [68–71] and 5xFAD [72] ex-
hibit increased brain iron levels. Moreover, an injection of MPTP, rotenone, or 6-OHDA
phenocopies many aspects of PD in rodents, including iron accumulation in the SN [73–75].
Supporting a causal role of iron accumulation in neurodegeneration, neonatal iron supple-
mentation in mice triggers the progressive neurodegeneration of SN dopaminergic neurons,
reduces striatal dopamine levels, and increases the responsiveness to MPTP insult [76].
Moreover, chronic oral administration of iron induces iron accumulation in specific brain
regions, including the SN and caudate/putamen. Iron accumulation is associated with
oxidative stress-related dopaminergic neuronal apoptosis in the SN and with motor and
cognitive deficits [77]. Consequently, iron chelation prevents neuronal death in several
animal models of AD and PD [78–82] and iron chelation has recently been introduced as a
new therapeutic concept for the treatment of PD [83,84]. Nevertheless, the results on the use
of iron chelation treatment demonstrate that it slows that disease progression [85]. Due to
the multifactorial nature of the neurodegenerative process in PD, a single target treatment,
such as the use of chelators, may not fully stop the neurodegenerative process. Accordingly,
treatment with multifunctional compounds with an iron chelating capacity and aimed at
reducing two or more of the pathological events associated with the progress of the disease
(a “multi-target” approach) may be better suited for the treatment of PD [85,86].

Aging is the main risk factor for the development of sporadic forms of AD and PD,
and both iron accumulation and neuroinflammation exhibit an age-synchronous increment
in the brain. Iron levels and microglial and astrocytic numbers are positively correlated
in aged mice basal ganglia [87] and iron-retentive microglia concurring with elevated
iron levels and oxidative stress in aged non-human primates [88]. Interestingly, a genetic
predisposition to neuroinflammation aggravates the striatal iron-related poor cognitive
switching ability in aged humans [89], highlighting the intimate relationship between iron
and neuroinflammation during aging (reviewed in [90]).

Correspondingly, in this review, we present a summary of the mechanisms that under-
lie the bidirectional relationship between iron and neuroinflammation and its relevance to
AD and PD pathogenesis.

2. Iron Homeostasis in the CNS

Iron is an essential protein cofactor that performs a myriad of unique functions in
the CNS, including ribosome assembly, DNA repair, mitochondrial energy production,
metabolite catabolism, myelination, and neurotransmitter anabolism and catabolism [91].
In excess, however, iron is linked to cellular death, causing sustained cellular oxidative
stress by the iron-mediated catalytic conversion of H2O2 and ·O2

− into toxic hydroxyl
radicals as a result of Fenton and Haber–Weiss chemistry, respectively [92]. Accordingly,
iron homeostasis must be tightly controlled.



Antioxidants 2021, 10, 61 4 of 27

Transferrin (Tf), which is a glycoprotein that possesses two high-affinity iron (III)-
binding sites, is the primary iron transporter into the CNS and thus plays an essential
role in cellular iron uptake. Following transferrin binding to its surface receptor, TfR1,
the Tf-TfR1 complex is endocytosed through clathrin-dependent pathways into the early
endosome, in which its low pH induces iron dissociation from Tf. The ferrireductase
Steap2 reduces Fe3+ to Fe2+, which is transported into the cytoplasm by the divalent metal
transporter-1 (DMT1). The apoTf/TfR1 complex returns to the plasma membrane, where
the neutral pH induces its dissociation [93,94].

In the cytoplasm, iron is incorporated into the cytosolic labile iron pool (cLIP), which
is distributed to three destinations: (i) To mitochondria, for the synthesis of iron-sulfur
(Fe-S) clusters and heme prosthetic groups; (ii) to the cytoplasmic iron storage protein
ferritin (Fn); or (iii) back to the extracellular fluid through the iron exporter, Fpn1. Ferritin
is a multimeric protein assembled by 24 subunits of H and L monomers in a variable ratio,
depending on the cellular type. The H subunit contains ferroxidase activity, while the L
subunit is responsible for iron turnover at the ferroxidase site and iron nucleation within
the Fn core [95].

Iron delivery to the brain is tightly regulated at the level of the BBB [94], composed
of tight junction-adhered endothelial cells that safeguard the free access of molecules to
the brain. Iron transport across the BBB is mediated by three mechanisms. Overall, the
mechanism of iron transport across the BBB involves two transmembrane steps: Iron uptake
at the luminal membrane of the brain capillary endothelial cells, followed by iron efflux into
the brain interstitium at the abluminal membrane. The predominant mechanism involves
the transcellular transport of iron through Tf endocytosis, DMT1-mediated transport from
the endosome lumen into the cytoplasm, and Fpn1-mediated extrusion at the abluminal
membrane [96–98]. A second mechanism involves Tf/TfR1 complex transcytosis across the
endothelial cell and the release of Tf into the parenchyma at the abluminal membrane [99].
A third mechanism is dependent on Fn, which is present in blood serum and cerebrospinal
fluid (CSF) [100–102]. Serum Fn is mainly composed of L subunits with one or two H
subunits [95]. Both in vitro and in vivo studies have shown the transport of Fn across the
BBB, utilizing different receptors [103–105]. The Scara5 receptor recognizes L-Fn [106],
while H-Fn binds to TfR1 [107].

Iron released by brain vascular endothelial cells is quickly captured by nearby as-
trocytes, which play a critical role in regulating brain iron absorption at the abluminal
side. Astrocytes do not express TfR1; however, DMT1 expression is highly polarized in
astrocytes, in which DMT1 is mainly found in the end-foot processes associated with the
BBB [108]. Therefore, iron released by the endothelial cells is probably taken up by nearby
astrocytes through DMT1 and distributed to the brain parenchyma through Fpn1 [109].
The concentration of iron in the CSF ranges between 0.2 and 1.1 µM, whereas the con-
centration of Tf is about 0.24 µM [110,111]. Therefore, CSF iron levels often exceed the
binding capacity of Tf [112] and iron is incorporated by neurons and glia from two sources:
Transferrin-bound iron (TBI), through the Tf-TfR1 system, and non-transferrin bound iron
(NTBI), through DMT1 or other iron transporters.

