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Abstract: Acidithiobacillus species are fundamental players in biofilm formation by acidophile bi-
oleaching communities. It has been previously reported that Acidithiobacillus ferrooxidans possesses
a functional quorum sensing mediated by acyl-homoserine lactones (AHL), involved in biofilm
formation, and AHLs naturally produced by Acidithiobacillus species also induce biofilm formation in
Acidithiobacillus thiooxidans. A c-di-GMP pathway has been characterized in Acidithiobacillus species
but it has been pointed out that the c-di-GMP effector PelD and pel-like operon are only present in the
sulfur oxidizers such as A. thiooxidans. PEL exopolysaccharide has been recently involved in biofilm
formation in this Acidithiobacillus species. Here, by comparing wild type and ∆pelD strains through
mechanical analysis of biofilm-cells detachment, fluorescence microscopy and qPCR experiments,
the structural role of PEL exopolysaccharide and the molecular network involved for its biosynthesis
by A. thiooxidans were tackled. Besides, the effect of AHLs on PEL exopolysaccharide production was
assessed. Mechanical resistance experiments indicated that the loss of PEL exopolysaccharide pro-
duces fragile A. thiooxidans biofilms. qRT-PCR analysis established that AHLs induce the transcription
of pelA and pelD genes while epifluorescence microscopy studies revealed that PEL exopolysaccharide
was required for the development of AHL-induced biofilms. Altogether these results reveal for the
first time that AHLs positively regulate pel genes and participate in the molecular network for PEL
exopolysaccharide biosynthesis by A. thiooxidans.

Keywords: acidophile; biofilm; bioleaching; cyclic dinucleotide; epifluorescence microscopy; extremophile

1. Introduction

The biomining industry takes advantage of the metabolism of leaching microorgan-
isms which mediate the dissolution of metal sulfides through their ability to oxidize ferrous
iron and reduced inorganic sulfur compounds (RISCs). Bioleaching has been successfully
used for the recovery of cobalt, gold, nickel, zinc and it is currently used for the recovery
of copper from low-grade ores [1,2]. However, the leaching of metal sulfides under un-
controlled circumstances creates environmental pollution in the form of acid mine/rock
drainage (AMD/ARD) [3]. It has been reported that biofilm formation by bacterial cells
on minerals is a key step for leaching performance due to the formation of a thin reaction
space between ore and cells, which is filled by extracellular polymeric substances includ-
ing exopolysaccharides (EPS), proteins, lipids and uronic acids [4,5]. Understanding the
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molecular events involved in biofilm formation by acidophilic species may help to develop
improvements in biomining technologies or to mitigate AMD/ARD. Due to their role in
bioleaching, bacteria belonging to Acidithiobacillus genus were the first acidophilic species
to be characterized and considered to be pivotal players for the biomining process [6,7].

In bacteria, biofilm formation is mainly controlled by two specific and widespread
phenomena named quorum sensing (QS) [8,9] and the cyclic diguanylate (c-di-GMP) path-
way [9–12]. QS mechanisms have been studied for several decades in Gram-negative and
Gram-positive bacteria and in addition they also have been identified in eukaryotic fungi
and the Protista kingdom [13,14]. QS is defined as a cell-cell communication process that
regulates gene expression in a cell-density-dependent manner. This is achieved through the
secretion of diffusible autoinducers (AIs), allowing the expression of different behaviours
more suitable for the cell population rather than individual cells [8]. These include viru-
lence, EPS biosynthesis and biofilm formation. Different QS systems have been reported,
and characterized AIs have been described as specific molecular players for intraspecies
as well as interspecies cell-cell communication [15–19]. Canonical QS systems in Gram-
positive bacteria involve oligopeptides as AI and a specific two-component system for
the signal transduction [20]. QS type AI-1, which is mediated by N-acyl-homoserine lac-
tone (AHL) molecules through its binding to transcriptional regulators belonging to the
LuxR-like protein family, is one of the best characterized QS systems in Gram-negative
bacteria [20]. A type AI-1 QS system was reported in Acidithiobacillus ferrooxidans [21]. It in-
cludes canonical afeR and afeI genes, encoding for the transcriptional regulator AfeR and the
AHL synthase AfeI. Since AfeI is capable of driving the biosynthesis of nine different AHLs,
it has been suggested that cross-communication could occur between A. ferrooxidans and
other bacterial species belonging to the bioleaching ecological niche [22]. In this way, it has
been reported that attachment to pyrite by the sulfur oxidizer Acidithiobacillus thiooxidans
requires a pre-colonization step mediated by iron oxidizing species [23]. In addition, the use
of synthetic QS molecules revealed that AHLs naturally produced by iron/sulfur oxidizer
A. ferrooxidans promote biofilm formation not only in A. ferrooxidans [24], but also in the
sulfur oxidizer A. thiooxidans [23]. An initial bioinformatics analysis suggested that the
A. ferrooxidans QS regulon may comprise 75 genes some of them involved in polysaccharide
biosynthesis [25]. Moreover, DNA microarray experiments performed in A. ferrooxidans by
using an AHL super-agonist analog indicated that 42.5% of predicted QS regulon genes are
related to biofilm formation and to the biosynthesis, polymerization and secretion of ex-
opolysaccharides [26]. Nevertheless, the molecular network involved in biofilm formation
by Acidithiobacillus species, from the addition of exogenous AHL to EPS production upon
cell attachment on pyrite or sulfur surfaces, remains to be deciphered.