3. Role of Hepcidin in Neurodegeneration

Complex living organisms have developed sophisticated mechanisms to finely coordi-
nate iron homeostasis and avoid iron overload. There is systemic iron regulation, mediated
by hepcidin, and cellular iron regulation, through the iron regulatory element/iron reg-
ulatory protein (IRE/IRP) system. Both regulatory mechanisms are intertwined in a
bidirectional relationship with inflammatory mediators, as detailed in the following text.

The peptide hormone hepcidin, mainly secreted into the bloodstream by hepato-
cytes, is the principal regulator of systemic iron homeostasis. Hepcidin controls dietary
iron absorption, iron recycling by macrophages, and iron release from hepatic stores
through the regulation of iron transporter levels, generating a decrease of iron plasma lev-
els [113]. In enterocytes, hepcidin induces the internalization and proteasomal degradation
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of apical-side DMT1, limiting early dietary iron absorption [114,115]. In comparison, in
reticulo-endothelial cells (splenic macrophages and Kupffer cells in the liver) and hepato-
cytes, hepcidin binds to the Fpn1 C-terminal domain in an iron-dependent way, inducing
its endocytosis and subsequent Fpn1 lysosomal degradation, enhancing iron sequestra-
tion [113,116,117].

Hepcidin expression is regulated by plasma iron levels, inflammation, and erythro-
poiesis. Regulation by iron plasma levels involves multiple pathways by which hepatocytes
sense the circulating iron status. One pathway involves the secretion of iron-induced bone
morphogenic protein (BMP) by liver sinusoidal endothelial cells [118]. BMP6 and BMP2
bind to the BMP receptor, triggering the phosphorylation and activation of SMAD1/5/8,
which, complexed with SMAD4, translocates to the nucleus to induce hepcidin transcrip-
tion [119,120]. Hepatocytes also sense plasma iron levels through the interaction of HFE
with TfR1 and TfR2. Under low iron conditions, HFE binds to TfR1. Under high iron
conditions, the binding of Tf-Fe to TfR1 displaces HFE that then binds to TfR2. The
HFE/TfR2 complex interacts with hemojuvelin (HJV), potentiating the BMP signaling
pathway and hepcidin transcription [121,122]. The inflammatory cytokines IL6, IL1β, and
IL22 induce hepcidin expression in hepatocytes through activation of the STAT3 signal-
ing pathway [123–125]. The BMP/SMAD pathway is also involved in the regulation of
hepcidin transcription downstream of inflammatory stimuli [126].

Since iron is required for hemoglobin synthesis, hepcidin expression is suppressed
during erythropoiesis. The main erythroid regulator of hepcidin is erythroferrone, which
is synthesized and secreted by developing erythroid cells [127], reviewed in [128]. Erythro-
ferrone acts on hepatocytes, suppressing the production of hepcidin through a mechanism
that involves targeting of the SMAD1/5 signaling pathway [129].

Hepcidin expression has also been described in the CNS. Hepcidin mRNA has been
detected in several brain regions, including the cortex, hippocampus, amygdala, thalamus,
hypothalamus, olfactory bulb, mesencephalon, cerebellum, pons, and spinal cord [130–132].
In the human brain, hepcidin has been detected in endosomal structures in reactive astro-
cytes and epithelial cells of the choroid plexus, colocalizing with Fpn1 [133]. Interestingly,
during aging, both hepcidin mRNA and protein levels increase in the cerebral cortex,
hippocampus, striatum, and SN [131,134]. The hepcidin peptide is also localized in the
endothelium of blood vessels, choroid plexus, and pericytes [135], suggesting that brain
hepcidin originates from both in situ production and systemic production [135,136]. Cell
culture experiments showed that hepcidin is produced by microglia and astrocytes, as well
as by pericytes [137,138].

Resembling the regulation of dietary iron absorption in the duodenum, hepcidin
acts at the BBB, reducing iron entry into the brain. Hepcidin knockout (KO) mice show
strongly increased Fpn1 immunoreactivity at the abluminal side of vascular endothelial
cells [139], suggesting a reduction in Fpn1 turnover. At the BBB, hepcidin is secreted
in a synaptic-like manner by astrocytes and only stimulates Fpn1 internalization and
degradation in vascular endothelial cells in close proximity to astrocytes’ end-feet, reducing
iron export [104,140,141].

Hepcidin expression in the brain is regulated by inflammatory stimuli; for example,
LPS and turpentine oil induce hepcidin expression in the cortex, hippocampus, and stria-
tum [142–144]. Peripheral LPS administration also increases hepcidin mRNA and protein
levels in the cerebral cortex, SN [145], and choroid plexus [146]. However, more studies
are required to determine the contribution of peripherical inflammation upon brain iron
homeostasis. Interestingly, the hepcidin expression in astrocytes is mainly dependent on
the IL6-STAT3 pathway, since LPS treatment of IL6 null-derived primary cultures fails to in-
duce an increase of hepcidin mRNA levels, in contrast with a robust induction in wild-type
cultured cells [147]. The proposed mechanism involves LPS-mediated IL6 secretion from
microglia, and the subsequent IL6-triggered hepcidin production in astrocytes by means of
a STAT3-mediated pathway [148]. In astrocytes, hepcidin knockdown reduces the neuronal
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iron accumulation, oxidative stress, and apoptosis generated by an LPS intraventricular
injection [148], suggesting a deleterious role of hepcidin in neuroinflammation.

Understanding the function of hepcidin in the CNS is an ongoing process. Hepcidin
can prevent iron accumulation in the brain, by inhibiting TfR1, DMT1, and Fpn1 expression
on microvascular endothelial cells and thus reducing TBI and NTBI uptake [149]. However,
several studies show conflicting results regarding the role of hepcidin in several neuronal
pathologies. These discrepancies can partially be explained by the use of isolated cell
cultures, which do not take into account the interaction between neurons and glial cells
observed in the intact brain. Accordingly, hepcidin loss-of-function protects N27 rat
dopaminergic cells from 6-OHDA-induced apoptosis, decreasing the intracellular iron
content and oxidative stress [150]. In contrast, in vivo hepcidin overexpression in astrocytes
prevents the increase in brain iron levels and oxidative stress in a systemic iron overload rat
model [151] and reduces dopamine neuronal loss and limits iron accumulation in the SN
in rotenone and 6-OHDA animal models of PD. Remarkably, hepcidin overexpression also
promotes α-synuclein clearance through autophagy, reduces mitochondrial dysfunction,
and improves motor deficits [152,153].

A protective role for hepcidin has also been reported in AD models. Hepcidin pre-
treatment reduces the secretion of inflammatory cytokines induced by the Aβ peptide
and decreases the toxicity of astrocytes and microglia conditioned media in hippocampal
neurons [154]. Moreover, hepcidin pretreatment reduces both the oxidative damage and the
glial activation in the hippocampus displayed by animals after an intraventricular injection
of Aβ [154]. Accordingly, in APP/PS1 transgenic mice, hepcidin overexpression by astro-
cytes reduces iron entry into the brain and diminishes iron accumulation in neurons, which
results in decreased neuronal death in the cortex and hippocampus [155]. Interestingly,
one study shows that hepcidin and Fpn1 are reduced in post-mortem tissue from AD
patients [156], suggesting a key role of hepcidin in the development of this disease.

Overall, these findings suggest that hepcidin secretion by astrocytes exerts a spatially
restricted action on endothelial cells, reducing iron entry into the brain and providing neu-
roprotection. On the other hand, under neuroinflammation, unleashed hepcidin expression
triggered by IL6 can generate iron accumulation in neurons, promoting neurodegeneration.

4. Neuroinflammation Modulates the IRE/IRP System in Neurodegeneration

Changes in the cell iron status (iron overload or depletion) lead to compensating
translational changes in the levels of iron homeostasis-related proteins through the iron
regulatory element/iron regulatory protein (IRE/IRP) system. Inflammatory mediators
(especially ·NO) can target the IRE/IRP system, completely reshaping iron homeostasis in
neurons and glial cells and amplifying the neurotoxic effects of unresolved neuroinflam-
mation. Two IRP isoforms, known as IRP1 and IRP2, modulate the expression of proteins
by binding to conserved stem-loop structures, named IREs, in the untranslated regions
(UTRs) of their mRNAs. The regulatory outcome depends on the position and context of
the IRE in the mRNA sequence: IRP binding to the 5′ UTR IRE region represses translation,
whereas IRP binding to the 3′ UTR IRE region indirectly stimulates translation through the
suppression of mRNA degradation [157]. In iron-deficient cells, IRPs selectively bind IRE
at the 5′ UTR region of the mRNA coding for Fn and Fpn1 and to 3′ UTR of the mRNA
coding for TfR1 and DMT1, promoting iron uptake. In conditions of iron excess, IRP2 is
degraded and the IRP1 apoprotein binds to a [4Fe-4S] cluster to convert it into cytosolic
(c)-aconitase, suppressing its RNA-binding activity [158,159]. Diminished IRP binding
to the IREs promotes Fn and Fpn1 synthesis, whereas the TfR1 and DMT1 mRNAs are
degraded by nucleases.

As mentioned above, IRP1 is a bifunctional cytoplasmic protein that transits reversibly
between two conformations: An active RNA-binding protein (properly IRP1) and a [4Fe-4S]
cluster-bearing protein, inactive for RNA binding that functions as a c-aconitase. The c-
aconitase has an exclusively dedicated maturation system by the cytosolic Fe-S cluster
protein assembly (CIA) machinery, where the heterotrimeric complex (CIA2A)2CIAO1
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transfers one [4Fe-4S] cluster to IRP1, generating the active c-aconitase [160,161]. The CIA
system depends on the mitochondrial Fe-S cluster assembly machinery (ISC). Therefore,
IRP1 accumulates under iron deficiency conditions, when the ISC assembly machinery
is impaired, acting as a sensor for the availability of mitochondrial iron and ensuring an
adequate iron supply to this organelle [162,163].

Increased IRP1 IRE-binding activity has been observed in cells deficient in glutare-
doxin 2 (GLRX2) [164], glutaredoxin 5 (GLRX5) [165], sideroflexin 4 (SFXN4) [166], or
frataxin (FXN) [162], all of which are essential proteins for Fe-S cluster assembly. As IRP1
directs iron flux preferentially to the mitochondria, its unphysiological activation generates
mitochondrial iron overload, and a deficiency in the availability of iron in the cytoplasm,
which further potentiates iron entry into the cell through increases in TfR1 and diminished
Fn levels [164–166].

Recently, an IRP1-dependent mitophagy activation mechanism has been described,
suggesting that IRP1 could control mitochondrial iron recycling, analogous to the recycling
of amino acids through macroautophagy. Mitophagy activation involves IRP1 binding to
the 5′ UTR IRE sequence on Bcl-xL mRNA, repressing its translation in cells under iron
depletion or impaired Fe-S cluster biogenesis [167]. This mechanism is consistent with
early observations showing that deferiprone, which is an iron chelator, specifically activates
mitophagy rather than macroautophagy [168].