The second messenger c-di-GMP has emerged as a central metabolite that controls
several phenotypes in bacteria, including motility and biofilm formation [11,12]. This mes-
senger is synthesized by diguanylate cyclase (DGC) enzymes and degraded by c-di-GMP
specific phosphodiesterases (PDEs) [11,12]. The signal transduction is carried out by several
families of proteins and RNA receptors [27]. One of the first c-di-GMP effector proteins to
be characterized was the inner-membrane protein PelD from Pseudomonas aeruginosa [28].
The PelD protein is part of a multiproteic complex involved in the biosynthesis and export
of PEL, an exopolysaccharide involved in pellicle formation at the air/surface interface
of P. aeruginosa static liquid cultures [28]. The unique architecture and export mechanism
of the PEL polysaccharide synthase, as well as the structural composition of PEL ex-
opolysaccharide have recently been deciphered in P. aeruginosa [29–31]. PEL is a cationic
exopolysaccharide, mainly composed of N-acetylgalactosamine and N-acetylglucosamine
subunits [29], whose translocation across the outer membrane requires functional PelB
and PelC proteins [30], and the binding of c-di-GMP to PelD for recruiting PelF and pro-
moting its glycosil-transferase activity through quaternary rearrangements of the PEL
polysaccharide synthase PelDEFG [31,32]. Functional c-di-GMP pathways have been re-
ported and partially characterized in three Acidithiobacillus species, and directly related to
exopolysaccharide production and biofilm formation [33–35]. In addition, by analysing
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35 chromosomal replicons [36] it has been recently reported that the c-di-GMP pathway is
widespread among the Acidithiobacillus species complex. Castro et al. [36] also corroborated
that: (i) the c-di-GMP network is highly diverse, depending on both species and strains,
the most complex c-di-GMP metabolism pathways being identified in A. thiooxidans strains,
which can harbour up to 40 DGC and PDE encoding genes [36]; (ii) despite a wide diversity
of c-di-GMP effectors such as the transcriptional regulator FleQ [37] and PilZ domain,
initially identified in the cellulose synthase subunit BcsA [38], PelD and the pel operon
were identified in very few species of acidophile. Thus, two operons, encoding for cellulose
(bcs operon) and PEL exopolysaccharide (pel operon) biosynthetic pathways have been
suggested to be involved in biofilm formation in Acidithiobacilus species [34,35]. However,
while the bcs operon is widespread in iron/sulfur-oxidizing species, the pel operon [39] has
been identified only in the sulfur-oxidizing species A. caldus and A. thiooxidans [30,34,35].
Indeed, a pel-like operon was identified in A. caldus and A. thiooxidans, and the construc-
tion of an A. thiooxidans ∆pelD null-mutant strain revealed that PEL exopolysaccharide is
involved in its biofilm architecture [35]. Therefore, PEL was the first exopolysaccharide
experimentally linked with biofilm formation by Acidithiobacillus species [35].

During the last decade, several reports have revealed that QS and the c-di-GMP
pathway form intricate molecular networks that can integrate data on population den-
sity and environmental conditions in different bacterial species [40–44]. Indeed, pellicle
formation at the air–surface interface of a bacterial culture, which is supported by the pro-
duction of PEL and BEP exopolysaccharides in P. aeruginosa and Burkholderia cenocepacia,
respectively, is induced by high intracellular levels of c-di-GMP, but it is negatively reg-
ulated by two different QS pathways decreasing c-di-GMP content either deactivating
DGC or activating PDE enzymes [40,42,44,45]. However, despite the results reported by
Diaz et al. [35], the identification of the molecular players involved in biosynthesis of
PEL exopolysaccharide and biofilm formation by Acidithiobacillus is still mostly incom-
plete. In order to gain insights into the regulatory network involved in the biosynthesis
of PEL exopolysaccharide by Acidithiobacillus species, and also to assess if QS signalling,
c-di-GMP and PEL exopolysaccharide are interconnected during biofilm formation by
A. thiooxidans ATCC 19377T, fluorescence microscopy and qPCR experiments were per-
formed, taking advantage of the ∆pelD null-mutant strain [35]. The results of the present
work demonstrated that in our experimental conditions transcription levels of pel genes
were increased when A. thiooxidans planktonic cells were exposed to QS signalling molecule
3-oxo-C8-AHL, while fluorescent lectin binding analysis (FLBA) combined with epifluo-
rescence microscopy clearly indicated that PEL exopolysaccharide was required for the
development of AHL-induced biofilms. Therefore, this work provides the first evidence
that QS signalling molecules are positively linked to the transcription of pel genes includ-
ing the c-di-GMP effector encoding gene pelD and PEL exopolysaccharide biosynthesis
during biofilm formation in Acidithiobacillus species. Nevertheless, further studies are
still necessary to fully decipher the interplay of QS and c-di-GMP molecular pathways in
Acidithiobacillus species.

2. Materials and Methods
2.1. Strains and Growth Conditions

A. thiooxidans ATCC 19377T parental strain and null-mutant ∆pelD derived strain
whose biofilm architecture is modified by this deletion [35] were routinely grown with
agitation (150 rpm) at 30 ◦C under aerobic conditions in Mackintosh (MAC) medium at
pH 4.5 [46], supplemented with 5% w/v sulfur (S◦) prills as energy substrate. For fluo-
rescence microscopy experiments and mechanical strength analysis, S◦-coupons (0.5 cm2,
obtained by S◦ melting and fusion) were added to the MAC medium. The null-mutant
strain ∆pelD was maintained in MAC medium supplemented with 150 µg/mL kanamycin.
For A. thiooxidans growth in the presence of AHL signalling molecules (5 µM final concen-
tration), 3-oxo-C8-AHL and C8-AHL (SIGMA®, Oakville, ON, Canada) were added from
50 mM stock solutions in 100% DMSO.
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2.2. Visualization of A. thiooxidansT Biofilms

Colonized S◦-coupons obtained from three independent cultures of A. thiooxidansT

cells grown in the presence of 3-oxo-C8-AHL (5 µM), C8-AHL (5 µM) or 0.01% DMSO
were extracted from 5-days growth cultures and washed as described [35]. FLBA was
done as described by Zhang et al. [47]. Coupons were then incubated in darkness for 1 h
in lectin buffer (10 mM NaH2PO4 pH 7.2, 150 mM NaCl), supplemented with different
FITC-conjugated lectins at 50 µg/mL (Table S1) (EY Laboratories®, San Mateo, CA, USA).
For FITC-conjugate GS-II lectin, CaCl2 (0.5 mM) was added into the lectin buffer. After
incubation, S◦-coupons were washed with the same lectin buffer and counterstained with
4,6-diamidino-2-phenylindole (DAPI) at 1 mg/mL in 2% formaldehyde, to fix the sam-
ples [23]. Finally, coupons were washed with sterile water, dried at room temperature,
mounted with a drop of an anti-fading agent (Citifluor® AF2) and imaged by epifluo-
rescence microscopy. Images were taken with an inverted Axiovert-100 MBP microscope
(Zeiss®) equipped with an HBO 100 mercury vapour lamp, filters for DAPI (Ex 358 nm/Em
461 nm) and FITC (Ex 490 nm/Em 505–545), a Zeiss® filterset 49 air-objective (Zeiss® EC
epiplan NEOFLUAR 420363/9901) and a digital microscope camera (Zeiss® AxioCam®

MRm). All images were acquired by viewing five different coupons from each independent
culture and processed using the software Axio-Vision 4.2 (Zeiss®).