Through the regulation of erythroid-specific aminolevulinate synthase 2 (ALAS2),
IRP1 also balances iron availability and its utilization by mitochondria. ALAS2 catalyzes
the first step of heme biosynthesis and is negatively regulated by IRP1 binding to the 5′

IRE sequence in ALAS2 mRNA. Under mitochondrial iron-deficient conditions induced by
mitoferrin-1 deficiency, IRP1 activation and subsequent ALAS2 translation inhibition pre-
vent the accumulation of protoporphyrin, which are the precursors of the heme group [169].
Heme binding also inhibits IRPs, since the heme concentration is expected to increase
under mitochondrial iron sufficiency conditions. Heme binding decreases IRP activity by
steric competence with IREs or by oxidatively-mediated degradation [170,171]. These IRP1
regulatory mechanisms and associated effectors are summarized in Figure 1.

Both IRP1 and IRP2 mostly share their target mRNAs, but IRP2 is activated through
a different mechanism when compared to IRP1. Under iron sufficient conditions, IRP2 is
constitutively degraded by the proteasome. The E3 ubiquitin ligase FBXL5 controls IRP2
polyubiquitination. In turn, FBXL5 is also regulated by the ubiquitin-proteasome system.
The FBXL5 ligase has an N-terminal hemerythrin-like domain with a di-iron center, which
allows its correct folding and provides protection against degradation [172–174]. Under
iron deficiency conditions, the N-terminal domain partially unfolds and is polyubiquitated
by the HERC2 ubiquitin ligase [175]; FBXL5 also has a redox-sensitive [2Fe-2S] cluster
in the C-terminal substrate recognition domain, which, upon oxidation, promotes IRP2
binding in an oxygen-dependent manner [176]. The CIA targeting complexes CIAO1,
CIAO2B, and MMS19 exhibit an oxygen-dependent interaction with the C-terminal of
FBXL5, potentiating IRP2 degradation [177]. These findings strongly suggest that these
complexes could transfer the [2Fe-2S] cluster to FBXL5.

IRP1 KO mice show an apparently normal phenotype with tissue-specific iron dys-
regulation in brown fat and kidneys. Increased HIF2α translation in the kidney of IRP1
KO juvenile animals leads to increased erythropoietin expression, splenomegaly, and poly-
cythemia, although this phenotype is normalized in adult animals [178,179]. The HIF2α
mRNA contains a 5′ IRE sequence preferentially recognized by IRP1, which would explain
the selective effect on the IRP1-null background. In contrast, IRP2 KO mice exhibit the
misregulation of iron homeostasis in several tissues, including the brain, duodenum, and
bone marrow, which IRP1 fails to compensate for [180,181]. Accordingly, FBXL5-null mice
die during embryonic development because of iron overload and oxidative stress, although
the deletion of IRP2, but not IRP1, restores the viability [182,183].
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In tissues, IRP1 is mainly found as c-aconitase and has a limited contribution to the
control of iron homeostasis under physiological conditions, not significantly responding
to iron starvation [181]. Interestingly, IRP1 is a poor iron sensor at low (tissular) oxygen
tension, but it becomes relevant at 21% oxygen (cell culture conditions), suggesting that
oxygen-derived reactive species are key to IRP1 activation [184]. For example, tempol,
which is a nitroxide radical, can activate the large latent reservoir of IRE-binding activity in
the form of c-aconitase, restoring iron homeostasis in an IRP2-null background [185].

In summary, IRP1 acts as a sensor for mitochondrial iron deficiency, activating mi-
tophagy to recycle the iron contained in this organelle, and stimulating iron uptake to
restore mitochondrial iron homeostasis, whereas IRP2 outcompetes IRP1 in the regulation
of cellular iron homeostasis in physiological conditions. Inflammatory mediators such as
ROS/RNS can trigger decomposition of the [4Fe-4S] cluster of c-aconitase, activating IRP1,
even under iron sufficiency conditions. This paradoxical activation plays an important
role in neurodegenerative processes. An intricate scenario is generated by inflammatory
cell activation, which produces a diverse repertoire of ROS/RNS. In addition to ·O2

−,
H2O2, and ·NO produced by enzymatic systems, the highly reactive peroxynitrite and
hydroxyl radical generated non-enzymatically also form part of this repertoire. Due to their
differential reactivity and diffusibility, each ROS/RNS affects the Fe-S cluster of c-aconitase
in a different way.

The superoxide anion attacks the c-aconitase, leading to Fe-S cluster loss and IRP1
activation. Cytosolic superoxide dismutase (SOD1) (but not mitochondrial SOD2) confers
selective protection to c-aconitase, suggesting that ·O2

− action is limited to its compartment
of origin [186]. Moreover, the ·O2

−-dependent intracellular oxidative stress observed in
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SOD1-null mice drastically reduces IRP1 protein levels [187,188]. This adaptive regula-
tion can be facilitated by FBXL5-mediated IRP1 degradation, thus preventing excessive
IRE-binding activity [189]. Hence, under inflammatory conditions, ·O2

− is generated
extracellularly and does not activate IRP1 [190].

In vitro, H2O2 converts purified c-aconitase into the [3Fe-4S] form, losing its aconitase
activity, without eliciting IRE-binding activity [191]. Accordingly, only extracellular H2O2
(and not intracellular H2O2) triggers the conversion of c-aconitase into active IRP1 [190,192],
indicating that H2O2 acts indirectly. Experiments performed on permeabilized cells show
that the conversion of c-aconitase to IRP1 triggered by H2O2 requires membrane-associated
components [193], strongly suggesting the participation of a signaling-mediated event [194].
The consequences of extracellular H2O2 treatment on human neuroblastoma cells, including
Fpn1 degradation, IRP1-mediated H-Fn protein level reduction, and increased cLIP have
been described [195].