2.3. Transcriptional Analyses

Real Time RT-PCR experiments (qRT-PCR) were performed as previously described [35].
Total RNA was extracted from both planktonic and biofilm cells obtained from A. thiooxidansT

cultures grown in the presence of 3-oxo-C8-AHL (5 µM) or 0.01% DMSO during five days.
Planktonic cells were directly collected by centrifugation for 15 min at 6000× g while biofilm
cells were previously separated from S◦-prills by 10 min incubation with 0.05% Triton
X-100 and vortexing [35]. cDNA was synthetized from 1 µg of total RNA obtained from
both cell sub-populations by using reverse transcriptase (Promega, Madison, WI, USA) and
random primers (Promega, Madison, WI, USA). Transcriptional levels of pel (pelA, pelD and
wcaG) and flaA genes were measured with specific primers (Table S2), including both 16S
rDNA gene and the methionine aminopeptidase encoding gene map, used as housekeeping
genes for data normalization [48].

2.4. Mechanical Resistance of A. thiooxidans Biofilms

To investigate the role of both AHL signalling molecules and PEL exopolysaccharide
on biofilm formation by A. thiooxidansT, a specific assay to measure mechanical resis-
tance of attached cells was developed. First, to eliminate any remaining planktonic cells,
colonized S◦-coupons were extracted from three independent 5-days growth cultures
of A. thiooxidansT cells and washed twice with aqueous H2SO4 pH 2. The mechanical
resistance of attached cells was assessed by incubating the colonized S◦-coupons in a Tri-
ton X-100 solution (0.05% Triton X-100, pH 2) and vortexing for 10 min. Afterwards,
the A. thiooxidans cells released were quantified at different times of incubation by sepa-
rating free A. thiooxidans cells from colonized S◦-coupons through centrifugation at low
velocity (1000× g). Suspensions of released cells were diluted in acidic water (pH 2.0,
H2SO4) and counted in a Petroff-Hausser counting chamber. The number of released cells
was normalized by the mass of S◦-coupons.

2.5. Bioinformatics Search for a LuxR-Like Protein

The search for a LuxR-like orthologs in A. thiooxidans proteomes was performed by
Blastp [49] with defaults parameters (e-value < 0.05) using AfeR (A. ferrooxidans), SdiA
(Escherichia coli) and RpaR (Rhodopseudomonas palustris) as queries against the new available
genome sequences of A. thiooxidans. Functional protein domains from queries and subject
proteins were validated against the Conserved Domain Database (CDD) v.3.18 and Pfam
Database V.32.0 using CD-search [50] with defaults parameters (e-value < 0.01).
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3. Results
3.1. N-Acetyl-Galactosamine and N-Acetyl-Glucosamine Are Structural Blocks of PEL
Exopolysaccharide in A. thiooxidansT

To gain some insights about the sugar composition of the A. thiooxidans cell surface
and to understand how PEL exopolysaccharide is involved, FLBA was performed using
twelve different lectins. In our experimental conditions, most of the tested lectins did not
bind A. thiooxidans wild type cells (Table S1). However, binding signals were observed with
lectins AAL, BPA, ConA and GS-II, which bind L-Fucose α(1,6) N-Acetyl-D-Glucosamine,
N-acetyl-D-galactosamine, internal D-mannose and D-Glucose and N-acetyl-D-glucosamine,
respectively (Figure 1 and Figure S1).
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Figure 1. Analysis of PEL exopolysaccharide composition by using epifluorescence microscopy
coupled to FLBA. S◦-coupons colonized by A. thiooxidansT (WT) or mutant derived (∆pelD) cells were
extracted from 5-days growth cultures and incubated with FITC-conjugated BPA or GS-II lectins.
Then, they were stained with DAPI before microscopy imaging. Size bars represent 20 µm.

In agreement with Diaz et al. [35], DAPI staining corroborated that wild type and ∆pelD
null-mutant cells are capable of forming biofilms on S◦-coupons (Figure 2 and Figure S2) and
definitively pointed out that A. thiooxidans cells can also adhere to S◦-coupons independently
of PEL. AAL, BPA and GS-II clearly indicated that the glycoconjugate composition of
biofilm cell surfaces is different in the two strains. Positive binding signals were obtained
with the aforementioned three lectins for the wild type strain, while no (BPA, GS-II) or
decreased (AAL) fluorescence signals were obtained for ∆pelD null-mutant strain (Figure 2
and Figure S2), indicating that the PEL exopolysaccharide of A. thiooxidans is most likely
composed of N-acetyl-D-galactosamine and N-acetyl-D-glucosamine.
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Figure 2. The presence of PEL exopolysaccharide offers a stronger embedment into the biofilm
matrix for At. thiooxidans cells. Inoculated S◦-coupons extracted from 5-days growth cultures were
treated with 0.05% Triton X-100 and vortexed during 10 min. Number of cells released from the
wild type and ∆pelD null-mutant biofilms subjected to mechanical stress was determined with a
Petroff-Hausser counting chamber and normalized against mass of sulfur. Significant differences
calculated by a one-way ANOVA test (p < 0.05) are noted (*). CTR, DMSO 0.01% without AHL. NS,
No significant difference.

3.2. The Loss of PEL Exopolysaccharide Produces Fragile Biofilms in A. thiooxidans

Diaz et al. [35] have previously reported that ∆pelD mutation affects biofilm architec-
ture. In order to assess the relevance of PEL exopolysaccharide for A. thiooxidans biofilm
architecture and function, wild type and ∆pelD null-mutant biofilms were subjected to
mechanical stress by vortexing colonized S◦-coupons. As shown in Figure 2, the number
of cells released at the end of vortexing (10 min) from control ∆pelD biofilms without
3-OH-C8-AHL was 29.9% higher than those released from wild type biofilms. This increase
was also observed at different times of the vortexing assay (Figure S2).

Concordantly, and compared to the ∆pelD null-mutant strain, the presence of PEL
exopolysaccharide reduced the release of wild type cells from S◦-coupons in presence of the
QS signalling molecule 3-oxo-C8-AHL by 53.3% (Figure 2). Moreover, a significant decrease
(26.4%) was also observed for WT cells grown with 3-oxo-C8-AHL compared to WT cells
without QS signalling molecules and the highest releases were observed for ∆pelD biofilms
with or without 3-oxo-C8-AHL (Figure 2). Altogether, these results clearly show that the
strength of A. thiooxidans cells embedding and the mechanical resistance of the biofilm
matrix are correlated to the presence of PEL exopolysaccharide. In addition, our results
highlight for the first time a role for an AHL signalling molecule in PEL biosynthesis by
this acidophile species.

3.3. PEL Biosynthesis by A. thiooxidans Requires QS Signalling Molecules

Ueda and Wood [40] reported that QS mediated by the Las system negatively modu-
lates pellicle/biofilm formation in P. aeruginosa. In addition, while sulfur-oxidizing species
such as A. thiooxidans and A. caldus do not possess any canonical genes for QS [51,52], it has
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been reported that biofilm formation in A. thiooxidansT can be induced by the addition
of QS signalling molecules 3-oxo-C8-AHL or C8-AHL [23]. Thus, we decided to assess
the influence of the addition of these AHLs on PEL production and biofilm formation, by
comparing the A. thiooxidans ∆pelD null-mutant and WT strains. Despite the basal level
of adhered cells observed in both controls without QS signalling molecules and all ∆pelD
experiments that corroborated that A. thiooxidans can adhere to S◦-coupons independently
of PEL, results obtained by fluorescence microscopy clearly indicated that the formation of
the AHL-induced biofilm by A. thiooxidans requires the presence of the c-di-GMP effector
PelD (Figure 3).
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Figure 3. The deletion of pelD interferes with A. thiooxidans biofilm response to both QS signalling
molecules 3-oxo-C8-AHL and C8-AHL. S◦-coupons were inoculated with A. thiooxidans ATCC 19,377
or mutant derived ∆pelD strains and extracted from 5-days growth cultures. Then they were washed
and stained with 0.01% DAPI. Finally, S◦-coupons were viewed by fluorescence microscopy. Size
bars represent 10 µm. Control, DMSO 0.01% without AHL.

This indicates that these QS signalling molecules have a positive effect on PEL biosyn-
thesis and suggests that it could regulate the expression of the PEL apparatus. In order to
test this hypothesis, transcriptional analyses of three genes belonging to the A. thiooxidans
pel operon (pelA, desacetylase PelA; pelD, c-di-GMP effector protein PelD; wcaG, UDP-
Glucose-4-epimerase) were performed in the presence of 3-oxo-C8-AHL (5 µM), since it
appeared to induce the highest biofilm formation in this microorganism (Figure 3). No
difference was measured for pelA, pelD and wcaG transcription levels by comparing biofilm
cells with or without addition of 3-oxo-C8-AHL (Figure 4 and Figure S3). However by
comparing data obtained from planktonic and attached cells in controls (CTR) experiments,
it is possible to point out that basal transcription levels are higher in biofilm cells compared
to planktonic. This supports the idea that AHL effect on pelA and pelD transcriptions takes
place early in A. thiooxidans planktonic cells to promote the shift of lifestyle from plank-
tonic to adhered as it was reported by a global transcriptional analysis in A. ferrooxidans
performed to assess the transcriptional effect of an AHL analogue on biofilm formation by
this Acidithiobacillus species [26].

However, in planktonic cells, the transcription levels of the pelA and pelD genes were
increased 2.2- and 2.8-fold in presence of 3-oxo-C8-AHL (5 µM), compared to control assays
without its addition (Figure 4), while no significant change was observed for the last gene
of the pel operon, wcaG (Figure S3). Because it has been reported that motility and biofilm
are two phenotypes regulated in an opposite manner by intracellular levels of c-di-GMP,
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the transcription levels of flaA, a flagellin-like encoding gene present in A. thiooxidans ATCC
19,377 genome, was also assessed. However, none differences were observed by comparing
WT and ∆pelD null-mutant planktonic cells grown with or without AHL (Figure S4).
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4. Discussion

PEL was recently identified as a structural exopolysaccharide for biofilm formation
by A. thiooxidans and it was reported that biofilm structures are different in A. thiooxidans
WT strain compared to ∆pelD null-mutant strain that overexpressed a filamentous ap-
pendix [35]. However, a better characterization of the molecular events involved in the
regulation of PEL biosynthesis is still required to understand its role in biofilm formation
and architecture of these acidophilic species. To address this question, the ∆pelD null-
mutant strain developed by Diaz et al. [35] was used to analyse the effect of QS signalling
molecules, extracellular glycoconjugate diversity, mechanical resistance of biofilms, and to
gain more precise new insights into the molecular network involved in the regulation of
PEL exopolysaccharide biosynthesis in Acidithiobacillus species that can only oxidize RISCs.

In agreement with results obtained for P. aeruginosa [29], PEL exoplysaccharide from
A. thiooxidans appears to be mainly composed of N-acetyl-D-galactosamine and N-acetyl-
D-glucosamine. The presence of an additional wcaG gene encoding for an UDP-glucose-4-
epimerase [35], downstream of the canonical pel operon, which is overexpressed in biofilm
cells compared to planktonic cells (Figure S3), strongly suggested that the formation of
UDP-N-acetyl-galactosamine from UDP-N-acetyl-glucosamine could be catalysed by this
enzyme, as it has been recently reported by Whitfield et al. [31]. These data point out that
the biofilm architecture differences observed between wild type and ∆pelD null-mutant
biofilms recently reported by Diaz et al. [35] can be directly related to the presence of
PEL exopolysaccharide and its main structural components N-acetyl-D-galactosamine and
N-acetyl-D-glucosamine.

Altogether, the results obtained here strongly suggested that the QS molecules 3-
oxo-C8-AHL and C8-AHL positively regulate PEL biofilm production by increasing the
transcription levels of PEL-apparatus encoding genes including the c-di-GMP binding
protein PelD. Interestingly, this result differs with the work of Ueda and Wood [40], which
reported that QS negatively regulated PEL production in P. aeruginosa by decreasing c-
di-GMP biosynthesis, but it agrees with Pérez-Mendoza et al. [53] who revealed that the
ExpR/SinI QS system mediated by AHLs positively regulates the transcription of the
bgsA gene encoding for a c-di-GMP effector protein involved in the synthesis of MLG
exopolysaccharides by Sinorhizobium meliloti.
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On the other hand, qPCR results reported in this work also revealed that transcription
levels of flaA do not change in A. thiooxidans WT and ∆pelD cells grown with or without AHL
molecules. Then the hypothesis suggesting that the overexpressed filamentous appendix
observed in biofilm produced by A. thiooxidans ∆pelD strain could correspond to a mesh of
entangled flagella [35] can be discarded. The ability of the A. thiooxidans ∆pelD cells to still
be adhered on S◦-coupons could be related to the presence of the bcs operon identified in
the genome sequence of A. thiooxidansT [34,35] and then cellulose could be responsible for
this AHL independent adherence.