The most important direct activator of the IRE-binding activity of IRP1 is ·NO, acting
as the main transducer of ·NO on iron metabolism. Nitric oxide triggers the conversion of
c-aconitase to IRP1 through a disassembly of its [4Fe-4S] cluster [196–198], and therefore,
it has no effect on IRP2 activity [199,200]. However, ·NO only prompts the priming of
apo-IRP1 for IRE binding; thioredoxin-mediated reduction of apo-IRP1 is needed for full
RNA-binding activity [201]. Nitric oxide-mediated IRP1 activation increases TfR1 levels.
Nitric oxide also activates H-Fn, L-Fn, and Fpn1 transcription, but parallel IRP1 activation
represses its translation, resulting in largely preserved protein levels. Nitric oxide also
induces Fe-S cluster disruption of mitochondrial (m)-aconitase, and IRP1 activation is
essential for [4Fe-4S] cluster reconstitution, reinforcing its important role in mitochondrial
iron sufficiency [200]. Finally, peroxynitrite disrupts the Fe-S cluster on c-aconitase and
additionally induces tyrosine nitration of IRP1, inhibiting both aconitase and IRE-binding
activity [196,197,202,203].

Upon oxidative disruption of the [4Fe-4S] cluster, IRP1 is quickly turned back into
c-aconitase through a protein synthesis-independent mechanism [204]. This recycling
pathway is mediated by mitoNEET (mNT), which is a dimeric [2Fe-2S] cluster-bearing
protein located in the outer mitochondrial membrane. The mNT Fe-S cluster is resistant
to H2O2 and ·NO-mediated decomposition and each monomer successively transfers
its cluster to reconstitute c-aconitase [205]. Interestingly, only the oxidized state of the
mNT Fe-S cluster is competent for transfer [206]. Remarkably, mNT KO mice exhibit iron
accumulation, mitochondrial dysfunction, decreased striatal tyrosine hydroxylase (TH),
and dopamine levels and motor deficits, representing many of the characteristics of early
neurodegeneration in PD [207], underlining the importance of this pathway in avoiding
the hyper activation of IRP1 under oxidative stress.

The paradoxical activation of IRP1 despite elevated iron levels has been observed
under inflammatory conditions and/or under unrestricted ROS/RNS production, leading
to a positive feedback loop that generates iron overload and cell death [208,209]. For
example, rotenone boosts ROS production through mitochondrial complex I inhibition,
increases TfR1 and DMT1 and decreases Fpn1 protein levels, and enlarges the cLIP in an
IRP1-dependent manner. Accordingly, IRP1 silencing abolishes the rotenone-induced iron
uptake increase and reduces complex I inhibition-triggered neuronal death [210].

Inflammatory cytokines can enhance iron accumulation by regulating IRP1 activity
through ·NO-dependent and -independent mechanisms [211]. In rat hepatoma cells, treat-
ment with interferon (IFN)-γ/tumor necrosis factor (TNF)-α/LPS triggers ·NO-mediated
IRP1 activation without changes in IRP2, accompanied by the translational repression
of Fn expression [199]. Similarly, in primary cultured hippocampal neurons, the pro-
inflammatory cytokines TNFα and IL6 and the Toll-like receptor (TLR)-4 agonist LPS
directly upregulate both the mRNA and protein levels of DMT1 and induce a transient
decrease in Fpn1 protein levels, generating an increment of the iron content in neu-
rons [137,212], which could be associated with IRP1 activation. Moreover, in primary
cultures of ventral mesencephalic neurons, the pro-inflammatory cytokines IL1β and TNFα
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also promote iron influx and decrease iron efflux. Consistently, TfR1 and DMT1 (+IRE) are
upregulated and Fpn1 is downregulated. These changes are mediated by the ·NO- and
ROS-mediated activation of IRP1, downstream of pro-inflammatory cytokines [213].

In vivo evidence also supports the role of paradoxical IRP1 activation in neurodegen-
erative diseases. Early findings showed that sustained IRP1 activity in PD can repress Fn
translation, despite increased iron levels [214]. Similarly, IRP1 forms a more stable complex
with IREs in AD brains, which could explain the absence of Fn upregulation [215]. The
unexpected finding of an IRE sequence selectively recognized by IRP1 in the 5´UTR of
APP mRNA generated a link between iron accumulation and Aβ deposition [216,217]. Ad-
ditionally, IL1β stimulates IRP1 binding to APP mRNA IRE, suggesting that inflammatory
stimuli can decrease APP translation [216]. Two putative mechanisms have been proposed
to explain the link between APP and iron homeostasis: APP interaction with Fpn1, in order
to provide the necessary ferroxidase activity for the oxidation and transfer of the exported
iron to Tf [218], and APP-mediated membrane Fpn1 stabilization [219–221]. Moreover,
recent findings strongly suggest that ·NO-mediated IRP1 activation diminishes APP levels
and iron export in PD, promoting iron deposition [222]. In summary, ROS/RNS produced
during inflammatory oxidative bursts can activate IRP1, promoting iron overload and
neuronal death. Likewise, this mechanism has consequences on the inflammatory cells
themselves, as addressed below.

5. Iron and Microglia/Macrophage M1/M2 Polarization

Macrophages and microglia play crucial roles in homeostatic and immune defense in
the CNS. Upon infection or tissue injury, resident microglia are activated and peripheral
macrophages are recruited to the CNS to eliminate pathogens or damaged cells. Addi-
tionally, microglia and macrophages have an anti-inflammatory or “resolving” function
associated with tissue repair. Although tissular macrophages/microglia possess a broad
spectrum of phenotypes, a simple bi-state model of inflammatory/classical (M1)- and
resolution/alternative (M2)-activated macrophages/microglia has been widely used [223].
As described later in the text, M1 and M2 macrophages/microglia exhibit different iron
homeostasis settings and their own differentiation is influenced by this metal ion.

The M1 phenotype can be induced by LPS and IFNγ treatment and is characterized
by increased iNOS expression and the secretion of inflammatory cytokines such as IL6,
IL1β, and TNFα. On the other hand, M2 phenotype differentiation can be achieved by
IL4 treatment and is characterized by increased arginase-1 levels and secretion of the
brain-derived neurotrophic factor (BDNF), anti-inflammatory cytokines such as IL10, and
several lipid mediators [223]. Interestingly, M1/M2 macrophages possess a completely
opposite phenotype of iron handling (Figure 2). While M1 macrophages have lower IRP
binding activity, low cLIP, lower levels of TfR1 and Fpn1, and higher levels of H-Fn, M2
macrophages have higher IRP binding activity, a larger cLIP, higher TfR1 and Fpn1 levels,
and lower H-Fn levels. Functionally, M1 macrophages are less efficient in iron uptake and
release and have a more limited response to extracellular iron deficiency or excess than
M2 macrophages [224].

The homeostatic iron state of the M1 phenotype is achieved through regulation of the
IRE/IRP system. Treatment of murine macrophages with IFNγ and LPS (to promote the M1
phenotype) induces a differential response upon the activities of IRP1 and IRP2 [225]. Treat-
ment with IFNγ/LPS quickly activates IRP1 in an ·NO-dependent manner, and triggers
progressive, iron-dependent, IRP2 down regulation [226]. The iron homeostatic response is
predominantly mediated by this IRP2 down regulation, since a translational derepression
of Fn and an increase in its protein levels are observed; additionally, Tf/TfR1-mediated
iron uptake is diminished [227–230]. The activation of NOX is presumably involved in the
decrease in TfR1 expression mediated by LPS [231]. Overall, these studies are consistent
with the observation that the microglial M1 phenotype supports iron incorporation through
DMT1 and the M2 phenotype via the Tf-TfR1 system [232]. Although it is expected that
TfR1 and DMT1 have the same expression pattern, since they both have IREs in the 5′ UTR
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region of their mRNAs, DMT1 is also stimulated at the transcriptional level by LPS/IFNγ

in M1 macrophages, which would explain the antagonistic behavior of DMT1 and TfR1
regulation [233]. Additionally, LPS-treated macrophages reduce Fpn1 expression in an IRP-
and ·NO-dependent manner [234]. The rapid IRP1 activation is followed by a decrease,
also mediated by ·NO, of c-aconitase/IRP1 mRNA and protein levels [235], configuring
the final iron phenotype of M1 macrophages described above.
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Figure 2. Iron homeostasis during macrophage/microglia M1/M2 polarization. Iron plays a central role in the balance
between M1 inflammatory and M2 resolving phenotypes, stimulating M1 differentiation or converting the M2 phenotype
into M1. In addition, ·NO generated by M1 macrophages/microglia reshapes cellular iron homeostasis, diminishing the
cytosolic labile iron pool (cLIP) and reducing mitochondrial oxidative metabolism, thus conferring resistance to ferroptosis.
Conversely, the M2 phenotype is ferroptosis-prone because of higher cLIP, energy dependence on oxidative phosphorylation,
and the production of lipid oxidation products. Created with BioRender.com.

Additionally, iron modulates differentiation towards one or the other phenotype.
Iron overload triggers M1 polarization via an ROS-mediated mechanism [236], increasing
TNFα and IL1β secretion [213] and causes M2 macrophages to switch their phenotype to
M1 [237]. Accordingly, iron chelation with deferoxamine reduces RNS/ROS release and
TNFα and IL1β secretion by microglia [238] and also promotes microglial M2 polarization
in APP/PS1 transgenic mice, together with reduced brain iron and Aβ1–42 deposition [239].
The brain-permeable iron chelator VK-28 also stimulates microglial polarization towards
an M2-like phenotype [240]. Remarkably, the conditional deletion of H-Fn in macrophages
reduces LPS/IFNγ-mediated iNOS expression (a marker of M1-polarized macrophages)
and increases iron-mediated toxicity [241], suggesting that a higher H-Fn expression in M1
macrophages contributes to the storage and detoxification of exogenously added iron.

As a product of the increase in ·NO production, the M1 phenotype also has quite
different metabolic characteristics from the M2 phenotype. Nitric oxide induces disassem-
bly of the [4Fe-4S] cluster on m-aconitase, breaking the flux along the tricarboxylic acid
(TCA) cycle, thus triggering a reduction in pyruvate oxidation by pyruvate dehydrogenase
and diminishing the protein levels and activity of mitochondrial electron transport chain
complexes [242]. Therefore, the M1 phenotype supports energy metabolism based on the
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oxidation of glucose by glycolysis and the subsequent conversion of pyruvate to lactate.
Interestingly, treating microglia with FeCl3 upregulates both the expression and activity of
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, which is an enzyme that controls
fructose 2,6 bisphosphate levels—the key stimulator of glycolytic flux—suggesting that
increased glycolysis and iron retention are interrelated [69].

The iron-induced change to an M1 phenotype may represent an adaptive mechanism
that allows microglia/macrophages to survive in a pro-oxidant environment, especially to
survive their own ·NO production. The metabolic shift from oxidative phosphorylation to
glycolysis decreases the production of ·O2

− by the mitochondria, which would otherwise
react with ·NO to produce the highly toxic peroxynitrite molecule. Higher levels of H-Fn
also protect M1 microglia/macrophages from iron-mediated oxidative stress. Support-
ing this hypothesis, the glycolytic signatures of LPS-treated macrophages are lost under
low environmental oxygen tension [243]. Additionally, M2-polarized microglia are more
sensitive to ferroptosis, which is an iron- and redox-driven cell death program [244]. M2
microglia have increased levels of 15-lipoxygenase (15-LOX)—an important enzyme for
the synthesis of pro-resolving lipid mediators—which also catalyzes the production of
an essential pro-ferroptosis lipid signal [245]. Suggestively, M1 resistance to ferroptosis
depends on iNOS-mediated ·NO production, and ·NO treatment protects M2 microglia
from ferroptosis [244]. The implications of the role of iron in the balance between M1/M2
phenotypes in neurodegenerative diseases remain largely unexplored.