How the addition of AHLs increases pel genes mRNAs and enhances attachment to
surfaces is a matter of discussion and is still an open question as illustrated by Figure 5.
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Figure 5. Working model for the regulation of PEL exopolysaccharide biosynthesis by obligate sulfur-
oxidizing Acidithiobacillus species based on experimental data previously reported and obtained here
with A. thiooxidans. The binding of 3-oxo-C8-AHL (1) by an unknown AHL receptor that could act
as a positive transcriptional regulator (2) can directly promote pel operon expression (3a; Figure 3).
But it may also induce the transcription of FleQ (3b) and diguanilate cyclase (DGC) (3c) encoding
genes and/or repress the transcription of phosphodiesterases (PDE) encoding genes (3c). The new
balance between DGC and PDE activities generate an increase of intracellular c-di-GMP levels (4).
Then, c-di-GMP can bind to its specific receptors FleQ (5) and/or PelD (6) promoting the biosynthesis
of PEL exopolysaccharide (7). OM, Outer membrane; P, Peptidoglycan; IM, Inner membrane.

Recently, it has been proposed that the flexibility to QS-signalling molecules such
as AHLs is mainly due to variability of AHL-receptor proteins [54]. Valdés et al. [51,52]
reported that sulfur-oxidizing species A. thiooxidans and A. caldus do not possess any
canonical genes for QS system. However, it is well established now that A. thiooxidans is
capable to sense AHL signalling molecules to induce biofilm formation [23] (this work)
This indicates that an unknown AHL-receptor protein has to exist in this acidophile species
and may act as a transcriptional regulator either directly to promote the transcription of pel
genes (Figure 5, #3a), or indirectly to induce the transcription of DGC and PDE encoding
genes involved in c-di-GMP metabolism (Figure 5, #3c) but also c-di-GMP protein receptors
encoding genes such as the transcriptional regulator FleQ (Figure 5, #3b). Further studies
are necessary to identify and characterize this unknown AHL-receptor protein. Neverthe-
less, by performing a bioinformatics analysis on the newly available A. thiooxidans genome
sequences (strains A01, CLST, DXS-W, BY-02, A02, DMC, GD1-3, JYC-17, and ZBY) in which
a pel operon has been identified (personal communication), we have recently identified
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a SdiA-like protein with a high e-value (Figure S5) that appears as a strong candidate to
play the molecular role of QS transcriptional regulator. Effectively, SdiA is an orphan QS
transcriptional regulator, not associated with an AHL synthase, that binds AHLs and has
been related to motility and biofilm formation in Escherichia coli and Salmonella enterica
serovar Thyphimurium [55,56]. Interestingly, Prescott and Decho [54] have proposed the
orphan QS transcriptional regulators as key molecular players for flexibility and adaptability
of QS, especially to maintain or develop cell-cell communication during the dynamic
evolution of a biofilm community. Indeed, a bioinformatic analysis of the new available
genome sequence on ten different genome sequences also revealed that A. thiooxidans and
A. caldus possess several copies of the fleQ gene [57]. Then, a possible mechanism of action
of the 3-oxo-C8-AHL could be promotion of transcription of a FleQ encoding gene, which
in turn could induce PEL exopolysaccharide biosynthesis, as occurs in P. aeruginosa [37].
The existence of interplays between QS and c-di-GMP pathways has been demonstrated
in other bacterial species [40,41], in which certain QS molecules regulate activity levels of
DCG and PDE enzymes. Therefore, we can also hypothesize that in A. thiooxidans some of
the genes targeted by the binary complex (3-oxo-C8-AHL/transcriptional regulator) may
encode for proteins with DGC and/or PDE activities, producing an increase in intracellular
c-di-GMP levels and consequently PEL-biofilm formation.

5. Conclusions

Here we report that PEL-biofilm contributes to A. thiooxidans cells resistance to me-
chanical stress. We also reveal that the positive effect induced by QS signalling molecules
on biofilm formation by A. thiooxidans is directly mediated by PEL exopolysaccharide.
We highlight that AHL molecules induce the transcription of several genes belonging to
the pel operon including pelD, which encodes the c-di-GMP effector protein PelD. Finally,
these results offer the first opportunity to propose a working model (Figure 5) that will en-
able further molecular characterization of the regulating network involved in PEL-biofilm
formation by obligate sulfur-oxidizing Acidithiobacillus species.
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of PEL exopolysaccharide amplifies the release of A. thiooxidans attached cells from S◦-coupons;
Figure S3: Addition of QS molecule 3-oxo-C8-AHL has no significant effect on transcription levels
of wcaG from A. thiooxidansT; Figure S4: Transcriptional analysis of flaA gene from A. thiooxidansT;
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available genome sequences of A. thiooxidans.

Author Contributions: N.G. conceived the research. M.D., N.G. and M.V. designed the experiments.
M.D. and D.S.M. performed the experiments. M.C. was in charge of bioinformatics analysis. M.V.
helped with microscopy imaging. Manuscript was written by N.G., M.D., M.C. and M.V. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by FONDECYT Grant 1160702 (April 2016–March 2020) from ANID.

Acknowledgments: To Wolfgang Sand, Biofilm Centre, Universität Duisburg-Essen for hosting MD
for microscopy and biofilm analyses. M.D. acknowledges CONICYT to support his doctoral studies
(scholarship 21120064, 2012). We also thank Diego Rojas Muñoz for his scientific comments related to
LuxR-like protein and Tim Rudge, for proofreading the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Johnson, D.B.; Hallberg, K.B. Acid mine drainage remediation options: A review. Sci. Total Environ. 2005, 338, 3–14. [CrossRef] [PubMed]
2. Rohwerder, T.; Sand, W. Oxidation of Inorganic Sulfur Compounds in Acidophilic Prokaryotes. Eng. Life Sci. 2007, 7, 301–309. [CrossRef]
3. Sand, W.; Jozsa, P.G.; Kovacs, Z.M.; Sasaran, N.; Schippers, A. Long-term evaluation of acid rock drainage mitigation measures in

large lysimeters. J. Geochem. Explor. 2007, 92, 205–211. [CrossRef]

https://www.mdpi.com/2073-4425/12/1/69/s1
https://www.mdpi.com/2073-4425/12/1/69/s1
http://dx.doi.org/10.1016/j.scitotenv.2004.09.002
http://www.ncbi.nlm.nih.gov/pubmed/15680622
http://dx.doi.org/10.1002/elsc.200720204
http://dx.doi.org/10.1016/j.gexplo.2006.08.006


Genes 2021, 12, 69 11 of 12

4. Rohwerder, T.; Gehrke, T.; Kinzler, K.; Sand, W. Bioleaching review part A: Progress in bioleaching: Fundamentals and
mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol. 2003, 63, 239–248. [CrossRef]

5. Harneit, K.; Göksel, A.; Kock, D.; Klock, J.-H.; Gehrke, T.; Sand, W. Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans,
Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy 2006, 83, 245–254. [CrossRef]

6. Baker, B.J.; Banfield, J.F. Microbial communities in acid mine drainage. FEMS Microbiol. Ecol. 2003, 44, 139–152. [CrossRef]
7. Nuñez, H.; Moya-Beltrán, A.; Covarrubias, P.C.; Issotta, F.; Cárdenas, J.P.; González, M.; Atavales, J.; Acuña, L.G.; Johnson, D.B.;

Quatrini, R. Molecular Systematics of the Genus Acidithiobacillus: Insights into the Phylogenetic Structure and Diversification of
the Taxon. Front. Microbiol. 2017, 8, 30. [CrossRef]

8. Papenfort, K.; Bassler, B.L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 2016, 14,
576–588. [CrossRef]

9. Camilli, A.; Bassler, B.L. Bacterial small-molecule signaling pathways. Science 2006, 311, 1113–1116. [CrossRef]
10. Hengge, R. Principles of c-di-GMP signalling in bacteria. Nat. Rev. Microbiol. 2009, 7, 263–273. [CrossRef]
11. Römling, U.; Galperin, M.Y.; Gomelsky, M. Cyclic di-GMP: The first 25 years of a universal bacterial second messenger.

Microbiol. Mol. Biol. Rev. 2013, 77, 1–52. [CrossRef] [PubMed]
12. Jenal, U.; Reinders, A.; Lori, C. Cyclic di-GMP: Second messenger extraordinaire. Nat. Rev. Microbiol. 2017, 15, 271–284. [CrossRef]

[PubMed]
13. Asghar, A.; Groth, M.; Siol, O.; Gaube, F.; Enzensperger, C.; Glöckner, G.; Winckler, T. Developmental gene regulation by

an ancient intercellular communication system in social amoebae. Protist 2012, 163, 25–37. [CrossRef] [PubMed]
14. Barriuso, J.; Hogan, D.A.; Keshavarz, T.; Martínez, M.J. Role of quorum sensing and chemical communication in fungal

biotechnology and pathogenesis. FEMS Microbiol. Rev. 2018, 42, 627–638. [CrossRef]
15. Flavier, A.B.; Clough, S.J.; Schell, M.A.; Denny, T.P. Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator

controlling virulence in Ralstonia solanacearum. Mol. Microbiol. 1997, 26, 251–259. [CrossRef]
16. Miller, M.B.; Bassler, B.L. Quorum Sensing in Bacteria. Annu. Rev. Microbiol. 2001, 55, 165–199. [CrossRef]
17. Pereira, C.S.; Thompson, J.A.; Xavier, K.B. AI-2-mediated signalling in bacteria. FEMS Microbiol. Rev. 2013, 37, 156–181. [CrossRef]
18. Zhou, L.; Zhang, L.H.; Cámara, M.; He, Y.W. The DSF Family of Quorum Sensing Signals: Diversity, Biosynthesis, and Turnover.

Trends Microbiol. 2016, 25, 293–303. [CrossRef]
19. Lin, J.; Cheng, J.; Wang, Y.; Shen, X. The Pseudomonas Quinolone Signal (PQS): Not just for Quorum Sensing anymore.

Front. Cell Infect. Microbiol. 2018, 8, 230. [CrossRef]
20. Ng, W.L.; Bassler, B.L. Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 2009, 43, 197–222. [CrossRef]
21. Farah, C.; Vera, M.; Morin, D.; Haras, D.; Jerez, C.A.; Guiliani, N. Evidence for a functional quorum-sensing type AI-1 system in

the extremophilic bacterium Acidithiobacillus ferrooxidans. Appl. Environ. Microbiol. 2005, 71, 7033–7040. [CrossRef] [PubMed]
22. Valenzuela, S.; Banderas, A.; Jerez, C.A.; Guiliani, N. Cell-cell communication in Bacteria. In Microbial Processing of Metal Sulfides;

Donati, E.R., Sand, W., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 253–264.
23. Bellenberg, S.; Díaz, M.; Noël, N.; Sand, W.; Poetsch, A.; Guiliani, N.; Vera, M. Biofilm formation, communication and interactions

of leaching bacteria during colonization of pyrite and sulfur surfaces. Res. Microbiol. 2014, 165, 773–781. [CrossRef] [PubMed]
24. Gonzalez, A.; Bellenberg, S.; Mamani, S.; Ruiz, L.; Echeverria, A.; Soulere, L.; Doutheau, A.; Demergasso, C.; Sand, W.;

Queneau, Y.; et al. AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by
the bioleaching bacterium Acidithiobacillus ferrooxidans. Appl. Microbiol. Biotechnol. 2013, 97, 3729–3737. [CrossRef]

25. Banderas, A.; Guiliani, N. Bioinformatic prediction of gene functions regulated by quorum sensing in the bioleaching bacterium
Acidithiobacillus ferrooxidans. Int. J. Mol. Sci. 2013, 14, 16901–16916. [CrossRef] [PubMed]

26. Mamani, S.; Moiner, D.; Denis, Y.; Soulere, L.; Queneau, Y.; Talla, E.; Bonnefoy, V.; Guiliani, N. Insights into the Quorum Sensing
Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine
Lactone Superagonist Analog. Front. Microbiol. 2016, 7, 1365. [CrossRef] [PubMed]

27. Hengge, R. Trigger phosphodiesterases as a novel class of c-di-GMP effector proteins. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016,
371, 20150498. [CrossRef]

28. Lee, V.T.; Matewish, J.M.; Kessler, J.L.; Hyodo, M.; Hayakawa, Y.; Lory, S. A cyclic-di-GMP receptor required for bacterial
exopolysaccharide production. Mol. Microbiol. 2007, 65, 1474–1484. [CrossRef]

29. Jennings, L.K.; Storek, K.M.; Ledvina, H.E.; Coulon, C.; Marmont, L.S.; Sadovskaya, I.; Secor, P.R.; Tseng, B.S.; Scian, M.;
Filloux, A.; et al. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm
matrix. Proc. Natl. Acad. Sci. USA 2015, 112, 11353–11358. [CrossRef]

30. Marmont, L.S.; Rich, J.D.; Whitney, J.C.; Whitfield, G.B.; Almblad, H.; Robinson, H.; Parsek, M.R.; Harrison, J.J.; Howell, P.L.
Oligomeric lipoprotein PelC guides Pel polysaccharide export across the outer membrane of Pseudomonas aeruginosa.
Proc. Natl. Acad. Sci. USA 2017, 114, 2892–2897. [CrossRef]