In immortalized microglia, iron potentiates Aβ-induced IL1β secretion (an M1 cy-
tokine) through an ROS- and NFκB-mediated pathway [246]. The Aβ peptide (like LPS
and IFNγ) promotes M1 microglial polarization, concomitantly with an increase in NTBI
uptake and elevated levels of DMT1 and H-Fn. Additionally, M1 microglia shift their
metabolism toward glycolysis, increasing the production of lactate and extracellular acid-
ity, and enhancing pH-dependent iron uptake through DMT1 [232,247]. These glycolytic
and iron-retentive microglia are also observed in APP/PS1 transgenic mice [69,247]. Fur-
thermore, in a PD mice model induced by paraquat and maneb, NE depletion by DSP-4
amplifies hippocampal microglial activation and M1 polarization and increases the iron
content, correlated with the upregulation of TfR1 and downregulation of Fpn1 [26].

In mice deficient for the NFκB family member c-Rel, which show a late onset parkin-
sonism preceded by some prodromal PD symptoms, such as intestinal constipation and
olfactory impairment [248], an increased expression of M2 microglia/macrophages markers
is transiently observed in young, but not older, animals [249]. It remains to be established
if this switch from an M2 phenotype to an inflammatory M1 phenotype is a consequence
of iron overload caused by phagocytosis of iron-rich, neuromelanin-bearing neurons in
the c-Rel KO mice, or of iron-loaded amyloid plaques in the APP/PS1 mice. Overall, the
above results indicate that the modulation of M1/M2 polarization is a promising thera-
peutic alternative for reducing neuroinflammation and dopaminergic neuronal death [250].
Targeting the iron homeostasis regulatory mechanisms could be a feasible alternative.

6. A Synergistic Role of Iron Accumulation and Neuroinflammation in Neurodegeneration

Neuroinflammation and brain iron accumulation mutually enhance each other through
multiple mechanisms. Beyond translational regulation mediated by the IRE/IRP system,
iron transporters can be regulated at the transcriptional or post-translational level by in-
flammatory mediators. For example, ·NO can S-nitrosylate DMT1 at Cys23 and Cys540,
increasing Fe2+-uptake activity [251]. Additionally, ·NO also regulates DMT1 protein
levels through an indirect mechanism. Parkin, which is an E3 ubiquitin ligase involved
in dopaminergic neuron survival, is S-nitrosylated in PD brains and MPTP-injected mice
and this modification inhibits its function [252]. Parkin mediates the ubiquitylation of the
DMT1B isoform [253,254]. Accordingly, S-nitrosylation of Parkin impairs DMT1 ubiqui-
tination, increasing DMT1 protein levels. Furthermore, treatment with MPP+ (the active
metabolite of MPTP) results in Parkin S-nitrosylation and elevated DMT1 protein levels
in Parkin-expressing human neuroblastoma cells. A similar effect is observed in the SN
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of MPTP-injected mice [255]. Interestingly, neuronal DMT1 overexpression triggers an
increase of Parkin levels in an apparent compensatory response [256].

The expression of DMT1 is transcriptionally enhanced by the transcription factor
NFκB [257], whose activation occurs downstream of many cytokine receptors, such as the
TNF receptor (TNFR) and the IL1 receptor (IL1R). The activation of NFκB by inflamma-
tory stimuli may play a significant role in iron accumulation by dopaminergic neurons
of the SN, which express high levels of TNFR [258]. Interestingly, an increase in the nu-
clear immunoreactivity of NFκB was observed in PD patients’ brains or in animal models
of this disease [259]. Remarkably, treatment with ebselen, which is a selective DMT1
blocker, reduces iron deposition in the SN of LPS-treated mice and prevents neuronal
loss and motor deficits [251], suggesting that DMT1-mediated iron entry is relevant in
neuroinflammation-mediated neuronal death. Moreover, AD post-mortem tissue displays
an increased expression and/or activation of NFκB, particularly in regions preferentially af-
fected in AD [260]. This increased expression correlates with an increased DMT1 expression,
both in post-mortem tissue and in transgenic APPsw mice [261].

In PD, a self-perpetuating cycle between neurodegeneration and neuroinflammation
is also sustained by neuromelamin (NM) released from dead dopaminergic neurons. Neu-
romelanin is an insoluble pigment formed by oxidized metabolites of dopamine with a
remarkably avidity for Fe3+ ions that accumulates with aging, particularly in the SN and
LC [262]. Neuromelanin-containing neurons are selectively vulnerable to neurodegenera-
tion [263]. The engulfment of extracellular NM by microglia [264] induces NFκB-dependent
microglia activation [265], and triggers mesencephalic neuronal death [266].

The co-occurrence of iron accumulation and neuroinflammation can exacerbate neu-
ronal death. Therefore, the use of iron chelators during neuroinflammation protects the
brain from iron overload, reduces microglial activation, and improves cognitive functions
in rodents [267–269]. As iron catalytically converts H2O2 and ·O2

− to the highly toxic
hydroxyl radical through the Haber–Weiss reaction, their accumulation could enhance
neurotoxicity mediated by glial NOX products.

Iron also promotes microglial activation and NOX2-dependent ·O2
− production, and

in turn, microglia activation contributes to selective iron-mediated neurotoxicity in mixed
midbrain-derived primary cultures [270]. NOX2 activation is also involved in paraquat-
mediated microglial activation by iron, and microglial cells are essential for enhanced
dopaminergic cell death triggered by paraquat/iron treatment [271]. In paraquat- and
maneb-treated mice, the NOX inhibitor apocynin restores normal Fpn1 protein levels
and inhibits iron accumulation, ameliorating neuroinflammation, lipid peroxidation, and
dopaminergic neurodegeneration [272]. Similarly, iron also increases LPS-neurotoxicity
when administered to co-cultures of primary neurons and microglia, and neuronal death
can be reversed by NOX2 and NOX4 inhibition [273]. Preliminary results from our labora-
tory also show a synergistic role of neuroinflammation and iron in downstream oxidative
stress (Figure 3).