31. Whitfield, G.B.; Marmont, L.S.; Ostaszewski, A.; Rich, J.D.; Whitney, J.C.; Parsek, M.R.; Harrison, J.J.; Howell, P.L. Pel polysaccha-
ride biosynthesis requires an inner membrane complex comprised of PelD, PelE, PelF, and PelG. J. Bacteriol. 2020, 202, e00684-19.
[CrossRef]

32. Franklin, M.J.; Nivens, D.E.; Weadge, J.T.; Howell, P.L. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides,
Alginate, Pel, and Psl. Front. Microbiol. 2011, 2, 167. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s00253-003-1448-7
http://dx.doi.org/10.1016/j.hydromet.2006.03.044
http://dx.doi.org/10.1016/S0168-6496(03)00028-X
http://dx.doi.org/10.3389/fmicb.2017.00030
http://dx.doi.org/10.1038/nrmicro.2016.89
http://dx.doi.org/10.1126/science.1121357
http://dx.doi.org/10.1038/nrmicro2109
http://dx.doi.org/10.1128/MMBR.00043-12
http://www.ncbi.nlm.nih.gov/pubmed/23471616
http://dx.doi.org/10.1038/nrmicro.2016.190
http://www.ncbi.nlm.nih.gov/pubmed/28163311
http://dx.doi.org/10.1016/j.protis.2010.12.002
http://www.ncbi.nlm.nih.gov/pubmed/21371934
http://dx.doi.org/10.1093/femsre/fuy022
http://dx.doi.org/10.1046/j.1365-2958.1997.5661945.x
http://dx.doi.org/10.1146/annurev.micro.55.1.165
http://dx.doi.org/10.1111/j.1574-6976.2012.00345.x
http://dx.doi.org/10.1016/j.tim.2016.11.013
http://dx.doi.org/10.3389/fcimb.2018.00230
http://dx.doi.org/10.1146/annurev-genet-102108-134304
http://dx.doi.org/10.1128/AEM.71.11.7033-7040.2005
http://www.ncbi.nlm.nih.gov/pubmed/16269739
http://dx.doi.org/10.1016/j.resmic.2014.08.006
http://www.ncbi.nlm.nih.gov/pubmed/25172572
http://dx.doi.org/10.1007/s00253-012-4229-3
http://dx.doi.org/10.3390/ijms140816901
http://www.ncbi.nlm.nih.gov/pubmed/23959118
http://dx.doi.org/10.3389/fmicb.2016.01365
http://www.ncbi.nlm.nih.gov/pubmed/27683573
http://dx.doi.org/10.1098/rstb.2015.0498
http://dx.doi.org/10.1111/j.1365-2958.2007.05879.x
http://dx.doi.org/10.1073/pnas.1503058112
http://dx.doi.org/10.1073/pnas.1613606114
http://dx.doi.org/10.1128/JB.00684-19
http://dx.doi.org/10.3389/fmicb.2011.00167
http://www.ncbi.nlm.nih.gov/pubmed/21991261


Genes 2021, 12, 69 12 of 12

33. Ruiz, L.M.; Castro, M.; Barriga, A.; Jerez, C.A.; Guiliani, N. The extremophile Acidithiobacillus ferrooxidans possesses a c-di-GMP
signalling pathway that could play a significant role during bioleaching of minerals. Lett. Appl. Microbiol. 2012, 54, 133–139.
[CrossRef] [PubMed]

34. Castro, M.; Deane, S.M.; Ruiz, L.; Rawlings, D.E.; Guiliani, N. Diguanylate cyclase null mutant reveals that C-Di-GMP pathway
regulates the motility and adherence of the extremophile bacterium Acidithiobacillus caldus. PLoS ONE 2015, 10, e0116399.
[CrossRef] [PubMed]

35. Díaz, M.; Castro, M.; Copaja, S.; Guiliani, N. Biofilm formation by the acidophile bacterium Acidithiobacillus thiooxidans involves
c-di-GMP pathway and Pel exopolysaccharide. Genes 2018, 9, 113. [CrossRef]

36. Castro, M.; Díaz, M.; Moya, A.; Guiliani, N. Cyclic di-GMP Signaling in Extreme Acidophilic Bacteria. In Microbial Cyclic
Di-Nucleotide Signaling; Chou, S.H., Guiliani, N., Lee, V.T., Römling, U., Eds.; Springer Nature Switzerland: Cham, Switzerland,
2020; ISBN 978-3-030-33307-2/978-3-030-33308-9. [CrossRef]

37. Hickman, J.W.; Harwood, C.S. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor.
Mol. Microbiol. 2008, 69, 376–389. [CrossRef]

38. Amikam, D.; Galperin, M. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 2006, 22, 3–6. [CrossRef]
39. Friedman, F.; Kolter, R. Genes involved in matrix formation in Pseudomonas aeruginosa PA 14 biofilms. Mol. Microbiol. 2004, 51,

675–690. [CrossRef]
40. Ueda, A.; Wood, T.K. Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa

through tyrosine phosphatase TpbA (PA 3885). PLoS Pathog. 2009, 5, e1000483. [CrossRef]
41. Srivastava, D.; Waters, C.M. A tangled web: Regulatory connections between Quorum Sensing and Cyclic di-GMP. J. Bacteriol.

2012, 194, 4485–4493. [CrossRef]
42. Deng, Y.; Schmid, N.; Wang, C.; Wang, J.; Pessi, G.; Wu, D.; Lee, J.; Aguilar, C.; Ahrens, C.H.; Chang, C.; et al. Cis-2-dodecenoic

acid receptor RpfR links quorum-sensing signal perception with regulation of virulence through cyclic dimeric guanosine
monophosphate turnover. Proc. Natl. Acad. Sci. USA 2012, 109, 15479–15484. [CrossRef]

43. Lin Chua, S.; Liu, Y.; Li, Y.; Jun Ting, H.; Kohli, G.S.; Cai, Z.; Suwanchaikasem, P.; Kau Kit Goh, K.; Pin Ng, S.; Tolker-Nielsen, T.; et al.
Reduced intracellular c-di-GMP content increases expression of Quorum Sensing-regulated genes in Pseudomonas aeruginosa.
Front. Cell Infect. Microbiol. 2017, 7, 451. [CrossRef] [PubMed]

44. Schmid, N.; Suppiger, A.; Steiner, E.; Pessi, G.; Kaever, V.; Fazli, M.; Tolker-Nielsen, T.; Jenal, U.; Eberl, L. High intracellular
c-di-GMP levels antagonize quorum sensing and virulence gene expression in Burkholderia cenocepacia H 111. Microbiology 2017,
63, 754–764. [CrossRef] [PubMed]