Treatment of hippocampal neurons with pro-inflammatory cytokines (IL6 and TNFα)
or with LPS increases the fraction of oxidized cysteines; this increase is abrogated by pre-
treatment with the antioxidant N-acetylcysteine (NAC, Figure 3A,B). These changes make
neurons more prone to oxidative damage, since an increase in their iron content, together
with increased ROS production, fosters the production of the highly reactive hydroxyl
radical. Accordingly, the detection of hydroxyl radicals with dichlorofluorescein (DCF)
indicated that the pre-treatment with IL6, TNFα, or LPS enhanced its production after incu-
bation with iron (Figure 3C). Hence, elevated levels of neuronal iron can act synergistically
with cytokine-mediated ROS production to overwhelm antioxidant defenses.
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Figure 3. Pro-inflammatory cytokines enhance iron-mediated reactive oxygen species (ROS) produc-
tion. Hippocampal neurons (7 DIV) were treated with tumor necrosis factor (TNF)α (50 ng/mL), IL6
(50 ng/mL), or lipopolysaccharide (LPS) (1 µg/mL) for 18 h in the presence or absence of 0.5 mM
N-acetylcysteine (NAC). (A) The oxidative tone was evaluated by the amount of reduced and oxi-
dized cysteine in proteins. Maleimide-Alexa 488 (green) was used to detect reduced cysteines and
maleimide-Alexa 568 (red) to detect oxidized cysteines. The ratio between red and green fluorescence
was transformed (ImageJ program) into a thermal scale (right hand bar) in which a shift from blue
to red to white implies a higher degree of oxidation. (B) Quantification of the reduced/oxidized
cysteine ratio. (C) Increased dichlorofluorescein (DCF) fluorescence, which is a dye sensitive to
ROS production, was evaluated after the addition of ferric ammonium sulfate (FAS). Fluorescence
data were collected in a microfluorometer plate reader and the ratio between fluorescence (F) and
initial fluorescence (Fo) was plotted. Values represent the mean ± SEM (n = 120 neurons, from three
independent experiments). *** p < 0.001 compared to the control and ## p < 0.01 compared with the
conditions without or with NAC. For protocol detail see [137].

7. Conclusions

Connected through an intricate network of molecular interactions, neuroinflammation
and iron accumulation establish a noxious circle that sustains the progressive neurodegen-
eration process observed in AD and PD (Figure 4). Iron promotes the M1 pro-inflammatory
phenotype in microglia and macrophages, characterized by the expression of iNOS. More-
over, iNOS-mediated ·NO production is essential for the adaptive remodeling of iron
homeostasis and metabolic pathways in M1 microglia/macrophages that concur to fer-
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roptosis resistance. These changes make the endurance of neuroinflammation over time
possible, even under oxidative stress conditions that would be toxic to neighboring cells
such as neurons. Additionally, ·NO can disrupt the Fe-S cluster in c-aconitase, activating
IRP1, even in iron-sufficiency conditions, thus potentiating mitochondrial iron accumula-
tion and oxidative stress, ultimately leading to neuronal death.
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together with increased ROS production, fosters the production of the highly reactive hy-
droxyl radical. Accordingly, the detection of hydroxyl radicals with dichlorofluorescein 
(DCF) indicated that the pre-treatment with IL6, TNFα, or LPS enhanced its production 
after incubation with iron (Figure 3C). Hence, elevated levels of neuronal iron can act syn-
ergistically with cytokine-mediated ROS production to overwhelm antioxidant defenses. 

7. Conclusions 
Connected through an intricate network of molecular interactions, neuroinflamma-

tion and iron accumulation establish a noxious circle that sustains the progressive neuro-
degeneration process observed in AD and PD (Figure 4). Iron promotes the M1 pro-in-
flammatory phenotype in microglia and macrophages, characterized by the expression of 
iNOS. Moreover, iNOS-mediated ·NO production is essential for the adaptive remodeling 
of iron homeostasis and metabolic pathways in M1 microglia/macrophages that concur to 
ferroptosis resistance. These changes make the endurance of neuroinflammation over 
time possible, even under oxidative stress conditions that would be toxic to neighboring 
cells such as neurons. Additionally, ·NO can disrupt the Fe-S cluster in c-aconitase, acti-
vating IRP1, even in iron-sufficiency conditions, thus potentiating mitochondrial iron ac-
cumulation and oxidative stress, ultimately leading to neuronal death. 

 

Figure 4. Iron and inflammation are intertwined in a bidirectional relationship during neurodegen-
eration. The neurodegenerative process starts with the loss of immune homeostatic mechanisms,
partially due to decreased norepinephrine (NE) neurotransmission after the degeneration of the
locus coeruleus (LC) (1). It continues with neuronal death in intrinsically sensitive areas, such as the
substantia nigra (SN) (2a) and the entorhinal cortex (2b), fueled by a positive feedback loop between
neuroinflammation, oxidative stress, and iron accumulation (the wheel at the center). As the disease
progresses, neurodegeneration continues to other brain regions, such as the hippocampus and the
cortex (4). Hepcidin can suppress the main pathologies in experimental Alzheimer’s disease (AD)
and Parkinson’s disease (PD) through the inhibition of iron entry at the blood–brain barrier (BBB)
(3). Created with BioRender.com.

Further knowledge on the molecular hierarchy that supports the relationship between
neuroinflammation and iron overload will open new therapeutic avenues that allow for
the disruption of this circle in AD and PD. Restraining iron entry to the CNS by hepcidin
treatment and conservative brain iron chelation are two possible strategies for the treatment
of these devastating diseases.
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