45. Richter, A.M.; Fazli, M.; Schmid, N.; Shilling, R.; Suppiger, A.; Givskov, M.; Eberl, L.; Tolker-Nielsen, T. Key Players and
Individualists of Cyclic-di-GMP Signaling in Burkholderia cenocepacia. Front. Microbiol. 2019, 9, 3286. [CrossRef] [PubMed]

46. Mackintosh, M.E. Nitrogen Fixation by Thiobacillus ferrooxidans. J. Gen. Microbiol. 1978, 105, 215–218. [CrossRef]
47. Zhang, R.Y.; Neu, T.R.; Bellenberg, S.; Kuhlicke, U.; Sand, W.; Vera, M. Use of lectins to in situ visualize glycoconjugates of

extracellular polymeric substances in acidophilic archaeal biofilms. Microb. Biotechnol. 2015, 8, 448–461. [CrossRef]
48. Nieto, P.A.; Covarrubias, P.C.; Jedlicki, E.; Holmes, D.S.; Quatrini, R. Selection and evaluation of reference genes for improved

interrogation of microbial transcriptomes: Case study with the extremophile Acidithiobacillus ferrooxidans. BMC Mol. Biol. 2009, 10, 63.
[CrossRef]

49. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410.
[CrossRef]

50. Marchler-Bauer, A.; Lu, S.; Anderson, J.B.; Chitsaz, F.; Derbyshire, M.K.; De Weese-Scott, C.; Fong, J.H.; Geer, L.Y.; Geer, R.C.;
Gonzales, N.R.; et al. CDD: A Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 2011, 39,
225–229. [CrossRef]

51. Valdés, J.; Pedroso, I.; Quatrini, R.; Holmes, D.S. Comparative genome analysis of Acidithiobacillus ferrooxidans, A. thiooxidans and
A. caldus: Insights into their metabolism and ecophysiology. Hydrometallurgy 2008, 94, 180–184. [CrossRef]

52. Valdés, J.; Ossandon, F.; Quatrini, R.; Dopson, M.; Holmes, D.S. Draft genome sequence of the extremely acidophilic biomining
bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus. J. Bacteriol.
2011, 193, 7003–7004. [CrossRef]

53. Pérez-Mendoza, D.; Rodríguez-Carvajal, M.A.; Romero-Jiménez, L.; De Araujo Farias, G.; Lloret, J.; Gallegos, M.T.; Sanjuána, J.
Novel mixed-linkage β-glucan activated by c-di-GMP in Sinorhizobium meliloti. Proc. Natl. Acad. Sci. USA 2015, 112, E757–E765.
[CrossRef] [PubMed]

54. Prescott, R.D.; Decho, A.W. Flexibility and Adaptability of Quorum Sensing in Nature. Trends Microbiol. 2020, 28, 436–444.
[CrossRef]

55. Smith, J.L.; Fratamico, P.M.; Yan, X. Eavesdropping by Bacteria: The Role of SdiA in Escherichia coli and Salmonella enterica Serovar
Typhimurium Quorum Sensing. Foodborne Pathog. Dis. 2011, 8, 69–78. [CrossRef] [PubMed]

56. Gonzalez, J.E.; Patankar, A.V. Orphan LuxR regulators of quorum sensing. FEMS Microbiol. Rev. 2009, 33, 739–756. [CrossRef]
57. Moya-Beltrán, A.; Rojas-Villalobos, C.; Diaz, M.; Guiliani, N.; Quatrini, R.; Castro, M. Nucleotide Second Messenger-Based

Signaling in Extreme Acidophiles of the Acidithiobacillus Species Complex: Partition Between the Core and Variable Gene
Complements. Front. Microbiol. 2019, 7, 381. [CrossRef]

http://dx.doi.org/10.1111/j.1472-765X.2011.03180.x
http://www.ncbi.nlm.nih.gov/pubmed/22098310
http://dx.doi.org/10.1371/journal.pone.0116399
http://www.ncbi.nlm.nih.gov/pubmed/25689133
http://dx.doi.org/10.3390/genes9020113
http://dx.doi.org/10.1007/978-3-030-33308-9
http://dx.doi.org/10.1111/j.1365-2958.2008.06281.x
http://dx.doi.org/10.1093/bioinformatics/bti739
http://dx.doi.org/10.1046/j.1365-2958.2003.03877.x
http://dx.doi.org/10.1371/journal.ppat.1000483
http://dx.doi.org/10.1128/JB.00379-12
http://dx.doi.org/10.1073/pnas.1205037109
http://dx.doi.org/10.3389/fcimb.2017.00451
http://www.ncbi.nlm.nih.gov/pubmed/29090193
http://dx.doi.org/10.1099/mic.0.000452
http://www.ncbi.nlm.nih.gov/pubmed/28463102
http://dx.doi.org/10.3389/fmicb.2018.03286
http://www.ncbi.nlm.nih.gov/pubmed/30687272
http://dx.doi.org/10.1099/00221287-105-2-215
http://dx.doi.org/10.1111/1751-7915.12188
http://dx.doi.org/10.1186/1471-2199-10-63
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1093/nar/gkq1189
http://dx.doi.org/10.1016/j.hydromet.2008.05.039
http://dx.doi.org/10.1128/JB.06281-11
http://dx.doi.org/10.1073/pnas.1421748112
http://www.ncbi.nlm.nih.gov/pubmed/25650430
http://dx.doi.org/10.1016/j.tim.2019.12.004
http://dx.doi.org/10.1089/fpd.2010.0651
http://www.ncbi.nlm.nih.gov/pubmed/21034261
http://dx.doi.org/10.1111/j.1574-6976.2009.00163.x
http://dx.doi.org/10.3389/fmicb.2019.00381

	Introduction 
	Materials and Methods 
	Strains and Growth Conditions 
	Visualization of A. thiooxidansT Biofilms 
	Transcriptional Analyses 
	Mechanical Resistance of A. thiooxidans Biofilms 
	Bioinformatics Search for a LuxR-Like Protein 

	Results 
	N-Acetyl-Galactosamine and N-Acetyl-Glucosamine Are Structural Blocks of PEL Exopolysaccharide in A. thiooxidansT 
	The Loss of PEL Exopolysaccharide Produces Fragile Biofilms in A. thiooxidans 
	PEL Biosynthesis by A. thiooxidans Requires QS Signalling Molecules 

	Discussion 
	Conclusions 
	References

